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ABSTRACT

Treatment of breast cancer involves two stages: diagnosis and treatment. It is difficult to cor-

relate the imaging results at the two stages because as the patient’s posture changes during

treatment, the images captured during diagnosis do not represent the tumor location during

the treatment. In the absence of real-time imaging during treatment, the visualization of

tumor location is challenging for surgeons.

There are many challenges for breast deformation simulation. For example, material prop-

erties are very important to simulate the deformation accurately. The simulation speed will

decide whether the technology is applicable for clinical use. But because of the limit of

hardware, achieving real time simulation is difficult.

This thesis focuses on investigating visualization of breast deformation for different pa-

tient’s positions. We utilized magnetic resonance imaging (MRI) of a patient collected during

diagnosis for this study. This data was preprocessed to form a 3D reconstructed model that

was used to run a finite element analysis (FEA) simulation. FEA simulates the deformation

of breast tissues for different constraints, such as glandular ratio and gravity angle. How-

ever, FEA simulation of such deformation can take a few minutes to as much as 40 minutes

to complete using a 8 cores computer. To obtain real-time visualization, we constructed a

neural network (NN) model that takes breast gravity angle and glandular / fat ratio (breast

material) as input to estimate breast deformation for different patient’s positions offline.

This NN is used to predict the deformation of the breast and provide visualization in real-
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time (5 ms prediction time).

To further validate our result, we carried out MRI of a breast phantom in several angles

(to mimic various patient postures). We also implemented an iterative technique to estimate

material properties. This data was used to simulate breast deformations at different posture

angles. A similar approach was implemented to build an NN model. Our results show that

NN has the ability to map the gravity direction to the breast shape and tumor location

accurately, while, keeping run time to a minimum.
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CHAPTER 1

INTRODUCTION

Breast cancer is the most common cancer among women. The World Health Organization

estimated an age-standardized incident rate of 84.9 per 100,000 in 2018 [1]. Breast cancer

diagnosis is a crucial step in early-stage detection and treatment. The gold standard for

diagnosis is to perform medical imaging, such as a mammogram, followed by a biopsy of

suspicious tissue [15]. Invasive treatments for removal of tumor include lumpectomy and

mastectomy, which require additional imaging with ultrasound (US), CT, and/or MRI for

preoperative, operative, and postoperative visualizations [16]. Conventionally, surgeons use

medical imaging to locate and remove suspicious tissues prior to the surgery [17]. They may

also draw anatomical landmarks on the patient’s breast or use different markers along with

medical images (e.g., US/CT, based on availability of facilities) [18]. However, the patient’s

position inevitably differs significantly between the preoperative and operative stages, and

causes a mismatch between the patient on the operating table and the images captured

during the preoperative stage. Hence, it is crucial to develop a way to improve breast tissue

localization accuracy. Fig. 1.1 shows some standard anatomical postures.
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Figure 1.1: Patient’s postures (Figure from [13])

Breast cancer diagnosis begins with manual palpation and is usually followed by a mammo-

gram. If a suspicious lump is identified, ultrasound scanning or a biopsy will be performed

to extract any suspicious masses [6]. In many developing nations, because of the lack of

mammogram facilities, direct biopsy is performed (with ultrasound support when available).

As discussed earlier, even when advanced mammogram facilities are available, it is hard for

a doctor to understand the image because the patient may lay on the operating room’s table

in a different position. The 2D image localization is often left to the skill of the person

performing the biopsy.

The primary challenge with breast imaging is that breast anatomy is irregular, and with

a noisy dataset, it is challenging to reconstruct a 3D model to generate a good mesh model

for FEA. Palomar et al. [34] found that even the structure of the breast is complicated; the

volume ratio between glandular and fat is the most important factor in breast deformation.

Llorens et al. [45] were the first to include skin depth in simulating breast deformation. They
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found that including the real depth of skin made simulations much more accurate. Han et

al. [68] developed a patient-specific, “open-source graphics processing unit-based, explicit,

dynamic, nonlinear finite element (FE) solver.” To determine the breast property, they pro-

posed a model parameter optimization method. Sturgeon et al. [7] created a breast phantom

from a real patient’s model and simulated it with FEBio, an FEA based software that can

include compression and gravity. For other specific patients, they refined the mesh so that

they could map the current model to other patients’. Mart́ınez et al. [8] used the Simulation

Open Framework Architecture (SOFA) as their solver for breast deformation simulation.

They then used a tree-based approach to train the model and predict the deformation of a

breast during plate compression. They claimed the prediction time was less than 0.2 s. For

a comprehensive review of deformation simulation in recent surgical simulators, please refer

to [9].

The dissertation is organized as follows:

In chapter 2, we introduce the related literature. In chapter 3, we built a surgical simulator

to simulate breast deformation in real-time. Details are described in this chapter. In chapter

4, we validated the accuracy of our simulation by collecting data from a breast phantom.

In chapter 5, we constructed an augmented reality (AR) simulation in a tablet. Finally, we

conclude our research and future work in chapter 6.
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CHAPTER 2

LITERATURE REVIEWS

Breast imaging is an effective tool to help doctors locate a tumor. However, the images taken

at a preoperative stage will differ from those seen in the operating room. For an MRI scan,

a patient can stay in a prone position, but in a biopsy, she is in a supine position. In an

ultrasound (US) procedure, the patient lies on a bed, which may be in a variety of possible

positions. Currently, a doctor has to transfer the images between the two stages in his/her

head. An incorrect diagnosis may occur if the transformation is not understood correctly.

Hence, breast deformation simulation is an important topic in biomedical imaging.

2.1 Breast deformation simulation

There are many computation methods in the area of tissue deformation simulation, but only

two are usually used in breast tissue; spring damper (SD) and FEA. SD is considered an

aesthetic approach for deformation computation. The method uses surface points, and some-

times internal points, associated with masses, velocities, and accelerations to solve a system

of dynamic equations. The advantage is that it does not involve any large matrix compu-

tation, which makes it fast during real-time simulation. The method does not involve solid

mechanics; hence, it is considered an approximation of the actual deformation. To get good

simulations, many researchers have worked to incorporate realistic material methods used in

FEA into the SD method. Cai et al. [29] recorded the breast motion data when a woman

was running on a tread mill. They used a Kelvin-Volgt model with two SD to describe the

motion of the breast. The Kelvin-Volgt model is a viscoelastic model which has the advan-
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tage of taking time into account. Patete et al. [30] implemented a mass-spring model on a

breast tetrahedral mesh. They iteratively minimize the error between the resulting spring

force and gravity to find the best spring constant. They achieved a point-to-point (PTP)

error of 1.224 ± 2.202 mm, which is quite promising. Roose et al. [31] used an optimization

algorithm to solve the dynamic equation that describes breast shape after a breast implan-

tation. They found that the presence of inhomogeneous material or homogeneous material

cause very little difference in the accuracy of the simulation (below 2.5 mm). Xu et al. [32]

improved the accuracy of spring mass system by adding nonlinearity to the spring to take

nonlinear viscoelastic effect of the tissue. Overall, the researchers are trying to improve the

SD accuracy by exploring more accurate material modeling methods.

FEA discretizes the deformation domain to solve the continuum mechanics equation. Many

researchers separate FEA into linear FEA and non-linear FEA. Generally speaking, linear

FEA is a special case of nonlinear FEA; it ignores the nonlinear part, and hence makes

simulation faster. When the deformation is small and there is no contact, the result of

linear FEA is accurate, but as deformation becomes larger, the result becomes less accurate.

The advantage of linear FEA is its simulation speed; hence, it is usually used for surgical

training in a virtual reality environment. Most research effort in this area has been finding

ways to update the matrix quickly by reserving the shape of the stiffness matrix [26]. Azar

et al. [33] simulated breast deformation under plate compression by separating deformation

into small steps and simulating each step with small strain theory (i.e., linear FEA). In

breast deformation simulation, researchers have usually chosen to use nonlinear FEA because

breast deformation is usually large. Del et al. [34] simulated breast deformation in different

positions. They combined gland and fat into one material with the help of their volume

ratio. They found the simplified model give a good approximation of a real breast’s shape.

Rajagopal et al. [35] proposed a semi automatic approach to generating a finite element mesh.

They formulated a total Lagrangian formulation to solve the equilibrium equation under
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gravity. Rajagopal et al. [36] explored the effects of mesh resolution, boundary conditions,

and FE solvers on the accuracy of breast deformation simulation. They concluded that a

good boundary condition played an important role in the accuracy of simulation. Chuang

et al. [37] used a selected subset of segmented breast data to construct an initial FEA mesh.

They later smoothed the mesh with a cubic-Hermite basis function. The mesh was then

used to simulate breast compression. Their result not only showed good accuracy on the

surface of the breast, but also showed that the internal landmarks have a much larger error.

Tagliabue et al. [38] simulated probe-breast interaction deformation by using 3 methods:

penalty forces, constraint force, and prescribing of the nodes on contact faces. They found

that the third method performed the best. Mira et al. [39] included pectoral fascia and

suspensory breast ligaments in their simulation against gravity. They obtained a better result

when the sliding forces between the pectoral muscle and breast were considered. Inspired by

the above research, we chose to use nonlinear FEA for our simulation.

