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ABSTRACT

This work will present a series of developments of geometric heat flow method

in robot motion planning and estimation. The key of geometric heat flow is to

formulate the motion planning problem into a curve shortening problem. By

solving the geometric heat flow, an arbitrary initial curve can be deformed to a

curve of minimal length, which corresponds to a feasible motion. Preliminary

theories and algorithms for motion planning based on geometric heat flow have

been developed for driftless control affine systems. The main contribution of

this research is to extend the algorithm to robotic systems, which are dynamic

systems with drifts and different types of constraint. Early stages of the

research focus on adapting the algorithm to solve motion planning problems

for systems with drift. To tackle systems with drift, actuated curve length and

affine geometric heat flow is proposed. The method is then enriched to solve

robot gymnastics motion planning, in which the effect of state constraints

is encoded into curve length. Free boundary conditions are also studied to

enforce the conservation of the robot’s momentum. The second stage of the

research focus on the construction of the geometric heat flow framework for

robot locomotion planning, which involves hybrid dynamics due to contact.

The activation and deactivation of phase-dependent constraints are controlled

by activation functions. Lastly, to solve 3D problems in robotics, planning

and estimation in SO(3) space is formulated using the geometric heat flow

method.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

In the past decades, robotics hardware has become more and more reliable,

especially for floating based robots and soft robots, making the vision of agile,

walking, diving and jumping robots closer to reality. Such robots include,

among others, the MIT Cheetah [1], the bipedal robot Cassie robot made

by Agility Robotics, Salto robot [2] and BR2 soft robot [3]. The motion of

floating robots are agile and dynamic, which need to be carefully planned

and controlled. An badly chosen trajectory of the robot usually results

in catastrophic failure, such as a humanoid robot landing on head after

performing an somersault. In contrast, a well-chosen trajectory will need

minimum effort of the low level tracking controller and can result in safer

motions. On the other hand, the pose estimation of soft robot is challenging.

This is mainly because the curvilinear nature of soft robot, which excludes

the direct use of traditional sensors.

Several challenges arise when planning the motion for robot. Nonlinear

and hybrid dynamics, underactuation, varying type of constraints are the

main difficulties for motion planning of floating robots. Thanks to the rapid

development of computation power, the main stream of robot motion planning

in the past decade and now are optimization based methods. Generally, the

optimization based methods formulate the motion planning problem into an

optimal control problem. Indirect and direct methods are two branches of

solving optimal control problem. Indirect methods tend to find necessary

and sufficient conditions analytically, and then discretize these conditions,

constructing a constrained parameter optimization problem. For example,

Hamilton-Jacobi-Bellman (HJB) equation is usually solved in direct method.

The indirect method encounters difficulties for complex constraints introduced
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by robotics systems. More recent development on optimal control is direct

method and numerous algorithms has been proposed. The direct methods

discretize the problem first and then convert the optimal control problem

to a constrained parameter optimization problem. These methods rely on

powerful nonlinear programming solvers that have been developed recently.

Among the numerous algorithms, direct collocation method [4] [5] [6] is an

efficient way for planning motions and finding the optimal control, where the

system dynamics is encoded as equality constraints between adjacent grids.

On the computational side of optimization-based method, different nonlinear

solvers are used, such as fmincon in Matlab, Snopt and IPOPT. To most of the

robotics researchers, the bulk of the research efforts are on the formulation

from robotics systems to optimization problems, however, the optimization

solvers are black boxes, therefore it is hard to analytically make improvement

if the motion given by the solver is unsatisfactory.

Motion planning using geometric heat flow (GHF) is a new technique in

motion planning, which relies on formulating the motion planning problem

into a curve shortening problem and solve the motion using partial differential

equations. In [7] and [8], fundamental theorems and algorithms are proposed

for driftless control affine system with non-holonomic constraints and obstacle

avoidance constraints. The method is a homotopy method: given an initial

state and a final desired state, xi and xf respectively, and an arbitrary curve

joining xi to xf in state-space, the method deforms the curve into a curve

of minimal length, which corresponds to an admissible curve joining xi to

xf . The key step is to build a customized Riemannian metric that defines

the curve length. It is shown that in a driftless control affine system, the

convergence to a feasible motion is guaranteed for any initial guess, under

some proper assumptions. The evolution of trajectory can be analytically

represented by geometric heat flow. The solving process is done using PDE

solver whose structure is usually clear to users.

To scale up the scope of application for more complex robotics systems,

the geometric heat flow method needs to be reconstructed and specialized

in several directions. This work is a collection of developments on these

directions, which will be introduced in the following section.
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1.2 Contributions

• First, the method need to be adapted to system with drift. In most

of the robotics systems, the direct input is usually actuation forces or

torques applied on the robot’s joints. These inputs steer the robot’s

position and orientation implicitly by directly steering the acceleration.

This ”double integrator” nature introduces a drift term to the system

dynamics, which can be expressed as

ẋ = Fd(x) + F (x)u

in general, where Fd(x) is the drift term, and F (x)u is the control

affine term with control u. From a theoretical point of view, the

Chow-Rashevski theorem provides us with conditions under which a

non-holonomic system without drift is controllable [9], but with the

presence of a drift term, no equivalent result is known: the general case

of controllability of nonlinear systems with drift is still a largely open

problem. We extended the geometric heat flow to encompass dynamics

with drift in [10] and we term the resulting flow the affine-geometric

heat flow (AGHF). The method works by “deforming” an arbitrary path

between xi and xf into a curve of minimal actuated curve length, which

corresponds to an almost feasible trajectory for the system with drift.

The actuated curve length is the length of the curve x(t) after actuated

by the drift term.

• Second, the method should handle conserved quantity and state con-

straints. This capability is particularly crucial for robot motion planning

with no interaction from environment. For dynamics which have con-

served quantities, obtaining the boundary conditions (BC) is one of

the main issues. Indeed, the boundary conditions assign specific values

to these quantities, and these cannot be altered during the motion by

the controls. In addition, the states are in general constrained due to

hardware limitations. A typical but challenging task in this ca tegory is

gymnastics planning, where the robot is in the air, and the momentum

is conserved due to the absence of contact forces. Furthermore, the

joints have limited range of motion, which prohibit to maintain a desired

pose by spinning the limbs as flywheels. In [11] and [12], we made such
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extensions and generated motions for robot gymnastics. Transversality

conditions are equipped to the AGHF framework to allow free BC, so

that the AGHF can automatically find the BC that conserve the mo-

mentum and avoid bad choices of predefined BC. New states are added

to keep track of the violation of different types of state constraints -

equality and inequality constraints. The curve length is augmented such

that violation of state constraint results in a large curve length. With

the new version of AGHF frame work, a variety of robot gymnastics

motions can be generated.

• The third specialization is to plan motions for legged robots, whose

dynamics is hybrid. Planning dynamic motions of legged robots has

become an increasingly important topic, due in part to improved robot

design and hardware, and in part to higher on-board computational

capacity. The major difficulty for legged locomotion planning lies in its

hybrid nature: the dynamics of legged robots is governed by a set of

equations and constraints depending on whether there is contact with

the ground. Hybrid systems are well known to be difficult to handle; in

fact, open questions remain even in the case of linear dynamics [13]. This

difficulty stems in part from the fact that most motion planning methods,

including the earlier AGHF framework [12], do not admit natural or

obvious extensions to handle hybrid dynamics, often resulting in ad-hoc

modifications that are difficult to analyze. To carry out this adaption,

in [14], we show that the geometric method we proposed for motion

planning extends naturally to handle hybrid dynamics. Precisely, with

the switching time for different dynamics predefined, we approximated

the switching using some customized activation functions. Then we show

how the Ansatz developed in [7, 10, 12], contending that motion planning

problems can be encoded into Riemannian metrics with the help of these

activation functions, can be applied to plan legged locomotion. Moreover,

a new mechanism is created to automatically plan the switching time of

different dynamics, which is capable of generating more natural motions.

• The last specialization is focusing on soft robot estimation. The pose of

a soft robot arm is characterized by the position and orientation of each

cross section along its fixed length. Therefore, the pose is a function of

a single parameter – the length, which is analog to the time in motion
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planning problem. Therefore, the pose estimation of soft robot arm is

equivalent as a motion planning problem for a particle with position and

orientation, for a fixed terminal time. The path traveled by the particle

can be considered the pose of the soft robot arm. The geometric heat

flow method can be applied, but with extension to plan for orientation.

Depending on the specific representation of orientation, or SO(3) space

- Euler angles, quaternion and rotation matrix, the SO(3) state evolves

under different dynamics. Earlier works [11] [12] [14] limited the motion

in 2D plane and avoided states in SO(3). Extension is needed to tackle

3D orientation states. To this purpose, we choose to represent the

orientation using unit quaternions and encode the quaternion dynamics

into AGHF framework. To have an accurate estimation of the soft arm’s

pose, vision based sensor data, gravity and external load is encoded into

the curve length, which reflects the minimum potential energy principle.

The outcome is that the algorithm now is able to deform an arbitrary

initial pose to a feasible pose, which includes valid SO(3) states, and

has the effect of gravity, external load. The initial pose can be arbitrary,

and does not necessarily include valid SO(3) states. This planning

technique is then applied on several scenarios of soft robot arm pose

estimation.
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CHAPTER 2

PRELIMINARIES

A fundamental problem in robotic motion planning is to find a trajectory which

meets the various constraints stemming from the system dynamics, which can

be of holonomic or non-holonomic type, and obstacle avoidance constraints,

which include constraints on the magnitude of some of the variables describing

the system (e.g., a maximal turning radius), or obstacles present in physical

space. A new method is proposed in [7] and [8] to find a trajectory which takes

into account all the above constraints, we call such a trajectory admissible.

The method is a homotopy method: given an initial state and a final desired

state, xi and xf respectively, and an arbitrary curve joining xi to xf in state-

space, the method deforms the curve into an admissible curve joining xi to xf .

Preliminary version of this method that plans the motion for control affine

driftless system with only non-holonomic constraints is presented in [7]. In

this section, we summarize some preliminary results.

2.1 Geometric Heat Flow (GHF)

2.1.1 Driftless System and Curve Length

We present some background and notation needed to explain the method. We

refer to as vehicle/robot/plant whose motion we desire to plan as the system.

The system is assumed to follow an affine in the control dynamics, which is

defined as follows:

Definition 2.1 (Driftless Control affine system). A controlled differential

equation ẋ = f(x, u), with x ∈M , u ∈ Rp is called affine in the control if it

can be expressed as

ẋ = Ff (x)u (2.1)
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where

Ff (x) =
(
f1(x) f2(x) · · · fp(x)

)
(2.2)

where x ∈ M with M a (at least locally) differentiable manifold called the

configuration space, fi(x), 1 ≤ i ≤ p the actuation vector fields, and u :=

(u1, . . . , up)
> ∈ Rp the controls. All vector fields are assumed to be smooth.

We refer to as workspace the physical environment in which the system

lives. We denote by spanx{gi} the (real) vector space spanned by the vectors

gi(x).

We call a curve in configuration space a piecewise differentiable function

x(t) : [0, T ]→M , where T > 0, and refer to x(0) and x(T ) as start-point and

end-point, respectively, of x(t). We refer to them collectively as end-points.

We call the image of a curve a path; a path is thus a geometric object (a

collection of ”contiguous states”) and the times at which each point in a path

is visited are not specified.

We now introduce a central notion for this work, the notion of homotopy:

Definition 2.2 (Homotopy). A fixed end-points homotopy between the two

curves x1(t) and x2(t) with the same end-points (i.e., x1(0) = x2(0) and

x1(T ) = x2(T )) is a differentiable function x(t, s) : [0, T ]× [0,∞)→M with

the properties:

x(0, s) = x1(0) for all s ≥ 0

x(T, s) = x1(T ) for all s ≥ 0

For each fixed s, x(t) is a curve in M . The length of the curve x(t) is defined

with respect to an norm on the tangent bundle TM of M . In the following,

one can assume that M = Rn and the tangent space of M at x ∈M , denoted

by TxM is also Rn. The length of a curve can be defined by a Riemannian

inner product:

Definition 2.3 (Riemannian inner product). A Riemannian inner product

on M is a piecewise differentiable symmetric positive definite bilinear form

G(x) : TxM × TxM → R. With a slight abuse of notation, we also denote by

G(x) its matrix representation in coordinates.

Hence, G(x) is an x-dependent positive definite symmetric matrix. The

7



length of a curve p(t) is then given by

L(x) :=

∫ T

0

√
ẋ>(t)G(x(t))ẋ(t)dt. (2.3)

Finally, we introduce the Christoffels’ symbols associated to G(x). To this

end, denote by gij the ijth entry of the matrix representation G(x), and by

gij the ijth entry of the matrix G−1(x). The Christoffel’s symbols are

Γijk(x) :=
1

2

∑
l

gil
(
∂glj
∂xk

+
∂glk
∂xj
− ∂gjk

∂xl

)
(2.4)

2.1.2 GHF as Curve Shortening Flow

Our method proceeds with solving the following GHF equation:

∂

∂s
xi(t, s) =

∂2

∂t2
xi(t, s) +

∑
j,k

Γijk
∂xj
∂t

∂xk
∂t

i = 1, 2, . . . , n (2.5)

where Γijk are the Christoffel symbols introduced in (2.4) for the inner product

defined in the previous subsection.

We now elaborate on the origin of Eq. (2.5): it is a type of curve-shortening

flow [15], called a mean-curvature flow for a 1-dimensional manifold (i.e. a

curve) or geometric heat flow. For an introduction to mean-curvature flows in

arbitrary dimensions, see [16]. For clarity of exposition, we present first the

flow in two dimensional plane with the Euclidean inner product. We briefly

mention steps that need to be taken for the general flow below.

Consider a curve p(t) : [0, 1]→ R2 = (p1(t), p2(t)), as depicted in Fig. 2.1.

The scalar curvature [17] of p at p(t) is defined as κ(p(t)) = ‖p̈‖. Denote by

Np(t) the unit normal vector pointing “inward”.The curvature of p at p(t) is

then κ(p(t))N(p(t)).

The mean-curvature flow for this curve is defined as follows:

Definition 2.4 (Mean curvature flow). Consider a family of curves p(t, s),

s ≥ 0, where for each s0 fixed, p(t, s0) : [0, 1]→ R2 is a curve joining x0 to

x1, and p(t, 0) is the original curve. Then the mean-curvature flow is the

8



•
x0

•
x1

p(t, 0)

p(t,∞)
Figure 2.1: In the mean-curvature flow, the curve p(t, 0) is continuously
deformed in the direction of its normal, depicted by the red arrows. The final
curve is a straight line. In general, the final curve is a length minimizing
curve. is the corresponding angles

partial differential equation

∂p

∂s
= κ(p(t, s))N(p(t, s)).

Note that it is in fact a system of two PDEs.

Looking at Fig. 2.1, it is easy to conclude intuitively that lims→∞ p(t, s)

converges to a straight line between x0 and x1. This is also the shortest

path between x0 and x1 for the usual Euclidean metric. This is no accident,

and we can show that in general the solution of this PDE converges to a

curve of minimal length. For our purpose, we need to extend this idea in two

directions: to (i) curves in higher dimensions and (ii) to a general Riemannian

metric (or more precisely, inner product). One can show, after some extensive

algebraic manipulations which we omit here, that the equivalent of the flow

for a general curve in a Riemannian manifold is exactly the geometric heat

flow presented in Eq. (2.5).

2.2 Motion Planning with GHF

2.2.1 Riemannian inner product Construction

Holonomic constraints can be formulated as a set of equations

qi(x) = 0, i = 1, 2, · · · ,mh (2.6)
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For each i and an infinitesimally small motion δx, we have the approximation

qi(x0 + δx) ≈ qi(x0) + ∂qi
∂x
δx. In order to respect the constraint, δx needs to

satisfy qi(x0 + δx) = qi(x0) = 0, thus we have ∂qi
∂x
δx = 0. This means that for

x(t) to be an admissible motion that obeys the constraints, the direction of

motion δx needs to be orthogonal to the vectors ∂qi
∂x

for all i; in other words,

it means the inadmissible directions of motion are span
{
∂qi
∂x

}
.

We now turn our attention to non-holonomic constraints. Formally, we

define:

Definition 2.5 (Non-holonomic Constraints). Non-holonomic constraints

are constraints that cannot be formulated by 2.6, that is, non-holonomic

constraints are not integrable. In this work, we express the non-holonomic

constraints as a set of constraints on the allowed velocities ẋ when at state x

as follows:

ẋ>fc,j(x) = 0, j = 1, 2, · · · ,mn. (2.7)

The non-holonomic character of the constraints, which is reflected in the

fact that they cannot be expressed as d
dt
qn(x) = 0 for some function qn(x).

In our formulation, the fact that a constraint is non-holonomic does not play

any particular role insofar our local encoding of the constraints is concerned; in

fact, the inadmissible directions of motion due to non-holonomic constraints in

Def. 2.5 is span {fc,j(x)} for all j = 1, 2, · · · ,mn. The inadmissible directions

of motion due to holonomic constraints is span
{
∂qi
∂x

}
for all i = 1, 2, · · · ,mh.

Non-holonomic constraints can be presented as above, e.g., as non-slippage

constraints, but they can also be encoded in the dynamics of the system,

which is then called non-holononic. For this latter case, consider the system

of Eq. (2.1). We set ff,i = fi and fc,j to be the mn vectors orthogonal (for

the Euclidean inner product) to ff,i for all i = 1, · · · , p.
The method solves for an admissible curve:

Definition 2.6 (Admissible curve). Given a configuration space M , a set

of holonomic, non-holonomic and obstacle avoidance constraints, an initial

state xinit and a desired final state xfin, provide a curve x(t) : [0, T ] → M

which respects these constraints and so that x(0) = xinit, and x(T ) = xfin, and

provide the control u that drive a control system from xinit to xfin. We recall

that a curve that meets the constraints is an admissible curve, which is an

admissible motion.

10



Encoding the constraints We set p̄ := n − mn − mh. We define the

n× (n− p̄) matrix F̄c as the matrix with first mh columns given by ∂qi
∂x

and

the next mn columns given by the fc,j.

Assumption 2.1. We assume that F̄c(x) is of constant rank almost every-

where in M , and we denote this rank by l, and set p := n− l.

If mh + mn = l, it is of full column rank, and we set Fc(x) := F̄c(x).

Otherwise mh +mn > l and the constraints are not independent, in the sense

that satisfying a subset of the constraints insures that all constraints are met.

We set Fc(x) to be a n× l matrix whose column span equals the column span

of F̄c(x). Such a matrix can be obtained, e.g., via the Gram-Schmidt process.

Notice that Fc is of full column rank l = n− p and the column space of Fc

contains all the inadmissible directions of motion.

Next, find a rank p matrix Ff (x) ∈ Rn×p such that

Ff (x)>Fc(x) = 0,

which again can be found using the Gram-Schmidt process. The column

space of Ff (x) contains all the directions in which the system can move when

at state x, namely, the admissible directions of motion.

Note that in the absence of holonomic constraints, we can start with defining

Ff with columns fi as in Eq. (2.1) and choose Fc to satisfy the above relation.

Set

F (x) =

 | |
Fc(x) Ff (x)

| |

 (2.8)

Then F (x) ∈ Rn×n and we define:

Definition 2.7 (Riemannian inner product for motion planning). The Rie-

mannian inner product for motion planning is

G(x) = F (x)DF>(x) (2.9)

where D = diag([λ · · ·λ︸ ︷︷ ︸
n−p

1 · · · 1︸ ︷︷ ︸
p

]) is a constant matrix.

Using the interpretation of the length functional given in the previous

section, it is easy to see that if ẋ is a direction that respects the constraints, it
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is not multiplied by λ in the inner product ẋ>G(x)ẋ with H defined via (2.9),

so ẋ>G(x)ẋ will not be scaled by λ. On the other hand, if ẋ is a direction

that violates a constraint, it has some components lying in spanFc(x), and

consequently ẋ>G(x)ẋ is large.

Finally, we record here that the partial derivative of G is given by

∂G

∂xi
(x) = 2FD

∂F>

∂xi
(x),

which is needed for the computation of the Christoffels symbols.

2.2.2 Solving the GHF

With the Riemannian inner product G(x) in (2.9) well defined, the GHF

equation (2.5) can be derived. Solving the GHF equation will lead to a

admissible curve.

The GHF equation is a PDE, which needs BC and initial condition (IC).

We impose the boundary conditions

x(0, s) = xinit, x(T, s) = xfin

and a user defined initial condition v(t),

x(0, t) = v(t)

in order to find the solution. The initial curve v(t) is an arbitrary curves

satisfying the boundary conditions: v(0) = xinit and v(T ) = xfin.

An important point here is that v(t) does not need to satisfy any holonomic

or non-holonomic constraints; it can be simply a curve drawn from xinit to

xfin.

Notice that for each s ≥ 0 fixed, the solution x(·, s) represent a curve

connecting xinit to xfin. As we explain below, as s increases, x(·, s) is a

curve that uses “less and less of the constrained directions”, said precisely,

F>c
∂
∂t
x(t, s) tends to zero. We set smax to be the simulation time for the PDE

and

xsol(·) = x(smax, ·).
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2.2.3 Control Extraction

The control can be directly computed:

u(t) = F †f (xsol(t))ẋsol(t) (2.10)

where F †f = (F>f Ff )−1F>f is the pseudo- inverse of Ff . Notice that in the case

xsol is admissible, that is, if ẋsol(t) = Ffv(t) for some control v,

u = F †f ẋsol = (F>f Ff )
−1F>f Ffv = v (2.11)

Thus we have recovered the control and ideally the system should exactly

follow the path xsol. Notice that FfF
†
F is a minimal square error projection

onto the column space of Ff , the control extracted from (2.10) will drive the

system along a path that is close to xsol, even if ẋsol has small components in

the constrained direction.

A path can be obtained by integrating the system dynamics using the

control extracted, we call it the integrated path:

Definition 2.8 (Integrated path). The integrated path x̃(t) is obtained by

integrating the system dynamics (2.1) using extracted control (2.10):

x̃(t) =

∫ t

0

Ff (x̃(τ))u(τ)dτ (2.12)

with initial value x̃(0) = xinit.

With integrated path defined, we have the following proposition,

Proposition 2.1. If the GHF solution xsol(t) is admissible, namely, if there

exists u ∈ Rp so that the derivative ẋsol(t) of xsol(t) satisfies (2.1), the

integrated path x̃(t) is equal to xsol(t).

Proof. The control u(t) of the admissible solution xsol(t) can be extracted

according to (2.11). Taking the time derivative for both side of (2.12) and

substituting u with (2.10):

˙̃x = Ff (x̃)F †f (xsol)ẋsol (2.13)

substituting ẋsol with Ff (xsol)v(t) for some control v since xsol is an admissible
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solution:

˙̃x = Ff (x̃)F †f (xsol)Ff (xsol)v(t) (2.14)

= Ff (x̃)(Ff (xsol)
>Ff (xsol))

−1F>f (xsol)Ff (xsol)v(t) (2.15)

= Ff (x̃)v(t) (2.16)

Therefore, if xsol(0) = x̃(0), the integrated path is equal to the AGHF

solution.
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CHAPTER 3

THE AFFINE GEOMETRIC HEAT FLOW:
CONVERGENCE PROPERTIES AND

BASIC EXAMPLES

Given a control system

ẋ = f(x, u) (3.1)

evolving on a differentiable manifold M , and two points xi, xf ∈ M , the

motion planning problem in time T > 0 is to find a control u∗(t) that steers

the system from xi to xf in T units of time, i.e. so that the solution x∗(t)

of Eq. (3.1) with u = u∗ and x∗(0) = xi yields x∗(T ) = xf . Due to its

ubiquity in control applications ranging from robotics to autonomous wheeled

vehicles, motion planning has been widely studied (see, e.g., [18, 19]) and

a host of methods have been developed. One of the early control papers in

which the issue of motion planning for non-holonomic systems was clearly

addressed is [20], where motion planning is stated as a sub-Riemannian

geodesic problem. For a more recent survey of this line of work, we refer

to the recent monograph [9]. Another common approach to non-holonomic

motion planning is to use sinusoidal control functions to, roughly speaking,

generate the “Lie bracket” directions. See for example [21], and [22] for a

very recent work on how oscillations can be used for orientation control in

SO(3). This idea is also used in derivative-free optimization [23, 24].

The major difficulties that can arise in motion planning problems are: 1.

the nonholonomic character of the dynamics, 2. the presence of a drift term, 3.

the presence of constraints on the inputs/states. From a theoretical point of

view, the Chow-Rashevski theorem provides us with conditions under which a

non-holonomic system without drift is controllable (see [9]), but in the latter

two cases, no equivalent result is known: the general case of controllability of

nonlinear systems with drift is still a largely open problem. Nevertheless, for

some specific nonlinear systems with drift, path planning or control algorithms

are given in [25, 26, 27].

While most of the methods mentioned above focused on addressing the
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first difficulty, we propose here an approach that can address all three. More

precisely, we propose a new variational method for motion planning. The

novelty of the work lies in an extension of the geometric heat flow method of

motion planning in Chapter 2, to encompass dynamics with constraints and

drift. We term the resulting flow the affine-geometric heat flow. The method

works by “deforming” an arbitrary path between xi and xf into an almost

feasible trajectory for the system, from which we can extract the controls u∗

that drive the system from xi to xf approximately.

3.1 Affine Geometric Heat Flow (AGHF)

Notation: With a slight abuse of notation, we define for G(x) ∈ Rn×n,

f, g ∈ Rn

[
f

(
∂G

∂x

)
g

]
:=


f> ∂G

∂x1
g

...

f> ∂G
∂xn

g

 ∈ Rn;

i.e.
[
f
(
∂G
∂x

)
g
]

is the vector in Rn with ith entry f> ∂G
∂xi
g, where ∂G

∂xi
is the

n× n matrix with kl entry ∂Gkl
∂xi

. We furthermore use the notation

(f ·G) :=

(
n∑
l=1

fl
∂Gij

∂xl

)
ij

∈ Rn×n. (3.2)

3.1.1 System with Drift

We approach the motion planning problem by first solving the trajectory

planning problem defined below:

Trajectory planning problem

Let M = Rn and refer to M as the configuration space. Note that M can

more generally be a C2-differentiable manifold. We consider the system affine

in control:

Definition 3.1 (Control affine system). The dynamics affine in the control

is given by

ẋ = Fd(x) + F (x)u (3.3)
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where, for all x ∈ Rn, Fd(x) ∈ Rn is a vector representing the drift dynamics

when in state x and the columns of F (x) ∈ Rn×m are the admissible control

directions.

