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ABSTRACT

Periodic structures consisting of dielectric material, i.e. photonic crystals, are capable of
prohibiting the transmission of electromagnetic waves within frequency ranges referred to as
bandgaps. This principle was first demonstrated with alternating slabs of material and later demon-
strated with three-dimensional (3D) structures capable of reflecting waves from any incident angle.
A number of potential applications for photonic bandgap structures exist, including waveguides,
integrated circuits, fiber optics, and photonic cavities. Additionally, many other optical devices
could benefit from the perfect-mirror behavior of photonic crystals.

The design of photonic crystals for complete bandgap has challenged researchers for the past
three decades. Bandgap structures are often quite complicated and therefore difficult to design
heuristically. Thus, the application of automated design tools, such as topology or shape optimiza-
tion, is very attractive. Unfortunately, bandgap analysis is very computationally intensive, and
it is difficult to employ effective low-dimensional design parameterizations capable of generating
bandgap structures. Until recently, computational power was insufficient to design 3D structures
with complete bandgaps. The development of computing clusters has reduced this burden signifi-
cantly, although computational cost remains a challenge.

A major obstacle when numerically designing for bandgap, or any other design metric derived
from eigenvalues, is the presence of degenerate eigenmodes. Optimal bandgap structures often
possess many planes of symmetry; this is helpful to reduce the overall cost of the required disper-
sion analysis, but it often leads to wave frequencies that have multiple propagation directions, the
physical result of degenerate eigenmodes. Herein lies the challenge; we would like to use gradient-
based optimization algorithms to design bandgap structures, but the presence of degenerate eigen-
modes renders our design metric non-smooth. Solving this conundrum by leveraging symmetric
polynomials was a major contribution of this work. Further, an efficient sensitivity analysis and a
successive mesh refinement strategy were developed to augment the design framework.

Finally, it was observed that bandgap structures often exhibit poor stiffness properties, some-
times even making the structures unable to be physically realized. A series of physics-based,
nonlinear constraints were developed to ensure the algorithmically-generated structures are man-
ufacturable. These constraints were demonstrated by designing a series of photonic crystals that
were fully self-supporting without the presence of enclosed void space. Additionally, the trade-off

between bandgap and bulk stiffness was investigated. The proposed design framework is the first
of its kind; a technique able to leverage traditional, gradient-based nonlinear programming solvers
to generate 3D bandgap structures with manufacturing constraints.
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CHAPTER 1: INTRODUCTION

The engineering design process has long been hindered by the arduous process of trial and error.

Designs are first conceived, then they are tested, and finally a decision is made about whether or not

the design will suffice for the task at hand. If the design is deemed unsuitable, then the designer re-

enters this time consuming loop by suggesting possible alterations before a new candidate structure

is considered. The techniques for improving designs are best described as guidelines, and in reality

most ideas stem from intuition and designer experience. Unfortunately, it is difficult to teach these

concepts, and so it is difficult to train novice design engineers how to most efficiently arrive at

suitable structures for the myriad of applications modern engineers face.

Engineers have become much more proficient at generating effective designs with the advent

of computers. Rather than time consuming and costly experiments, computer simulations rapidly

speed up the design testing procedure. The trial and error process has been considerably accel-

erated, but the underlying problem remains; hard and fast rules for how to improve designs are

scarce. Herein lies the potential for structural optimization to shift the paradigm of the engineering

design process. Algorithms can be developed to remove design decisions from the human designer,

which allow structures to be improved towards a mathematically provable best design.

Once the process of testing out candidate designs entered the digital world, it was only a matter

of time before the design process became fully automated. While we have not achieved this yet,

it seems to be the way of the future. Engineers in the future will only prescribe how they wish a

structure to perform, rather than explicitly prescribing the geometry and/or material selection of the

design. Algorithms will handle the burden of selecting designs in ways that surpass the capability

of human brains. The resulting structures will in some cases astonish us with their ingenious use

of space, yet in some cases they will leave us unsurprised as we rediscover concepts that nature

has presented us with long ago. In either situation, the world we create around ourselves will begin

rapidly changing as we adopt automated design principles.
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Structural optimization started as a simple process of optimizing a set of parameters that dic-

tated the size of predetermined features in a design. For example, a truss structure with a set geom-

etry could be optimized by selecting the radius of each member to maximize the overall stiffness of

the structure. While this technique is quite powerful, the designs are limited by the initial geometry

selection. On the contrary, topology optimization is able to produce nearly any possible structure

with a sufficiently refined design parameterization. This technique has been intensely studied since

it was proposed just over 30 years ago, and it will be the topic of this work. For completeness, I

will mention that shape optimization is also a very relevant design technique that is able to place

a material interface in the optimal location. Although shape optimization is a powerful tool with

many applications, especially where boundary location is imperative for simulation accuracy, it

will not be discussed further here since this work exclusively utilizes topology optimization.

Topology optimization uses a very simple principle to define engineering structures. A list of

parameters indicates whether or not material exists at a discrete set of locations within a design

domain. These parameters are varied until the optimization algorithm can determine a set of indi-

cators that cannot be improved by local perturbations to the design state. Once this is achieved, the

structure is explicitly defined by each indicator, denoting the presence or lack of material at that

spatial location. While simple in theory, this process has proven itself to be extremely powerful

in practice. Initially, most topology optimization problems aimed to design the stiffest or lightest

structure, subject to external loads under linear elastic assumptions. In reality, however, we know

that engineers face much more complicated design problems with more demanding design require-

ments and simulation necessities. Thus, to continue advancing the engineering practice towards

a fully-automated design process we must further our topology optimization capabilities. To this

end, a framework is proposed that is capable of designing periodic structures such that they totally

reflect light waves within specified frequency ranges. This ability will empower a new genera-

tion of tools in the optics engineering field. Further, a series of design constraints are formulated

to ensure these periodic structures are practical; namely, that they are fully self-supporting and

manufacturable with modern additive manufacturing techniques.
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1.1 Design of photonic bandgap structures

Photonic bandgap structures forbid electromagnetic wave propagation of a given frequency range,

also known as the bandgap [1]. The first photonic bandgap structures were one-dimensional peri-

odic structures [2], however, the bandgap engineering field progressed little until higher-dimensional

bandgap structures were discovered a century later [3, 4]. Early experiments demonstrated 3D

photonic bandgaps in crystals made of dielectric spheres with face-centered cubic [5] and body-

centered cubic [6] symmetries, as well as in crystals made of dielectric rods [7]. Additionally,

a diamond structure of dielectric spheres was designed and its complete 3D photonic bandgap

was numerically simulated [8]. Since these groundbreaking results, three decades of research has

followed on the design and analysis of photonic bandgap structures. Novel applications include

low-loss waveguides [9, 10, 11, 12], integrated circuits [13], perfect mirrors [14], photonic cavi-

ties [11, 15], photonic bandgap fibers [16], and a number of other exciting optical applications [1].

A material made of a periodic, architected micro-structure is referred to as a “metamaterial”.

The bulk, or effective, material properties of metamaterials are controlled by the underlying mate-

rial properties, but also and more interestingly, by the geometry of the microstructure. A technique

known as homogenization was developed to predict the effective elastic properties of metamateri-

als by analyzing just a single unit cell [17]. Further, topology optimization [18, 19], which seeks

to determine the optimal material distribution for a specific task, is readily applied to solve the

inverse homogenization problem [20, 21], i.e. to generate micro-structures that exhibit optimal,

or prescribed, effective properties. Seemingly impossible effective material properties have been

observed by optimizing metamaterials, such as simultaneous negative bulk modulus and mass den-

sity [22] as well as negative Poisson’s ratio [23].

Metamaterials have also been designed for effective electromagnetic properties, such as mag-

netic permeability and electric permittivity, although much less research has been performed in this

realm. So called “left-handed” metamaterials have been designed to exhibit negative effective per-

meability and permittivity [24]. These electromagnetic metamaterials are periodic structures that
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exhibit their effective bulk properties at an operating frequency with a corresponding wavelength

that is much larger than the unit cell size [25]. Photonic crystals are similarly periodic structures,

however, they obtain their performance by leveraging diffraction [25] and are therefore designed

to operate at frequencies with a wavelength that is similar in size to the unit cell. Numerical in-

verse design, referred to as inverse homogenization via topology optimization, is readily applied

to design the periodic unit cells of both metamaterials and photonic crystals.

Many previous studies have applied inverse problem techniques to the design of photonic crys-

tals [26]. A major issue plaguing numerical design of photonic bandgap structures is the non-

smoothness of the objective function due to degenerate eigenvalues [27]. The first successful

3D bandgap design optimization naturally avoided eigenvalue degeneracy by using a very low-

dimensional design space [28], however, a number of techniques have since been employed to cir-

cumvent this issue. 2D photonic crystals exhibiting bandgaps were designed using a generalized

gradient ascent [29, 30] algorithm that leveraged directional derivatives, or subgradients, computed

by the generalized gradient technique for degenerate eigenvalues [31]. The generalized gradient

ascent was later extended to a level-set design parameterization [32], and similarly a regularized

descent method was used to design optical waveguides via shape optimization [33]. Alternatively,

semidefinite programming, which alleviates the need for eigenvalue sensitivities, was applied to

design 2D photonic crystals [34] and further extended to the robust design of 3D photonic crys-

tals to accommodate uncertainties in fabrication [35]. Topology optimization, i.e. inverse unit

cell design, has also been used to design structures with mechanical, or phononic, bandgaps [36],

and even more interestingly with both phononic and photonic bandgaps [37]. Genetic [38] and

evolutionary [39] topology optimization methods have also been applied to design photonic crys-

tals. These techniques do not require design sensitivities, but do require many more iterations to

converge than gradient based-algorithms and they cannot ensure optimality. For these reasons,

gradient-free algorithms are not recommended for solving topology optimization problems [40].

At the other extreme, theoretical techniques for bandgap design that do not require iterative tech-

niques were developed [41, 42]. Interested readers are directed to review articles [43, 44].
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The numerical techniques described in this work are only applicable to non-magnetic materials,

and therefore we direct readers to [45, 46, 47, 48, 49] for studies on magnetic photonic crystals.

Design optimization has not yet been applied to 3D magnetic photonic crystals. Further, we assume

lossless materials and direct readers to in [1, 50, 51] for information on lossy photonic structures.

This work alleviates the differentiability issues of repeated eigenvalues by leveraging research

on symmetry polynomials of eigenvalues [52]. The presented smoothing technique allows pho-

tonic crystal design via traditional gradient-based nonlinear programming (NLP) solvers. The use

of a smooth NLP algorithm is advantageous, because although non-smooth NLP algorithms [53]

could be used in principle, their success has not been demonstrated on photonic crystal design

in practice. Our work also uses a 3D design parameterization, which is necessary to generate

structures with complete 3D bandgaps; it also proved very effective for optimizing structures with

large complete 2D bandgaps. We also improved the computational efficiency of a “voxel” based

design parameterization by using a nested mesh refinement technique. Length-scale control is im-

plemented to ensure manufacturability by employing a periodic volume fraction filter that respects

the orthorhombic symmetry of our unit cell. Multi-level parallelism and an efficient sensitivity

analysis are exploited to execute these large computational tasks in a reasonable wall clock time.

We validate our framework by designing novel structures with complete 2D and 3D bandgaps.

1.2 Manufacturing and stiffness constraints for photonic crystals

The design of periodic unit cells with inverse homogenization [20] using topology optimiza-

tion [18] has been widely studied. For example, it is used to design metamaterials with seemingly

nonphysical effective properties, such as negative Poisson’s ratio [54, 55, 56] and simultaneous

negative bulk modulus and mass density [22]. Inverse homogenization is also used to tune metama-

terials to match prescribed properties [57] and to obtain theoretically optimal properties [58].The

method is becoming more common in three dimensions (3D) [56] as computing power contin-

ues to advance, and the interest in lattice materials continues to increase [59]. Moreover it is not

limited to the realm of mechanics; designs for thermal expansion [60], thermal conductivity [61],
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fluid permeability [62], and magnetic permeability [63] have also been generated, and multifunc-

tional designs are becoming increasingly popular [61, 64]. Interested readers are directed to an

exhaustive review of micro-architected design [21].

As mentioned above, topology optimization has been used to design the periodic unit cells of

phononic and photonic crystals [65]. Early studies designed two-dimensional (2D) phononic [36]

and photonic crystals [32, 34], and more recently 3D photonic crystals [35, 39]. Bandgap opti-

mizations present an obvious need for material connectivity constraints. Indeed in stiffness opti-

mizations, disconnected regions of material never appear as they increase mass but not stiffness.

However, in bandgap optimization problems it has been demonstrated that disconnected structures

are often beneficial [32, 34]. Such designs with islands of solid material (ISM) are problematic as

they cannot be manufactured since they are not self-supporting. Additionally, enclosed void space

(EVS), also common to bandgap optimized designs [35], cannot be easily manufactured.

Many design formulations have been presented to ensure manufacturability in density-based

topology optimization [66, 67]. For example, techniques have been proposed to limit the over-

hang angle of a structure to alleviate the need for support material in additive manufacturing

(AM) [68, 69, 70, 71, 72, 73]. Additionally, the virtual temperature method (VTM) [74] prevents

EVS which is difficult to manufacture with most AM processes. We present various constraints that

can be integrated into topology optimization frameworks to ensure that optimal microstructures are

without ISM and EVS. Our techniques do not require changing the design parameterization or ap-

plying a filter. Further, several of them are inherently linked to mechanical stiffness so we will

investigate the effect of adding stiffness requirements to photonic bandgap structures. We will thus

be able to generate manufacturable photonic crystal structures with prescribed levels of stiffness

and probe the trade-off between these two often conflicting objectives.

In Chapter 3 we extend the VTM [74] to prevent ISM by flipping the material properties in

Section 3.1.1. Then, we further extend the VTM to eliminate both EVS and ISM from peri-

odic structures in Section 3.1.1. We alternatively prevent ISM by enforcing a mechanical eigen-

value constraint described in Section 3.1.2 and ensure self-supporting structures by enforcing a
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self-weight compliance constraint described in Section 3.1.3. Finally, we compute the homoge-

nized [17], or effective, constitutive tensor of our unit cells from which we derive bulk stiffness,

shear stiffness, and isotropy constraints in Section 3.1.4. The proposed constraints are evaluated

on a series of contrived unit cells to demonstrate their behavior in Section 3.2, where guidelines

for the appropriate constraint choices are presented to meet particular design goals. A simple op-

timization test problem is presented to display the efficacy of each constraint for unit cell design

in Section 3.3, and designs of self-supporting, manufacturable photonic crystals further serve to

exemplify the proposed constraints in Section 3.4. Finally, novel 3D photonic bandgap structures

with prescribed minimum bulk stiffness levels are presented to illustrate a feasible bandgap-bulk

stiffness design space in Section 3.5.
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CHAPTER 2: TOPOLOGY OPTIMIZATION FOR PHOTONIC BANDGAP

This chapter describes a framework for designing photonic crystals via topology optimization.

Only design performance with respect to bandgap is considered here, i.e. manufacturability con-

straints are left to Chapter 3. The framework describes techniques to alleviate the non-smoothness

caused by degenerate eigenvalues, while also providing an efficient sensitivity analysis and mesh

refinement technique to significantly reduce the computational burden. The traditional “density”

method of topology optimization is used to ensure adequate design freedom to obtain complete

bandgaps. Confidence in the proposed method was gained by reproducing previously published

bandgap structures. Further, novel bandgap structures were generated using the new techniques.

Orthorhombic symmetry is considered throughout, although the techniques easily generalize to

other symmetry groups. A key aspect of the proposed framework is the ability to leverage tradi-

tional gradient-based nonlinear programming solvers. This advantage will be highlighted in Chap-

ter 3, where constraints are used to improve the designs presented in Chapter 2 by ensuring they

are manufacturable. The work presented in this chapter has been published in Optics Express [75].