2.2 Breast material property

To use FEA, tissue properties need to be defined. As the material property directly affects

the mechanical behavior of a breast, accurate properties are desired. Breast material is

considered inhomogeneous, nonlinear, and time-dependent. There are 4 types of tissues as

shown in 2.1 in a breast (skin, gland, fat, and sometimes tumor), and the material within

any single tissue type is not necessarily homogeneous. There are two types of testing, in vivo

and ex vivo. In vivo testing uses an imaging technique, for example, magnetic resonance

elastography and sono-elastography [40,41]. The testing is accurate only for small deforma-

tions. Hence, ex vivo testing is usually performed to find the material properties. There

are many material constitutive models. Among them, hyperelastic material is commonly

used [36, 42]. Hyperelastic material is a nonlinear material, but it does not take time into

consideration [43]. Some work has started shifting to use of viscoelastic material [44] because
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of its ability to consider time. One thing to notice is that material properties reported by

different papers vary significantly, for example, by 100 times [34, 45]. Hence, it is challeng-

ing to find accurate parameter values. As the material experiment set-up requires much

effort, many FEA-based breast simulations are using materials from previous researchers’

reports [25,46]. However, it is well-known that breasts’ properties vary a lot between people.

A simpler approach suggested by Visentin et al. [43] and Chung et al. [47] is to use an op-

timization method to find a material property that fits the deformation. Even that method

does not test material explicitly, it does not require extra set-up. For a comprehensive re-

view of FEA and material constitution model research on breast deformation and material

models, we direct interested readers to [48].

Figure 2.1: Breast anatomy (Figure from [65])

2.3 Real-time deformation simulation

As machine learning (ML) becomes popular recently, a data-driven approach has become

popular. The main idea is to combine ML and FEA because the prediction time of ML mod-

els is usually fast, while FEA produces accurate results but is computationally expensive.

The combination of FEA and ML will produce real-time accurate deformation simulation.

Özgören et al. [50] constructed an NN to predict the power and torque values obtained from
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a beta-type Stirling engine. Erkan et al. [51] used different learning algorithms to train an

NN to predict damage factor of Glass fibre reinforced plastic in the cutting process. Eser et

al. [52] improved the mathematical models of surface roughness parameter of AA6061 alloy

using an NN and response surface methodology. Several researcher used an NN for bone

structure, for example, predict tissue adaptation loads when the input is bone’s density dis-

tribution [53], predict the stiffness of bones [54] and predicts the displacement of bones when

different loads are applied [55]. Taylor et al. [56] implemented an NN for neck strains and

fracture loads prediction. Zolfagharnasab et al. [62] used random forests, gradient boosting

regression, and multi-output regression to predict the breast shape after a breast-conserving

surgery. Random forest performed best in their study. The above research shows that NN

can accurately estimate the FEA result.

In terms of real-time simulation, many researchers found good accuracy as well as simula-

tion speed. Several papers have described prediction times between a few milliseconds to 50

ms [57–61]. Deo. et al. [57] simulated a scenario in which the surgical tool touched a stom-

ach. They generated 26 force directions at different touching points, and used a radial basis

function to learn the surface point displacement. Their group further developed a simulator

that included haptic feedback, which required 1000 Hz [60]. Jahya et al. [58] simulated a

transrectal MR-guided biopsy procedure on a prostate phantom. The shape of the phantom

was extracted from a set of MR images. They used a needle angle, an insertion depth, and

other features to predict the nodal displacements of the phantom. Mendizabal et al. [59]

simulated a US probe interaction with a breast. The authors generated FEA scenarios by

selecting a point on the surface of the breast, founding all points in a bounding box around

that point, and adding displacements to the points. That obviated any need for physical

interaction between the breast and US probe during the simulation. After collecting data

from different points, they constructed a U-Net to learn the deformation and tumor loca-

tion. The authors did not consider gravity because as long as the breast stays in the same
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position, the geometry already takes gravity into account. Morooka et al. [61] constructed a

neural network (NN) for liver deformation prediction when a surgical instrument touches the

liver. Their NN input is the forces, and output is the nodal positions of the liver. However,

that approach is not physically accurate because rather than giving a Dirichlet boundary

condition, the author used a Neumann boundary condition by estimating the force based on

how far the surgical tool moves inside the tumor. Lorente et al. [63] used ML to model liver

deformation during breathing. They compared linear regression, a decision tree, a random

forest, and extremely randomized trees. The best method obtained an average nodal point

Euclidean error between FEA and ML of 0.07 mm. Their prediction time was 2.89 s, which

was slower than the expected real-time simulation in liver deformation simulation, which was

about 0.3 s. Widmer et al. [64] simulated breast palpation with a phantom model. Although

they did not use a real breast, their study provided a good indication of what features could

be useful during a deformation prediction. Tonutti et al. [46] used an artificial neural network

(ANN) and supported vector regression for tumor location prediction in a patient-specific

deformation model for brain pathologies. The authors claimed the prediction was instant,

but they did not mention the exact prediction time. Motivated by the above research, we

decided to combine FEA and NN for real-time breast deformation simulation.
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CHAPTER 3

SIMULATION OF BREAST DEFORMATION DUE
TO GRAVITY

In this chapter, we will focus on breast simulation with gravity. The breast data was from a

real breast data set and we tried to simulate it with FEA and then use an NN to learn the

FEA result. We will introduce FEA and NN, and then show how we incorporate these two

to simulate the breast deformation.

3.1 Simulation procedure

To develop a simulator for visualizing breast deformation under different patient’s positions,

it is essential to understand the structure of breast anatomy. The breast anatomy consists of

skin, fibrous tissue, fat, ducts, glandular tissue, and sometimes tumors. The breast can be

separated into 4 quadrants: the upper-outer quadrant (UOQ), upper-inner quadrant (UIQ),

lower-outer quadrant (LOQ) and lower-inner quadrant (LIQ), shown in Fig. 3.1. The pa-

tient’s tumor can be anywhere in the four quadrants. Medical images provide a density map

of the anatomy. Based on the density, the breast tissue is categorized into 4 groups: fatty

tissue, scattered glandular tissue, heterogeneous dense breast tissue, and extremely dense

tissue [75]. During medical image analysis, those 4 categories are used to interpret a pa-

tient’s scan to identify suspicious tissues.

The workflow of our methodology is shown in Fig. 3.2. Our methodology consists of 3

steps, data preparation, deformation computation, and simulation. Data processing is per-

formed to improve the 3D segmentation of the breast model through smoothing, clustering,
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Figure 3.1: Breast quadrant (Figure from [62]).

and self-intersection detection. The processed data are tetrahedralized for FEA using Tet-

gen [12]. Different regions of the mesh are assigned different material properties based on

the corresponding structure of breast tissues. For the deformation computation, the dataset

is imported into an FEA solver, Abaqus [5], to compute deformation in different positions.

Useful features are extracted from the deformation results to train the NN model. Finally,

the trained NN is used for deformation prediction in our simulator.

Figure 3.2: Overall process from raw breast data to real-time breast simulation model.
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3.2 FEA mesh generation

The segmented breast data we used were from [66]. The authors used 8 breast models

of different breast categories; each model contains both left and right breasts. The models

contain skin (with a thickness of 2.34 mm), fat, glandular tissues, and tumor. The segmented

data from the repository are in a 3D stereolithography (STL) format. The data contain the

positions of the point cloud and connections between the points (faces). They need to be

processed before tetrahedralization in order to ensure that the generated tetrahedral mesh

is good. For example, sample data from our original surface mesh are shown in Fig 3.3(a),

in which the gland has many noise clusters. For denoising, we implemented a modified

form of breadth first search (BFS) (as shown in Algorithm 1) to get rid of the clusters.

The input was the faces from the STL file, and the output was the faces without noise.

The idea is that BFS is able to find connected components, and the gland without noise is

the largest component. In addition, to remove the jagged edge and reduce the number of

points, the data were smoothed with MeshLabTM. Further, we used the Z-painting function

to manually smoothen specific areas. Because of the limitations of the tetrahedralization

process, the nipple was eliminated from the model. We later imported the smoothed surface

mesh into MeshMixerTM to check and repair it. The processed surface mesh is shown in Fig.

3.3(b).
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Figure 3.3: Different parts of breast data. (a) Raw data with noise. (b) Data after
processing that deleted the noise.

We generated a tetrahedral mesh with Tetgen. The linear tetrahedral element type (C3D4)

is preferred for its fast and relatively accurate FEA simulation [67]. Table 3.1 shows details

on the generated output of our model. The factors that affect FEA simulation results are

the number of tetrahedrons and the quality of the generated tetrahedral mesh. Given a

good mesh quality, the total number of tetrahedrons is an indicator of the accuracy of an

FEA simulation. In general, a more refined mesh yields more accurate solutions. In our

simulation, we used a total of 167,853 tetrahedrons (discussed in detail in Section 2.2).

To test whether the chosen mesh density in our FEA simulation was good, we generated
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Algorithm 1 Deletion of noise.

Input : faces

Output : part faces
E ←a list of edges
S ←a list of list, contains vertex indices of different clusters, initialized as empty
F ←unique vertex indices
function MBFS(edges, face)←Modifies BFS so it returns the connected components of a
point as a list
for f in F do
if f is not visited then
S ← S +MBFS(E, f)

end if
end for
return largest list in S.

Table 3.1: Tetrahedral mesh generated for each tissue type.

Tissue type Tetrahedrons Points
1 Skin 167,853 40,012
2 Fat 57,210 12,040
3 Gland 631,457 170,563
4 Tumor 100,959 23,544

a refined tetrahedral mesh with 317,256 tetrahedrons. The same point was picked in the

two simulation results, and the displacement difference was found to be less than 0.1 mm.

