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ABSTRACT

Periodic structures consisting of dielectric material, i.e. photonic crystals, are capable of
prohibiting the transmission of electromagnetic waves within frequency ranges referred to as
bandgaps. This principle was first demonstrated with alternating slabs of material and later demon-
strated with three-dimensional (3D) structures capable of reflecting waves from any incident angle.
A number of potential applications for photonic bandgap structures exist, including waveguides,
integrated circuits, fiber optics, and photonic cavities. Additionally, many other optical devices
could benefit from the perfect-mirror behavior of photonic crystals.

The design of photonic crystals for complete bandgap has challenged researchers for the past
three decades. Bandgap structures are often quite complicated and therefore difficult to design
heuristically. Thus, the application of automated design tools, such as topology or shape optimiza-
tion, is very attractive. Unfortunately, bandgap analysis is very computationally intensive, and
it is difficult to employ effective low-dimensional design parameterizations capable of generating
bandgap structures. Until recently, computational power was insufficient to design 3D structures
with complete bandgaps. The development of computing clusters has reduced this burden signifi-
cantly, although computational cost remains a challenge.

A major obstacle when numerically designing for bandgap, or any other design metric derived
from eigenvalues, is the presence of degenerate eigenmodes. Optimal bandgap structures often
possess many planes of symmetry; this is helpful to reduce the overall cost of the required disper-
sion analysis, but it often leads to wave frequencies that have multiple propagation directions, the
physical result of degenerate eigenmodes. Herein lies the challenge; we would like to use gradient-
based optimization algorithms to design bandgap structures, but the presence of degenerate eigen-
modes renders our design metric non-smooth. Solving this conundrum by leveraging symmetric
polynomials was a major contribution of this work. Further, an efficient sensitivity analysis and a
successive mesh refinement strategy were developed to augment the design framework.

Finally, it was observed that bandgap structures often exhibit poor stiffness properties, some-
times even making the structures unable to be physically realized. A series of physics-based,
nonlinear constraints were developed to ensure the algorithmically-generated structures are man-
ufacturable. These constraints were demonstrated by designing a series of photonic crystals that
were fully self-supporting without the presence of enclosed void space. Additionally, the trade-off
between bandgap and bulk stiffness was investigated. The proposed design framework is the first
of its kind; a technique able to leverage traditional, gradient-based nonlinear programming solvers

to generate 3D bandgap structures with manufacturing constraints.
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CHAPTER 1: INTRODUCTION

The engineering design process has long been hindered by the arduous process of trial and error.
Designs are first conceived, then they are tested, and finally a decision is made about whether or not
the design will suffice for the task at hand. If the design is deemed unsuitable, then the designer re-
enters this time consuming loop by suggesting possible alterations before a new candidate structure
is considered. The techniques for improving designs are best described as guidelines, and in reality
most ideas stem from intuition and designer experience. Unfortunately, it is difficult to teach these
concepts, and so it is difficult to train novice design engineers how to most efficiently arrive at
suitable structures for the myriad of applications modern engineers face.

Engineers have become much more proficient at generating effective designs with the advent
of computers. Rather than time consuming and costly experiments, computer simulations rapidly
speed up the design testing procedure. The trial and error process has been considerably accel-
erated, but the underlying problem remains; hard and fast rules for how to improve designs are
scarce. Herein lies the potential for structural optimization to shift the paradigm of the engineering
design process. Algorithms can be developed to remove design decisions from the human designer,
which allow structures to be improved towards a mathematically provable best design.

Once the process of testing out candidate designs entered the digital world, it was only a matter
of time before the design process became fully automated. While we have not achieved this yet,
it seems to be the way of the future. Engineers in the future will only prescribe how they wish a
structure to perform, rather than explicitly prescribing the geometry and/or material selection of the
design. Algorithms will handle the burden of selecting designs in ways that surpass the capability
of human brains. The resulting structures will in some cases astonish us with their ingenious use
of space, yet in some cases they will leave us unsurprised as we rediscover concepts that nature
has presented us with long ago. In either situation, the world we create around ourselves will begin

rapidly changing as we adopt automated design principles.



Structural optimization started as a simple process of optimizing a set of parameters that dic-
tated the size of predetermined features in a design. For example, a truss structure with a set geom-
etry could be optimized by selecting the radius of each member to maximize the overall stiffness of
the structure. While this technique is quite powerful, the designs are limited by the initial geometry
selection. On the contrary, topology optimization is able to produce nearly any possible structure
with a sufficiently refined design parameterization. This technique has been intensely studied since
it was proposed just over 30 years ago, and it will be the topic of this work. For completeness, I
will mention that shape optimization is also a very relevant design technique that is able to place
a material interface in the optimal location. Although shape optimization is a powerful tool with
many applications, especially where boundary location is imperative for simulation accuracy, it
will not be discussed further here since this work exclusively utilizes topology optimization.

Topology optimization uses a very simple principle to define engineering structures. A list of
parameters indicates whether or not material exists at a discrete set of locations within a design
domain. These parameters are varied until the optimization algorithm can determine a set of indi-
cators that cannot be improved by local perturbations to the design state. Once this is achieved, the
structure is explicitly defined by each indicator, denoting the presence or lack of material at that
spatial location. While simple in theory, this process has proven itself to be extremely powerful
in practice. Initially, most topology optimization problems aimed to design the stiffest or lightest
structure, subject to external loads under linear elastic assumptions. In reality, however, we know
that engineers face much more complicated design problems with more demanding design require-
ments and simulation necessities. Thus, to continue advancing the engineering practice towards
a fully-automated design process we must further our topology optimization capabilities. To this
end, a framework is proposed that is capable of designing periodic structures such that they totally
reflect light waves within specified frequency ranges. This ability will empower a new genera-
tion of tools in the optics engineering field. Further, a series of design constraints are formulated
to ensure these periodic structures are practical; namely, that they are fully self-supporting and

manufacturable with modern additive manufacturing techniques.



1.1 Design of photonic bandgap structures

Photonic bandgap structures forbid electromagnetic wave propagation of a given frequency range,
also known as the bandgap [1]]. The first photonic bandgap structures were one-dimensional peri-
odic structures [2], however, the bandgap engineering field progressed little until higher-dimensional
bandgap structures were discovered a century later 3, 4]. Early experiments demonstrated 3D
photonic bandgaps in crystals made of dielectric spheres with face-centered cubic [5] and body-
centered cubic [6] symmetries, as well as in crystals made of dielectric rods [7]. Additionally,
a diamond structure of dielectric spheres was designed and its complete 3D photonic bandgap
was numerically simulated [8]. Since these groundbreaking results, three decades of research has
followed on the design and analysis of photonic bandgap structures. Novel applications include
low-loss waveguides [9, 10, [11, [12]], integrated circuits [13]], perfect mirrors [14], photonic cavi-
ties [1115], photonic bandgap fibers [[16], and a number of other exciting optical applications [1].

A material made of a periodic, architected micro-structure is referred to as a “metamaterial”.
The bulk, or effective, material properties of metamaterials are controlled by the underlying mate-
rial properties, but also and more interestingly, by the geometry of the microstructure. A technique
known as homogenization was developed to predict the effective elastic properties of metamateri-
als by analyzing just a single unit cell [17]. Further, topology optimization [[18,[19], which seeks
to determine the optimal material distribution for a specific task, is readily applied to solve the
inverse homogenization problem [20} 21], i.e. to generate micro-structures that exhibit optimal,
or prescribed, effective properties. Seemingly impossible effective material properties have been
observed by optimizing metamaterials, such as simultaneous negative bulk modulus and mass den-
sity [22] as well as negative Poisson’s ratio [23].

Metamaterials have also been designed for effective electromagnetic properties, such as mag-
netic permeability and electric permittivity, although much less research has been performed in this
realm. So called “left-handed” metamaterials have been designed to exhibit negative effective per-

meability and permittivity [24]. These electromagnetic metamaterials are periodic structures that



exhibit their effective bulk properties at an operating frequency with a corresponding wavelength
that is much larger than the unit cell size [25]. Photonic crystals are similarly periodic structures,
however, they obtain their performance by leveraging diffraction [25] and are therefore designed
to operate at frequencies with a wavelength that is similar in size to the unit cell. Numerical in-
verse design, referred to as inverse homogenization via topology optimization, is readily applied
to design the periodic unit cells of both metamaterials and photonic crystals.

Many previous studies have applied inverse problem techniques to the design of photonic crys-
tals [26]. A major issue plaguing numerical design of photonic bandgap structures is the non-
smoothness of the objective function due to degenerate eigenvalues [27]. The first successful
3D bandgap design optimization naturally avoided eigenvalue degeneracy by using a very low-
dimensional design space [28]], however, a number of techniques have since been employed to cir-
cumvent this issue. 2D photonic crystals exhibiting bandgaps were designed using a generalized
gradient ascent [29,30]] algorithm that leveraged directional derivatives, or subgradients, computed
by the generalized gradient technique for degenerate eigenvalues [31]. The generalized gradient
ascent was later extended to a level-set design parameterization [32], and similarly a regularized
descent method was used to design optical waveguides via shape optimization [33]. Alternatively,
semidefinite programming, which alleviates the need for eigenvalue sensitivities, was applied to
design 2D photonic crystals [34] and further extended to the robust design of 3D photonic crys-
tals to accommodate uncertainties in fabrication [35]. Topology optimization, i.e. inverse unit
cell design, has also been used to design structures with mechanical, or phononic, bandgaps [36],
and even more interestingly with both phononic and photonic bandgaps [37]. Genetic [38]] and
evolutionary [39] topology optimization methods have also been applied to design photonic crys-
tals. These techniques do not require design sensitivities, but do require many more iterations to
converge than gradient based-algorithms and they cannot ensure optimality. For these reasons,
gradient-free algorithms are not recommended for solving topology optimization problems [40].
At the other extreme, theoretical techniques for bandgap design that do not require iterative tech-

niques were developed [41) 42]. Interested readers are directed to review articles [43, 44]].



The numerical techniques described in this work are only applicable to non-magnetic materials,
and therefore we direct readers to [45) 46, 147, 48|, 49] for studies on magnetic photonic crystals.
Design optimization has not yet been applied to 3D magnetic photonic crystals. Further, we assume
lossless materials and direct readers to in [1, 50, 51] for information on lossy photonic structures.

This work alleviates the differentiability issues of repeated eigenvalues by leveraging research
on symmetry polynomials of eigenvalues [52]. The presented smoothing technique allows pho-
tonic crystal design via traditional gradient-based nonlinear programming (NLP) solvers. The use
of a smooth NLP algorithm is advantageous, because although non-smooth NLP algorithms [53]]
could be used in principle, their success has not been demonstrated on photonic crystal design
in practice. Our work also uses a 3D design parameterization, which is necessary to generate
structures with complete 3D bandgaps; it also proved very effective for optimizing structures with
large complete 2D bandgaps. We also improved the computational efficiency of a “voxel” based
design parameterization by using a nested mesh refinement technique. Length-scale control is im-
plemented to ensure manufacturability by employing a periodic volume fraction filter that respects
the orthorhombic symmetry of our unit cell. Multi-level parallelism and an efficient sensitivity
analysis are exploited to execute these large computational tasks in a reasonable wall clock time.

We validate our framework by designing novel structures with complete 2D and 3D bandgaps.

1.2 Manufacturing and stiffness constraints for photonic crystals

The design of periodic unit cells with inverse homogenization [20] using topology optimiza-
tion [18] has been widely studied. For example, it is used to design metamaterials with seemingly
nonphysical effective properties, such as negative Poisson’s ratio [54} 55, 156] and simultaneous
negative bulk modulus and mass density [22]]. Inverse homogenization is also used to tune metama-
terials to match prescribed properties [S7] and to obtain theoretically optimal properties [58]].The
method is becoming more common in three dimensions (3D) [56] as computing power contin-
ues to advance, and the interest in lattice materials continues to increase [59]]. Moreover it is not

limited to the realm of mechanics; designs for thermal expansion [60]], thermal conductivity [61],



fluid permeability [62], and magnetic permeability [63] have also been generated, and multifunc-
tional designs are becoming increasingly popular [61, 64]. Interested readers are directed to an
exhaustive review of micro-architected design [21]].

As mentioned above, topology optimization has been used to design the periodic unit cells of
phononic and photonic crystals [65]. Early studies designed two-dimensional (2D) phononic [36]
and photonic crystals [32, 34], and more recently 3D photonic crystals [35, 39]. Bandgap opti-
mizations present an obvious need for material connectivity constraints. Indeed in stiffness opti-
mizations, disconnected regions of material never appear as they increase mass but not stiffness.
However, in bandgap optimization problems it has been demonstrated that disconnected structures
are often beneficial [32]34]]. Such designs with islands of solid material (ISM) are problematic as
they cannot be manufactured since they are not self-supporting. Additionally, enclosed void space
(EVS), also common to bandgap optimized designs [33]], cannot be easily manufactured.

Many design formulations have been presented to ensure manufacturability in density-based
topology optimization [66, 67]. For example, techniques have been proposed to limit the over-
hang angle of a structure to alleviate the need for support material in additive manufacturing
(AM) [68,169, 70, 71, (72, [73]. Additionally, the virtual temperature method (VTM) [[74] prevents
EVS which is difficult to manufacture with most AM processes. We present various constraints that
can be integrated into topology optimization frameworks to ensure that optimal microstructures are
without ISM and EVS. Our techniques do not require changing the design parameterization or ap-
plying a filter. Further, several of them are inherently linked to mechanical stiffness so we will
investigate the effect of adding stiffness requirements to photonic bandgap structures. We will thus
be able to generate manufacturable photonic crystal structures with prescribed levels of stiffness
and probe the trade-off between these two often conflicting objectives.

In Chapter 3 we extend the VIM [74] to prevent ISM by flipping the material properties in
Section Then, we further extend the VIM to eliminate both EVS and ISM from peri-
odic structures in Section [3.1.1] We alternatively prevent ISM by enforcing a mechanical eigen-

value constraint described in Section [3.1.2] and ensure self-supporting structures by enforcing a



self-weight compliance constraint described in Section Finally, we compute the homoge-
nized [17]], or effective, constitutive tensor of our unit cells from which we derive bulk stiffness,
shear stiffness, and isotropy constraints in Section The proposed constraints are evaluated
on a series of contrived unit cells to demonstrate their behavior in Section where guidelines
for the appropriate constraint choices are presented to meet particular design goals. A simple op-
timization test problem is presented to display the efficacy of each constraint for unit cell design
in Section [3.3] and designs of self-supporting, manufacturable photonic crystals further serve to
exemplify the proposed constraints in Section [3.4] Finally, novel 3D photonic bandgap structures
with prescribed minimum bulk stiffness levels are presented to illustrate a feasible bandgap-bulk

stiffness design space in Section [3.5]



CHAPTER 2: TOPOLOGY OPTIMIZATION FOR PHOTONIC BANDGAP

This chapter describes a framework for designing photonic crystals via topology optimization.
Only design performance with respect to bandgap is considered here, i.e. manufacturability con-
straints are left to Chapter 3. The framework describes techniques to alleviate the non-smoothness
caused by degenerate eigenvalues, while also providing an efficient sensitivity analysis and mesh
refinement technique to significantly reduce the computational burden. The traditional “density”
method of topology optimization is used to ensure adequate design freedom to obtain complete
bandgaps. Confidence in the proposed method was gained by reproducing previously published
bandgap structures. Further, novel bandgap structures were generated using the new techniques.
Orthorhombic symmetry is considered throughout, although the techniques easily generalize to
other symmetry groups. A key aspect of the proposed framework is the ability to leverage tradi-
tional gradient-based nonlinear programming solvers. This advantage will be highlighted in Chap-
ter 3, where constraints are used to improve the designs presented in Chapter 2 by ensuring they

are manufacturable. The work presented in this chapter has been published in Optics Express [[75].

