
© Copyright 2021 Palash Sashittal.



FLOW CONTROL AND SENSING USING DATA-DRIVEN REDUCED-ORDER
MODELING

BY

PALASH SASHITTAL

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Aerospace Engineering

in the Graduate College of the
University of Illinois Urbana-Champaign, 2021

Urbana, Illinois

Doctoral Committee:

Professor Daniel J. Bodony, Chair
Associate Professor Randy H. Ewoldt
Professor Theodore J. Heindel
Assistant Professor Andres Goza
Assistant Professor Laura Villafañe Roca



ABSTRACT

Transfer operators, such as the Koopman operator, are driving a paradigm shift in how we

perform data-driven modeling of fluid flows. Approximations of the Koopman operator provide

linear representations even for strongly nonlinear flows, which enables the application of standard

linear methods for estimation and control under realistic flow conditions. In the past decade,

we have witnessed several breakthroughs in obtaining low-dimensional approximations of the

Koopman operators, providing a tractable reduced-order model for complex fluid flows using data

from numerical simulations or experiments. In this thesis, we leverage these recent developments

in operator-theoretic modeling of fluid flows and provide data-driven solutions to the flow control

and sensing problems. The contributions of this thesis can be divided into three parts.

In the first part, we introduce a novel method, low-rank Dynamic Mode Decomposition

(lrDMD), for data-driven reduced-order modeling of fluid flows. While existing data-driven

modeling methods fit an endomorphic linear function on a low-dimensional subspace, lrDMD

approximates flow dynamics using a linear map between different subspaces. We show that

this approach leads to the design of better reduced-order feedback controllers. We formulate

a rank-constrained matrix optimization problem and propose two complementary methods to

solve the problem. lrDMD outperforms existing methods in feedback control and optimal actuator

placement.

In the second part, we present a completely data-driven framework for sensor placement in fluid

flows. This framework can be applied in conjunction with any reduced-order modeling technique

that constructs a linear model for the flow dynamics. We formulate an optimization problem that

minimizes the trace of a data-driven approximation of the estimation error covariance matrix,

where the estimates are provided by a Kalman filter. We propose an efficient adjoint-based

gradient descent method to solve the optimization problem. We show that sensors placed using

our method lead to better performance in important applications, such as flow estimation and
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control, compared to existing data-driven sensor placement methods.

In the third and final part, we propose a new method of interface tracking and reconstruction

in multiphase flows using shadowgraphs or back-lit imaging data. First, we show that while

traditional modeling methods provide valuable information about the spatio-temporal structure

of flow instabilities, they are not able to resolve spatial or temporal discontinuities, such as

the liquid-gas interface, in the data. To remedy this, we propose a two-step approach, using

data-driven modeling techniques in conjunction with optical flow methods, that preserves sharp

interfaces and provides reliable reconstruction and short-time prediction of the flow. We apply

our method to an experimental liquid jet with a co-axial air-blast atomizer using back-lit imaging.

Our method is able to accurately reconstruct and predict the flow while preserving the sharpness

of the liquid-gas interface.
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CHAPTER 1

INTRODUCTION

Fluid flows that are relevant for engineering applications, such as flow over an aircraft and

combustion chamber fuel injection, are complex due to flow features spanning varied length-

scales and coupled processes involving multiple physical phenomena. Due to this, existing

analytical methods need to make simplifying assumptions and often do not provide sufficiently

accurate predictions for practical applications. Even numerical simulations require solutions of

very high-dimensional system of equations that challenge our fastest computers.

One way to resolve this problem is to develop approximate models of the flow, while accounting

for the most relevant flow features and their interactions. A low-dimensional model that faithfully

approximates the dynamics of the underlying complex flow enables computationally-efficient

methods for flow analysis, control and optimization. This is the goal of reduced-order modeling,

which is an active field of research in fluid mechanics. With the increasing size of flow datasets,

driven by advancement in computational capabilities of computers, efficient numerical methods

for simulations and experimental techniques for flow measurement, data-driven model reduction

methods have recently gained a lot of traction. The reader is referred to [125] for a comprehensive

review of model reduction techniques for fluid flows.

Model reduction methods rely on the fact that several high-dimensional fluid flows exhibit

dominant flow features that evolve on a low-dimensional manifold. Several methods involve

decomposition of the flow field into linear combination of modes, where each mode has a distinct

spatial structure and temporal behavior. For a given set of modes, Petrov-Galerkin projection [27,

124, 151] is used to project the dynamics of the high-dimensional system onto the linear space

spanned by the modes. Typically, these modes are obtained from data, one of the most popular

method being Proper Orthogonal Decomposition (POD) [99]. This approach of reduced-order
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modeling has been successfully applied to control several fluid flows [13, 74, 137, 138]. However,

these methods require complete knowledge of the equations governing the high-dimensional

system and require computation of the projection coefficients, which is inconvenient for complex

nonlinear systems.

An alternative is provided by system-identification or model learning methods. Early system

identification methods, such as the Eigensystem Realization Algorithm (ERA) [79], autoregressive

modeling [5] and Observer/Kalman filter Identification (OKID) [78], were developed only for

linear systems. Fortunately, linear models can closely approximate the dynamics of fluids in

certain regimes. Even in more complex cases, linear models are useful for short-term predictions.

As such, traditional system-identification methods have been used extensively for flow control in

previous studies [47, 65, 73–75]. For strongly nonlinear systems, where traditional methods fail,

the last decade has witnessed tremendous progress in data-driven model reduction by using the

Koopman operator to represent the nonlinear system as an infinite-dimensional linear system [109,

116, 126, 132, 144].

While the Koopman operator is infinite-dimensional, finite-dimensional approximations pro-

vide valuable information about the system behaviour. Moreover, since the operator is linear, it

allows us to use standard linear estimation and control theory tools even for complex flows. This

thesis introduces novel methods that leverage recent developments in Koopman-based reduced-

order modeling techniques and provide solutions to long-standing problems in the fluids com-

munity, such as efficient feedback control and optimal sensor placement.

1.1. Thesis Structure

The thesis is composed of the following chapters.

• Chapter 2 contains the prerequisite background material for reading the thesis. We introduce

the Koopman representation of dynamical systems with and without incorporating the effect

of control. Data-driven methods that provide finite-dimensional approximations of the

Koopman operator are presented. Then, we describe important results from linear control

and estimation theory. Specifically, we present the Kalman filter for state estimation and the

Linear Quadratic Regulator for feedback control of linear time-invariant systems. Finally,
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we provide background information about Riemannian optimization by drawing parallels

with Euclidean optimization. In particular, we describe the geometry of the Grassmanian

manifold, which is useful for optimization problems with orthogonality constraints, and

introduce operations that would facilitate optimization on the Grassmanian manifold.

• Chapter 3 introduces a novel control-oriented data-driven reduced-order modeling method

called low-rank Dynamic Mode Decomposition (lrDMD). This method generalizes the

approach of Dynamic Mode Decomposition (DMD) by posing the reduced-order data-driven

modeling as a rank-constrained optimization problem. We present a subspace projection-

based method and a Riemannian optimization method to solve this problem. We show that

the proposed reduced-order model outperforms existing methods for control applications,

such as suppressing the vortex shedding in the wake of an inclined flat plate in uniform

flow.

• Chapter 4 presents a data-driven sensor placement framework, which can be used in con-

junction with any reduced-order modeling method that provides a linear description of the

system dynamics. We formulate the optimization problem, with an objective function that

uses a data-driven approximation of the error covariance matrix and controls based on the

Kalman filter equations. A gradient-based optimization method is used to find optimal

sensor locations where the gradient is computed using adjoint equations. Finally, results

are shown for flow reconstruction, prediction and control applications.

• In Chapter 5 we show that naive implementation of existing data-driven reduced-order

modeling methods is not suitable for interface tracking and reconstruction in multiphase

flows. We propose a new two-step method that uses optical flow methods in conjunction

with DMD to reconstruct and predict interface locations in multiphase flows using imaging

data. We demonstrate our method on a real experiment of liquid jet surrounded by a coaxial

airblast atomizer and visualized using back-lit imaging.

• Chapter 6 summarizes the contributions of the thesis and explores two interesting future

directions for research. First, we extend the low-rank Dynamic Mode Decomposition frame-

work to incorporate the effect of control input. Second, we propose a data-driven stochastic
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flow control framework using input-output hidden Markov models. The proposed feedback

controller, obtained by solving a mixed integer linear program, can be used to drive the

asymptotic behaviour of the system.

1.2. Published Work

The work presented in this thesis has resulted in the following proceedings and peer-reviewed

publications. Several chapters of the thesis are reproduced with permission from the following

papers.

Palash Sashittal, Daniel J. Bodony, ”Data driven sensor placement for fluid flows”, Theoretical

and Computational Fluid Dynamics Volume 35 (2021): (pp. 709–729).

Palash Sashittal, Daniel J. Bodony, ”Reduced-order control using low-rank dynamic mode

decomposition”, Theoretical and Computational Fluid Dynamics Volume 33.6 (2019): (pp. 603-

623).

Palash Sashittal, Daniel J. Bodony, ”Low-rank dynamic mode decomposition using Rie-

mannian manifold optimization”, In IEEE Conference on Decision and Control (CDC) 2018 (pp.

2265-2270).

Daniel J. Bodony, Palash Sashittal, Aaron Towne, ”Low-rank modeling of primary atomiza-

tion”, In proceedings of Center of Turbulence Research Summer Program (CTRSP) 2018.