2.1 Formulation

The techniques used to generate the results in Section 2.2 are described in detail here. The govern-

ing equations, solution basis, objective formulation, design parameterization, sensitivity analysis,

filtering technique, and mesh refinement strategy are all described thoroughly with appropriate ref-

erences presented for further study, if desired. Note that specific values which would be required

to reproduce the results are given near their corresponding results in Section 2.2.
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2.1.1 Maxwell’s eigenvalue problem

Time-harmonic electromagnetism in a source-free, isotropic, lossless medium is governed by the

four Maxwell equations [1, 76]

∇ ×E(x) = iωµ0µr(x)H(x) (2.1)

∇ ×H(x) = −iωε0εr(x)E(x) (2.2)

∇ · (εr(x)E(x)) = 0 (2.3)

∇ · (µr(x)H(x)) = 0, (2.4)

where ∇× and ∇· are the curl and divergence operators with respect to position x, respectively, E

is the electric field, H is the magnetic field, ω is the frequency, µ0 is the magnetic permeability in

a vacuum, µr is the relative magnetic permeability, ε0 is the electric permittivity in a vacuum, εr is

the relative electric permittivity, and i is the imaginary unit. Bold-faced font will be used to denote

vector entities throughout. This paper will focus on non-magnetic materials, i.e. µr(x) = 1, and

therefore we omit µr(x) hereafter. Equations (2.1) and (2.2) are easily combined into

∇ ×

(
1

εr(x)
∇ ×H(x)

)
=

(
ω

c

)2
H(x) , (2.5)

where it is noted that the speed of light c = 1
µ0ε0

was substituted, and we reiterate that our media

are assumed to be lossless and therefore εr is strictly real. Further, since we are assuming isotropic

media we express the permittivity as a scalar quantity, although the solution technique easily gen-

eralizes to anisotropoic media wherein the permittivity is tensor-valued and thus 1
εr(x) becomes ε−1

r .

Equation (2.5) is an ordinary eigenvalue problem with eigenpairs (
(
ω
c

)2
,H), however, it is impor-

9



tant to remember that solutions to Equation (2.5) must also satisfy Equations. (2.3) and (2.4) to be

physically valid. A similar eigenvalue problem for the electric fieldE could have been formulated,

although a generalized eigenvalue problem would have been obtained. The choice of solution field,

i.e. H or E, is further discussed in Sec. 2.1.2

Bloch’s theorem [77, 78] allows the magnetic field in a periodic medium to be expressed over

a single unit cell as

H(x) = Hp(x) eiκ·x, (2.6)

where Hp is a periodic function with the same periodicity as the medium and κ is a wave vector.

Substituting Equation (2.6) into Equation (2.5) yields the ordinary eigenvalue problem

AκHp(x) = (∇ + iκ) ×
1

εr(x)
(∇ + iκ) ×Hp(x) =

(
ω

c

)2
Hp(x) , (2.7)

which is solved over a single unit cell for the pair (
(
ω
c

)2
,Hp). From Equations (2.6) and (2.7) we

see that H is a wave that propagates with frequency ω in the direction κ. In bandgap structures

there exists intervals [ω1, ω2], i.e. bandgaps, in which no waves propagate.

2.1.2 Planewave expansion

A finite dimensional basis is used to approximate H and solve Equation (2.7) numerically. There

are a number of possible bases, each with their own advantages and limitations [79]. Perhaps the

most common basis in numerical methods is a finite element basis [80], which has the advantage

of easily enforcing the required solution continuity through the use of vector finite elements, e.g.

H-curl finite elements enforce tangential vector continuity [81]. Due to their immense applicability

and popularity across many disciplines, open source finite element codes are widely available, such

as the modular finite element methods (MFEM) library [82]. The main disadvantage of a finite

element basis is the difficulty of enforcing the transversality requirements [79]. As mentioned in

Sec. 2.1.1, all computed solutions of Equation (2.7) must also satisfy Equations (2.3) and (2.4) to be

physically valid. Solving Equation (2.7) numerically without a transversality constraint will yield

10



many zero-valued eigenvalues [79] which do not satisfy Equations (2.3) and (2.4), These spurious

solutions could be removed after the calculation, but this technique would be quite computationally

wasteful. A much better choice is the use of a planewave basis, which has become the standard

practice for photonic band analyses since it was first presented two decades ago [79].

A planewave basis is used to approximateHp as

Hp(x) =

N∑
m=1

hmeiGm·x (2.8)

where Gm are the reciprocal lattice vectors of the unit cell and hm are the unknown degrees of

freedom (DOF) in wavevector space [79]. Substituting Equation (2.8) into Equation (2.6) and

inspecting the resulting Equation (2.4) reveals a major advantage of the planewave basis. We see

that the transversality requirement reduces to

∇ ·

 N∑
m=1

hmei(Gm+κ)·x

 = 0, (2.9)

which further reduces to

hm · (Gm + κ) = 0. (2.10)

SinceGm+κ is known, the above Equation (2.10) constraint on hm is easily enforced by expressing

hm = h1
me1 + h2

me2 (2.11)

where e1 and e2 are orthogonal unit vectors that are perpendicular to Gm + κ, and solving for the

unknown DOF h1
m and h2

m. The transversality constraint would not be so easily enforced had Equa-

tion (2.5) been formulated for the electric field E, due to the presence of εr(x) in Equation (2.3).

By choosing H as the solution field, satisfying ∇ ·H(x) = 0 effectively satisfies Equation (2.4),

since µr(x) = 1, and Equation (2.3) will automatically be satisfied by expressing hm via Equa-

tion (2.11) [79].

Bandgap optimizations only require calculation of a few of the lowest modes, and thus for large

11



problems an iterative eigenvalue solver is significantly more efficient than a direct solver. Fortu-

nately, the linear operator in Equation (2.7) is symmetric positive-definite [1], and as such iterative

methods, e.g. locally optimal block preconditioned conjugate gradient (LOBPCG) [83], may be

used. A key feature of iterative methods is that they only require matrix-vector products, rather

than explicit matrices. In other words, the linear operator of Equation (2.7) is never computed

and stored, only its action on vectors is required. To further hasten calculations, the dimension

of the basis N, and therefore the cutoff magnitude of Gm, is selected such that a discrete Fourier

transform (DFT) can be used to transform between planewave and spatial representations [79].

This does of course restrict the lattice unit cells to those which can be represented by rectangular

prisms, due to the uniform spatial discretization required for a DFT. Ultimately, the matrix-vector

products are computed in O(n log n) time using the technique described in [79], the curl operations

become cross products in wave vector space (O(n)) and the inverse permittivity is applied locally

(O(n)) once a DFT (O(n log n)) transforms solutions between wavevector and physical space. The

limiting factor becomes the two DFTs required for every matrix-vector product, although this cal-

culation is quite efficient using the Fastest Fourier Transform in the West (FFTW) library [84]. To

further improve the computational efficiency, the calculations are parallelized; the curls computed

in wavevector space are embarrassingly parallel, while the DFTs performed by FFTW are paral-

lelized along one spatial dimension. A further advantage of the planewave basis is the availability

of an accurate preconditioner [79], which is crucial for rapid convergence of LOBPCG.

An open-source planewave expansion library, Maxwell Photonic Bands (MPB), is available,

although the method was implemented from scratch in this work to facilitate the design sensi-

tivity calculations. The implementation used in this study was based on the originally presented

framework [79], although permittivity smoothing was excluded. This omission eases the sensitiv-

ity calculations, and any inaccuracies incurred by it are mitigated by refining the computational

grid [79], which is done in our nested mesh refinement. Further, the generalization of permittivity

smoothing to handle anisotropic materials [79] was not required.
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Figure 2.1 Irreducible Brillouin zones of unit cells with orthorhombic symmetry

2.1.3 Photonic bandgap calculation

To predict the presence of a complete photonic bandgap, the propagating modes must be computed

from Equation (2.7) for all unique wave vectors κ in reciprocal lattice space [1]. Fortunately, the

region of non-redundant wave vectors, i.e. the irreducible Brillouin zone (IBZ) denoted as B : R3 ,

is reduced for lattices possessing domain symmetries [85]. This work will consider, without loss of

generality, orthorhombic crystals, due to their ease of computational implementation. B is simply

a square, i.e. 1/4th of the unit cell cross-section, in 2D and an octant, i.e. 1/8th of the unit cell,

in 3D with orthorhombic symmetry [85], cf. Fig. 2.1. To be clear, all design parameterizations

are 3D, but they will be optimized for both complete 2D bandgaps, where κ is restricted to lie

in the x − y plane, and complete 3D bandgaps where no such restriction is enforced. Note that

a topology optimization scheme to overcome the difficulty of non-rectangular symmetry cells has

been developed [35], although it is not needed here.

The bandgap-midgap ratio between bands m and m + 1 is defined as

θω =
∆ω

ω̄
=

min ωm+1(κ) −max ωm(κ)
1
2 (min ωm+1(κ) + max ωm(κ))

∀κ ∈ B, (2.12)

where B is the appropriate irreducible Brillouin zone for the unit cell. The bandgap-midgap ratio’s

scale invariance makes it preferable over the absolute bandgap ∆ω as a performance metric [1].

Indeed, invariance ensures the lattice size of a photonic crystal may be scaled to shift the bandgap,

13



Figure 2.2 Representative dispersion plot for 2D κ ∈ ∂B

i.e. ω̄, without changing θω. Note that θω lacks differentiability from both the min/max operations

and the potential for degenerate eigenvalues. These matters are addressed in Sec. 2.1.7. Fig. 2.2

displays an example dispersion plot with a gap between modes m = 3 and m + 1 = 4, with the

gray region denoting the bandgap [ω1, ω2]. Notice that only the edges of B, denoted as ∂B, are

included in the plot, since band extrema are rarely located on the interior of B [35]. A statistical

analysis of band extrema location discovered that this assumption works best for crystals with high

symmetry [86]. Therefore, only ∂B is included in our objective function calculation, but a full B

discretization is computed a posteriori to ensure our designs truly have a bandgap.

Previous work suggested that optimizing

θλ =
min λm+1(κ) −max λm(κ)

1
2 (min λm+1(κ) + max λm(κ))

∀κ ∈ ∂B, (2.13)

where λ =
(
ω
c

)2
, is equivalent to optimizing Equation (2.12) and results in better optimization

performance [35]. Thus, all optimizations in this work use Equation (2.13) as the objective func-

tion, however, dispersion plots will be presented displaying the normalized frequency ωa
2πc for a

unit cell of size a, as is customary. Fortunately, the eigenvalue computations at each wavevector

are embarrassingly parallel, producing efficient strong scaling of the Brillouin scan. Note that the

dependence of θλ on design variables was omitted here, but will be reconsidered in Sec. 2.1.8.
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2.1.4 Topology optimization

Topology optimization distributes material in a design domain to generate optimal structures [18].

Traditionally, the structure Ω is defined by a material indicator function χ : Rh → {0, 1} such that

Ω = {x ∈ Rh | χ(x) = 1}, i.e. indicator values of χ(x) = 1 correspond to the presence of solid

material and values of χ(x) = 0 correspond to void space at location x. The resulting integer pro-

gramming problem is ill-posed due to a lack of inherent length scale [87]. A restriction method,

such as a perimeter constraint [88], provides a minimum length scale and results in a well-posed

problem, but the difficulty of the integer programming formulation remains. Convexifying the de-

sign space by replacing the binary-valued material indicator with the continuous volume fraction

ν : Rh → [0, 1] enables the use of efficient, gradient-based optimization algorithms, and the use of

alternative restriction techniques, such as a slope constraint [89] and filtration [90]. Unfortunately,

designs now contain intermediate material regions where ν(x) ∈ (0, 1), as opposed to purely void

and solid regions where ν(x) = 0 and ν(x) = 1, respectively. Often times additional measures must

be taken to limit the extent of the intermediate volume fraction regions. For example, employing

a material interpolation scheme [91, 92, 93] that penalizes the stiffness-to-weight ratio at locations

where ν(x) ∈ (0, 1) in conjunction with a mass constraint [19] works well in the standard compli-

ance topology optimization problems. Fortunately, photonic bandgap optimization problems are

well-posed whence they do not require length scale control and when replacing the indicator func-

tion with the volume fraction to convexify the design space they naturally tend to binary designs,

alleviating the need for material penalization schemes.

2.1.5 Design parameterization

The design variables di in this work are the values of the volume fraction over a set of “vox-

els” which discretize the unit cell, and thus the volume fraction field is piece-wise uniform. As

mentioned in Sec. 2.1.3, orthorhombic symmetry will be considered throughout this work. This

symmetry is enforced by allowing only the design in the symmetry cell to change freely, i.e. by

allowing each voxel in the symmetry cell to have its own volume fraction. The full unit cell design
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d1 d2

d4d3

Figure 2.3 Example 2D design parameterization with orthorhombic symmetry, dashed lines mark
symmetry planes

is obtained by mapping the symmetry cell design throughout the unit cell, as demonstrated by the

2D example in Fig. 2.3.

The well-known “checker-boarding” phenomenon often observed in structural topology opti-

mization due to the inherent ill-posedness of the problem [87] is naturally avoided when optimizing

bandgap structures, as evidenced by numerical results [35, 36, 38, 39] and theoretical considera-

tions [41, 42]. Nonetheless, a filtration technique is employed here to impose a minimum length

scale to ensure manufacturability and to hasten convergence of the optimization. To this end, the

“cone filter” presented in [90] is extended to periodic unit cells with imposed domain symmetry.

The filter works by replacing the volume fraction with a smoothed, i.e. filtered, volume fraction

field ν̃. In this way a highly oscillatory ν, which yields small scale features, is replaced by a smooth

ν̃. The cone filter uses a mesh-independent weighting of volume fraction that varies linearly with

distance r such that

ν̃(x) =

∫
Br(x)

K(x − y) ν(y) dΩy (2.14)

where K is the linear kernel and Br(x) is a ball of radius r centered at x. Upon discretization we

obtain the discrete filtered volume fractions of the voxels d̃i from

d̃i = Wi jd j, (2.15)
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Figure 2.4 Cone filter kernel Br(x) K(x − y) in 2D at various locations displayed in unit cell (top
row) and symmetry cell (bottom row), dashed lines mark symmetry planes

where

Wi j =
W̃i j∑
i W̃i j

, (2.16)

with

W̃i j = max
(
0, r − ||xi − x j||2

)
, (2.17)

in which xi is the centroid of voxel i and || · ||2 is Euclidean distance. Note that the entries are “nor-

malized” such that the sum of each row of W equals 1. Extending this filter to a periodic domain

is achieved by computing ||xi − x j||2 as the minimum distance between xi and all valid positions

of x j in neighboring unit cells. Further, domain symmetry is accounted for by computing Wi j at

each voxel centroid in the unit cell, and then adding all contributions to their corresponding voxel

in the symmetry cell. These operations are demonstrated in 2D by Fig. 2.4 and easily generalize

to 3D. Note that the symmetry operations lead to “double counting” the contribution of elements

near a symmetry cell boundary. The minimum length scale is roughly enforced by the selection of

r; smaller values allow for smaller features.
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2.1.6 Material interpolation

The solid phase volume fraction ν affects the design as we use a linear material interpolation

scheme for the relative permittivity while solving Equation (2.7), i.e.

εr(x) = ε0 + ν̃(x) (ε1 − ε0) , (2.18)

where ν̃(x) is the filtered volume fraction so that the relative permittivity εr(x) is that of the solid

phase ε1 when ν̃(x) = 1 and that of the vacuum ε0 when ν̃(x) = 0, respectively. Previous work

has reported that when designing for maximal bandgaps using this interpolation, optimal structures

naturally tend to binary designs, i.e. ν̃(x) ≈ 0 or ν̃(x) ≈ 1, in both 2D [10] and 3D [35, 39] appli-

cations, which follows intuition that high dielectric contrast leads to large bandgaps [1]. Conver-

gence to binary structures was also observed in 2D phononic bandgap topology optimization [36].

In agreement with previous works, our optimized structures naturally converged to binary designs

eliminating the need for a nonlinear material interpolation scheme.