2.1 Formulation

The techniques used to generate the results in Section[2.2)are described in detail here. The govern-
ing equations, solution basis, objective formulation, design parameterization, sensitivity analysis,
filtering technique, and mesh refinement strategy are all described thoroughly with appropriate ref-
erences presented for further study, if desired. Note that specific values which would be required

to reproduce the results are given near their corresponding results in Section[2.2]



2.1.1 Maxwell’s eigenvalue problem

Time-harmonic electromagnetism in a source-free, isotropic, lossless medium is governed by the

four Maxwell equations [1, 76]

V x E(x) = iwpop(x) H(x) (2.1)
V x H(z) = —iwsos(x) E(z) (2.2)
V- (&(x) E(x)) =0 (2.3)
V- (u(x) H(z)) = 0, (2.4)

where VX and V- are the curl and divergence operators with respect to position x, respectively,
is the electric field, H is the magnetic field, w is the frequency, y is the magnetic permeability in
a vacuum, u, is the relative magnetic permeability, &y is the electric permittivity in a vacuum, &, is
the relative electric permittivity, and i is the imaginary unit. Bold-faced font will be used to denote
vector entities throughout. This paper will focus on non-magnetic materials, i.e. u(x) = 1, and

therefore we omit () hereafter. Equations (2.1]) and (2.2) are easily combined into

v x ( I vx H(:I;)) - (9)2 H(z). 2.5)
&(x) c

where it is noted that the speed of light ¢ = ;ﬁ was substituted, and we reiterate that our media
are assumed to be lossless and therefore &, is strictly real. Further, since we are assuming isotropic
media we express the permittivity as a scalar quantity, although the solution technique easily gen-
eralizes to anisotropoic media wherein the permittivity is tensor-valued and thus $ becomes e;!.

2
Equation (2.3) is an ordinary eigenvalue problem with eigenpairs ((%) , H), however, it is impor-



tant to remember that solutions to Equation must also satisfy Equations. (2.3) and (2.4) to be
physically valid. A similar eigenvalue problem for the electric field E could have been formulated,
although a generalized eigenvalue problem would have been obtained. The choice of solution field,
i.e. H or F, is further discussed in Sec.[2.1.2

Bloch’s theorem [77, [78] allows the magnetic field in a periodic medium to be expressed over

a single unit cell as

H(x) = Hy(z) ", (2.6)

where H), is a periodic function with the same periodicity as the medium and k is a wave vector.

Substituting Equation (2.6) into Equation (2.3)) yields the ordinary eigenvalue problem

. 1 . w)?
ALHy@) = (V + i) X — (V + i) x Hy(@) = (Z) H(x). 2.7)

&(x

2
which is solved over a single unit cell for the pair ((%) , H}). From Equations and (2.7) we
see that H is a wave that propagates with frequency w in the direction . In bandgap structures

there exists intervals [w;, w,], i.e. bandgaps, in which no waves propagate.

2.1.2 Planewave expansion

A finite dimensional basis is used to approximate H and solve Equation numerically. There
are a number of possible bases, each with their own advantages and limitations [7/9]]. Perhaps the
most common basis in numerical methods is a finite element basis [80]], which has the advantage
of easily enforcing the required solution continuity through the use of vector finite elements, e.g.
H-curl finite elements enforce tangential vector continuity [81]. Due to their immense applicability
and popularity across many disciplines, open source finite element codes are widely available, such
as the modular finite element methods (MFEM) library [82]. The main disadvantage of a finite
element basis is the difficulty of enforcing the transversality requirements [/9)]. As mentioned in
Sec.[2.1.1] all computed solutions of Equation must also satisfy Equations (2.3]) and (2.4)) to be

physically valid. Solving Equation (2.7) numerically without a transversality constraint will yield

10



many zero-valued eigenvalues [[79] which do not satisfy Equations (2.3)) and (2.4)), These spurious
solutions could be removed after the calculation, but this technique would be quite computationally
wasteful. A much better choice is the use of a planewave basis, which has become the standard
practice for photonic band analyses since it was first presented two decades ago [[79].

A planewave basis is used to approximate H, as

N
Hy®@) = ) e (2.8)
m=1

where G, are the reciprocal lattice vectors of the unit cell and h,, are the unknown degrees of
freedom (DOF) in wavevector space [79]. Substituting Equation (2.8)) into Equation and
inspecting the resulting Equation (2.4) reveals a major advantage of the planewave basis. We see

that the transversality requirement reduces to

N
' [Z hme"@m“’v)'w] =0, (2.9)

m=1

which further reduces to

h, (G, +kK)=0. (2.10)

Since G,,+k is known, the above Equation (2.10) constraint on h,, is easily enforced by expressing

h, =h' e +h’e, (2.11)

where e; and e, are orthogonal unit vectors that are perpendicular to G,, + , and solving for the
unknown DOF h! and h?%. The transversality constraint would not be so easily enforced had Equa-
tion been formulated for the electric field E, due to the presence of &.(x) in Equation (2.3).
By choosing H as the solution field, satisfying V - H(x) = 0 effectively satisfies Equation (2.4),
since . (x) = 1, and Equation (2.3) will automatically be satisfied by expressing h,, via Equa-

tion (2.11) [79].

Bandgap optimizations only require calculation of a few of the lowest modes, and thus for large
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problems an iterative eigenvalue solver is significantly more efficient than a direct solver. Fortu-
nately, the linear operator in Equation (2.7) is symmetric positive-definite [[1]], and as such iterative
methods, e.g. locally optimal block preconditioned conjugate gradient (LOBPCG) [83], may be
used. A key feature of iterative methods is that they only require matrix-vector products, rather
than explicit matrices. In other words, the linear operator of Equation is never computed
and stored, only its action on vectors is required. To further hasten calculations, the dimension
of the basis N, and therefore the cutoff magnitude of G,,, is selected such that a discrete Fourier
transform (DFT) can be used to transform between planewave and spatial representations [79].
This does of course restrict the lattice unit cells to those which can be represented by rectangular
prisms, due to the uniform spatial discretization required for a DFT. Ultimately, the matrix-vector
products are computed in O(n log n) time using the technique described in [79], the curl operations
become cross products in wave vector space (O(n)) and the inverse permittivity is applied locally
(O(n)) once a DFT (O(nlog n)) transforms solutions between wavevector and physical space. The
limiting factor becomes the two DFTs required for every matrix-vector product, although this cal-
culation is quite efficient using the Fastest Fourier Transform in the West (FFTW) library [84]. To
further improve the computational efficiency, the calculations are parallelized; the curls computed
in wavevector space are embarrassingly parallel, while the DFTs performed by FFTW are paral-
lelized along one spatial dimension. A further advantage of the planewave basis is the availability
of an accurate preconditioner [[/9], which is crucial for rapid convergence of LOBPCG.

An open-source planewave expansion library, Maxwell Photonic Bands (MPB), is available,
although the method was implemented from scratch in this work to facilitate the design sensi-
tivity calculations. The implementation used in this study was based on the originally presented
framework [79], although permittivity smoothing was excluded. This omission eases the sensitiv-
ity calculations, and any inaccuracies incurred by it are mitigated by refining the computational
grid [[79], which is done in our nested mesh refinement. Further, the generalization of permittivity

smoothing to handle anisotropic materials [79] was not required.
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Figure 2.1 Irreducible Brillouin zones of unit cells with orthorhombic symmetry

2.1.3 Photonic bandgap calculation

To predict the presence of a complete photonic bandgap, the propagating modes must be computed
from Equation for all unique wave vectors k in reciprocal lattice space [1]. Fortunately, the
region of non-redundant wave vectors, i.e. the irreducible Brillouin zone (IBZ) denoted as B : R? ,
is reduced for lattices possessing domain symmetries [85)]. This work will consider, without loss of
generality, orthorhombic crystals, due to their ease of computational implementation. 8 is simply
a square, i.e. 1/4th of the unit cell cross-section, in 2D and an octant, i.e. 1/8th of the unit cell,
in 3D with orthorhombic symmetry [85], cf. Fig. 2.1} To be clear, all design parameterizations
are 3D, but they will be optimized for both complete 2D bandgaps, where & is restricted to lie
in the x — y plane, and complete 3D bandgaps where no such restriction is enforced. Note that
a topology optimization scheme to overcome the difficulty of non-rectangular symmetry cells has
been developed [33]], although it is not needed here.

The bandgap-midgap ratio between bands m and m + 1 is defined as

6, =22 o D On () Z X Oy, g (2.12)
@ 3 (min Wy (K) + max w,(K))

where B is the appropriate irreducible Brillouin zone for the unit cell. The bandgap-midgap ratio’s
scale invariance makes it preferable over the absolute bandgap 4w as a performance metric [1].

Indeed, invariance ensures the lattice size of a photonic crystal may be scaled to shift the bandgap,
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Figure 2.2 Representative dispersion plot for 2D k € 08

i.e. @, without changing 6,,. Note that 6,, lacks differentiability from both the min/max operations
and the potential for degenerate eigenvalues. These matters are addressed in Sec. [2.1.7] Fig. [2.2]
displays an example dispersion plot with a gap between modes m = 3 and m + 1 = 4, with the
gray region denoting the bandgap [w;, w,]. Notice that only the edges of B, denoted as 08, are
included in the plot, since band extrema are rarely located on the interior of B [35]]. A statistical
analysis of band extrema location discovered that this assumption works best for crystals with high
symmetry [86]. Therefore, only 98 is included in our objective function calculation, but a full B
discretization is computed a posteriori to ensure our designs truly have a bandgap.

Previous work suggested that optimizing

9, = min A,.1(k) — max A4,,(k) Vk € 0B (2.13)
! 1 (min A1 (K) + max A,,(k)) ’ '

2 . . . . . . . . .
where 1 = (%) , is equivalent to optimizing Equation (2.12)) and results in better optimization
performance [35]]. Thus, all optimizations in this work use Equation (2.13)) as the objective func-
tion, however, dispersion plots will be presented displaying the normalized frequency 5= for a
unit cell of size a, as is customary. Fortunately, the eigenvalue computations at each wavevector

are embarrassingly parallel, producing efficient strong scaling of the Brillouin scan. Note that the

dependence of 6, on design variables was omitted here, but will be reconsidered in Sec. [2.1.8]
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2.1.4 Topology optimization

Topology optimization distributes material in a design domain to generate optimal structures [18]].
Traditionally, the structure £ is defined by a material indicator function y : R" — {0, 1} such that
Q = {x € R" | y(x) = 1}, i.e. indicator values of y(x) = 1 correspond to the presence of solid
material and values of y(x) = 0 correspond to void space at location x. The resulting integer pro-
gramming problem is ill-posed due to a lack of inherent length scale [87]. A restriction method,
such as a perimeter constraint [88]], provides a minimum length scale and results in a well-posed
problem, but the difficulty of the integer programming formulation remains. Convexifying the de-
sign space by replacing the binary-valued material indicator with the continuous volume fraction
v : R" — [0, 1] enables the use of efficient, gradient-based optimization algorithms, and the use of
alternative restriction techniques, such as a slope constraint [89] and filtration [90]. Unfortunately,
designs now contain intermediate material regions where v(x) € (0, 1), as opposed to purely void
and solid regions where v(x) = 0 and v(x) = 1, respectively. Often times additional measures must
be taken to limit the extent of the intermediate volume fraction regions. For example, employing
a material interpolation scheme [91} 92}, 93] that penalizes the stiffness-to-weight ratio at locations
where v(x) € (0, 1) in conjunction with a mass constraint [[19] works well in the standard compli-
ance topology optimization problems. Fortunately, photonic bandgap optimization problems are
well-posed whence they do not require length scale control and when replacing the indicator func-
tion with the volume fraction to convexify the design space they naturally tend to binary designs,

alleviating the need for material penalization schemes.

2.1.5 Design parameterization

The design variables d; in this work are the values of the volume fraction over a set of “vox-
els” which discretize the unit cell, and thus the volume fraction field is piece-wise uniform. As
mentioned in Sec. [2.1.3] orthorhombic symmetry will be considered throughout this work. This
symmetry is enforced by allowing only the design in the symmetry cell to change freely, i.e. by

allowing each voxel in the symmetry cell to have its own volume fraction. The full unit cell design
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Figure 2.3 Example 2D design parameterization with orthorhombic symmetry, dashed lines mark
symmetry planes

is obtained by mapping the symmetry cell design throughout the unit cell, as demonstrated by the
2D example in Fig.[2.3]

The well-known “checker-boarding” phenomenon often observed in structural topology opti-
mization due to the inherent ill-posedness of the problem [87] is naturally avoided when optimizing
bandgap structures, as evidenced by numerical results [33, [36, 38} [39] and theoretical considera-
tions [41, 42]]. Nonetheless, a filtration technique is employed here to impose a minimum length
scale to ensure manufacturability and to hasten convergence of the optimization. To this end, the
“cone filter” presented in [90] is extended to periodic unit cells with imposed domain symmetry.
The filter works by replacing the volume fraction with a smoothed, i.e. filtered, volume fraction
field . In this way a highly oscillatory v, which yields small scale features, is replaced by a smooth
y. The cone filter uses a mesh-independent weighting of volume fraction that varies linearly with

distance r such that

v@ri[UK@—yw@)M% (2.14)
B{(x

where K is the linear kernel and B,(x) is a ball of radius r centered at . Upon discretization we

obtain the discrete filtered volume fractions of the voxels d; from

d = Wyd, 2.15)
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Figure 2.4 Cone filter kernel B,(x) K(x — y) in 2D at various locations displayed in unit cell (top
row) and symmetry cell (bottom row), dashed lines mark symmetry planes

where
Wij= o= (2.16)
2 Wi
with
Wi; = max(0, r— |l — ), (2.17)

in which «; is the centroid of voxel i and || - ||, is Euclidean distance. Note that the entries are “nor-
malized” such that the sum of each row of W equals 1. Extending this filter to a periodic domain
is achieved by computing ||l; — ||, as the minimum distance between x; and all valid positions
of x; in neighboring unit cells. Further, domain symmetry is accounted for by computing W;; at
each voxel centroid in the unit cell, and then adding all contributions to their corresponding voxel
in the symmetry cell. These operations are demonstrated in 2D by Fig. [2.4] and easily generalize
to 3D. Note that the symmetry operations lead to “double counting” the contribution of elements
near a symmetry cell boundary. The minimum length scale is roughly enforced by the selection of

r; smaller values allow for smaller features.
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2.1.6 Material interpolation

The solid phase volume fraction v affects the design as we use a linear material interpolation

scheme for the relative permittivity while solving Equation (2.7), i.e.