This research has also produced the following conference publications.

Palash Sashittal, Daniel J. Bodony, ”Data-driven sensor placement for fluid flows”, Invited

talk at AIAA Aviation 2021.

Palash Sashittal, Daniel J. Bodony, ”Data-driven reduced order control for partially observed

fluid systems”, In AIAA Scitech 2020.

Palash Sashittal, Daniel J. Bodony, ”Model reduction of primary atomization using optical

flow”, In ILASS-Americas 2019.
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Michael Banks, Palash Sashittal, Daniel J. Bodony, ”Towards data-driven control of multi-

phase flows”, In 14th International Conference on Liquid Atomization and Sprays 2018.

Data and Code Availability

The code and data generated for the published work presenting in this thesis is open-source

and available online. A Matlab code that performs low-rank Dynamic Mode Decomposition

(Chapter 3) is provided at https://bitbucket.org/sashitt2/lrdmd/src/master. A Matlab

code for data-driven sensor placement in fluid flows (Chapter 4) is made available at https:

//github.com/sashitt2/optimal_sensing.
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CHAPTER 2

BACKGROUND

This chapter contains background material for the rest of the thesis. In Section 2.1 we introduce

the Koopman representation of dynamical systems and data-driven methods that approximate

the Koopman operator. Section 2.2 describes important results from linear estimation and control

theory that are used for flow estimation and control in the subsequent chapters. Finally, Section 2.3

describes Reimannian optimization as a generalization of Euclidean optimization. As an example,

we provide details about optimization of Grassmanian manifolds. This optimization paradigm is

employed in the later chapters to solve optimization problems on matrix manifolds.

2.1. Koopman Theory

Dynamical systems are typically modeled as the evolution of a system in state space. Specifically,

the state lies in a vector space or on a nonlinear manifold within a vector space, and evolves in

time. This is described either by differential equations or discrete-time maps. An alternative

approach was proposed by Koopman [87] in 1931 which involved describing the evolution of

functions on the state space. This description had many advantages, since the function space is a

vector space and the evolution is described by a linear operator, now known as a the Koopman

operator. This approach was first applied to fluid flows in the work of Mezic̃ [108] to decompose

the evolution of the flow field onto the eigenfunctions of the Koopman operator.

Over the last decade, following the work of Schmid [132] and Rowley et al. [126], several

methods have been developed to construct data-driven finite-dimensional approximations of

the Koopman operator. In this section we will provide an introduction to Koopman theory for

systems with and without control, and some of the most commonly used data-driven methods
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to approximate the Koopman operator. For a thorough review of this topic the reader is referred

to [109, 116].

2.1.1. Koopman Representation of Dynamical Systems

Consider a discrete autonomous dynamical system evolving on the set Q as follows.

qk+1 = f (qk), (2.1)

where k is the index for time and qk ∈ Q. The dynamics on Q is defined by the (possibly

nonlinear) function f : Q → Q. The Koopman operator K is a linear operator that completely

characterizes the dynamics defined onQ. While the linearity of the Koopman operator is favorable

for analyzing the dynamical system, it comes at a cost. The Koopman operator can be infinite

dimensional even for a finite dimensional dynamical system. Nevertheless, finite dimensional

approximations of the Koopman operator provide valuable information about the dynamical

system.

The Koopman operator K acts on scalar-valued functions g : Q → R of q as follows.

Kg(qk) = g(qk+1) = g( f (q)).

As such, the Koopman operator is also known as the composition operator since the action of

K on g(·) produces the function g ◦ f (·). The action of the Koopman operator can be easily

generalized to vector-valued functions g = [g1, . . . , gN ], where gi : Q → R.

Example 2.1.1. Consider the nonlinear dynamical system,

yk+1 = y2
k . (2.2)

The dynamical system above is nonlinear due to the quadratic term y2
k . We use Carleman Lin-

earization [28] to find a linear embedding of the dynamical system. We introduce an extended

state vector x with the i-th component x(i) is a function gi of y defined as

gi(y) = exp(2(i−1) ln y).
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The dynamical system in Eq. (2.2) can be represented as,


x(1)

x(2)

...


k+1

=


0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...




x(1)

x(2)

...


k

,

which is an infinite dimensional linear system. The spectral properties of the infinite dimensional

state transition matrix provides insights into the stability behaviour of the dynamical system [109].

While in general the Koopman operator is infinite dimensional, for some systems, it is possible

to identify a set of independent functions {g1, . . . , gN} that form an invariant subspace under

the action of the Koopman operator. Specifically, if T is the invariant subspace spanned for the

function {g1, . . . , gN}, then Kg ∈ T whenever g ∈ T . The action of the Koopman operator can

be represented exactly by a finite-dimensional linear mapping when restricted to the invariant

subspace. Let us look at an example of such a system.

Example 2.1.2. Consider the following 2-dimensional dynamical system.

y(1)k+1 = µ1y(1)k ,

y(2)k+1 = µ2y(2)k + (µ2
1 − µ2)c(y

(1)
k )2,

where y is the state vector, the superscripts in parenthesis denote the component of the state

vector, subscript denotes the time index and µ1, µ2 and c are scalar parameters. This system has

an equivalent linear Koopman representation as follows,


x(1)

x(2)

x(3)


k+1

=


µ1 0 0

0 µ2 (µ2
1 − µ2)c

0 0 µ2
1




x(1)

x(2)

x(3)


k

,

where x(1) = g1(y) = y(1), x(2) = g2(y) = y(2) and x(3) = g3(y) = (y(1))2. The nonlinear

dynamics of y is captured by the linear dynamics of the nonlinear functions {g1, g2, g3} of y.

Identification of such invariant subspaces is very useful, as they provide coordinates in which

the system evolves linearly. As such, these coordinates can be viewed as global linearization.

8



Unfortunately such coordinate transformations are difficult to find and do not even exist for

certain systems [86].

While a Koopman representation allows us to use linear control theory and estimation tools for

nonlinear dynamical systems, traditionally, it has been used only on uncontrolled dynamical

systems. Recently there have been developments in extending the Koopman framework to

controlled dynamical systems which we will describe in the following subsection.

2.1.2. Incorporating the Effect of Control

There are several ways in which the Koopman framework can be extended to incorporate

the effect of control on the dynamical system [80, 85, 88, 120]. Here, we show the approach

described in [88] to define the Koopman operator for controlled systems. Consider a discrete

non-autonomous dynamical system forced by control input from the set U as,

qk+1 = h(qk, uk), (2.3)

where k is the index of time, qk ∈ Q, uk ∈ U and h(·) describes the dynamics of the system in

terms of both the state q and control input u. Let `(U ) denote the set of all sequences {u} :=

(uk)
∞
k=0 with uk ∈ U and {u}i denote the i-th element in the sequence {u}.

We introduce the function H : Q× `(U ) → Q× `(U ) which describes the dynamics of the

extended state χ = (q, {u}) ∈ Q× `(U ) as follows.

χk+1 = H(χk) = (h(qk, {u}0),S{u}),

where S is the left shift operator, such that S{u}i = {u}i+1 for any positive integer i. The

Koopman operator K acts on function g : Q× `(U )→ R such that,

Kg(χk) = g(χk+1) = g(H(χk)).

Note that the extended state vector χ is infinite dimensional. This is an added complexity

compared to the uncontrolled case in which the Koopman operator K was infinite dimensional,

but the state q was finite dimensional. The dimensionality of χ has implications in tractability of
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data-driven approximation methods which will be discussed in the next section.

2.1.3. Data-driven Approximation of the Koopman Operator

In this section, we delve into data-driven methods for approximating the Koopman operator.

There are several methods that provide a data-driven approximation of the Koopman opera-

tor. Most methods rely on Dynamic Mode Decomposition (DMD) [34, 132] or one of its vari-

ants [34, 37, 48, 57, 63, 64, 129, 154] to approximate the Koopman operator. A common theme in

these methods is to project the infinite-dimensional Koopman operator onto a finite-dimensional

subspace that is learned from data. As such, the development of data-driven methods for Koop-

man operator approximation are closely tied with data-driven reduced-order modeling of fluid

flows. Typically, due to the multiphysics and multiscale nature of fluid flows, accurate prediction

of flow features requires numerical simulation of high-dimensional systems. Apart from finding

a finite-dimensional approximation of the Koopman operator, several data-driven flow modeling

methods aim to find a low-dimensional representation of the flow dynamics. All the methods

that we will discuss in this section provide a low-dimensional subspace and a linear description

of the flow dynamics restricted to that subspace from data.

Dynamic Mode Decomposition [132]

DMD is a data-driven method that provides a linear representation A of the dynamics of an

autonomous system projected onto the space spanned by the proper orthogonal decomposition

(POD) modes L of the data snapshots. Let {q0, . . . , qn} be a set of n+ 1 snapshots of the dynamical

system. By Eq. (2.1), the snapshots are related as

qk+1 = f (qk),

The DMD algorithm is as follows.

1. Construct the data matrices X, Y ∈ Cm×n as follows.

X := [q0 | · · · | qn−1], Y := [q1 | · · · | qn].
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2. Perform a rank r reduced singular value decomposition of the matrix X such that,

X ≈ UΣVH,

where U ∈ Cm×r, Σ ∈ Cr×r and V ∈ Cn×r.

3. The DMD operator A ∈ Cr×r and the orthonormal basis of the r-dimensional subspace L is

given by

A := UHYVΣ−1, (2.4)

L := U.