2.1.7 Objective function smoothing

As previously mentioned, the bandgap-midgap ratio defined in Equation (2.13) lacks the differen-

tiability required to use gradient-based optimization solvers, such as the method of moving asymp-

totes (MMA) [94] or interior point methods, e.g. IPOPT [95]. There are two distinct sources of

non-smoothness, but fortunately both can be alleviated with the same technique. Repeated, or

degenerate, eigenvalues are a well known issue plaguing eigenvalue optimization problems [27].

Consider a symmetric, matrix A which depends on design variables d. If A has eigenpairs (λ,φ)

which satisfyAφ = λφ, the simple eigenvalues λ can be differentiated with respect to a particular

design parameter di as [27]
Dλ
Ddi

=
1
φTφ

φT ∂A

∂di
φ, (2.19)
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where D denotes a total derivative and ∂ denotes a partial derivative. It becomes clear that Equa-

tion (2.19) admits infinitely many solutions in the case of repeated eigenvalues, wherein there

are an infinite number of valid eigenvectors φ in a hyper-plane with dimensionality equal to the

eigenvalue’s multiplicity [27]; as such, the derivative is not defined. Albeit, it is possible to com-

pute directional eigenvalue derivatives using the generalized gradient method [31], however, most

nonlinear programming algorithms cannot work with directional derivatives.

It was proven that a symmetric polynomial of eigenvalues, λi for i = 1, . . . , n, is a differentiable

function, provided the set is isolated, i.e. . . . ≤ λ0 < λ1 ≤ . . . ≤ λn < λn+1 ≤ . . . [52]. Inspection

of the inequalities reveals that the symmetric polynomial remains smooth even if the isolated set

contains degenerate eigenvalues. This is an extremely powerful result that can be used to remove

the eigenvalue degeneracy issue from topology optimization. Specifically, a “p-norm” function

defined on a vector a as

lp(a) =

∑
i

ap
i


1
p

, (2.20)

is a symmetric polynomial raised to an exponent. We note that the usual p-norm absolute value is

ignored since we assume ai > 0. Thus, approximating the mode m eigenvalue

λm(κ) ≈ λ̃m(κ) =

 m∑
i=1

λi(κ)p


1
p

, (2.21)

and the mode m + 1 eigenvalue

λm+1(κ) ≈ λ̃m+1(κ) =

 M∑
i=m+1

λi(κ)−p


1
−p

, (2.22)

where M is sufficiently large to capture all repeated eigenvalues of λm+1(κ), yields smooth approx-

imations provided λm , λm+1. Although λm , λm+1 is not guaranteed across the entire design do-

main, the assumption is justified since it must hold for our bandgap designs. Note that our smooth

approximation further requires λM , λM+1, although any errors introduced if λM = λM+1 are negli-

gible in the sensitivity analysis provided λp
M � λ

p
m+1. So clearly, the accuracy of Equations (2.21)
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and (2.22) is also controlled by the value of p, which must be sufficiently large to obtain a reason-

able approximation, although poor optimization convergence is likely if p is too large. Substituting

the approximations from Equations (2.21) and (2.22) into Equation (2.13) produces

θλ ≈
min λ̃m+1(κ) −max λ̃m(κ)

1
2

(
min λ̃m+1(κ) + max λ̃m(κ)

) ∀κ ∈ ∂B, (2.23)

which effectively alleviates the non-differentiability caused by eigenvalue degeneracy.

Equation (2.23) still lacks the necessary differentiability for gradient-based optimization due

to the min/max operations. Equation (2.20) is therefore applied to smoothly approximate these

operations as

max λ̃m(κ) ≈ λ̃1 =

 Nκ∑
i=1

λ̃m(κi)p


1
p

κ ∈ ∂B (2.24)

min λ̃m+1(κ) ≈ λ̃2 =

 Nκ∑
i=1

λ̃m+1(κi)−p


1
−p

κ ∈ ∂B, (2.25)

where Nκ is the number of wave vectors chosen along ∂B. Substituting Equations (2.24) and (2.25)

into Equation (2.23) reveals the differentiable bandgap-midgap ratio approximation

θλ ≈ θ̃λ =
λ̃2 − λ̃1

1
2

(
λ̃2 + λ̃1

) . (2.26)

2.1.8 Sensitivity analysis

As previously noted, the bandgap-midgap ratio will be influenced by the solid material volume

fraction, which is parameterized by a set of design variables d. Thus, the derivative of Equa-

tion (2.26) is required with respect to each design parameter di to perform efficient gradient-based

optimization. The chain rule is used to compute each derivative according to

Dθ̃λ
Ddi

=
∂θ̃λ

∂λ̃1

Dλ̃1

Ddi
+
∂θ̃λ

∂λ̃2

Dλ̃2

Ddi
, (2.27)
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which requires
∂θ̃λ

∂λ̃1
=

−4λ̃2(
λ̃2 + λ̃1

)2 (2.28)

and
∂θ̃λ

∂λ̃2
=

4λ̃1(
λ̃2 + λ̃1

)2 . (2.29)

To compute the total derivatives Dλ̃1
Ddi

and Dλ̃2
Ddi

, the derivative of Equation (2.20) for a design depen-

dent input vector a is evaluated via the chain rule as

Dlp(a)
Ddi

=
∑

j

∂lp(a)
∂a j

Da j

Ddi
, (2.30)

where
∂lp(a)
∂a j

=

∑
k

ap
k


1
p−1

ap−1
j . (2.31)

Equation (2.30) is applied to evaluate the derivatives of Equations (2.24) and (2.25), and then again

applied to evaluate the derivatives of Equations (2.21) and (2.22), which are required for the chain

rule applications. As discussed in Sec. 2.1.7, we see that the errors in the derivative computations

of Equations (2.22) and (2.25) due to λM = λM+1 are small if λp
M � λ

p
m+1. Note that in the

smooth minimum approximations we employ a negative exponent, i.e. −p, and therefore a−p−1
j , cf.

Equation (2.31), becomes very small for large a j and large p.

At this point, only the derivatives of the eigenvalues Dλ
Ddi

remain. Despite the possibility for

degenerate eigenvalues, Equation (2.19) may be utilized with assured smoothness through the use

of symmetric polynomials [52]. Computing Equation (2.19) requires the discretized matrix-vector

product ∂A
∂di
φ, which may be computed using the matrix-free technique described in Sec. 2.1.2

with the caveat of multiplying by D
Ddi

(
1

εr(x)

)
, rather than 1

εr(x) , after transforming the solution via

DFT to physical space. This technique may be feasible for a small number of design variables,

but will likely become computationally prohibitive for the large number of design variables used

in topology optimization. Fortunately, a more efficient technique to compute the Dλ
Ddi

exists when

design variables have local support, which is the case in topology optimization. To see this we
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examine a weak formulation of the eigenvalue problem, which is obtained by integrating the dot

product of Equation (2.5) with an arbitrary weighting function w over the computational domain

Ω as ∫
Ω

w(x) ·
(
∇ ×

(
1

εr(x)
∇ ×H(x)

))
dΩ =

∫
Ω

w(x) · λH(x) dΩ. (2.32)

The vector identity

∇ · (a × b) = b · (∇ × a) − a · (∇ × b) (2.33)

is then applied to move a derivative from the solution fieldH to the weighting functionw. Indeed,

substituting a = 1
εr
∇ ×H and b = w converts Equation (2.32) to

∫
Ω

∇ ·

((
1

εr(x)
∇ ×H(x)

)
×w(x)

)
dΩ +

∫
Ω

(
1

εr(x)
∇ ×H(x)

)
· (∇ ×w(x)) dΩ

= λ

∫
Ω

w(x) ·H(x) dΩ,
(2.34)

and applying the divergence theorem to the first integral yields

∫
∂Ω

n̂(x) ·
((

1
εr(x)

∇ ×H(x)
)
×w(x)

)
∂Ω +

∫
Ω

(
1

εr(x)
∇ ×H(x)

)
· (∇ ×w(x)) dΩ

= λ

∫
Ω

w(x) ·H(x) dΩ,
(2.35)

where n̂ is the outward facing normal vector. Finally, the periodic boundary condition annihilates

the boundary integral leaving the eigenvalue problem of finding the admissibleH such that

∫
Ω

1
εr(x)

(∇ ×H(x)) · (∇ ×w(x)) dΩ = λ

∫
Ω

w(x) ·H(x) dΩ. (2.36)

for all admissible w. Here we see that upon discretization, Equation (2.36) is of the form AH =

λH . Taking the variation of Equation (2.36) yields

∫
Ω

δ

(
1

εr(x)

)
(∇ ×H(x)) · (∇ ×w(x)) dΩ +

∫
Ω

1
εr(x)

(∇ × δH(x)) · (∇ ×w(x)) dΩ

= δλ

∫
Ω

w(x) ·H(x) dΩ + λ

∫
Ω

w(x) · δH(x) dΩ.
(2.37)
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where we use Equation (2.36) to cancel the δw terms, since δw is admissible. Assigning the

arbitrary weighting function w = H yields

∫
Ω

δ

(
1

εr(x)

)
(∇ ×H(x)) · (∇ ×H(x)) dΩ +

∫
Ω

1
εr(x)

(∇ × δH(x)) · (∇ ×H(x)) dΩ

= δλ

∫
Ω

H(x) ·H(x) dΩ + λ

∫
Ω

H(x) · δH(x) dΩ,
(2.38)

which reduces to

∫
Ω

δ

(
1

εr(x)

)
(∇ ×H(x)) · (∇ ×H(x)) dΩ = δλ

∫
Ω

H(x) ·H(x) dΩ, (2.39)

where we again used the fact that Equation (2.36) holds for the admissible w = δH . Solving for

δλ leaves the expression

δλ =

(∫
Ω

H(x) ·H(x) dΩ
)−1 ∫

Ω

(∇ ×H(x)) · δ
(

1
εr(x)

)
(∇ ×H(x)) dΩ. (2.40)

Upon evaluating δλ with respect to a variation in the voxel i filtered volume fraction d̃i, we obtain

Dλ
Dd̃i

=

(∫
Ω

H(x) ·H(x) dΩ
)−1 ∫

Ω

(∇ ×H(x)) ·
D

Dd̃i

(
1

εr(x)

)
(∇ ×H(x)) dΩ. (2.41)

We notice here that upon discretization Equation (2.41) is of the same form as Equation (2.19).

Equation (2.41) is advantageous for the eigenvalue derivative computation because the second in-

tegral is only non-zero over the voxel i corresponding to filtered design variable d̃i. The key to

using this technique with a plane wave basis is to compute ∇ ×H in wave vector space and then

obtain the physical vectors from a DFT. Also, many eigenvalue solvers scale the eigenvectors such

that
∫
Ω
H(x) ·H(x) dΩ = 1, so this global integral may not need to be computed. The execu-

tion time will likely be many orders of magnitude (problem size dependent) faster than treating

local design variables as if they were global and using Equation (2.19). Finally, the chain rule is

23



completed by evaluating the derivative of the permittivity in the voxel i, i.e.

D
Dd̃i

(
1
εr

)
=
−1
ε2

r

Dεr

Dd̃i
, (2.42)

where Dεr
Dd̃i

is obtained by differentiating Equation (2.18) as

Dεr

Dd̃i
= (ε1 − ε0) . (2.43)

The above procedure is used to obtain derivatives of θ̃λ with respect to filtered volume fractions d̃i,

however, we must supply derivatives with respect to the design variables d j to the NLP algorithm.

Differentiating Equation (2.15) provides the required relation

Dd̃i

Dd j
= Wi j, (2.44)

so that we may finally compute

Dθ̃λ
Dd j

=
Dθ̃λ
Dd̃i

Dd̃i

Dd j
=

Dθ̃λ
Dd̃i

Wi j. (2.45)

The steps outlined above are used to compute the sensitivity of the objective function with

respect to the volume fraction of each voxel in the unit cell. However, since only the volume

fractions of voxels in the symmetry cell are free design variables, the sensitivity contributions

from each voxel in the unit cell must be appropriately allocated to its corresponding voxel in the

symmetry cell. For a 3D design parameterization with orthorhombic symmetry, the sensitivity

contributions from the 8 symmetry reflected voxels in the unit cell are summed to compute the

sensitivity with respect to the volume fraction of their corresponding symmetry cell voxel.

2.1.9 Nested mesh refinement

The full dispersion analysis required to predict a photonic bandgap becomes a computationally

expensive endeavor as the solution basis and the discretization of ∂B are both refined. Parallel
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calculations speed the analysis considerably; each eigenvalue calculation can be parallelized along

one-dimension of the unit cell, while the scan of the Brillouin zone boundary ∂B is embarrassingly

parallel, as noted in Sec. 2.1.3. Unfortunately, the calculation wall clock time can still exceed a few

hours on an advanced supercomputer when the number of design variables exceeds 103, despite

leveraging multi-level parallelism. To further reduce the computational cost of our 3D studies, a

nested mesh refinement technique is developed.

Nonlinear programming is used to solve the bound-constrained optimization problem

maximize
d

θ̃λ

subject to 0 ≤ d j ≤ 1,
(2.46)

where θ̃λ is defined in Equation (2.26). Note that modes m, and thus m+1, are selected a priori. We

use a reduced space approach whereby the Maxwell equations are strictly enforced and accounted

for in the sensitivity analysis presented in Sec. 2.1.8. The discrete representation of the symmetry

cell begins as a coarse grid of only 23 voxels whose volume fractions are randomly assigned. This

symmetry cell is subsequently reflected within the unit cell to enforce orthorhombic symmetry,

corresponding to an analysis grid of 43 voxels. We then solve the topology optimization problem

on this coarse grid. Upon convergence, the optimized design field is uniformly refined, cf. Fig. 2.5,

and a subsequent optimization begins from the converged coarse design. Note that this uniform

refinement does not change the physical structure (sans filtering), but rather subdivides each voxel

in the symmetry cell into 8 sub-voxels, whose volume fractions serve as design variables in the

(a) 4x4x4 voxels (b) 8x8x8 voxels (c) 16x16x16 voxels (d) 32x32x32 voxels

Figure 2.5 Uniformly refined unit cells
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refined topology optimization problem. This process continues until the design grid has been

sufficiently refined to resolve the desired feature size. It is also recommended to refine the grid at

least twice to achieve reasonable bandgap predictions.

2.1.10 Post-processing

A post-processing analysis of the optimized design is performed for two reasons. The first is to

interpret structures consisting purely of binary designs, and the second is to verify that the photonic

bandgap predicted by considering only a discrete set of vectors κ on the Brillouin zone boundary

∂B is valid, i.e. that there are no wave vectors κ in the interior of B that will propagate with

a frequency that lies in the bandgap. Therefore, designs are thresholded by rounding volume

fractions to 0 or 1 such that voxels with intermediate volume fractions are removed and a binary

structure remains. The entire irreducible Brillouin zone, i.e. the interior B and boundary ∂B,

is then considered by analyzing this binary structure at wave vectors κ from a uniformly spaced

sampling to ensure that the predicted bandgaps are valid. This uniform sampling of B consisted

of 11 samples per spatial dimensions, for a total of 1331 κ vectors. Fortunately, in all cases it

was determined that the bandgap predicted by scanning the boundary ∂B was consistent with the

bandgap predicted by scanning the entirety of B. Further, the thresholded binary designs were

often superior due to their sharper material contrast.