Assumption 3.1. Both Fd(x), F (x) are assumed to be at least C2, Lipschitz

with constants L1, L2 respectively, and we assume that F (x) is of constant

rank almost everywhere in Rn.

Note that these assumptions can be weakened at the expense of longer

analysis. We focus here on the the case n ≥ m; that is on potentially

under-actuated dynamics.

Recall that xi, xf ∈M are the desired initial and final states respectively,

and T > 0 is the fixed time allowed to perform the motion. We can define

the admissible controls:

Definition 3.2 (Admissible controls). The set of admissible controls is U :=

L2([0, T ]→ Rm), that is, square integrable functions defined over the interval

[0, T ].

We set

X := {x(·) ∈ AC([0, T ]→ Rn) : x(0) = xi, x(T ) = xf},

the space of absolutely continuous Rn-valued functions with start- and end-

values xi and xf respectively.

Then, we can define the admissible solution and feasibility:

Definition 3.3 (Admissible solution). We call any x(·) ∈ X an admissible

solution if there exists u ∈ U so that the generalized derivative ẋ(t) of x(·)
satisfies (3.3). Denote by X ∗ ⊆ X the set of admissible solutions. The

trajectory planning problem (from xi to xf with time T ) is feasible if

X ∗ 6= ∅. All open sets in X are with respect to the natural norm ‖x‖AC :=∫ T
0

(|x(t)|+ |ẋ(t)|) dt.

We additionally introduce the space of continuous controls U ′ :=

C0([0, T ]→ Rm), to which correspond differentiable trajectories X ′ := {x(·) ∈
C1([0, T ]→ Rn) : x(0) = xi, x(T ) = xf}. It is well-known that U ′ is a dense

subspace in U with respect to the L2 norm and that X ′ is a dense subspace in

X with respect to the ‖ · ‖AC norm. Working over X ′ instead of X allows us

to “smoothly deform” a curve, a term which is more rigorously defined later.
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Figure 3.1: Homotopy of trajectories joining xi to xf in M .

3.1.2 AGHF as Curve Shortening Flow

We now briefly recap the geometric framework we use to cast and solve the

trajectory planning problem in Chapter 2, and then introduce the main object

introduced in this work: the affine geometric heat flow. We refer to our

earlier work [7] for a more detailed presentation and more examples about

the general framework. We rely on differentiable homotopies of curves (i.e.,

differentiable “deformations” of a curve), where the variable s is the homotopy

parameter; precisely, we use x(t, s) : [0, T ]× [0, smax) where for each s fixed,

x(·, s) ∈ X ′.
Let G(x) be a positive definite matrix defined on M , which we refer to as the

Riemannian metric. We denote by ∇ the Levi-Civita connection of G(x)

as in [28], and by ∇fg the covariant derivative of the vector field g along the

vector field f . Recall that if a(t) =
∑n

k=1 ak(t)e
k, where ai(t) are real numbers

and ek basis vectors, is a vector field along a curve x(t), and g is a vector

field defined in a neighborhood of x(t), then ∇ag := da
dt

+
∑

i,j,k Γkijaigje
k.

The so-called geometric heat flow (GHF) is a parabolic partial differ-

ential equation, which evolves a curve with fixed end-points toward a curve

of minimal length: namely, given a Riemannian metric and an associated

Levi-Civita connection ∇, the GHF is the PDE

∂x(t, s)

∂s
= ∇ẋ(t,s)ẋ(t, s). (3.4)

where ẋ(t, s) := ∂x(t,s)
∂t

and x(0, s) = xi, x(T, s) = xf are fixed. We refer the

reader to [28] for a proof that this PDE yields a curve of minimal length. For

applications of this flow to motion planning problems, and some illustrations
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of its solutions, we refer [7]

To justify the introduction of the AGHF, we define the notion of actuated

length [10] of a trajectory: this is, in a sense, the length of the trajectory

disregarding the effect of the drift dynamics.

Definition 3.4 (Actuated curve length). We define the actuated length of a

differentiable curve x : [0, T ]→M by∫ T

0

((ẋ− Fd(x))>G(x)(ẋ− Fd(x)))1/2dt. (3.5)

Taking inspiration from the GHF, we introduce here what we term the

affine geometric heat flow (AGHF):

Definition 3.5 (Affine geometric heat flow). The affine geometric heat flow

is
∂x(t, s)

∂s
= ∇ẋ(t,s) (ẋ(t, s)− Fd) + r(t, s) (3.6)

where

r(t, s) = G−1

((
∂Fd
∂x

)>
G(ẋ− Fd) +

1

2

[
(ẋ− Fd)

(
∂G

∂x

)
Fd

])

and Fd = Fd(x(t, s)), G = G(x(t, s)), etc.

The AGHF comprises two terms, introduced for distinct reasons: the first

term can be thought of as minimizing the length of the curve, and the second

term as insuring that the resulting trajectory is feasible for a system with drift

vector field Fd(x). In more detail, the first term is the covariant derivative

of ẋ(t, s) − Fd(x) in the direction ẋ(t, s). To understand the origin of this

term, recall that ∇ẋẋ is the acceleration vector of the curve. Because the

curve x(t, s) is parametrized by length (i.e. ‖ẋ‖ = 1), for all s, updating the

curve in the direction of its acceleration decreases its curvature. This can be

thought of as the reason why the GHF minimizes length of the curve. In the

AGHF, we replaced the term ẋ by ẋ− Fd(x(t, s)); hence we subtracted from

the tangent vector to the curve at x(t, s) the drift vector field at that point.

This terms thus “minimizes the length” of the resulting curve discounting

the effect of the drift term. The idea behind this term is that since the drift

vector field cannot be altered by the controls, it should not influence the

computation of the curvature.
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The role of the second term is to align the direction of the curve at x with

the drift vector field at that point. To argue for this, we will describe how

this term moves a point x(t, s) of the solution curve at iteration s to a point

x(t, s+ δs) for a small increment δs. Denote by 〈v, w〉 the inner product of

v, w ∈ TxM , and consider the function

P : TM → R : (x, v) 7→ 〈v − Fd(x), Fd(x)〉

= 〈v, Fd(x)〉 − 〈Fd(x), Fd(x)〉 . (3.7)

This function takes an element from the tangent bundle (x, v), with x ∈M
and v ∈ TxM to yield the inner product of v with Fd(x) minus 〈Fd(x), Fd(x)〉.
We will assume that v is fixed, and consider Pv : M → R : Pv(x) := P (x, v).

The function clearly reaches its maximal value when Fd(x) is aligned with v.

Hence, the gradient flow of this function seen as a function from M → R will

tend to align Fd(x) with v. Now one can show that the term r(t, s) defined

above is the gradient of the function Pẋ(x) : M → R for the Riemannian

metric G: the effect of this term is thus to move the curve (i.e. move

x(t, s+δs)) so that Fd(x(t, s+δs) is more aligned with ẋ(t, s). Said otherwise,

this term deforms the curve to that Fd(x) is more aligned with ẋ(t, s).

We highlight that the flow can only update x(t, s), and not ẋ(t, s), and

thus we move x(t, s) in search of Fd(x(t, s)) more aligned with ẋ(t, s).

Lemma 3.1 below provides a mathematical justification of the form of the

AGHF and additional insights, and we furthermore show in Sec. 3.3 that it

does indeed converge to admissible paths on various examples. Note that

when Fd = 0, then r(t, s) ≡ 0 and the AGHF reduces to the GHF.

3.1.3 On the convergence of the AGHF

The AGHF is a nonlinear set of PDEs, and thus the existence of a solution is

not guaranteed a priori even for short time. We provide here an analysis and

convergence guarantees.

To this end, define the Lagrangian L by

L(x, ẋ) =
1

2
(ẋ− Fd(x))>G(x)(ẋ− Fd(x)) (3.8)
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Given L, the action functional is defined on X as

A(x(·)) :=

∫ T

0

L(x(t), ẋ(t))dt. (3.9)

recall that the space of absolutely continuous Rn-valued functions, X , is

defined in Definition 3.2.

The Euler-Lagrange equation is given by:

∂L

∂x
− d

dt

∂L

∂ẋ
= 0 (3.10)

Lemma 3.1 (Nonincreasing energy). Let x∗(t) be a steady-state solution of

the AGHF (3.6). Then x∗(t) is an extremal curve for A in (3.9). Furthermore,

A decreases along the solutions of the AGHF; i.e. if x(t, s) is such a solution,

then d
ds
A(x(·, s)) ≤ 0, and equality holds only if x(·, s) is an extremal curve

for A.

Proof. Firstly, by first order approximation we have

x(t, s+ δ) = x(t, s) + δxs(t, s) + o(δ)

Plug it into the first order variation of L, we have

V (x(·, s+ δ)) =

∫ T

0

L(x(t, s+ δ), xt(t, s+ δ))dt

=

∫ T

0

L(x(t, s), xt(t, s)) + (δxs(t, s) + o(δ))>
∂L

∂x
+(

d

dt
(δxs(t, s) + o(δ))

)>
∂L

∂xt
+ o(δ)dt

= V (x(·, s)) + δ

∫ T

0

xs(t, s)
>∂L

∂x
+ xts(t, s)

> ∂L

∂xt
dt+ o(δ), (3.11)

where all o(δ) terms are collected together. Use integration by parts for the

xts(t, s)
> ∂L
∂xt

term, we have

V (x(·, s+ δ)) = V (x(·, s))+

δ

(
xs(t, s)

> ∂L

∂xt

∣∣∣∣T
0

+

∫ T

0

xs(t, s)
>∂L

∂x
− xs(t, s)>

d

dt

∂L

∂xt
dt

)
+ o(δ). (3.12)
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By our boundary conditions (3.14) we have xs(0, s) = xs(T, s) = 0 for all

s ≥ 0 and hence the integrated term xs(t, s)
> ∂L
∂xt

∣∣∣T
0

vanishes. Thus

V (x(·, s+ δ))− V (x(·, s)) =

δ

∫ T

0

xs(t, s)
>
(
∂L

∂x
− d

dt

∂L

∂xt

)
dt+ o(δ) = −δ

∫ T

0

|xs(t, s)|2dt+ o(δ),

(3.13)

which means

∂V (x(·, s))
∂s

= lim
δ→0

V (x(·, s+ δ))− V (x(·, s))
δ

= −
∫ T

0

|xs(t, s)|2dt ≤ 0

and equality is achieved if and only if xs(t, s) = 0 almost everywhere for t ∈
[0, T ], that is, Euler-Lagrange equation (3.10) is satisfied almost everywhere

on the curve x(·, s)

From this lemma, one can deduce, with some additional work, the existence

of solutions to the affine geometric heat flow as the action functional acts

as a ’Lyapunov functional’ for the AGHF. The Lemma furthermore states

that the solutions converge to extremal points of positive-definite action

functional (3.9). For more details and discussion of the proof, we refer to our

paper [29].

3.2 Motion Planning with AGHF

3.2.1 Riemannian Metric for Motion Planning

Definition 3.6 (Steady state solution). A solution x∗(t) is a steady state

solution of (3.6) if it is a stationary point of the AGHF, namely, if

∇ẋ(t) (ẋ(t)− Fd) + r(t)|x(t)=x∗(t) = 0

for all t ∈ [0, T ].

Some intuition about the form of this PDE can be gathered from Lemma 3.1

above. The AGHF is a system of parabolic PDEs, and to solve it we need two
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boundary conditions

x(0, s) = xi, x(T, s) = xf ∀s ≥ 0 (3.14)

and an initial condition

x(t, 0) = v(t), t ∈ [0, T ] (3.15)

for some v(·) ∈ X ′. We refer to the initial path chosen v(t) as the initial

sketch, since it can easily be obtained (most often, a straight line is used) as

it does not need to meet the dynamical or holonomic constraints.

The method. We first describe the steps of the method we propose to

perform trajectory planning for systems (3.3) and provide below some con-

vergence guarantees. The method can be summarized through the following

four steps. We are given Fd(x) ∈ Rn, F (x) ∈ Rn×m, xi ∈ Rn and xf ∈ Rn.

Step 1: Find a bounded n× (n−m) x-dependent matrix Fc(x), differentiable

in x, such that

F̄ (x) :=
(
Fc(x)|F (x)

)
∈ Rn×n (3.16)

is invertible for all x ∈ Rn. The matrix Fc(x) can be obtained using,

e.g., the Gram-Schmidt procedure.

Step 2: Evaluate

G(x) := (F̄ (x)−1)>DF̄ (x)−1 (3.17)

where D := diag(λ, · · · , λ︸ ︷︷ ︸
n−m

, 1, · · · , 1︸ ︷︷ ︸
m

) for some large λ > 0 (we discuss

below what large means in this context).

Step 3: Solve the AGHF (3.6) with boundary conditions (3.14) and initial

condition (3.15). Denote the solution by x(t, s);

Step 4: Evaluate

u(t) :=
(

0 Im×m

)
F̄ (x(t, smax))−1(ẋ(t, smax)− Fd(x(t, smax)) (3.18)

Output: The control u(t) obtained in (3.18) yields, when integrating (3.3),

a integrated path x̃(t), which is our solution to the trajectory planning

problem.

23



We note that Fc does not depend on the drift Fd and that there is no

orthogonality requirement between F and Fc either, which gives much freedom

in the construction of Fc and hence in many cases one can choose F̄ = (Fc|F ),

and consequently G, to have relatively simple expressions. We will provide

examples of the application of the method in Sec. 3.3.

3.2.2 On convergence guarantees for motion planning

The main new ingredients our method proposes are the definition of the

Riemannian inner product in Step 2 above, and the definition of the AGHF.

Roughly speaking, for this inner product, short paths are admissible paths,

and we refer to our earlier work [8] for a longer justification of the use of the

inner product defined.

We now show that the control extracted in Step 4 of the method will drive

the system arbitrarily close to the desired final state, provided that a solution

to the motion planning problem exists (which, as we mentioned earlier, is in

general an open problem for systems with drift) and the trajectory v(t) with

which we initialize the system is well-chosen. We will see in the examples

of Sec. 3.3, that an arbitrary choice of initial condition very often yields a

convergent solution.

Theorem 3.1. Consider the system (3.3) and let xi, xf ∈ Rn. Assume that

the motion planning problem from xi to xf is feasible (i.e. X ∗ is nonempty)

and that Assumption A above is met. Then there exists C > 0 such that for

any λ > 0, there exists an open set Ωλ ⊆ X ′ (with respect to ‖ · ‖AC) so that

as long as the initial curve v ∈ Ωλ, the integrated path x̃(t) from our algorithm

with sufficiently large smax has the property that

|x̃(T )− xf | ≤
√

3TMC

λ
exp

(
3T

2
(L2

2T + L2
1C)

)
. (3.19)

Proof. Since the path planning problem is solvable, there exists x∗(·) : [0, T ]→
Rn such that x∗(0) = xi, x

∗(T ) = xf and ẋ∗ = h(x∗) + F (x∗)u∗ for some

u∗(·) ∈ [0, T ]→ Rm. Plug this x∗ into (3.8) we have

L(x∗(t), ẋ∗(t)) = (ẋ∗(t)− h(x∗(t)))>Gk(x
∗(t))(ẋ∗(t)− h(x∗(t))) = |u∗(t)|2.
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Define

V ∗ = V (x∗) =

∫ T

0

L(x∗(t), ẋ∗(t))dt =

∫ T

0

|u∗(t)|dt.

Notice that V ∗ is independent of k. Pick C > V ∗. From Lemma 3.1 we know

that V (x(·, s)) decreases as long as (3.10) is not satisfied. Hence, there exists

a neighborhood Ωk around x∗ so that the HFE solution x(t, s) derived from

(3.5) with any v ∈ Ωk as the initial condition and sufficiently large s will have

the property that V (x(·, s)) < C. Certainly Ωk contains the connected set of

functions x with V (x) < C, and by continuity of the functional V (·) we know

the latter set is open and hence Ωk can also be made open. (If as s increases

V (x(·, s)) converges to some other V (y) ≥ C where y is a solution to (3.10),

simply shrink Ωk by redefining it as {x ∈ Ωk : V (x) < V (y)}). Define the

curve x(t) := x(t, s) and controls uh(t), uF (t), uG(t) byuh(t)uF (t)

uG(t)

 = F̄ (x)>ẋ(t).

Plug it into (3.8) and V (x(t)) < C implies∫ T

0

k(uh(t)− 1)2 + |uF (t)|2 + k|uG(t)|2 < C.

⇒
∫ T

0

(uh(t)− 1)2dt ≤ C

k
,

∫ T

0

|uF (t)|2dt ≤ C,

∫ T

0

|uG(t)|2dt ≤ C

k
.

(3.20)

Compared with (3.18), we see that the extracted control is exactly uF ; in

other words, the resultant path is given by

x̃(0) = xi, ˙̃x = h(x̃) + F (x̃)uF .

Define the error e(t) := x(t)− x̃(t). Then

e(0) = x(0)− x̃(0) = 0,

ė = ẋ− ˙̃x = (h(x)uh − h(x̃)) + (F (x)− F (x̃))uF +G(x)uG.
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Therefore we have

e(t) =

∫ t

0

(h(x(τ))(uh(τ)− 1) + (h(x(τ))− h(x̃(τ)))

+ (F (x(τ))− F (x̃(τ)))u(τ)F +G(x(τ))uG(τ)dτ

Square the norm of e(t) and apply Cauchy-Schwartz inequality,

|e(t)|2 ≤
∫ t

0

dτ

∫ t

0

|(h(x(τ))(uh(τ)− 1) + (h(x(τ))− h(x̃(τ)))

+ (F (x(τ))− F (x̃(τ)))u(τ)F +G(x(τ))uG(τ)|2dτ

≤t
∫ t

0

(|(h(x(τ))(uh(τ)− 1)|+ |h(x(τ))− h(x̃(τ))|

+ |(F (x(τ))− F (x̃(τ)))u(τ)F |+ |G(x(τ))uG(τ)|)2dτ

Use power mean inequality, the square of the sum of 4 terms inside the integral

is no larger than 4 times the sum of the square of each individual,

|e(t)|2 ≤ 4t

∫ t

0

|(h(x(τ))(uh(τ)− 1)|2 + |h(x(τ))− h(x̃(τ))|2

+ |(F (x(τ))− F (x̃(τ)))uF (τ)|2 + |G(x(τ))uG(τ)|2dτ

Recall that h, F are globally Lipschitz, h is globally bounded and G is

normalized in the way that ‖G(x)‖ ≡ 1 for all x ∈ Rn, we conclude that

|e(t)|2 ≤4t

∫ t

0

M2(uh(τ)− 1)2 + L2
2|e(τ)|2 + L2

1|e(τ)|2|uF (τ)|2 + |uG(τ)|2dτ

=4t

∫ t

0

(
M2(uh(τ)− 1)2 + |uG(τ)|2d

)
τ+

4t

∫ t

0

(L2
2 + L2

1|uF (τ)|2)|e(τ)|2dτ

Next, by Grönwall inequality and the fact that 4t
∫ t

0
M2(uh(τ) − 1)2 +

|uG(τ)|2dτ is a non-decreasing function of t,

|e(t)|2 ≤(
4t

∫ t

0

M2(uh(τ)− 1)2 + |uG(τ)|2dτ
)

exp

(
4t

∫ t

0

(L2
2 + L2

1|uF (τ)|2)dτ

)
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x
y
θ

(qx, qy)

Figure 3.2: The unicycly is a 3 dof system with configuration variables
(qx, qy), describing the position of the center of the wheel, and θ describing
the orientation of the wheel with respect to the x-axis.

Eventually, substituting in the inequalities from (3.20), we conclude that

|e(t)|2 ≤ 4t(M2 + 1)C

k
exp

(
4t(L2

2t+ L2
1C)
)
,

Thus |x̃(T )− xf | = |e(T )| ≤ 2
√

T (M2+1)C
k

exp (2T (L2
2T + L2

1C)).

This result of Theorem. 3.1 quantifies the trade-off between the size of the

parameter λ, and the quality of the control obtained, where the quality is

measured according to how close to the desired final state the control drives

the system. We see that as λ→∞, the control drives the system to xf . For

more details and discussions for proof of the theorem, we refer to [29].

3.3 Application: Dubin Car and Dynamical Unicycle

We illustrate our method on three canonical motion planning problems,

showcasing how it handles the different issues that can arise. The basic

system we consider is a unicycle rolling on the plane without slipping, as

depicted in Fig. 3.2. The kinematics is given by the differential equationsq̇xq̇y
θ̇


︸ ︷︷ ︸

ẋ

=

cos θ

sin θ

0


︸ ︷︷ ︸

f1

u1 +

0

0

1


︸ ︷︷ ︸
f2

u2. (3.21)

We refer to our earlier work [7] for a description of how to perform basic

motion planning tasks on this system.

27



3.3.1 Unicycle with constant linear velocity or Dubins car

We first consider the model of a planar unicycle with unit constant linear

velocity. In this case, we have u1 ≡ 1 and hence (3.21) becomes ẋ = f1 + f2u,

where f1 is now the drift vector field. Hence, even when u = 0, ẋ 6= 0. The

control u only allows to steer the unicycle.

Following our method, we pick Fc =
(
e1 e2

)
so that F̄ is the identity ma-

trix. Hence according to Step 2 we have G = diag(λ, λ, 1). The corresponding

Lagrangian (3.8) is

L(x, ẋ) = λ(q̇x − cos(θ))2 + λ(q̇y − sin(θ))2 + θ̇2

The boundary conditions are set to

xi =
(

0 0 0
)>

and xf =
(

0 1 0
)>

,

which are the boundary conditions of the so-called “parallel parking” problem.

We obtain the results shown in Fig. 3.3.

We see that the initial sketch of straight line x(t, 0) = v(t) = (0, t, 0)>

in Fig. 3.3a and Fig. 3.3b cannot be followed by the unicycle as such a

path violates the non-slip constraints and does not follow the drift dynamics.

Fig. 3.3c and Fig. 3.3d show the curve x(t, s) with s = 10. Fig. 3.3e and

Fig. 3.3f shows x(t, smax) with smax = 500. The integrated trajectory (cyan

dotted line) generated by using the extracted control (as in Step 4) is very

close to x(t, smax) and drives the unicycle close to xf with very high precision.

3.3.2 Dynamic unicycle

We now consider the unicycle with inertia; the acceleration of the unicycle is

proportional to the applied torque following Newton’s second law. To model

this system in the form of (3.3), we add two states to the unicycle configuration:

u1 and u2, representing the linear and angular velocity. Acting on the
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Figure 3.3: Unicycle trajectory with λ = 1000, T = 5. Left column: paths
in 3D state space; right column: corresponding (qx, qy)-plane projected view.
The unicycle follows the black solid curve and moves from the position with
the lightest blue color to positions with darker blue colors gradually, with its
orientation and magnitude of linear velocity at each snapshot indicated by
the red arrow.
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accelerations u̇1, u̇2, the controls v1, v2 are a force and a torque, respectively.
q̇x

q̇y

θ̇

u̇1

u̇2


︸ ︷︷ ︸

ẋ

=


u1 cos θ

u1 sin θ

u2

0

0


︸ ︷︷ ︸

Fd

+


0 0

0 0

0 0

1 0

0 1


︸ ︷︷ ︸

F

(
v1

v2

)
︸ ︷︷ ︸

v

(3.22)

Similar to the previous case, we can take F̄ to be the identity matrix and

G = diag(λ, λ, λ, 1, 1). Consequently,

L(x, ẋ) = λ
(
(q̇x − u1 cos(θ))2 + (q̇y − u1 sin(θ))2

+(θ̇ − u2)2
)

+ u̇2
1 + u̇2

2 (3.23)

We set the boundary condition to xi = (0, 0, 0, 0, 0)> and xf = (0,−1, 0, 0, 0)>.

The boundary values for u1 and u2 are 0, meaning the unicycle starts and

ends with 0 velocities. We use a partial sinusoid v(t) = (sin(2πt),−t, 0, 0, 0)

as the initial sketch x(t, 0), shown in Fig. 3.4a and Fig. 3.4b. Following the

remaining steps of the algorithm, the results are shown in Fig. 3.4. The

unicycle cannot follow the initial curve as seen in Fig. 3.4b. The AGHF yields

the curve x(t, smax) shown in Fig. 3.4f (black solid line). Extracting the

control, we obtain a trajectory (cyan dotted line) that is almost identical.
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Figure 3.4: Dynamic unicycle trajectory with λ = 50000, T = 1. Only
(qx, qy, θ)-space (left column) and (qx, qy)-projected view (right column) are
shown here.
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CHAPTER 4

STATE INEQUALITY CONSTRAINTS,
INTEGRALS OF MOTION AND

BOUNDARY CONDITION: APPLICATIONS
TO ROBOT GYMNASTICS

The goal of this chapter is to expand the formulation of the AGHF to allow the

inclusion of a broad range of robotic motion planning settings. In particular,

we aim to solve robot gymnastics motion planning and extend the method

to include state inequality constraints and conserved quantity of motions.

State inequality constraints are ubiquitous in robotics systems, and makes

it more challenging to find feasible motions. For example, finding mid-air

motions for humanoid robots are difficult since the motion of limbs are

limited by joint angles. Implementing state equality constraints is, from a

geometric perspective, relatively easy. Indeed, such constraints are reflected

in the choice of control vector fields which are tangent to the isolevel sets

defined by the equality constraints, as demonstrated in Sec. 2.2.1. Equality

constraints reduce the dimension of the state space of the system. The case of

inequality constraints, which do not reduce the dimension of the state space,

is mathematically more difficult to handle. On the other hand, conserved

quantities such as momentum, exist in robot systems where no external

wrench is applied. The conserved quantity is determined by initial or final

state of the motion, and acts on the system as an additional constraint. These

BC are often an integral part of a motion planning problem and difficult to

determine. We will rely on the AGHF algorithm to find the motions with

proper BC which satisfy the conserved quantity constraint.

In-air robot motion planning is a growing area in robotics motion planning,

as the hardware of robots has become more and more reliable in the past

decade, making the vision of agile, diving and jumping robots closer to reality.

Such robots include, among others, the MIT Cheetah [1], the bipedal robot

Cassie robot made by Agility Robotics and Salto robot [2]. In the range
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of dynamic motions that one wants these robots to perform, the motion in

mid-air has been a difficult yet crucial part. Indeed, the robot in mid-air

can only reorient itself by internal reactions and, in particular, the mid-air

dynamics has non-trivial conserved quantities, such as the angular momentum,

which constrain the dynamics in rather non-intuitive ways. The joint angle

and velocity limitations further constrained the robot’s motion in mid-air.

On the other hand, the performance of the mid-air motion is the key to a safe

take off and safe landing of the robot, and thus fundamental to the overall

endeavor.