Dynamic Mode Decomposition with Control [119]

This section describes the extension of DMD to controlled systems. In this case, we are given

a set of full-state observations {q0, . . . , qn} and control inputs {u0, . . . , un−1}. DMDc generates a

linear model for the system dynamics,

qk+1 = Mqk + Buk,

with state transition matrix M = LALT of rank r, where A describes the dynamics of the system

on the low dimensional subspace spanned by the columns of orthogonal matrix L and B is the

actuation matrix. The algorithm is as follows.

1. Construct the data matrices X, Y ∈ Cm×n as

X := [q0 | · · · | qn−1], Y := [q1 | · · · | qn].

Similarly, construct matrix Γ ∈ Cp×n with the control inputs,

Γ := [u0 | · · · | un−1].
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Also, construct the following stacked data matrix Ω ∈ C(m+p)×n

Ω :=

X

Γ

 .

2. Perform a rank r′ > r singular value decomposition of the matrix Ω such that

Ω ≈ ÛΣ̂V̂H.

3. Perform a rank r singular value decomposition of the matrix Ω such that

X ≈ UΣVH.

4. The reduced-order model A, the orthonormal basis of the low-dimensional subspace L and

the actuation matrix B are given by

A := UHYV̂Σ̂−1ÛH
1 U, B := UUHYV̂Σ̂−1ÛH

2 ,

L := U,

where Û1 ∈ Cm×r′ and Û2 ∈ Cp×r′ such that ÛH = [ÛH
1 | ÛH

2 ].

Extended Dynamic Mode Decomposition

In this subsection, we describe an extension of DMD called extended dynamic mode decomposi-

tion (EDMD) [152]. Apart from the set of data snapshots {q0, . . . , qn}, EDMD requires a dictionary

of observables, D := {ψ1, . . . , ψp} where, for each i ∈ {1, . . . , p}, ψi ∈ L2(Rn), i.e. ψi is a square

integrable function of the state variable q. While there are many pragmatic choices that have been

suggested, the optimal choice of dictionary elements remains an open question [48, 125, 152].

DMD is a special case of Extended DMD in the sense that, EDMD is equivalent to DMD when

the dictionary of observables is chosen such that ψi(q) = qi. Algorithmically we can apply the
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same method as DMD by constructing the following data matrices,

X := [ψ(q0) | · · · | ψ(qn−1)], Y := [ψ(q1) | · · · | ψ(qn)],

where ψ(q) = [ψ1(q), · · · , ψp(q)]T. The authors in [152] showed that the EDMD approach can be

viewed as a spectral collocation method for approximating the Koopman operator with respect

to the basis determined by the set of observables {ψ1, · · · , ψp}. Like any spectral method, the

accuracy of the approximation relies on the choice and size of the basis. However, the number of

basis functions can be prohibitively large for high-dimensional dynamical systems. For instance,

if quadratic functions of the state q are considered, the number of observables will be O(m2). An

alternative is to use the kernel method proposed in [152], which is efficient for cases where the

number of degrees of freedom m is much larger than the number of snapshots n.

2.2. Linear Estimation and Control Theory

Although most fluid flows of interest exhibit non-linear dynamics, several studies have shown

the effective implementation of linear estimation and control theory for fluid flows [12, 56, 67,

82, 83]. This is attributed to faithful representation of input, output and the important dynamic

processes of the fluid flows by linearization of the underlying dynamics for many applications [83].

For example, nonlinear instability leading to laminar-to-turbulence transition in fluid flows is

often preceded by linear amplification disturbances in the system, which can be mitigated by

linear control techniques. This section describes optimal estimation and control methods that are

applicable to linear time invariant (LTI) systems under certain conditions.

Consider the following LTI system.

qk+1 = Mqk + Buk + wk, (2.5)

zk = Cqk + vk,

with time indexed by k and initial condition q0. At each iteration k, qk ∈ Cm is the state variable,

uk ∈ Cd is the control input and zk ∈ Cp is the observation of the system. The matrices B ∈

Cm×d and C ∈ Cp×m are called the control and the observation matrix, respectively. wk and vk
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are random variables that denote the noise in the dynamics of the system and the process of

observation. As is standard for linear control theory [93], we assume that wk and vk are zero

mean Gaussian variables with covariance matrices W ∈ Cm×m and V ∈ Cp×p respectively. Note

that the observers and controllers described in this section are optimal only for systems with

zero-mean additive Gaussian noise.

In this study, we are particularly interested in the application of linear estimation and control

theory for reduced-order models of fluid flows. As such, we assume that the dynamics of

the system can be accurately approximated on a low-dimensional linear subspace. Under this

assumption, we can focus on the dynamics of the system described in Eq. (2.5) restricted to the

r-dimensional space spanned by the columns of an orthonormal matrix L ∈ Cm×r (i.e. LH L = Ir,

where Ir is the r× r identity matrix). The dynamics of the system restricted to the r-dimensional

subspace is

ak+1 = Aak + LHBuk + LHwk, (2.6)

zk = CLak + vk,

where a ∈ Cr is the projection of the state variable q onto the space spanned by the columns of L,

A = LH ML and the initial condition is a0 = LHq0. Note that LHwk is a Gaussian random variable

with zero mean and covariance matrix given by LHWL.

Remark 2.2.1. When the full-order model (Eq. (2.5)) is not known and only state trajectories of the

system are available, reduced-order model (Eq. (2.6)) can be learned using data-driven methods,

such as those described in Section 2.1.3.

2.2.1. Kalman Filter

Let the estimate of ak given observations z` := {z1, z2, · · · , z`} be denoted by ak|`. The estimate

for the full-state variable qk will be similarly denoted as qk|` = Lak|`. The standard estimation

problem for linear state space models is determining the estimate of ak given zk, denoted by ak|k,
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such that

E[(ak − ak|k)
2] ≤ E[(ak − ãk|k)

2],

for any causal estimate ãk|k. Using ak|` = E[ak|z`] and Σk|` = var (ak|z`), we get the following

Kalman filter [148] forward recursion

a0|0 = E[a0],

ak+1|k = Aak|k,

ak+1|k+1 = ak+1|k + Kk+1(zk+1 − CLak+1|k),

with the following recursive offline computations

Σ0|0 = var(a0),

Σk+1|k = AΣk|k AH + LHWL,

Σk+1|k+1 = Σk+1|k − Σk+1|kLHCH(CLΣk+1|kLHCH + V)−1CΣk+1|k,

Kk+1 = Σk+1|k+1LHCHV−1.

Here Kk ∈ Cr×p is the time varying Kalman gain matrix and Σk ∈ Cr×r is the covariance matrix of

ak and var(·) denotes the variance. The recursion for Σk|k−1 and Σk|k has the form of the Riccati

equation. This recursion is referred to as offline because Σk|k−1, Σk|k and Kk only depend on the

reduced-order model A, observation matrix C and the basis L, and not on the observations zk.

The predicted observation is obtained by the predicted state estimate by

zk|k−1 = CLak|k−1

and the estimated error covariance matrix Sk ∈ Cp×p is given by

Sk = E[(zk − zk|k−1)(zk − zk|k−1)
H ]

= CΣk|k−1CH + V.
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For large values of n, the recursion for Σk|k−1 converges to a steady-state value Σ, provided

that (C, A) is observable and (A, W) is controllable [25]. In that case, Σ satisfies the following

Algebraic Riccati Equation (ARE),

Σ = AΣAH + LHWL− AΣLHCH(CLΣLHCH + V)−1CLΣAH. (2.7)

The resulting steady-state Kalman gain matrix is

K = ΣLHCH(CLΣLHCH + V)−1. (2.8)

The estimate of the hidden variable using the steady-state Kalman gain matrix is generally used

when the time horizon for the control is large relative to the effective convergence time of the

Riccati equation.

2.2.2. Observer-based Feedback Controller

The Kalman filter-based observer with the optimal sensor locations provides filtered estimates,

qk|k, of the state variable, qk, for a given reduced-order model at each iteration k. We can use

this estimate to perform feedback control of the flow using the Linear Quadratic Regulator (LQR)

framework [10].

We use the following updates for the estimate ak|k to find the control uk at iteration k,

ak+1|k+1 = ak+1|k + K(zk+1 − CLak+1|k),

uk = −Gak|k,

where G ∈ Cd×r is feedback gain matrix and the Kalman gain matrix K is computed using Eq. (2.8).

We compute the feedback gain matrix G to minimize the following objective function,

Jc = E

[
∞

∑
k=0

(aH
k ak + βuH

k uk)

]
, (2.9)

where E[·] denotes the expectation and β ∈ R+ determines the trade-off between minimizing

the perturbation and the control input in the reduced-order system. Similar to the steady-state
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Kalman equations (Eq. (2.7)), we solve a discrete algebraic Riccati equation,

P = AHPA− (AHPLHB)(βId + BH LPLHB)−1(BH LPA) + Ir, (2.10)

for P ∈ Cr×r and set G = (βId + BH LPLHB)−1BH LPA. Although most fluid flow systems are

nonlinear, the LQR is a powerful tool used for stabilization of the flow when a feedback controller

can be employed [12, 56, 67, 82, 83].

Remark 2.2.2. As described above, for an observer-based reduced-order feedback controller, the

control input at iteration k is given by uk = −Gak|k. However, if the full-state qk is available, then

the same control gain matrix G can be used to describe the control uk = −GLTqk where L is the

reduced-order basis.