2.2 Results and discussion

2.2.1 Complete 2D bandgaps

The techniques described in Sec. 2.1 were applied to design 3D photonic crystals with complete 2D

bandgaps. The relevant numerical parameters that remain constant thoughout this work are listed

in Tab. 2.1. Structures with complete 2D bandgaps were designed by solving Equation (2.46) with

a 2D Brillouin zone such that ∂B is restricted to the x − y plane, with a κ spacing of 2π
8a . The first

8 possible gaps are considered, which begin between modes 2 and 3, since it is impossible to split

modes 1 and 2 due their shared frequency of 0 at κ = 0. Note that M from Equation 2.22 was
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Description Symbol Value
void space relative permittivity ε0 1.0

solid material relative permittivity ε1 13.0
p-norm exponent p 30
∂B discretization ∆κ 2π

8a
eigenvalue tolerance ελ 1e-5

NLP tolerance εθ 1e-5

Table 2.1 Numerical Parameters

selected such that 4 modes above the desired bandgap were computed, i.e. M = m + 4; this was

sufficient in all cases to ensure differentiability of the p-norm, i.e. such that λp
M � λ

p
m+1. The filter

radius r is selected a priori to limit feature size. Since r remains constant throughout the mesh

refinements, the filter will have no effect until the voxel spacing ∆x is smaller than r. Thus, the

filter is “activated” at some point in the mesh refinement process. It was observed in practice that

proper selection of r is paramount to achieving a bandgap structure. If r is too large then the design

may not have the necessary freedom to create a bandgap, while if r is too small fine-scale features

appear which are difficult to fabricate and optimizations take longer to converge. Specifically, the

best results were obtained when r was selected in the range a
32 < r < a

8 , which always activates the

filter before attempting the fourth optimization on the 323 voxel unit cell.

The initial and optimal volume fractions, along with their corresponding dispersion plots, for

each step in the nested mesh refinement process are displayed in Fig. 2.6 for a structure exhibiting a

2D bandgap between modes 5 and 6. A filter radius of r = 0.05a was selected. Note that the initial

design for the coarsest resolution is random. It is apparent that each design in the nested mesh re-

finement process converges to roughly the same design as its predecessor. Geometric features that

cannot be fully resolved by the coarse discretizations appear with intermediate volume fractions,

but as the mesh is refined the designs tend toward binary, aside from the interface smearing due to

the filtering. As seen here, once a filter radius is selected to enforce a minimum feature size, mesh

refinements must occur until features with those sizes can be fully resolved, resulting in a binary

design without strictly enforcing this binary behavior.

An interesting observation is that the design performance is often over-estimated on the coarse
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(a) Initial design volume fractions

(b) Initial design dispersion plots

(c) Optimized design volume fractions

(d) Optimized design dispersion plots

Figure 2.6 Nested mesh refinement for complete 2D bandgap

(a) Unit cell (b) Periodic crystal (43 unit cells) (c) Dispersion plot

Figure 2.7 Post-processed photonic crystal with complete 2D bandgap between modes 5-6
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grid. Fortunately, this effect is reduced in each mesh refinement step as the simulations become

more accurate. Not surprisingly, design performance is decreased when the filter is activated,

cf. Fig. 2.6. Note that this filter activation refers to a uniform mesh refinement that causes ∆x < r,

i.e. the design variables do not change. This follows intuition that a photonic bandgap prefers

stark material contrast, which is reduced when the filter smears the material interface. Despite

these effects, the increased design freedom due to mesh refinement usually improves performance.

Modes
(m-m+1)

Best structure Dispersion plot
Bandgap

probability

2-3 26
30 = 86.7%

3-4 10
30 = 33.3%

4-5 7
30 = 23.3%

5-6 27
30 = 90.0%

Table 2.2 Summary of complete 2D bandgap optimizations (gaps 1-4)
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The post-processed unit cell and its corresponding periodic photonic crystal are illustrated in

Fig. 2.7, along with the dispersion plot from this binary design. Images of post-processed, i.e.

binary, designs throughout this work display only the solid material to better examine the structure.

The full B scan described in Sec. 2.1.10 was also performed to verify the bandgap performance

predicted by the ∂B scan.

Modes
(m-m+1)

Best structure Dispersion plot
Bandgap

probability

6-7 1
30 = 3.3%

7-8 3
30 = 10.0%

8-9 12
30 = 40.0%

9-10 2
30 = 6.67%

Table 2.3 Summary of complete 2D bandgap optimizations (gaps 5-8)
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Tabs. 2.2 and 2.3 present the best 2D photonic bandgap structures obtained from 30 random

initial designs for each of the first 8 possible bandgaps. The post-processed performance of the best

structures are also presented, along with the percentage of random initial designs that yield bandgap

structures. Although a formal study was not performed, our experience shows that increasing the

κ spacing above 2π
8a results in a smaller percentage of initial designs yielding bandgap structures.

2.2.2 Complete 3D Bandgaps

Designing photonic crystals with complete 3D bandgaps is considerably more difficult than with

complete 2D bandgaps. Similar to the 2D bandgap study, 30 random initial designs were used

for each of the first 8 possible bandgaps, yet only 3 unique photonic crystals with complete 3D

bandgaps were obtained using the same r = 0.05a filter radius. The optimal designs at each mesh

resolution for the three successful 3D bandgap designs are displayed in Figs. 2.8-2.10, along with

their post-processed unit cells and dispersion plots. Many of the random initial designs converged

to the same optimal structure; specifically, 19/30 converged to the design pictured in Fig. 2.8 for

m = 2, 6/30 converged to the design pictured in Fig. 2.9 for m = 5, and 7/30 converged to the

design pictured in Fig. 2.10 for m = 6.

(a) Nested mesh refinement optimized volume fractions

(b) Post-processed unit cell (c) Periodic crystal (43 unit cells) (d) Post-processed dispersion plot

Figure 2.8 Photonic crystal with complete 3D bandgap between modes 2-3
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(a) Nested mesh refinement optimized volume fractions

(b) Post-processed unit cell (c) Periodic crystal (43 unit cells) (d) Post-processed dispersion plot

Figure 2.9 Photonic crystal with complete 3D bandgap between modes 5-6

It is interesting to note that the design in Fig. 2.9 is very similar to a previously published

optimal design [35]. This further validates the presented implementation. Also, it lends confi-

dence to the possibility that global optimum are obtainable by the nested mesh refinement strategy,

since [35] used a fixed grid throughout the optimization. Additionally, it is promising that the

semidefinite programming reformulation in [35] produced the same result as the interior point

NLP algorithm employed here, implying a consistency between methods and further justifying our

lack of permittivity smoothing. An advantage of the proposed method over the semidefinite pro-

gramming method is the ability to easily incorporate other design parameterizations and nonlinear

constraints.

The structure displayed in Fig. 2.10 has not, to the knowledge of the authors, been previously

published. Although the performance does not exceed that of known structures, it is important to

have the capability to find new bandgap structures that may be more robust to defects, or have better

multi-functional properties. Extending the presented framework to other unit cell symmetries or

attempting to split higher modes with a more refined mesh could very well produce novel bandgap

structures with better performance than what has previously been produced.
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(a) Nested mesh refinement optimized volume fractions

(b) Post-processed unit cell (c) Periodic crystal (43 unit cells) (d) Post-processed dispersion plot

Figure 2.10 Photonic crystal with complete 3D bandgap between modes 6-7

2.2.3 Computational expense

Photonic crystal design for complete bandgap is a computationally expensive endeavor. The dis-

crete eigenvalue analyses resulting from the fully-vectorial formulation consist of real and imagi-

nary parts with two DOF per voxel, producing a discrete system with 4n3 DOF for an analysis grid

with n voxels along each spatial dimension of the unit cell. For context, the eigenvalue problems

derived from the 323 grids have 131, 072 DOF. Further, it is generally required to compute the

lowest ≈10 eigenvalues, and it was necessary to analyze 32 and 92 κ vectors along ∂B to design

for complete 2D and 3D bandgaps, respectively. The NLP algorithm generally converged within

≈300 design iterations on each of the four nested mesh refinement grids for a total of ≈38,400 and

≈110,400 eigenvalue analyses when designing for complete 2D and 3D bandgaps, respectively.

The 2D bandgap optimizations were solved on 512 processors, while the 3D bandgap optimiza-

tions were solved on 1,472 processors, both requiring ≈4 hours of execution time. Nested mesh

refinement significantly reduced the number of iterations required, although the time savings were

not computed since convergence to a bandgap structure from a random initial design at the 323 grid

resolution could not be obtained within the 24 hour time limit of the Lawrence Livermore National

Laboratory (LLNL) computing cluster used throughout.
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2.3 Conclusions

Topology optimization has successfully been applied to design 3D photonic crystals with complete

2D and 3D bandgaps. A technique for smoothing the bandgap-midgap ratio utilizes the symmetric

architecture of a “p-norm” function to remove non-smoothness caused by eigenvalue degeneracies

and min/max operations, allowing the usual gradient-based nonlinear programming solvers to be

employed.

Nested mesh refinement alleviates the computational burden from the high dimensional design

spaces required to optimize 3D bandgap structures. Optimal designs naturally converge to binary

structures after sufficient mesh refinement, and a periodic cone filter is successfully applied to

enforce a minimum length scale in the optimized designs.

The presented framework is general enough to design photonic crystals with any domain sym-

metry, provided the unit cell is a rectangular prism. Three-dimensional photonic crystals with

orthorhombic symmetry were designed with complete 2D bandgaps between each of the first 8

possible mode pairs, and complete 3D bandgaps between 3 different mode pairs. The sizes of the

bandgaps presented here are competitive with the largest described in the literature.
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CHAPTER 3: MANUFACTURING AND STIFFNESS CONSTRAINTS FOR TOPOLOGY

OPTIMIZED PERIODIC STRUCTURES

This chapter describes a series of constraints that ensure structures are fully self-supporting and

lack islands of solid material (ISM) and enclosed void space (EVS). These constraints are general

enough to be added to any topology optimization framework since they do not rely on changing

the design parameterization or filtering design variables. First, the formulation for each constraint

is provided along with sensitivity analyses. Then, the constraints are compared and contrasted by

evaluating each on a series of example unit cells so that guidelines may be presented for effective

constraint combinations. Further, a geometry-based test problem is used to study the behavior of

each constraint and aid in constraint limit selection. Finally, results from Chapter 2 are re-visited in

order to ensure the photonic crystal designs are manufacturable and to study the trade-off between

stiffness and bandgap performance. The work presented in this chapter has been submitted for

publication in Structural and Multidisciplinary Optimization.

3.1 Constraint formulations

The constraints presented in this chapter are all physics-based. Thus, the governing partial differ-

ential equation (PDE) for each constraint is presented here, and the required sensitivity analyses

are derived as well. The material interpolations are described in detail since they were crucial to

obtaining convergence when the constraints were employed in a design optimization.

3.1.1 Virtual temperature method

The virtual temperature method (VTM) [74], equivalently formulated as the virtual scalar field

method [96], was proposed as a technique to prevent EVS in topology optimized designs. A
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virtual “temperature” field is computed which satisfies the steady-state heat conduction equation

∇ · (k(x)∇T (x)) + Q(x) = 0 for x ∈ Ω

T (x) = 0 for x ∈ ∂Ω,
(3.47)

where k is the conductivity, Q is a heat source, and T is the virtual temperature field at spatial

coordinate x. Although we are designing a periodic structure, the domain Ω considered for this

constraint only consists of a single unit cell and we do not enforce periodic boundary conditions.

This point is elaborated on in Section 3.1.1.

This technique works by placing both the heat source and highly conductive material in the

void phase, while placing insulating material in the solid material. Thus, a much larger maximum

domain temperature is observed when a region of void space is disconnected from the domain

boundary ∂Ω since the heat source is not be able to dissipate as it would if all of the void space

was in contact with ∂Ω. Specifically, the conductivity is computed as a function of the solid phase

volume fraction ν̃ ∈ [0, 1] according to a SIMP-like [91] interpolation

k(ν̃) = εek0 + (1 − ν̃)q (k0 − εek0) , (3.48)

so that k = k0 for ν̃ = 0 and k = εek0 for ν̃ = 1, i.e., we place highly conductive material k0

in the ν̃ = 0 void phase and insulating material (εe � 1) in the ν̃ = 1 solid phase. We should

note that these VTM material properties are not physical, e.g. we would not expect void space to

be more conductive than solid material. Also, we are using an ersatz representation of void space

and denoting the ratio of the void space properties to the solid phase properties by εe.

Selecting exponent values q > 1 serves to penalize intermediate volume fractions ν̃ ∈ (0, 1) by

reducing their conductivity-to-heat source ratios. This is directly analogous to the SIMP method

for compliance minimization [91] wherein the stiffness of intermediate volume fraction material

is reduced relative to its mass so that optimal solutions contain only ν̃ = 0 or ν̃ = 1. Here, the

conductivity of intermediate volume fraction material is reduced relative to its heat source so that
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(a) Volume fraction interpolations (b) Derivative of volume fraction interpolations

Figure 3.1 A comparison of volume fraction interpolations

optimal solutions prefer ν̃ = 0 or ν̃ = 1, since the intermediate volume fraction is inefficient at

lowering the domain temperature.

The heat source should only be present in the void phase and hence it is a function of ν̃. How-

ever, it was observed in practice that using a linear interpolation, i.e. Q(ν̃) = (1 − ν̃) Q0 where Q0 is

the heat source value of the void phase, caused nonphysical behavior, e.g. negative temperatures,

in regions with intermediate volume fraction. Fortunately, a modified SIMP interpolation scheme

originally developed to remove spurious eigenmodes caused by low volume fraction elements [97]

was able to resolve this issue. Figure 3.1 presents interpolations and their derivatives. We can see

that very low volume fractions are heavily penalized with the modified SIMP, but importantly the

interpolation is C1 continuous. We invert the modified SIMP interpolation so that the heat source

in high volume fractions is penalized, i.e.

Q(ν̃) =


(
c1 (1 − ν̃)r + c2 (1 − ν̃)r+1

)
Q0 ν̃ ≥ ν̃U

(1 − ν̃) Q0 ν̃ < ν̃U

(3.49)

where r > q, ν̃U is a volume fraction upper bound, and the constants c1 and c2 are selected to

ensure the material interpolation scheme remains C1 continuous. To enforce this continuity we

require that both expressions in Equation (3.49) produce the same value of Q(ν̃U) and Q′(ν̃U) from
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which we obtain

c1 = r (1 − ν̃U)1−r (3.50)

and

c2 = (1 − r) (1 − ν̃U)−r . (3.51)

Note that for any choice of ν̃U ∈ (0, 1) we will obtain Q = Q0 for ν̃ = 0 and Q = 0 for ν̃ = 1.

The boundary condition on ∂Ω allows heat to escape from Ω. Thus, EVS is easily identified by the

presence of regions with high temperatures. We compute the maximum temperature in the domain

using the differentiable p-norm function

θvt =

(∫
Ω

T (x)p dΩ
) 1

p

, (3.52)

from which we formulate an optimization constraint as

θvt ≤ µvtθ̄vt, (3.53)

where µvt is a user-selected constant and θ̄vt is computed by Equation (3.52) after solving Equa-

tion (3.47) with ν̃(x) = 0 for all x ∈ Ω so that the constraint limit is not problem dependent.

Henceforth we will use the subscript vtv when Equation (3.53) is applied with the conductive

material and heat source placed in the void phase as described above, and we will use the subscript

vts when Equation (3.53) is applied with the conductive material and heat source placed in the

solid material as described in Section 3.1.1.

Extending the VTM to identify ISM

The VTM presented in Section 3.1.1 provides a quantitative means of identifying and prevent-

ing EVS. We propose a simple extension of this method to identify and prevent ISM. By simply
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inverting the interpolations in Equations (3.48) and (3.49) to

k(ν̃) = εek0 + ν̃q (k0 − εek0) (3.54)

and

Q(ν̃) =


(
c1ν̃

r + c2ν̃
r+1

)
Q0 ν̃ ≤ ν̃L

ν̃Q0 ν̃ > ν̃L

(3.55)

respectively, we place the the conductive material and heat source in the solid rather than the void

region. Repeating our continuity requirements we obtain

c1 = rν̃1−r
L (3.56)

and

c2 = (1 − r) ν̃−r
L . (3.57)

In this way the maximum temperature will be large when we have regions of solid material not

connected to a boundary. We can simultaneously restrict EVS and ISM by solving Equation (3.47)

twice; once using Equations (3.48) and (3.49) and again using Equations (3.54) and (3.55) and

constraining the maximum value of each temperature field.