&(x) =g+ () (g1 — &), (2.18)

where () is the filtered volume fraction so that the relative permittivity &.(x) is that of the solid
phase €; when #(x) = 1 and that of the vacuum &, when ¥(x) = 0, respectively. Previous work
has reported that when designing for maximal bandgaps using this interpolation, optimal structures
naturally tend to binary designs, i.e. #(x) ~ 0 or #(x) ~ 1, in both 2D [10] and 3D [35} [39] appli-
cations, which follows intuition that high dielectric contrast leads to large bandgaps [1]. Conver-
gence to binary structures was also observed in 2D phononic bandgap topology optimization [36].
In agreement with previous works, our optimized structures naturally converged to binary designs

eliminating the need for a nonlinear material interpolation scheme.

2.1.7  Objective function smoothing

As previously mentioned, the bandgap-midgap ratio defined in Equation (2.13)) lacks the differen-
tiability required to use gradient-based optimization solvers, such as the method of moving asymp-
totes (MMA) [94] or interior point methods, e.g. IPOPT [95]. There are two distinct sources of
non-smoothness, but fortunately both can be alleviated with the same technique. Repeated, or
degenerate, eigenvalues are a well known issue plaguing eigenvalue optimization problems [27].
Consider a symmetric, matrix A which depends on design variables d. If A has eigenpairs (4, ¢)
which satisfy A¢ = A¢, the simple eigenvalues A can be differentiated with respect to a particular

design parameter d; as [27]]
D1 1
Dd;  ¢'¢

94
[0 ad, o, (2.19)
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where D denotes a total derivative and 0 denotes a partial derivative. It becomes clear that Equa-
tion (2.19) admits infinitely many solutions in the case of repeated eigenvalues, wherein there
are an infinite number of valid eigenvectors ¢ in a hyper-plane with dimensionality equal to the
eigenvalue’s multiplicity [27]; as such, the derivative is not defined. Albeit, it is possible to com-
pute directional eigenvalue derivatives using the generalized gradient method [31]], however, most
nonlinear programming algorithms cannot work with directional derivatives.

It was proven that a symmetric polynomial of eigenvalues, A; fori = 1,...,n, is a differentiable
function, provided the set is isolated, i.e. ... < g < A} < ... < A, < Ay < ... [52]. Inspection
of the inequalities reveals that the symmetric polynomial remains smooth even if the isolated set
contains degenerate eigenvalues. This is an extremely powerful result that can be used to remove

the eigenvalue degeneracy issue from topology optimization. Specifically, a “p-norm” function

defined on a vector a as 1

L(a) = (Z af)p : (2.20)

1

is a symmetric polynomial raised to an exponent. We note that the usual p-norm absolute value is

ignored since we assume a; > 0. Thus, approximating the mode m eigenvalue

() = () = (Z &-(n)f’) , (2.21)
i=1
and the mode m + 1 eigenvalue
M _l
A1 (K) & A1 (K) = [ Z ﬂi(n)"’] , (2.22)
i=m+1

where M is sufficiently large to capture all repeated eigenvalues of 4,,,1(x), yields smooth approx-
imations provided A,, # A,+1. Although 4, # A,,.1 1s not guaranteed across the entire design do-
main, the assumption is justified since it must hold for our bandgap designs. Note that our smooth
approximation further requires Ay, # Ay41, although any errors introduced if 4y, = A4 are negli-

gible in the sensitivity analysis provided A}, > A” . So clearly, the accuracy of Equations (Z.21)
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and (2.22) is also controlled by the value of p, which must be sufficiently large to obtain a reason-
able approximation, although poor optimization convergence is likely if p is too large. Substituting

the approximations from Equations (2.21]) and (2.22)) into Equation (2.13)) produces

min A,,.1(k) — max A,(k)

LR VK € 08, (2.23)

: (min Ame1(K) + max ;lm(lc))
which effectively alleviates the non-differentiability caused by eigenvalue degeneracy.
Equation (2.23) still lacks the necessary differentiability for gradient-based optimization due

to the min/max operations. Equation (2.20) is therefore applied to smoothly approximate these

operations as

1
P

Ny
max A,(k) ~ 1; = (Z ;lm(k;,-)”) K €08 (2.24)
i=1
", 5
min A, (k) ~ 1, = (Z ;1m+1(n,-)_”) Kk € 08B, (2.25)
=1

where N, is the number of wave vectors chosen along 8. Substituting Equations (2.24)) and (2.25])

into Equation (2.23) reveals the differentiable bandgap-midgap ratio approximation

A — 4

O, ~ 0, = 2"
T (b )

(2.26)

2.1.8 Sensitivity analysis

As previously noted, the bandgap-midgap ratio will be influenced by the solid material volume
fraction, which is parameterized by a set of design variables d. Thus, the derivative of Equa-
tion (2.26) is required with respect to each design parameter d; to perform efficient gradient-based
optimization. The chain rule is used to compute each derivative according to

D, 06,DA; 86,DA,

_— = =t =, 2.27
Dd; 04, Dd; 64, Dd; @27
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which requires

o, -4k,
2+ /11)
and
06, _ 4l (2.29)

= _ )
04, (/12 + /11)
To compute the total derivatives ml - and DL “the derivative of Equation (2.20)) for a design depen-

Dd;’

dent input vector a is evaluated via the chain rule as

Di,(a) < dl,(a)Da
_r _ Z oa, Dd, (2.30)
where .
aly(a) p " p-1
Ga - (Zk: ak) a. 2.31)

Equation (2.30) is applied to evaluate the derivatives of Equations (2.24)) and (2.25]), and then again

applied to evaluate the derivatives of Equations (2.21)) and (2.22)), which are required for the chain

rule applications. As discussed in Sec. we see that the errors in the derivative computations

of Equations (2:22) and (2.23) due to Ay = Ay are small if A}, > A” . Note that in the

m+1°
smooth minimum approximations we employ a negative exponent, i.e. —p, and therefore a;p - ef.
Equation (2.31), becomes very small for large a; and large p.

At this point, only the derivatives of the eigenvalues 2 o remain. Despite the possibility for

d
degenerate eigenvalues, Equation (2.19) may be utilized with assured smoothness through the use
of symmetric polynomials [52]. Computing Equation (2.19)) requires the discretized matrix-vector
product aAqf) which may be computed using the matrix-free technique described in Sec. m
with the caveat of multiplying by 2 D4

) rather than ——, after transforming the solution via

(ar(:c) x( )’

DFT to physical space. This technique may be feasible for a small number of design variables,
but will likely become computationally prohibitive for the large number of design variables used
in topology optimization. Fortunately, a more efficient technique to compute the ex1sts when

design variables have local support, which is the case in topology optimization. To see this we
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examine a weak formulation of the eigenvalue problem, which is obtained by integrating the dot
product of Equation (2.5)) with an arbitrary weighting function w over the computational domain

Q as

fw(a:) . (V X ( ! V x H(a:))) dQ = fw(az) -AH (x) dQ. (2.32)
Q Sr(iL’) Q

The vector identity

Vi(axb)=b-(Vxa)-a-(Vxb) (2.33)

is then applied to move a derivative from the solution field H to the weighting function w. Indeed,

substituting @ = 1V x H and b = w converts Equation to
g = q

fV(( ! VxH(zc))xw(zc)) dQ+f( ! VXH(a:))-(VX'w(:c)) dQ
o &(x) o \&(x)

(2.34)
= /lfw(:l:) - H(x) dQ,
Q
and applying the divergence theorem to the first integral yields
1 1
f n(x) - (( V x H(:c)) X 'w(a:)) 0Q + f ( V x H(a:)) (VX w(x)) dQ
0Q &) o \&(@) (2.35)

:/lfw(w)~H(:c) dQ,
Q

where 71 is the outward facing normal vector. Finally, the periodic boundary condition annihilates

the boundary integral leaving the eigenvalue problem of finding the admissible H such that

f ! (VxH(x) - (VXw(x)) d2 =41 f w(x) - H(x) dQ. (2.36)
Q gr(m) Q

for all admissible w. Here we see that upon discretization, Equation (2.36)) is of the form AH =
AH . Taking the variation of Equation (2.36)) yields

fa( ! )(v x H(x)) - (V X w(x)) dQ + f L (Vs 6H@) - (v x w(z) dQ
0 \&l®@) o &(®) (2.37)

:6/lf'w(a:)-H(m) dQ+/lfw(ac)~6H(m) dQ.
Q Q
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where we use Equation (2.36) to cancel the dw terms, since dw is admissible. Assigning the

arbitrary weighting function w = H yields

f&( ! )(VXH(:I:))-(VXH(CE)) dQ+f ! (VxoH(x)) - (Vx H(x)) dQ2
o \&l(x) 0 &(x)

(2.38)
= 6/1fH(a:) -H(x) dQ+/1fH(a:)-6H(a:) dQ,
Q Q
which reduces to
fd( ! )(V x H(x)) - (Vx H(x)) dQ = 5/1fH(:1:) - H(x) dQ, (2.39)
o \&(x) o)

where we again used the fact that Equation (2.36)) holds for the admissible w = 6 H. Solving for

oA leaves the expression

-1
oA = (f H(x) - H(x) dQ) f(VxH(:c))-(S( | )(VXH(:E)) de. (2.40)
Q Q &(x)

Upon evaluating 61 with respect to a variation in the voxel i filtered volume fraction d;, we obtain

DA - D[ 1
i ( fg H(zx)  H(x) dQ) fg (V x H(x)) - D—CZ(gr (w))(v x H(zx)) dQ. (2.41)

We notice here that upon discretization Equation (2.41)) is of the same form as Equation (2.19).
Equation (2.41)) is advantageous for the eigenvalue derivative computation because the second in-
tegral is only non-zero over the voxel i corresponding to filtered design variable d;. The key to
using this technique with a plane wave basis is to compute V X H in wave vector space and then
obtain the physical vectors from a DFT. Also, many eigenvalue solvers scale the eigenvectors such
that fg H(x) - H(x) dQ = 1, so this global integral may not need to be computed. The execu-
tion time will likely be many orders of magnitude (problem size dependent) faster than treating

local design variables as if they were global and using Equation (2.19)). Finally, the chain rule is
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completed by evaluating the derivative of the permittivity in the voxel i, i.e.

D [(1\ -1Ds
— (—) e (2.42)
Dd; \ & & Dd;
De; : . . .. .
where 57 is obtained by differentiating Equation (2.18) as
De,
= = (&1 — &) 243
Dd, (&1 — &) (2.43)

The above procedure is used to obtain derivatives of 8, with respect to filtered volume fractions d;,
however, we must supply derivatives with respect to the design variables d; to the NLP algorithm.
Differentiating Equation (2.15) provides the required relation

Dd,
— =W, 2.44
Dd; / (244)
so that we may finally compute

D, D6, Dd; _ DéAW
Dd; D4, Dd; Dd, "

(2.45)

The steps outlined above are used to compute the sensitivity of the objective function with
respect to the volume fraction of each voxel in the unit cell. However, since only the volume
fractions of voxels in the symmetry cell are free design variables, the sensitivity contributions
from each voxel in the unit cell must be appropriately allocated to its corresponding voxel in the
symmetry cell. For a 3D design parameterization with orthorhombic symmetry, the sensitivity
contributions from the 8 symmetry reflected voxels in the unit cell are summed to compute the

sensitivity with respect to the volume fraction of their corresponding symmetry cell voxel.

2.1.9 Nested mesh refinement

The full dispersion analysis required to predict a photonic bandgap becomes a computationally

expensive endeavor as the solution basis and the discretization of 08 are both refined. Parallel
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calculations speed the analysis considerably; each eigenvalue calculation can be parallelized along
one-dimension of the unit cell, while the scan of the Brillouin zone boundary 08 is embarrassingly
parallel, as noted in Sec. Unfortunately, the calculation wall clock time can still exceed a few
hours on an advanced supercomputer when the number of design variables exceeds 10°, despite
leveraging multi-level parallelism. To further reduce the computational cost of our 3D studies, a
nested mesh refinement technique is developed.
Nonlinear programming is used to solve the bound-constrained optimization problem
maximize 6,
¢ (2.46)
subjectto 0<d; <1,

where 8, is defined in Equation (2.26). Note that modes m, and thus m+ 1, are selected a priori. We
use a reduced space approach whereby the Maxwell equations are strictly enforced and accounted
for in the sensitivity analysis presented in Sec. [2.1.8] The discrete representation of the symmetry
cell begins as a coarse grid of only 2* voxels whose volume fractions are randomly assigned. This
symmetry cell is subsequently reflected within the unit cell to enforce orthorhombic symmetry,
corresponding to an analysis grid of 4° voxels. We then solve the topology optimization problem
on this coarse grid. Upon convergence, the optimized design field is uniformly refined, cf. Fig.
and a subsequent optimization begins from the converged coarse design. Note that this uniform
refinement does not change the physical structure (sans filtering), but rather subdivides each voxel

in the symmetry cell into 8 sub-voxels, whose volume fractions serve as design variables in the

. ) R g S
~.1 ~L Sy it

(a) 4x4x4 voxels (b) 8x8x8 voxels (c) 16x16x16 voxels (d) 32x32x32 voxels

Figure 2.5 Uniformly refined unit cells
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refined topology optimization problem. This process continues until the design grid has been
sufficiently refined to resolve the desired feature size. It is also recommended to refine the grid at

least twice to achieve reasonable bandgap predictions.

2.1.10 Post-processing

A post-processing analysis of the optimized design is performed for two reasons. The first is to
interpret structures consisting purely of binary designs, and the second is to verify that the photonic
bandgap predicted by considering only a discrete set of vectors k on the Brillouin zone boundary
08 is valid, i.e. that there are no wave vectors ~ in the interior of 8 that will propagate with
a frequency that lies in the bandgap. Therefore, designs are thresholded by rounding volume
fractions to 0 or 1 such that voxels with intermediate volume fractions are removed and a binary
structure remains. The entire irreducible Brillouin zone, i.e. the interior 8 and boundary 05,
is then considered by analyzing this binary structure at wave vectors k from a uniformly spaced
sampling to ensure that the predicted bandgaps are valid. This uniform sampling of B consisted
of 11 samples per spatial dimensions, for a total of 1331 k vectors. Fortunately, in all cases it
was determined that the bandgap predicted by scanning the boundary d8 was consistent with the
bandgap predicted by scanning the entirety of 8. Further, the thresholded binary designs were

often superior due to their sharper material contrast.