Due to its importance, there has been a fair amount of work dealing with

various aspects of mid-air motion. The falling cat problem is a classical

one [30], explaining how a cat reorients itself mid-air while conserving its

angular momentum. In the same vein, inspired by free falling of lizards and

geckos, Jusufi has shown that a large active tail can function as effective

control appendages, therefore enhancing the posture maneuver during falling

[31]. Utilizing the active tail, a PD controller [32] and a sliding mode controller

[33] is implemented to control the 2D orientation of tailed robot in flight

phase. Human somersault and diving is another example of reorienting in

mid-air. In early 90’s, there was already a successful implementation of

controller for biped somersault [34] [35], which regulated the angular velocity

by manipulating the length of the tucked leg. An optimization -based mid-

air planning method was also proposed in [36] for non-zero initial angular

momentum. Space robotics is another domain of application of floating robot

motion planning, and conditions under which a control algorithm that can

be applied to a fixed base robot can be applied to a free-floating robot were

derived in [37, 38].

The robot’s motion in mid-air is constrained by state constraints, such

as joint angle limit and velocity limit, which are usually determined by

the robot’s mechanical and electrical structure. In some applications, the

states are constrained to have a more stable motion. The torso pitch of

MIT Cheetah is bounded to have a more stable bounding motion [39]. In

humanoid robot, the centroidal angular momentum is constrained to be

small for walking motions. The state constraints can be encoded as obstacle

avoidance problem as in [7] and [8], where the state inequality constraints are

enforced by obstacle’s barrier functions.

As already mentioned earlier, a salient issue in mid-air motion planning is
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the conservation of momentum. In [40], the conserved angular momentum is

treated as drift term and the nonholonomic constraint derived from angular

momentum conservation is encoded in the system dynamics. In some recent

works, similar reduced dynamics are used for free-floating robot motion

planning relying on using a nonlinear optimizer [36, 41, 42]. With the system

reduced by conservation of angular momentum, the ability to directly control

joint torques is lost. Instead, joint velocities can be used as inputs. To

generate a motion using the joint torques, full dynamics is used in [43] and

the motion is solved by direct method of optimization, the hidden conservation

of angular momentum is encoded with the system’s full dynamics.

Path planning with homotopy classes is utilized in [44], where a graph-

search based method is proposed for finding the optimal path with constraints

on homotopy classes. We relies on the AGHF motion planning method

proposed in Chapter. 3 to solve for mid-air motions. We consider torque

control of the joints, gravity is taken into account, and our method is able

to naturally find the initial impulse needed to perform a motion by allowing

indefinite BC; this initial impulse is the one imparting the robot with an

angular momentum that will be constant when airborne. In this chapter, we

extend the AGHF motion planning algorithm to include both state equality

and inequality constraints, as well as indefinite BC. The state constraints are

encoded via switch functions, which determines the contribution of the state

constraints to the actuated curve length..

The remainder of the chapter is organized as follows. In Section 4.1, the

formulation for state equality and inequality constraints are proposed. In

Section 4.2, the free boundary conditions are given and discussed. Section 4.3

summarizes the key steps of the extended AGHF motion planning algorithm.

Section 4.4 implements the algorithm on a robot gymnastics motion planning,

and simulation results are listed.

4.1 State Inequality Constraints

Notation: We use notation Ok,p and Okto denote a k × p matrix and k × k
matrix with zero elements, and Ik to denote k × k identity matrix.

The existence of state inequality constraints, which are difficult to handle in

motion planning, is very common in robotic systems. For example, the joint
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angles are limited for legged robots which result in a smaller configuration

space for motion planning. In our previous work [10], the state constraints are

added as obstacles via barrier functions, which are included in the Riemannian

metric. The metric tensor grows large when evaluated near obstacles, which

results in the actuated length of curves passing in the vicinity of obstacles

to grow as well. While this approach allowed us to derive provably correct

methods, its numerical implementation can run into issues, since a large

metric tensor both slows down the computations (at a fixed precision level).

To address this issue, we propose in this section a new approach to handle

both state equality and inequality constraints. A state constraint can be

formulated as a scalar function h(x) = 0 for equality constraints and h(x) ≤ 0

for inequality constraints. This formulation can implement constraints on

both q and q̇ since x := [q>, q̇>]>. When more than one constraint is present,

the same method as the one described here is to be applied to each constraint

individually.

Following our ansatz, we seek to have the constraints reflected into the

actuated length of the curve. To this end, first we add one state, denoted

by xh ∈ R, for each scalar constraint. The resulting augmented state of the

system thus becomes: x̂ := [x>, xh], recalling that original state is x ∈ Rn

and the original control is u ∈ Rm. The new state xh will keep track of the

accumulated error between h(x) and zero:

Definition 4.1 (Accumulated error for state constraint). The accumulated

error for the state constraint function h(x) is defined as

xh(t) :=

∫ t

0

h(x(s))Sh(x(s))ds. (4.1)

It is easy to see that the accumulated error thus obeys the following error

dynamics

ẋh := h(x(t))Sh(x) (4.2)

In the definition above, Sh(x) is a scalar switch function for the state

constraint which can be constructed by the constraint function h(x).

Definition 4.2 (Switch function). For the inequality constraint h(x) ≤ 0,

the switch function is a binary-valued function, Sh(x) ∈ {0, 1}, defined by the

constraint function h(x):

Sh(x) = H(h(x)) (4.3)
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in which H(h(x)) is a Heaviside unit step function at h(x). For equality

constraint h(x) = 0, the switch function is independent of h(x) and has a

constant value:

Sh(x) ≡ 1 (4.4)

The switch functions should be defined for each scalar constraint respec-

tively, and they indicate if the constraints should be enforced at given states.

In this chapter, a smooth approximation of Heaviside unit step function is

used. More specifically, a logistic approximation is used:

H(c) :=
1

1 + e−ksc
(4.5)

which approximates a unit step at c = 0, namely, H(c) ≈ 0 if c < 0 and

H(c) ≈ 1 if c > 0. The constant ks controls the accuracy of the approximation.

We use a smooth approximation of the step function here to guarantee that

the derivative of the step function is well defined, which will be used in the

constrained AGHF equation. It is now easy to see that, thanks to the switch

function (4.3), xh is approximately zero if the constraint is satisfied during

t = 0 to t = T .

The augmented system dynamics is now:

˙̂x = F̂d(x̂) + F̂ (x̂)

[
u

h(x)S(x)

]
(4.6)

where

F̂d(x̂) =

[
Fd(x)

0

]

F̂ (x̂) =

[
F (x) On,1

O1,n 1

]

in which F̂d is the augmented drift.

The Riemannian metric should be enriched as well to increase the length

of paths violating the constraint. We do so by introducing

Definition 4.3 (Augmented Riemannian metric).

Ĝ(x̂) :=

[
G(x) On,1

O1,n λh

]
(4.7)
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where G(x) is the Riemannian metric defined for the original states x in

(3.17) and λh is a constant.

We can now derive the so-called constrained AGHF, which is a partial dif-

ferential equation minimizing the length as measured by the above-introduced

Riemannian metric.

Lemma 4.1 (Constrained AGHF). Consider the curve length functional

LG(x, ẋ) :=

∫ T

0

(
( ˙̂x− F̂d(x̂))>Ĝ(x̂)( ˙̂x− F̂d(x̂))

)1/2
dt

=

∫ T

0

(
(ẋ− Fd(x))>G(x)(ẋ− Fd(x)) + λhh(x)2S(x)

)1/2
dt (4.8)

associated with the Riemannian metric (4.7). Let x(t, s) be a solution of the

system of partial differential equations

∂x(t, s)

∂s
= ∇ẋ(t,s) (ẋ(t, s)− Fd) + r(t, s)− λh

∂(h(x)2S(x))

∂x
. (4.9)

Then x(t, s) converges to a stationary point of LG as s→∞.

Proof. The proof follows the lines of the proof of Lemma. 3.1 with L =

LG(x, ẋ).

The new actuated length (4.8) has the additional term λhh(x)2S(x) when

compared to the original actuated length (3.5). Due to the form of the

metric tensor Ĝ, specifically the fact that it is block-diagonal with one block

containing λh, minimizing the length of a curve will result in minimizing the

violation of the state-constraints. For an equality constraint, S(x) = 1, the

actuated length is penalized by λh when h(x) is not close to zero, driving

h(x)→ 0. For an inequality constraint, the actuated length is penalized by

λh when h(x) > 0 and S(x) = H(h(x)) ≈ 1, driving h(x)→ 0. However, this

term has no effect on the actuated length if h(x) ≤ 0 since S(x) = H(h(x)) ≈ 0.

As a result, the curve with minimum actuated length, solved by (4.9) yields

a trajectory that the system can follow while obeying the state constraints.

It should be noted that the constrained AGHF equation (4.9) is derived

from the original AGHF (3.6) by replacing x with x̂ and substituting ẋh :=

h(x(t))S(x). Therefore, the constrained AGHF only has the original state x

and has dimension n instead of n+ 1.
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4.2 Boundary Conditions for the AGHF

For motion planning problems with conserved quantities, obtaining the bound-

ary conditions is one of the main issues. Indeed, the boundary conditions

assign specific values to the conserved quantities, and these cannot be altered

during the motion by the controls. In the case of robot gymnastics motions,

the conserved quantity of interest is the angular momentum, since no external

force is applied to the robot in mid-air. A physical interpretation is that

when a robot jumps, its angular momentum is constant when in the air, and

his initial kick against the ground is thus of high importance, as it sets the

value of this momentum. Thus, if one wants to rotate, say three times while

in the air, one needs to start with a higher angular momentum than if one

needs to rotate only once.

A major upside of our approach is that it can find these important parame-

ters, which are here the boundary conditions necessary for the motion to be

feasible, in a natural way. We explain the procedure to achieve this below.

We call a state variable which we do not want to specify at either the

beginning or end of the motion free. An example of a free variable is the

initial vertical velocity of a jumping robot, which is related to the strength of

the initial push against the ground, and is not controllable once in the air, or

the initial angular velocity as mentioned above. A fixed variable is a variable

for which there is a specified value. For example, the starting position of a

diver.

We use the following boundary conditions for the AGHF depending on

whether the variables are fixed or free:

Definition 4.4 (AGHF boundary condition (BC)).

xi(0) fixed : xi(0) = xinit,i (4.10a)

xi(0) free : ẋi(0) = Fd,i(x(0)) (4.10b)

The same holds for the final conditions (at time T ) with xfin. The index i

indicates the i-th element of the vector.

Hence,

• If the state xi has fixed value at boundary, BC (4.10a) is applied
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• If state xi is set to be free at boundary, BC (4.10b) is applied.

The justification for the form of these boundary conditions can be obtained

following the Lagrangian approach developed in [10]. More specifically, the

free boundary conditions can be obtained by applying the transversality

conditions on the Lagrangian.

Use of Boundary Conditions: an example. We now illustrate the use

of these boundary conditions on what is perhaps the simple example for which

they matter: a point mass moving up and down; in the free motion phase,

only gravity acts on the mass.

For a point mass with only gravity and no control—free falling, as shown in

Figure. 4.1, the state space can be defined as x = [y, ẏ] where y is the height

of the point mass. We seek for the motion of the point mass which starts

from ground with duration T . This corresponds to the boundary conditions

y(0) = 0.

We explore the effect of setting the remaining boundary conditions ẏ(0), y(T )

and ẏ(T ):

Case 1: ẏ(0), y(T ) and ẏ(T ) are fixed. This corresponds to fixing initial

vertical velocity, final height and velocity. Because the in-air motion conserves

energy, the initial boundary conditions can be thought of as fixing the value of

the said energy. The final boundary conditions have to meet some constraints

insuring that no energy was dissipated during the motion. Thus, they cannot

be chosen arbitrarily, but have to satisfy

ẏ(T ) = ẏ(0) + gT, y(T ) = ẏ(0)T +
1

2
gT 2.

If the BCs encode different energy for the mass, of course no feasible, hence

conservative, motion exists that satisfy said boundary conditions. The AGHF

in this case will not converge.

This simple example illustrates that when systems have dynamical drift

(here, due to gravity), not all boundary conditions can be fixed in general.

This is one of the main reasons behind the fact that motion planning for

systems with drift is far more challenging theoretically than that for driftless

systems.
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ẏ(0)

g
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Figure 4.1: 1D Point mass

Case 2: ẏ(0), ẏ(T ) are free and y(T ) is fixed. We set a desired final height

y(T ). The initial and final velocities are free. The planning algorithm finds a

motion with proper initial velocity such that the point mass will reach the

specified final height y(T ) at t = T with a proper final velocity that conserves

the total energy.

Case 3: y(T ), ẏ(T ) are free and ẏ(0) is fixed. We set an initial velocity

and let the final height and velocity free: the planning algorithm is able to

find a motion with proper final height y(T ) and velocity ẏ(T ) that the point

mass can reach with the specified initial velocity ẏ(0).

For these three cases, the motion planning algorithm was reduced to solving

the physics of the problem (no controls present, save for the initial kick

imparting a nonzero velocity at t = 0.) The same type of reasoning of course

applies to systems with controls.

4.3 Planning Algorithm Summary

The steps of the proposed motion planning algorithm with state constraints

can be summarized as follow.

Step 1: Find the full rank matrix F̄ (x) using F (x) based on (3.16).

Step 2: Evaluate the augmented Riemannian metric Ĝ(x) for a large λ and

λh.

Step 3: Solve the constrained AGHF (3.6) with boundary condi-

tions (4.10a) or (4.10b) , initial condition (3.15) and large enough

40



smax to obtain the solution x∗(t). This step is the main extension of

the algorithm.

Step 4: Extract control u from x∗(t) using (3.18)

Step 5: Integrate the dynamics (3.3) with extracted control u and initial

value xinit to obtain the integrated path x̃(t), which is the planned

motion.

4.4 AGHF for Robot Gymnastics

We now focus on planning the motion of kinematic chain robots in 2D space.

The defining characteristic of the motion planning tasks we consider here are

the fact that the motion takes place ’in-air’, and is thus subject to having

integrals of motion (angular momentum and linear momentum).

Definition 4.5 (Series open kinematic chain). A series open kinematic chain

is an assembly of rigid bodies connected in series with open endpoints.

We focus on robots with a series open kinematic chain structure, where

the links are connected via revolute joints, as illustrated in Fig. 4.2. These

mechanisms can be used to model human and animal bodies. The kinematic

chain starts with the (base) link 0, and has k additional links for a total of

k joints and k + 1 links. The configuration space Q̄ is of dimension k + 3,

which makes the system under-actuated. In fact, it is easy to see that the

configuration is completely described by the position and orientation of any

one link and the value of the joint angles, and thus Q̄ ∈ R2 × Tk+1, where

we recall that Tk is the cross-product of k circles. We choose the following

generalized coordinates: q̄ = [x0, y0, θ0, q1, q2, ...qk]
> ∈ Q̄ where [x0, y0, θ0]

>

are the position and orientation of the base link represented in ground inertial

frame and qi is the joint angle of the joint associated with link i. Each link i

has link length li, link mass mi and a rotational inertia Ii with respect to its

own center of mass (CoM).

41



y

x

(x0 y0)
θ0

q1

q2
base link

link 2

link 1

link i
CoM

Figure 4.2: Depiction of k + 1 links floating kinematic chain, with base link
defined as link 0.

4.4.1 Full dynamics

It is well known [45] that the equations of motion for the dynamics can be

derived using a Lagrangian approach as

D̄(q̄)¨̄q + C̄(q̄, ˙̄q) ˙̄q + Ḡ(q̄) = Ū (4.11)

where D̄, C̄ and Ḡ are the inertia, Coriolis and gravity matrix, respectively.

The vector Ū := [0, 0, 0, u1, u2, ...uk]
> is the vector of generalized forces

corresponding to the generalized coordinates q̄. The first three terms are

zero, reflecting the fact that the base link’s position and orientation are not

explicitly actuated, and ui is the actuating joint torque for the joint associated

with link i. These are the inputs of the system.

4.4.2 Reduced dynamics

Since no external wrenches act on the system when airborne, besides gravity

in the y direction, both the total angular and translational momentum in

the x direction are conserved in this phase of the motion. Furthermore, the

trajectory of the CoM for the system is entirely determined by its initial

position and velocity (or by the initial kick against the ground performed by

the robot in order to get airborne). To this end, we introduce the reduced

coordinates

q = [θ0, q1, q2, ...qk]
> ∈ Tk+1.
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and the control

U = [u1, u2, ...uk]
> ∈ Rk

which are the joint torques.

Compared with the full dynamics in (4.11), the reduced dynamics eliminates

the CoM position and its actuation force from the system:

Proposition 4.1. The reduced dynamics of the floating n-link open chain is

given by

D(q)q̈ + C(q, q̇)q̇ +G(q) =

[
0

U

]
(4.12)

where

D(q) = Dq(q)−D2(q)D−1
xy (q)D1(q)

C(q, q̇) = Cq(q, q̇)−D2(q)D−1
xy (q)Cxy(q, q̇)

G(q) = Gq(q)−D2(q)D−1
xy (q)Gxy(q) = 0.

Proof. To find the matrix D, C and G, we rewrite the LHS of system (4.11)

as [
Dxy(q) D1(q)

D2(q) Dq(q)

]ẍ0

ÿ0

q̈

+

[
Cxy(q, q̇)

Cq(q, q̇)

]
q̇ +

[
Gxy(q)

Gq(q)

]
(4.13)

and RHS as [0, 0, 0, U ]>, where U = [u1, u2, ...uk]
> ∈ Rn are the inputs for

reduced dynamics. The original D̄, C̄ and Ḡ matrices are decomposed into

smaller matrices: D̄ is decomposed into 2× 2 and (k + 1)× (k + 1) matrices

Dxy and Dq at diagonal location, matrices D1 and D2 at off-diagonal locations.

The system dynamics is independent of the base link position and velocity.

Consequently, ẋ0, ẏ0 do not enter the equations of motion and the first two

columns of C̄ are 0. Removing these columns, we get Cxy of dimension

2× (k + 1), and Cq of dimension (k + 1)× (k + 1), from C̄(q). In addition,

the gravity matrix Ḡ is a column vector which can be decomposed into two

smaller vectors Gxy and Gq of lengths 2 and k + 1 respectively.

Eliminating the first two rows of (4.13) and expressing [ẍ0, ÿ0]> in terms of

the other variables, we obtain[
ẍ0

ÿ0

]
= −D−1

xy (q)(D1(q)q̈ + Cxy(q, q̇)q̇ +Gxy(q)) (4.14)

43



Similarly, we can take out the last k + 1 rows of (4.13) and rearrange:

D2(q)

[
ẍ0

ÿ0

]
+Dq(q)q̈ + Cq(q, q̇)q̇ +Gq(q) =

[
0

U

]
(4.15)

Substituting (4.14) into (4.15) and reordering, We can have the matrices

D, C and G for the desired reduced system (4.12) with reduced generalized

coordinate q:

D(q) = Dq(q)−D2(q)D−1
xy (q)D1(q)

C(q, q̇) = Cq(q, q̇)−D2(q)D−1
xy (q)Cxy(q, q̇)

G(q) = Gq(q)−D2(q)D−1
xy (q)Gxy(q) = 0.

Note that the inverse D−1
xy exists since the inertia matrix D̄ is symmetric and

invertible. The new inertia matrix D is still symmetric and invertible. The

reduced gravity matrix G is zero since gravity affects the reduced dynamics

only through the motion of the CoM, which the above construction isolated

from the reduced dynamics. Furthermore, even though the notation D(q) and

C(q) suggests that D and C are functions of the reduced states q, they are

actually independent of the first state θ0 of q because the inertia and Coriolis

force of the system are independent of the base’s orientation.

The remainder of the application example will focus on the trajectory

planning of this reduced system (4.12). The CoM trajectory can be easily

calculated once the initial condition of CoM is known. The only parameter

we need to know from CoM trajectory is the flight duration, which decides

the time span of the planning problem.

4.4.3 State Space Model

The equation of motion (4.12) has to be converted to state space representation

as (3.3). Define the state by

x := [θ0, q1, q2, ...qk, θ̇0, q̇1, q̇2, ...q̇k]
> = [q>, q̇>]>.
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so the dimension of state is n = 2k + 1. The system (4.12) can be expressed

as a control affine state space model with drift:

ẋ = Fd(x) + F (x)u (4.16)

where

u =

[
0

U

]

Fd(x) =

[
Ok+1 Ik+1

Ok+1 −D−1(q)C(q, q̇)

]
x

F (x) =

[
Ok+1

D−1(q)

]

where the first element of the control u is zero, due to the fact that the

orientation of the base link is not actuated. The remaining part of u is

U which contains the joint torques. The vector Fd(x) represents the drift

dynamics and F (x) represents the admissible control directions. Physically,

the first k + 1 rows of Fd relate the derivatives of the angular positions with

their velocities. The last k + 1 rows of Fd is the drift caused by the Coriolis

force. The first k + 1 rows of F being zero reflects the fact that the control

U can only be directly applied to the accelerations, i.e. we perform torque

control. The system is under-actuated, since there are 2k + 2 states and k

inputs.

4.4.4 Construction of a Riemannian Metric

For our purpose, according to (3.16), we can take Fc := [Ik+1, Ok+1]> so that

span{Fc} is orthogonal to span{F}, and F̄ = diag[Ik+1, D
−1(q)] is full rank

for all x because the inertia matrix D is invertible.

We then define the Riemannian metric tensor G based on (3.17), with

D := diag(λ, · · · , λ︸ ︷︷ ︸
k+2

, 1, · · · , 1︸ ︷︷ ︸
k

)

for some large constant λ > 0.

We recall that the parameter λ can be thought of as a penalty on the
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Figure 4.3: Diver robot.

infinitesimal directions Fc(x). Using this metric G, we can measure the

actuated length (3.5) of a curve x(t). But note that since λ penalizes Fc(x),

a curve of minimal actuated length will use these directions only minimally,

and this will yield a motion trajectory that the robot system can follow and

the angular momentum is conserved, with very high precision (quantitative

relations between λ and precision are derived in Chapter. 3), using some

controls u.

With state constraints formulated according to Sec. 4.1, the augmented

Riemannian metric (4.7) can be construct with G and a large λh. The

constraints can be formulated individually with individual values for λh. In

the next section, we demonstrate examples of different type of constraints.

4.4.5 Implementation and simulation results

Diver Robot We consider a planar diver robot with three links with

revolute joints, as illustrated in Fig. 4.3. The middle link, which we consider

to be the base link, can be thought of as corresponding to a human torso.

The position and orientation of the base link in an inertial frame are denoted

by [x0, y0]> and θ0. Link 1 and link 2 are connected to the opposite ends of

the base link, and can be thought of the arms and legs. The relative angles

between link 1, link 2 and the base link are q1 and q2. The dynamics follows

(4.12), with q = [θ0, q1, q2]> and joint torques as input U = [u1, u2]>.

The system parameters are chosen to be proportional to human’s torso,

arms and legs, and are displayed in Table 4.1. The CoM of each link is located

at the geometric center of the link.
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Link i mass(kg) inertia(kgm2) length(m)

0 1 0.533 0.8
1 0.2 0.0167 1
2 1 0.1875 1.5

Table 4.1: Robot Parameters

Let the states be x = [θ0, q1, q2, θ̇0, q̇1, q̇2]> = [q, q̇]> and Fc = [I3, O3]>. We

will demonstrate different somersault motions generated with and without

states constraints.

Free Somersault Planning We used the method introduced in this paper

to plan a somersault in two different cases: in the first case, the initial kick is

specified (e.g. a gymnast jumps as strongly as possible to increase its angular

momentum) and we require the robot to land with the same pose as its initial

pose. In the second case, we specify the landing angular velocities of torso and

leg to be zero in order to have a stable landing, and solve for both the mid-air

motion and the initial kick that will impart the robot with the necessary

momentum to perform the motion.

It is well known that, when in mid-air, the center of mass of the robot

will follow a ballistic motion determined by its initial velocity. This initial

velocity can be, in turn, determined by the horizontal distance of the jump

(we choose 6 here) and time allowed for it (T ). Since its motion is unaffected

by the controls, it can be precomputed and added to the position of the robot

at the end. We did so here, and the position of the CoM is shown in the red

curve in Fig. 4.6.

For motions without state constraints, the tensor G(x) can be constructed

from (3.17). Solving the AGHF with chosen boundary conditions, a solution

curve is obtained and the control can be extracted using (3.18). Single

Somersault motions can be realized by requiring θ(0) = 0 and θ(T ) = 2π. We

find the controls that generate them below for different choice of boundary

conditions.
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Figure 4.4: Controls for Case 1 and Case 2
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Figure 4.5: Trajectory of the states for Case 1. The red dashed lines is
the trajectory solved by heat flow method. The solid black lines are actual
trajectories driven by the extracted control.

4.4.5.1 Case 1: Free Final Velocities

We use xinit = [0, 0, 0, 0, 0, 6]> as initial state. That is, we assign a nonzero

initial condition for θ̇2, which can be analog to a initial kick with leg. The final

state is set to be xf = [2π, 0, 0, ·, ·, ·]> which means that we have performed a

360 degrees rotation in the air and then land vertically. The final values for

θ̇0, q̇1 and q̇2 are free.

We set λ = 1000 and smax = 0.05, and obtain x∗(t) = x(t, smax) by solving

the AGHF. We then extract the controls from (3.18) for x∗(t), see Fig. 4.4a.

Using the extracted control above, we solve the dynamic equations, shown in

Fig. 4.5 by black lines, and we see that the robot performs the desired motion

with these controls. Snapshots of this motion are given by Fig. 4.6a.

Here we predefined a ballistic CoM trajectory starting from right side which

48



−7 −6.5 −6 −5.5 −5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1
0

0.5

1

1.5

2

2.5

3

3.5

4

1

23

4 5

6

x (m)
y

(m
)

(a) Case 1

−7 −6.5 −6 −5.5 −5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1
0

0.5

1

1.5

2

2.5

3

3.5

4

1

2

3

4 5

6

x (m)

y
(m

)

(b) Case 2

−7 −6.5 −6 −5.5 −5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1
0

0.5

1

1.5

2

2.5

3

3.5

4

1

2
3

4
56

x (m)

y
(m

)

(c) Case 3

−7 −6.5 −6 −5.5 −5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1
0

0.5

1

1.5

2

2.5

3

3.5

4

12
3

4

5

6

x (m)

y
(m

)

(d) Case 4

Figure 4.6: Snapshots of the somersault motions (right to left) in four cases.
The blue links are the arm (link 1), green links are the leg (link 2) and
brown links are the body (base link) of the robot. The red curves are the
trajectories of CoM motion, with red dots indicating the position of CoM at
each snapshots.
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Figure 4.7: Evolution of state trajectory from initial guess (red) to steaty
state (solid black).

gives T = 1s for the robot to stay in the air. At time t = 0, the robot stands

vertically at position x = 0. It is assumed to be facing right. The robot then

kicks its leg counterclockwise with a speed of 6 rad/s before getting airborne

(because q̇2 = 6). During the aerial phase, it bends its arm and leg to decrease

the total inertia in order to speed up the overall angular velocity and land

with the desired pose after having done one full rotation in the air. Before

landing, it extend its limbs, making sure it will stand vertically when it lands.