Extending to periodic domains

To the authors’ knowledge the VTM has only been applied to finite domains, although the effect

of boundary conditions has been explored [42]. We propose a technique to use VTM to prevent

EVS and ISM in periodic structures. Consider a 2D microstructure consisting of solid material and

a square array of circular voids. If we apply the VTM to the unit cell pictured in Figure 3.2a, we

would identify EVS. However, if we apply the VTM to the unit cell pictured in Figure 3.2b, we will

not identify EVS even though both unit cells represent the same periodic structure. Thus, we have

an unacceptable problem; the behavior of our constraint function depends on the unit cell choice.
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To alleviate this issue, we will propose a solution wherein we simply consider a 2d array of unit

cells, where d is the spatial dimension of our design problem. Indeed, consider the unit cell arrays

highlighted in Figures 3.3a and 3.3b. Although the number of “hot” regions will be different, the

behavior of the constraint will be consistent, i.e. EVS will be identified in either case. In fact, any

array of 2d unit cells allows the VTM to appropriately identify EVS and ISM.

T=0

T=0

T=0T=0

Ω Ω

solid
(𝜈 = 1)

void
(𝜈 = 0)

𝑇 ≫ ത𝑇

(a) Example unit cell # 1

T=0

T=0

T=0T=0

Ω

Ω

solid
(𝜈 = 1)

void
(𝜈 = 0)

(b) Example unit cell # 2

Figure 3.2 Example behavior when a single unit cell is analyzed with VTM

T=0

T=0

T=0T=0

ΩΩ

solid
(𝜈 = 1)

void
(𝜈 = 0)

𝑇 ≫ ത𝑇

(a) Example unit cell array # 1

T=0

T=0

T=0T=0

Ω

Ω

solid
(𝜈 = 1)

void
(𝜈 = 0)

𝑇 ≫ ത𝑇

(b) Example unit cell array # 2

Figure 3.3 Example behavior when a 22 unit cell array is analyzed with VTM

Sensitivity analysis

We must compute the sensitivities of our constraint functions with respect to design variables to

solve our design optimization problem via nonlinear programming (NLP). Here we derive the

sensitivities of our constraint functions with respect to the volume fraction field ν̃. However, we

emphasize that other design parameterizations could be employed, e.g. projection methods [98] or

B-splines [99].
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We evaluate the variation of Equation (3.52) to obtain

δθvt =

(∫
Ω

T (x)p dΩ
) 1

p−1 ∫
Ω

T (x)p−1 δT (x) dΩ, (3.58)

where we notice the implicit sensitivity δT is problematic to compute analytically. We use the

adjoint method to address this issue wherein we restate Equation(3.47) in its weak form, i.e. we

find T ∈ H = {T ∈ H1; T = 0 on ∂Ω} for an H1 Hilbert space such that

−

∫
Ω

∇w(x) · k(x)∇T (x) dΩ +

∫
Ω

w(x) Q(x) = 0 (3.59)

for all w ∈ H . Differentiating the above gives the problem of finding δT ∈ H satisfying

−

∫
Ω

∇w(x) · δk(x)∇T (x) dΩ −
∫
Ω

∇w(x) · k(x)∇δT (x) dΩ +

∫
Ω

w(x) δQ(x) dΩ = 0 (3.60)

for all w ∈ H . We now add Equation (3.60), i.e. zero, to Equation (3.58) to obtain

δθvt =

(∫
Ω

T (x)p dΩ
) 1

p−1 ∫
Ω

T (x)p−1 δT (x) dΩ

−

∫
Ω

∇w(x) · δk(x)∇T (x) dΩ −
∫
Ω

∇w(x) · k(x)∇δT (x) dΩ +

∫
Ω

w(x) δQ(x) dΩ,

(3.61)

and notice that upon solving for w ∈ H such that

∫
Ω

∇δT (x) · k(x)∇w(x) dΩ =

(∫
Ω

T (x)p dΩ
) 1

p−1 ∫
Ω

δT (x) T (x)p−1 dΩ (3.62)

for all δT ∈ H we can remove δT from Equation (3.61). Subsequently substituting this w into

Equation (3.61) yields

δθvt = −

∫
Ω

∇w(x) · δk(x)∇T (x) dΩ +

∫
Ω

w(x) δQ(x) dΩ. (3.63)

We parameterize ν̃ to be piece-wise uniform over the finite element mesh, i.e. each finite element
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in Ω is assigned a distinct volume fraction ν̃i. As such

Dθvt

Dν̃i
= −

∫
Ω

∇w(x) ·
Dk(x)

Dν̃i
∇T (x) dΩ +

∫
Ω

w(x)
DQ(x)

Dν̃i
dΩ, (3.64)

where we note that
Dk
Dν̃i

= −q (1 − ν̃i)q−1 (k0 − εek0) (3.65)

and

DQ
Dν̃i

=


(
−c1q (1 − ν̃i)r−1

− c2 (r + 1) (1 − ν̃i)r
)

Q0 ν̃i ≥ ν̃U

−Q0 ν̃i < ν̃U

(3.66)

when using the interpolation schemes in Equations (3.48) and (3.49), i.e. when restricting EVS.

Similarly,
Dk
Dν̃i

= qν̃q−1
i (k0 − εek0) (3.67)

and

DQ
Dν̃i

=


(
c1rν̃r−1 + c2 (q + 1) ν̃r

)
Q0 ν̃i ≤ ν̃L

Q0 ν̃i > ν̃L

(3.68)

when using the interpolation schemes in Equations (3.54) and (3.55), i.e. when restricting ISM.

3.1.2 Mechanical eigenvalues

Another constraint that can be used to identify ISM is derived from an eigenvalue analysis that

consists of solving for eigenpairs
(
λ j,u j

)
ordered such that λ1 ≤ λ2 ≤ ... ≤ λn and satisfy

∇ · C(x)
[
∇u j(x)

]
= λ jρ(x)u j(x) for x ∈ Ω

u j(x) = u j(x + nak) for n = Z,

(3.69)

where C is the fourth-order elasticity tensor, ρ is the mass density, u is the displacement, Ω is a

periodic domain, i.e. a unit cell, Z is the set of all integers, and ak are the lattice vectors. Thus, we

are employing periodic boundary conditions to appropriately model the response of our infinitely
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periodic structure. We use the SIMP interpolation [91] for the constitutive tensor according to

C(ν̃) = εeC0 + ν̃q (C0 − εeC0) , (3.70)

so that we place a stiff material in the solid phase, i.e. C(1) = C0 and a weak material in the void

phase, i.e. C(0) = εeC0, where C0 is the elasticity tensor of the solid material. We use the modified

SIMP [97] to interpolate the mass density according to

ρ(ν̃) =


(
c1ν̃

r + c2ν̃
r+1

)
ρ0 ν̃ ≤ ν̃L

ν̃ρ0 ν̃ > ν̃L

, (3.71)

wherein c1 and c2 are given in Equations (3.56) and (3.57), respectively.

We know that λ j ≥ 0 since the left-hand side operator in Equation (3.69) is positive semi-

definite, and we expect 3 zero-valued eigenvalues corresponding to rigid translation, i.e. λ1 = λ2 =

λ3 = 0. We show in Section 3.2 that we can identify ISM by observing the magnitude of the

fourth-smallest eigenvalue. There will be nearly zero-valued eigenvalues λ j for j = 4, 5, ..., n when

ISM are present, where the lower limit of λ4 is determined by the selection of εe. As such, we

estimate the fourth-smallest eigenvalue using a p-norm function

θeig =

 n∑
i=4

λ
−p
i

−
1
p

, (3.72)

and subsequently enforce the optimization constraint

θeig ≥ µeigθ̄eig, (3.73)

where θ̄eig is computed from Equation (3.72) with the entire domain set to ν̃ = 1. We use Equa-

tion (3.72) rather than θeig = λ4 since Equation (3.72) is differentiable even if λ4 is a degenerate

eigenvalue, i.e. even if λ4 = λ5 ≤ ... ≤ λn. We necessarily have λ3 < λ4 due to the ersatz material
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usage and therefore Equation (3.72) is a symmetric polynomial of a distinct set of eigenvalues and

hence differentiable [52].

We compute the sensitivity of the eigenvalues λ j according to

δλ j =

(∫
Ω

u j(x) · ρ(x)u j(x) dΩ
)−1 (∫

Ω

∇u j(x) · δC(x)
[
∇u j(x)

]
dΩ

− λ j

∫
Ω

u j(x) · δρ(x)u j(x) dΩ
)
.

(3.74)

For our discretization this gives

Dλ j

Dν̃i
=

(∫
Ω

u j(x) · ρ(x)u j(x) dΩ
)−1 (∫

Ω

∇u j(x) ·
DC(x)

Dν̃i

[
∇u j(x)

]
dΩ

− λ j

∫
Ω

u j(x) ·
Dρ(x)

Dν̃i
u j(x) dΩ

)
.

(3.75)

where
DC
Dν̃i

= qν̃q−1
i (C0 − εeC0) (3.76)

and

Dρ
Dν̃i

=


(
c1rν̃r−1

i + c2 (r + 1) ν̃r
i

)
ρ0 ν̃i ≤ ν̃L

ρ0 ν̃i > ν̃L

. (3.77)

The derivative of Equation (3.72) is computed as

Dθeig

Dλ j
=

 M∑
i=4

λ
−p
i

−
1
p−1 (

λ
−p−1
j

)
. (3.78)

and the derivative Dθeig

Dν̃i
follows from an application of the chain rule.

3.1.3 Self-weight compliance

The periodic VTM presented above is very effective at identifying ISM and EVS. We will see in

Section 3.2, however, a lack of ISM does not guarantee a structure is self-supporting. Thus, we

propose a self-weight compliance constraint to ensure the unit cell is adequately supported. To do
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this we solve for the displacements ui resulting from design-dependent body loads in each spatial

dimension ei according to

∇ · C(x) [∇ui(x)] + ρ(x) ei = 0 for x ∈ Ω

ui(x) = 0 for x ∈ Γi,

(3.79)

where the domain Ω is a single unit cell without periodicity considered and Γi the face that is

“below” the unit cell, i.e. the face with an outward normal vector of −ei where ei is a canonical

basis vector, cf. Figure 3.4. We again use SIMP [91] to interpolate the constitutive tensor from

Equation (3.70) and the modified SIMP [97] to interpolate the mass density from Equation (3.71).

After evaluating the displacements ui, we evaluate the mean compliance

θswc = −

3∑
i=1

∫
Ω

ρ(x) ei · ui(x) dΩ. (3.80)

The value of θswc will be small when the structure is fully supported, otherwise it will be very large.

Knowing this we enforce the self-weight compliance constraint

θswc ≤ µswcθ̄swc, (3.81)

where µswc is a user-selected constant and θ̄swc is computed by Equation (3.80) with ν̃ = 1

prescribed on the entire domain.

Figure 3.4 Locations (in gray) of essential boundary conditions when computing θswc
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The sensitivity of θswc is obtained via the adjoint method [19] as

δθswc = −2
3∑

i=1

∫
Ω

δρ(x) ei · ui(x) dΩ −
3∑

i=1

∫
Ω

∇ui(x) · δC(x) [∇ui(x)] dΩ, (3.82)

from which we obtain

Dθswc

Dν̃i
= −2

3∑
i=1

∫
Ω

Dρ(x)
Dν̃i

ei · ui(x) dΩ −
3∑

i=1

∫
Ω

∇ui(x) ·
DC(x)

Dν̃i
[∇ui(x)] dΩ. (3.83)

where DC
Dν̃i

and Dρ
Dν̃i

follow from Equations (3.76) and (3.77).

Note that we must again consider an array of 2d unit cells to ensure that our choice of unit cell

does not affect the intent of the constraint function, cf. Figure 3.3. In our numerical examples,

however, we will only consider a single unit cell due to the imposed orthorhombic symmetry on

the unit cell which eliminates the constraint’s dependence on the cell.

3.1.4 Effective stiffness constraints

In addition to the previously discussed EVS, ISM, and self-supporting constraints, we investigate

constraints derived from the effective stiffness of our assumed infinite, periodic microstructures.

Following classical homogenization theory[17], we first solve a series of cell problems for the

characteristic displacements χi j

∇ · C(x)
[
Ei j + ∇χi j(x)

]
= 0 for x ∈ Ω

u j(x) = u j(x + nak) for n = Z,

(3.84)

where Ei j ≡ ei ⊗ e j is a unit “test” strain defined by basis vectors ei and Ω is the periodic unit

cell. Akin to Section 3.1.2, we employ periodic boundary conditions. Upon obtaining each unique

χi j, i.e. 6 displacement solutions in 3D, the components of the homogenized stiffness tensor Ch
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are computed according to

Ch
i jkl =

1
|Ω|

∫
Ω

Ei j · C(x)
[
Ekl + ∇χkl(x)

]
dΩ, (3.85)

where |Ω| is the volume of the unit cell. We evaluate the design sensitivity of Ch using the adjoint

technique[17, 100] according to

δCh
i jkl =

1
|Ω|

∫
Ω

(
Ei j + ∇χi j(x)

)
· δC(x)

[
Ekl + ∇χkl(x)

]
dΩ. (3.86)

The interpolation of C from Equation (3.70), and therefore the derivative in Equation (3.76), will

be used again here. We will investigate a number of constraint functions that depend explicitly on

the components of Ch.

Bulk modulus

The bulk modulus measures the volume change due to a uniform pressure loading. We express the

bulk modulus as a function of the homogenized stiffness tensor according to

κ(C) =
1

I · C−1 [I]
, (3.87)

noting that we drop the superscript h for brevity and I is the identity 2-tensor that represents a

hydrostatic pressure. The derivative of the bulk modulus with respect to a component of C is

computed as
Dκ(C)
DCi jkl

=
1(

I · C−1 [I]
)2

(
C−1 DC

DCi jkl
C−1

)
. (3.88)

Following our previous conventions we define the bulk modulus constraint

κ ≥ µκκ̄, (3.89)

47



where µκ is a user-selected constant and κ̄ is computed by prescribing ν̃ = 1 throughout the

domain, or equivalently computed for an isotropic solid constituent material from its Young’s

modulus E and Poisson’s ratio ν as κ̄ = E
3(1−2ν) .

Shear modulus

We will define a shear modulus that is analogous to our bulk modulus definition in Equation (3.87).

To quantify shear stiffness we define a shear stress tensor

S =
1
√

3


0 1 1

1 0 1

1 1 0

 (3.90)

and express a “mean” shear modulus

γ(C) =
1

S · C−1 [S]
. (3.91)

The derivative of the shear modulus with respect to a component of C is computed from Equa-

tion (3.89) with S replacing I , i.e.