Hence, our FEA simulation performed well. Fig. 3.4 shows a sample of a tetrahedralized

mesh generated using our approach.
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Figure 3.4: Glandular tetrahedral mesh generated after step1(a) in Fig. 3.2. The green
color is the surface of the gland, the purple parts are the tetrahedrons.

Here is some more information about MeshLab and MeshMixer. They are open source

mesh processing platforms. Many functions can be used to preprocess mesh. We used a

Taubin filter and a z-painting in MeshLab to smooth the breast surface. The “Analysis”

function is very convenient in MeshMixer. The function checks the defects in the mesh, such

as nonmanifold surface and holes. We can use MeshMixer to fix the mesh problems. Tetgen

is a mesh generator and it is widely used as the backend for other mesh softwares such as

Gmsh. Tetgen generates high quality mesh in a short amount of time. We noticed that even

the mesh passes MeshMixer’s quality check, it might still have ”face intersection errors” in

Tetgen. In this case, we deleted the faces reported by Tetgen, and regenerate the mesh in

MeshMixer. Tetgen was then able to use the surface mesh to generate the tetrahedral mesh.

3.3 Material assignment in breast tissue

Breast tissue is generally recognized as nonlinear, inhomogeneous, and incompressible. As

breast tissue is complicated, the mechanical properties of tissue identified by various re-

searchers are different and can vary by 100 times in magnitude ([45] and [34]). For our
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research, we selected different properties of the breast across different parts. Homogeneous

material is assumed inside each part of the breast. The details are shown in Table 3.2. Skin

is defined by the polynomial model, where the strain energy density function is defined by

W =
n∑

ci,j=0

cij(I1 − 3)i(I2 − 3)j. (3.1)

Fat and glandular tissue are defined by the Mooney-Rivlin model, where I1 and I2 are left

Cauchy-Green deformation tensor. The coefficient cij is determined by the curve fitting be-

tween stress-strain curves and the derivative of Eqn. 3.1. The strain energy density function

for the Mooney-Rivlin model is

W = c1(Ī1 − 3) + c2(Ī2 − 3). (3.2)

Based on [46], we assumed that tumors are twice as dense as glandular tissue. Following [34],

we assigned average values of mechanical properties to the materials for glandular tissue and

fat. For example, if the glandular volume is 30% of the entire glandular and fat volume,

c1 = 0.3 ∗ 120 + 0.7 ∗ 80 = 96PA. (3.3)

Table 3.2: Material property of each tissue type.

Tissue type Material Type Density (kg/m3) Coefficients (PA)
Skin Polynomial model 1020 [72] c10 = 31, c01 = 30, c11 = 22.5, c20 = 50, c02 = 60 [34]
Fat Mooney-Rivlin 921 [62] c1 = 80 , c2 = 0 [62]
Gland Mooney-Rivlin 948.5 [62] c1 = 120, c2 = 0 [62]
Tumor Isotropic heterogeneous 1897 E=0.7193 * 106, v= 0.4531 (diemnsionless) [68]

Different parts have different material properties. There are 2 methods for assigning prop-

erties to the mesh: (1) one can generate the overall mesh and identify the corresponding part

from the generated mesh, or (2) one can generate tetrahedral mesh for each part separately.

In the first method, to find the tetrahedrons that belongs to each part, each part is first
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tetrahedralized individually, and then the positions are compared between the individual

parts and the overall mesh. In the second approach, the parts of the mesh are generated

individually and then merged together to form the overall mesh. Even though the geometry

of the part in the second approach is well-preserved, the reassembling of the different parts is

challenging, as the contact surfaces might not match exactly after tetrahedralization. That

problem is completely absent in the first approach, since it is working from one set of mesh.

Although the first method does not preserve the geometry of the parts as well as the second

method does, we nevertheless chose it for its ease of implementation and reassembly. In the

first approach, the mesh of each part is used to find the corresponding tetrahedron in the

overall mesh. To speed up the material assignment process, we built a data structure to

separate the skin mesh into a 10 x 10 grid. That data structure was then used when we were

iterating through the tetrahedral mesh of a part to identify the corresponding tetrahedron in

the overall mesh. Fig. 3.5 shows the tetrahedralized mesh found from the breast tetrahedrons

with our method. Fig. 3.6 shows the results of the material assignment in Abaqus.

Figure 3.5: Tetrahedral mesh for different parts. Left (glandular tissue), middle (fat), right
(tumor).
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Figure 3.6: Material assignment of glandular tissue (left), fat (middle) and tumor (right).
Each part is tetrahedralized individually, and compared with the overall mesh.

3.4 Introduction to FEA formulation

FEA is a numerical way to solve continuum mechanics equations, and different solvers are

available. We chose to use Abaqus because it is widely adopted in industry and research

society. Abaqus provides user access to define routines, so it’s very simple for a user to

program and interact with it.

The general form of the nonlinear dynamics equation in FE is

Mü+N(u̇, u) = F, (3.4)

where N(u̇, u) = K(u)u+C(u̇)u̇. u is the displacement vector, u̇ is the velocity vector, and

ü is the acceleration vector. M is the mass matrix, and N is the nonlinear functions that

contain both stiffness and damping. C(u̇) is a damping matrix. K(u) is the stiffness matrix,

and it has two nonlinear parts: geometric nonlinearity, and material nonlinearity. The

geometry nonlinearity comes from the transformation between the material coordinate and

the spatial coordinate. The material nonlinearity comes from the stress-strain relationship,
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which can be derived from a strain energy density function. In our simulation, we simulated

the breast deformation under gravity, so we used a static nonlinear FEA, which meant that

the inertia effect was not taken into account. The damping term did not appear in the

original FEA derivation because the energy was assumed to be conserved. We added the

damping term because it was known that energy dissipates during deformation. However,

accurate damping requires very careful testing. In medical simulation, damping is commonly

neglected. F is the external force. In order to solve the nonlinear FEA, Newton-Raphson’s

method is the most fundamental way,

K∆ui = F −N(uin+1) (3.5)

∆un+1 = un + ∆u (3.6)

F =
n∑

j=0

∆Fj, (3.7)

where i is the iteration number, and n is the time step. Compared to linear FEA, nonlinear

FEA requires many more iterations be solved for each time step, so can be quite time-

consuming if the problem is highly nonlinear. Apart from Newton-Raphson’s method, other

algorithms have also been developed. Abaqus solves the FEA with the Implicit or Explicit

method. The advantages of the Implicit method are that it is faster than the Explicit and

is unconditionally stable. However, its ability to solve a highly nonlinear problem is limited.

The Explicit FEA solver, on the other hand, is stable only when the time increment is small,

and hence takes many more steps than Implicit FEM. However, it can solve very highly

nonlinear problems. To save computation time, we chose the Implicit solver. To help better

understand how to establish the simulation in Abaqus, we will introduce different parameters

in details.
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3.4.1 Abaqus “Steps” definition

Steps are used in Abaqus to define their analysis. Many options are available such as heat

transfer, dynamic explicit/implicit and mass diffusion. Abaqus is capable of solving multiple

step problems. In our case, one step is enough, which is “static general”. Dynamics is an-

other option. However, we consider the process to be slow, a static step is appropriate for the

simulation. The first step is a default step in Abaqus, and the program does not allow a user

to change it. The simulation time was set at 1 s. This value can be adjusted. If the time is

too short, the simulation might not converge and result in an error. The simulation precision

was set to “double precision” to prevent high bulk modulus. Locking problem is a concern

in FEA. The problems will result in a less deformation with the same amount of forces. One

way to help solve the problem is use more refined elements. C3D4H is a refined version of

C3D4 element, hence it is chosen. As breast deformation is large it involves nonlinear FEA.

Abaqus does not enable nonlinear FEA in static step, unless the user set it. We enabled the

Nlgeom setting for that purpose.

In nonlinear simulation, Abaqus will generate a lot of results for each step and they are

all stored in the result folder. A user is able to visualize the result in Abaqus directly.

Several plots such as deformed shape, contour plots for stress or deformation are available to

visualize. There are also animation plots available that show the deformation history. The

times step is evenly distributed among each time frame.

3.4.2 Simulation setup and boundary condition

We loaded the models into Abaqus for analysis. The patient’s model was influenced by two

factors: gravity direction and the degree of firmness it is attached to the chest bone. The

patient’s position with respect to gravity, known as the upload position influences the breast

during a scan. To compensate for the deformation due to the initial gravity, opposing forces
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were applied. The breast’s back was considered as a pectoral muscle. To simulate the firm

attachment of a pectoral muscle to the chest wall, we created constraints by setting the dis-

placement and rotation of points to 0. Fig. 3.7 shows a sample simulation setup on Abaqus,

with the arrow indicating the direction of the applied gravity for the unloading condition.

Figure 3.7: Boundary condition defined in Abaqus.

Table 3.3 shows FEA parameters. We chose an element type of C3D4H as a refined mesh.

We wrote scripts to automatically generate the scenarios by altering the gravity angle and

the glandular/fat ratio. We collected the angle from 0° to 360° with an interval of 5°. The

glandular ratio was collected as the ratio of glandular volume over the total volume (including

fat and gland), starting from 10% and going to 90%, in 10% increments, as shown in Fig.