2.2  Results and discussion

2.2.1 Complete 2D bandgaps

The techniques described in Sec. 2.T|were applied to design 3D photonic crystals with complete 2D
bandgaps. The relevant numerical parameters that remain constant thoughout this work are listed
in Tab.[2.1] Structures with complete 2D bandgaps were designed by solving Equation (2.46) with
a 2D Brillouin zone such that 98 is restricted to the x — y plane, with a k spacing of é—’ar The first
8 possible gaps are considered, which begin between modes 2 and 3, since it is impossible to split

modes 1 and 2 due their shared frequency of 0 at x = 0. Note that M from Equation [2.22| was
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Description Symbol Value

void space relative permittivity £0 1.0
solid material relative permittivity £ 13.0
p-norm exponent p 30
A8 discretization Ak I
eigenvalue tolerance € le-5
NLP tolerance € le-5

Table 2.1 Numerical Parameters

selected such that 4 modes above the desired bandgap were computed, i.e. M = m + 4; this was
sufficient in all cases to ensure differentiability of the p-norm, i.e. such that /15:4 > /lf’n .1~ The filter
radius r is selected a priori to limit feature size. Since r remains constant throughout the mesh
refinements, the filter will have no effect until the voxel spacing 4x is smaller than r. Thus, the
filter is “activated” at some point in the mesh refinement process. It was observed in practice that
proper selection of r is paramount to achieving a bandgap structure. If r is too large then the design
may not have the necessary freedom to create a bandgap, while if r is too small fine-scale features
appear which are difficult to fabricate and optimizations take longer to converge. Specifically, the
best results were obtained when r was selected in the range 35 < r < g, which always activates the
filter before attempting the fourth optimization on the 32° voxel unit cell.

The initial and optimal volume fractions, along with their corresponding dispersion plots, for
each step in the nested mesh refinement process are displayed in Fig. [2.6for a structure exhibiting a
2D bandgap between modes 5 and 6. A filter radius of r = 0.05a was selected. Note that the initial
design for the coarsest resolution is random. It is apparent that each design in the nested mesh re-
finement process converges to roughly the same design as its predecessor. Geometric features that
cannot be fully resolved by the coarse discretizations appear with intermediate volume fractions,
but as the mesh is refined the designs tend toward binary, aside from the interface smearing due to
the filtering. As seen here, once a filter radius is selected to enforce a minimum feature size, mesh
refinements must occur until features with those sizes can be fully resolved, resulting in a binary
design without strictly enforcing this binary behavior.

An interesting observation is that the design performance is often over-estimated on the coarse

27



m

—0.7500

-0‘5000

—0.2500

0.0000 *

>
>

0.6 0.6

=
=
bt

Normalized Frequency wa,/2me
9

Normalized Frequency wa,/2me
Normalized Frequency wa/2me
Normalized Frequency w

(b) Initial design dispersion plots

e

—0.7500

- 0.5000

—0.2500

0.0000 *

(c) Optimized design volume fractions

0.6 0.6

>
o
>

g Sl e | S0

Sos 505 Sos :

H 5 H 5

204 204 204 204

g g g g =N

g0.3 20 A g0, 20 e NS

fis & &£ &

Fo2 To2 To.2 To2

5 = s = / \

E E E 13 / \

S0.1 501 S0.1 5011/ \

2 2 2 2™ \
0.0-4 0 - 0.0 004 - .

T X 5 ¥ T T X 5 ¥ r

(d) Optimized design dispersion plots
Figure 2.6 Nested mesh refinement for complete 2D bandgap

<
o

e
@

=
=

Normalized Frequency wa/2mc
j=1
w

0.2
01 v
0.0
r X s v r
(a) Unit cell (b) Periodic crystal (43 unit cells) (c) Dispersion plot

Figure 2.7 Post-processed photonic crystal with complete 2D bandgap between modes 5-6
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grid. Fortunately, this effect is reduced in each mesh refinement step as the simulations become
more accurate. Not surprisingly, design performance is decreased when the filter is activated,
cf. Fig. @ Note that this filter activation refers to a uniform mesh refinement that causes Ax < r,
i.e. the design variables do not change. This follows intuition that a photonic bandgap prefers
stark material contrast, which is reduced when the filter smears the material interface. Despite

these effects, the increased design freedom due to mesh refinement usually improves performance.

Modes . . Bandgap
Best structure Dispersion plot -
(m-m+1) probability
E 0.5
S04
g—O 3
2-3 2 =86.7%
< 30
£02
§ 0.1
=2
0.0
o 0.5
&
S04
§_0.3 10
3-4 ki 30 = 33.3%
< 0.2
=2
0.0
E06
E().S
g0
4-5 Eo} l = 233%
< 30
S
£
S0.1
0.0
o 0.6
g
305
3
o4
Zo. 27 _
5-6 Los 55 = 90.0%
E 0.2
£
g 0.1
0.0

Table 2.2 Summary of complete 2D bandgap optimizations (gaps 1-4)
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The post-processed unit cell and its corresponding periodic photonic crystal are illustrated in
Fig. 2.7] along with the dispersion plot from this binary design. Images of post-processed, i.e.
binary, designs throughout this work display only the solid material to better examine the structure.

The full B scan described in Sec. 2.1.10| was also performed to verify the bandgap performance

predicted by the 08 scan.
Modes . . Bandga
Best structure Dispersion plot gap
(m-m+1) probability
E
| <
3
6-7 £ % =3.3%
’
2
© 0.6
%O.S
gtu
7-8 Zoa = =10.0%
\ Eo.?
£
E) 0.1
0.0
o 0.7
0.6
31).3
8-9 2 _ 40,0%
- S0 30 V70
'720.2
S0.1
0.0
0.7
Kos
El).;
g’_l).l )
9-10 0 35 = 6.67%
\ éo.z
g
S0l
0.0

Table 2.3 Summary of complete 2D bandgap optimizations (gaps 5-8)
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Tabs. 2.2 and 2.3] present the best 2D photonic bandgap structures obtained from 30 random
initial designs for each of the first 8 possible bandgaps. The post-processed performance of the best
structures are also presented, along with the percentage of random initial designs that yield bandgap
structures. Although a formal study was not performed, our experience shows that increasing the

K spacing above ;—Z results in a smaller percentage of initial designs yielding bandgap structures.

2.2.2 Complete 3D Bandgaps

Designing photonic crystals with complete 3D bandgaps is considerably more difficult than with
complete 2D bandgaps. Similar to the 2D bandgap study, 30 random initial designs were used
for each of the first 8 possible bandgaps, yet only 3 unique photonic crystals with complete 3D
bandgaps were obtained using the same r = 0.054 filter radius. The optimal designs at each mesh
resolution for the three successful 3D bandgap designs are displayed in Figs. 2.812.10] along with
their post-processed unit cells and dispersion plots. Many of the random initial designs converged
to the same optimal structure; specifically, 19/30 converged to the design pictured in Fig. [2.8] for
m = 2, 6/30 converged to the design pictured in Fig. 2.9 for m = 5, and 7/30 converged to the
design pictured in Fig.[2.10]for m = 6.
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Figure 2.8 Photonic crystal with complete 3D bandgap between modes 2-3
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Figure 2.9 Photonic crystal with complete 3D bandgap between modes 5-6

It is interesting to note that the design in Fig. 2.9] is very similar to a previously published
optimal design [35]. This further validates the presented implementation. Also, it lends confi-
dence to the possibility that global optimum are obtainable by the nested mesh refinement strategy,
since [35] used a fixed grid throughout the optimization. Additionally, it is promising that the
semidefinite programming reformulation in [35] produced the same result as the interior point
NLP algorithm employed here, implying a consistency between methods and further justifying our
lack of permittivity smoothing. An advantage of the proposed method over the semidefinite pro-
gramming method is the ability to easily incorporate other design parameterizations and nonlinear
constraints.

The structure displayed in Fig. [2.10] has not, to the knowledge of the authors, been previously
published. Although the performance does not exceed that of known structures, it is important to
have the capability to find new bandgap structures that may be more robust to defects, or have better
multi-functional properties. Extending the presented framework to other unit cell symmetries or
attempting to split higher modes with a more refined mesh could very well produce novel bandgap

structures with better performance than what has previously been produced.
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Figure 2.10  Photonic crystal with complete 3D bandgap between modes 6-7

2.2.3 Computational expense

Photonic crystal design for complete bandgap is a computationally expensive endeavor. The dis-
crete eigenvalue analyses resulting from the fully-vectorial formulation consist of real and imagi-
nary parts with two DOF per voxel, producing a discrete system with 4n> DOF for an analysis grid
with n voxels along each spatial dimension of the unit cell. For context, the eigenvalue problems
derived from the 32% grids have 131,072 DOF. Further, it is generally required to compute the
lowest ~10 eigenvalues, and it was necessary to analyze 32 and 92 « vectors along 08 to design
for complete 2D and 3D bandgaps, respectively. The NLP algorithm generally converged within
~300 design iterations on each of the four nested mesh refinement grids for a total of ~38,400 and
~110,400 eigenvalue analyses when designing for complete 2D and 3D bandgaps, respectively.
The 2D bandgap optimizations were solved on 512 processors, while the 3D bandgap optimiza-
tions were solved on 1,472 processors, both requiring ~4 hours of execution time. Nested mesh
refinement significantly reduced the number of iterations required, although the time savings were
not computed since convergence to a bandgap structure from a random initial design at the 32° grid
resolution could not be obtained within the 24 hour time limit of the Lawrence Livermore National

Laboratory (LLNL) computing cluster used throughout.
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2.3 Conclusions

Topology optimization has successfully been applied to design 3D photonic crystals with complete
2D and 3D bandgaps. A technique for smoothing the bandgap-midgap ratio utilizes the symmetric
architecture of a “p-norm” function to remove non-smoothness caused by eigenvalue degeneracies
and min/max operations, allowing the usual gradient-based nonlinear programming solvers to be
employed.

Nested mesh refinement alleviates the computational burden from the high dimensional design
spaces required to optimize 3D bandgap structures. Optimal designs naturally converge to binary
structures after sufficient mesh refinement, and a periodic cone filter is successfully applied to
enforce a minimum length scale in the optimized designs.

The presented framework is general enough to design photonic crystals with any domain sym-
metry, provided the unit cell is a rectangular prism. Three-dimensional photonic crystals with
orthorhombic symmetry were designed with complete 2D bandgaps between each of the first 8
possible mode pairs, and complete 3D bandgaps between 3 different mode pairs. The sizes of the

bandgaps presented here are competitive with the largest described in the literature.
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CHAPTER 3: MANUFACTURING AND STIFFNESS CONSTRAINTS FOR TOPOLOGY
OPTIMIZED PERIODIC STRUCTURES

This chapter describes a series of constraints that ensure structures are fully self-supporting and
lack islands of solid material (ISM) and enclosed void space (EVS). These constraints are general
enough to be added to any topology optimization framework since they do not rely on changing
the design parameterization or filtering design variables. First, the formulation for each constraint
is provided along with sensitivity analyses. Then, the constraints are compared and contrasted by
evaluating each on a series of example unit cells so that guidelines may be presented for effective
constraint combinations. Further, a geometry-based test problem is used to study the behavior of
each constraint and aid in constraint limit selection. Finally, results from Chapter 2 are re-visited in
order to ensure the photonic crystal designs are manufacturable and to study the trade-off between
stiffness and bandgap performance. The work presented in this chapter has been submitted for

publication in Structural and Multidisciplinary Optimization.

3.1 Constraint formulations

The constraints presented in this chapter are all physics-based. Thus, the governing partial differ-
ential equation (PDE) for each constraint is presented here, and the required sensitivity analyses
are derived as well. The material interpolations are described in detail since they were crucial to

obtaining convergence when the constraints were employed in a design optimization.

3.1.1 Virtual temperature method

The virtual temperature method (VTM) [74], equivalently formulated as the virtual scalar field

method [96], was proposed as a technique to prevent EVS in topology optimized designs. A
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virtual “temperature” field is computed which satisfies the steady-state heat conduction equation

V-k(x)VI(x))+ O(x) =0 forx e
(3.47)

T(x)=0 forax e 0,

where k is the conductivity, Q is a heat source, and 7 is the virtual temperature field at spatial
coordinate . Although we are designing a periodic structure, the domain & considered for this
constraint only consists of a single unit cell and we do not enforce periodic boundary conditions.
This point is elaborated on in Section[3.1.1]

This technique works by placing both the heat source and highly conductive material in the
void phase, while placing insulating material in the solid material. Thus, a much larger maximum
domain temperature is observed when a region of void space is disconnected from the domain
boundary 02 since the heat source is not be able to dissipate as it would if all of the void space
was in contact with 99Q. Specifically, the conductivity is computed as a function of the solid phase

volume fraction ¥ € [0, 1] according to a SIMP-like [91] interpolation

k(¥) = gk + (1 = ) (ko — €cko), (3.48)
sothat k = ky for v = 0 and k = g.ky for ¥ = 1, i.e., we place highly conductive material k
in the ¥ = 0 void phase and insulating material (¢, < 1) in the ¥ = 1 solid phase. We should

note that these VTM material properties are not physical, e.g. we would not expect void space to
be more conductive than solid material. Also, we are using an ersatz representation of void space
and denoting the ratio of the void space properties to the solid phase properties by &..

Selecting exponent values g > 1 serves to penalize intermediate volume fractions v € (0, 1) by
reducing their conductivity-to-heat source ratios. This is directly analogous to the SIMP method
for compliance minimization [91] wherein the stiffness of intermediate volume fraction material
is reduced relative to its mass so that optimal solutions contain only ¥ = Oor # = 1. Here, the

conductivity of intermediate volume fraction material is reduced relative to its heat source so that
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optimal solutions prefer ¥ = O or ¥ = 1, since the intermediate volume fraction is inefficient at

lowering the domain temperature.

The heat source should only be present in the void phase and hence it is a function of ¥. How-
ever, it was observed in practice that using a linear interpolation, i.e. Q(¥) = (1 — ¥) Qp where Qy is
the heat source value of the void phase, caused nonphysical behavior, e.g. negative temperatures,
in regions with intermediate volume fraction. Fortunately, a modified SIMP interpolation scheme
originally developed to remove spurious eigenmodes caused by low volume fraction elements [97]
was able to resolve this issue. Figure [3.1] presents interpolations and their derivatives. We can see
that very low volume fractions are heavily penalized with the modified SIMP, but importantly the
interpolation is C! continuous. We invert the modified SIMP interpolation so that the heat source

in high volume fractions is penalized, i.e.

(=9 +e-9*") Q0 72w

0®F) = (3.49)

(1_17)Q0 f/<17U

where r > ¢, ¥y is a volume fraction upper bound, and the constants ¢; and ¢, are selected to
ensure the material interpolation scheme remains C' continuous. To enforce this continuity we

require that both expressions in Equation (3.49) produce the same value of Q(¥y) and Q’(¥y) from
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which we obtain

cp=r(1 =y (3.50)

and

o=0-rnl-y)". (3.51)

Note that for any choice of vy € (0, 1) we will obtain Q = Qg forv = Oand Q =0forv = 1.
The boundary condition on d€2 allows heat to escape from Q. Thus, EVS is easily identified by the
presence of regions with high temperatures. We compute the maximum temperature in the domain

using the differentiable p-norm function

O = (f T(x)" dQ)p , (3.52)
Q

from which we formulate an optimization constraint as
Ot <ty (3.53)

where 1, is a user-selected constant and 6, is computed by Equation (3.52) after solving Equa-
tion (3.47)) with ¥(x) = 0 for all = € Q so that the constraint limit is not problem dependent.
Henceforth we will use the subscript vty when Equation (3.53) is applied with the conductive
material and heat source placed in the void phase as described above, and we will use the subscript
vts when Equation (3.53)) is applied with the conductive material and heat source placed in the

solid material as described in Section 3. 1.1}

Extending the VTM to identify ISM

The VIM presented in Section [3.1.1] provides a quantitative means of identifying and prevent-

ing EVS. We propose a simple extension of this method to identify and prevent ISM. By simply
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inverting the interpolations in Equations (3.48)) and (3.49) to
k(@) = ecko + V7 (ko — gcko) (3.54)

and

(7 +er)o v<n

o) = (3.55)
17Q0 V> VL
respectively, we place the the conductive material and heat source in the solid rather than the void

region. Repeating our continuity requirements we obtain
c1 =" (3.56)

and

co=~0-rny'" (3.57)

In this way the maximum temperature will be large when we have regions of solid material not
connected to a boundary. We can simultaneously restrict EVS and ISM by solving Equation (3.47)

twice; once using Equations (3.48)) and (3.49) and again using Equations (3.54) and (3.55) and

constraining the maximum value of each temperature field.