At t = 1, the robot lands with the desired pose (same as initial pose) at the

left side.

Fig. 4.7 shows the evolution of the trajectory of q(t) from initial guess

q(t, 0) (red) to the steady state solution q(t, smax) (solid black) in 3D con-

figuration space, namely, q = [θ0, q1, q2]>. The initial condition is a straight

line connecting x(0) and x(T ) in configuration space, which is not a feasible

trajectory.

As s increase from 0 to smax, the trajectory evolves from this initial guess

to a steady state solution trajectory (black solid line) that minimize the

actuated length.

Fig. 4.8 shows the convergence of actuated length to a minimum as s

increase from 0 to smax. At s = 0, the cost is high since the initial guess

trajectory is arbitrarily chosen and the projection of ẋ−Fd(x) on inadmissible

directions is large, which got amplified by the large constant λ in G(x). As
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Figure 4.8: Actuated length converging to a local minimum.

s increases, we see that the curve evolves in a direction that decreases the

length and eventually converges to a steady state, which corresponds to an

admissible solution, i.e., a “short” curve for our Riemannian metric.

4.4.5.2 Case 2: Free initial kick

Another somersault motion is generated with different boundary conditions,

see Fig. 4.6b. The initial state is xinit = [0, 0, 0, 0, 0, ·]> and the final state is

xf = [2π, 0, 0, 0, ·, 0]>, which sets the initial value of q̇2 and final value of q̇1

to be free. This describe a somersault that starts with a kick of the leg to be

determined, and ends with leg standing still (q̇2(T ) = 0) but we allow the arm

to move at landing. That is, we ask the algorithm to find what initial angular

momentum is necessary to perform the motion, and this angular momentum

is imparted by the leg at the start of the jump and “transferred” to the arm

and the end. The algorithm is able to find a trajectory that meets these

requirements. Note that in this case, the initial kick chosen by the algorithm

is stronger than the one assigned manually in case 1, so that the limbs are

not required to be tucked much during flight. An interesting extension would

be to constrain this initial kick as well.

From the controls shown in Fig. 4.4 for case 1 and Fig. 4.4b for case 2, we

see that the planning algorithm highlights two different strategies of motion.

In case 1, since the initial kick is not strong, the controls are needed to tuck

the limbs to increase the overall angular velocity. In case 2, the initial kick is

stronger, and the controls are used to slow down the leg and accelerate the

arm in order to transfer the momentum to the arm at the end.

The final pose in Fig. 4.6a and Fig. 4.6b are not exactly vertical for the

value of λ chosen. Theoretically, larger λ gives a closer integrated path to
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Figure 4.9: Solving time and Planning Error |x̃(T )− x(T )| vs λ

the solution curve. Fig. 4.9 shows the planning error (red line) between

the planned final state and desired final state for the motion in 4.4.5.1. The

planning error decreases as λ increases.

4.4.6 Constrained Somersault Planning

In this section, we present motions with state constraints as formulated in

Sec. 4.1. For motions with state constraints, the tensor Ĝ can be constructed

from (4.7) and the constrained AGHF (4.9) can be determined analytically

with the constraint h(x). Solving the constrained AGHF with chosen boundary

conditions, a solution curve is obtained and the control can be extracted using

(3.18). Similar somersault motions as Case 1 can be realized with different

types of constraints.

4.4.6.1 Case 3: Equality Constraint

To illustrate the motion planning with equality constraints, we will regenerate

the somersault motion in Sec. 4.4.5.1 but with the arm staying vertical

(orthogonal to the ground) during the whole motion. The expression for this

constraint is h(x) = θ0 + q1 = 0. From (4.3), S(x) = 1 for equality constraint.

The same boundary conditions and initial condition from Case 1 is used,

except that the final value for q1 is set free so that the solver will find the

final value of arm joint that satisfies the equality constraint.

We solved the constrained AGHF (4.9), with λ = 2000 and λh = 20000, to

generate the motion shown in Fig. 4.6c, with the equality constraint, namely,
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Figure 4.10: Trajectory of constrained state q2 (black), and the joint limit
(red)

arm staying vertical. The solver is able to find a motion in which the links

coordinate with each other to keep the arm vertical, while satisfying the

desired boundary conditions.

4.4.6.2 Case 4: Inequality Constraint

We now plan a motion where we limit the leg joint angle q2: q2 ≤ 1.9.

Therefore the inequality constraint is h(x) = q2 − 1.9 ≤ 0. From (4.3), a

smooth logistic approximation of the step function is used to construct the

switch function S(x).

Solving the constrained AGHF (4.9) with the same boundary conditions

and initial condition as Case 1, we obtain an admissible trajectory as shown

in Fig. 4.6d. To obtain this motion, we chose λ = 2000 and λh = 20000. In

this motion, we observe that the leg is further away from the torso, when

compared with the leg in Case 1 (Fig. 4.6a), because the leg joint angle

is limited by 1.9 rad. Hence, the constraint did indeed affect the motion.

Because the total angular momentum is conserved, moving the leg further

away from torso increases the inertia and decelerates the somersault. As

a result, the arm has to move closer (compared to Case 1) to the torso in

order to compensate the inertia increment from leg. The planned motion in

Fig. 4.6d indeed shows this behavior. Fig. 4.10 shows the trajectory of the

constrained leg joint angle q2.
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CHAPTER 5

PLANNING FOR LEGGED LOCOMOTION:
AGHF WITH HYBRID DYNAMICS

Planning dynamic motions of legged robots has become an increasingly

important topic, due in part to improved robot design and hardware, and in

part to higher on-board computational capacity. Typical examples of such

robots designs include the MIT Cheetah [1], the bipedal robot Cassie made

by Agility Robotics and the Salto robot [2]. The major difficulty for legged

locomotion planning lies in its hybrid nature: the dynamics of legged robots

is governed by a set of equations and constraints depending on whether there

is contact with the ground. Hybrid systems are well known to be difficult to

handle; in fact, open questions remain even in the case of linear dynamics [13].

In this chapter, we show that the AGHF method we proposed for motion

planning extends naturally to handle hybrid dynamics. Precisely, we show

how the Ansatz developed in Chapters 3 and 4, contending that motion

planning problems can be encoded into Riemannian metrics, can be applied

to plan legged locomotion.

A variety of dynamic models have been used for different types of locomotion.

Among which, the Linear Inverted Pendulum model is a simplified model that

is used in cooperation with Zero Moment Point as the stability criterion for

bipedal walking [46]. At the opposite extreme, full dynamics are used to plan

the joint trajectories for motions with external contacts in [47, 48]. Centroidal

dynamics, i.e. the dynamics of robot projected at its Center of Mass (CoM)

[49], has been used for generating whole body motions of a humanoid robot

[50] and hydraulic quadruped robot locomotion [51]. By using legs with light

weight, or assuming the legs do not significantly deviate from their nominal

pose, one can simplify the centroidal dynamics to single rigid body dynamics

For example, high speed bouncing motions are achieved for quadruped [39],

biped and quadruped locomotion in complex terrains are planned in [52]. In

this work, we use the 2 dimensional model with massless legs, which we called

a Single Rigid Body Model.
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Amongst the existing methods for legged locomotion planning, trajectory

optimization (TO) formulates the problem as an optimization problem, e.g. in

direct collocation and differential dynamic programming methods. In [47, 50],

the hybrid dynamics of contact is modeled as a complementarity problem, with

the ability to plan the contact locations. By convex modeling of the dynamics,

convex optimization techniques are used in [53, 54] for faster convergence,

while the footholds need to be pre-planned. The discrete nature of contact can

be also modeled utilizing binary valued decision variables and solved by mix-

integer solver, [51]. More recent work [52] plans both gait timings and contact

locations automatically by modeling the contact dynamics individually. In

this chapter, we extend the AGHF method presented in Chapters 3 and 4 to

naturally encode the hybrid dynamics of legged locomotion. The key is to

formulate the hybrid legged locomotion problem into AGHF framework with

the help of an innovative switching mechanism. The extended algorithm can

encode variety of constraints including contact constraints. Meanwhile, the

convergence is guaranteed at a given order, as explained in Chapter 3.

5.1 The AGHF for hybrid dynamics

Let x ∈ Rn and u ∈ U , we consider the following control affine time-dependent

switched system. Detailed definitions and analysis of switched systems can

be found in [13].

Definition 5.1 (Control Affine Time-dependent Switched System). The

dynamics of the control affine time-dependent switched system is given by

ẋ = Fd,σ(t)(x) + Fσ(t)(x)u (5.1)

where σ(t) is a piecewise constant function (called switching signal) σ(t) :

[0,∞) → I, with I = {1, 2, · · · , K} is a finite index set with K indicating

the number of subsystems, and the dwell-time of σ is uniformly lower bounded

by a positive constant.

The role of σ is to specify, at each time instant t, the index σ(t) ∈ I of the

active system, namely, the system being followed. The system dynamics of

the active system at index σ is determined by the function pair {Fd,σ(x), Fσ},
which are defined in Def. 2.1 and we call such systems the subsystems or modes
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of the system. We call the times at which σ is discontinuous the switching

times, and the minimum dwell-time is the least difference between pairs of

switching times.

A typical example of the switched system (5.1) is bipedal robot system.

The robot dynamics depends on how many feet are in contact with ground

and the switching of different dynamics can be defined by switching times.

We introduce the following activation functions for each subsystem of the

switched system

Definition 5.2 (Activation Function). The activation function for the i-th

subsystem is the piecewise constant function

Ai(t) :=

1, t ∈ [ti, ti+1)

0, t ∈ [0, ti) ∩ [ti+1,∞).
(5.2)

where i ∈ I is the index of the subsystem. The switching times ti and ti+1 are

the beginning and ending times of the subsystem. In addition, we have the

following constraint
K∑
i=1

Ai(t) := 1, t ∈ [0, tK+1) (5.3)

Recall that K < ∞ is the total number of subsystems and tK+1 is the

ending time of the K-th subsystem, which equals to the motion duration,

tK+1 = T . The constraint (5.3) ensures that for any t ∈ [0, tK+1), there is a

valid and unique subsystem that is active. With the activation function (5.2),

the switched system (5.1) can be represented by

ẋ =
K∑
i=1

Ai(t)(Fd,i(x) + Fi(x)u), i ∈ I (5.4)

The Riemannian metric also relies on the activation functions to deter-

mine the appropriate metric to use, which of course depends on the current

dynamical regime of the system:

Definition 5.3 (Switched Riemannian Metric). The switched Riemannian

metric associated with the curve x(t) given by (5.4) is

G(x, t) =
K∑
i=1

Ai(t)Gi(x), i ∈ I (5.5)

56



where Gi(x) is the Riemannian metric for the i-th subsystem and can be

constructed by (3.16) and (3.17) using Fi(x).

By this definition, the metric of each subsystem, Gi(x), is activated for

t ∈ [ti, ti+1), therefore the overall metric G(x, t) is dependent with time t.

Similar as (3.5), the actuated curve length given by the metric (5.5) is:

Definition 5.4 (Switched Actuated Curve Length).

LG(x, ẋ) :=
K∑
i=1

∫ T

0

Ai(t)((ẋ− Fd,i(x))>)Gi(x)(ẋ− Fd,i(x)))1/2dt. (5.6)

The switched actuated curve length is the summation of the active portions

of each subsystem’s curve length.

Lemma 5.1 (Switched AGHF). The AGHF of the switched actuated curve

length is

∂x(t, s)

∂s
=

K∑
i=1

Ai(t)φi(t, s) (5.7)

where φ(t, s) is the AGHF of each subsystem defined by (3.5) using Gi and

Fd,i of the i-th subsystem. Let x∗(t) be a steady-state solution of the switched

AGHF (5.7). Then x∗(t) is an extremal curve for the switched actuated curve

length (5.6). Furthermore, the switched actuated curve length decreases along

the solutions of the switched AGHF.

Proof. The proof follows the same lines as the proof of Theorem. 3.1, where

the optimality is obtained piecewise for each ‘period’ in the switching signal.

More precisely, the switched actuated curve length can be rewritten as

LG(x, ẋ) =
K∑
i=1

∫ ti+1

ti

((ẋ− Fd,i(x))>)Gi(x)(ẋ− Fd,i(x)))1/2dt (5.8)

and for each time span t ∈ [ti, ti+1), the switched AGHF can be expressed as

∂x(t, s)

∂s
= φi(t, s), t ∈ [ti, ti+1) (5.9)

From Theorem. 3.1, each of the AGHF φi(t, s) is a curve shortening flow for

the curve length
∫ ti+1

ti
((ẋ− Fd,i(x))>)Gi(x)(ẋ− Fd,i(x)))1/2dt, for time span

t ∈ [ti, ti+1). Therefore, the flow (5.7) that is defined by concatenating the
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subsystem AGHF for all i ∈ I, shortens the summation of the actuated curve

lengths of all the time intervals, which is the switched actuated curve length

(5.6).

Example: We illustrate the use of switched AGHF via the following unicycle

example.

The unicycle dynamics is governed by (3.21) with unicycle position and

orientation as states, x = [qx, qy, θ]
>, linear and angular velocity as inputs,

u = [u1, u2]
>. We now consider a 2-phase motion. The first phase is for

t ∈ [0, 1), where the linear velocity is free and angular velocity is constant,

u2 = 1. The second phase is for t ∈ [1, 2], where the angular velocity is free

but linear velocity is constant, u1 = 1. The resulting system is a switched

system that can be modeled by (5.4), with I = {1, 2}, and

A1 = H(t)−H(t− 1)

F1 = f1

Fd,1 = f2

for the subsystem in first phase

A2 = H(t− 1)−H(t− 2)

F2 = f2

Fd,2 = f1

for the subsystem in the second phase. The column vectors f1 and f2 are

the unicycle heading direction and turning (angular) direction, as defined in

(3.21).

The activation functions A1(t) and A2(t) are constructed using heaviside

step function H(·). The subsystem dynamics are distinguished by the two

different sets of {Fi, Fd,i}. The switched Riemannian metric can be obtained
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via (5.5) with

G1 = (F̄ (x)−1)>D1F̄ (x)−1

D1 = diag(λ, 1, λ)

G2 = (F̄ (x)−1)>D2F̄ (x)−1

D1 = diag(λ, λ, 1)

in which F̄ is the invertible matrix that contains both admissible and inad-

missible directions. For the unicycle, F̄ is

F̄ (x) =
[
fc f1 f2

]
=

 sin θ cos θ 0

− cos θ sin θ 0

0 0 1

 (5.10)

where the inadmissible direction fc is the side slip direction. The key difference

between the metrics lies in the penalty matrices D1 and D2. With D1, the

motion steering on fc and angular direction f2 will cause large curve length,

however with D2, the motion steering on fc and linear direction f1 will cause

large curve length.

As a result, the construction above is able to capture the two distinct

unicycle dynamics in two phases. That is, by constructing the switched

Riemannian metric, the actuated curve length is able to encode the two

dynamics of two different phases. By solving the corresponding AGHF

(5.7), a motion that follows different dynamics in different phases can be

obtained.

In the remaining sections, we apply the above-developed framework to

motion planning of a legged robot. The legged locomotion dynamics is

switched because the number of actuating contact forces depends on what

mode of the robot: for example, single leg support mode, double leg support

mode, and so on. The constraints are mode dependent as well. A typical

constraint is the friction cone constraint of the contact force, and it is only

active when the foot is in contact with the ground. We will first introduce the

modeling of legged dynamics and its constraints. Then the motion planning

framework for switched system is applied, with a more specific variation of the

activation functions designed for legged locomotion. At last, an approach for

motion planning of switched system with indefinite switching time is proposed
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Figure 5.1: 2D Single Rigid Body Model

and applied on legged locomotion planning.

5.2 Legged Robot Dynamics

In this section, the modeling of legged robot is introduced. The model includes

the robot system dynamics and legged locomotion constraints.

5.2.1 Single Rigid Body Model

We focus on the problem of planning the motion of a 2D legged robot with

massless legs–the Single Rigid Body Model, see Fig. 5.1. The torso of robot is

a rigid body with mass M and inertia I around its CoM. The CoM position

is p = [px, py] ∈ R2 and the torso’s orientation is θ ∈ T1.

The robot has k > 0 legs, each leg has point foot at the distal end, with

coordinate pi = [pix, piy]
> ∈ R2. The contact force applied on the point foot

at pi is fi = [fix, fiy]
> ∈ R2. The number of leg links and their lengths

are not predetermined. We ensure the joint angles are feasible by adding

constraints on the foot and hip positions; for example, if a leg has two links

from hip to foot and one joint at knee, then the joint angle is feasible if the

distance between the foot and hip is smaller than the sum of link lengths.

This kinematic constraint is discussed in Section 5.2.2. The joint torques and
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contact forces can be mapped to each other by the foot Jacobians for the

massless leg robot. Therefore we directly use the contact forces as inputs to

the system. The equations of motion for the robot thus are:

p̈ =
1

M

k∑
i=1

fi −
[
0 g

]>
, θ̈ =

1

I

k∑
i=1

fi × (p− pi) (5.11)

where g is the gravitational acceleration. The terrain is not assumed to be

flat and is given as the zero-set of a C2 function

fterr(cx, cy) = 0 (5.12)

where [cx, cy]
> is a point on the 2D terrain.

5.2.2 Constraints for Legged locomotion

For each leg, there are two different modes or phases:

1. Stance phase: the foot is in no-slip contact with a surface

2. Flight phase: the foot is in the air

We now describe the constraints in different phases. In stance phase for leg

i:

ṗi = 0 (5.13)

fterr(pix, piy) = 0 (5.14)

fi ·
−→
N (pi) ≥ 0 (5.15)

|fi ·
−→
T (pi)| ≤ µfi

−→
N (pi) (5.16)

the foot is in contact with the ground and has zero velocity: (5.13)-(5.14).

The force fi is generated through contact with the ground, thus subject

to the following constraints: let
−→
N (pi) and

−→
T (pi) be the unit normal and

tangent vectors at the contact point pi, which can be directly calculated using

the gradient of terrain function fterr(·, ·). The foot can only push against

the ground: the projection of fi in normal direction to the surface at the

contact point has to be positive (5.15). Furthermore, the contact force is

constrained by a friction cone, formed by the normal contact force and the
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friction coefficient µ, as shown by the light blue triangle in Fig. 5.1; see (5.16).

In flight phase for leg i, there is no contact force and the feet are above the

ground:

|fi| = 0 (5.17)

fterr(pix, piy) ≥ 0 (5.18)

Finally, the following constraints enforce that the joint angles are feasible and

hold for both phases:

|p− pi| ≤ R (5.19)

fterr(px, py) ≥ hc (5.20)

Indeed, assuming that the hip for all legs are at CoM and the leg links

are connected in series, the feasibility of joint angles can be ensured (5.19),

where R is chosen to be less than the sum of the leg link lengths. One can

make R smaller to avoid approaching singularity configurations of the leg.

If no collision with the torso is desired, this constraint can be replaced by

(|p− pi| − R)2 ≤ ∆R2 with proper ∆R. Constraint (5.20) ensures that the

CoM is higher than the terrain height by some positive constant hc.

5.2.3 State Space Model

To represent the system in form of (3.3), define the state:

x = [p, θ, ṗ, θ̇, f1, p1, f2, p2, ...fk, pk]
> ∈ R6+4k

in which the original controls fi and pi are states of the system, and introduce

the new controls: [ui, vi]
> = [ḟi, ṗi]

> ∈ R4, which are the rate of change

for the original controls fi and pi. Now, the control to the system is u =

[u1, v1, . . . , uk, vk]
>. This operation allows us to encode constraints on the

original controls as state constraints, as discussed in Sec. 5.3.3. Denoting

m× n zero matrix by Om×n and k × k identity matrix by Ik, we can write
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the system in form of (3.3) with:

Fd(x) =



[
x4 x5 x6

]>
1
M

∑k
i=1 fi −

[
0 g

]>
1
I

∑k
i=1 fi × (p− pi)
O4k×1

 , F (x) =

[
O6×4k

I4k

]
(5.21)

where, from the definition of x above, fi = [x3+4i, x4+4i]
>, pi = [x5+4i, x6+4i]

>

and p = [x1, x2]. The 2-D cross product “×” for torque calculation is defined

as [x1, y1]
> × [x2, y2]

> = x1y2 − x2y1. The drift term Fd(x) includes all the

robot dynamics, and the columns of F (x) are the actuated directions, in other

words, the directions that can be directly controlled by u.

The system above is a switched system since the actuation of control u

depends on the mode. For example, due to constraint (5.13), the control vi is

disabled during stance phase of the i-th leg. Furthermore, the state constraints

will be formulated in a similar fashion in Sec. 4.1, where augmented states

are introduced. The augmented states also follow some switched dynamics

since the state constraints are switched based on the modes.

5.3 A Riemannian metric for Legged Locomotion

The motion planning problem is to find a trajectory for x obeying (4.16)

under constraints (5.13) to (5.20), for given boundary conditions, time span

T . The challenge is that the constraints are different during flight and stance

phases and the availability of some controls also depends on what phase the

foot is in. We solve the motion planning problem by specializing the generic

framework designed for switched system in Sec. 5.1 to legged robot system.

In this section, instead of defining the activation functions for each subsystem,

we define activation functions for the phases of each leg. The underlying idea

remains the same, and we first work under the assumption that the schedule

of phases are predefined, i.e., the timing of taking off and landing of each

leg are set in advance. This results in a switched Riemannian metric. The

transition of a constraint from active to inactive is a discrete event, which

we formulate with the help of a redefined Activation Function in Sec. 5.3.1.

Then the input and state constraints are equipped with proper activation
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functions, which are discussed in Sec. 5.3.2 and Sec. 5.3.3.

5.3.1 Activation Function

The key step in the formulation of the phase-dependent constraints is the

activation function for legs: The activation function Ai(t, x) for the i-th leg

is a binary valued function which determines whether the leg is in stance or

flight:

Ai(t, x) :=

1, if foot in stance

0, if foot in flight.
(5.22)

In general, the activation function can be dependent on state and time. For

a predefined contact schedule, it is only dependent of time. Throughout the

remaining sections of this chapter, the term “activation function” specifically

refers to the activation functions for legs, unless otherwise noted.

In the case that the timing of landing and take off is given, the activation

can be expressed by Heaviside unit step functions:

Definition 5.5 (Activation function for predefined contacts). If the time

sequences {tji,1}j and {tji,2}j of landing and take-off time are given, where j

indicates the j-th step and i is the leg index. The activation functions Ai(t)

are defined as:

Ai(t) :=
k∑
j=1

H(t− tji,1)−H(t− tji,2). (5.23)

where k is the total number of steps of the foot and H(c) is a Heaviside unit

step function where the step time is at c.

5.3.2 Fixed Contact Foot Position Formulation

To encode the switching between free and constant foot velocity, i.e. flight

and stance phases, we define the Riemannian metric G similarly to (3.17),

with a time varying penalty matrix D(t) equipped with activation functions

of all legs:

Definition 5.6 (Metric for legged locomotion). The time-varying Riemannian

metric G(x, t) that encodes the activation and deactivation of constant foot
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velocity constraint is defined by Eq. (3.17) with

D = diag(λ, · · · , λ︸ ︷︷ ︸
6

,Λ1, · · · ,Λk), (5.24)

where Λi=diag
(
1, 1, 1+λAi(t), 1+λAi(t)

)
and Ai(t) is the activation function

for leg i.

The term 1 + λAi(t) in Λi penalizes the length of trajectories that use the

control vi. If the foot is in stance, the value of Ai is 1 and the curve length is

increased due to a nonzero vi multiplied λ; as a result, vi will be minimized.

When the foot is in flight phase, Ai is 0, therefore the value of vi is free as

it will not affect the curve length. Hence, curves of minimal length for this

metric are so that the constraint (5.13) is met when the foot is in stance.

With the penalty term for ui set to 1, we are not constraining the changing

rate of contact forces, ḟi, in the Riemannian metric. The constraints on fi

(cone (5.16) and positivity (5.15) constraints) will be encoded in Sec. 5.3.3

as state constraints. In the formulation (5.24), the control is either free or

constrained to zero depending on the time-dependent penalty matrix D(t).

However, one can also have constraints on the magnitude of control by letting

u be a state of the system which is directly controlled by a newly introduced

unconstrained control. The constraint on u is then a state constraint. This

is exactly the intention of formulating contact forces and foot positions as

states in Sec. 5.2.3.

Owing to the simple structure of F in (4.16), we take Fc :=[I6, O4k×6]> so

that span{Fc}⊥span{F} and F̄ =I4k+6 is full rank for all x.

5.3.3 State Constraints Formulation

The state constraints can be formulated in a similar way as Sec. 4.1, but with

the ability to activate and deactivate phase dependent constraints. Each of

the state constraints from (5.14) to (5.20) can be formulated as scalar function

h(x) = 0 for equality constraints or h(x)≤0 for inequality constraints. For

example, for constraint (5.20) we have to encode the activation/deactivation

of the state constraints in different phases. To this end, denote by hj(x),

j∈Z+≤kc, the j-th scalar constraint function with kc the number of such

constraints. We apply the following method to each constraint individually.
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The first step is the same as the state constraint in Sec. 4.1. We add one

state per constraint, denoted by ζj, resulting in the augmented state of

the system: x̂ :=[x>, ζj]
>. The new state ζj keeps track of the accumulated

signed error between hj(x) and zero: ζj(t) :=
∫ t

0
hj(x(τ))Sj(τ, x(τ))dτ−→ ζ̇j :=

hj(x(t))Sj(t, x(t)), where Sj(t, x) is a scalar switch function for different type

of constraints:

Sj(t, x) =

Bj(t), for equality constraint.

H(hj(x))Bj(t), for inequality constraint.
(5.25)

in which H(·) is the Heaviside function used in (5.23), Bj(t) is the constraint

activation function for the j-th scalar state constraint and is defined below. A

constraint can be active either for the duration of the motion (e.g., bound on

the joint angle), or depending on the phase in the motion. The presence of

the switch function in (5.25) is the main difference with the switch function

(4.3) in Sec. 4.1.

Definition 5.7 (Constraint activation function). The constraint activation

function for the j-th scalar state constraint is given by:

Bj(t)=


1 if it holds all the time

Ai(t) if it holds in stance phase of foot i

1−Ai(t) if it holds in flight phase of foot i.