2.3. Riemannian Optimization

Optimization on smooth manifolds, specifically on matrix manifolds, arise in several engi-

neering applications. In the last decade, there have been several theoretical advances in gen-

eralization of standard methods for unconstrained optimization to solve the broader class of

optimization problems on smooth manifolds. Several software packages for optimization on man-

ifolds [17, 24, 143] have also become available. Here we describe the procedure for Riemannian

optimization while drawing parallels to Euclidean optimization. A comprehensive review on Rie-

mannian optimization, with particular focus on matrix manifold optimization is given in [2]. In

this section we will concisely show that Riemannian optimization is a generalization of Euclidean

optimization on curved manifolds.

Consider optimization in Euclidean space E , where at iteration k we are at point xk and need

to update our position in some direction in the tangent space, dxk ∈ TxkE . This direction is called

the search direction. Typically, in gradient-based algorithms, the search direction dxk is taken

along the derivative of the objective function at the point xk. However, in Riemannian space, the

derivative of the objective function, in general, might not lie in the tangent space of manifold

at the point xk. Therefore, we need to consider the projection of the derivative on the tangent

plane to find the search direction dxk. Figure 2.1 shows a schematic to describe this operation.
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Manifold (M)

Tangent Space

(TxkM)

xk x′k

xk+1

Figure 2.1.: Schematic of the Riemannian optimization method on a curved manifold.

The tangent space is shown in green while the curved surface manifold is shown in blue. The

Euclidean gradient (blue arrow) is outside the tangent space and needs to be projected onto the

tangent space depicted by the red arrow in the schematic.

The update rule, from xk to xk+1, for the optimization in the Euclidean and the Riemannian

spaces is also different. In Euclidean optimization, the tangent space at some point xk is same as

the ambient space with the origin translated to that point. Therefore, the update rule is simply

xk+1 = xk + ηdxk with the new point at iteration k + 1 as xk+1 ∈ E , as discussed before. Now

consider the same case with xk ∈ M whereM is some Riemannian manifold and search direction

dxk ∈ TxkM. With the same update rule, xk + dxk might not reside inM due to the curvature of

the manifold. Therefore, we need a way to move onto the manifold from the tangent space. This

is shown in Figure 2.1 by the green arrow from x′k ∈ TxkM to xk+1 ∈ M. This operation is known

as a Retraction. For a review on retractions the reader is referred to [2].

In the following section, we will characterize the metric, tangent space and normal space of the

Grassmanian manifold. This will be used in solving optimization problems on the manifold of

fixed-rank matrices.

2.3.1. Grassmanian Manifold

Grassmanian manifold Gr,m is a manifold in which each point is a linear subspace of rank r

embedded in an m-dimensional Euclidean space. Note that this different than the Stiefel manifold
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Sm,r, where each point is a m × r orthonormal matrix. Let Or be the set of r × r orthonormal

matrices, also known as the special orthogonal group.

We can represent each point on the Grassmanian manifold as an orthonormal m× r matrix L

whose columns span the corresponding subspace. An important observation is that the matrix

representation L of any point on the Grassmanian manifold is not unique. Specifically, for any

orthonormal matrix L, all matrices LO where O ∈ Or, equivalently represent the same point. Each

point corresponds to the equivalent class, defined by the equivalence relation ∼, as follows.

[L] = {L′ ∈ Sm,r : L′ ∼ L} = {LO : O ∈ Or}.

As such, the Grassmanian manifold can be viewed as a quotient space arising from the Stiefel

manifold. In practice we will choose an arbitrary orthonormal matrix from the set [L] to represent

the point on the Grassmanian manifold, and construct the algorithm such that all the operators,

such as projection, translation and retraction, depend on the equivalent class [L] and not on the

representative matrix itself.

2.3.2. Geometry of the Grassmanian Manifold

Let TLGm,r denote the tangent place at the point [L] on the manifold Gm,r. We begin by defining

the canonical metric gc : TLGm,r × TLGm,r → R, which assigns an inner product on the manifold

Gm,r as

gc(dL1, dL2) = tr(dLT
1 dL2),

for dL1, dL2 ∈ TLGm,r. Consider the objective function F(L) defined on the Grassmanian manifold

where L ∈ Gm,r. Let ∇F(L) and ∇2F(L) be the Euclidean gradient and Hessian,

(∇F(L))ij =
dF

dLij
, and

(∇2F(L))ij,kl =
d2F

dLijdLkl
.

The Riemannian gradient of the function at [L] is defined as the tangent vector, grad F(L) ∈
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TLGm,r such that,

tr((∇F)TdL) = gc(grad F(L), dL) ∀ dL ∈ TLGm,r.

This gives the following relation between Euclidean and Riemannian gradients,

grad F(L) = ∇F(L)− LLT∇F(L). (2.11)

Using the definition of the Hessian in [44], the action of the Riemannian Hessian on any tangent

vector dL can be described as follows,

Hess F(L)[dL] = (Im − LLT)∇2F(L)[dL] (2.12)

− dL(LT∇F(L)).

The exponential map on the Grassmanian manifold in the direction of dL is given by

L(t) = LV cos(Σt)VT + U sin(Σt)VT (2.13)

where dL = UΣVT is the singular value decomposition of dL and t ∈ [0, 1]. There are several

ways in which retraction can be performed on the Grassmanian manifold. The most common

method is,

RetrL(dL) = UVT, (2.14)

where (L + dL) = UΣVT is the singular value decomposition of (L + dL). Another common

method of retraction uses QR-factorization instead of SVD [2].
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CHAPTER 3

LOW-RANK DYNAMIC MODE

DECOMPOSITION

This chapter describes a control-oriented data-driven reduced-order modeling method, lrDMD,

that can be used for reduced-order feedback control of fluid flows. Section 3.1 describes the

motivation for the proposed method and Section 3.2 outlines the mathematical formulation of the

problem. Section 3.3 details the numerical implementation of subspace projection and gradient

descent algorithms used to solve the lrDMD optimization problem, including the model reduc-

tion computational performance. The control application results are shown in Section 3.4 and

Section 3.5 concludes the chapter.

3.1. Motivation

Fluid flows are governed by physics, which can be described by partial differential equations

that when discretized, result in very high-dimensional systems for numerical simulations. Solving

optimal control and design problems for these high dimensional systems is challenging, even

on very large computers [84]. This creates a need for reduced-order models that can faithfully

approximate the dynamics of the system. Model reduction and reduced-order control therefore

has been an active area of research in fluid mechanics. The reader is referred to [125] for a

thorough review of model reduction techniques for flow analysis and control.

Model reduction for fluid flows is often done using data available from high-fidelity numerical

simulations or data measured from experiments. One common approach, called Petrov-Galerkin

projection [27, 124, 151], extracts a reduced basis from the snapshots and projects the full system
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dynamics onto the linear subspace formed by the reduced basis. Reduced-order feedback control

is then constructed using the resulting reduced-order model. This model-based feedback control

strategy has been used in several studies [13, 74, 137, 138] for applications such as control of

flat-plate boundary layers and suppression of vortex shedding over a circular cylinder. Although

these methods can be very effective (see [83] for a thorough review), they require prior knowledge

of the full-state governing equations and require computation of the projection coefficients, which

is inconvenient for complex nonlinear systems.

To remedy this, non-intrusive data-driven modeling techniques learn a reduced-order model of

the fluid flow directly from data, with little to no prior knowledge of the dynamics of the system.

Koopman-based modeling methods, such as DMD and its variants [33, 37, 52, 63, 64], belong to

this category and have been used for reduced-order control of dynamical systems with uncertain

parameters [90], for suppressing flow separation [38, 62], and for optimal actuator selection for

airfoil separation control [20].

Existing Koopman-based data-driven modeling methods approximate the dynamics of the

system by fitting an endomorphic linear function on some low-dimensional subspace. As such,

the linear approximation of the dynamical system is learned constrained to a particular low

dimensional subspace. This is very useful in a model order reduction method, since it provides

a low order basis to describe the flow. However, in this study, we find that this constraint

is restrictive for the reduced-order control performance of these methods, specifically for non-

normal systems in which dominant eigenmodes and adjoint modes do not coincide.

We investigate the possibility of using a linear map between different subspaces to construct

reduced-order models and controllers for unsteady fluid flows. To do this, we formulate a rank-

constrained matrix optimization problem and propose two methods to solve it. We call this model

reduction method low-rank Dynamic Mode Decomposition (lrDMD) [57, 129]. We show that the

flexibility of using different input and output spaces for the reduced-order model allows lrDMD

to capture both the eigenmodes, which describe the dominant directions of response of the system,

and the adjoint modes, which describe the dominant directions of receptivity of the system to

forcing. The ability of lrDMD to capture the adjoint modes of the system enables construction of

efficient data-driven feedback controllers.
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3.2. Mathematical Formulation

Consider a dynamical system with the state vector q ∈ Rm such that

qk+1 = f (qk) (3.1)

where the subscript denotes the time iteration number. We have access to a sequence of time

snapshots of this state vector which we represent as a data matrices X, Y ∈ Rm×n formed by n

pairs of data snapshots as follows,

X := (q0| · · · |qn−1), Y := (q1| · · · |qn).