Extending to periodic domains

To the authors’ knowledge the VTM has only been applied to finite domains, although the effect
of boundary conditions has been explored [42]. We propose a technique to use VIM to prevent
EVS and ISM in periodic structures. Consider a 2D microstructure consisting of solid material and
a square array of circular voids. If we apply the VIM to the unit cell pictured in Figure [3.2a, we
would identify EVS. However, if we apply the VTM to the unit cell pictured in Figure[3.2b] we will
not identify EVS even though both unit cells represent the same periodic structure. Thus, we have

an unacceptable problem; the behavior of our constraint function depends on the unit cell choice.
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To alleviate this issue, we will propose a solution wherein we simply consider a 2¢ array of unit
cells, where d is the spatial dimension of our design problem. Indeed, consider the unit cell arrays
highlighted in Figures [3.3a) and [3.3b] Although the number of “hot” regions will be different, the
behavior of the constraint will be consistent, i.e. EVS will be identified in either case. In fact, any

array of 2¢ unit cells allows the VTM to appropriately identify EVS and ISM.

T=0 T=0

= void 7
(v=0)

(a) Example unit cell # 1 (b) Example unit cell # 2

Figure 3.2 Example behavior when a single unit cell is analyzed with VITM

T=0

= void 7
(v=0)

(a) Example unit cell array # 1 (b) Example unit cell array # 2

Figure 3.3 Example behavior when a 22 unit cell array is analyzed with VTM

Sensitivity analysis

We must compute the sensitivities of our constraint functions with respect to design variables to
solve our design optimization problem via nonlinear programming (NLP). Here we derive the
sensitivities of our constraint functions with respect to the volume fraction field . However, we

emphasize that other design parameterizations could be employed, e.g. projection methods [98] or

B-splines [99].
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We evaluate the variation of Equation (3.52)) to obtain

51
50, = ( f T(x)” dQ) f T(x)" ' 6T(x) dQ, (3.58)
Q Q

where we notice the implicit sensitivity 67 is problematic to compute analytically. We use the
adjoint method to address this issue wherein we restate Equation(3.47) in its weak form, i.e. we

find T € H ={T € H'; T = 0 on 02} for an H' Hilbert space such that

- f Vw(zx) - k(x) VT (x) dQ + fw(x) O(x)=0 (3.59)
Q Q

for all w € H. Differentiating the above gives the problem of finding 67 € H satistying

—wa(a:)-ék(a:) VT (x) dQ—f
Q

Vw(z) - k(x) VoT (x) dQ2 + fw(x) 60(x) d2 =0 (3.60)
Q

Q

for all w € H. We now add Equation (3.60)), i.e. zero, to Equation (3.58) to obtain

51
50, :( f T(x)" dQ) f T(x)" ' 6T(x) dQ
Q Q

—wa(a:)~6k(m) VT (x) dQ—wa(a:)Jc(w) VoT (x) dQ+fw(x)5Q(m) deo,
Q Q Q
(3.61)

and notice that upon solving for w € H such that

1
11

deT(a:)-k(ac) Vw(x) dQ = (f T(x)" dQ) chT(m) T(x)"" dQ (3.62)
Q Q Q

for all 6T € H we can remove 67 from Equation (3.61)). Subsequently substituting this w into

Equation (3.61)) yields

00, = —wa(a:) - O0k(x) VT (x) dQ + fw(x) 00(x) de. (3.63)
Q

Q
We parameterize v to be piece-wise uniform over the finite element mesh, i.e. each finite element
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in Q is assigned a distinct volume fraction ¥;. As such

D D D
O _ _ f V(@) - XD o1 do + f () 22@) 40 (3.64)
Dy, Q Dy; 1) Dy;
where we note that
Dk
— = —q (1 =) (ko — &cko) (3.65)
DVI'

and

po |(Fag=w" -+ DA-7))Q ¥z

Dy, (3.66)

_QO Vv, < Vy

when using the interpolation schemes in Equations (3.48) and (3.49), i.e. when restricting EVS.

Similarly,
Dk

o5 = g7 (ko — cko) (3.67)

and

DO (clrf/"l +c(g+ l)f/r) Qy V<V

D7, (3.68)

Qo Vi >V

when using the interpolation schemes in Equations (3.54) and (3.53)), i.e. when restricting ISM.

3.1.2 Mechanical eigenvalues

Another constraint that can be used to identify ISM is derived from an eigenvalue analysis that

consists of solving for eigenpairs (/l iU j) ordered such that 4; < A, < ... < 4, and satisfy

V- C) [Vuj@)| = 1p(@) ugx) forx e Q
(3.69)

uj(x) = uj(x +nay) forn=12,

where C is the fourth-order elasticity tensor, p is the mass density, w is the displacement, Q2 is a
periodic domain, i.e. a unit cell, Z is the set of all integers, and a; are the lattice vectors. Thus, we

are employing periodic boundary conditions to appropriately model the response of our infinitely
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periodic structure. We use the SIMP interpolation [91] for the constitutive tensor according to
CH) = &.Cy + ¥ (Cy — £.Cy), (3.70)

so that we place a stiff material in the solid phase, i.e. C(1) = Cy and a weak material in the void
phase, i.e. C(0) = &.C,, where C, is the elasticity tensor of the solid material. We use the modified

SIMP [97] to interpolate the mass density according to

(17 + e )py ¥ <

p(V) = ; (3.71)

i}p() V>

wherein ¢; and ¢, are given in Equations (3.56) and (3.57), respectively.

We know that 4; > O since the left-hand side operator in Equation (3.69) is positive semi-
definite, and we expect 3 zero-valued eigenvalues corresponding to rigid translation, i.e. 4, = A, =
A3 = 0. We show in Section [3.2] that we can identify ISM by observing the magnitude of the
fourth-smallest eigenvalue. There will be nearly zero-valued eigenvalues A; for j = 4,5, ...,n when
ISM are present, where the lower limit of A4 is determined by the selection of .. As such, we

estimate the fourth-smallest eigenvalue using a p-norm function
_1
n Iz
B = [Z /ll._”) : (3.72)
i=4
and subsequently enforce the optimization constraint
Heig 2 #eigéeiga (373)

where 6, is computed from Equation (3.72) with the entire domain setto ¥ = 1. We use Equa-
tion (3.72) rather than 6., = A4 since Equation (3.72) is differentiable even if A4 is a degenerate

eigenvalue, i.e. even if 44 = A5 < ... < 4,. We necessarily have 13 < A4 due to the ersatz material
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usage and therefore Equation (3.72)) is a symmetric polynomial of a distinct set of eigenvalues and

hence differentiable [52].

We compute the sensitivity of the eigenvalues A’ according to

-1
(m,-:( f u () - p(:l:)uj(:lz)dQ) ( f Vu(x) - 6C(x) |Vu(@)| dQ
Q Q

- 4; L u;(x) - op(x) ui(x) dQ).

For our discretization this gives

]I))_/;j B (fg uj() - p(z) u () dg)_l (fg V@) Dg(;)
-4, fg u;(x) - Dg—i:)
where
g_g = g7 (Cy — &.Co)
and

Dp (clrf/f‘l +c (r+ 1)17;),00 Vi <V
Dy o
00 Vi > VL

The derivative of Equation (3.72) is computed as

_1_
» 1

Deei u - —p—
D1, - [Z’lip) (")

and the derivative % follows from an application of the chain rule.

3.1.3 Self-weight compliance

|V ()| de

u;(x) dQ) .

(3.74)

(3.75)

(3.76)

(3.77)

(3.78)

The periodic VTM presented above is very effective at identifying ISM and EVS. We will see in

Section however, a lack of ISM does not guarantee a structure is self-supporting. Thus, we

propose a self-weight compliance constraint to ensure the unit cell is adequately supported. To do
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this we solve for the displacements wu,; resulting from design-dependent body loads in each spatial

dimension e; according to

V.C(x) [Vui(x)] +p(x)e; =0 forx e Q
(3.79)
u(x) =0 forx el

where the domain Q is a single unit cell without periodicity considered and I; the face that is
“below” the unit cell, i.e. the face with an outward normal vector of —e; where e; is a canonical
basis vector, cf. Figure [3.4 We again use SIMP [91] to interpolate the constitutive tensor from

Equation and the modified SIMP [97] to interpolate the mass density from Equation (3.71).

After evaluating the displacements wu;, we evaluate the mean compliance

3

e = = f p(@) € - ui(@) de. (3.80)

=1 Y@

The value of 6, will be small when the structure is fully supported, otherwise it will be very large.

Knowing this we enforce the self-weight compliance constraint

HSWC S ﬂSWCQSWC9 (3.81)
where (i, is a user-selected constant and 6, is computed by Equation (3.80) with ¥ = 1
prescribed on the entire domain.
[— — =
‘ |
N (e
| .
&‘J ‘- / —€: P e )
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Figure 3.4 Locations (in gray) of essential boundary conditions when computing gy
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The sensitivity of 6. is obtained via the adjoint method [[19] as

3 3
604e = —2; fg Sp(z) e; - ui(z) dQ — ; fg V() - 6C(x) [V, ()] dQ, (3.82)

from which we obtain

3

3
swc Dp(w) DC(CC)
Dv, = 2; f e u(x)d2 - ) f (@) 5= [Vu(x)]dQ. (3.83)

i=1 V2 !

where and Dp follow from Equations (3.76) and (3.77).

Note that we must again consider an array of 2¢ unit cells to ensure that our choice of unit cell
does not affect the intent of the constraint function, cf. Figure In our numerical examples,
however, we will only consider a single unit cell due to the imposed orthorhombic symmetry on

the unit cell which eliminates the constraint’s dependence on the cell.

3.1.4 Effective stiffness constraints

In addition to the previously discussed EVS, ISM, and self-supporting constraints, we investigate
constraints derived from the effective stiffness of our assumed infinite, periodic microstructures.
Following classical homogenization theory[17]], we first solve a series of cell problems for the

characteristic displacements x*/

V-C@)|[EY+ VxU(x)| =0 forzeQ
(3.84)
uj(x) = uj(x +na;) forn=72,

where E" = e' ® €/ is a unit “test” strain defined by basis vectors e; and Q is the periodic unit
cell. Akin to Section[3.1.2] we employ periodic boundary conditions. Upon obtaining each unique

X", i.e. 6 displacement solutions in 3D, the components of the homogenized stiffness tensor C"
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are computed according to
1 g
Chy = a fg EV-C(x)|E" + VX(@)] de, (3.85)

where |Q| is the volume of the unit cell. We evaluate the design sensitivity of CP using the adjoint

technique[l17/, [100] according to
1 o
SChy = — f (E7 + VX'i()) - 6C(x) | EY + Vx!(@)| dQ. (3.86)
o1l e

The interpolation of C from Equation (3.70), and therefore the derivative in Equation (3.76)), will
be used again here. We will investigate a number of constraint functions that depend explicitly on

the components of C".

Bulk modulus

The bulk modulus measures the volume change due to a uniform pressure loading. We express the

bulk modulus as a function of the homogenized stiffness tensor according to

1

“O= e

(3.87)

noting that we drop the superscript £ for brevity and I is the identity 2-tensor that represents a
hydrostatic pressure. The derivative of the bulk modulus with respect to a component of C is

computed as

D«(C 1 DC
<O _ . (C‘l c—l) . (3.88)
DCijw  (I-C-'[1)) DG,
Following our previous conventions we define the bulk modulus constraint
K > K, (3.89)
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where y, is a user-selected constant and k is computed by prescribing ¥ = 1 throughout the

domain, or equivalently computed for an isotropic solid constituent material from its Young’s

E

modulus E and Poisson’s ratio v as k = TR

Shear modulus

We will define a shear modulus that is analogous to our bulk modulus definition in Equation (3.87).

To quantify shear stiffness we define a shear stress tensor

011
1
S=—I1 0 1 (3.90)
V3
1 10
and express a “mean” shear modulus
©) = 1 (3.9
SRR ‘

The derivative of the shear modulus with respect to a component of C is computed from Equa-

tion (3.89) with S replacing I, i.e.

Dy(C 1 DC
UG . (C-l C—l). (3.92)
DCiju (S -C1[S)]) DCiju
Using the above, we define the shear modulus constraint
Y 2 WY, (3.93)
where 1, is a user-selected constant and y is computed by prescribing ¥ = 1 throughout the

domain, or equivalently computed for an isotropic solid constituent material as y = ﬁ
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Anisotropy

We also require our periodic structures to exhibit some degree of isotropy. A number of anisotropy
indices have been presented in the literature, including the universal elastic anisotropy index [101]]
defined by

Y

v
Y
&5 6 (3.94)

AY =
where the superscripts V and R denote Voight and Reuss estimates, respectively. These estimates
are computed directly from the components of C [[102], and so the sensitivity analysis of AV is a
simple matter of arithmetic that is omitted here. The universal elastic anisotropy index is motivated
from the fact that the Voigt and Reuss estimates of bulk and shear modulus are equal when a
material is isotropic, thus by measuring the ratio between these estimates it is possible to quantify

how close a material is to isotropic. The universal elastic anisotropy index was later extended to

compute the distance between the Voight and Reuss estimates in log-Euclidean space [103]] as

Al = 1o2ﬁ +51o”—V (3.95)
- g KR g ')/R .

as an attempt to describe the level of anisotropy more physically. We again omit its trivial sen-

sitivity analysis. Similarly, the distance between a stiffness tensor C and the closest isotropic

tensor [104] can be computed by
AP = log(C*) ~ log(C)]l, (3.96)
where C*° is the closest isotropic stiffness tensor to C in log-Euclidean space. It was proven that

log(C™) = P™log(C), (3.97)
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where the projection P™*° is defined in the original reference [104] and hence we can compute the

anisotropy measure as

AP =[P 1og(C) ~ log(C)|I.