Dγ(C)
DCi jkl

=
1(

S · C−1 [S]
)2

(
C−1 DC

DCi jkl
C−1

)
. (3.92)

Using the above, we define the shear modulus constraint

γ ≥ µγγ̄, (3.93)

where µγ is a user-selected constant and γ̄ is computed by prescribing ν̃ = 1 throughout the

domain, or equivalently computed for an isotropic solid constituent material as γ̄ = E
2(1+ν) .
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Anisotropy

We also require our periodic structures to exhibit some degree of isotropy. A number of anisotropy

indices have been presented in the literature, including the universal elastic anisotropy index [101]

defined by

AU =
κV

κR + 5
γV

γR − 6, (3.94)

where the superscripts V and R denote Voight and Reuss estimates, respectively. These estimates

are computed directly from the components of C [102], and so the sensitivity analysis of AU is a

simple matter of arithmetic that is omitted here. The universal elastic anisotropy index is motivated

from the fact that the Voigt and Reuss estimates of bulk and shear modulus are equal when a

material is isotropic, thus by measuring the ratio between these estimates it is possible to quantify

how close a material is to isotropic. The universal elastic anisotropy index was later extended to

compute the distance between the Voight and Reuss estimates in log-Euclidean space [103] as

AL =

√
log2

(
κV

κR

)
+ 5 log2

(
γV

γR

)
(3.95)

as an attempt to describe the level of anisotropy more physically. We again omit its trivial sen-

sitivity analysis. Similarly, the distance between a stiffness tensor C and the closest isotropic

tensor [104] can be computed by

AD =|| log
(
Ciso

)
− log(C)||, (3.96)

where Ciso is the closest isotropic stiffness tensor to C in log-Euclidean space. It was proven that

log
(
Ciso

)
= P iso log(C) , (3.97)
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where the projection P iso is defined in the original reference [104] and hence we can compute the

anisotropy measure as

AD =||P iso log(C) − log(C)||. (3.98)

To use AD in a constraint we must compute its sensitivity with respect to C. We will define D =

P iso log(C) − log(C) and derive the sensitivity as

DAlog

DC
· U =

1
2||D||

(
D

DC
(D · D)

)
· U

=
1

2||D||
2D ·

DD
DC

[U]

=
1
||D||

(DD
DC

)T

[D]
 · U

(3.99)

for an arbitrary 4th-order tensor U. Using the arbitrariness of U we obtain

DAlog

DC
=

1
||D||

(
DD
DC

)T

[D] . (3.100)

Note that we obtain the simplification using the projection properties

(
DD
DC

)T

[D] =

(
P iso D log(C)

DC
−

D log(C)
DC

)T

[D]

= −

(
D log(C)

DC

)T

[D]

(3.101)

since (
P iso

)T
[D] =

(
P iso

)T [
P iso log(C) − log(C)

]
= P iso log(C) − P iso log(C)

= 0.

(3.102)

Finally, we obtain
DAlog

DC
=
−1
||D||

(
D log(C)

DC

)T

[D] . (3.103)
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3.2 Constraint capability comparison

A series of example unit cells are presented in Figure 3.5 which highlight the capabilities and

limitations of the proposed optimization constraints. Each image displays the solid phase volume

fractions of the example unit cell, using the threshold ν̃ = 0.5 for visualization purposes. Addition-

ally, an octant has been clipped from each unit cell to illustrate internal features. Table 3.1 denotes

each scalar metric defined in Section 3.1 evaluated on a mesh of 603 uniform hexahedral elements.

The isotropic base material has a Young’s modulus of E = 1 and a Poisson’s ratio of ν = 0.3. The

ersatz void space uses εe = 10−8. All PDE’s were solved using the open-source, modular finite

element method (MFEM) [82] library developed by Lawrence Livermore National Laboratory.

First we consider the uniform, solid microstructure (ν̃ = 1), i.e. unit cell #0. The evalua-

tions of θvt, θeig, and θswc serve as our baseline values, i.e. θ̄vt, θ̄eig, and θ̄swc, respectively. The

homogenized κ and γ are verified by comparing them to the analytical expressions κ = E
3(1−2ν)

and γ = E
2(1+ν) , which is valid since our microstructure is isotropic. Finally, we notice that all 3

anisotropy measures are 0 (within numerical precision), which is expected.

(a) # 0 (b) # 1 (c) # 2 (d) # 3

(e) # 4 (f) # 5 (g) # 6

Figure 3.5 Example unit cells for constraint evaluation comparison
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Unit cell θvtv θvts θeig θswc κ γ AU AL AD

# 0 0.0e+00 3.1e-01 1.4e+01 9.2e-01 8.3e-01 3.9e-01 7.8e-16 5.1e-16 9.6e-16
# 1 3.2e-01 5.5e-01 1.4e+00 4.9e-01 1.3e-02 7.1e-04 2.5e+01 4.0e+00 3.4e+00
# 2 3.2e-01 6.9e-01 8.1e-07 1.3e+05 1.1e-02 7.4e-09 2.7e+06 3.0e+01 1.6e+01
# 3 3.2e-01 5.9e-01 1.1e+00 7.3e+04 1.5e-08 6.8e-09 2.9e+06 3.2e+01 1.7e+01
# 4 3.2e-01 3.2e+05 2.2e-06 5.7e+03 1.3e-02 7.1e-04 2.5e+01 4.0e+00 3.4e+00
# 5 3.4e+05 3.1e-01 1.4e+01 9.2e-01 8.2e-01 3.8e-01 2.0e-08 8.8e-09 1.4e-04
# 6 6.9e-01 3.1e-01 1.2e+01 9.2e-01 7.6e-01 3.6e-01 2.6e-03 1.1e-03 5.0e-02

Table 3.1 Constraint Evaluations

Next, we consider a microstructure consisting of orthogonal beams aligned with the Cartesian

axes, denoted as unit cell #1. This unit cell is presented as an example of an acceptable design; it

is self-supporting, exhibits reasonable stiffness in all directions, and does not have EVS or ISM.

Moving left to right across Table 3.1 we see that θvtv = 1.03 θ̄vt, while θvts = 1.77θ̄vt. Both of these

values would be acceptable if µvt was selected in the range of 4-10 as recommended [74]. Thus, the

VTM constraints would correctly indicate that neither ISM nor EVS exist in the microstructure.

We notice that θeig ≈ 10−1θ̄eig and we actually see a smaller self-weight compliance than our

baseline structure. The homogenized κ and γ are slightly lower than the baseline microstructure,

but nonetheless we have non-zero bulk and shear stiffness. The anisotropy measures all predict a

moderate amount of anisotropy. In summary, all of the constraints behave exactly as we desire.

If we consider the effect of moving the vertical rods from unit cell #1 so they do not intersect

with the horizontal sets of rods, we arrive at unit cell #2. Table 3.1 reveals that θvtv = 1.03 θ̄vt,

correctly communicating a lack of EVS. It would be fair at this point to suspect that θvts could

rise dramatically since the vertical rods are not in contact with the horizontal rods. However, we

see that θvts = 2.23 θ̄vt. This can be understood by recognizing that the rods are infinitely long,

under the infinite periodicity assumption. Thus, we have our first constraint limitation; the VTM

identifies only those ISM enclosed by the unit cell, i.e. it does not ensure self-supporting structures.

Fortunately, we have constraints that can identify these circumstances. Namely, the two functions

θeig ≈ 10−7θ̄eig and θswc ≈ 105θ̄swc both identify that unit cell # 2 is not self-supporting. Interestingly,

we see that κ from unit cell #2 is similar to that of unit cell #1 demonstrating that disconnected rods

do not adversely affect the ability to support a pressure load. However, γ ≈ 10−8γ̄ demonstrating
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almost no resistance to a shear load. As expected, all anisotropy indices show stark increases, but

AL and AD show much smaller increases than AU due to their dependencies on the logarithm.

Unit cell #3 is similar to #1 and #2, however the vertical rods have been removed. This example

was contrived to illustrate a potential pitfall of θeig. We notice that θeig ≈ 10−1θ̄eig even though it

is clear that the structure is disconnected. This behavior is due to the fact that all of the solid

phase material in the unit cell is connected, thus we have only 3 zero-valued eigenvalues. This non

self-supporting structure is identified, however, by noting that θswc ≈ 105θ̄swc. Alternatively, it is

identified by noting that κ ≈ 0 and γ ≈ 0, while the isotropy indices increase significantly. As seen

here, a constraint on bulk stiffness, shear stiffness, or anisotropy could be used in conjunction with

θeig to ensure a self-supporting structure.

The strengths of our ISM constraints are demonstrated with unit cell #4. The small sphere of

floating material is easily identified as θvts ≈ 106θ̄vt, θeig ≈ 10−7θ̄eig, and θswc ≈ 103θ̄swc. Each of

these metrics provides a clear signal that an ISM exists. As expected, κ, µ, and all of the anistropy

indices return the same values as their corresponding evaluations on unit cell #1, since the floating

sphere has no effect on the homogenized constitutive tensor.

Finally, the effectiveness of θvtv is demonstrated with unit cells #5 and #6. The void space in

unit cell #6 is acceptable since support material or pre-sintered powder could be removed, whereas

the void space in unit cell #5 is unacceptable. The VTM is able to distinguish these cases as

θvtv ≈ 106θ̄vt for unit cell #5 whereas θvtv = 2.23θ̄vt for unit cell #6.

The results presented in Table 3.1 elucidate the capabilities and limitations of our constraints

such that guidelines can be proposed for combinations of constraints employed in a TO frame-

work to ensure manufacturable designs. Most directly, if the manufacturing process cannot handle

EVS, then a θvtv constraint should be enforced. The simplest technique to ensure self-supporting

structures is to enforce the θswc constraint. The downside, however, is that the stiffness cannot be

explicitly tuned via θswc. If the designer seeks to tune the level of bulk or shear stiffness, then κ or

γ constraints, respectively, are required. In many cases these stiffness constraints are sufficient to

remove unsupported material since ISM do not add stiffness to the structure, however, ISM are not
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explicitly forbidden. Because of this the κ or γ constraints should be augmented with either a θvts,

θeig, or θswc constraint. Finally, if isotropy is required for a particular application, then any of the

proposed anisotropy constraints should be enforced.

The choice of which combination of constraints to enforce may also be dictated by computa-

tional expense. The VTM and self-weight compliance problems require an array of 2d unit cells,

although the VTM governing PDE is a scalar problem whereas the self-weight compliance PDE

is a vector problem. If the unit cell exhibits orthorhombic symmetry, the self-weight compliance

computations can be performed over a single unit cell whereas the VTM always requires an array

of 2d unit cells. The mechanical eigenvalue problem in general requires a single unit cell domain,

but the mesh can be reduced to an octant for cells with orthorhombic symmetry [105]. Also, κ,

γ, and the anisotropy measures are derived from the same homogenized stiffness tensor, thus only

one homogenization computation is required over a single unit cell, or over an octant when unit

cells exhibit orthorhombic symmetry [105]. To conclude, a designer should select a combination

of constraints that ensures designs are viable based on the desired manufacturing process, whether

stiffness tuning is required, and whether isotropy is desired. Then, the computational cost should

be considered based on the symmetry of the unit cell. The computational cost of the constraints

may be somewhat mitigated if the PDE solutions, e.g. the eigenvalues or the homogenized stiff-

ness tensor, are required for other aspects of the TO framework since the scalar quantities are much

cheaper to compute than the PDE solutions.

3.3 Optimization test problem

We now demonstrate the effectiveness of the proposed constraints and point out their capabilities

and limitations on a simple test problem. Consider a cubic unit cell of side length a centered at the

origin with imposed orthorhombic symmetry, uniformly discretized by 603 voxels. The 303 voxel

volume fractions in the octant symmetry cell serve as the design parameters. The length scale is

controlled by applying the symmetric, periodic cone filter described in Section 2.1.5 with a filter

radius of 0.05a. In all cases, the initial design is uniform with ν̃ = 0.5. A SIMP exponent of
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q = 3 and a modified SIMP exponent of r = 6 are used for the VTM, eigenvalue, and self-weight

compliance constraints. A SIMP exponent of q = 4 is used for the homogenized-based constraints,

i.e. bulk modulus, shear modulus, and isotropy constraints. The modified SIMP volume fraction

boundaries are ν̃L = 0.2 and ν̃U = 0.8, and the ersatz void phase uses εe = 10−8. All optimization

problems were solved with the open-source, interior point optimizer (IPOPT) [95].

3.3.1 Virtual temperature method for EVS identification

Consider the optimization problem

min
ν̃

θEVS =

Nvoxel∑
i=1


1 − ν̃i ri ≥ r0

ν̃i ri < r0

subject to 0 ≤ ν̃i ≤ 1,

(3.104)

where ri is the distance from the voxel i centroid to the origin. The solution is a solid unit cell with

a hollow sphere removed from the center, cf. Fig. 3.6. The resulting structure is problematic due to

the region of EVS. To address this issue we again solve Equation (3.104) with the Equation (3.53)

constraint using the material interpolations from Equations (3.48) and (3.49). A series of optimal

designs for various values of µvtv are presented in Figure 3.7. We see that for µvtv = 25.0, a channel

of void space is formed effectively eliminating the EVS. For µvtv = 12.0, a channel with two forks

appears, and finally for µvtv = 6.0, channels are created in all 3 dimensions. Thus, any of the

Figure 3.6 Optimal ν̃ solutions for θEVS

55



(a) µvtv = 25.0 (b) µvtv = 12.0 (c) µvtv = 6.0

Figure 3.7 Optimal ν̃ solutions for θEVS with θvtv constraint

selected values of µvtv eliminate the EVS. A trade-off exists between “how enclosed” the sphere

is and the optimal value of the objective function, thus proper selection of µvtv will certainly be

problem specific.

3.3.2 Virtual temperature method for ISM identification

Now we consider the optimization problem

min
ν̃

θISM =

Nvoxel∑
i=1


1 − ν̃i ri ≤ r0

ν̃i ri > r0

subject to 0 ≤ ν̃i ≤ 1.

(3.105)

The result is a unit cell consisting of a floating sphere at the origin, cf. Fig. 3.8. Throughout

Section 3.3.2 only volume fractions satisfying ν̃ > 0.5 are plotted for visualization purposes. The

Figure 3.8 Optimal ν̃ solutions for θISM

56



resulting structure is problematic due to the ISM. To address this issue we again solve Equa-

tion (3.105) with the Equation (3.53) constraint using the material interpolations from Equa-

tions (3.54) and (3.55). A series of optimal designs for various values of µvts are presented in

Figure 3.9. We see very similar results to those in Section 3.3.1. For µvts = 25.0, a beam of solid

material is formed effectively eliminating the ISM. For µvts = 12.0, a beam with two forks ap-

pears, and finally for µvts = 6.0, beams are created in all 3 dimensions. Thus, any of the selected

values of µvts eliminate ISM and adjusting the choice of what µvts value to use is problem depen-

dent. A notable downside to this constraint is that we cannot guarantee the periodic structure is

self-supporting, as evidenced by the µvts = 25.0 and 12.0 designs, which do not have stiffness in

all directions.

(a) µvts = 25.0 (b) µvts = 12.0 (c) µvts = 6.0

Figure 3.9 Optimal ν̃ solutions for θISM with θvts constraint

3.3.3 Eigenvalue constraint for ISM identification

To demonstrate the eigenvalue constraint we solve the optimization problem in Equation (3.105)

subject to the Equation (3.73) constraint. Optimal structures are presented in Figure 3.10 for vari-

ous values of µeig. For µeig = 0.03, the ISM is effectively removed by adding thin rod-like features,

which become slightly larger for µeig = 0.10. However, neither of these designs are self-supporting.

If we increase to µeig = 0.15, we remove the ISM and obtain a self-supporting structure. In sum-

mary, we observe similar behavior between the mechanical eigenvalue constraint and the ISM

constraint in Section 3.3.2. For certain values of µeig we can remove the ISM without generating
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(a) µeig = 0.03 (b) µeig = 0.10 (c) µeig = 0.15

Figure 3.10 Optimal ν̃ solutions for θISM with θeig constraint

self-supporting structures. The appropriate value of µeig is again problem dependent.

3.3.4 Self-weight compliance constraint for ISM identification

We demonstrate the self-weight compliance constraint by solving the optimization problem in

Equation (3.105) subject to the Equation (3.81) constraint. Optimal structures are presented in

Figure 3.11 for various values of µswc. We immediately notice that this constraint yields similar

results for the three presented values of µswc. A slight difference appears in the thickness of the

supporting beams, but the topology is identical in all cases. Most importantly, all three designs are

fully self-supporting. Thus, we expect that the appropriate µswc value is less problem dependent.

The downsides of this constraint are its computational expense and its inability to tune stiffness.

The latter concern is addressed in the next section.

(a) µswc = 2.0 (b) µswc = 1.5 (c) µswc = 1.1

Figure 3.11 Optimal ν̃ solutions for θISM with θswc constraint
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3.3.5 Effective property constraints

If a design requires a particular level of stiffness or isotropy, effective property constraints derived

from a homogenization analysis may be employed. We investigate a few possibilities here. First,

we solve the Equation (3.105) optimization problem subject to the Equation (3.89) constraint.

Optimal structures for various values of µκ are presented in Figure 3.12. As expected, the features

become larger as µκ is increased, and in all cases we have stiffness in all directions. The optimal

structures are fairly intuitive considering that bulk modulus measures resistance to pressure loads.