(5.26)

For example, the activation function for constraint (5.17) of the j-th leg is

1− Aj(t).
The augmented system dynamics is thus given by

˙̂x = F̂d(x̂) + F̂ (x̂)

[
u

hj(x)Sj(t, x)

]
(5.27)

where

F̂d(x̂) =

[
Fd(x)

0

]
, F̂ (x̂) =

[
F (x) O6+4k,1

O1,6+4k 1

]
. (5.28)
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5.3.4 Actuated Curve Length and Geometric Heat Flow

The Riemannian metric G(t) defined by (3.17) and (5.24) is constructed so

that the length of paths violating the constraints is large. We do so by

introducing the augmented metric for legged locomotion, which has the same

format as (5.8):

Definition 5.8 (Augmented metric). The Riemannian metric for the aug-

mented system (5.27) is

Ĝ(t) :=

[
G(t) O6+4k,1

O1,6+4k λj

]
(5.29)

where G(t) is the Riemannian metric defined for the original states x by (3.17)

and (5.24), and λj is a large constant.

With this metric, we obtain that the actuated curve length of the augmented

system is

L̂ =

∫ T

0

(
( ˙̂x− F̂d(x̂))>Ĝ(t)( ˙̂x− F̂d(x̂))

)1/2
dt (5.30)

For the augmented system, we define the constrained AGHF:

∂x(t, s)

∂s
= ∇ẋ(t,s) (ẋ(t, s)− Fd) + r(t, s)− λj

∂(h(x)2S(t, x))

∂x
(5.31)

where the first two terms of the right-hand side are the same as (3.6). Similarly

as in Section 4.1, the constrained AGHF (5.31) minimize the actuated curve

length of the augmented system:∫ T

0

(
( ˙̂x− F̂d(x̂))>Ĝ(t, x̂)( ˙̂x− F̂d(x̂))

)1/2
dt

=

∫ T

0

(
(ẋ− Fd(x))>G(t, x)(ẋ− Fd(x)) + λjh(x)2S(t, x)

)1/2
dt (5.32)

and plugging in the defining of Ĝ, we get

L̂ =

∫ T

0

(
(ẋ− Fd(x))>G(t)(ẋ− Fd(x)) + λjh

2
j(x)Sj(t, x)

)1/2
dt.

This augmented curve length has the same format as (4.8). However, with the
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switch function redefined for phase dependent constraints, the curve length

reflected the contribution of these phase dependent constraints. Compared

to (3.5), it contains the additional term λjhj(x)2Sj(x). When the constraint

hj(x) is active, namely, Bj(t) = 1: for equality constraint hj(x) = 0, by

construction Sj(x) = 1, the actuated length is penalized by λj when hj(x) is

not close to zero, driving hj(x) → 0. For an inequality constraint hj(x) ≤
0, the actuated length is penalized by λj when hj(x) > 0 and Sj(x) =

H(hj(x)) ≈ 1, driving hj(x) → 0. However, this term has no effect on the

actuated length if hj(x) ≤ 0 since Sj(x) = H(hj(x)) ≈ 0. Hence, minimizing

the actuated length of an augmented state trajectory results in minimizing

the violation of the state constraints while it is active. In conclusion, solving

the AGHF derived from Lagrangian (5.32) leads to a curve with minimum

actuated length, which is a motion admissible for system (5.11) and respects

the constraints (5.13)-(5.20).

5.3.5 Step Function Approximation

Since the AGHF requires to take derivatives of a Heaviside step function

(whose derivative formally does not exist as a function), and in order to avoid

having to implement a solver which works for piecewise continuous systems

by solving for each pieces, we approximate the step function H(c) and its

derivative dH
dc

(c) using a logistic approximation (4.5) ( revisited below). It

approximates a unit step at c = 0, namely, H(c) ≈ 0 if c < 0 and H(c) ≈ 1

if c > 0. The constant α controls the accuracy of the approximation. The

derivative is αe−αc

(1+e−αc)2
, which causes overflow problem when evaluating its

value numerically for large α. To circumvent this numerical issue, we use

zero-centered normal distribution (5.34) to approximate the derivative of the

step function, where β is a large number scaling the value of Ḣ(c) at c = 0.

H(c) :=
1

1 + e−αc
(5.33)

dH

dc
:=

1

β
√

2π
e−(c/β)2 (5.34)
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5.3.6 Planning Algorithm Summary

The steps of the algorithm can be summarized as follow:

Step 1: Specify the number of legs k, find Fd(x) and F̄ .

Step 2: Specify timing for stance/flight phases of each leg, construct Ai(t)

for all i to build D(t). Then construct metric G(t) with F̄ and D(t)

from (5.24), using large λ.

Step 3: Specify the terrain fterr(·, ·), µ, R, hc. Construct switch functions

Sj(t) for the state constraint using Ai(t), Bj(t). Formulate all state

constraints hj(x) for (5.14)–(5.20) as extra states equipped with Sj(t)

to get the augmented states x̂.

Step 4: Get the augmented drift F̂d from Fd, construct the metric Ĝ (5.29)

using G and large λj.

Step 5: Find the actuated length (5.30) using Ĝ, F̂d, then find the corre-

sponding AGHF.

Step 6: Solve AGHF with BC (3.14) and IC (3.15) and large enough smax

to obtain the solution x∗(t).

Step 7: Extract control u(t) from x∗(t) using (3.18). Integrate the dynamics

(5.21) with control u(t) and initial value x∗(0) to obtain the integrated

path x̃(t), which is the planned motion.

5.4 Application Example: Two Leg Hopping

We illustrate the performance of our method in planning motion for a two

leg hopping robot on uneven terrain with sinusoidal profile, see Fig. 5.3 for

snapshots of the planned motion1. The initial condition to solve the AGHF

is a straight line connecting xinit to xfin which is not a feasible trajectory.

Choosing the constant λ= 106 and solving the AGHF with a large smax =

0.0005 in pdepe from the Matlab PDE toolbox, we obtain x?(t). Using

the extracted control (3.18) to integrate the system dynamics (5.21), the

1Supplementary animations can be found in playlist: https://www.youtube.com/

playlist?list=PLRi8ecX8Oy0UZzYoRi2DASQfU16sKtRph
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Figure 5.2: Torso position and orientation trajectories for AGHF solution x?

and integrated path x̃. Error is present between x? and x̃.

planned motion x̃(t) can be obtained. The terrain has a sinusoidal profile,

fterr(cx, cy) = cy − 0.1 cos(4πcx). The torso (cyan box) has a mass M= 2 kg

and inertia I = 1 kg · m2. The leg is rooted at the CoM of torso and the

maximum radius R in constraint (5.19) is 1 m. The CoM is higher than

hc = 0.3 in (5.20). Friction coefficient is µ = 1. The goal is to move the CoM

from [0, 0.85]> to [2, 0.85]> with T = 2 s and 3 hops. The stance/flight phase

timings for leg 1 are predefined to have a 1 : 1 ratio while the timing of the

second leg is shifted by −0.05 s, so that the two legs are not synchronized.

The generated motion shows the following gaits: Leg 1 kicks off at the first

hump, then steps on the second and third hump while leg 2 kicks off at the

first hump and then steps on the third and fourth hump. Both feet land on

the last hump at the end.

Fig. 5.2 shows the trajectories of torso position and orientation. The

trajectory is not necessarily periodic for each step since the timing of contact

for each foot is not synchronized. The joint angles are guaranteed to be

feasible since the distances between feet and the hip are constrained to be less

than the maximum distance each foot can reach. The algorithm is able to

find a motion with different contact points for each leg while enforcing all the

constraints. The contact points being automatically chosen, even in the case

of uneven terrain, is quite advantageous compared to methods requiring the

user to predefine the contact positions or safe contact regions, as suboptimal

choices here can strongly decrease the probability to find feasible solutions.

However, this is done at the expense of a terrain function that needs to be

C2.

With the friction cone constraints enforced, we see that the feet step on the

inclined contact points where enough friction can be provided. Fig. 5.4 top

shows the contact forces for leg 1. The predefined stance/flight phases are
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Figure 5.3: Snapshots of two leg hopping.

indicated by light blue/red backgrounds. Both normal and tangential force

being zero in flight phases reflects the constraint (5.17). In each stance phase,

the normal force is larger than zero, as in (5.15). With µ= 1, The friction

cone (5.16) is |fi ·
−→
T (pi)| ≤ fi

−→
N (pi). Namely, the positive normal force and

its opposite value (red dotted line) serve as the upper and lower bounds for

tangential force. It is clear in Fig. 5.4 top, the value of tangential force is

close to but strictly inside the boundary of the friction cone.

The fixed foot position constraint (5.13) during stance phase is also achieved

as shown in Fig. 5.4-2, where the foot velocity ṗ1 is zero during stance phases.

This results in constant foot position, as shown in Fig. 5.4 third and bottom

for x and y component of foot position p1. Furthermore, in Fig. 5.4 bottom,

the foot height p1y is constrained to be the same as terrain height to make

sure the foot is in contact with the ground during stance. This reflects the

constraint (5.14). For flight phases, the algorithm is able to plan the smooth

swing motion trajectory of the foot by actuating p1 with proper ṗ1.

71



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

−40

−20

0

20

40

f 1
(N

)

Normal Force
Tangential Force

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−4
−2

0
2
4
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5.5 Indefinite Switching Times: Variable Scheduling of

Gait

We use the term contact schedule to refer to the contact sequence and timing

of the stance/flight transitions. A ’poorly’ predefined contact schedule for

the legs will result in a motion planning problem without admissible solution.

Of course, it is difficult to know beforehand whether a chosen schedule is

’poorly’ defined, as this depends on the desired motion and the parameters of

the robot. It is thus of great importance to have a method that determines

the switching sequence as well as the controls. We show how one can rely on

the AGHF to solve this problem here.

Extant methods in the literature tend to rely on the very computationally

intensive mixed-integer programming solvers. In short, these approaches are

as follows: we start by choosing a contact model which describes the state

transition at the time of contact, and then associate it with some auxiliary

variables or cost term to activate or penalize the contact. The planning

algorithm finds the best contact schedule by solving for the auxiliary variables

and minimizing the auxiliary cost term. By using integer decision variable to

indicate the transition of stance/flight, mixed-integer programming is used

to find the contact schedule and footholds [54, 55, 51]. Soft contact model is

used in [48] which approximate the hard contact as spring-damper system.

The cost is formulated into a quadratic form in terms of the error between the

planned trajectory and a reference trajectory. Motions with different contact

schedules can be obtained by predefining different reference trajectories. In

[47, 50], the contact is modeled as linear complimentary conditions between

the foot height and contact force. The resulting motion planner is able to

find the contact sequence and timing all at once. In a more recent work

[52], the robot’s motion is parameterized by the time duration of each foot’s

stance/flight phase. The problem is then converted to a NLP problem by

direct collocation and the optimal time duration can be solved.

In this section, we extend the AGHF motion planning framework discussed

in Sec. 5.1 to handle indefinite switching times. The automatic planning

of contact schedule is an example of planning indefinite switching times.

Similar to the extant methods, auxiliary states are introduced to represent

the switching behavior. However, we use a continuous state instead of integer,

and create virtual dynamics for the auxiliary state such that the continues
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trajectory of the auxiliary states can be mapped to a contact sequence.

Thus, the contact sequence can be implicitly planned by the AGHF method.

The AGHF method is able to deform an arbitrary auxiliary state trajectory

which can corresponds to an infeasible contact schedule, to a trajectory that

corresponds to a feasible trajectory.

Following Sec. 5.3.1, the contact constraints are activated/deactivated by

the activation function (5.22). The contact sequence is predefined. That is,

the number of flight/stance phases and the switching times are predefined

as in (5.23). A intuitive way to solve for the unknown switching time is to

define a new state to represent the switching time. For example, in one leg

jumping task, if there is only one jump from stance to flight phase, we can

define xsw to represent the only switching time from stance to flight of the

leg, so that the stance phase is t ∈ [0, xsw] and flight phase is t ∈ (xsw, T ].

The dynamics of xsw is

ẋsw = 0

with constraint 0 ≤ xsw ≤ T . The AGHF algorithm will solve for xsw(t) with

augmented dynamics ẋsw = v and minimize the virtual control v, using the

free boundary condition for xsw.

Representing each switching time by one single constant variable is rather

too expensive. The state xsw can only represent the time for a single switch.

If the system switches multiple times, each of the switching times is associated

with a new state variable similar to xsw. Therefore, the number of new states

grows linearly with the number of switching times.

To circumvent this issue, we rely on the “shape” of the activation function

signal to determine the switching times, which results in a single variable

potentially encoding an infinite number of switching times. For example,

the times of discontinuity of a binary-valued function could represent the

switching times. We elaborate on such approaches in the following section.

5.5.1 Switching Time as a State variable

We now show how one can use the AGHF to plan the switching times. In

the case of the switched system (5.4), one mode being activated recurrently

means that the corresponding activation function is a square wave alternating

between 0 and 1 with nonuniform frequency. The rising and falling edges
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of the square wave determines the switching times. To plan the switching

times, we can plan the location of the edges. To this end, we let τi to be the

switching time of the i-th mode. When τi(t) is constant, enforced via the

evolution equation τ̇i = 0, τi represent a single switching time. However, if we

relax the dynamics and introduce a control ai to manipulate the trajectory of

τi(t), τi can be used as multiple switching times, as analyzed below.

The dynamics of τi is now:

τ̇i = ai

The activation function (5.22) is now a function of time and state τi and can

be defined similarly as (5.23) with Heaviside step function:

Ai(t, τi(t)) := H(t− τi(t)) (5.35)

A example trajectory of τi(t) is shown in Fig. 5.5. The green line is the

actual time, t, which is a straight line connecting (0, 0) and (1, 1), in this

example, T = 1. The blue line is trajectory τi(t) and the red line is the

resulting activation function Ai. When τi(t) < t, Ai = 1, the switching

time is ahead of real time, the mode stays active. When τi(t) ≥ t, Ai = 0,

the switching time is behind real time, the mode is inactive. And when τi(t)

intersects t, the switching happens. In addition, the boundary value of τi(t)

at t = 0 and t = T determines if the mode is active at initial and final time.

This formulation is intended to solve for both the timing of the switch and

also the number of switches, because both quantities can be determined by
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the trajectory of τi. However on the implementation side, AGHF method

based on this formulation usually fails to find a feasible solution. Because

there’s no constraint on how many steps the motion has, the algorithm tends

to find a τi(t) trajectory oscillating around the true time t with high frequency,

which results in a motion with too many switches.

5.5.2 Temporal Scaling of Activation Function

To avoid solutions relying on high frequency switching of the dynamics, we

need to constrain the number of switches or directly specify their times.

Since for many of the applications we are concerned with, the total number

of switches, or at least an upper bound on this number, is known (e.g, the

number of steps for legged robot motion), we only deal here with motions with

a finite number of switches. To this end, we propose the following approach,

which goes via the temporal scaling of activation functions.

We carry over the idea that τi(t) is a trajectory of a new auxiliary state

and it determines the switching times. We now describe a mechanism to

apply additional constraints on τi so as to control the switching behavior, i.e.

have the the ability to move the switching times. The key component of this

mechanism is a 2-layer activation function for mode i:

Definition 5.9 (Activation Function with Temporal Scaling). The 2-layer

temporal scaling activation function is

Ai(τi(t)) := H(ϕ(τi(t))) (5.36)

where H is the Heaviside unit step function and ϕ : R → R is a periodic

function with image containing 0 in its interior. The dynamics of τi follows:

τ̇i = ψ(ai) (5.37)

ȧi = wi

where ψ is a non-negative function and wi a control.

Proposition 5.1. The activation function Ai(t) in (5.36) is a square wave

with finite number of rising and falling edges, if the boundary values τi(0)

and τi(T ) are finite. The number of edges is determined by the period of the

function ϕ(·) and the values of τi(0) and τi(T ).
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Proof. The proof relies on the periodicity property of ϕ(·) and the non-

decreasing property of τi(t).

The state τi(t) is non-decreasing along t since the time derivative of τi is

non-negative, by construction (5.37). If the boundary values, τi(0) and τi(T )

are finite, and τi(0) < τi(T ), and the period of the function ϕ(x) is Tϕ, with

k intersections across x axis, then the total number of intersection of ϕ(τi(t))

with t axis, denoted by K is within range⌊
τi(T )− τi(0)

Tϕ

⌋
k ≤ K ≤ (

⌊
τi(T )− τi(0)

Tϕ

⌋
+ 1)k (5.38)

where b·c is the floor operation (i.e., it returns the largest integer smaller

than its argument).

Each of the zero crossing of ϕ(τi(t)) generate a 0 to 1 or 1 to 0 transition in

the Heaviside unit step function H(·), or equivalently, the edges of the square

wave. Therefore, the number of edges of Ai(t) is K given by (5.38).

Some examples for the parameters are ϕ(x) = cos(x) and ψ(x) = x2. The

two layer together, namely, H(ϕ(τi)) generates a square wave activation

function as a function of τi, which changes values when τi crosses zero. The

switching times do exist since ϕ contains zero in the interior of its image. In the

particular case ϕ(τi) = cos(τi), the switching times are τi = −π/2+kπ, k ∈ Z.

The state τi can be thought as a virtual time that lapses in a nonuniform

rate. The virtual time τi evolves according to Eq. (5.37). From the fact that

ψ is non-negative, τi(t) is monotonically non-decreasing as a function of t.

The value of τi(t) determines if the value of cos(τi) is positive or negative, and

implicitly determines the binary value of H(cos(τi)). It is important to note

that even though τi does not decrease, because ϕ is periodic, one can always

reach a switching time moving forward. The evolution of ai is determined by

the control variable wi.

Lemma 5.2. The number of switches for mode i is determined by the boundary

conditions τi(0) and τi(T ).

Proof. The lemma can be directly implied by the proof of Prop. 5.1. The

number of square wave edges in activation function (5.36) is determined by

τi(0) and τi(T ) and each of the edge generates a switch in mode i, therefore

the number of switches for mode i is determined by the boundary conditions

τi(0) and τi(T ).
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With the temporal scaling method proposed above, we can replace the

activation function Ai in the original dynamics (5.4) with the newly defined,

state-dependent activation functions (5.36), with the dynamics for each pair

of new states [τi, ai]
>, which we terms as activation states and activation

system: [
τ̇i

ȧi

]
=

[
ψ(ai)

0

]
+

[
0

1

]
wi (5.39)

which is control affine system with drift as (3.3). Due the the simple structure

of the admissible control direction [0, 1]>, the full rank matrix F̄ is simply

identity matrix F̄ = I2 and the metric for the activation state curve is

therefore

G =

[
λ 0

0 1

]
which penalize the corresponding curve length if τi is not evolving at the rate

given by ψ(ai), and the control wi is free.

Each of the activation system (5.39) is decoupled from the original system

(5.4), but the original system is coupled with the activation systems. As a

result, the AGHF method is able to plan a motion such that both original

and the activation dynamics are satisfied, namely, the method finds a proper

switching schedule and the resulting motion of the original system. It is

important to note that the formulation (5.36) is not specific to the activation

function in the general system (5.4), but a general method to handle switching

of binary signal. Therefore it can be also applied to the activation functions

for legged locomotion (5.22).

5.5.3 Application to Legged Locomotion

We now apply the formulation for temporal scaling of activation function to

legged locomotion planning. As mentioned earlier, we choose ϕ(x) = cos(x)

and ψ(x) = x2 for each of the activation function Ai for legged locomotion,

and replace the original one defined in (5.22). The switching times for the

virtual time τi are τi = −π/2 + kπ, k ∈ Z.

By this definition of activation dynamics, the initial and final value of

τi determines the number of stance/flight phases. For example, τi(0) = 0

and τi(T ) = 6π represents a motion with 3 consecutive stance/flight phases,
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Figure 5.6: Example of τ(t) and activation function

starting with a stance phase and terminating with an extra stance phase. As

time t increases, τi will reach τi(T ) monotonically. The monotonicity ensures

that the motion will have exact number of predefined stance/flight phases.

However, the changing rate of τi is free, and the algorithm is able to scale the

speed of τi to move the switching times in the activation function.

An intuitive example is show in Fig. 5.6. The 3D figure shows the relation

between the layers of the activation function for leg 1. The 3 axis represent

cos(τ1), τ1 and t respectively. The cos(τ1) vs τ1 plot is a cos(·) trajectory that

has uniform period on τ1, as shown on the right plane. For demonstration,

τ1(t) is chosen to be a quadratic trajectory on t, as shown on the bottom

plane. As a result, this τ1(t) generate a temporally scaled cos(·) shaped signal

whose frequency is increasing on t, as shown on the left plane. The resulting

stance/flight phase schedule is indicated by the blue/red background, where

the switching happens more and more frequently.

With the activation dynamics introduced, the AGHF is able to deform an

initial guess of τi(t, 0) to a steady state solution τi(t,∞), which corresponds

to a switching schedule with feasible solution of the legged locomotion. It

should be noted that the initial guess of τi(t, 0) can be arbitrary and does not

need to corresponds to a feasible switching schedule. An example for 2-leg

locomotion is shown in Fig. 5.7. The figure directly shows the cos(τi(t)) for

both legs. Initial guesses τi(t, 0) are both quadratic but with different slope

profiles, the resulting cos(τi(t, 0)) plots are shown by red lines. The AGHF

deforms τi(t, s) to a steady state solution τi(t,∞). The black lines show the
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plot for cos(τi(t,∞)). By definition of the activation function, the planned

stance/flight timing windows are denoted by the blue/red background.

5.5.4 Temporal Scaling and Determination of Switching Times

Applying directing the approach of Sec. 5.5.2 to legged locomotion requires

one extra state per foot. To further decrease the number of states needed for

finding the variable switching times, an approach similar as [56] is proposed

below. We will solve the motion planning problem for t ∈ [0, 1].

With slight abuse of notation, we introduce a new scalar state τ ∈ R to

the system, which is the true time variable that starts from τ(0) = 0 and

τ(1) = T for a given T . τ should be strictly increasing so that the inverse

function τ−1 exists and we can recover the control as a function of the true

time from u(·) by u†(t) = u(τ−1(t)). For smooth τ(·), this monotonicity

constraint can be enforced by defining τ̇(t) = a(t)2, ȧ(t) = u0(t) where u0

is the additional input to the twice-augmented system. Notice that since τ

is the true time, dx
dτ

should obey the true system dynamics (3.3) instead of
dx
dt

. Thus using chain rule, we have ẋ := dx
dt

= dx
dτ

dτ
dt

= Fd(x)a2 + F (x)a2u. In

summary with the augmented states for state constraints in Sec. 5.3.3, denote
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the augmented state

x̂ =


x

τ

a

ζj

 , (5.40)

where ζj is the augmented state for state constraint j as before. we have

˙̂x =


ẋ

τ̇

ȧ

ζ̇j

 =


h(x)a2

a2

0

0


︸ ︷︷ ︸

F̂d

+


F (x)a 0 0

0 0 0

0 1 0

0 0 1


︸ ︷︷ ︸

F̂

 au

u0

hj(x)Sj(t, x)

 (5.41)

The corresponding un-admissible directions F̂c is:

F̂c =


Fc(x) 0

0 1

0 0

0 0

 (5.42)

where [Fc, F ] = I4k+6 as before. Rearrange and the augmented ˆ̄F is:

ˆ̄F =


Fc(x) F (x)a 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

 (5.43)

The augmented metric penalty matrix D̂ is now:

D̂ =


D 0 0 0

0 λ 0 0

0 0 1 0

0 0 0 λj

 (5.44)

where D is defined for original system in (5.24), and the augmented metric

Ĝ = ( ˆ̄F−1)>D̂ ˆ̄F−1.

The key is to predefine the fixed schedule and timing for each legs, in the
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Figure 5.8: Example of τ(t) and activation function for two legs

“fake” time t, and solve for the motion x(t) and control u(t) then recover the

control and state trajectory u(τ) and x(τ) in true time. The method relies on

the fact that, if a constraint is active in at time t, it’s also active at true time

τ(t). The same reasoning holds for the case when the constraint is not active.

Fig. 5.8 shows an example for this method, with 2 leg robot and T = 1.

First we define the activation function A1 (blue) and A2 (green) for the 2

legs. Here the timing of stance/flight phases are equally spaced (increment

of 0.1)for both legs, with a delay for the first leg, so that we have 4 phases:

double stance, leg 1 stance, double flight and leg 2 stance phase. So for,

everything is defined in the coordinate t.

For illustration, we let trajectory τ(t) (red) to be the AGHF solution. By

setup, the switch between the 4 phases happens every 0.1 second in the “fake”

time t, therefore the switching times in true time τ(t) are τ(0.1), τ(0.2),

τ(0.3)...which are implicitly solved by the AGHF algorithm.

The drawback of the approach is that the timing is scaled at once for all

legs, losing the flexibility to adjust the timing for each leg individually. This

is not practically efficient, in the case of biped, one has to predefine all the

“left foot in stance”, “right foot in stance”, “both in stance” and “both in

flight” sequence. For robot with more than 2 legs, predefining the sequence is

much harder due to the lack of intuition.
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CHAPTER 6

PLANNING ON SO(3) AND SOFT
CONTINUUM ARM ESTIMATION

The motion planning problem we have considered so far involved the Euclidean

space for workspace configuration space. We now generalize our approach to

include configuration spaces that include the Lie groups SO(3) and SE(3) of

rotations and Euclidean motions in 3-space, respectively. Recall that

Definition 6.1. The Lie group SO(3) is

SO(3) =

{
R ∈ R3×3

∣∣∣∣ det(R) = 1, R>R = RR> = I3

}
(6.1)

where I3 is the 3× 3 identity matrix.

Definition 6.2. The Lie group SE(3) is

SE(3) =

{
A

∣∣∣∣A =

[
R r

O1×3 1

]
, R ∈ SO(3), r ∈ R3

}
(6.2)

where Om×n is the m× n zero matrix.

Hence, we aim to address the following problem, which we state using

SO(3), but can be stated similarly for SE(3):

Trajectory planning problem in SO(3): Let T > 0, and X0 and XT

be two elements in SO(3). We consider the following planning task: find a

potentially constrained curve X : [0, T ]→ SO(3) that connects X0 and XT

in motion duration T , namely, X(0) = X0, X(T ) = XT . The task also allows

for free boundary conditions, in which case X(0) and X(T ) are not specified.