(3.98)

To use AP in a constraint we must compute its sensitivity with respect to C. We will define D =

P*°Jog(C) — log(C) and derive the sensitivity as

DAjo 1 (D
.U = — M- -D)|-U
DC 2/iDl| (DC( ))
1 DD
=— 2D -—[U
2||Dfl DC[ :

{2 )

for an arbitrary 4th-order tensor U. Using the arbitrariness of U we obtain

DC D]

DA, 1 (DD T[D]
DC ‘

Note that we obtain the simplification using the projection properties

DD\ (. .,Dlog€ DlogC)\"
(22 - 2l 2l

_ (Dlog(©)\"
P2

since

(P*)' (D] = (P*)' [P 10g(C) - log(O)]
= P*1og(C) — P* 1og(C)
- 0.

Finally, we obtain

DA —1 (Dlog(C) T[D]
DC |D|\ DC '
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3.2 Constraint capability comparison

A series of example unit cells are presented in Figure [3.3) which highlight the capabilities and
limitations of the proposed optimization constraints. Each image displays the solid phase volume
fractions of the example unit cell, using the threshold ¥ = 0.5 for visualization purposes. Addition-
ally, an octant has been clipped from each unit cell to illustrate internal features. Table[3.1]denotes
each scalar metric defined in Section[3.1levaluated on a mesh of 60° uniform hexahedral elements.
The isotropic base material has a Young’s modulus of £ = 1 and a Poisson’s ratio of v = 0.3. The
ersatz void space uses &, = 1078, All PDE’s were solved using the open-source, modular finite
element method (MFEM) [82] library developed by Lawrence Livermore National Laboratory.
First we consider the uniform, solid microstructure (v = 1), i.e. unit cell #0. The evalua-

tions of Oy, Oeig, and By, serve as our baseline values, i.e. Oy, Oeig, and Oy, respectively. The

homogenized « and 7y are verified by comparing them to the analytical expressions x = ﬁ

and y = which is valid since our microstructure is isotropic. Finally, we notice that all 3

_E
2(1+)°

anisotropy measures are 0 (within numerical precision), which is expected.

(@) #0 b)#1 ©)#2 (d)#3

(e)#4 ®#5 (@ #6

Figure 3.5 Example unit cells for constraint evaluation comparison
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Unitcell 6y Ours Ocig Oowe K y AU AT AD
#0  0.0e+00 3.1e-01 1.4e+01 9.2e-01 83e-01 39e-01 7.8e-16 5S.le-16  9.6e-16
#1  32e-01 5501 14e+00 4.9e-01 13e-02 7.le-04 2.5e+01 4.0e+00 3.4e+00
#2  32e-01  69e-01 8.1e07 13e+05 1.1e-02 7.4e-09 2.7e+06 3.0e+01 1.6e+01
#3  32e-01  59e-01 1.1e+00 7.3e+04 1.5¢-08 6.8¢-09 2.9e+06 3.2¢+01 1.7e+01
#4  32e-01 32e+05 22e06 57e+03 13e-02 7.1e-04 2.5e+01 4.0e+00 3.4e+00
#5  3.4e405 3.1e01 14e+01 92e-01 82e-01 3.8¢-01 20e-08 8.8¢-09 1.4e-04
#6  69e-01 3.0e01 12e+01 9.2e-01 7.6e-01 3.6e-01 2.6e-03 1.1e-03  5.0e-02

Table 3.1 Constraint Evaluations

Next, we consider a microstructure consisting of orthogonal beams aligned with the Cartesian
axes, denoted as unit cell #1. This unit cell is presented as an example of an acceptable design; it
is self-supporting, exhibits reasonable stiffness in all directions, and does not have EVS or ISM.
Moving left to right across Table we see that 6y, = 1.03 6., while 6, = 1.776,,. Both of these
values would be acceptable if i, was selected in the range of 4-10 as recommended [74]. Thus, the
VTM constraints would correctly indicate that neither ISM nor EVS exist in the microstructure.
We notice that 6., ~ 1076, and we actually see a smaller self-weight compliance than our
baseline structure. The homogenized « and 7y are slightly lower than the baseline microstructure,
but nonetheless we have non-zero bulk and shear stiffness. The anisotropy measures all predict a
moderate amount of anisotropy. In summary, all of the constraints behave exactly as we desire.

If we consider the effect of moving the vertical rods from unit cell #1 so they do not intersect
with the horizontal sets of rods, we arrive at unit cell #2. Table reveals that 6y, = 1.03 0y,
correctly communicating a lack of EVS. It would be fair at this point to suspect that 6, could
rise dramatically since the vertical rods are not in contact with the horizontal rods. However, we
see that 6, = 2.236,,. This can be understood by recognizing that the rods are infinitely long,
under the infinite periodicity assumption. Thus, we have our first constraint limitation; the VITM
identifies only those ISM enclosed by the unit cell, i.e. it does not ensure self-supporting structures.
Fortunately, we have constraints that can identify these circumstances. Namely, the two functions
Ocig ~ 1077055 and Oy ~ 10”6y, both identify that unit cell # 2 is not self-supporting. Interestingly,
we see that x from unit cell #2 is similar to that of unit cell #1 demonstrating that disconnected rods

do not adversely affect the ability to support a pressure load. However, ¥ ~ 107%% demonstrating
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almost no resistance to a shear load. As expected, all anisotropy indices show stark increases, but
AL and AP show much smaller increases than AY due to their dependencies on the logarithm.

Unit cell #3 is similar to #1 and #2, however the vertical rods have been removed. This example
was contrived to illustrate a potential pitfall of 6;,. We notice that 6, ~ 10‘léeig even though it
is clear that the structure is disconnected. This behavior is due to the fact that all of the solid
phase material in the unit cell is connected, thus we have only 3 zero-valued eigenvalues. This non
self-supporting structure is identified, however, by noting that 6. ~ 10°0,,.. Alternatively, it is
identified by noting that x ~ 0 and y = 0, while the isotropy indices increase significantly. As seen
here, a constraint on bulk stiffness, shear stiffness, or anisotropy could be used in conjunction with
Beig to ensure a self-supporting structure.

The strengths of our ISM constraints are demonstrated with unit cell #4. The small sphere of
floating material is easily identified as Oy ~ 10%0y, Oeig ~ 107 0ei, and Oye ~ 10°6y,.. Each of
these metrics provides a clear signal that an ISM exists. As expected, «, u, and all of the anistropy
indices return the same values as their corresponding evaluations on unit cell #1, since the floating
sphere has no effect on the homogenized constitutive tensor.

Finally, the effectiveness of 6, is demonstrated with unit cells #5 and #6. The void space in
unit cell #6 is acceptable since support material or pre-sintered powder could be removed, whereas
the void space in unit cell #5 is unacceptable. The VTM is able to distinguish these cases as
Byew = 10°8,, for unit cell #5 whereas 6, = 2.230,, for unit cell #6.

The results presented in Table [3.1] elucidate the capabilities and limitations of our constraints
such that guidelines can be proposed for combinations of constraints employed in a TO frame-
work to ensure manufacturable designs. Most directly, if the manufacturing process cannot handle
EVS, then a 6, constraint should be enforced. The simplest technique to ensure self-supporting
structures is to enforce the 6,,,. constraint. The downside, however, is that the stiffness cannot be
explicitly tuned via 6. If the designer seeks to tune the level of bulk or shear stiffness, then « or
v constraints, respectively, are required. In many cases these stiffness constraints are sufficient to

remove unsupported material since ISM do not add stiffness to the structure, however, ISM are not
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explicitly forbidden. Because of this the « or y constraints should be augmented with either a 6y,
Beig» OF Oy, constraint. Finally, if isotropy is required for a particular application, then any of the
proposed anisotropy constraints should be enforced.

The choice of which combination of constraints to enforce may also be dictated by computa-
tional expense. The VTM and self-weight compliance problems require an array of 2¢ unit cells,
although the VTM governing PDE is a scalar problem whereas the self-weight compliance PDE
is a vector problem. If the unit cell exhibits orthorhombic symmetry, the self-weight compliance
computations can be performed over a single unit cell whereas the VITM always requires an array
of 2¢ unit cells. The mechanical eigenvalue problem in general requires a single unit cell domain,
but the mesh can be reduced to an octant for cells with orthorhombic symmetry [105]. Also, x,
v, and the anisotropy measures are derived from the same homogenized stiffness tensor, thus only
one homogenization computation is required over a single unit cell, or over an octant when unit
cells exhibit orthorhombic symmetry [105]. To conclude, a designer should select a combination
of constraints that ensures designs are viable based on the desired manufacturing process, whether
stiffness tuning is required, and whether isotropy is desired. Then, the computational cost should
be considered based on the symmetry of the unit cell. The computational cost of the constraints
may be somewhat mitigated if the PDE solutions, e.g. the eigenvalues or the homogenized stift-
ness tensor, are required for other aspects of the TO framework since the scalar quantities are much

cheaper to compute than the PDE solutions.

3.3 Optimization test problem

We now demonstrate the effectiveness of the proposed constraints and point out their capabilities
and limitations on a simple test problem. Consider a cubic unit cell of side length a centered at the
origin with imposed orthorhombic symmetry, uniformly discretized by 60° voxels. The 30° voxel
volume fractions in the octant symmetry cell serve as the design parameters. The length scale is
controlled by applying the symmetric, periodic cone filter described in Section with a filter

radius of 0.05a. In all cases, the initial design is uniform with ¥ = 0.5. A SIMP exponent of
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q = 3 and a modified SIMP exponent of r = 6 are used for the VTM, eigenvalue, and self-weight
compliance constraints. A SIMP exponent of ¢ = 4 is used for the homogenized-based constraints,
i.e. bulk modulus, shear modulus, and isotropy constraints. The modified SIMP volume fraction
boundaries are #, = 0.2 and ¥y = 0.8, and the ersatz void phase uses &, = 1078, All optimization

problems were solved with the open-source, interior point optimizer (IPOPT) [95].

3.3.1 Virtual temperature method for EVS identification

Consider the optimization problem

Noxel |1 —9; 1; > 1y
min QEVS =

=l P (3.104)

subjectto 0<V; <1,

where r; is the distance from the voxel i centroid to the origin. The solution is a solid unit cell with
a hollow sphere removed from the center, cf. Fig.[3.6] The resulting structure is problematic due to
the region of EVS. To address this issue we again solve Equation (3.104)) with the Equation (3.33)
constraint using the material interpolations from Equations (3.48) and (3.49). A series of optimal
designs for various values of u,,, are presented in Figure[3.7] We see that for 1., = 25.0, a channel
of void space is formed effectively eliminating the EVS. For py, = 12.0, a channel with two forks

appears, and finally for u,, = 6.0, channels are created in all 3 dimensions. Thus, any of the
- 1.000

—0.7500

—0.5000

—0.2500

l 0.0000

Figure 3.6 Optimal ¥ solutions for Ogys
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(@) Hvtv = 25.0 (b) HMvty = 12.0 (©) Hvtv = 6.0

Figure 3.7 Optimal ¥ solutions for fgys with 6, constraint

selected values of ., eliminate the EVS. A trade-off exists between “how enclosed” the sphere
is and the optimal value of the objective function, thus proper selection of ., will certainly be

problem specific.

3.3.2 Virtual temperature method for ISM identification

Now we consider the optimization problem

Nyoxel 1 — )7[ ri S rO
min Oism =
17 c 5
=l P, (3.105)

subjectto 0 <¥; < 1.

The result is a unit cell consisting of a floating sphere at the origin, cf. Fig. [3.8] Throughout

Section [3.3.2] only volume fractions satisfying # > 0.5 are plotted for visualization purposes. The

- 1.000

—0.7500
—0.5000

—0.2500

0.0000

Figure 3.8 Optimal ¥ solutions for figv
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resulting structure is problematic due to the ISM. To address this issue we again solve Equa-
tion (3.105) with the Equation (3.53) constraint using the material interpolations from Equa-
tions (3.54) and (3.53). A series of optimal designs for various values of y are presented in
Figure [3.9] We see very similar results to those in Section [3.3.1} For ps = 25.0, a beam of solid
material is formed effectively eliminating the ISM. For pu,s = 12.0, a beam with two forks ap-
pears, and finally for u, = 6.0, beams are created in all 3 dimensions. Thus, any of the selected
values of s eliminate ISM and adjusting the choice of what p, value to use is problem depen-
dent. A notable downside to this constraint is that we cannot guarantee the periodic structure is

self-supporting, as evidenced by the uys = 25.0 and 12.0 designs, which do not have stiffness in

all directions.

]

(@) fiys = 25.0 (b) pyes = 12.0 (©) fiyis = 6.0

Figure 3.9 Optimal ¥ solutions for fisy with 6y constraint

3.3.3 Eigenvalue constraint for ISM identification

To demonstrate the eigenvalue constraint we solve the optimization problem in Equation (3.103))
subject to the Equation (3.73)) constraint. Optimal structures are presented in Figure [3.10] for vari-
ous values of u,. For u.i; = 0.03, the ISM is effectively removed by adding thin rod-like features,
which become slightly larger for u.;; = 0.10. However, neither of these designs are self-supporting.
If we increase to i, = 0.15, we remove the ISM and obtain a self-supporting structure. In sum-
mary, we observe similar behavior between the mechanical eigenvalue constraint and the ISM

constraint in Section [3.3.2] For certain values of u.; we can remove the ISM without generating
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(a) Meig = 0.03 (b) Meig = 0.10 (©) Meig = 0.15

Figure 3.10 Optimal ¥ solutions for gy with 6y constraint

self-supporting structures. The appropriate value of ., is again problem dependent.

3.3.4 Self-weight compliance constraint for ISM identification

We demonstrate the self-weight compliance constraint by solving the optimization problem in
Equation (3.103) subject to the Equation (3.8T)) constraint. Optimal structures are presented in
Figure [3.11] for various values of u.. We immediately notice that this constraint yields similar
results for the three presented values of py.. A slight difference appears in the thickness of the
supporting beams, but the topology is identical in all cases. Most importantly, all three designs are
fully self-supporting. Thus, we expect that the appropriate p,. value is less problem dependent.
The downsides of this constraint are its computational expense and its inability to tune stiffness.

The latter concern is addressed in the next section.

(2) Mswe = 2.0 (b) Mswe = L5 (©) HMswe = 1.1

Figure 3.11 Optimal ¥ solutions for gy with gy, constraint
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3.3.5 Effective property constraints

If a design requires a particular level of stiffness or isotropy, effective property constraints derived
from a homogenization analysis may be employed. We investigate a few possibilities here. First,
we solve the Equation (3.103]) optimization problem subject to the Equation (3.89) constraint.
Optimal structures for various values of 4, are presented in Figure[3.12] As expected, the features
become larger as p, is increased, and in all cases we have stiffness in all directions. The optimal

structures are fairly intuitive considering that bulk modulus measures resistance to pressure loads.

(a) g = 0.005 (b) 1 = 0.01 (©) p = 0.03

Figure 3.12 Optimal ¥ solutions for 6igp with 6, constraint

Similarly, we solved the Equation (3.103) optimization problem subject to the Equation (3.93)
constraint. Again, the features become larger as p, is increased, and in all cases we have stiffness
in all directions. The structures in Figure[3.13]are slightly more complicated than the structures in

Figure [3.12] which is apparently needed to resist shear loads.