(a) µκ = 0.005 (b) µκ = 0.01 (c) µκ = 0.03

Figure 3.12 Optimal ν̃ solutions for θISM with θκ constraint

Similarly, we solved the Equation (3.105) optimization problem subject to the Equation (3.93)

constraint. Again, the features become larger as µγ is increased, and in all cases we have stiffness

in all directions. The structures in Figure 3.13 are slightly more complicated than the structures in

Figure 3.12, which is apparently needed to resist shear loads.

(a) µγ = 0.005 (b) µγ = 0.01 (c) µγ = 0.03

Figure 3.13 Optimal ν̃ solutions for θISM with θγ constraint

59



We have guaranteed through our definitions of κ and γ that enforcement of Equation (3.89) or

(3.93) constraints yields structures with stiffness in all directions. However, no consideration is

made with respect to isotropy. If isotropy is desired we, e.g., augment the bulk modulus constraint

with a constraint on AU , AL, or AD, cf. Figures 3.14, 3.15, and 3.16. We obtain very similar

structures when constraining AU and AL, which is not surprising since they are both derived from

Voigt and Reuss stiffness estimates.

It is expected that these three constraints yield similar results since they are measuring the same

type of behavior. Thus, we do not give preference to any of the anisotropy measures, although ease

of implementation may favor AU or AL over AD.

(a) AU < 15.0 (b) AU < 5.0 (c) AU < 1.0

Figure 3.14 Optimal ν̃ solutions for θISM with θκ (µκ=0.01) and AU constraints

(a) AL < 3.0 (b) AL < 1.0 (c) AL < 0.1

Figure 3.15 Optimal ν̃ solutions for θISM with θκ (µκ=0.01) and AL constraints
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(a) AD < 3.0 (b) AD < 1.0 (c) AD < 0.1

Figure 3.16 Optimal ν̃ solutions for θISM with θκ (µκ=0.01) and AD constraints

3.4 Photonic crystal design with manufacturing constraints

The constraints formulated in Section 3.1 are used to design photonic crystals for complete bandgaps.

The topology optimization capability from Chapter 2 is augmented here by imposing design con-

straints to resolve deficiencies in our previous photonic crystal designs that were not manufac-

turable or self-supporting. Note that throughout Section 3.4 the volume fractions have been thresh-

olded such that ν̃ ≥ 0.5 is considered solid material, whereas ν̃ < 0.5 is considered void space in

the dispersion analyses.

3.4.1 Removal of EVS

Two designs from Chapter 2 with complete 3D bandgaps displayed EVS. We resolve this design

flaw via the VTM. Figure 3.17a displays the unconstrained optimal bandgap structure; the left-

most image displays the solid material, while the middle image displays the complement, i.e. the

void space. We immediately notice a disconnected void space region causing EVS. The dispersion

plot reveals a 17.40% bandgap-midgap ratio. We re-solve the optimization problem enforcing the

Equation (3.53) constraint with µvtv = 6.0 to obtain the design depicted in Figure 3.17b. The con-

strained design is quite similar to the unconstrained design, however, small channels have formed

causing the void space to be simply connected. Thus, support material or pre-sintered powder

could be removed from the design [74]. There is a slight reduction in the bandgap-midgap ratio,

i.e. 16.18% vs. 17.40%, but this difference is small considering that the previous design was not
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manufacturable.

Another problematic 3D bandgap design from Chapter 2 is pictured in Figure 3.18. The design

exhibited a bandgap-midgap ratio of 12.73%, however a region of EVS is present. Enforcing the

Equation (3.53) constraint with µvtv = 4.0 produces the design depicted in Figure 3.18b. Again, we

see the formation of small channels causing the void space to be simply connected. The bandgap-

midgap ratio is reduced to 12.07%, but we again have produced a manufacturable structure.

(a) Unconstrained

(b) Constrained with µvtv = 6.0

Figure 3.17 Applying θvtv constraint to remove EVS from mode 5-6 bandgap structure

3.4.2 Removal of ISM

The bandgap structure depicted in Figure 3.19a from Chapter 2, exhibits ISM. The optimization

problem is re-solved with a variety of constraints to prevent ISM. First, the VTM Equation (3.53)

constraint is enforced. The resulting structure depicted in Figure 3.19b has a slightly smaller

bandgap, however, something interesting has occurred. The topology of the structure has changed

such that both the ISM and EVS present in the original design are removed. Interestingly, the
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(a) Unconstrained

(b) Constrained with µvtv = 4.0

Figure 3.18 Applying θvtv constraint to remove EVS from mode 6-7 bandgap structure

designs illustrated in Figures 3.19c and 3.19d, obtained via enforcement of the self-weight compli-

ance and shear modulus constraints, respectively, outperform the unconstrained design. It appears

that the constrained optimizations found a better local minima than the unconstrained. This behav-

ior should not be expected in general, but it is an important finding nonetheless. The downside to

the designs pictured in Figures 3.19c and 3.19d is that EVS remains, which is not surprising since

EVS is not strictly forbidden in the optimization formulations. This point is further addressed in

Section 3.4.4.

3.4.3 Requirement of self-supporting structure

An optimized structure from Chapter 2 with a complete 2D bandgap is not self-supporting. Specif-

ically, the design, pictured in Figure 3.20a, is not self-supporting as it consists of two separate solid

regions. To alleviate this issue we first re-solved the problem while enforcing the Equation (3.73)

mechanical eigenvalue constraint. The optimized design shown in Figure 3.20b is similar to the
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(a) Unconstrained (b) Constrained with µvts = 2.0

(c) Constrained with µswc = 1.1 (d) Constrained with µfl = 0.01

Figure 3.19 Applying various constraints to remove ISM

unconstrained version, but additional features have been added so that the structure is fully self-

supporting. The bandgap performance deceases slightly, but the design is now manufacturable. We

next enforced the Equation (3.81) self-weight compliance constraint. The optimal structure seen

in Figure 3.20c is quite different from the unconstrained design, and the bandgap performance is

significantly reduced. All is not lost, however, as the structure is fully self-supporting and still

exhibits a complete bandgap. Finally, we enforced the Equation (3.93) shear modulus constraint.

The resulting optimal structure appearing in Figure 3.20d is similar to the Figure 3.20b design in

that additional features have been added, however, the performance is better. It appears the shear

modulus constrained design is the best choice of the presented designs as it results in the highest-

performing manufacturable structure. We want to emphasize that these results are just examples

proving the effectiveness of the constraints and that more exhaustive studies may lead to different

conclusions.

3.4.4 Manufacturable photonic crystals

In order to manufacture our photonic crystals they must neither exhibit EVS nor ISM, i.e. it is not

enough to consider them separately. To this end, we reconsidered the design problems addressed in
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(a) Unconstrained (b) Constrained with µeig = 0.05

(c) Constrained with µswc = 1.2 (d) Constrained with µfl = 0.01

Figure 3.20 Applying various constraints to ensure structures are self-supporting

Sections 3.4.2 and 3.4.3. We began by optimizing the 2D bandgap-midgap ratio between modes 6

and 7 with a bulk modulus constraint to ensure stiffness and a VTM constraint to remove EVS. The

resulting constrained structure is compared to the original unconstrained structure in Figure 3.21.

Notice that both the ISM and EVS have been removed from the design, while simultaneously

improving the bandgap performance.

Similarly, we optimized the 2D bandgap-midgap ratio between modes 8 and 9 with a shear

modulus constraint to ensure stiffness and a VTM constraint to remove EVS. The resulting de-

sign, pictured in Figure 3.22b, is quite different from its unconstrained counterpart illustrated in

Figure 3.22a. Both ISM and EVS have been eliminated in the constrained design which is also self-

supporting. Again we emphasize that although the bandgap-midgap ratio is reduced from 20.28%

to 19.28%, the new design is manufacturable.

3.5 Photonic bandgap design with tunable bulk modulus

If a designer seeks a photonic crystal with a desired stiffness, the bulk modulus and shear modulus

constraints should be considered. To demonstrate this capability, a series of bandgap optimiza-

tions are performed with various minimum bulk modulus constraints. At each constraint value, 20
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(a) Unconstrained

(b) Constrained with µκ = 0.01 and µvtv = 4.0

Figure 3.21 Applying κ and VTM constraints to ensure structures are manufacturable

random initial designs were used from which the best resulting optimized design is selected.

Figure 3.23 plots the optimal bandgap-midgap ratio for a complete 2D bandgap between modes

5 and 6 against the minimum bulk modulus.

The best of the 20 optimized designs is pictured near its corresponding data point; the shaded

region under the curve indicates the feasible design space. We see a roughly inverse linear rela-

tionship between our two quantities of interest and note that κ ≈ 0.2 is the largest bulk stiffness

we can generate with a complete bandgap. This plot allows designers to visualize the trade-off

between bandgap and bulk stiffness performance. It is interesting to note that enforcing a min-

imum bulk modulus of κ ≥ 0.025 actually produced a better performing bandgap structure than

optimizing for bandgap without considering κ; evidenced by the non-monotonicity of the plot in

Figure 3.23. Since there are many local minima in the designs space we cannot hope to capture the

global minimum with only 20 initial designs and thus we should interpret the shaded region as an

approximation of the feasible design space.
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(a) Unconstrained

(b) Constrained with µγ = 0.01 and µvtv = 8.0

Figure 3.22 Applying γ and VTM constraints to ensure structures are manufacturable

We repeat the Figure 3.23 study, but now design for complete 3D bandgaps between modes 5

and 6. The results, pictured in Figure 3.24, present a roughly inverse linear relationship between

the two quantities of interest and note that κ ≈ 0.12 is the largest bulk stiffness we can generate

with a complete bandgap. As expected, the volume fraction increases with κ in Figure 3.24, but

the topology does not change in contrast to the Figure 3.23 designs.
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Figure 3.23 2D Bandgap-midgap ratio θω vs. bulk modulus κ

Figure 3.24 3D Bandgap-midgap ratio θω vs. bulk modulus κ
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3.6 Conclusions

Topology optimization of phononic/photonic crystals often generates structures that are not manu-

facturable due to EVS and ISM. Additionally, they often exhibit poor stiffness. We have suggested

a series of constraints which can be used to enforce fully-connected, manufacturable structures.

The virtual temperature method is used to prevent EVS and extended to prevent ISM. Fur-

ther, we adapted the VTM to periodic structures such that constraint behavior is invariant with re-

spect to unit cell selection. A mechanical eigenvalue constraint has been proposed to ensure fully-

connected structures while the proposed self-weight compliance constraint ensures self-supporting

structures. We also studied the effect of homogenization-based constraints on the bulk and shear

moduli to ensure desired stiffness and remove ISM, although the latter claim is not guaranteed.

Finally, the efficacy of three proposed isotropy constraints have been demonstrated.

The performance of each constraints was demonstrated on contrived test cases and on the de-

sign of photonic crystals. We generated 3D structures with complete 2D and 3D bandgaps that

were self-supporting and had required levels of stiffness. The trade-off between photonic bandgap

and bulk modulus was investigated to generate an approximation of the feasible design space.

It is imperative to use the VTM to prevent EVS if the AM process used to manufacture the

designs requires support material or powder. We suggest employing a bulk and/or modulus con-

straint to ensure a desired degree of stiffness. Augmenting a stiffness constrained formulation with

a mechanical eigenvalue constraint or the VTM will eliminate ISM. Alternatively, a self-weight

compliance constraint is sufficient if a fully-connected structure is the only design requirement

beyond the desired objective. The proposed bulk and shear stiffness constraints require at least

some stiffness in all directions. Thus, the isotropic constraints may not be necessary unless, of

course, some degree of isotropy is required. There was no discernible difference between the three

studied isotropy constraints, although the ease of differentiating and implementing the universal or

log-universal isotropy constraints give them a slight advantage over the log-distance constraint.
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CHAPTER 4: ADDITIVE MANUFACTURING OF BANDGAP STRUCTURES

The rise of additive manufacturing (AM) has considerably opened the design space for engi-

neering applications. Notably, AM is an excellent choice to produce bandgap structures due to

their complexity and proclivity for rounded features. This chapter describes initial work related

to manufacturing and testing bandgap structures using resources available at Lawrence Livermore

National Laboratory (LLNL).

4.1 Photonic bandgap validation

It would be very useful to experimentally validate the photonic bandgap performance predicted

by the simulations in Chapter 2. Thus, initial work was performed to prepare for future bandgap

validation experiments. Namely, the unit cell size and material selection was considered. As previ-

ously noted, the bandgap-midgap ratio is preferred as an objective function in design optimization

so that the unit cell can be scaled without changing the performance of the photonic crystal. The

first step in setting up a bandgap validation experiment is choosing the unit cell so that the bandgap

occurs at a frequency that can be measured by the available experimental equipment. Then, a con-

stituent material must be selected which exhibits a bandgap for the proposed unit cell design. A

final consideration when designing a bandgap validation experiment is the effect of a finite lattice

on bandgap performance; we note that simulations assume infinite periodicity.

4.1.1 Experimental design

It is helpful to first understand how the unit cell size of a photonic crystal relates to bandgap fre-

quencies for typical designs. Examine Figure 4.1, which displays the frequency ranges of the

electromagnetic spectrum. Additionally, normalized frequency contours ωa
2πc = a

l for l = 2πc
ω

are

plotted at values of 0.1 and 2.0. These values give an approximate range where bandgaps could
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lie for photonic crystals, although it should be noted that bandgaps optimized in this work were

typically located at normalized frequency values in the range a
l ∈ [0.3 − 0.7]. Nonetheless, we get

a picture of the required unit cell size to generate a bandgap structure anywhere along the electro-

magnetic spectrum. Notably, we see that to create a bandgap for radiowaves the unit cell is on the

order of meters, which is clearly possible. However, on the other end of the spectrum, we would

need a unit cell on the order of picometers to create a bandgap in the gamma ray regime; this is

obviously not possible with modern manufacturing technology. There is great interest in obtain-

ing bandgaps that work in the visible regime, however, this requires sub-micron unit cells which

pushes the edge of manufacturing capabilities for 3D structures. In this section, we will consider

bandgaps in the microwave regime which require feasible unit cells on the order of millimeters.

Figure 4.1 Relationship between unit cell size and electromagnetic frequency

Collaborators at LLNL were identified who possessed the equipment to perform bandgap vali-

dation tests in the gigahertz (GHz) regime. The 3D bandgap structure in Figure 2.9 was selected for

validation and so a normalized frequency scan of a
l ∈ [0.3, 0.6] was determined to be appropriate. It

is straightforward to compute that a
l ∈ [0.3, 0.6] corresponds to a frequency range f ∈ [6, 12] GHz

for a unit cell size of 15 mm, cf. Figure 3.16 which plots f = ωa
2πc . Fortunately, a unit cell size of
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Figure 4.2 Frequency vs. unit cell size

15 mm was appropriate for the selected 3D printer as it could accommodate the feature size of the

unit cell while printing an array of 103 unit cells. Figure 4.3 presents a screenshot of the 3D printer

pre-processing software which pictures the proposed array of unit cells placed on the build tray.

The boundary box represents the limits of the build domain. Unfortunately, the additive manufac-

turing process was not straightforward and the first batch of prints was not successful. The failed

specimens are pictured in Figure 4.4. An important lesson learned was that only the top half of the

Figure 4.3 3D printing preview of photonic crystal
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Figure 4.4 Failed attempt at 3D printing photonic crystals

spheres (relative to the build tray) could be successfully printed using the available printer. Thus,

large arrays would have to be manually assembled after printing was completed; this is an arduous

process. At the present time, techniques are being developed to better print this structure. The

main issue was the printing of materials with a high relative permittivity; this point is expanded

upon in the next section.

4.1.2 Material selection

In general, a larger permittivity, εr, contrast between the solid and void phase allows for a larger

bandgap [1]. Unfortunately, there are few widely available 3D printing materials with large per-

mittivity, e.g. εr > 6. All of the designs in this work were optimized for εr = 13 based on previous

studies [35]. Needless to say, we were unable to find a 3D printer capable of matching this.