The matrix Y is called the time-shifted data matrix associated with X. Our aim is to build a

reduced-order model of the dynamical system (3.1) that captures the essential features of the

function f (·). To this end, we construct a linear approximation of f (·) from the given data

matrices. A natural choice of optimization problem to solve for this purpose would be

Â = arg min
A∈Rm×m

‖Y− AX‖2
F , (3.2)

where ‖·‖F is the Frobenius norm, Â ∈ Rm×m is the inferred state transition matrix. However,

for fluid systems m is generally large, frequently in the range of 106 − 109, which makes this

optimization problem computationally intractable. To remedy this, low-rank versions of this

problem are adopted. Two popular methods that employ this approach are Dynamic Mode

Decomposition (DMD) [132, 144] (discussed in Section 2.1.3) and Optimal Mode Decomposition

(OMD) [52, 154] (described in Section 3.2.1). We will also introduce a generalization of these

methods which we call low-rank Dynamic Mode Decomposition (lrDMD) [57, 129].
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3.2.1. Optimal Mode Decomposition

In OMD [52, 154], the following constrained version of the optimization problem described in

Eq.(3.2).

min
L,M

∥∥∥Y− LMLTX
∥∥∥2

F
(3.3)

s.t. LT L = I (3.4)

M ∈ Rr×r, L ∈ Rm×r, (3.5)

where r is the rank of the linear approximation of the state transition matrix Â = LMLT. This

particular form of low rank approximation has useful implications in reduced-order modeling.

The matrix L provides the basis of a low dimensional subspace to approximate the trajectories

of the dynamical system while M provides the dynamical evolution of the state vector on this

subspace. The solution of M for a fixed L is given by

M∗(L) = LTYXT L(LTXXT L)−1.

The optimal subspace L is found in [52, 154] using a conjugate-gradient-based algorithm. The

OMD solution coincides with the DMD approximation when L is chosen as the r leading left sin-

gular vectors of the data matrix X. In this way OMD is a generalization of the DMD formulation.

3.2.2. Low-rank Dynamic Mode Decomposition

We now consider a rank-constrained solution of the optimization problem in (3.2). Recently the

authors of [57] showed that there exists a closed form solution for this optimization problem. We

solve the following equivalent optimization problem,

min
L,D,R

∥∥∥Y− LDRTX
∥∥∥2

F
, (3.6)

where L, R ∈ Rm×r and LT L = RTR = Ir (r× r identity matrix) and Â = LDRT is the r-ranked

matrix approximating the dynamics of the underlying system. Observe that (3.6) optimizes over

all possible left and right subspaces of the state transition matrix in contrast to standard DMD
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and OMD. A key step to solving (3.6) is to find the optimal solution for D as a function of L and

R. For a fixed L and R there exists a closed form optimal solution for D, namely

D∗(L, R) = (LTYXTR)(RTXXTR)−1. (3.7)

Using (3.7) in the objective function and simplifying further the optimization problem can be

reduced to

min
L,R

(
−
∥∥∥LTYQR

∥∥∥2

F

)
(3.8)

where QR = XTR(RTXXTR)−1RTX. We will denote the objective function (3.8) by G(L, R). An

important observation is that G(L, R) is only a function of the spaces spanned by the columns of

L and R. To see this consider an orthogonal matrix P ∈ Rr×r such that PTP = Ir. For this objective

function, G(LP, R) = G(L, R) and G(L, RP) = G(L, R). This implies that the objective function

does not change values as long as the space spanned by the columns of L and R do not change.

Hence the optimization can be equivalently performed over the set of r-dimensional subspaces in

Rm instead of the set of orthogonal matrices in Rm×r.

The set of r-dimensional subspaces in Rm is known as the Grassmanian manifold Gm,r [2, 44]. In

matrix representation an element of Gm,r is specified by an orthogonal basis of the r-dimensional

subspace. The manifold on which we perform the optimization (3.8) is a product manifold of two

Grassmanian manifolds

M := Gm,r × Gm,r.

An element ofM, in matrix representation, will be characterized by M = (L, R).

The L and R basis solutions of the optimization problem (3.8) need not be the best basis for

a Petrov-Galerkin reduced-order model. These bases only provide the subspaces for the best

low-rank linear description of the dynamical system from data in the least-squares sense.
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3.3. Numerical Methods for lrDMD Optimization Problem

In this section we present the numerical methods employed to solve the lrDMD optimization

problem and compare the computational performance of the methods to OMD and DMD. Recall

that the objective function and the constraints are,

min
L,R

G(L, R) :=
(
−
∥∥∥LTYQR

∥∥∥2

F

)
(3.9)

s.t. (L, R) ∈ M := Gm,r × Gm,r

with QR = XTR(RTXXTR)−1RTX.

We propose two methods to solve this optimization problem. The first method is a computation-

ally efficient subspace projection method that provides an approximate solution to the problem.

The second method is a gradient-based method that is guaranteed to converge to a local minimum.

Note that there is no guarantee that the gradient based method will converge to the global

minimizer of the given optimization problem (3.9). The gradient based method can therefore be

thought as a way to improve the initial guess provided by either DMD or the subspace projection

method that will be described in the following subsection.

3.3.1. Subspace Projection Method

In this method, we use iterative subspace projection to find a good approximation of the optimal

solution. We first make the observation that QR is an orthogonal projection matrix in the column

space of XTR. This means that there exists an orthogonal matrix CR such that CRCT
R = QR and

Im(CR) = Im(QR). Substituting QR with CRCT
R, we get the following cost function,

G(L, R) = −
∥∥∥LTYCR

∥∥∥2

F
,

with the constraint that Im(CR) = Im(QR). Note that LT L = CT
RCR = Ir. We make the following

observations,

1. If CR is fixed, the optimal L is given by an orthogonal basis of the subspace spanned by the

r left singular vectors of YCR with the highest singular values
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2. If L is fixed, the optimal CR is given by an orthogonal basis subspace spanned by the r left

singular vectors of YT L with the highest singular values

To show the first observation, consider the case when CR is fixed. Let YCR = N. By using the

definition of Frobenius norm we get,

∥∥∥LT N
∥∥∥2

F
= tr(LT NNT L).

The maximum trace is obtained only if L is an orthogonal basis of the space spanned by the

eigenvectors of NNT corresponding to the largest eigenvalues. This is the same as the left

singular vectors corresponding to the largest singular values of N. A similar argument goes for

the case when L is fixed.

Observe that since CR is given by the left singular vectors of YT L by the optimality condition,

we have Im(CR) = Im(YT L). But the constraint is that Im(CR) = Im(XTR). If R is found such

that XTR ≈ YT L, both the optimality condition and the constraint are satisfied. Therefore, we

find R by solving the following optimization problem

min
R

∥∥∥YT L− XTR
∥∥∥2

F
.

This is known as the ‘Orthogonal Procrustes problem’ [135]. The solution to this problem is given

by R = UVT where U, V are the left and the right singular vectors of XYT L. Therefore,

[U, V] = SVD(XYT L)

R = UVT.

Remark 1: Even though R is solution of an optimization problem, CR may not satisfy its optimality

condition exactly. However, the constraint for the optimization is always exactly satisfied.

Remark 2: If the optimal L does not differ excessively from the left singular vectors of A and B, then

the optimal solution is given by R = L and we get back the Optimal Mode Decomposition [52]

solution.

The solution provided by this algorithm relies heavily on the initial guess. We only need an
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initial guess for R or, effectively, CR. In our study, we choose the r leading left singular vectors

of X as the initial guess for R. Note that this initial guess is the same as the projection subspace

used in DMD. Due to the optimal choice of L for a fixed CR, the chosen initial guess ensures that

the algorithm provides a solution with a reconstruction error at most as high as the error in DMD

reconstruction of the same rank.

Algorithm 1 Subspace projection method

Require: Y ∈ Rm×n, X ∈ Rm×n

1: Guess initial L0,R0 and compute CR0 ← Π(XTR0)
2: k = 0
3: repeat
4: Lk+1 ← Π(YCRk)

5: Rk+1 ← arg min
∥∥YT Lk − XTR

∥∥2
F

6: CRk+1 ← Π(XTRk+1)
7: ε← (G(Lk+1, Rk+1)− G(Lk, Rk))/G(Lk, Rk)
8: k← k + 1
9: until ε ≤ threshold

10: D = (LT
k YXTRk)(RT

k XXTRk)
−1(RT

k Lk)
11: return Lk, D, Rk

3.3.2. Gradient Descent Method

In this section, we describe the Riemannian gradient descent method employed to solve the

optimization problem. For a thorough review on Riemannian optimization on the Grassmanian

manifold the reader is referred to [44] and the presentation in Section 2.3.1.

Geometry ofM with its Canonical Metric

We define the Riemannian metric on the manifoldM as

gc((dL1, dR1), (dL2, dR2)) = tr(dLT
1 dL2) + tr(dRT

1 dR2)

for (dL1, dR1), (dL2, dR2) ∈ TL,RM. This metric is similar to the Euclidean metrics because

for Grassmanian manifolds the Euclidean metric and the canonical metric are the same (see

Section 2.3.1). In the following section, we define the gradients and Hessians of objective function

G(L, R) in (3.8).
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Euclidean Gradient and Hessian

We first find the Euclidean derivative and Hessian of G(L, R) with respect to the matrices L

and R. The objective function G can also be written as

G = −tr(QRYT LLTY).

The gradient of G with respect to L is given by

∂G
∂L

= −2YQRYT L.