(a) uy = 0.005 (b) 41, = 0.01 (©) iy = 0.03

Figure 3.13  Optimal ¥ solutions for gy with 6,, constraint
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We have guaranteed through our definitions of x and y that enforcement of Equation (3.89) or
(3:93) constraints yields structures with stiffness in all directions. However, no consideration is

made with respect to isotropy. If isotropy is desired we, e.g., augment the bulk modulus constraint

with a constraint on AY, AL, or AP, cf. Figures [3.14, 3.15, and [3.16, We obtain very similar

structures when constraining AY and AL, which is not surprising since they are both derived from
Voigt and Reuss stiffness estimates.

It is expected that these three constraints yield similar results since they are measuring the same
type of behavior. Thus, we do not give preference to any of the anisotropy measures, although ease

of implementation may favor AV or AL over AP.

(@) AU < 15.0 (b) AV < 5.0 ©) AU < 1.0

Figure 3.14 Optimal ¥ solutions for sy with 6, (1,=0.01) and AY constraints

(a) AL < 3.0 (b) AL < 1.0 (c) AL < 0.1

Figure 3.15 Optimal ¥ solutions for gy with 6, (1,=0.01) and AL constraints
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(a) AP < 3.0 (b) AP < 1.0 (©) AP < 0.1

Figure 3.16 Optimal ¥ solutions for gy with 6, (1,=0.01) and AP constraints

3.4 Photonic crystal design with manufacturing constraints

The constraints formulated in Section[3.T]are used to design photonic crystals for complete bandgaps.
The topology optimization capability from Chapter 2 is augmented here by imposing design con-
straints to resolve deficiencies in our previous photonic crystal designs that were not manufac-
turable or self-supporting. Note that throughout Section [3.4]the volume fractions have been thresh-
olded such that ¥ > 0.5 is considered solid material, whereas ¥ < 0.5 is considered void space in

the dispersion analyses.

3.4.1 Removal of EVS

Two designs from Chapter 2 with complete 3D bandgaps displayed EVS. We resolve this design
flaw via the VTM. Figure displays the unconstrained optimal bandgap structure; the left-
most image displays the solid material, while the middle image displays the complement, i.e. the
void space. We immediately notice a disconnected void space region causing EVS. The dispersion
plot reveals a 17.40% bandgap-midgap ratio. We re-solve the optimization problem enforcing the
Equation (3.33) constraint with ., = 6.0 to obtain the design depicted in Figure The con-
strained design is quite similar to the unconstrained design, however, small channels have formed
causing the void space to be simply connected. Thus, support material or pre-sintered powder
could be removed from the design [[74]. There is a slight reduction in the bandgap-midgap ratio,

i.e. 16.18% vs. 17.40%, but this difference is small considering that the previous design was not
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manufacturable.

Another problematic 3D bandgap design from Chapter 2 is pictured in Figure[3.18] The design
exhibited a bandgap-midgap ratio of 12.73%, however a region of EVS is present. Enforcing the
Equation (3.53)) constraint with s, = 4.0 produces the design depicted in Figure[3.18b Again, we
see the formation of small channels causing the void space to be simply connected. The bandgap-

midgap ratio is reduced to 12.07%, but we again have produced a manufacturable structure.
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Figure 3.17 Applying 6., constraint to remove EVS from mode 5-6 bandgap structure

3.4.2 Removal of ISM

The bandgap structure depicted in Figure [3.19a from Chapter 2, exhibits ISM. The optimization
problem is re-solved with a variety of constraints to prevent ISM. First, the VTM Equation (3.53)
constraint is enforced. The resulting structure depicted in Figure [3.19b] has a slightly smaller
bandgap, however, something interesting has occurred. The topology of the structure has changed

such that both the ISM and EVS present in the original design are removed. Interestingly, the
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Figure 3.18 Applying 6, constraint to remove EVS from mode 6-7 bandgap structure

designs illustrated in Figures[3.19¢|and [3.19d} obtained via enforcement of the self-weight compli-

ance and shear modulus constraints, respectively, outperform the unconstrained design. It appears
that the constrained optimizations found a better local minima than the unconstrained. This behav-
ior should not be expected in general, but it is an important finding nonetheless. The downside to

the designs pictured in Figures [3.19c|and [3.19d]is that EVS remains, which is not surprising since

EVS is not strictly forbidden in the optimization formulations. This point is further addressed in

Section[3.4.4]

3.4.3 Requirement of self-supporting structure

An optimized structure from Chapter 2 with a complete 2D bandgap is not self-supporting. Specif-
ically, the design, pictured in Figure[3.204] is not self-supporting as it consists of two separate solid
regions. To alleviate this issue we first re-solved the problem while enforcing the Equation (3.73)

mechanical eigenvalue constraint. The optimized design shown in Figure [3.20D] is similar to the
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(c) Constrained with gy, = 1.1 (d) Constrained with ug = 0.01

Figure 3.19 Applying various constraints to remove ISM

unconstrained version, but additional features have been added so that the structure is fully self-
supporting. The bandgap performance deceases slightly, but the design is now manufacturable. We
next enforced the Equation (3.81) self-weight compliance constraint. The optimal structure seen
in Figure is quite different from the unconstrained design, and the bandgap performance is
significantly reduced. All is not lost, however, as the structure is fully self-supporting and still
exhibits a complete bandgap. Finally, we enforced the Equation (3.93) shear modulus constraint.
The resulting optimal structure appearing in Figure [3.20d)is similar to the Figure [3.20b] design in
that additional features have been added, however, the performance is better. It appears the shear
modulus constrained design is the best choice of the presented designs as it results in the highest-
performing manufacturable structure. We want to emphasize that these results are just examples
proving the effectiveness of the constraints and that more exhaustive studies may lead to different

conclusions.

3.4.4 Manufacturable photonic crystals

In order to manufacture our photonic crystals they must neither exhibit EVS nor ISM, i.e. it is not

enough to consider them separately. To this end, we reconsidered the design problems addressed in
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Figure 3.20 Applying various constraints to ensure structures are self-supporting

Sections [3.4.2]and [3.4.3] We began by optimizing the 2D bandgap-midgap ratio between modes 6

and 7 with a bulk modulus constraint to ensure stiffness and a VTM constraint to remove EVS. The
resulting constrained structure is compared to the original unconstrained structure in Figure
Notice that both the ISM and EVS have been removed from the design, while simultaneously
improving the bandgap performance.

Similarly, we optimized the 2D bandgap-midgap ratio between modes 8 and 9 with a shear
modulus constraint to ensure stiffness and a VTM constraint to remove EVS. The resulting de-
sign, pictured in Figure 3.22b] is quite different from its unconstrained counterpart illustrated in
Figure[3.22a Both ISM and EVS have been eliminated in the constrained design which is also self-
supporting. Again we emphasize that although the bandgap-midgap ratio is reduced from 20.28%

to 19.28%, the new design is manufacturable.

3.5 Photonic bandgap design with tunable bulk modulus

If a designer seeks a photonic crystal with a desired stiffness, the bulk modulus and shear modulus
constraints should be considered. To demonstrate this capability, a series of bandgap optimiza-

tions are performed with various minimum bulk modulus constraints. At each constraint value, 20
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Figure 3.21 Applying « and VTM constraints to ensure structures are manufacturable

random initial designs were used from which the best resulting optimized design is selected.

Figure[3.23]plots the optimal bandgap-midgap ratio for a complete 2D bandgap between modes
5 and 6 against the minimum bulk modulus.

The best of the 20 optimized designs is pictured near its corresponding data point; the shaded
region under the curve indicates the feasible design space. We see a roughly inverse linear rela-
tionship between our two quantities of interest and note that k =~ 0.2 is the largest bulk stiffness
we can generate with a complete bandgap. This plot allows designers to visualize the trade-off
between bandgap and bulk stiffness performance. It is interesting to note that enforcing a min-
imum bulk modulus of k > 0.025 actually produced a better performing bandgap structure than
optimizing for bandgap without considering «; evidenced by the non-monotonicity of the plot in
Figure[3.23] Since there are many local minima in the designs space we cannot hope to capture the
global minimum with only 20 initial designs and thus we should interpret the shaded region as an

approximation of the feasible design space.
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Figure 3.22 Applying v and VTM constraints to ensure structures are manufacturable

We repeat the Figure [3.23] study, but now design for complete 3D bandgaps between modes 5
and 6. The results, pictured in Figure [3.24] present a roughly inverse linear relationship between
the two quantities of interest and note that k = 0.12 is the largest bulk stiffness we can generate
with a complete bandgap. As expected, the volume fraction increases with « in Figure [3.24] but

the topology does not change in contrast to the Figure [3.23] designs.
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3.6 Conclusions

Topology optimization of phononic/photonic crystals often generates structures that are not manu-
facturable due to EVS and ISM. Additionally, they often exhibit poor stiffness. We have suggested
a series of constraints which can be used to enforce fully-connected, manufacturable structures.

The virtual temperature method is used to prevent EVS and extended to prevent ISM. Fur-
ther, we adapted the VTM to periodic structures such that constraint behavior is invariant with re-
spect to unit cell selection. A mechanical eigenvalue constraint has been proposed to ensure fully-
connected structures while the proposed self-weight compliance constraint ensures self-supporting
structures. We also studied the effect of homogenization-based constraints on the bulk and shear
moduli to ensure desired stiffness and remove ISM, although the latter claim is not guaranteed.
Finally, the efficacy of three proposed isotropy constraints have been demonstrated.

The performance of each constraints was demonstrated on contrived test cases and on the de-
sign of photonic crystals. We generated 3D structures with complete 2D and 3D bandgaps that
were self-supporting and had required levels of stiffness. The trade-off between photonic bandgap
and bulk modulus was investigated to generate an approximation of the feasible design space.

It is imperative to use the VIM to prevent EVS if the AM process used to manufacture the
designs requires support material or powder. We suggest employing a bulk and/or modulus con-
straint to ensure a desired degree of stiffness. Augmenting a stiffness constrained formulation with
a mechanical eigenvalue constraint or the VIM will eliminate ISM. Alternatively, a self-weight
compliance constraint is sufficient if a fully-connected structure is the only design requirement
beyond the desired objective. The proposed bulk and shear stiffness constraints require at least
some stiffness in all directions. Thus, the isotropic constraints may not be necessary unless, of
course, some degree of isotropy is required. There was no discernible difference between the three
studied isotropy constraints, although the ease of differentiating and implementing the universal or

log-universal isotropy constraints give them a slight advantage over the log-distance constraint.
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CHAPTER 4: ADDITIVE MANUFACTURING OF BANDGAP STRUCTURES

The rise of additive manufacturing (AM) has considerably opened the design space for engi-
neering applications. Notably, AM is an excellent choice to produce bandgap structures due to
their complexity and proclivity for rounded features. This chapter describes initial work related
to manufacturing and testing bandgap structures using resources available at Lawrence Livermore

National Laboratory (LLNL).

4.1 Photonic bandgap validation

It would be very useful to experimentally validate the photonic bandgap performance predicted
by the simulations in Chapter 2. Thus, initial work was performed to prepare for future bandgap
validation experiments. Namely, the unit cell size and material selection was considered. As previ-
ously noted, the bandgap-midgap ratio is preferred as an objective function in design optimization
so that the unit cell can be scaled without changing the performance of the photonic crystal. The
first step in setting up a bandgap validation experiment is choosing the unit cell so that the bandgap
occurs at a frequency that can be measured by the available experimental equipment. Then, a con-
stituent material must be selected which exhibits a bandgap for the proposed unit cell design. A
final consideration when designing a bandgap validation experiment is the effect of a finite lattice

on bandgap performance; we note that simulations assume infinite periodicity.

4.1.1 Experimental design

It is helpful to first understand how the unit cell size of a photonic crystal relates to bandgap fre-

quencies for typical designs. Examine Figure {.1| which displays the frequency ranges of the

electromagnetic spectrum. Additionally, normalized frequency contours 2 = ¢ for [ = % are

plotted at values of 0.1 and 2.0. These values give an approximate range where bandgaps could
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lie for photonic crystals, although it should be noted that bandgaps optimized in this work were
typically located at normalized frequency values in the range § € [0.3 — 0.7]. Nonetheless, we get
a picture of the required unit cell size to generate a bandgap structure anywhere along the electro-
magnetic spectrum. Notably, we see that to create a bandgap for radiowaves the unit cell is on the
order of meters, which is clearly possible. However, on the other end of the spectrum, we would
need a unit cell on the order of picometers to create a bandgap in the gamma ray regime; this is
obviously not possible with modern manufacturing technology. There is great interest in obtain-
ing bandgaps that work in the visible regime, however, this requires sub-micron unit cells which
pushes the edge of manufacturing capabilities for 3D structures. In this section, we will consider

bandgaps in the microwave regime which require feasible unit cells on the order of millimeters.
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Figure 4.1 Relationship between unit cell size and electromagnetic frequency

Collaborators at LLNL were identified who possessed the equipment to perform bandgap vali-
dation tests in the gigahertz (GHz) regime. The 3D bandgap structure in Figure[2.9|was selected for
validation and so a normalized frequency scan of ¢ € [0.3,0.6] was determined to be appropriate. It
is straightforward to compute that € [0.3, 0.6] corresponds to a frequency range f € [6, 12] GHz

for a unit cell size of 15 mm, cf. Figure |T1_3| which plots f = 5. Fortunately, a unit cell size of

c*

71



184 --- a/l=0.6
\ —-r- afl = 03

Frequency (GHz)
=
o
|
’

Unit Cell, a (mm)

Figure 4.2 Frequency vs. unit cell size

15 mm was appropriate for the selected 3D printer as it could accommodate the feature size of the
unit cell while printing an array of 10° unit cells. Figurepresents a screenshot of the 3D printer
pre-processing software which pictures the proposed array of unit cells placed on the build tray.
The boundary box represents the limits of the build domain. Unfortunately, the additive manufac-
turing process was not straightforward and the first batch of prints was not successful. The failed

specimens are pictured in Figure[4.4] An important lesson learned was that only the top half of the

-+ import Models () stant Slicing

Figure 4.3 3D printing preview of photonic crystal
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Figure 4.4 Failed attempt at 3D printing photonic crystals

spheres (relative to the build tray) could be successfully printed using the available printer. Thus,
large arrays would have to be manually assembled after printing was completed; this is an arduous
process. At the present time, techniques are being developed to better print this structure. The
main issue was the printing of materials with a high relative permittivity; this point is expanded

upon in the next section.

4.1.2 Material selection

In general, a larger permittivity, &, contrast between the solid and void phase allows for a larger
bandgap [[I]]. Unfortunately, there are few widely available 3D printing materials with large per-
mittivity, e.g. & > 6. All of the designs in this work were optimized for €, = 13 based on previous
studies [35]]. Needless to say, we were unable to find a 3D printer capable of matching this.