A 3D printer at LLNL is able to use commercially produced materials with quoted properties

of εr = 6, 8, or 10. It is advantageous to use the highest εr material possible so that the bandgap

is as large as possible, but unfortunately the higher εr material suffers from poor printing behavior.
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Figure 4.5 Performance of structure from Figure 2.9 vs. εr of base material

The εr = 10 material produced very poor quality parts, while the εr = 6 material produced much

higher quality. As expected, εr = 8 was somewhere in between. We should note that optimal

photonic crystal geometry is unique to the value of εr selected [1], so ideally a crystal should

be optimized specifically for the εr of the constituent material. However, in this case we will not

change the geometry so as to reduce simulation time since our main goal is to validate the numerical

predictions. Figure 4.5 presents the predicted bandgap-midgap ratio for the design in Figure 2.9 for

various values of εr. We see that any constituent material with εr < 7.2 will not exhibit a bandgap.

Thus, the εr = 8 printing material is our only viable option. Hopefully, this material can be used

to print parts for bandgap validation in the future. Alternatively, further advancement of printing

technology or the development of printable materials with larger εr will aid in this experimental

endeavor. The bandgap validation experiments are further addressed in Section 5.1.
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4.2 Testing additive manufacturing constraints

The constraints in Chapter 3 were developed to ensure designs are manufacturable. Thus, we aim

to test this claim by prototyping our photonic crystals. A few different techniques are used here

to highlight the applicability of the proposed virtual temperature method (VTM) constraint. In

Chapter 2 we designed a number of bandgap structures. The design from Figure 2.10 will be

considered here since it has regions of enclosed void space (EVS). In Chapter 3, we re-visited this

design problem by applying the VTM to prohibit enclosed void space. A new design, depicted in

Figure 3.18b, was produced with small channels such that the void space became simply connected.

(a) Unconstrained design, (left to right) volume fraction ν >= 0.5, complement ν < 0.5, dispersion analysis

(b) Constrained with µvtv = 3.0, (left to right) volume fraction ν >= 0.5, complement ν < 0.5, dispersion analysis

Figure 4.6 Applying θvtv constraint to remove EVS from mode 6-7 bandgap structure

To ease manufacturing, the VTM was further leveraged by lowering µvtv and re-solving the

optimization problem to maximize the size of the void channels. The results are presented in

Figure 4.6; the unconstrained version is presented again in Figure 4.6a whereas the constrained

design is presented in Figure 4.6b. It is clear that EVS has been successfully avoided while only
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slightly reducing bandgap performance.

An array of 33 unit cells was selected to test additive manufacturing techniques [106] on the two

designs in Figure 4.6. The corresponding stereolithography (.stl) files are pictured in Figure 4.7.

Note that the materials used in this section are not suitable for use in photonic crystals; the intent

is only to consider the usefulness of the constraint for removing EVS presented in Chapter 3.

(a) .stl file of unconstrained 3D bandgap
structure

(b) .stl file of constrained 3D bandgap
structure

Figure 4.7 .stl files used for 3D printing

4.2.1 Stereolithography

The first 3D printing technique studied was stereolithography (SLA) [106]. As with almost all

3D printing techniques, the design is first sliced into 2D cross sections. Each layer is then built

sequentially upon the last layer until the entire prescribed volume has been produced. SLA printers

direct light to cure a photo-resin such that each layer is properly solidified to build up the part. The

Form 2 printer produced by Formlabs was used to demonstrate this process. The design from

Figure 4.6a was 3D printed and the resulting prototype is pictured in Figure 4.8. Although it is

difficult to capture in a photograph, careful inspection of the part reveals that un-cured resin was

able to escape from the EVS so that the part was manufactured according to the designs. An

innovative printing process wherein the light source is placed below the resin bath was the key;

since the part rises up out of the liquid bath, all of the un-cured resin can escape the EVS. Thus,

the VTM constraint for prohibiting EVS is not required for this SLA printer.
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Figure 4.8 Successful 3D bandgap prototype printed with FormLabs SLA machine

4.2.2 Fused deposition modeling

A popular printing method known as fused deposition modeling (FDM) [106] deposits plastic

material in a layer by layer process to build 3D parts. The image in Figure 4.9 shows the Prusa

i3 MK3S+ printer depositing blue constituent material onto a build tray. A primary concern when

using FDM printing is the requirement for support material. Since each layer is placed on top of the

previous layers, there must be material underneath to adequately support the features. However,

if support material is placed in EVS it will be impossible to remove. We printed the design from

Figure 4.6b without support material since it would be almost impossible to remove though the

small channels discussed earlier. The resulting prototype is pictured in Figure 4.10. Very poor

print quality was observed; plastic strands hung all over the part and many features were damaged

or missing. Thus, we can conclude that this part cannot be printed via FDM since it requires support

material yet we cannot easily remove it after printing. It is worth noting that some FDM machines

use support material that is water soluble and so it may be possible to remove the supports from

hard to reach areas by soaking in a water bath. Unfortunately, the printer used here did not have

this ability rendering it unable to print our bandgap designs.
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Figure 4.9 FDM 3D Printer

Figure 4.10 Failed 3D bandgap prototype printed with FDM machine
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4.2.3 Powder bed fusion

The most successful manufacturing experiment used powder bed fusion (PBF), which is a type of

binder printing [106]. This manufacturing technique sequentially builds a 3D part by depositing

thin layers of powder and then placing an aqueous binder material such that powder within the

prescribed volume of the design is held together, while powder outside the design remains loose.

After the powder deposition is completed, the loose powder is carefully removed form the powder

that is bound together, i.e. the desired part. At this point the prototype is quite fragile as the

powder is only held together by the aqueous binder. The part is then sintered to fully fuse the

powder and obtain a final, durable prototype. This printing technique is an excellent application of

our VTM constraint to prohibit EVS. Loose powder in EVS will be impossible to remove and will

become part of the design upon sintering. Thus, EVS will inadvertently become solid material. We

demonstrate this drawback by attempting to print both of the designs in Figure 4.6.

The ExOne M-flex printer was used with 50 micron copper powder to demonstrate PBF printing

with and without EVS. First, we loaded the .stl files into the printer software. The screenshots of the

pre-processing software in Figure 4.11 immediately warn us of an issue. The image in Figure 4.11a

warns us of “shells”, i.e. regions with EVS, when the unconstrained design was loaded, while the

image in Figure 4.11b displays no such warning when the constrained design was loaded.

(a) With EVS (b) Without EVS

Figure 4.11 Software preview of bandgap designs
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Figure 4.12 Bed of copper powder

Before the printing process begins, a bed of powder is carefully placed and leveled as pictured

in Figure 4.12. Then, the aqueous binder is placed such that each layer is appropriately held

together. An example layer is depicted in Figure 4.13; the digital preview is compared with a

photograph of the corresponding layer wherein the location of the binder is apparent. Note that

each of the designs in Figure 4.6 were printed at a smaller size in addition to a larger version of

the design in Figure 4.6b. After each pass of binder application, a new layer of loose powder is

deposited on top so that the next layer can be formed.

(a) Digital preview of design layer (b) Picture of actual design layer

Figure 4.13 Example binder application layer
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Figure 4.14 Removing loose powder with vacuum

After the binder has been deposited to form each layer of the part, a tedious post-processing

task remains. All of the loose powder must be carefully removed from the fragile parts. First, a

vacuum is used to remove the majority of the powder, as pictured in Figure 4.14. Then, the vacuum

is used more carefully and in unison with a light brush to remove powder from the surface of the

prototype. The images in Figure 4.15 show the larger prototype as it is progressively cleaned.

(a) Intermediate condition of part during
powder removal

(b) Near final condition of part after
powder removal

Figure 4.15 Snapshots of powder removal post-processing
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The most relevant step in the manufacturing process occurs after the excess powder has been

removed from the exterior of the part. It is clear that any powder located in EVS would be impossi-

ble to remove therefore this manufacturing process would fail. However, even small access routes

to internal features allow powder removal. As evidence, we used a canister of compressed air to

remove powder from the partially enclosed features of our design from Figure 4.6b. Figure 4.16

demonstrates this process wherein pressured air was used to effectively blow loose powder out of

the hard-to-reach areas. In fact, loose powder from inside one of these hard-to-reach void regions

can actually be seen flying away in Figure 4.16b, just above and to the right of where the red nozzle

meets the prototype. These images demonstrate the ability to remove loose powder from nearly

any internal void feature which has an access point such that upon final sintering the desired part is

obtained. We can conclude that a VTM constraint for prohibiting EVS can be effectively employed

to ensure designs are manufacturable via PBF processes.

(a) Placing nozzle near partially enclosed feature (b) Loose powder ejecting from partially enclosed feature

Figure 4.16 Removing powder with pressurized air
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CHAPTER 5: CONCLUSIONS

Topology optimization serves as an effective tool for the design of photonic crystals with com-

plete bandgaps. These periodic structures are highly sought after due to their exciting applications

including sharp-corner waveguides, fiber optics, antennas, and other optical devices. Most studies

in the past, however, struggled to overcome the large computational burden and objective func-

tion non-smoothness caused by degenerate eigenmodes. Further, the few previously proposed

techniques that were capable of generating 3D bandgap structures were not able to use standard

gradient-based nonlinear programming algorithms, limiting their portability.

The planewave expansion technique was used to efficiently compute the required dispersion

analysis to numerically predict photonic bandgaps. An iterative eigenvalue solver is crucial for

bandgap optimization, since the number of degrees of freedom is very large, yet only the smallest

few eigenvalues are required. A popular method from the literature was employed here which

leveraged an efficient matrix-free, iterative eigenvalue solver.

A novel design framework is presented that is capable of efficiently generating 3D microstruc-

tures of photonic crystals with complete 3D bandgaps. The key contributions of this work to

the bandgap engineering field include the objective smoothing via p-norm approximation, effi-

cient sensitivity analysis for locally-supported design variables, and a successive mesh refinement

strategy. The p-norm smoothing allows traditional gradient-based nonlinear programming algo-

rithms to be utilized, which is crucial when adding further design constraints, e.g. manufacturing

constraints. The sensitivity analysis makes it feasible to use the classical “density” method for

topology optimization which offers immense design flexibility. Finally, the mesh refinement strat-

egy greatly relieved the computational burden by performing early iterations of the design process

on a very coarse grid and only refining the small-scale features on the finer grids.

The framework was tested on the design of crystals with complete 2D bandgap, i.e. structures

83



with total reflection for waves with an angle of incidence limited to a particular plane. The first

8 possible mode pairs were split to form complete bandgaps, demonstrating a robustness of the

method to converge to bandgap structures under many different conditions. More importantly, the

framework was able to generate 3 structures with complete 3D bandgaps. A previous result from

the literature was reproduced lending confidence to the proposed design technique, and a novel

photonic crystal was presented as well.

It was observed, in this work and in previous literature studies, that structures with photonic

bandgaps often exhibit poor stiffness. In some cases the designs cannot be physically realized due

to “islands” of material floating in void space. A series of design constraints were formulated and

studied to improve the stiffness properties of photonic crystals and ensure their manufacturability.

The virtual temperature method was presented in the literature as a physics-based constraint

capable of identifying regions of enclosed void space, which are problematic for manufacturing.

This work extended the virtual temperature method to periodic structures by ensuring that consis-

tent behavior would be achieved regardless of the unit cell’s periodic shift. Further, the method

was used with alternative material interpolation schemes to identify “islands” of solid material. A

disadvantage was that self-supported structures were not guaranteed. Additionally, a mechanical

eigenvalue constraint was developed to identify unsupported material by considering the fourth-

smallest eigenvalue. This constraint was effective at identify regions of unsupported material in

general, however, an important counter-example arose when a microstructure which was simply

connected within the unit cell satisfied the constraint but was not self-supporting. The pitfalls

of the virtual temperature method and mechanical eigenvalue constraints were alleviated with the

self-weight compliance constraint. Computing the compliance resulting from design-dependent

gravity loads acting in all dimensions easily identified unsupported structures due to their large

increase in resulting displacement.

The abilities and limitations of the proposed physics-based design constraints were demon-

strated on example unit cell designs. Additionally, a simple void-producing or island-producing

objective function served as a test problem to investigate appropriate constraint limits. It was de-
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termined from this test problem that a modified linear material interpolation scheme was required

for problems with design-dependent loads, e.g. heat source or self-weight. Originally formulated

to handle spurious eigenvalue solutions caused by low-density elements in topology optimization,

this low-density penalizing interpolation proved invaluable for optimizations using the virtual tem-

perature method, mechanical eigenvalue, or self-weight compliance constraints.

The proposed design constraints were applied to photonic bandgap optimization to ensure that

the photonic crystals were manufacturable. The virtual temperature method was employed to re-

move enclosed void space from two designs with complete 3D bandgaps. Further, the virtual

temperature method, mechanical eigenvalue, and self-weight compliance constraints were used to

redesign crystals with complete 2D bandgaps to ensure they were self-supporting and therefore

physically realizable. Design performance was generally decreased only slightly, and in some

cases it actually increased when design constraints were introduced.

In addition to the manufacturing constraints, a series of effective property constraints were also

considered. Linear homogenization theory was utilized to compute the effective constitutive tensor

so that the periodic microstructures could be modeled as a homogeneous material. Adding de-

sign constraints of minimum bulk or shear modulus ensured that structures could support external

loads. As evidence, 2D bandgap structures were generated with bulk and shear stiffness in all di-

rections. To show the constraint abilities in tandem, the virtual temperature method was then added

in such that photonic crystals were designed with effective stiffness while avoiding any enclosed

void space. Finally, The trade-off between bulk stiffness and photonic bandgap was investigated

by solving a series of optimization problems with progressively larger minimum bulk moduli re-

quirement. The optimal designs for each constraint were plotted to elucidate the feasible design

space when bandgap and bulk stiffness are desired in a periodic structure.

To conclude, a powerful topology optimization technique was developed for the design of

photonic crystals with complete bandgaps. Further, a series of physics-based constraints were pre-

sented to ensure structures were multi-functional and manufacturable. All of the proposed tech-

niques were successfully demonstrated by designing photonic crystals with complete bandgaps.
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5.1 Future work

There is still much work to be done in the bandgap engineering field. This work enabled designers

to leverage gradient-based optimization to design photonic crystals. Orthorhombic symmetry was

used as a proof of concept, however, this work should be extended to other symmetry groups. For

example, many of the largest bandgap structures known to date exhibit diamond symmetry [1].

Additionally, more elegant design parameterizations could increase the efficiency of the design

optimization by reducing the number of parameters and better representing the material interface.

Early in the research project implicit parameterizations, such as geometric primitives [98] com-

bined with R-functions [107, 108], were investigated, but bandgap structures were unable to be

located in the design space. A more general parameterization, such as a shape optimization tech-

nique with the ability to nucleate holes [109], might alleviate this issue by allowing the required

design flexibility to generate bandgap structures.

Nearly all of the bandgap literature assumes that structures are infinitely periodic. One notable

exception [110] did consider the finite lattice effect on density of states, however, much is left to

learn. A better understanding of edge effects [1] would help integrate photonic crystals into engi-

neering designs. For example, it is unclear how many unit cells are required to achieve acceptable

bandgap performance. Further, the effect of manufacturing defects on bandgap performance is not

well understood. These considerations should be studied both experimentally and numerically.

Ideally, the finite lattice and manufacturing uncertainties could be modeled in optimizations when

designing photonic crystals for specific applications, and the predictions could be validated experi-

mentally. A recent study probed a complete 3D bandgap structure experimentally [111]; this work

could serve as a useful guide in future bandgap experiments.

Design process specific constraints should be integrated into the optimization process. The

constraints presented in Chapter 3 are a good starting point, but more detailed constraints, such as

maximum overhang angle, minimum/maximum solid feature size, and minimum/maximum void

feature size should be directly constrained to streamline the design and manufacturing processes.
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