3.8. We purchased 8 cores from our school, and the simulation time for each scenario ranged

from 2 minutes to 40 minutes.
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Figure 3.8: Data set generated from Abaqus (80% for training and 20% for validation).

Table 3.3: Abaqus FEA Setup Parameters

FEA parameter Values
Simulation time 1 s
Simulation precision Double precision
Element type C3D4H
Step type Static general
Solver Implicit solver
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3.5 Neural network

The disadvantage of FEA is its slow processing speed, as it cannot meet real-time needs. We

hence improved the deformation prediction by using an ML-based approach. The input is

a vector of R4, the gravity direction and the glandular volume ratio. The gravity direction

is converted to a unit vector. The goal is to predict the tumor displacement and the breast

surface nodal displacements. NN has different units. We will introduce some of them in the

the following sections.

3.5.1 Introduction to convolution layer

A problem associated with NN is overfitting. When the result performs well in the training

set but poorly in the validation set, an overfitting problem occurs. A convolution layer is

used to reduce the redundancy in the nonlinearity of NN. Suppose X ε Rn∗n, K ε RKy ∗RKx .

Then

(X ∗K)i,j =

Ky−1∑
a=0

Kx−1∑
b=0

Ka,bXi+a,j+b. (3.8)

K is acting as a filter in the the above equation. a and b are the dimension of the filter in

x and y direction. The filter is applied by using a window function that slides through the

input. Some elements in the K matrix are set as 1 and others as 0, and can remove some

redundant values in the matrix.

3.5.2 Downsample input with stride

Stride is used to control how far to shift the convolution at a time. Apply a stride s to a

convolution layer,

Hi,j = σ(

Ky−1∑
a=0

Kx−1∑
b=0

Ka,bXis+a,js+b). (3.9)
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Fig. 3.9 shows how stride and convolution work together. s is 1 in this case. In the left

figure, red is the filter window before moving with a stride, and green is the one after stride.

The dimension of H becomes (b(dl−1
y − kly)/sc + 1) ∗ (b(dl−1

x − klx)/sc + 1). As s increases,

the output shrinks very fast.

Figure 3.9: Stride [3].

3.5.3 Downsample input with pooling

Pooling is a form of down sampling. It adds some invariance to local translation. Two types

of pooling are the most often used: average pooling shown in Eq. 3.10 and max pooling

shown Eq. 3.11. In average polling, the matrix within the sliding window is down sampled

to an average value, and max polling is down sampled to a maximum value. Pooling is also

a type of filter, it reduces the input dimension and makes the computation less expensive.

vi,j = 1/h2

h−1∑
a=0

h−1∑
b=0

His+a,js+b. (3.10)
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vi,j = max
0≤a,b≤h

His+a,js+b. (3.11)

3.5.4 Drop out

Another way to help prevent overfitting problems is drop out. Drop out removes a random

set of hidden units (set them as 0). The probability of a unit to be dropped varies from

different papers. As it is random dropping, it is only used in training time. There is no

scientific proof that drop out can help, nevertheless, it is helpful in practice.

3.6 Neural network formulation

There are two types of problems in NN: classification and regression. If the problem is clas-

sification, a softmax function is often used in the last layer because it can map the input

to a value between 0 and 1; that value is used to represent the probability that the input

belongs to one category. Some examples in classification is image recognition, handwriting

detection and fraud detection.

NNs are capable of learning features of functions and use a highly nonlinear function to

estimate a good mapping between input X and output f(X; Θ). An NN forms an optimiza-

tion problem and learns parameters to minimize the error between the estimated value and

the true value. Below is the formulation for a fully connected NN.

Z l = Θl−1H l−1, l = 2, . . . ., L (3.12)

H l = σ(Z l), l = 2, . . . ., L (3.13)

f(X; Θ) = ΘLHL (3.14)

H1 = X is the input vector to a neural network, where X is [x0 x1 x2 x3 ... xdl ], x0 is
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a bias term, l is the lth layer number, Z l is the neuron value at the lth layer, and Θl is the

weighting parameters. H l is the output at the lth layer. We use dl to denote the number

of hidden units. X ε Rd1+1, H l ε Rdl+1, Z l ε Rdl+1 (after adding a bias term), and Θl ε

dl+1 × (dl + 1). σ is a nonlinear activation function. To find the best parameters, Θ, a cost

function needs to be defined. The following is a general definition of the cost function:

RΘ = EX,Y [ρ(f(X; Θ), Y )], (3.15)

where EX,Y is the expectation, ρ(f(X; Θ)) is the error function between the NN output

and ground truth, and Θ is the parameter to be estimated. ρ(f(X; Θ)) is chosen based on

the specific problem. Since our problem is a regression problem, the output is a value or

continuous value, without needing an activation function in the last layer. As tumor shape

is very irregular, we used the tumor center to represent the tumor, and we predicted only

the displacement of the tumor center. Considering that the tumor center is one point, if we

put the tumor center displacement and all the surface points’ displacements together, the

tumor center will be treated as one point, and it will be hard to guarantee the accuracy of

this point because the error is the average error of all the points. Hence, two NNs are built

in parallel to predict the tumor displacement and breast surface nodal displacements. Take

breast surface nodal displacements for example, we use Y to denote the displacements of all

points, and f(X; Θ) to denote predicted displacements. The mean absolute error (MAE) is

used in our case:

ρ(f(X; Θ), Y ) = 1/(3N)
N∑
i=1

|Yi − fi(X; Θ)|, (3.16)

where Y=[uT1 u
T
2 . . . u

T
N ]T , f(X; θ)=[u′T1 u′T2 . . . u′TN ]T . ui=[ui,x ui,y ui,z ]T . N is the number of

surface points. Tumor displacement has the same error function, with N equal to 1. Now
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the optimization problem is formulated as follows:

Θ? = arg min
Θ

ρ(X; Θ) (3.17)

To find the best parameter Θ?, we used back propagation. We chose Adam as the opti-

mizer. The learning rate for both breast surface and tumor location is 0.00001. We created

1,311 training scenarios (3 scenarios failed to generate converged FEA simulation, shown in

Fig. 3.8). In the case of breast surface nodal displacements, there are 2 hidden layers, and

each layer has 60 neurons. We chose ReLU function as the activation function in the middle

layers. The number of neurons in the output layer is the same as the number of output

variables. As there are 25,374 surface points, the output is R25374∗3. The NN structure for

tumor position prediction is similar, except it has one hidden layer with 20 neurons.

The data were split into groups of 20% and 80% for validation and training, respectively,

and were randomly shuffled at the beginning of each iteration before training. This procedure

is usually called as hold-out validation.

3.7 Breast deformation simulator

We built the simulator (Fig. 3.10) using UnityTM with C#. To render the breast model,

we need to assign vertices and faces. As we mentioned before, the tetrahedral mesh were

generated from Tetgen, which includes a vertex file (Fig. 3.11), a face (Fig. 3.12) file and an

element file (Fig. 3.13). The vertex file contains the coordinates of the vertices (second to

last column). The face file contains the triangles of the surfaces (second to fourth column).

The element file contains the tetrahedrons (second to fifth column). Each number in the

face and element file is the index of the vertex. Unity can accept an OBJ file or an FBX

file, but can’t read Tetgen files directly. The mesh data structure in Unity is defined by an

array of vertex vectors and an array of triangles that are described by the vertex indices. We
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programmatically assigned the mesh in Start function in Unity based on the face file and

the vertex file. Hence the mesh is loaded once in the beginning when the simulation starts.

Figure 3.10: Simulated breast deformation. Left top: User input panel. Left bottom:
Patient’s orientation view panel. Right: Deformation view panel.

Figure 3.11: Vertex file.
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Figure 3.12: Face file.

Figure 3.13: Element file.

The NN models were trained with Python, and socket communication protocols were used

to bridge the backend. The simulation software has 3 panels: (1) a user input panel, (2) a

patient’s orientation view panel, and (3) a deformation view panel. The user input panel gets

input from the user on altering tumor size, glandular / fat ratio, anatomical plane (transverse

or sagittal), and position angle. Based on the user settings in this panel, upon submission,

the loaded breast model will reconfigure itself to the present user settings. The patient’s

orientation view panel will then display the corresponding position for the provided setting.

That helps the user plan and visualize patient’s position for treatment. The deformation

view panel shows the breast shape and the tumor’s (red ball’s) position corresponding to the

patient’s current position. Fig. 3.10 shows a sample scenario. The image shows the patient’s

model in a standing position. The simulator currently predicts the deformation with the NN
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model in 5 ms. The total run time, including prediction, rendering, and data communication

between Python and C#, is in the range of 300 ms to 500 ms. A video was uploaded [77] to

show the simulator.

3.8 Neural network error

The neural network training results were as follows: The mean absolute training error for

tumor was 0.0152 mm, and the validation error was 0.0168 mm. The breast deformation

training error was 0.0043 mm, and the validation error was 0.0048 mm. In our error calcula-

tion during training, we averaged the error of x, y and z axes, in order to obtain the average

nodal displacement error (NDE), the following inequality relationship can be used:

1/N
N∑
i=1

√
(u′i,x − ui,x)2 + (u′i,y − ui,y)2 + (u′i,z − ui,z)2

<= 1/N
N∑
i=1

(|u′i,x − ui,x|+ |u′i,y − ui,y|+ |u′i,z − ui,z|)

= 3 ∗ ρ(f(X; Θ), Y ).