A 3D printer at LLNL is able to use commercially produced materials with quoted properties
of & = 6, 8, or 10. It is advantageous to use the highest &, material possible so that the bandgap

is as large as possible, but unfortunately the higher &, material suffers from poor printing behavior.
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Figure 4.5 Performance of structure from Figure vs. & of base material

The &, = 10 material produced very poor quality parts, while the &, = 6 material produced much
higher quality. As expected, &, = 8 was somewhere in between. We should note that optimal
photonic crystal geometry is unique to the value of &, selected [1]], so ideally a crystal should
be optimized specifically for the &, of the constituent material. However, in this case we will not
change the geometry so as to reduce simulation time since our main goal is to validate the numerical
predictions. Figured.5]presents the predicted bandgap-midgap ratio for the design in Figure [2.9|for
various values of &,. We see that any constituent material with &, < 7.2 will not exhibit a bandgap.
Thus, the & = 8 printing material is our only viable option. Hopefully, this material can be used
to print parts for bandgap validation in the future. Alternatively, further advancement of printing
technology or the development of printable materials with larger &, will aid in this experimental

endeavor. The bandgap validation experiments are further addressed in Section[5.1]
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4.2 Testing additive manufacturing constraints

The constraints in Chapter 3 were developed to ensure designs are manufacturable. Thus, we aim
to test this claim by prototyping our photonic crystals. A few different techniques are used here
to highlight the applicability of the proposed virtual temperature method (VIM) constraint. In
Chapter 2 we designed a number of bandgap structures. The design from Figure 2.10] will be
considered here since it has regions of enclosed void space (EVS). In Chapter 3, we re-visited this
design problem by applying the VTM to prohibit enclosed void space. A new design, depicted in

Figure[3.18b] was produced with small channels such that the void space became simply connected.
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Figure 4.6  Applying 6,y constraint to remove EVS from mode 6-7 bandgap structure

To ease manufacturing, the VITM was further leveraged by lowering p.,, and re-solving the
optimization problem to maximize the size of the void channels. The results are presented in
Figure 4.6} the unconstrained version is presented again in Figure [4.6a] whereas the constrained

design is presented in Figure 4.6b] It is clear that EVS has been successfully avoided while only
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slightly reducing bandgap performance.

An array of 3° unit cells was selected to test additive manufacturing techniques on the two
designs in Figure 4.6] The corresponding stereolithography (.stl) files are pictured in Figure
Note that the materials used in this section are not suitable for use in photonic crystals; the intent

is only to consider the usefulness of the constraint for removing EVS presented in Chapter 3.

(a) .stl file of unconstrained 3D bandgap (b) .stl file of constrained 3D bandgap
structure structure

Figure 4.7 .stl files used for 3D printing

4.2.1 Stereolithography

The first 3D printing technique studied was stereolithography (SLA) [106]. As with almost all
3D printing techniques, the design is first sliced into 2D cross sections. Each layer is then built
sequentially upon the last layer until the entire prescribed volume has been produced. SLA printers
direct light to cure a photo-resin such that each layer is properly solidified to build up the part. The
Form 2 printer produced by Formlabs was used to demonstrate this process. The design from
Figure [4.6a] was 3D printed and the resulting prototype is pictured in Figure 4.8] Although it is
difficult to capture in a photograph, careful inspection of the part reveals that un-cured resin was
able to escape from the EVS so that the part was manufactured according to the designs. An
innovative printing process wherein the light source is placed below the resin bath was the key;
since the part rises up out of the liquid bath, all of the un-cured resin can escape the EVS. Thus,

the VIM constraint for prohibiting EVS is not required for this SLA printer.
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Figure 4.8 Successful 3D bandgap prototype printed with FormLabs SLA machine

4.2.2 Fused deposition modeling

A popular printing method known as fused deposition modeling (FDM) [106] deposits plastic
material in a layer by layer process to build 3D parts. The image in Figure [4.9] shows the Prusa
13 MK3S+ printer depositing blue constituent material onto a build tray. A primary concern when
using FDM printing is the requirement for support material. Since each layer is placed on top of the
previous layers, there must be material underneath to adequately support the features. However,
if support material is placed in EVS it will be impossible to remove. We printed the design from
Figure [4.6b] without support material since it would be almost impossible to remove though the
small channels discussed earlier. The resulting prototype is pictured in Figure Very poor
print quality was observed; plastic strands hung all over the part and many features were damaged
or missing. Thus, we can conclude that this part cannot be printed via FDM since it requires support
material yet we cannot easily remove it after printing. It is worth noting that some FDM machines
use support material that is water soluble and so it may be possible to remove the supports from
hard to reach areas by soaking in a water bath. Unfortunately, the printer used here did not have

this ability rendering it unable to print our bandgap designs.
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Figure 4.9 FDM 3D Printer

Figure 4.10 Failed 3D bandgap prototype printed with FDM machine
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4.2.3 Powder bed fusion

The most successful manufacturing experiment used powder bed fusion (PBF), which is a type of
binder printing [106]. This manufacturing technique sequentially builds a 3D part by depositing
thin layers of powder and then placing an aqueous binder material such that powder within the
prescribed volume of the design is held together, while powder outside the design remains loose.
After the powder deposition is completed, the loose powder is carefully removed form the powder
that is bound together, i.e. the desired part. At this point the prototype is quite fragile as the
powder is only held together by the aqueous binder. The part is then sintered to fully fuse the
powder and obtain a final, durable prototype. This printing technique is an excellent application of
our VTM constraint to prohibit EVS. Loose powder in EVS will be impossible to remove and will
become part of the design upon sintering. Thus, EVS will inadvertently become solid material. We
demonstrate this drawback by attempting to print both of the designs in Figure .6

The ExOne M-flex printer was used with 50 micron copper powder to demonstrate PBF printing
with and without EVS. First, we loaded the .stl files into the printer software. The screenshots of the
pre-processing software in Figure[d.TT|immediately warn us of an issue. The image in Figure[.1T4]
warns us of “shells”, i.e. regions with EVS, when the unconstrained design was loaded, while the

image in Figure [4.11b]displays no such warning when the constrained design was loaded.

(a) With EVS (b) Without EVS

Figure 4.11 Software preview of bandgap designs
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Figure 4.12 Bed of copper powder

Before the printing process begins, a bed of powder is carefully placed and leveled as pictured
in Figure Then, the aqueous binder is placed such that each layer is appropriately held
together. An example layer is depicted in Figure .13} the digital preview is compared with a
photograph of the corresponding layer wherein the location of the binder is apparent. Note that
each of the designs in Figure [4.6] were printed at a smaller size in addition to a larger version of
the design in Figure 4.6b] After each pass of binder application, a new layer of loose powder is

deposited on top so that the next layer can be formed.

(a) Digital preview of design layer (b) Picture of actual design layer

Figure 4.13 Example binder application layer
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Figure 4.14 Removing loose powder with vacuum

After the binder has been deposited to form each layer of the part, a tedious post-processing
task remains. All of the loose powder must be carefully removed from the fragile parts. First, a
vacuum is used to remove the majority of the powder, as pictured in Figure[4.14] Then, the vacuum
is used more carefully and in unison with a light brush to remove powder from the surface of the

prototype. The images in Figure 4.15|show the larger prototype as it is progressively cleaned.

i N

(a) Intermediate condition of part during (b) Near final condition of part after
powder removal powder removal

Figure 4.15 Snapshots of powder removal post-processing
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The most relevant step in the manufacturing process occurs after the excess powder has been
removed from the exterior of the part. It is clear that any powder located in EVS would be impossi-
ble to remove therefore this manufacturing process would fail. However, even small access routes
to internal features allow powder removal. As evidence, we used a canister of compressed air to
remove powder from the partially enclosed features of our design from Figure 4.6b] Figure 4.16]
demonstrates this process wherein pressured air was used to effectively blow loose powder out of
the hard-to-reach areas. In fact, loose powder from inside one of these hard-to-reach void regions
can actually be seen flying away in Figure[4.16b] just above and to the right of where the red nozzle
meets the prototype. These images demonstrate the ability to remove loose powder from nearly
any internal void feature which has an access point such that upon final sintering the desired part is
obtained. We can conclude that a VTM constraint for prohibiting EVS can be effectively employed

to ensure designs are manufacturable via PBF processes.

(a) Placing nozzle near partially enclosed feature (b) Loose powder ejecting from partially enclosed feature

Figure 4.16 Removing powder with pressurized air
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CHAPTER 5: CONCLUSIONS

Topology optimization serves as an effective tool for the design of photonic crystals with com-
plete bandgaps. These periodic structures are highly sought after due to their exciting applications
including sharp-corner waveguides, fiber optics, antennas, and other optical devices. Most studies
in the past, however, struggled to overcome the large computational burden and objective func-
tion non-smoothness caused by degenerate eigenmodes. Further, the few previously proposed
techniques that were capable of generating 3D bandgap structures were not able to use standard
gradient-based nonlinear programming algorithms, limiting their portability.

The planewave expansion technique was used to efficiently compute the required dispersion
analysis to numerically predict photonic bandgaps. An iterative eigenvalue solver is crucial for
bandgap optimization, since the number of degrees of freedom is very large, yet only the smallest
few eigenvalues are required. A popular method from the literature was employed here which
leveraged an efficient matrix-free, iterative eigenvalue solver.

A novel design framework is presented that is capable of efficiently generating 3D microstruc-
tures of photonic crystals with complete 3D bandgaps. The key contributions of this work to
the bandgap engineering field include the objective smoothing via p-norm approximation, effi-
cient sensitivity analysis for locally-supported design variables, and a successive mesh refinement
strategy. The p-norm smoothing allows traditional gradient-based nonlinear programming algo-
rithms to be utilized, which is crucial when adding further design constraints, e.g. manufacturing
constraints. The sensitivity analysis makes it feasible to use the classical “density” method for
topology optimization which offers immense design flexibility. Finally, the mesh refinement strat-
egy greatly relieved the computational burden by performing early iterations of the design process
on a very coarse grid and only refining the small-scale features on the finer grids.

The framework was tested on the design of crystals with complete 2D bandgap, i.e. structures
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with total reflection for waves with an angle of incidence limited to a particular plane. The first
8 possible mode pairs were split to form complete bandgaps, demonstrating a robustness of the
method to converge to bandgap structures under many different conditions. More importantly, the
framework was able to generate 3 structures with complete 3D bandgaps. A previous result from
the literature was reproduced lending confidence to the proposed design technique, and a novel
photonic crystal was presented as well.

It was observed, in this work and in previous literature studies, that structures with photonic
bandgaps often exhibit poor stiffness. In some cases the designs cannot be physically realized due
to “islands” of material floating in void space. A series of design constraints were formulated and
studied to improve the stiffness properties of photonic crystals and ensure their manufacturability.

The virtual temperature method was presented in the literature as a physics-based constraint
capable of identifying regions of enclosed void space, which are problematic for manufacturing.
This work extended the virtual temperature method to periodic structures by ensuring that consis-
tent behavior would be achieved regardless of the unit cell’s periodic shift. Further, the method
was used with alternative material interpolation schemes to identify “islands” of solid material. A
disadvantage was that self-supported structures were not guaranteed. Additionally, a mechanical
eigenvalue constraint was developed to identify unsupported material by considering the fourth-
smallest eigenvalue. This constraint was effective at identify regions of unsupported material in
general, however, an important counter-example arose when a microstructure which was simply
connected within the unit cell satisfied the constraint but was not self-supporting. The pitfalls
of the virtual temperature method and mechanical eigenvalue constraints were alleviated with the
self-weight compliance constraint. Computing the compliance resulting from design-dependent
gravity loads acting in all dimensions easily identified unsupported structures due to their large
increase in resulting displacement.

The abilities and limitations of the proposed physics-based design constraints were demon-
strated on example unit cell designs. Additionally, a simple void-producing or island-producing

objective function served as a test problem to investigate appropriate constraint limits. It was de-
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termined from this test problem that a modified linear material interpolation scheme was required
for problems with design-dependent loads, e.g. heat source or self-weight. Originally formulated
to handle spurious eigenvalue solutions caused by low-density elements in topology optimization,
this low-density penalizing interpolation proved invaluable for optimizations using the virtual tem-
perature method, mechanical eigenvalue, or self-weight compliance constraints.

The proposed design constraints were applied to photonic bandgap optimization to ensure that
the photonic crystals were manufacturable. The virtual temperature method was employed to re-
move enclosed void space from two designs with complete 3D bandgaps. Further, the virtual
temperature method, mechanical eigenvalue, and self-weight compliance constraints were used to
redesign crystals with complete 2D bandgaps to ensure they were self-supporting and therefore
physically realizable. Design performance was generally decreased only slightly, and in some
cases it actually increased when design constraints were introduced.

In addition to the manufacturing constraints, a series of effective property constraints were also
considered. Linear homogenization theory was utilized to compute the effective constitutive tensor
so that the periodic microstructures could be modeled as a homogeneous material. Adding de-
sign constraints of minimum bulk or shear modulus ensured that structures could support external
loads. As evidence, 2D bandgap structures were generated with bulk and shear stiffness in all di-
rections. To show the constraint abilities in tandem, the virtual temperature method was then added
in such that photonic crystals were designed with effective stiffness while avoiding any enclosed
void space. Finally, The trade-off between bulk stiffness and photonic bandgap was investigated
by solving a series of optimization problems with progressively larger minimum bulk moduli re-
quirement. The optimal designs for each constraint were plotted to elucidate the feasible design
space when bandgap and bulk stiffness are desired in a periodic structure.

To conclude, a powerful topology optimization technique was developed for the design of
photonic crystals with complete bandgaps. Further, a series of physics-based constraints were pre-
sented to ensure structures were multi-functional and manufacturable. All of the proposed tech-

niques were successfully demonstrated by designing photonic crystals with complete bandgaps.
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5.1 Future work

There is still much work to be done in the bandgap engineering field. This work enabled designers
to leverage gradient-based optimization to design photonic crystals. Orthorhombic symmetry was
used as a proof of concept, however, this work should be extended to other symmetry groups. For
example, many of the largest bandgap structures known to date exhibit diamond symmetry [1]].
Additionally, more elegant design parameterizations could increase the efficiency of the design
optimization by reducing the number of parameters and better representing the material interface.
Early in the research project implicit parameterizations, such as geometric primitives [98] com-
bined with R-functions [107, [108], were investigated, but bandgap structures were unable to be
located in the design space. A more general parameterization, such as a shape optimization tech-
nique with the ability to nucleate holes [109], might alleviate this issue by allowing the required
design flexibility to generate bandgap structures.

Nearly all of the bandgap literature assumes that structures are infinitely periodic. One notable
exception [110] did consider the finite lattice effect on density of states, however, much is left to
learn. A better understanding of edge effects [[1] would help integrate photonic crystals into engi-
neering designs. For example, it is unclear how many unit cells are required to achieve acceptable
bandgap performance. Further, the effect of manufacturing defects on bandgap performance is not
well understood. These considerations should be studied both experimentally and numerically.
Ideally, the finite lattice and manufacturing uncertainties could be modeled in optimizations when
designing photonic crystals for specific applications, and the predictions could be validated experi-
mentally. A recent study probed a complete 3D bandgap structure experimentally [[111]; this work
could serve as a useful guide in future bandgap experiments.

Design process specific constraints should be integrated into the optimization process. The
constraints presented in Chapter 3 are a good starting point, but more detailed constraints, such as
maximum overhang angle, minimum/maximum solid feature size, and minimum/maximum void

feature size should be directly constrained to streamline the design and manufacturing processes.
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