The dynamical constraints are

Ẋ(t) = F (X(t), ω(t)) (6.3)

where F (X, u) ∈ TXSO(3) and ω(t) = [ωx(t), ωy(t), ωz(t)]
> ∈ R3 is the

angular velocity in the chosen frame and serves as the control.
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Figure 6.1: Workflow for planning with exponential map

Hence, the goal of the trajectory planning problem is to generate an

admissible curve (where admissible is defined from using parameters from

the task at hand) valued in the Lie group SO(3). One can describe such

a curve either intrinsically, by choosing an appropriate parametrization of

SO(3), or extrinsically, e.g., plan motion in Euclidean space Rn (with n = 9

for SO(3)) and enforce constraints that make the resulting motion a curve in

SO(3); in other words, embed SO(3) in Euclidean space and use the AGHF

in Euclidean space with constraints defining SO(3).

The first approach can be implemented using, for example, the exponential

map exp : so(3)→ SO(3), which is known to be surjective [57]. The work

flow is shown in 6.1.Hence, using matrix logarithms, one could translate the

requirements of the planning task (i.e., initial and final states, constraints,

etc) from SO(3) to so(3), plan the motion in so(3) ' R3 using the AGHF,

and use the matrix exponential to translate the result into a motion in SO(3).

Since so(3) is a vector space, the theory developed in the previous chapters

applies straightforwardly.

The main issue with the approach depicted in Fig. 6.1 lies in the fact that

the exponential map is not injective. While there is a good understanding of

how to determine a subset D ⊂ so(3) so that exp(D) = SO(3), the logarithm

map log : SO(3) → D is necessarily discontinuous. This is a consequence

of the fact that the topology of D (which is trivial) and that of SO(3) are

fundamentally different. Furthermore, the set D is represented by linear

inequalities, which also add a layer of complexity to this approach.

We use here an approach that could be considered as a hybrid of the

completely intrinsic method, which runs into the issues explained above, and
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a completely extrinsic approach, which is computationally more demanding

as it introduces extra state variables and constraints to make up for the lack

of adequate parameterization of the state-space. The method we rely on is

based on the quaternion representation of SO(3) [58].

Before we elaborate the details of the method, it is necessary to introduce

some notations and basic operations.

Notations: The operator ·̂ maps a vector x = [x1, x2, x3]
> ∈ R3 to the

skew-symmetric matrix in so(3):

x̂ =

 0 −x3 x2

x3 0 −x1

−x2 x1 0

 (6.4)

The operator vec(·) is the matrix vectorization that reshapes a matrix

A = [a1, a2, · · · , am] ∈ Rn×m with ai ∈ Rn representing the i-th column, to

one column vector by concatenating all columns:

vec(A) = [a>1 , a
>
2 , · · · , a>m]> (6.5)

Let q = [qw, qx, qy, qz]
> ∈ R4 be a 4D unit vector representing a so-called unit

quaternion. We can associate to it a rotation matrix R = [r1, r2, r3] ∈ SO(3),

with ri representing the columns of R. The mapping from q to rotation matrix

R is as follow:

R(q) =
[
r1(q) r2(q) r3(q)

]
=

2(q2
w + q2

x)− 1 2(qxqy − qwqz) 2(qxqz + qwqy)

2(qxqy + qwqz) 2(q2
w + q2

y)− 1 2(qyqz − qwqx)
2(qxqz − qwqy) 2(qyqz + qwqx) 2(q2

w + q2
z)− 1

 (6.6)

Reciprocally, to each rotation matrix, we can associate two possible quater-

nions: given the rotation matrix

R =

r11 r12 r13

r21 r22 r23

r31 r32 r33

 (6.7)
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We can set :

qw = ±
√

1 + r11 + r22 + r33/2 (6.8)

qx = (r32 − r23)/4qw

qy = (r13 − r31)/4qw

qz = (r21 − r12)/4qw.

Note that this conversion is only accurate under some certain conditions of

the trace of R. For more details of the conversion, we refer the reader to [59].

In the conversion (6.8), the computation of component qw involves a square

root operation, which gives two solutions of qw, as indicated. Indeed, each

rotation matrix can be converted to two distinct unit quaternions; in fact,

the quaternions are a double cover of SO(3).

6.1 Representing elements of SO(3) and its Tangent

Space

The usual representations of rotations are via rotation matrices, Euler angles,

or unit quaternions. The Euler angles are a seemingly a good approach to

do this, but suffer from the presence of singularities and the Gimbal lock

problem [60]. Rotation matrices are a faithful (i.e., injective and surjective)

representation of 3D orientations. The transformation operation (e.g., action

of a rotation on a point or rigid object) using rotation matrix is easily

implemented by a choice of right- or left-multiplication. However, rotation

matrices require 9 state variables for their representation, and 6 constraints.

The unit quaternions also have provide a surjective representation of orien-

tations, but they require only 4 state variables for their representation. The

rotation operations using quaternions are easily implemented as well. This

representation is, however, not injective although the level of redundancy

introduced is more manageable than in the case of the exponential map

and logarithm. This lack of injectivity might be a critical issue for some

motion planning tasks. In this work, both the rotation matrix and quaternion

representations are studied. For simplicity, we say “quaternion” refers to unit

quaternion, unless otherwise stated.
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6.1.1 Representation via Quaternions

For rotational dynamics, the equations of motion are usually written in terms

of angular velocity and angular acceleration. Denote the angular velocity by

ω ∈ R3, expressed in the body fixed frame.

First, we use quaternions to represent the orientation state (also referred

to as pose) X(t) = q(t), and let q(t) = [qw(t), qx(t), qy(t), qz(t)]
> be the real

vector representation of unit quaternion trajectory. Let the quaternion form

of angular velocity be ~ω = [0, ω>]>, the relation between the time derivative

of unit quaternion and angular velocity is concise:

q̇ =
1

2
q ⊗ ~ω (6.9)

where ⊗ is quaternion multiplication operator. This can be equivalently

expressed as:

q̇ = Fq(q)ω (6.10)

where Fq ∈ R4×3:

Fq =
1

2


−qx −qy −qz
qw −qz qy

qz qw −qx
−qy qx qw

 (6.11)

It can be observed from (6.11) that the columns of Fq are orthogonal for

arbitrary q ∈ R4 (including quaternions that are not unit length).

6.1.2 Representation via Rotation Matrices

Now we use rotation matrix as the orientation state, X(t) = R(t), and let

R(t) = [r1(t), r2(t), r3(t)] ∈ SO(3) be the rotation matrix trajectory, with

ri(t) representing the columns of R(t). The time derivative of R is:

Ṙ = Rω̂ (6.12)

where ·̂ the usual skew symmetric operator defined in (6.4). Eq. (6.12) can

be vectorized:

vec(Ṙ) = FR(R)ω (6.13)
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where FR ∈ R9×3 is given by

FR =

O3×1 −r3 r2

r3 O3×1 −r1

−r2 r1 O3×1

 (6.14)

and vec(·) is the matrix vectorization operator defined in (6.5).

The matrix R being a rotation matrix implies that r1, r2 and r3 are

orthogonal. This further implies that the columns of FR are orthogonal. Note

that the orthogonality of the columns of FR relies on R being an element in

SO(3). When formulating the AGHF, one needs to augment the matrix Fq

(6.11) or FR (6.14) to a full rank square matrix F̄ , which involves finding the

orthogonal basis of the complementary spaces to the column spans of Fq and

FR. While Fq needs to be augmented with one more column, FR needs to

be augmented by 6 additional columns, which is computationally inefficient.

This is a clearly a drawback compared with the quaternion. More details of

discussion is addressed in Sec. 6.2.2.

6.2 Riemannian Metric and AGHF for SO(3)

To construct the Riemannian metric, we need to find the inadmissible direc-

tions or constrained directions Fc for the tangent vector of the (actuated)

curve. The columns of Fc span the inadmissible directions and generally

be constructed via Gram-Schmidt procedure using the F from the original

system. Here, we recall that the inadmissible directions we are referring

to are the ones that violate the constraints on R(t) ∈ SO(3) or q(t) being

a unit quaternion. Specifically, the direction of the tangent matrix Ṙ(t) is

inadmissible if R(t)+Ṙ(t)δt /∈ SO(3) for infinitely small δt. And the direction

of q̇(t) is inadmissible if ‖q(t) + q̇(t)δt‖ 6= 1, for infinitely small δt. There

could be additional constraints due to the planning task.

In the case where the angular velocity ω is the control (e.g. kinematics

unicycle), the system is driftless and we can find the inadmissible directions

directly based on Fq or FR.
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6.2.1 Driftless Case with Quaternions

For the case of represention of the orientation via quaternions, since Fq has

orthogonal columns, it is straightforward to construct the matrix F̄ : set

F̄ (q) :=
(
Fc(q)|Fq(q)

)
∈ R4×4 (6.15)

where

Fc(q) =
1

2

[
qw qx qy qz

]>
=

1

2
q. (6.16)

With Fq as in Eq. (6.11), it is easy to verify that F̄ (q) is orthogonal for

arbitrary [qw, qx, qy, qz]
> ∈ R4 with ‖q‖ 6= 0.

The energy of a curve in the space of unit quaternions is as usual given by

A(q(·)) :=

∫ T

0

1

2
q̇>G(q)q̇dt. (6.17)

which of course shares the same minimizer as the curve length defined by (3.5)

without the drift term Fd.

The Riemannian metric G can be constructed the same way as before:

G(q) := (F̄ (q)−1)>DF̄ (q)−1 (6.18)

for an appropriately defined matrix D. For example, we take D :=

diag([λ, 1, 1, 1]) when there are no constraints on the orientation; for curves

that are constrained to have no curvature around the x-axis, one can use

D := diag([λ, λ, 1, 1]).

The steady state solution of GHF is a unit quaternion trajectory, which

can be translated to the orientation of the rigid body. The system dynamics

(6.10) guarantees that the magnitude of q(t) is constant, therefore the initial

value q(0) has to be unit length. The final value q(T ), if specified, also has to

be unit length. As mentioned earlier, the quaternion representation is not

faithful in that different quaternions (in fact, two of them) can represent the

same orientation. This double cover of orientations by quaternions requires

special attention when defining the initial and final state. For example, if

the initial state is q0 and the final state is the conjugate of q0, the planned

motion will perform a rotation by a full circle, even though the initial and

final state represent the same orientation, and one would thus expect the
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planning algorithm to yield a constant curve.

6.2.2 Driftless Case with Rotation Matrices

We now deal with the case where the orientation is given by a rotation matrix

R. The vectorized state vec(R) is in R9.

F̄ (R) :=
(
Fc(R)|FR(R)

)
∈ R9×9, (6.19)

where the columns of Fc(R) span the constrained directions. and there is

no constraint that the matrix R is a valid rotation matrix. Therefore, the

orthogonality FR does not hold in general, as discussed in 6.1.2.

Lemma 6.1. Let R ∈ SO(n), denote by TRSO(n) the tangent space of

SO(n) at R and by vec(TRSO(n)) ⊂ Rn2
its vectorization described according

to Eq. (6.5). The orthogonal vector space to vec(TRSO(n)) in Rn2
for the

Euclidean metric is given by vec(RSym) ⊂ Rn2
, where Sym is the vector

space of symmetric matrices.

Proof. The admissible directions are given by the tangent space of SO(n) at

R, and it is well known that

TRSO(n) = {RΩ | Ω ∈ so(n)},

where so(n) is the vector space of n× n skew symmetric matrix.

We will show that the inadmissible directions are given by:

TRSO(n)⊥ = {RS | S ∈ Rn and S = S>}

which is the orthogonal space of TRSO(n), and S is symmetric.

Indeed, for the Euclidean inner product, take an arbitrary element in

TRSO(n), RΩ, and an arbitrary element in TRSO(n)⊥, RS. Computing their

inner product, we have

< RΩ, RS >= Tr(Ω>R>RS) = −Tr(ΩS)

with the help of the orthogonality of R.
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Recall that Tr(AB) = Tr(B>A>) and Tr(ABC) = Tr(BCA) = Tr(CAB).

Hence if A = −A> and B = B>, we get Tr(AB) = −Tr(BA) = −Tr(AB),

which leads to Tr(AB) = 0.

Therefore with Ω = −Ω> and S = S>, we have < RΩ, RS >= −Tr(ΩS) =

0. In addition, we have the following inner product property < A,B >=

vec(A)> vec(B), thus we have

vec(RΩ)> vec(RS) = 0

the two vectors are orthogonal.

Hence, to determine the 6 columns of Fc, it suffices to introduce the 6 basis

for the space of 3× 3 symmetric matrices, say S1, . . . S6 with

S1 =

1 0 0

0 0 0

0 0 0

 S2 =

0 0 0

0 1 0

0 0 0

 S3 =

0 0 0

0 0 0

0 0 1



S4 =

0 1 0

1 0 0

0 0 0

 S5 =

0 0 1

0 0 0

1 0 0

 S6 =

0 0 0

0 0 1

0 1 0


and then the i-th column of Fc denoted by Fc,i is vec(RSi).

6.3 Control Extraction and Integrated Path

Once the solution q(t, smax) or R(t, smax) of the AGHF is obtained for large

enough smax, the control ω can be extracted.

In the driftless case, the angular velocity (i.e., the control) can be extracted

as follows:

ω(t) :=
(
O3×1 I3×3

)
F̄ (q(t, smax))−1q̇(t, smax) (6.20)

for quaternions, and

ω(t) :=
(
O3×6 I3×3

)
F̄ (vec(R(t, smax)))−1vec(Ṙ(t, smax)) (6.21)

for rotation matrices. Note that the matrix F̄ in (6.20) is derived from (6.15)
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with (6.16), and F̄ in (6.21) is derived from (6.19) if one can find a proper

Fc ∈ R9×6.

In case there is a drift term in the dynamics, e.g., in case of a kinodynamic

system where the controls are forces and torques, we take the standard

approach of letting the angular velocity ω be a state whose evolution is

determined by the angular acceleration, which then becomes the control.

The planned motion is given by the integrated path from (6.10) or (6.13)

with extracted ω(t) (or acceleration in case of a second order system). The

regular Runge–Kutta integration and interpolation rule does not apply for

rotation matrices or unit quaternions since the integrated orientation state can

deviate from the constraints stemming from being a rotation matrix or a unit

quaternion. Therefore, the integration of the orientation state need special

care to ensure that these constraints are met to the best extent possible. One

approach to do so it to use multiplicative update rules, instead of addition

update rules:

For the quaternion, once the angular velocity ω is extracted from (6.20) or

integrated from angular acceleration, the integrated path q̂(t) can be obtained

via the integration rule:

q̂i+1 = exp(
1

2
∆t~ωi)⊗ q̂i (6.22)

where i denote the current integration step and ∆t is the integration step

size. exp(·) is quaternion exponential.

For the rotation matrix, once the angular velocity ω is extracted from

(6.21) or integrated from angular acceleration, the integrated path R̂(t) can

be obtained via the integration rule:

R̂i+1 = R̂i exp(∆tω̂i) (6.23)

where i denote the current integration step and ∆t is the integration step

size. exp(·) is matrix exponential.

6.4 Planning on SE(3)

For the motion of a rigid body in 3D space, the complete configuration space

is SE(3), which contains both the orientation X ∈ SO(3) and the position
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p ∈ R3. We now elaborate the AGHF formulation for SE(3) planning. For

the sake of computational ease, the orientation is represented by quaternion.

Let p = [px, py, pz]
> ∈ R3, q ∈ R4 be the position and quaternion trajectory,

and v = [vx, vy, vz]
> ∈ R3, ω ∈ R3 be the translational and angular velocity

measured in body fixed frame, respectively. The time derivative of p and q

can be mapped from v and ω by:

ṗ = R(q)v (6.24)

q̇ = Fq(q)ω (6.25)

where the first equation is a transformation of the translational velocity from

body fixed frame to global frame, the second equation is the same as (6.10).

6.4.1 AGHF formulation for SE(3): 3D Unicycle

We illustrate the implementation of our method for planning in SE(3) by

using the dynamical 3D unicycle system, also known as a 3D Dubins car.

The 3D unicycle is a rigid body that can only move along its body fixed x

axis translationally, and steer around its body fixed y,z axis. This system

is nonholonomic. In order to constrain the translational velocity v and

angular velocity ω, we augment the system such that the state is x =

[p>, q>, v>, ω>]> ∈ R13. The set of constraints on v and ω is now a state

constraint and can be formulated with the method in Sec. 4.1. The control is

now comprised of the translational and angular accelerations.

The control is:

u =

1 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

[v̇
ω̇

]
=

v̇xω̇y
ω̇z

 ∈ R3 (6.26)

which is the acceleration along its x axis, v̇x, and angular acceleration about

its y and z axis, ω̇y and ω̇z.

The resulting dynamical system is

ẋ = Fd(x) + F (x)u (6.27)
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where

Fd(x) =

R(q)v

Fq(q)ω

O6×1

 F (x) =



O7×3

1 0 0

0 0 0

0 0 0

0 0 0

0 1 0

0 0 1




(6.28)

and Fq(q) is defined in (6.11).

The planning task is to solve for a motion x(t) that starts from initial state

xinit at t = 0 and ends at final state xfin at t = T , with constraints on v and ω.

The key step of the AGHF method is to construct the metric G. We define

the augmented control directions (3.16) to be:

F̄ :=
[
Fc|F

]
(6.29)

where the inadmissible directions Fc is:

Fc =


I7 O7×3

O6×7

O1×3

I3

O2×3

 (6.30)

so that F̄ is invertible. The metric G is defined similarly to (3.17), with D

matrix:

D = diag(λ, · · · , λ︸ ︷︷ ︸
10

, 1, 1, 1) (6.31)

where the first 7 λ’s on the diagonal of D ensure that ṗ and q̇ are only steered

by the drift term Fd, reflecting the double integrator-like nature, and the

remaining 3 λ’s penalize the inadmissible accelerations (angular acceleration

about body fixed y, z axis, and translational acceleration along body fixed x

axis).

In addition, we impose range constraints on the magnitudes of ωy and ωz:

−1 ≤ ωy ≤ 1

−1 ≤ ωz ≤ 1; (6.32)
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these constraints are enforced using the method described in Sec. 4.1.

Upon deriving the AGHF from the above-defined metric, one can solve the

motion planning problem with the following BC and IC and a large smax:

x(0, s) = xinit

x(T, s) = xfin

x(t, 0) = xguess(t) (6.33)

6.4.2 Results

A 3D “parallel parking” motion is generated. The 3D unicycle start at

position p(0) = [0, 0, 0]> with orientation q(0) = [0.9659, 0, 0, 0.2588]> which

corresponds to a rotation of π/6 around body x axis. The goal is to reach

p(T ) = [0, 0.2, 0.2]> with same orientation p(T ) = p(0) with T = 1. The

initial guess xguess(t) is straight line connecting the specified BCs. Note that

such straight line satisfies the inequality constraints (6.32). The large constant

λ is 5× 104.
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Figure 6.2: 3D unicycle parallel path. The solid line is the integrated path
and the dotted line is the AGHF solution. Black lines are xyz path and the
RGB frames are body fixed frame at initial and final state.

The planned motion is shown in Fig. 6.2. The black curve is the 3D position
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trajectory (p variable) and the RGB (red/green/blue) segment are body fixed

frames representing the initial and final orientations of the car. The integrated

path, which is the planned motion, is indicated by solid lines. The AGHF

solution, x∗(t), is indicated by the dotted lines. Similar as the 2D unicyle

parallel parking example in Sec. 3.4, the algorithm finds a “Z-shaped” path.

Due to the constraint on ωy and ωz (shown in Fig. 6.3b), the unicycle cannot

steer too quickly. The planned path tends to use larger translational velocity

and thus travel a longer distance to overcome the limited range of angular

velocity. Finally, the error between the AGHF solution and the integrated

path converges to zero when λ tends to infinity, as discussed in Theorem 3.1.
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Figure 6.3: Norm of quaternion and constraints on angualr velocity

To conclude this subsection, we look into the numerical errors in the

planning process. The norm of the integrated quaternion trajectory q̂(t) has

to be 1 for all t in order to represent a valid orientation trajectory; we show

the norm of q̂(t) and the AGHF solution q∗(t) are shown in Fig. 6.3a. We

observe that ‖q∗(t)‖ is not preserved and slightly off from 1 for 0 ≤ t ≤ T , but

the deviation is minimal and would only impact a physical implementation of

the obtained control minimally.

96



6.5 Soft Continuum Arm (SCA) Estimation

We now apply the framework developed in the previous sections to a soft

robotic problem. The soft robot we have in mind is depicted in Fig. 6.4. It

consists schematically of a tube, with one end called the base, and the other

end the end-effector. The connection between the two seemingly different

problems is two-fold: first, a soft robot made of a single flexible arm is

described by a curve in SE(3); recall that a point in SE(3) contains both an

element of SO(3) and a vector of R3. Second, the main principle we rely on

for estimation is the one of least action: the robot pose we observe should

be the one that minimizes energy, perhaps under given constraints. Our

method, by design, minimizes an energy functional, and is thus applicable

here with minimal modifications.

Precisely, the position and orientation of each cross section of the soft

robot determines a unique element of SE(3): say x ∈ SE(3). A diagram

of the SCA cross section is shown in Fig. 6.4. Different cross sections are

parameterized by the robot length t measured from robot’s base to the cross

section, t ∈ [0, T ] where T is the soft robot length. The robot pose can then

be described by a differentiable curve x(t) : [0, T ]→ SE(3). In this section,

we thus use t as the 1D independent variable describing the location of each

cross section along the robot, and we use ω to denote the curvature of the

robot.

The SCA robot is directly actuated by the internal pressure along the

robot. The internal pressure determines the curvature along the robot, thus

can control the robot to form different pose. A typical structure of the SCA

is to have multiple extensible tubes adhered together. The robot can twist

and bend by properly controlling the internal pressure of each tube. The

model we propose is fairly general, and not tied to a particular physical

implementation. We refer to [61] for a description of an example of robots

covered by our framework. In this section, we directly use the curvature as

the control, instead of the internal pressure.

The estimation method proposed in this chapter aims to estimate the

pose and the external load, with limited sensor data. The problem has a

common general set-up with the 3D unicycle planning problem, with the

SCA robot length being the motion duration in motion planning, as we now

illustrate. The additional constraint needed, compared to the 3D unicycle
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motion planning, is:

The soft robot does not extend or shear. These constraints can easily be

encoded in the velocity in (6.24) written in the frame of the cross-section of

the robot. By convention, we set v = [1, 0, 0]> and assume that the x-axis

in the body frame is perpendicular and outward pointing to a cross-section.

The perpendicularity of v with the cross section ensures that neighboring

cross-sections are not sheared; the fact that v has a constant magnitude

ensures that the robot is inextensible.

Due to the fact that v is known and constant, we can obtain the pose of

the robot from the curvature profile ω(t). This model is a special case of the

Cosserat model [62].

O

p(ti)

t

v(ti)R(ti)

ω(ti)

Figure 6.4: SCA diagram for cross section ti, with position p(ti), orientation
R(ti), and tangent vector v(ti).

6.5.1 SCA Forward Model

Without loss of generality, we assume the robot length is 1, so that t ∈ [0, 1].

The pose of the cross section at t, x(t) = [p>(t), q>(t)]>, is described by the

position p(t) = [px, py, pz]
> ∈ R3 and the orientation q(t) of the cross section,

where q(t) is a unit quaternion.
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In addition, the resting pose of the robot is described by a natural

curvature profile ω?(t). The natural curvature is zero if and only if the

natural pose is a straight line. For example, ω?(t) = [0, 0, π]> gives a circular

natural pose around the z-axis. The natural curvature is typically a result of

actuated internal pressure. The difference between the natural curvature of

the robot and the curvature under load is denoted by ∆ω(t). The orientation

is determined by the net curvature: ω = ∆ω + ω?. Denote dp
dt

, dq
dt

by ṗ, q̇.

their evolution along length t can be expressed by (6.24) and (6.25), with

v = [1, 0, 0]>, reflecting the fact that the robot is not stretching or shearing

as mentioned above.

6.5.2 SCA Pose Estimation and Affine Geometric Heat Flow

The SCA pose estimation problem is to find the pose curve x(t) of the soft

robot, for 0 ≤ t ≤ T , given the state at the base x(0) and possibly the state

at tip, x(T ), and the external load and constraints. On the one hand, owing

to the principle of least action, the pose in static equilibrium should be the

curve that minimizes energy of the robot. On the other hand, the planning

problem in SE(3) introduced in Sec. 6.4 is to find a curve x(t), which is

interpreted as a trajectory for a system, of duration T , with given initial and

final states x(0) and x(T ), and given some motion constraints. Our approach

to the problem was to cast a feasible trajectory as a trajectory of minimal

length, and it is well known that minimizers of the energy functional are also

minimizers of the length functional [28].

Thus, we can use the AGHF to find a pose that minimize the total energy

due to deformation since this pose is also the trajectory of a 3D Dubins car

with appropriate constraints and boundary conditions. Hence, we arrive at

the following conclusion:

The motion planning problem in SE(3) solved in Sec. 6.4 and the SCA

estimation problem are equivalent.

We will elaborate below on this point: first, the SCA pose estimation problem

is formulated by the AGHF method in Sec. 6.5.3. Then in Prop. 6.1, we show

that the energy of actuated curve (3.8) derived from the SCA model coincide

with the elastic potential energy of SCA in the estimation problem.
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6.5.3 AGHF Formulation for SCA Estimation

Recall that the deformation due to external load is characterized by the

curvature change ∆ω = [∆ωx∆ωy,∆ωz]
>, which serve as the control and is

to be found by the estimation algorithm. Let the state vector be the pose of

SCA, x = [p>, q>]>, the system dynamics is:

ẋ = Fd(x) + F (x)∆ω (6.34)

where

Fd(x) =

R(q)
[
1 0 0

]>
Fq(q)ω

?

 F (x) =

[
O3×3

Fq(q)

]
(6.35)

can be derived from (6.24) and (6.25) with net curvature ω = ∆ω + ω? and

v = [1, 0, 0]>.

The constrained directions can be constructed with help of (6.15) and

(6.16):

Fc(x) :=

[
I3×3 O3×1

O4×3
1
2
q

]
(6.36)

The resulting F̄ is:

F̄ (x) :=
(
Fc|Fq

)
=

[
I3×3 O3×4

O4×3

[
1
2
q Fq(q)

]] (6.37)

which is an orthogonal matrix. The metric is as usual given by:

G(x) := (F̄ (x)−1)>DF̄ (x)−1 (6.38)

with the penalty matrix D := diag([λ, λ, λ, λ, bx, by, bz]), where bx,by and bz

are twisting and bending stiffness, and λ is the large constant. The matrix

D can be also called stiffness matrix in this section, because the constant

λ can be interpreted as virtual stiffness in the direction of the inadmissible

motions; these could be, for example, stretching and shearing. It is also the

virtual stiffness λ that constrains the quaternion states to be unit length.