(3.18)

Hence, for tumor, the training nodal displacement error (NDE) is less than 0.046 mm,

the average validation NDE is less than 0.050 mm; for breast, the training NDE is less than

0.013 mm and the validation NDE is less than 0.014 mm. Some other results are discussed

in the following subsections.

3.8.1 Breast surface displacement

Figs. 3.14 and 3.15 show color maps of breast displacement magnitude in different positions.

The maximum value in the scale corresponds to the maximum displacement of the point.

The visualization result was simulated in Unity. The simulation was performed starting from
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a lying-down patient’s position (as shown in Fig. 3.14(i) and 3.15(i)) and slowly changed

along the sagittal or transverse plane. It can be observed that the deformation magnitude

increases as the position angle increases (A lying position is shown in Fig. 3.14(i) at 12°, and

an upright position is shown in 3.14(v) at 88°.) Usually, the area close to the nipple has larger

deformation than the surrounding areas. There are two factors that affect the deformation:

glandular ratio and stiffness. Glandular ratio is the ratio of glandular tissue volume over

the total volume (which includes fat and gland). As the gland ratio increases from 0.33 to

0.66, the breast becomes heavier, and thus more deformation is expected. However, from the

figure, it can be observed that the deformation decreases, which happens because glandular

tissue has greater stiffness than fat (Eqn. 3.3). The effect of the glandular/ volume ratio

can be seen more clearly in the sagittal plane plot. Another observation we gained from this

visualization is that because the breast shape is not symmetrical, the deformation also varies

in different quadrants of the breast. For example, in Fig. 3.14 (ratio 0.33), the upper-inner

quadrant and lower-inner (left side view) quadrant are darker in color, which indicates that

they have more deformation.
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Figure 3.14: Transverse plane deformation (mm) at different angles.
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Figure 3.15: Sagittal plane deformation (mm) at different angles.

3.8.2 Large and small deformation and their error

In order to get a better insight into the quality of the simulation, we discuss two scenarios:

one with a small deformation and another with a large deformation. We calculated the

average NDE error and plotted the distribution of error percentage versus the magnitude

of error and the distribution of error percentage versus the displacement magnitude. The

reason is that although we used a hold-out validation and found the errors are rather small,

different scenarios have different displacements, ranging from small to large. The area that

has the largest deformation may not be the area with the largest errors. What we are doing

here is similar to the authors of [8]. Rather than using two scenarios, they calculated the

average error on their validation set. Fig. 3.16 to 3.21 show some color map and histogram

visualization of the displacement and the NDE against the FEA corresponding to breast dis-

placement. Fig. 3.16 and Fig. 3.17 are the surface nodal displacement magnitude. Fig. 3.18

and Fig. 3.19 are the displacement distribution from Fig. 3.16 and Fig. 3.17. Fig. 3.20 and

33



Fig. 3.21 are the NDE error when compare NN results with FEA simulation. The histograms

are separated into 5 bins. Table 3.4 shows the mean and standard deviations of the errors

based on the displacement magnitude for each bin. Figs. 3.18 and 3.20 represent the his-

tograms for large deformation, and Figs. 3.19 and 3.21 represent the histograms for small

deformation. For the displacement histogram in Fig. 3.18, the bin interval is 2.8 mm with

a maximum point displacement of 13.2 mm. Almost 50% of the nodes have a displacement

in the range of 0 to 2.8 mm, and the remaining nodes are spatially distributed in the other

bins of the displacement range.

Similarly, for the error histogram in Fig. 3.20, the bin interval is 0.003 mm. About 50%

of that nodal error is between 0 and 0.003 mm. A total of 90% of that error is below 0.009

mm. The largest error is 0.0158 mm, which is 800 times lower than the largest displacement.

In the error color map in Fig. 3.16, the largest errors are located in the side of the breast,

which is not the area with the largest displacements. The displacement color map indicates

that the displacement in the largest error ranges between 3 mm and 10 mm, which is more

than 190 times greater than the largest error.

For the small deformation in Fig. 3.17, the maximum error area is in the area where

the largest displacement occurs. The largest displacement is 4.94 mm, which is 2.7 times

smaller than that in the large deformation. Based on a comparison between the above two

scenarios for small and large deformations, it can be inferred that the maximum displacement

and maximum error are in the same region for smaller deformations and not in the same

region for larger deformations. The largest error we found for the small deformation was

0.0774 mm, which is almost 5 times larger than the largest error we found for the large

deformation. The bin interval for the smaller deformation is larger than the bin interval for

the larger deformation with a similar distribution. However, it is unclear whether the error is

large when the displacement is large, or the other way around. Table 3.4 shows more detail:
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the mean error increases as the displacement magnitude increases for both deformations. For

each bin, the mean error of the small deformation is larger. That indicates that the small

deformation has a larger error. This conclusion is the same as that in [8].

Figure 3.16: Large deformation.
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Figure 3.17: Small deformation.
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Figure 3.18: Large deformation. Displacement histogram.
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Figure 3.19: Small deformation. Displacement histogram.
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Figure 3.20: Large deformation. NDE error histogram.
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Figure 3.21: Small deformation. NDE error histogram.

38



Table 3.4: Mean and standard deviations of breast nodal displacements at large and small
deformation.

deformation\bin# 1 2 3 4 5

Large (mm) Mean 0.0013 0.0044 0.0072 0.0069 0.0073

Std 0.0019 0.0022 0.0030 0.0033 0.0021

Small (mm) Mean 0.006 0.025 0.0365 0.0507 0.0654

Std 0.0099 0.0083 0.0065 0.0075 0.0047

3.8.3 Tumor location prediction

For different patient’s position angles, the corresponding tumor locations are shown in Fig.

3.22 (transverse position plane) and Fig. 3.23 (sagittal position plane). The position sce-

narios were repeated for different glandular ratios, which are plotted in the same figure for

comparison. In the transverse plane, the tumor starts from the highest position and slowly

goes down. There is a little shift to the side (x plane) during deformation: about 0.3 mm.

The shift in the z plane is almost 6 mm. In the sagittal plane, the tumor starts from the

leftmost position and keeps moving right (x plane), with a little shift in the y plane of about

0.3 mm. The shift in the x plane is about 5 mm. The displacement magnitude decreases as

the glandular ratio increases, which is consistent with the movement of the breast.
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Figure 3.22: Transverse plane.

Figure 3.23: Sagittal plane.
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3.9 Discussion

The process flow we developed to simulate breast deformation has two parts: (1) simulation

of patient-specific data with FEA, and (2) building of a neural network for fast and accurate

computation. The process started with the segmented data, followed by the data prepro-

cessing. The raw data that were noisy and irregular were cleaned up and prepared for FEA

simulation. When assigning materials to different parts of the breast, one can use either of

two methods. The first is to generate a mesh for each part and assign material properties to

the meshes, and the second is to generate one set of mesh and assign material based on the

element location. The former is more accurate because the shape of each part is preserved,

but it requires careful boundary condition setup; hence, we chose the latter. The chosen

method for mesh generation can be inaccurate for tumor mesh generation yet accurate for

glandular tissue and fat. The reason is that when a part is small and located close to the

center of the breast, Tetgen generates a large tetrahedral element without preserving the

shape. In our case, the glandular tissue and fat were not an issue because they covered large

areas and were close to the skin surface. However, the tumor shapes were not preserved

because the tumor was small and relatively close to the center of the breast. In the future,

we will explore the accurate preservation of tumor shape.

We chose nonlinear material to ensure realistic simulation (skin, glandular tissue, and fat).

The material properties have wide variations that depend on which published data are used,

That may affect the accuracy as well. In order to reduce computation time, we constructed

an NN to learn the deformation.

3.9.1 Neural network

We built two NNs in parallel for the same input: one model for tumor center displacement,

and another for surface points’ displacement. The output can be predicted as either an
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exact position of each point or a displacement of the point. The problem with the output

as an exact position of each point is that the magnitude of the position output is large, and

that results in larger errors, which make NN training difficult. Since displacement is small

compared to the position value, NN won’t learn the displacement well. Our NN model’s

final training error and validation error are both very low. We created several color plots for

different gland ratios with different patient angles (Fig. 3.16 to 3.21).

3.9.2 Displacement error

As presented before, we found that the error for a small displacement is larger than the

error for a large displacement. It is an interesting observation because we expected that a

large deformation would be harder for the NN to learn. One reason for the result might be

that when the deformation is small, most of the points’ displacements are close to 0, and

can be regarded as noise. Those values do not give much information compared to those in

the large deformation case. Based on the standard deviation from Table 3.4, for the first

bin, the standard deviation of error is larger than the error itself, and this is true for both

deformations. Thus, when the displacement is small, the error varies more from the mean,

which indicates that the prediction is noisy around small displacements. Because of the

large errors, the smaller deformation also has larger standard deviations. From the above

analysis, we can see that the NN fits better for the larger deformation. However, even so,

our errors are very small compared to those found in some of the similar research on tissue

deformation, [62] for example. The authors use ML to predict breast shape after breast-

conserving surgery. Their error was around 1 mm. Our observed validation error, 0.0048

mm, is much lower.
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3.9.3 Breast deformation

From Figs. 3.14 and 3.15, we can observe that when the glandular ratio increases, the defor-

mation magnitude decreases. That indicates that the stiffness affects the deformation more

than the density does. In addition, the breast deformations in the inner and outer quadrants

are not uniform because the breast shape is not symmetric. To better understand our result,

we performed two statistical experiments on large and small deformations. We found that

the trained NN works better with the large deformation scenario, perhaps because when the

deformation is small, the values are more random or noisy than for a large deformation.