The gradient of G with respect to R is

∂G
∂R

= −∂tr(QRYT LLTY)
∂R

= −∂tr(LTYQRYT L)
∂R

= −∂tr((LTYXTR)(RTXXTR)−1(RTXYT L))
∂R

.

Computing and simplifying the derivative results in the following expression,

∂G
∂R

= −2X(P−QRP),

where P = YT LLTYXTR(RTXXTR)−1. Therefore, the Euclidean derivative of the objective func-

tion G is

∇G(L, R) = (−2YQRYT L,−2X(P−QRP)).

For the Hessian we use the identity

d(X−1) = −X−1d(X)X−1.
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The Euclidean Hessian comes out to be

∇2G(L, R)[dL, dR] = (− 2YdQR AT L− 2YQRYTdL,

− 2X((In −QR)dP− dQRP)).

where dQR and dP are defined as follows.

dQR = XTdRS−1RTX− XTRS−1(dRTXXTR)S−1RTX

− XTRS−1(RTXXTdR)S−1RTX + XTRS−1dRTX,

dP = YTdLLTYXTRS−1 + YT LdLTYXTRS−1 + YT LLTYXTdRS−1

−YT LLTYXTRS−1(dRTXXTR)S−1 −YT LLTYXTRS−1(RTXXTdR)S−1,

where S = RTXXTR.

Riemannian Gradient and Hessian

Using the Riemannian gradient definition in (2.11) we get

grad G(L, R) = (− 2(Im − LLT)YQRYT L,

− 2(Im − RRT)X(P−QRP)).

The action of Riemannian Hessian on some tangent vector (dL, dR) ∈ TL,RM can be obtained

using (2.12) to get,

Hess G(L, R)[dL, dR] =− 2(Im − LLT)(YdQR AT L + YQRYTdL) + 2dL(LTYQRYT L),

− 2(Im − RRT)X((In −QR)dP− dQRP) + 2dR(X(P−QRP)).

Using the gradient and the Hessian, we perform a second-order gradient descent method called

the Trust-region algorithm on the manifold (M, gc).
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Trust-Region Algorithm

In the previous section we defined the gradient and Hessian of the objective function G(L, R)

on the manifoldM. In this section we describe the Riemannian trust-region algorithm [1] used

to solve the optimization problem. At every kth iteration we solve the following trust-region

subproblem,

min
(dL,dR)∈TLk ,RkM

mLk ,Rk(dL, dR) (3.10)

such that gc((dL, dR), (dL, dR)) ≤ ∆2
k where mLk ,Rk(dL, dR) is the local quadratic approximation

of the objective function G(Lk, Rk) given by,

mLk ,Rk(dL, dR) = G(Lk, Rk) + gc(grad G(Lk, Rk), (dL, dR))

+
1
2

gc(Hess G(Lk, Rk)[dL, dR], (dL, dR))

The trust region is defined as a ball centered at 0 in TLk ,RkM with a radius ∆k > 0. Thus, the

subproblem finds the tangent vector that minimizes mLk ,Rk within a ball of radius ∆k. The solution

of the trust-region subproblem (dLk, dRk) gives the direction of update to the next iteration. This

problem is solved iteratively using the truncated conjugated gradient method. A candidate for

the next iterate on manifoldM is found using the retraction function,

(Lk+1, Rk+1) = RetrLk ,Rk(dLk, dRk)

= (ULVT
L , URVT

R ),

where UL and UR are the left singular vectors and VL and VR are the right singular vectors of

Lk + dLk and Rk + dRk respectively. The decision of whether to accept this candidate or reject it

is based on the following ratio,

ρk =
G(Lk, Rk)− G(Lk+1, Rk+1)

mLk ,Rk(0)−mLk ,Rk(dLk, dRk)
, (3.11)
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where ρk indicates our confidence in the accuracy of the quadratic model mL,R(dL, dR). If ρk is

greater than a certain threshold ρ′, we accept the candidate; otherwise it is rejected. In this study

we set ρ′ = 0.1. Further, ρk also informs the radius of the trust-region. A small ρk reduces our

confidence in the trust-region and ∆k is decreased and, likewise, if ρk is large and close to 1 we

increase ∆k.

If ρk < 0.1, then the quadratic model mL,R(dL, dR) is inaccurate, so the candidate is rejected

and the trust-region radius is reduced. If ρk > 0.1, the candidate is always accepted; however, if

ρk < 1/4, the radius is reduced. If ρk > 3/4 and gc((dL, dR), (dL, dR)) = ∆2
k , then the candidate

is accepted and the radius is also increased. The maximum ceiling for the trust-region radius is

set to
√

r. Algorithm 2 shows the logical sequence of steps.

The stopping criterion for convergence is placed on the norm of the gradient of G(L, R) (defined

by the canonical metric onM) with a threshold of 10−6, that is ‖grad G‖ ≤ 10−6.

Algorithm 2 Trust-region algorithm

Require: Y ∈ Rm×n, X ∈ Rm×n

1: Guess initial L0,R0
2: k = 0
3: repeat
4: Solve trust-region subproblem (3.10) to get (dLk, dRk)
5: Compute ρk from (3.11)
6: if ρk < 1/4 then
7: ∆k+1 = ∆k/4
8: else if ρk > 3/4 and ‖(dLk, dRk)‖gc

= ∆k then
9: ∆k = min(2∆k,

√
r)

10: else
11: ∆k+1 = ∆k
12: end if
13: if ρk > 0.1 then
14: (Lk+1, Rk+1) = RetrLk ,Rk(dLk, dRk)
15: else
16: (Lk+1, Rk+1) = (Lk, Rk)
17: end if
18: k← k + 1
19: until ‖grad G(Lk, Rk)‖gc

< threshold
20: D = (LT

k YXTRk)(RT
k XXTRk)

−1(RT
k Lk)

21: return Lk, D, Rk

This concludes the algorithm to solve the new low-rank DMD problem. The solution to this

problem with this algorithm will hereafter be referred to as lrDMD.
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3.3.3. Computational Performance

The advantage to using the form of the optimization problem in Eq. (3.6) instead of Eq. (3.2)

is that we only need to solve for O(m) variables for the fully parameterized state transition

matrix. For large m, even this can make the problem computationally intractable. An important

observation that can help is that we only need to consider the solution of R such that Im(R) ⊆

Im(X). Consider M to be the full ranked data matrix that contains all the data snapshots that

form the data matrices X and Y and let there be p such snapshots. Consider the singular value

decomposition of the data matrix M ∈ Rm×p

M = UΣVT.

We assume that the basis of both L and R is contained within U so that

L = UL

R = UR

where L, R ∈ Gr,p. The optimization problem reduces to

min
L,R

G(L, R) := (−
∥∥∥LTYQR

∥∥∥2

F
)

s.t. (L, R) ∈ M := Gr,p × Gr,p

QR = XTR(RTXXTR)−1RTX

where Y = UTY and X = UTX. Since p � m, this saves significant computational time. In this

study, we use this technique for lrDMD and OMD where gradient based methods are used to solve

the optimization problem. Therefore, in this study, OMD and the gradient based implementation

of lrDMD solve the optimization problem with the reduced data matrices Y and X.

Table 3.1 compares the computational performance of DMD, OMD and the two algorithms to

solve the lrDMD problem. It shows the time taken in seconds by the three methods in computing

a reduced-order model for the given data matrices. The data snapshots have dimension m = 62001

and describe the vorticity field for a flow past flat plate described in Section 3.4.2 with consecutive
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Method
n = 50 n = 200

r = 10 r = 20 r = 30 r = 10 r = 20 r = 30
DMD 0.1443 0.1317 0.1096 0.6965 0.6691 0.6464
OMD 3.2687 5.5517 10.5841 1.6759 17.4687 26.5706

lrDMD (subProj) 0.7731 0.4127 1.4995 2.3426 2.8213 1.4139
lrDMD (GradD) 19.9936 2.8781 0.8261 58.0509 17.1708 26.0866

Table 3.1.: Time taken in seconds by DMD, OMD and lrDMD for generating reduced-order models of rank
r with data matrices composed of n snapshots. lrDMD (subProj) refers to subspace projection method
implemented using Algorithm 1 and lrDMD (GradD) refers to gradient based method described in detail
in [129].

snapshots that are 100 timesteps apart. The data matrices are generated with n = {50, 200}

snapshots and reduced-order models of rank r = {10, 20, 30} are computed. lrDMD (subProj)

refers to the solution of lrDMD using the subspace projection method described in Algorithm 1

whereas lrDMD (GradD) refers to the gradient based method [129]. The gradient based methods

used in OMD and lrDMD are implemented using ManOpt [24] package on MATLAB using the

trust-region [1] algorithm. The initial condition for OMD is given by the DMD solution whereas

the initial condition for the lrDMD is the solution from Algorithm 1. All computations are

performed on a standard desktop PC with a 2.2 GHz quad-core Intel i7 processor and 16GB RAM

running on Mac OS X 10.11.

Table 3.1 shows that time taken by DMD is always lower than OMD or either method of solving

the lrDMD problem, with the subspace projection method incurring computational times 2− 3×

larger than DMD but is faster than OMD for all cases. An interesting observation is that for certain

cases like (n, r) = (50, 30), the initial condition provided to ‘lrDMD (GradD)’ by the subspace

projection method is very close to the optimal and no iterations of the gradient based method

are required for convergence. In almost all cases lrDMD with gradient descent takes around the

same time as OMD except a few cases when OMD takes less time than lrDMD.