More specifically, the deformation in the stretching and shearing direction, or

the deformation of quaternion magnitude way from unit norm, will generate

a virtual elastic potential energy due to the virtual stiffness λ.

The Lagrangian for energy of the actuated curve is the same as the one
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given in (3.8), and we restate it here:

L(x, ẋ) =
1

2
(ẋ− Fd(x))>G(x)(ẋ− Fd(x)). (6.39)

Once the AGHF derived from (6.39) is numerically solved, and the steady

state solution of AGHF x∗(t, smax) is obtained, the control ∆ω(t) is obtained

according to:

∆ω(t) :=
(
O3×4 I3×3

)
F̄ (x(t, smax))−1ẋ(t, smax) (6.40)

which gives the curvature change from natural curvature. The estimated

quaternion curve q̂(t) can be obtained by integration of (6.22) with net

curvature ω(t) = ∆ω(t) + ω∗(t). The estimated position curve p̂(t) can be

obtained by integrating ˙̂p(t) = R(q̂(t))[1, 0, 0]>. Finally, the estimated pose is

given by x̂(t) = [p̂(t), q̂(t)]>.

In the following steps, we show the equivalence between the La-

grangian (6.39) and the elastic potential in the SCA, then augment the

Lagrangian with additional terms that reflect marker constraints, gravity and

external force.

Proposition 6.1. The energy of actuated curve, given by (6.39), coincides

with the elastic potential energy of the SCA.

Proof. In Sec. 6.5.3, the AGHF formulation of the SCA is derived. The

actuation matrix F is augmented by F̄ in (6.37) to include all admissible and

inadmissible controls. The admissible control is the admissible deformation,

namely, the curvature change ∆ω. Let uc ∈ R4 be the control in inadmissible

directions, which can be interpreted as the robot deformation in inadmissible

directions, i.e, the deformation in the stretching and shearing direction, or

the deformation of quaternion against unit norm. Same as the definition of

curvature ∆ω, the inadmissible deformation is a local measure, meaning that

it is the deformation along infinitesimal robot length at cross section t.

The complete augmented system with inadmissible control is:

ẋ = Fd(x) + F̄ (x)

[
uc

u

]
(6.41)

Integrating the Lagrangian (6.39) along the robot length, with ẋ− Fd(x)
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term substituted by (6.41) and G replaced by its definition (6.38), we get the

energy of actuated curve A(x(·)):

A(x(·)) =

∫ 1

0

L(x, ẋ)dt

=

∫ 1

0

1

2
(ẋ− Fd(x))>G(x)(ẋ− Fd(x))dt

=

∫ 1

0

1

2

[
uc u

]
F̄>(x)(F̄ (x)−1)>DF̄ (x)−1F̄ (x)

[
uc

u

]
dt

=

∫ 1

0

1

2
(bx∆ω

2
x + by∆ω

2
y + bz∆ω

2
z + λu>c uc)dt

= Eelastic (6.42)

which is the total elastic potential that consists of both elastic potential from

admissible deformation and inadmissible deformation. Therefore, the energy

of actuated curve coincides with the elastic potential energy.

With large virtual stiffness λ, the AGHF finds the pose with minimum

deformation on inadmissible directions and maintains the unit norm of quater-

nion.

6.5.4 Integrating vision data via a marker potential

We now show how to use the framework we introduced above to estimate,

from vision data captured by a camera, the pose of a SCA. The camera maps

a point in 3D space to a point on the 2D image. The use of vision to perform

this task is often preferred to having embedded sensors in the SCA, mostly

for cost and reliability reasons. The goal is to estimate the 3D pose based

on the image of the robot. To facilitate the interpretation of visual data,

markers are placed on the robot and the locations of the markers are known.

Once the image of the pose is obtained from the camera, the actual 3D pose

is to be estimated using the positions of the markers on the image.

Let

C : R3 → R2 : p 7→ [Cx(p), Cy(p)]
>

be the camera mapping, sending a point p ∈ R3 in 3D space to the point

[Cx, Cy]
> ∈ R2 on 2D camera image. The number of markers is km.
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Figure 6.5: An example of activation function at t = 0.5

A marker position on the image can be treated as a state-dependent

constraint [14] that is only active near the cross-section containing the marker.

The installation location of the i-th marker on the robot can be indicated by

ti ∈ [0, 1]. Let C(p(ti)) be the corresponding marker position on the image.

A new state can be added for each of the marker position constraints:

ζi(t) :=

∫ t

0

||C(p)− Ci||Ai(τ)dτ−→ ζ̇i := ||C(p)− Ci||Ai(t).

With the same derivation in Sec. 5.3.3, the augmented Lagrangian with

the marker constraints is:

L(x, ẋ) =
1

2
(ẋ− Fd(x))>G(x)(ẋ− Fd(x))︸ ︷︷ ︸

elastic potential

+
km∑
i=1

λi||C(p)− Ci||2A2
i (t)︸ ︷︷ ︸

marker potential

(6.43)

where Ci ∈ R2 is the i-th marker position on image, λi is a positive constant

and Ai(t) ∈ R is an activation function that “activates” the constraint

C(p) = Ci only at t = ti, as we now elaborate on. We use the following

bell-shaped function centered at ti:

Ai(t) = e−(t−ti)2/β2

(6.44)

where β controls the width of the function. An example of the activation

function is shown in Fig. 6.5 for t = 0.5. With this activation function, the

penalty on violation of C(p) = Ci is active near t = ti: the penalty function

Ai is large and to minimize the length, the flow will force ‖C(p)− Ci‖ to be

small. Reciprocally, the constraint is not active if t is not near ti: Ai is small

and the value of ‖C(p)− Ci‖ could be large without affecting the length.
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6.5.5 Gravity and External Load Potential

Gravity potential Up to this point, the gravity has not been considered.

The potential energy due to gravity is a function of the SCA pose. Assuming

the mass is distributed uniformly along the center line of the robot, the

potential energy of an infinitesimal segment of the robot is pz(t)gdm where

the mass of the segment is dm = ρdt, ρ being the density with unit kg/m.

The total gravity potential energy along the robot is then:

PE =

∫ 1

0

ρgpz(t)dt (6.45)

With the gravity potential taken into account, the Lagragian becomes:

L(x, ẋ) =
1

2
(ẋ− Fd(x))>G(x)(ẋ− Fd(x))︸ ︷︷ ︸

elastic potential

+
km∑
i=1

λi||C(p)− Ci||2A2
i (t)︸ ︷︷ ︸

marker potential

+ ρgpz(t)︸ ︷︷ ︸
potential energy

(6.46)

Now the Lagrangian includes elastic potential, gravity potential, as well as

the artificial marker potential.

External load In this work, we consider a constant force applied on the

tip of the soft robot as the only external load. We refer to it as the tip force

and denote it by Ftip. The work done by the tip force at the section t is :

Wload(p(t)) = (p(t)− p0(1))>Ftip (6.47)

where p(1) is the loaded tip position and p0(1) denote the tip position when

the robot is at the unloaded pose, which is itself determined by natural

curvature ω∗. Eq. (6.47) states the fact that the work Wload, done by constant

tip force Ftip, is the product of the force and the displacement of the tip. The

initial position of the tip is obtained from the pose of the unloaded SCA,

which is known and determined by the natural curvature. Therefore the work

Wload is a function of the loaded tip position p(1), if the force is also known.

We can conclude that the tip force Ftip is a conservative force because the

work is only determined by the loaded tip position p(1). As a result, the work
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done by Ftip can be considered to be a potential energy term.

The work Wload can be treated as a terminal cost and transformed into

integral form:

Wload(p(1)) = Wload(p(0)) +

∫ 1

0

d(Wload(p(t)))

dt
dt (6.48)

= (p(0)− p0(1))>Ftip︸ ︷︷ ︸
work 1

+

∫ 1

0

ṗ>Ftipdt︸ ︷︷ ︸
work 2

in which the work done by the force is split into two part: work 1 is calculated

by replacing Wload(p(0)) with its expression from Eq. (6.47). This work can

be interpreted as the work done by Ftip if the force is applied on the unloaded

robot at tip initially and moved along the robot quasistatically to the base

of the robot, p(0), work 2 is the work done by Ftip from the robot base to

loaded tip, along the loaded robot.

The total potential energy is conserved because all external forces (gravity

and Ftip) are conservative. Therefore, to reflect the effect of Ftip, we can

subtract the work Wload from the Lagrangian (6.46). Work 1 in (6.48) is

constant because p(0) is the fixed base position and p0(1) is determined by

the natural curvature, we only need to include work 2 in the total potential.

Therefore we have:

L(x, ẋ) =
1

2
(ẋ− Fd(x))>G(x)(ẋ− Fd(x))︸ ︷︷ ︸

elastic potential

+
km∑
i=1

λi||C(p)− Ci||2A2
i (t)︸ ︷︷ ︸

marker potential

+ ρgpz(t)︸ ︷︷ ︸
gravity potential

− ṗ>Ftip︸ ︷︷ ︸
load work

(6.49)

where the term “load work” is work 2 without integration, which is the work

done by Ftip per unit length along the robot.

With this formulation, minimizing the Lagrangian is reflecting the principle

of least action. The AGHF is able to find the robot pose with the effect of

gravity and a known external load Ftip on the tip. It should be noted that,

when solving the AGHF, the final value of x(t) should be free so that the

algorithm can find the feasible pose with proper tip state.

We can now summarize the content of the above two section in the following
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result:

Proposition 6.2. Consider a SCA with pose x(t) ∈ SE(3) for t ∈ [0, 1], and

markers at positions Ci. Then the Lagrangian density of the SCA is given by

Eq. (6.49).

6.5.6 External Force Estimation

The tip force Ftip can be a result of the external load carried by the tip,

or due to contact with other objects. If the robot pose x(t) is known, the

external force Ftip can be extracted from the internal torque balance along

the robot. However, it may happen in practical settings that the robot pose

under the effect of Ftip is not directly known but needs to be estimated from

limited sensor data, e.g, marker images or tip position only. In this section,

we demonstrate first how to extract the force Ftip assuming the robot pose is

known via torque balance analysis, then we describe an estimation procedure

for the pose under effect of the unknown force Ftip using AGHF. The available

data is the tip position ptip ∈ R3 from sensor. We assume the only external

wrench acting on the robot are the force from the load Ftip, applied to the

tip, and the distributed gravity along the robot. The robot has no contact

with the environment except for the tip and the base.

6.5.6.1 Force Estimation

We now show that the force Ftip can indeed be recovered from the knowledge

of the pose of the SCA. The main idea we exploit here is the one of Torque

Balance at a static equilibrium. Recall that ∆ω is the curvature change due

to external load or variations in the internal pressure (actuation) and serves

as control to the system, as in model (6.34). Precisely, we have the following

result:

Proposition 6.3 (Force estimation from torque balance). Consider an SCA

as described in Sec. 6.5.3 with known pose x(t) and control ∆ω(t) and unknown

external load Ftip. Then Ftip is obtained obtained by solving the internal torque

balance Equation (6.50) with Equations (6.51) to (6.53).

The proof will be the content of this section. The proposition provides the

ingredients for estimating the tip force Ftip. A prerequisite is to obtain the
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robot pose x(t) and the control ∆ω(t), which will be discussed in the next

section.

When the robot is in a static pose, the net torque acting on any of the cross

sections is balanced, as shown in Fig. 6.6. The net torque acting on a cross

section t includes, internal torque due to the local curvature deviation from

natural curvature ∆ω(t), torque generated by Ftip, and the torque generated

by the weight of robot segment [t, 1]:

Mload(t) +Mg(t) = M(t) (6.50)

where M is the internal torque, Mload(t) is the torque generated by Ftip and

Mg is the torque generated by gravity of robot segment [t, 1]. We have

Mload(t) = (p(1)− p(t))× Ftip (6.51)

Mg(t) =

∫ 1

t

(p(τ)− p(t))×

 0

0

−ρg

 dτ (6.52)

M(t) = R(q(t))B∆ω(t) (6.53)

where B = diag([bz, by, bz]) is the stiffness matrix of the twisting and bending.

Note again that ∆ω(t) = [∆ωx(t),∆ωy(t),∆ωz(t)]
> is curvature difference

from the natural curvature ω?, and serves as the control.
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t = ti

t = 1

Ftip

g

M(ti)

Figure 6.6: Torque balance at cross section ti: the internal torque M(ti) is
balanced with the torque generated by gravity of the robot segment [ti, 1]
and the torque generated by tip force Ftip

If the robot pose x(t) = [p(t), q(t)]> and the corresponding ∆ω(t) are

available, the force Ftip can be obtained from the torque balance (6.50). The

operation (p(1)− p(t))× (·) in (6.51) is equivalent to multiplication of (·) by

the skew-symmetric matrix p̂(1)− p̂(t) whose rank is 2 for any p(t). By itself,

it is thus insufficient to solve for Ftip ∈ R3. However, the equality (6.50) holds

for all points along the robot. Since more than one point can be used to solve

for Ftip, e.g. let t1 and t2 be two different cross sections on the robot, and

rank(
[
p̂(1)− p̂(t1) p̂(1)− p̂(t2)

]
) = 3, then Mload(t1) +Mg(t1) = M(t1) and

Mload(t2) +Mg(t2) = M(t2) together provide sufficient number of independent

linear equations to solve for Ftip ∈ R3. To do so, it is enough to only use the

data points in a small segment of the robot, or several selected data points

along the entire robot. Note that in the case more than one point is used, an

overdetermined system is created and least square method is used to solve for

the force.

6.5.6.2 Pose Estimation for Unknown External Force

From the internal torque balance analysis, the force Ftip can be solved using

the pose x(t) under the effect of gravity and tip force. However, it is often

the case in practical settings that the pose is not directly available and

has to be estimated from limited sensor data. The AGHF derived from
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Lagrangian (6.49) can be used in a straightforward manner to find the pose

and tip position for a known force Ftip. However if the force is unknown, extra

information is needed to estimate the pose. In this section, we assume the tip

position is known from sensor data when the robot is loaded with the force

Ftip at the tip, and we estimate the pose based on the tip position.

Proposition 6.4 (Pose estimation with unknown tip force). Given the base

cross section state xinit and tip position ptip with unknown tip force Ftip applied,

the robot pose x(t) can be obtained by solving the AGHF defined by Lagrangian

(6.56) with BC x(0) = xinit and p(1) = ptip.

The proposition above uses the AGHF method to extract the missing

ingredients for the tip force estimation: the robot pose under the effect of

unknown tip force. Recall that to solve the tip force from (6.50), the pose

x(t) has to be known in advance. The proof of the proposition will be the

content of this section.

Both the gravity force and tip force are conservative and generate potential

energy, as discussed in Sec. 6.5.5. When the robot is in static equilibrium

with the effect of gravity and Ftip, the static pose should minimize the total

potential. Using (6.49) with no marker use, since x(t) is known, we have that

the potential energy is:

L(x, ẋ) =
1

2
(ẋ− Fd(x))>G(x)(ẋ− Fd(x))︸ ︷︷ ︸

elastic potential

+ ρgpz(t)︸ ︷︷ ︸
gravity potential

− ṗ>Ftip︸ ︷︷ ︸
load work

(6.54)

x?(t) = arg min
x(t)

∫ 1

0

L(x, ẋ)dt for free x(1). (6.55)

The potential energy from (6.54) should be minimized according to the

principle of least action, with the tip state x(1) being free. The optimal

solution x∗(t) is then the static pose with Ftip applied to the tip.

The work done by the external force Ftip can be represented by
∫
ṗ>Ftipdt.

The integral
∫ 1

0
ṗ>Ftipdt = p(1)>Ftip is determined only by the constant Ftip

if the tip position p(1) is known from sensor data. Whether the force Ftip

is known or not, the work done by Ftip is independent of the path of robot.

Hence the ṗ>Ftip term can be eliminated from (6.54) on condition that the

tip position is provided. Again, according to principle of least action, the

static pose in equilibrium with an unknown constant tip force can be found
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by:

L(x, ẋ) =
1

2
(ẋ− Fd(x))>G(x)(ẋ− Fd(x)) + ρgpz (6.56)

x?(t) = arg min
x(t)

∫ 1

0

L(x, ẋ)dt for fixed p(1) (6.57)

The discussion above shows two scenarios for the pose with tip force applied. If

the tip force is known, the pose should be obtained by minimizing (6.54) with

free tip state. If the same tip force is applied but the force is unknown, the tip

position should be provided and the pose can be obtained by minimizing (6.56)

with tip position fixed to provided tip position. The pose in equilibrium

should be the minimizer of the action functionals for both scenarios. Thus the

pose can be obtained by the AGHF method using either (6.54) with known

tip force and free tip state, or (6.56) with known tip position. It should be

noted that it remains an open question if the pose in equilibrium is local or

global minimizer and if the pose is unique. In the force estimation task, the

tip force can be extracted from the pose obtained by the tip position, using

the internal torque balance (6.50).

6.5.6.3 Consistency of Force Estimation

To numerically validate the method proposed to estimate Ftip,a two-step

validation process is conducted. This also allows us to have a broad estimation

of what numerical errors the method could incur.

Ground Truth In this step, ground truth data is generated. A known force

Ftip is applied on a SCA robot whose stiffness for inadmissible deformations,

λ∗, and stiffness for admissible deformations (twisting and bending), bx,by

and bz, are known parameters. The robot pose with Ftip applied, xnom(t),

is the pose of least potential energy, and can be obtained via AGHF using

(6.54) and (6.55). From xnom(t), the tip position ptip is recorded and will be

used for force estimation. The known force Ftip, the stiffness λ∗, bx,by,bz, and

the pose xnom(t) serve as a ground truth.

Force Estimation In this step, the tip force is unknown and the only

data available to estimate the force is the tip position, ptip, recorded in

Ground Truth step. To obtain the pose via AGHF using (6.56), (6.57) and
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p(1) = ptip fixed, the stiffness for both inadmissible and admissible directions

are needed. The admissible ones, bx, by and bz are usually given as robot

material parameters and can be directly used in AGHF method. However the

inadmissible stiffness, λ, are usually assumed to be infinite since it is orders

of magnitude larger than the admissible stiffness. Hence, a large guess of λ

is used. The discrepancy of the guess between ground truth λ∗ is the main

source of force estimation error, and will be discussed in next section. The

pose obtained using the tip position ptip is the reconstruction of the pose with

tip force applied. We denote the reconstructed pose by xrec(t). If the guess

of λ is accurate, namely, if λ = λ∗, the pose xrec(t) should be identical with

the ground truth pose xnom(t) . Finally we can estimate the force using the

reconstructed pose xrec(t) and torque balance condition (6.50). It is necessary

to note again that the estimated poses xnom(t) and xrec(t) are both integrated

paths, which represent valid R3 and unit quaternion curves.
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Figure 6.7: Consistency error ||xnom(t)− xrec(t)||

To verify that the consistency, ground truth values Ftip =

[200,−400,−600]> and with λ∗ = 1 × 105, [bx, by, bz] = [100, 100, 100],

ω∗(t) = [0, 0, π/2]> are used in the Ground Turth step. The ground truth

pose xnom(t) is obtained and the tip position ptip is recorded. Then the Force

Estimation step is conducted with ptip and the guess λ = λ∗. As a result,

the pose xrec(t) is obtained and the tip force is extracted. We define the

pose consistency error to be ||xnom(t)− xrec(t)|| and the plot of the error is

shown in Fig. 6.7. The error is in the scale of maximum precision of numerical

floating numbers. Therefore, the two poses can be considered identical, the

optimization problems (6.55) and (6.57) are consistent and lead to the same

pose.

Fig. 6.8 shows the extracted force along the robot using xrec(t), where 2000

grids are used to represent the pose along the robot length. The force Ftip
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is solved by using the torque balance equation (6.50) of each grid and its

adjacent grids. Now the extracted force is a function of the length t. As

shown in Fig. 6.8, the extracted force is constant along the robot and the

same as the ground truth force [200,−400,−600]>. This is expected since we

choose λ = λ∗ in this consistency check. The force being constant implied

that, at each cross section, the internal torque and gravity torque can be

balanced by the same tip force, which is the extracted force. The unstable

behavior of the extracted force near the tip is resulted from bad numerical

scaling due to almost singular matrix p̂(1)− p̂(t) when t ≈ 1. As a result, the

data near the tip should be discarded to avoid large error.
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Figure 6.8: Estimated force along the robot

The consistency check shows that the reconstructed pose xrec(t) is identical

with the nominal pose xnom(t) if the guess of λ in Force Estimation step is

the same as the ground truth λ∗ in Ground Truth step, that is to say, if the

guess of inadmissible stiffness value is accurate.

6.5.6.4 Estimation Accuracy and inadmissible Stiffness

The stiffness for inadmissible deformations plays an important role in the

force estimation accuracy. Recalled from Sec. 6.1, the λ is interpreted as

the stiffness of inadmissible deformations. These deformations include the

physical stretching and shearing deformation which are physical deformations,

as well as the deformation of quaternion away from unit norm, which is an

artificial deformation. To investigate the effect of inadmissible stiffness, the

Ground Truth step in the previous section is repeated with a range of ground

truth λ∗. For each λ∗, the ground truth pose xnom(t) is obtained and the tip
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position is recorded. For each of the recorded tip position, the reconstructed

pose xrec(t) is generated using a range of guess for λ, and the force is extracted

for each xrec(t).

Figure 6.9: 3D surface for λ∗ ∈ [1× 105, 10× 105] vs λ ∈ [1× 105, 10× 105]
vs estimation error ||Ftip − Ftip,est||

We select ground truth range λ∗ ∈ [1 × 105, 10 × 105] and guess range

λ ∈ [1 × 105, 10 × 105]. For each of the reconstructed poses, the estimated

force, Ftip,est, is extracted by solving the overdetermined equations formed by

toruqe balance (6.50) of all sampled cross sections along the robot (except

for the segment near tip). As a result, each pose only produces one estimated

force. Fig. 6.9 shows the estimation error ||Ftip − Ftip,est|| for the selected

range of λ∗ and λ. For each value of λ∗, the estimation error has a minimum

of zero when the λ = λ∗ is zero (red line), which interprets the fact that

the force estimation is exact when the inadmissible stiffness used in force

estimation is consistent with the inadmissible stiffness of the ground truth.

The error gets larger when the discrepancy between λ and λ∗ gets larger.

An important observation is that, as λ∗ increases, the surface is more flat

around the minimum error line λ = λ∗. This implies that, a same amount

of discrepancy between λ and λ∗ makes less estimation error as λ∗ increases.

For example, the estimation error with discrepancy λ − λ∗ = 1 × 105 for
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λ∗ = 10 × 105 is smaller than the estimation error with same discrepancy

λ − λ∗ = 1 × 105 but for λ∗ = 9 × 105. In conclusion, to have an accurate

estimation, the inadmissible stiffness λ used in estimation has to be as close

to the ground truth value λ∗ as possible. However, the effect of discrepancy

of inadmissible stiffness on estimation error is small when the ground truth

λ∗ is large.

The conclusion above helps to conduct the estimation using experimental

data. To estimate the force experimentally, an estimation of the inadmissible

stiffness is required. If the robot is soft in stretching and shearing, meaning

that ground truth λ∗ is small, an accurate estimation of λ∗ is needed to ensure

a good accuracy of force estimation since the assumption of an unshearable

robot is in fact not met. However, if the robot is extremely stiff in stretching

and shearing, meaning the that ground truth λ∗ is large, a rough estimation of

λ is acceptable since the discrepancy makes less effect on the force estimation

accuracy for large inadmissible stiffness.

6.6 GHF of SO(3) from ground up: key points

In this section, an approach to directly plan motions in SO(3) space

with AGHF method is summarized. Suppose the SO(3) state R(t) =

[r1(t), r2(t), r3(t)] ∈ SO(3) is the rotation matrix, with ri representing the

columns. The tangent space at the identity is denoted by so(3); an element

of so(3) is denoted by ω̂ where ω ∈ R3 is the angular velocity in some chosen

frame. The ·̂ operator is the screw symmetric operator. A metric G(R) can

be used to define the length, L(R,ω) =
∫ T

0
ω>G(R)ωdt for motion duration

T .

Denote the Euler Lagrange equation for SO(3) curve by EL(x, ω), which

is derived in [63] as:

EL(x, ω) = −
{ d
dt

(∂L(x, ω)

∂ω

)
+ ω × ∂L(x, ω)

∂ω
+

3∑
i=1

ri ×
∂L(x, ω)

∂ri

}
(6.58)

The heat flow is equivalent as:

dR

ds
= −R ∗ ÊL(R,ω) (6.59)
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which is the evolution along s (same as Ṙ = Rω̂ along t).

As discussed in 6.3, the regular Runge–Kutta integration and interpolation

rule does not apply for SO(3) since the integrated or interpolated state

doesn’t live in SO(3). The integration rule (6.23) should be used. This

update formula applies both for updating R(t, s) when solving PDE, and for

obtaining the integrated path after solving the motion.

For interpolation, angle-axis interpolation can be used. Given two ration

matrices R(0) = R1 and R(∆t) = R2, and let R>1 R2 = R(θ, v), where θ and

v are angle and axis in global frame for the rotation from R1 to R2. A linear

interpolation for orientation and angular velocity can be done along this

angle-axis rotation:

R(t) = R1R(θ
t

∆t
, v) (6.60)

ω(t) =
θ

∆t
v (6.61)

To sum up, the method based on SO(3) requires a customized PDE solver

that uses SO(3) integration and interpolation techniques. At this point, since

we intend to plan motions that include both Rn and SO(n) curve, a general

purpose PDE solver is preferred. Therefore we chose to approximate SO(3)

curve using Rn curve.
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CHAPTER 7

COMPUTATIONAL COMPLEXITY
ANALYSIS

In this chapter, the computational complexity of the AGHF approach is

analyzed and compared with other methods of motion planning in robotics.

The purpose is to emphasis the novelty and potential of the AGHF method on

the computation and implementation level. The analysis starts with a brief

overview of the fundamentals of the most commonly used motion planning

algorithms for complex robot systems, with a focus on trajectory optimization

and direct collocation methods. Then, we classify these methods according to

how the numerical solving process is carried out, and compare them with the

solver that AGHF algorithm based on, which is PDE solver relying on the

method of lines (MOL). In order to have a quantitive and intuitive comparison,

an illustrating example is implemented in both direct collocation method and

AGHF method.

7.1 Fundamentals of Trajectory Optimization

Algorithms

Motion planning is a broad and multi-disciplinary research area. Searching

based method like A* [64], sampling based method like Probabilistic Road

Map (PRM) [65] and Rapidly-exploring Random Tree (RRT) [66, 67] are

notable branches in motion planning. These methods are widely applied in

ground mobile robot and manipulators, where the system is usually fully

actuated and nonholonomic constraints are absent. In the past decade, as

robot hardware and software rapidly developed, the robot systems became

more complex and dynamic, typified by humanoid robots and legged robots.