3.9.4 Tumor location

As mentioned before in Section 3, the geometry of the tumor’s shape was not well preserved

in our research. Like Pathmanathan [73], we did not perform tumor shape corrections to

present an accurate tumor shape. In fact, earlier researchers used a ball shape or a single

element [73] [46] [76] to represent a tumor, without retaining the actual tumor shape. One

advantage of our work is that we attempted to use an actual tumor model segmented from a

patient for FEA simulation. The result shows that the tumor’s movement is consistent with

the breast’s deformation.

We are not aware of any previous work that did the same study as we did, but there

have been similar efforts. Tonutti et al. [46] calculated a mean absolute position error for

tumor between 0.1 mm and 0.2 mm. Their research focused on the tumor position when

different forces were imposed on brain anatomy. They represent the tumor with a sphere

and calculate the error based on all the points in the mesh. The authors’ physics is more

complex than ours because they used other forces in addition to gravity. Also, instead of

predicting the center of the tumor, they predicted each point of the tumor. Hence, it is

understandable that their error is much larger than ours. Zolfagharnasab et al. [62] achieved
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a pairwise average distance of 0.827 mm in predicting breast shape after conserving surgery.

While the above two examples had different purposes, they give a good indication of how

much error is acceptable for tumor location prediction.
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CHAPTER 4

VALIDATION OF REAL-TIME BREAST
DEFORMATION

In Chapter 3, we used the data from online data set. We did a further validation of how

gravity affects breast deformation in this chapter. As accessing real patient’s data is chal-

lenging, we performed the experiment on a breast phantom and collected MRI images from

different positions. To find the material properties, we performed an optimization approach

as in [43,47]. We then built an FEA model and simulated breast deformation against differ-

ent angles along the anatomical plane. Two NNs were constructed to map the gravity angle

to the surface nodal displacements and a tumor center location. We performed a parametric

study against different angles along an anatomical plane to learn the gravitational effects,

and we studied NNs’ ability to handle gravitational effects on breast deformation and tumor

location.

4.1 Validation procedure

Fig. 4.1 to Fig. 4.5 show our overall process. The process is an extension to the work pre-

sented in [43], which studied the accuracy of FEA prediction on a breast phantom at different

patient’s position. We extended their process by adding the NN prediction step and vali-

dated the result with the MRI images.

We started by capturing MRI scans of the breast from different angles. Then, we registered

the breast images to the same coordinates. After preprocessing of the breasts, the tetrahedral

mesh was generated. After that, we implemented Visentin et al.’s [43] algorithm to find the
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properties of the breast. We validated the result with a different angle. Later, we generated

breast deformations under different angles. Two NNs were constructed to find the relation

between the gravity direction and breast deformation, and between the gravity direction and

the tumor center. There were 19 tumors in the breast. We chose one for our prediction. The

same method could be extended to the other tumors. Finally, we compared the predicted

breast shape and the MRI images taken at 25◦ and 50◦.

Figure 4.1: Overall process, step 1.
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Figure 4.2: Overall process, step 2.

Figure 4.3: Overall process, step 3.
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Figure 4.4: Overall process, step 4.

Figure 4.5: Overall process, step 5.
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4.2 Data preparation

4.2.1 MRI scans collection

We purchased a CIRS 0731 (CIRS Inc.) breast phantom. The breast shape is irregular,

and it mimics the heterogeneous breast tissue accurately. There are 19 internal stiff masses,

whose diameters range from 3 mm to about 10 mm. We picked one tumor for our study, as

shown in Fig. 4.7. is the tumor. Fig. 4.6 shows the set-up for our MRI image extraction.

We used a 3T Siemens MRI scanner, and we chose a T2-weighted sequence for its clarity

on tumor imaging. The slice thickness was 0.8 mm, and the resolution was 256 x 256. We

don’t have a breast coil, so we used a 20-channel head coil instead. To fit the breast into

the coil, we removed the cover of the breast base, and replaced it with a paper cover. There

was a small piece of Velcro at the top of the breast model, another on top of the 20-channel

head coil, and two free Velcro straps to use for anchoring everything in place in a lateral

orientation. 3 fiducial markers were placed on the back plane for registration purposes. Scans

were captured at the left lateral and right lateral position. We also captured scans at 25°

and 50° for further validation.
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Figure 4.6: MRI scan experiment set up.

Figure 4.7: Tumor.
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4.2.2 MRI images preprocessing

The generated MRI images were imported into a software called 3D slicer [11] for segmen-

tation and 3D reconstruction. Arun et al.’s [10] algorithm was implemented to register all

breasts to the same coordinate system with the help of the markers. The surface of the breast

was decimated and smoothed using Z-painting function in MeshLab. We used TetGen [12]

and generated a 4-node tetrahedral mesh for the phantom. When there were intersections on

the surface mesh, TetGen failed to generate a tetrahedral mesh. We identified those points

and fixed them with MeshMixer. There were 146,911 points and 579,990 tetrahedrons. More

simplification of the mesh will cause a failure in TetGen. We observed that more than half of

the tetrahedrons belong to the back plane. Fig. 4.8 shows the tetrahedral mesh we generated.
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Figure 4.8: Breast tetrahedral mesh.

4.3 Deformation computation

4.3.1 Simulation setup and boundary conditions

To keep the simulation consistent, we performed the FEA simulation using Abaqus. 2 times

of gravity forces was added to deform the breast from one lateral position to another. To

achieve good results from FEA, the boundary conditions play an important role. Visentin

et al. [43] achieved good results by cutting the entire back plane, and fixed the back of

the breast. That also made the simulation easier. However, after finding the best material
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properties and calculating the average closest point-to-point (PTP) distance of the whole

breast surface, the average error was large (more than 8 mms). We had to explore how to

improve the boundary conditions. The first thing we came up with was to include the back

plane. We performed two experiments on how to include the back plane. Fig. 4.9 shows the

boundary conditions. The left identifies the back plane tetrahedrons and preserves the shape

of the back plane. The right is similar but cuts out the back of the plane. The left set-up

has an error of 5.37 ± 3.77 mm, and the right set-up has a lower error, 4.93 ± 3.29 mm.

That is a little surprising because the left one has more accurate boundary conditions. We

think that one reason may be that the left set-up is harder for FEA to simulate and hence

results in a larger number of numerical errors.

Figure 4.9: Abaqus boundary condition. The left preserves the shape of the back plane.
The right does not preserve the shape.

4.3.2 Material estimation

We implemented Visentin et al.’s algorithm [43] for material estimation. Neo Hookean was

the material we chose; Eq. 4.1 gives the strain energy density function for incompressible
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material,

W = c1(I1 − 3), (4.1)

where c1 is a material constant. I1 = λ2
1+λ2

2+λ2
3 , and the λ are the eigenvalues of the stretch

tensor [4]. Fig. 4.3 shows our detailed implementation. The basic idea is to guess an initial

value of the material properties and, based on the FEA simulation, estimate the next value

of the material properties. The error was calculated based on the closest PTP distance of

the nipple. The iterative closest point (ICP) was used to identify the corresponding points.

When c1 is too small, the breast deformation becomes very large, and hence causes a long

running time and even failure to converge to a solution. Hence, the optimization boundary

should be set carefully before the optimization process.

Broyden–Fletcher–Goldfarb–Shanno (BFGS) was chosen as the optimization method. The

whole process was implemented in Python; the Scipy package was used for the optimization

method. As Abaqus uses an old version of Python, we were not able to import both packages

into the same script. Hence, we created a socket communication between the two scripts.

The client side was responsible for running Abaqus and reading the result, and the rest was

on the server side. The best result of c1 was at 420 PA, and the nipple’s PTP correspondence

error was 4.20 mm. We simulated a different scenario using the optimized material at 25°,

and compared the FEA simulation with the ground truth. Fig. 4.10 shows the error plot.

The average error was 3.63 ± 1.12 mm. The maximum error was 7.3 mm and occurred at

the bottom of the breast. That is the part that connects to the boundary plane, which was

almost fixed. Most of the area had an error between 3 mm and 4 mm. To calculate the

tumor center position, we moved the tumor from the upload position (no gravity) with a

displacement equal to the center of the tetrahedral element closest to the tumor. The error

of the tumor was 3.647 mm. Many things can cause such errors. In the MRI images, we

can see the breast has a skin-like layer, which we did not take into account in the material
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Figure 4.10: Material estimation error plot between FEA and NN at 25°. The error is
calculated as the closest PTP distance and is calculated between closest points of two
breasts without including the back plane (shown in white).

model (Fig. 4.11). That might be the largest source of error. Another source of error could

be the simplification of the material we chose. Finally, we used the nearest PTP distance to

calculate the error, but in reality, we don’t know the exact mapping between the points.
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Figure 4.11: MRI image.

4.4 Neural network for breast deformation and tumor location

We implemented an ANN with the same architecture as in previous chapters for surface

nodal displacements prediction and tumor center prediction. The only difference is we didn’t

include gland / fat ratio because we assumed a homogeneous material. We generated ground

truth from Abaqus, starting from a gravity angle of 0° and ending at 360°, with an interval

of 15°. Adam was chosen as the optimizer, and the learning rate was 0.00001. We used

a mean absolute error (MAE) for the two scenarios. We performed a hold out validation

during training, and split the data into 80% used for training and 20% used for testing (left

side in Fig. 4.12).
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Figure 4.12: Training, testing and validation set.