Table 3.2 shows the error norm defined by ε =
∥∥Y− ÂX

∥∥
F for all the cases considered in

Table 3.1. It can be seen that lrDMD with gradient descent and subspace projection shows error

norm much less than OMD or DMD for all cases considered. Subspace projection in particular,

shows lesser error than OMD in almost all cases while taking lesser time to compute the reduced-

order model. For data snapshots that are spaced far apart, lrDMD with gradient descent is

recommended for accurate low rank reconstruction of the system dynamics if computation time
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Method
n = 50 n = 200

r = 10 r = 20 r = 30 r = 10 r = 20 r = 30
DMD 14.7449 5.7669 3.3224 24.0859 2.2424 0.3296
OMD 4.2816 0.0921 0.0049 12.1151 0.6408 0.0176

lrDMD (subProj) 1.8183 0.0160 0.0015 6.3463 0.5206 0.0295
lrDMD (GradD) 1.2686 0.0031 0.0015 5.0654 0.1638 0.0058

Table 3.2.: Error norm ε of reconstruction for reduced-order models of rank r generated by DMD, OMD
and lrDMD with data matrices composed of n snapshots. lrDMD (subProj) refers to subspace projection
method implemented using Algorithm 1 and lrDMD (GradD) refers to gradient based method described
in detail in [129].

is not a factor.

3.4. Results

In this section we compare the performance of the reduced-order LQR controllers built using

DMD, OMD and lrDMD on unsteady dynamical systems. The first system we look into is the

complex linear Ginzburg-Landau equation. We use the reduced-order models to find optimal

feedback control as well as the optimal actuator location for the system in the unstable regime.

We also employ LQR controllers on the incompressible flow past inclined flat plate at high angle

of attack. The results show that the reduced-order linear feedback controllers can be effective in

regions of phase-space with strong nonlinearities and can be used to suppress nonlinear vortex

shedding.

3.4.1. Linearized Ginzburg Landau Equation

In this section we apply the control strategies described so far on the linearized complex

Ginzburg-Landau (GL) equation, which is a well known model equation for fluid systems. Even

though all the analysis in this study has been on the real number field, the results can be easily

extended complex numbers. The GL equation is as follows,

∂q
∂t

+ ν
∂q
∂x

= µ(x)q + γ
∂2q
∂x2 ,

with µ(x) = µ0 − c2
u + µ2x2/2,

35



where the real part of q(x, t) represents velocity or stream function perturbation amplitude. The

GL equation exhibits a variety of stability behaviors observed in fluid flows for different values

of the constants ν, cu, µ0 and µ2 in different regions of the spatial domain. For this study we have

taken the value of these constants corresponding to the supercritical, globally unstable regime

case in [33], shown in Table 3.3.

variable description value

U advection velocity 2

cu most unstable wavenumber 0.2

cd dispersion parameter −1.0

µ0 overall amplification 0.41

µ2 degree of non-parallelism −0.01

µt transitional µ 0.32

µc critical µ 0.4

Table 3.3.: Ginzburg-Landau equation parameter values corresponding to the supercritical, globally unsta-
ble regime case in [33].

In discrete space we use the spectral formulation of the derivative operators using Hermite

polynomials evaluated at the Hermite nodes [13]. Time discretization is performed using forward

Euler time-stepping scheme. In this study we consider n = 220 grid points with the computational

domain x ∈ [−85, 85] and a time-step of dt = 1. For more details about the system the reader is

referred to [13].

We will describe this system as a discrete input-output system as,

qk+1 = Aqk + Buk, (3.12)

where qk ∈ Rm is the state variable, A ∈ Rm×m is the state transition matrix, B ∈ Rm×p is the

spatial support of the controller and uk ∈ Rp is the control input. Our goal is to find K ∈ Rp×m
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such that when uk = −Kqk, we minimize the following cost,

J =
∞

∑
k=1

(q∗k Qqk + u∗k Suk), (3.13)

for given positive definite matrices Q and S. We denote the conjugate transpose of q by q∗. We

choose the controller matrix B and the values of the weight matrix Q and S that are consistent

with the previous study of Chen et al. [33]. The controller we choose is a Gaussian centered in

the convectively unstable region of flow,

B = exp
(
− (x− xa)2

2σ2

)
, (3.14)

where we choose xa = 8 and σ = 5 which places the actuator just inside the region of amplification

which is [−8.6, 8.6]. We use Q = β2M and S = I where M is the weighting matrix corresponding

to the trapezoidal integration operator for our discretized domain. The value of β = 7 determines

the relative reward between minimizing the state perturbation amplitude and applying small

input size. To capture the transience in the system, we use 15 snapshots with initial condition

with the same profile as in Eq. (3.14) centered at x0 = −20. We generate a low-rank approximation

of A which is used to construct reduced-order controllers using the LQR framework and to find

the optimal actuator location.

Adjoint Reconstruction

It is known that state transition matrices arising from the discretization of the linearized gov-

erning equations for various fluid flow applications are nonnormal [134]. Nonnormal systems

exhibit non-orthogonal eigenmodes that can differ significantly from the adjoint modes [133] that

are known to play a major role in flow control and optimization [98]. Therefore, it is crucial for

effective flow control applications that the reduced-order models not only accurately predict the

flow field but also extract adjoint information from the data.

Figure 3.1a shows the eigenvalues of the discretized state transition matrix of the GL equation

in the supercritical regime. It shows one unstable eigenvalue 0.8073− 0.6109i outside the unit

circle. Figure 3.1b shows the eigenmode v and the adjoint mode w corresponding to this unstable
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(a) (b)

(c) (d)

Figure 3.1.: lrDMD identifies low-order subspaces of containing leading eigenmodes and adjoint modes
from data. (a) Eigenvalues of the discrete GL system matrix (black circles). Unit circle is shown with a
solid black line for comparison. (b) Eigenmode ‘v’ and adjoint mode ‘w’ corresponding to the unstable
eigenvalue outside the unit circle. (c) Projection error for the unstable eigenmode for DMD (red), OMD
(blue) and lrDMD (green) for different rank approximations. (d) Projection error for the unstable adjoint
mode for DMD (red), OMD (blue) and lrDMD (green) for different rank approximations.

eigenvalue. For faithful reconstruction of these unstable modes, the eigenmode must lie in the

column space of the reduced-order model Â and the adjoint mode must lie in the row space. We

define the projection error

ε(q, V) =
‖q−PVq‖2
‖q‖2

(3.15)

where PV is the orthogonal projection matrix in the column space of V. We look at the projection

error of the unstable eigenmode in the column space of Â given by ε(v, Â) and the projection
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error of the unstable adjoint mode in the row space of Â given by ε(w, Â∗). For the DMD-based

reduced-order model, bases for the row space and column space are both given by the POD

modes. For OMD, the solution L of the optimization problem in Eq. (3.3) serves as the basis of

both the column and the row space of the reduced-order model. In the case of lrDMD, the basis

of the row space is given by R and the basis of the column space is given by L from the solution

of the optimization problem in Eq. (3.8).

Figure 3.1c shows the projection error of the unstable eigenmode for the reduced-order models

of different ranks obtained from DMD, OMD and lrDMD. At all rank approximations the error

incurred by OMD and lrDMD are about the same and less than the error incurred by DMD.

Similarly, Figure 3.1d shows the projection error of the unstable adjoint mode. In this case we see

that lrDMD outperforms both OMD and DMD at all ranks. This shows that the additional degree

of freedom of choosing separate input and output spaces in lrDMD allows for lower projection

error in the adjoint modes of interest while also keeping the projection error in the eigenmodes

as low as in OMD.

Here we have compared the subspace identification of lrDMD, OMD and DMD algorithms

by evaluating the projection error of the unstable eigenmode and adjoint mode of the Ginzburg-

Landau system in the supercritical regime. We extend this comparison to Eigensystem Realization

Algorithm (ERA) in Appendix A.1.

Optimal Control

In the supercritical regime, the GL system is globally unstable, with a single eigenvalue of the

state transition matrix that lies outside the unit circle, as shown in Figure 3.1a. The goal of the

feedback controllers is to stabilize the system while minimizing the cost in Eq. (3.13).

Figure 3.2 shows the eigenvalues of the controlled Ginzburg-Landau system using reduced-

order LQR controllers constructed using DMD, OMD and lrDMD. Figures 3.2a and 3.2b illustrate

the rank-5 approximations whereas Fig. 3.2c shows the rank-9 approximations. Figure 3.2d shows

the eigenvalues of the controlled GL system with LQR optimal control constructed using the full-

order system matrix. It can be clearly seen in Fig. 3.2b that for the rank-5 approximation, DMD

is not able to stabilize the system and has one eigenvalue outside the unit circle. OMD also fails
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(a) (b)

(c) (d)

Figure 3.2.: lrDMD enables construction of effective low-order feedback controllers. The eigenvalues of the
uncontrolled (◦) and controlled GL system with reduced-order controllers constructed using DMD, OMD
and lrDMD with (a,b) rank-5 and (c) rank-5 approximations. (d) Shows the eigenvalues of uncontrolled
and optimally controlled GL system.

to stabilize the system with one eigenvalue outside the unit circle. This shows that 5 modes are

not sufficient for reduced-order control even with OMD which finds the optimal basis for the low

order subspace. However, the freedom of choosing separate input and output subspaces enables

lrDMD based reduced-order controller to stabilize the system at the same rank 5 approximation.