Underactuation, kinodynamic nature, nonholonomic dynamics and varies

type of constraints are main challenges when planning motion for these type

of robots. Aiming to address all these issues, methods based on trajectory
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optimization were introduced. Trajectory Optimization (TO) is the process

of designing a trajectory that minimizes some measure of performance while

satisfying a set of constraints, and can be considered a subfield of optimal

control theory. The aforementioned issues are then transferred to a solver via

encoding the dynamics and constraints into optimality conditions.

We refer the reader to surveys [68, 69, 70] for detailed review and clas-

sification of the methods in TO. Fundamental concepts are summarized in

this section. The TO aims to solve the following problem: find the control

u(t) ∈ Rm from initial time t0 to terminal time tf such that the following cost

function is minimized.

J = Φ(x(t0), t0, x(tf ), tf ) +

∫ tf

t0

L(x(t), u(t), t)dt (7.1)

subject to the dynamics

ẋ = f(x, u, t) (7.2)

with path constraints

Cmin ≤ C(x, u, t) ≤ Cmax (7.3)

and boundary conditions

φmin ≤ φ(x(t0), t0, x(tf ), tf ) ≤ φmax (7.4)

7.1.1 Indirect Methods

In an indirect method, the TO problem is solved as an optimal control prob-

lem, where calculus of variations is used to find the first-order conditions

for optimality. Typically, these conditions are derived using the augmented

Hamiltonian which involves system states, co-states, and Lagrange multipliers.

The first-order necessary condition is given by the following ingredients: The

Hamiltonian system dynamics that is the differentiation of the augmented

Hamiltonian. Pontryagin’s Minimum Principle (PMP) that is used to de-

termine the optimal control, the transversality condition which determines

the initial and final value of co-states and complementary slackness condi-

tions for the Lagrange multipliers. The ingredient above form a Hamiltonian

boundary-value problem (HBVP), whose extremals are optimal trajectories.
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Numerically, solving for the extremals of the HBVP is achieved by first dis-

cretizing the state, co-state and control trajectories (i.e., introducing vectors

x, p, u whose i-th entries represent x(ti), p(ti) and u(ti), respectively), then

converting the first-order necessary conditions into system of differential alge-

braic equations (DAE). Typical numerical algorithms to solve the resulting

problem include indirect shooting, indirect multiple shooting, and indirect

collocation.

On the one hand, the first-order necessary condition serving as a optimality

metric ensures a high accuracy of the solution when converged, which is the

major advantage of the indirect method.

On the other hand, indirect methods are extremely sensitive to the boundary

conditions and initial guess. It is usual that small changes in BC or initial

guess lead to “wild” trajectories which exceed the numerical range of the

computer, as summarized in [71]. In addition, deriving the first-order necessary

condition is tedious and sometimes impossible for complex robotic systems.

Moreover, introduction of the co-states will double the state space when solving

the corresponding DAE problem. Due to these factors, indirect methods

are mostly used in aerospace applications where high accuracy planning is

required.

7.1.2 Direct Methods

In a direct method, the TO problem is converted to a constrained parameter

optimization problem and thus can be solved by general purpose nonlin-

ear programming (NLP) solvers. The control and/or state trajectories are

discretized and approximated by a class of properly chosen functions. The

system dynamics is either constrained by integration or collocation rules

applied on the discretization points. Then the values of discretization points

are solved by NLP solvers with integration or collocation constraints. By

assembly of the discretized states and control, the optimal trajectory can be

obtained. Generally, the direct methods are easy to implement compared with

indirect methods, because only discretization and constraint construction are

needed, without deriving the first order condition for optimality. However

the accuracy of direct method is lower than indirect method since the system

dynamics is enforced only on the discretization points. Typical direct methods
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include direct shooting and direct collocation.

Direct shooting method approximates the control with specified function,

e.g., polynomials, and optimize the function parameters. The state trajectory

can be expressed by numerical integration of system dynamics using approxi-

mated control function. The NLP solves for the optimal values for the initial

state and control function parameter that minimize the specified cost and

satisfies the target state constraints. The method is suitable for systems with

simple control and constraints.

According to the 2009 survey [69], direct collocation methods are “arguably

the most powerful methods for solving general optimal control problems”.

This is backed up by powerful large-scale sparse NLP solvers that have been

developed in the past two decades. Indeed, as the complexity of the TO

problem increases, the advantage of direct collocation is more prominent. This

is mainly due to two factors. Firstly, the transcription from optimal control

to parameter optimization is achieved in an efficient and flexible manner,

which allows complex system dynamics, constraints boundary conditions to

be simply implemented. Secondly, the NLP solvers converge with bad initial

guesses for a solution, and are efficient by utilizing the sparsity of the costs

and constraints. On account of the properties above, the direct collocation

method is preferred in motion planning for complex robotic systems such as

legged robot.

In direct collocation method, the state and control are discretized. Para-

metric ’basis’ functions are used to approximate the trajectory locally over

some time interval, or globally over the whole duration of the motion. The

key step is to construct the collocations constraints with a proper colloca-

tion method that approximates the system dynamics, e.g. Trapezoidal or

Simpson-Hermite. The cost is converted to a summation according to the

chosen collocation method. Path constraints and boundary conditions are con-

verted to constraints on the state and control at specific discretization points.

The resulting NLP problem’s size depends on how finely one discretizes the

trajectory and, depending on the type of parametric functions used, the cost

and constraints representations can be made sparse. An illustrative example

of direct collocation is given in Sec. 7.4, with a detailed problem formulation.

On the computational side, most NLP solvers eventually employ Newton’s

method to find the decision variables that satisfy the Karush-Kuhn-Tucker

(KKT) condition.
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7.1.3 Dynamic Programming

Another branch for solving optimal control problems is dynamic programming

(DP). Unlike the direct and indirect methods that find an open-loop local

optimal solution, DP finds a closed-loop control policy which gives globally

optimal with the help of Hamilton-Jacobi-Bellman (HJB) equation. The

trade off is that the HJB equation is PDE w.r.t to time and the states. The

computational complexity scales exponentially with the dimension of the state-

space; this phenomenon is often referred to as the“curse of dimensionality”.

This drawback of DP is in itself sufficient to exclude DP from complex robotic

applications.

7.2 Solving Trajectory Optimization

In the previous section, fundamentals of different TO and optimal control

methods were introduced. The methods are distinguished by how the TO

or the optimal control problem is formulated and converted to a numerical

problem. From another perspective, if categorized by the type of numerical

solver used, the methods fall to two main branches. On the one hand, all

the direct and indirect methods produce DAEs, which are mostly solved by

Newton’s method. On the other hand, the DP can be solved by PDE solvers.

7.2.1 Newton’s Method for Indirect and Direct Methods

As mentioned earlier, the indirect methods solves the HBVP which forms a

DAE problem. The DAE takes the form:

f(x, ẋ, t) = 0 for t ∈ [t0, tf ] (7.5)

where x = x(t) ∈ Rn is the state trajectory and f is a nonlinear function

of the state, state derivative and time. To solve the DAE numerically, the

most common numerical treatment is to discretize the state and estimate the

derivative with finite difference, for example, backward difference:

f(xi,
xi − xi−1

∆t
, t) = 0 for the i-th discretization point (7.6)
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where ∆t is the step size of the discretization. More advanced derivative

approximations can be applied to replace ẋ with the state x evaluated at

nearby points. Applying (7.6) for all the time discretization points, the DAE

system (7.5) is converted to a root finding problem.

For direct methods, the TO problem is converted to NLP problem which

find the discretized state and control that satisfy the first-order optimality

condition, typically the KKT condition. This is also a root finding problem.

The fundamental approach to solve root finding algebraic equations is

Newton’s method, or some variations of it, which solves the following problem:

f(x) = 0 (7.7)

where x ∈ Rn is the unknown variable vector. Starting with some initial guess

x0, the method produces a series of iterates xi according to:

xi+1 = xi −
[∂f
∂x

]−1

xi
f(xi) (7.8)

where ∂f
∂x

is the Jacobian of the function f .

Close to a root of (7.7), the Newton’s method has quadratic convergence.

However, when the initial guess is bad, the method may fail to find a solution:

if the guess is too far away from the root, or the derivative of the guess is

zero, the Newton’s method might not converge. In addition, if the function is

not continuously differentiable in the neighbourhood of the root, the method

might diverge. For complex robotic applications, all of the above scenarios

are likely to happen, due to the complexity of the system dynamics and

constraints. Furthermore, Newton’s method requires calculating the function

derivative. In the case of NLP converted from TO, the function derivative

is actually the second order derivative of the original Lagrangian, which is

usually hard to obtain analytically.

7.2.2 Solving PDE for Dynamic Programming

As discussed in Sec. 7.1, DP relies on solving the so-called HJB equation,

which is a PDE for a function whose domain is the state space of the system.

Developing numerical methods to solve PDEs is an active area of research.

Finite element methods form one broadly used class of methods. In finite
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elements methods, the domain of the independent variables is discretized and

the derivatives of the unknown functions are approximated by finite difference.

The PDE is then converted to a system of algebraic equations.

A different approach is the method of lines (MOL), which approximates

the PDE by a system of time varying ODEs [72]. The MOL discretizes the

domain of the spatial variables only. The derivatives with respect to the

spatial variables are approximated by finite difference. Then, for each of the

discretized points in spatial domain, an ODE is solved along the time variable.

A major appeal of the MOL is that it relies on standard, general-purpose

solvers developed for ODEs.

Other methods like spectral methods also come in handy in some particular

areas. Nevertheless, the efficiency of DP mainly depends on the complexity

and dimension of the HJB, regardless what PDE solver is used. For complex

robotic applications with large number of states, the DP is still “cursed” by

the dimensionality.

7.3 Computational Complexity of AGHF Method

The AGHF (3.6) is a parabolic PDE of the form:

∂x(t, s)

∂s
= Ψ(x(t, s), ẋ(t, s), ẍ(t, s), t) (7.9)

Several properties of this specific PDE should be noted. Because the AGHF

describes a smooth deformation of the state trajectory into a shortest path,

the dependent variables of PDE are the states of the control system (3.3), and

not the control. Furthermore, the evolution of the state only depends

on time variable t and the deformation variable s, which implies

that the domain of the unknown functions is of dimension 2. This

precludes the appearance of the “curse of dimensionality”. With the dimension

of PDE fixed to 2, the complexity of solving this PDE numerically scales

polynomially with the number of states. More specifically, with the number

of discretization points on t and s fixed, the computational complexity is

linearly proportional to the number of states. This is a major computational

advantage over the HJB based methods, since the dependent variable of HJB

is the value function and the dimension of independent variable is the number
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of states, which scales the complexity exponentially.

Due the the special structure of the AGHF (7.9) (2 dimensional parabolic

PDE), the PDE can be solved efficiently using MOL methods. The defor-

mation variable s is treated as the time variable of PDE and is continuous.

The time variable t is now a spatial variable of the PDE and is discretized.

The derivative terms ẋ and ẍ are approximated by finite difference. For each

of the discretized state at time ti, x(ti, s), an ODE can be solved with the

initial value x(ti, 0). If the system has a state vector x ∈ Rn and the states

are discretized in t with N discretization points. The total number of ODE

is n×M .

The accuracy of AGHF method depends on the magnitude of the constant

λ. Increasing λ renders the resulting system of ODEs stiff. Since the AGHF is

solved by MOL method, we are able to choose stiff ODE solvers. For instance,

we used Matlab’s PDE tool box pdepe which uses the stiff ODE solver ode15s.

In general, a large smax is used to obtain the steady state AGHF solution,

whereas a large λ guarantees that error between AGHF solution and the

integrated path, denoted by e=
∫ T

0
|x?(t)−x̃(t)|dt, is small. The planning error

e can serve as a measure of violation of dynamics and constraints, and it can

be shown to converge to zero as λ,s→∞, see Fig. 7.1. For the AGHF method

proposed for the hybrid dynamics in Chapter. 5, given large enough λ, the

steady state AGHF solution is a feasible trajectory for the approximated robot

dynamics instead of the actual hybrid robot system. The model accuracy

increases with larger α and β of the smooth approximation of Heaviside step

function (5.33), (5.34), resulting in a better approximation of the discrete

transition between different modes. That is, with sufficiently large α and β,

the violation of constraints near the switching time is negligible.

A practical way to speedup the solving process of the AGHF is to use

higher tolerance for the PDE solver. Higher tolerance forces the solver to

use larger step size for integration along s direction, thus uses less time for

solving. The trade off is that the accuracy along s will be lower. However,

the accuracy along s will only affect the transient behavior but has no effect

on the steady state solution x(t, smax), since the steady state is determined

by λ.

The symbolic expression of AGHF has to be derived before solving it

as a PDE. It is a one-time computation for each system. In this work,

the symbolic expression of the AGHF is solved using Symbolic Toolbox in
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Figure 7.1: Convergence of the planning error e along s and λ for the 2 leg
hopping example

MATLAB. Alternatively, the AGHF can be calculated numerically, e.g, using

finite difference.

7.4 Comparison of the Methods

To benchmark the computational performance of AGHF, in this section, the

3D dynamic unicycle planning example given in Sec. 6.4 is implemented in

both direct collocation method and AGHF method. However, the comparison

is not intended to serve as an conclusive judgement since the performances

are determined by various factors of the implementation, such as selected

NLP, PDE solvers, and code efficiency. To simplify the planning task, the

constraints on translational and angular velocities (6.32) are relaxed.

7.4.1 Problem Formulation

Now we formulate the 3D unicycle planning problem using both direct collo-

cation method and AGHF method.

Direct Collocation Formulation

The sample direct collocation method with trapezoidal collocation in [73] is

implemented for the 3D unicycle. Let the state x and control u be equally

discretized in time interval [0, T ], with k intervals. Then the step size is

∆t = T
k

and the i-th time stamp is ti = ih for i = 0, 1, · · · , k. Note that

t0 = 0 and tk = T . Let the state and control at time ti be xi and ui. The
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planning problem is to find the k+1 discrete states [x0, x1, · · · , xk] and control

[u0, u1, · · · , uk].
Trapezoidal collocation is used to enforce the system dynamics (6.27):

xi+1 = xi +
h

2

(
f(xi, ui) + f(xi+1, ui+1)

)
(7.10)

for i = 0, 1, · · · , k − 1.

In addition, the boundary conditions are assigned as equality constraints:

x0 = xinit

xk = xfin (7.11)

The goal is to minimize the Lagrangian L = u>u. Applying the trapezoidal

rule again, the total cost is:

J =
k−1∑

0

h

2
(u>i ui + u>i+1ui+1) (7.12)

To solve the resulting NLP problem, the NLP formulation platform CasADI

[74] is used with NLP solver Ipopt [75].

AGHF Formulation

The AGHF formulation is the same as Sec. 6.4 with the constraint (6.32)

removed. For solving the AGHF equation, we used Matlab’s PDE tool box

pdepe which internally implemented the stiff ODE solver ode15s.

7.4.2 3D Dynamical Unicycle Parallel Parking

To compare the generated motions, a 3D parallel parking problem is tested

with both methods. The same BC and IC are used for AGHF and direct

collocation method. The 3D unicycle start at position p(0) = [0, 0, 0]> with

orientation q(0) = [0.9659, 0, 0, 0.2588]> which corresponds to a rotation of

π/6 around body fixed x axis. The goal is to reach p(T ) = [0, 0.2, 0.2]> with

same orientation p(T ) = p(0) with T = 1. The initial guess is straight lines

connecting the specified BCs, for both AGHF and direct collocation method.

The number of discretized time interval is 50 for both methods: the state and
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Figure 7.2: Comparison of the motion generated motion from AGHF and
direct collocation. The RGB axis shows the initial (dotted) and final (solid)
orientations. Solid black line is the x-y-z trajectory.

control in direct collocation are discretized with 50 time intervals, while the

state in AGHF methods are solved with 50 sets of ODEs in parallel. For the

AGHF method, λ = 50000 is used to have a good planning accuracy. This

planning task serves as a basic task and will be modified for more benchmarks.

The generated motion is shown in Fig. 7.2. Due to the nonholonomic

dynamics that the unicyle can only accelerate along its body fixed x axis

translationally and around its y, z axis rotationally, the unicyle has to travel

a “Z” shape path to reach the target position and orientation. Both methods

obtained the same motion which minimized the accelerations. Fig. 7.3 shows

a more precise comparison of the generated unicycle position and control,

which are almost the same for both methods. The result implies that, given

the same initial guess, both methods find the same feasible solution, which

is a local minimum near the initial guess. However, the methods are not

expected to find the same solution if the same initial guess is given, in general.

This will be illustrated in Sec. 7.4.4.

7.4.3 Runtime and Planning Accuracy

As discussed in 7.3, the runtime of AGHF method is partially determined by

the constant λ, because it affects the integration step size, if the PDE solver

utilizes variable step-size ODE solvers. On the other hand, the runtime is also

affected by the number of grid points on time t, which determines how many

ODEs are solved in the MOL method. For a fixed λ, the runtime depends
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Figure 7.3: Comparison of position and control for AGHF and direct colloca-
tion.

solely on the discretization along t. For direct collocation, the runtime is

dependent on the number of decision variables, the number of constraints, and

the complexity of constraints of the NLP. The number of decision variables

and constraints are proportional to the number of discretized grid points

along t, while the complexity of constraints is related to the collocation rule.

Therefore if the collocation rule is chosen, the runtime solely depends on the

number of discretization points.

To benchmark both methods, the same motion planning task in 7.4.2 is

repeated with a range of discretization intervals, on a desktop computer

with Intel i7-6700 CPU. For each discretization intervals, the algorithms are

executed for several times and the average runtime is measured. The tested

runtimes are tabulated in Tab. 7.1. The runtime of AGHF is shorter compared

with direct collocation. With increasing number of intervals, the increase in

runtime is more drastic for direct collocation. Another runtime comparison

is shown in Tab. 7.2, where the AGHF method is implemented in Julia and

the direct collocation method uses Legendre collocation. The PDE solver in

Julia utilizes MOL and is highly parallelized, therefore the runtime of AGHF

can be further reduced compared with using pdepe.

In this task, both methods are able to plan the control that steers the

state to target final state. With the system dynamics (6.27) and the planned

control, the state trajectory x(t) can be simulated by integration, which is

the actual motion when given the planned control and can be used to test

the planning accuracy. The planning error can be defined as the difference
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intervals 20 50 100 150 200 300 500

AGHF (pdepe) 0.62 s 1.28 s 1.98 s 2.24 s 4.92 s 7.64 s 7.19 s
DC (Trapezoidal) 0.84 s 1.72 s 1.97 s 8.62 s 15.76 s 15.20 s 28.40 s

Table 7.1: runtime for varies of discretization intervals for AGHF with pdepe,
and trapezoidal Direct Collocation (DC)

intervals 50 100 200 300 400 500 600

AGHF (Julia) 0.27 s 0.50 s 0.99 s 1.51 s 2.02 s 2.58 s 3.23 s
DC (Legendre) 0.29 s 0.50 s 3.00 s 6.81 s 59.16 s 3.68 s >300 s

Table 7.2: runtime for varies of discretization intervals for AGHF with Julia,
and Legendre Direct Collocation (DC)

between the simulated final state x(T ) and the desired final state xfin:

e = |x(T )− xfin| (7.13)

Using the same range of discretization intervals as in Tab. 7.1, the motion

planning in 7.4.2 is repeated with both methods. For each planned motion,

the state trajectory is simulated with the planned control. To keep the

comparison simple, Euler integration and 5000 integration intervals are used.

Then the planning error (7.13) is measured, as shown in Fig. 7.4. As more

intervals are used, the error decreases and reaches a steady state above zero.

The nonzero planning error is caused by the integration error. For the AGHF

method, as the number of interval approaches infinity, the planning error is

reaching a nonzero steady state which is slightly higher than the steady state

value of the direct collocation method. This is because the planning error

of AGHF method is determined by the constant λ as discussed in Sec. 7.3.

Larger λ gives smaller planning error. Therefore, if the integration error is

negligible, increasing the number of discretization points helps to drive the

planning error of the direct collocation method to zero, but drive the planning

error of AGHF method to its nonzero steady state. However, it is observed

from Tab. 7.1 that the runtime of direct collocation experiences more drastic

rise when number of intervals increases. To sum up, one can achieve better

planning accuracy and faster runtime using AGHF method by tuning the

number of intervals and constant λ.
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7.4.4 Sensitivity to Initial Guess

The example in Sec. 7.4.2 shows that both methods find the same solution,

given the same BC and initial guess. However, this is not guaranteed in

general.

To have a clear view of the effect of initial guess, several different initial

guesses are used for the same motion planning problem described in Sec. 7.4.2.

The initial guess now is the original straight line connecting xinit and xfin,

with an added sinusoidal offset A sin(ωpert
2π
T
t) on each of the state. That is,

the straight line initial guess is perturbed by an oscillation of amplitude A

and frequency ωpert. The PDE solver pdepe in Matlab is used for the AGHF

method and the toolbox CasADI with NLP solver Ipopt is used for the direct

collocation method.

A range of A and ωpert are used to see the effect of initial guess on the

planned motion, for both methods. The planned motion is shown in Fig. 7.5.

First, we choose a high frequency ωpert = 10. A = 1, 10, 20 are tested. With

low amplitude A = 1, as shown in Fig. 7.5a, Fig. 7.5b, both of the methods

obtain the same motion, which is the same as the original planned motion in

Sec. 7.4.2. The runtime is around 1s for both methods. This implies that the

perturbation is not large enough to move the initial guess too far away from

this local minimum. With higher amplitude A = 10, as shown in Fig. 7.5c

and Fig. 7.5d, the methods obtained different solutions. The AGHF solved

for a feasible motion in 2s. The motion is still a “Z” shape path, but is

different from the planned motion for A = 1. This implies that, after being
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perturbed, the initial guess is “closer” to this new local minimum than the

planned motion for A = 1. The direct collocation method obtains a motion

in 10s but the motion is not feasible since the change in state is too large

between each discretization point. With even higher amplitude A = 20, as

shown in Fig. 7.5e and Fig. 7.5f, the trend is more obvious. The AGHF is

still able to find a feasible but different solution, while the direct collocation

method fails to find one. Based on these observations, one can conclude that

AGHF method is better when the initial guess is fluctuating.
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C. Semini, “Simultaneous contact, gait, and motion planning for robust
multilegged locomotion via mixed-integer convex optimization,” IEEE
Robotics and Automation Letters, vol. 3, no. 3, pp. 2531–2538, 2017.

[52] A. W. Winkler, C. D. Bellicoso, M. Hutter, and J. Buchli, “Gait and
trajectory optimization for legged systems through phase-based end-
effector parameterization,” IEEE Robotics and Automation Letters, vol. 3,
no. 3, pp. 1560–1567, 2018.

[53] H. Dai and R. Tedrake, “Planning robust walking motion on uneven
terrain via convex optimization,” in IEEE-RAS 16th International Con-
ference on Humanoid Robots, 2016, pp. 579–586.

[54] B. Ponton, A. Herzog, S. Schaal, and L. Righetti, “A convex model of
humanoid momentum dynamics for multi-contact motion generation,”
in 2016 IEEE-RAS 16th International Conference on Humanoid Robots
(Humanoids). IEEE, 2016, pp. 842–849.

[55] R. Deits and R. Tedrake, “Footstep planning on uneven terrain with
mixed-integer convex optimization,” in 2014 IEEE-RAS international
conference on humanoid robots. IEEE, 2014, pp. 279–286.

[56] S. Liu, Y. Fan, and M.-A. Belabbas, “Geometric motion planning for
affine control systems with indefinite boundary conditions and free ter-
minal time,” arXiv preprint arXiv:2001.04540, 2020.

[57] F. S. Grassia, “Practical parameterization of rotations using the expo-
nential map,” Journal of graphics tools, vol. 3, no. 3, pp. 29–48, 1998.

[58] K. Shoemake, “Animating rotation with quaternion curves,” in Proceed-
ings of the 12th annual conference on Computer graphics and interactive
techniques, 1985, pp. 245–254.

[59] M. Baker. [Online]. Available: https://www.euclideanspace.com/maths/
geometry/rotations/conversions/

[60] J. Strickland, “What is a gimbal–and what does it have to do with nasa,”
HowStuffWorks, last modified May, vol. 20, 2008.

136



[61] A. AlBeladi, G. Krishnan, M.-A. Belabbas, and S. Hutchinson, “Vision-
based shape reconstruction of soft continuum arms using a geometric
strain parametrization,” arXiv preprint arXiv:2011.09106, 2020.

[62] M. B. Rubin, Cosserat theories: shells, rods and points. Springer Science
& Business Media, 2013, vol. 79.

[63] T. Lee, M. Leok, and N. H. McClamroch, “Global formulations of
lagrangian and hamiltonian dynamics on manifolds,” Springer, vol. 13,
p. 31, 2017.

[64] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the
heuristic determination of minimum cost paths,” IEEE transactions on
Systems Science and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.

[65] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Proba-
bilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE transactions on Robotics and Automation, vol. 12, no. 4,
pp. 566–580, 1996.

[66] S. M. Lavalle, “Rapidly-exploring random trees: A new tool for path
planning,” 1998.

[67] S. M. LaValle and J. J. Kuffner Jr, “Randomized kinodynamic planning,”
The international journal of robotics research, vol. 20, no. 5, pp. 378–400,
2001.

[68] J. T. Betts, “Survey of numerical methods for trajectory optimization,”
Journal of guidance, control, and dynamics, vol. 21, no. 2, pp. 193–207,
1998.

[69] A. V. Rao, “A survey of numerical methods for optimal control,” Advances
in the Astronautical Sciences, vol. 135, no. 1, pp. 497–528, 2009.

[70] A. Shirazi, J. Ceberio, and J. A. Lozano, “Spacecraft trajectory optimiza-
tion: A review of models, objectives, approaches and solutions,” Progress
in Aerospace Sciences, vol. 102, pp. 76–98, 2018.

[71] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press,
2016.

[72] S. Hamdi, W. E. Schiesser, and G. W. Griffiths, “Method of lines,”
Scholarpedia, vol. 2, no. 7, p. 2859, 2007.

[73] M. Kelly, “An introduction to trajectory optimization: How to do your
own direct collocation,” SIAM Review, vol. 59, no. 4, pp. 849–904, 2017.

137



[74] J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl,
“CasADi – A software framework for nonlinear optimization and optimal
control,” Mathematical Programming Computation, In Press, 2018.
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