4.5 Results obtained from neural network

We generated a separate set of data from Abaqus for validation, which are 10° apart from

those in the training set (right side in Fig. 4.12). The validation data includes both the

transverse and sagittal planes (a total of 48 scenarios). We trained the NN for 30,000

iterations, and Tensorflow was used to construct the NN. In breast deformation prediction,

The training error was 0.0358 mm, and the testing error was 0.0415 mm. In tumor center

prediction, the training error is 0.0731 mm and the testing error is 0.0896 mm. Since we

average the error among x, y and z axes, we need to transfer the error to PTP distance. We

can use Eqn. 4.2,
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Table 4.1: Errors on tumor and breast deformation. The error of tumor is the center
distance. The breast deformation error is the average PTP distance in Training, testing
and validation set. In 50°, we used the closest PTP distance.

Tumor error (mm) Breast deformation error
Training (compare NN with FEA) ≤ 0.219 ≤0.107
Testing (compare NN with FEA) ≤0.269 ≤0.124
Validation (compare NN with FEA) 0.176 0.192
50° (compare NN with MRI data) 3.65 2.69

1/N
N∑
i=1

√
(x′i − xi)2 + (y′i − yi)2 + (z′i − zi)2

<= 1/N
N∑
i=1

(|x′i − xi|+ |y′i − yi|+ |z′i − zi|)

= 3 ∗ ρ(f(X; Θ), Y ).

(4.2)

The result is shown in Table 4.1. Training, testing and validation are the comparison

between NN and FEA result. In order to directly compare the result with the real breast

data, we took MRI images of the breast at 50°. The NN prediction displacement of tumor

at 50° is 10.617 mm. However, this does not indicate that our error mainly come from NN.

We compared the result with [43], since they are using the same breast model, but they only

compared the FEA result with the MRI images. They found the error of the breast surface

displacement is between 2.499 mm to 3.813 mm from different angles, and their tumor error

is a little under 2 mm. Hence, our result is relatively close to what they achieved. We can

also concludes the main error source comes from the FEA part. We will further discuss the

result in the following section.
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4.5.1 Neural Network deformation prediction

Fig. 4.13 and Fig. 4.14 show the breast deformation predictions obtained using NN. The final

shape of the prediction shows a good match with the ground truth. Fig. 4.15 and Fig. 4.16

show the breast deformation at different angles. We normalized the color with respect to

the largest and smallest nodal displacement. The displacements were calculated against

the upload position. As one would expect, the breast deformation is small when the angle

is small, and increases when the angle increases. The breast nipple has the largest nodal

displacements; the displacements slowly decrease as the nodal point locations are further

away from the nipple.
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Figure 4.13: Overlap the simulated breast with the ground truth. The solid breast is the
ground truth taken from the MRI images at 25° in a left lateral position, the transparent is
the breast at upload position (left picture) and after deformation using NN (right picture).

Figure 4.14: Similar to Fig. 4.13 except the right picture shows the shape after deformation
at 50°.
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Figure 4.15: Transverse plane deformation (mm) at different angles.
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Figure 4.16: Sagittal plane deformation (mm) at different angles.

Figure 4.17: NN error plot at different angles. The error is the PTP distance between NN
and FEA simulation.
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4.5.2 Nodal displacement error

Fig. 4.17 shows an error plot of NN compared to FEA at several angles. When the angle

is small, the largest error area (red) is close to the back plane. As the angle gets larger,

the largest error slowly shifts to the nipple area. The error gets larger as the angle gets

larger because of the increasing displacement. The error distribution changes quite a lot in

different angles. Even so, the error is still quite small.

Fig. 4.18 is the error distribution plot. As with the displacement distribution plot, the

vertical axis is the percentage of nodal points that fall within the error range. As can be

seen, more than 60% of the points fall within 0.19 mm. The number of points with an error

more than 0.67 mm is very small. The largest error is 0.96 mm, which is less than 3.8% of

the largest displacement.

Figure 4.18: Error distribution plot (mm) between FEA and NN in the validation set.
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4.5.3 Tumor location

Fig. 4.19 and Fig. 4.20 show the tumor center displacement at different angles. The plots

in Fig. 4.19 and Fig. 4.20 are 2D because the tumor displacement along the third axis is

very small (≤ 0.75 mm). The axes correspond to the axes in Fig. 4.16. and Fig. 4.15. In

both cases, the displacement magnitude along the x-axis decreases as the angle increases.

The reason is that the angle alignment between gravity and the x-axis becomes larger, so

the effect of gravity is reduced. As the angle of gravity shifts towards y-axis (Fig. 4.19) and

z-axis (Fig. 4.20), the tumor displacement increases along the two axes.

Figure 4.19: Tumor center location at different angles along sagittal plane.
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Figure 4.20: Tumor center location at different angles along transverse plane.

4.6 Discussion

We have to make many engineering decisions in this

project. During FEA simulation, we chose to use a homogeneous material to describe the

entire breast. While it might be more accurate to separate the breast into skin, tumor, and

other parts, the results we achieved are good for our simulation. In fact, the authors of [43]

and [59], who purchased the same breast phantom as us, also used a homogeneous material

for their simulation. The back plane of the breast is a structure with a curved shape. Cutting

the back plane will greatly reduce the number of tetrahedrons, but we found the error was

large during material optimization. We explored two ways to include the back plane. When

choosing the NN structure, we used the shallow NN for the deformation prediction because

that approach achieved good accuracy in the literature. We took the average of the sum of
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the errors in the x, y, and z directions for training purposes, and converted to PTP distance

error. Later, we collected statistics on the PTP displacement in the validation data set. The

error turned out to be quite small. We overlapped the NN result onto the data collected

from MRI scans, and found good matches.
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CHAPTER 5

AR DEPLOYMENT

AR and virtual reality (VR) becomes popular as more technologies are available recently.

Both technologies help users interact with the environment. The difference between the two

is AR fuses the virtual objects with the real world environment and VR creates a completely

separate virtual world. In medical simulation, AR has been explored in endotracheal intu-

bation [74], laparoscopic surgery [69], ventriculostomy [70] and other procedures. According

to Frenk et. al [71], AR provides students with rich contextual learning that enhances their

training skills. Hence, extending our application in an AR environment can be helpful for

medical training or simulation. However, a challenge for us to extend to an AR envrionment

is the integration between AR and ML. The AR platform exists today cannot be integrated

with the NN model we trained. We did some exploration in this chapter and found the result

promising.

People have been using AR for deployment in mobile devices. Fig. 5.1 is an example

that uses AR to show different places’ names on a street. Android and iOS phones and

tablets are all capable of AR app deployment. Another very popular device is Hololens,

which use eye glasses to render scenes in front of people’s field of view. Different platforms

are available for AR development. ARKit is the software development kit (SDK) for iOS

devices. It is integrated with Xocde natively. ARCore is the SDK for Android and pairs

with Unity. Vuforia is a computer vision algorithm library that can be used for maker or

makerless based tracking in AR environment. We chose to use Vuforia because it can be

integrated with Unity. In terms of hardware, we tested an Android tablet and an iPhone.
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In iPhone 12, it took a few minutes to build an app, and it can only stay in iPhone for 7

days. iPhone also requires us to use Mac because we need to use XCode other than Unity.

Compared to iPhone, Android tablet doesn’t have a time restriction and the deployment

takes within 1 minute. The deployment is also simpler since it only requires Unity. Hence,

Andoid tablet was chosen. Specifically, we used Samsung Galaxy Tab S6 Lite as our device.

It has a 4GB RAM with an Exynos 9610 processor. Since we are using Unity and Vuforia,

the same program we developed can be easily adapted to other devices, including HoloLens

and Apple devices.

Figure 5.1: AR app for street view [2].

5.1 Image tracking

In Vuforia, there is marker based and markerless based tracking. In marker based tracking,

the user can use a QR code, a 3D object and a 2D image. The marker should have a good

number of feature points. In markerless based method, Vuforia uses data from sensors such

as gyroscope and accelerometer to place objects in the environment. We tested the tracking
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with a 3D object approach. We drew some markers on the surface of the breast and tested

with our AR application, shown in Fig 5.2. Unfortunately, Vuforia is not able to detect the

breast. The reason might be that our object is too large. Hence, we chose to use a marker

based method with a 2D image. We printed the marker on a piece of paper and placed

the virtual object on the marker. One can upload the image to Vuforia website, and it will

evaluate the quality of the marker. The better the quality, the better it is able to track.

Fig. 5.3 is the breast and label in Unity. The breast is a child object of the label. Hence we

can place breast relative to the label and move breast in AR environment.

Figure 5.2: Tracking breast with a 3D object.
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Figure 5.3: Breast placement in Unity.

5.2 Hardware and software architecture

Fig. 5.4 is the architecture for the AR implementation. We kept the NN prediction on a

desktop, and the AR was deployed to the Android tablet. The data communication between

the two devices is through TCP. The desktop is the server and the tablet is the client.

The reason that desktop is the server side is desktop stays in the same place and its IP

address does not change. In some AR / VR app, they have a requirement of 60 frames per

second (FPS). This is not a requirement for us currently. In fact, one big challenge in AR

during packet transfer in networking is the speed. Our goal is not to have the breast deform

together with the physical breast in real time. We designed an interface to ask the user to

enter gravity direction and the app will deform accordingly.
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Figure 5.4: AR architecture implementation.

5.3 User interface

Fig. 5.5 is the AR app we developed. The user can change the position of breast using the

x, y and z sliders. The “scale value” is used to change the size of the breast. After setting

the breast position and scale, the user clicks the “Position Button” to reconfigure the breast.

The plane drop down is used to switch between saggital and lateral plane. There is an angle

slider bar that the user can use to set gravity angle, which is measured from vertical direction

to current breast position. After selecting an angle, the user can press “Angle button” to

submit current breast angle. The breast will be reconfigured with the breast shape after

it receives data from the Desktop’s NN model prediction. Fig. 5.6 is the AR app when we

include tumor. In order to see the tumor, we changed the transparency of the breast model.

Fig. 5.7 is a photo of a user when he is using the AR app. We also uploaded a video to as a

demo [78].

71



Figure 5.5: AR app interface.

Figure 5.6: Tumor in AR.
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Figure 5.7: A user is using the AR app.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

This thesis explored the accuracy of using NN for breast deformation simulation due to

gravity. In the first part of the thesis, we used patient-specific breast data and did FEA sim-

ulation against different patient’s positions and material properties. The FEA simulation

results are used as training data to construct two NNs, one to predict breast surface nodal

displacement and another to predict the tumor center’s displacement. The NN models were

used to build a surgical simulator that can predict the breast deformation under different

breast material structure and patient’s positions. The average point’s validation NDE is less

than 0.014 mm for breast, and the tumor center NDE is less than 0.05 mm. The errors were

smaller compared to some similar research we mentioned before [46] [62]. The prediction

time of NN is 5 ms and satisfies real-time requirement. In the second part, we collected data

from a breast phantom, which mimics breast deformation accurately. We segmented out the

tumor and did a 3D reconstruction. The 3D model was used to generate a tetrahedral mesh,

and the mesh was used for FEA simulation. We implemented an iterative optimization ap-

proach to find the breast material properties. The average PTP error is 3.63 ± 1.12 mm at

25°. Different scenarios were generated to mimic different patient’s positions. We then used

the generated scenarios as the ground truth and built two NNs to find the mapping between

gravity direction and the nodal displacements or tumor center location. As validation set

shows, more than 40% of the points had a displacement of more than 10 mm. That proved

the effect of gravity in breast deformation simulation. The NN average PTP error is 0.19 ±

0.12 mm when compared to FEA in the validation set. We overlapped the NN prediction

results over the phantom’s 3D data points at 25° and 50° and found good matches. Since 25°
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was used to calculate error for material property, we used 50° to calcuate the error between

NN prediction and the 3D MRI constructed model. The error is 2.69 ± 0.7 mm. The tumor

center error is 3.65 mm. The error is small and it shows that NN is a promising method for

real-time breast deformation prediction in a clinical environment.

There are a few things we plan as the future work of the project. The simulation software

need to be improved to perform real-time deformation prediction inside an operating room.

We can achieve that by incorporating a motion-capture system to register a patient’s move-

ment in real-time and predict breast deformation and tumor location based on sensor data

from the patient. What’s more, currently, C# does not have a native support for ML, and

the communication between Unity and Python programming environments is done through

a socket. The I/O bound is the main bottle neck because of the large number of surface

points, increasing the total run time to between 300 ms to 500 ms. Other methods of com-

munication should be to be explored to improve the performance. Besides, our approach can

be extended to create a generalized NN model that can handle different breast anatomy and

shapes.
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Lorente, D., Serrano-López, A., Mart́ınez-Sanchis, S., Monserrat, C., Mart́ın-Guerrero,
J.D., 2017. A finite element-based machine learning approach for modeling the mechan-
ical behavior of the breast tissues under compression in real-time. Computers in biology
and medicine 90, 116-124.

[9] hang, J., Zhong, Y., Gu, C., 2018. Deformable models for surgicalsimulation: A survey.
IEEE reviews in biomedical engineering 11,143-164.

[10] Arun, K Somani and Huang, Thomas S and Blostein, Steven D, 1987. Least-squares
fitting of two 3-D point sets. IEEE Transactions on pattern analysis and machine intelli-
gence, 698-700

[11] Pieper, Steve and Halle, Michael and Kikinis, Ron, 2004. 3D Slicer. 2nd IEEE interna-
tional symposium on biomedical imaging: nano to macro, 632-635

[12] Si, H., 2015. Tetgen, a delaunay-based quality tetrahedral mesh gen-erator. ACM Trans-
actions on Mathematical Software (TOMS) 41,1–36.

76



[13] Regina Bailey. Anatomical Position: Definitions and Illustrations.
https://www.thoughtco.com/anatomical-position-definitions-illustrations-4175376

[14] Council, N.R., et al., 2001. Mammography and beyond: developing technologies for the
early detection of breast cancer. National Academies Press.

[15] Council, N.R., et al., 2001. Mammography and beyond: developing technologies for the
early detection of breast cancer. National Academies Press.

[16] Gittleman, M.A., 2003. Single-step ultrasound localization of breast lesions and lumpec-
tomy procedure. The American journal of surgery 186, 386–390.

[17] Barrett, A., 2015. Preoperative breast MR imaging: its role in surgical planning. Radi-
ologic technology, 86(5), pp.499-510.

[18] Kasemsiri, P., Solares, C.A., Carrau, R.L., Prosser, J.D., Prevedello, D.M., Otto, B.A.,
Old, M., Kassam, A.B., 2013. Endoscopic endonasal transpterygoid approaches: anatom-
ical landmarks for planning the surgical corridor. The Laryngoscope 123, 811–815.

[19] Eiben, B., Vavourakis, V., Hipwell, J.H., Kabus, S., Buelow, T., Lorenz, C.,
Mertzanidou, T., Reis, S., Williams, N.R., Keshtgar, M. and Hawkes, D.J., 2016. Symmet-
ric biomechanically guided prone-to-supine breast image registration. Annals of biomedical
engineering, 44(1), pp.154-173.

[20] Zhang, J., Zhong, Y. and Gu, C., 2017. Energy balance method for modelling of soft
tissue deformation. Computer-Aided Design, 93, pp.15-25.

[21] Patete, P., Iacono, M.I., Spadea, M.F., Trecate, G., Vergnaghi, D.,Mainardi, L.T.,
Baroni, G., 2013. A multi-tissue mass-spring model for computer assisted breast surgery.
Medical engineering & physics 35, 47–53.

[22] Azar, F.S., Metaxas, D.N., Schnall, M.D., 2000. A finite element model of the breast for
predicting mechanical deformations during biopsy procedures, in: Mathematical Methods
in Biomedical Image Analysis, 2000. Proceedings. IEEE Workshop on, IEEE. pp. 38–45.

[23] Comas, Olivier, et al. ”Efficient nonlinear FEM for soft tissue modelling and its GPU
implementation within the open source framework SOFA.” International Symposium on
Biomedical Simulation. Springer, Berlin, Heidelberg, 2008.

[24] Taylor, Z.A., Cheng, M., Ourselin, S., 2008. High-speed nonlinear finite element analysis
for surgical simulation using graphics processing units. IEEE transactions on medical
imaging 27, 650–663.

[25] Joldes, G.R., Wittek, A., Miller, K., 2010. Real-time nonlinear finite element com-
putations on gpu–application to neurosurgical simulation. Computer methods in applied
mechanics and engineering 199, 3305–3314.

77



[26] Nakao, M., Minato, K., 2010. Physics-based interactive volume manipulation for shar-
ing surgical process. IEEE Transactions on Information Technology in Biomedicine 14,
809–816.

[27] Courtecuissea, H., Kerfridena, P., Duriezb, C., Allardb, J., Bordasa, S.P., Cotinb, S.,
2013. Real-time simulation of surgical cutting in biological tissues using a semi-implicit
time integration scheme. Methodology 12, 17.

[28] Bro-Nielsen, M., Cotin, S., 1996. Real-time volumetric deformable models for surgery
simulation using finite elements and condensation, in: Computer graphics forum, Wiley
Online Library. pp. 57–66.

[29] Cai, Y., Chen, L., Yu, W., Zhou, J., Wan, F., Suh, M., Chow, D.H.k., 2018. A piecewise
mass-spring-damper model of the human breast. Journal of biomechanics 67, 137–143.

[30] Patete, P., Iacono, M.I., Spadea, M.F., Trecate, G., Vergnaghi, D., Mainardi, L.T.,
Baroni, G., 2013. A multi-tissue mass-spring model for computer assisted breast surgery.
Medical engineering physics 35, 47–53.

[31] Roose, L., De Maerteleire, W., Mollemans, W. and Suetens, P., 2005, May. Validation of
different soft tissue simulation methods for breast augmentation. In International congress
series (Vol. 1281, pp. 485-490). Elsevier.

[32] Xu, L., Lu, Y., Liu, Q., 2018. Integrating viscoelastic mass spring dampers into position-
based dynamics to simulate soft tissue deformation in real time. Royal Society open science
5, 171587.

[33] Azar, F.S., Metaxas, D.N., Schnall, M.D., 2001. A deformable finite element model of
the breast for predicting mechanical deformations under external perturbations. Academic
Radiology 8, 965–975.

[34] Del Palomar, A.P., Calvo, B., Herrero, J., López, J., Doblaré, M.,2008. A finite element
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