For the rank 9 approximation in Fig. 3.2c, we see that the DMD, OMD and lrDMD controlled

system eigenvalues are very close to each other and also close to the eigenvalues of the optimally

controlled system. Thus with sufficient rank approximation all three methods can stabilize the

system but lrDMD can stabilize the system at a rank lower than OMD or DMD.
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Optimal Actuator Placement

Optimal actuator placement is a challenging problem in stability theory especially when applied

to large scale fluid systems. Reduced-order models make the investigation of optimal actuator

location computationally feasible. We use the reduced-order feedback controllers to find the

optimal actuator location xa (in Eq. (3.14)) in the computational domain for a fixed variance in the

spatial support of the actuator. The authors in [33] find the optimal actuator and sensor location

that minimizes the H2 norm of the controlled system [111]. We find the optimal actuator location

that minimizes the supremum of the cost of the controlled system described in Eq. (3.13) for all

possible initial conditions. We employ brute force sampling of actuator locations while using the

reduced-order model approximations.

Let the control input for the GL system (Eq. (3.12)) be given by the feedback law uk = −Kqk.

The controlled dynamics and the cost function can be re-written as

J =
∞

∑
k=1

q∗k (Q + K∗SK)qk (3.16)

s.t. qk+1 = (A− BK)qk

for some given initial condition q0. Let Q = (Q + K∗SK) and A = (A− BK). We are interested

in the following infinite summation,

J =
∞

∑
k=1

q∗0(A∗)kQAkq0

= q∗0 Fq0.

where F = ∑∞
k=1(A∗)kQAk. Notice that for a given dynamical system, the cost solely depends on

the initial condition. When the controlled system governed by A is stable, i.e. all the eigenvalues

of A lie within the unit circle, F can be efficiently computed by solving the following discrete

Lyapunov equation

A∗FA− F + Q = 0.
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(a) (b)

Figure 3.3.: lrDMD provides accurate estimates for optimal actuator placement. Supremum of the cost J
over all initial conditions for the controlled GL system with DMD (red), OMD (blue) and lrDMD (green)
reduced-order controllers for (a) rank-5 approximation and (b) rank-9 approximation.

An alternative formulation to handle the case of unstable dynamical systems, i.e. when not all

eigenvalues of A lie within the unit circle, is shown in the paper by Bhattacharjee et al.(Section

II.B. [20]).

The maximum value of the cost function is given by the largest eigenvalue of F denoted by

λmax(F). The initial condition that yields this cost is the eigenvector of X that corresponds to the

largest eigenvalue. We use the reduced-order approximation of the state transition matrix A to

construct low-order feedback gain K and compute the values of λmax(F). We then conduct an

exhaustive search over all possible actuator location in an interval to find the optimal actuator

location. The performance of the reduced-order method is measured by how close this location is

to the true optimal actuator location.

Figure 3.3 shows the supremum of the cost over all possible initial conditions for different actu-

ator locations xa ∈ [−7, 1] using DMD, OMD and lrDMD approximation compared with the true

full-order system. The optimal actuator location is given by the minima of this plot. Figure 3.3a

shows the results for a rank-5 approximation. lrDMD outperforms both DMD and OMD in match-

ing the cost over the range of actuator locations considered. The DMD approximation attains its

minima at xa = 0 whereas the true optimal actuator location is xa = −2. Optimal actuator loca-

tions given by OMD and lrDMD agree with the true optimal actuator location. Figure 3.3b shows
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the same results for a rank-5 approximation using DMD, OMD and lrDMD. At this rank all three

methods perform equivalently and provide accurate costs for all actuator locations considered.

3.4.2. Full-state Feedback Control of Flow over Inclined Flat Plate

In this section we demonstrate the performance of the controllers on stabilizing the two-

dimensional uniform flow approaching an inclined flat plate. The freestream flow is at a low

Reynolds number of 100 and the flat plate is inclined at an angle of 35◦. At these conditions, it

has been shown [4] that the steady state of the flow is unstable and the flow exhibits periodic

vortex shedding. The goal of the reduced-order controllers is to bring the system back to steady

state from different initial conditions in the transition process.

The flow is simulated using the fast immersed boundary method developed in [35]. It is an

efficient method to solve incompressible Navier-Stokes equations based on an immersed boundary

formulation. In order to achieve uniform flow conditions in the far field, a multi-domain approach

is employed. The domain of interest is considered to be embedded in a series of domains, each

twice-as-large as the preceding but with the same number of the uniform grid points. The

numerical parameters of the flow are taken to follow the work of [4]. The grid size used is

250× 250 and the domain of interest is given by [−2, 3]× [−2.5, 2.5] where the lengths are non-

dimensionalized by the chord length of the flat plate, L. The center of the flat plate is located

at the origin. Five domains, each with the same number of grid points are used for an effective

computational domain that is 24 times larger than the domain of interest. The time-step is taken

as dt = 0.01L/U∞ where U∞ is the freestream velocity.

Steady State

The computation of the steady state of an unstable flow is generally more difficult than a

stable flow configuration. We are interested in the initial condition that is a fixed point of the

governing equations of the flow [3]. Using a computational Fortran wrapper around the immersed

boundary method code, we perform Newton-GMRES iterations on the nonlinear solver. We find
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(a) (b)

Figure 3.4.: Unstable configuration of flow over an inclined flat plate. (a) Vorticity contours and velocity
streamlines for steady flow with Re = 100 over 35◦ inclined flat plate (b) CL vs. time for 35◦ inclined flat
plate with the unstable steady state as the initial condition

xc,1 yc,1 xc,2 yc,2 a c
0 1.3423 0 0.89 20 2

Table 3.4.: Numerical parameters for the actuator location and strength for feedback control of flow past
inclined flat plate.

the circulation field γ that satisfies

g(γ) = γ− ψT(γ)

where ψT(·) is the nonlinear solver that advances the solution γk at timestep k to γk+1 = ψT(γk)

after T timesteps. For the purpose of this study we choose T = 50 and iterate until a convergence

tolerance of 10−8 in the L2 norm. Figure 3.4a shows the vorticity contours and velocity streamlines

of the steady state while Figure 3.4b shows the coefficient of lift as instabilities grow with the

unstable steady state as the initial condition.

Snapshots

The snapshots for the study are generated by the nonlinear impulse response of the flow to an

actuator [4]. We consider the evolution of the vorticity field that can be described as

qk+1 = φT(qk) + Buk, (3.17)
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where qk is the vorticity field at iteration k, φT is the nonlinear solver that advances the vorticity

field by T timesteps, B is the actuator and uk is the control input at iteration k. The actuator is a

simple model of localized body force [3] at the located near the leading edge of the flat plate (see

Fig. 3.5). The instantaneous vorticity field generated by impulse control input of the actuator is

B(r) = c[(1− ar2
1) exp(−ar2

1)− (1− ar2
2) exp(−ar2

2)],

where r2
i = (x − xc,i)

2 + (y− yc,i)
2 for i = 1, 2. The constants a and c determine the shape and

strength of the control, respectively. Table 3.4 shows values of the constants used for this study.

Figure 3.5 shows the vorticity field generated by the actuator relative to the position of the flat

plate in the computational domain.

Figure 3.5.: Vorticity field generated by the actuator placed near the leading edge of a flat plate that is
inclined at 35◦ with the freestream.

Getting a set of snapshots that captures the essential physics is crucial for the performance

of data-driven methods. Therefore, an important step in building data-driven reduced-order

controllers is to identify the nature of instabilities in the flow and select data that best captures

the behaviour of interest. The goal is to select a set of snapshots that capture the near-linear

behaviour of the flow before the nonlinearities dominate the system dynamics. Figure 3.6 shows

the evolution with time of drag coefficient of the impulse response of the flat plate. The two
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regions marked as exponential growth and limit cycle can be approximated by linear dynamics.

We are only interested in the exponential growth region and we choose to sample this region for

our study.

Feedback Control

Exponential
growth

Limit cycle

Figure 3.6.: CD vs. time plot of the impulse response of flow over an 35◦ inclined flat plate with steady
state as the initial condition. Snapshots of this simulation were used to learn the the reduced-order models
in the study.

We model the system as linear about the steady state of the flow. To this end, we subtract

the computed steady state from the flow snapshots and build a reduced-order model for the

perturbations about the steady state. The reduced-order model can be described as

q̃k+1 = Aq̃k + Buk

where q̃k = qk − q and q is the steady state vorticity field. This can be considered as a model of

the dynamics of perturbations in the flow around the steady state.

The control is performed using a Fortran wrapper around the nonlinear solver. The controller is

activated at three different points in the transition process, t0 = {170, 190, 210} (refer to Fig. 3.4b),

in separate simulations, to show the effect of the nonlinear dynamics of the flow. The nonlinear

effects grow larger as the flow deviates from the steady state with time. At t0 = 170, the flow

shows exponential growth in perturbation which is predominantly linear behavior. At t0 = 190,

the flow has entered an algebraic growth in perturbation magnitude and t0 = 210 is just before
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the flow enters a limit cycle behavior. At t = {190, 210} the perturbations are too large for the

linear assumption to be valid.

(a)

(b) (c)

Figure 3.7.: lrDMD enables suppression of vortex shedding at multiple operating conditions. CD vs. time
for 35◦ inclined flat plate with the actuator activated at (a) t0 = 170 (b) t0 = 190 and (c) t0 = 210 using
DMD, OMD and lrDMD based reduced-order controllers.

Equation (3.17) is used to generate snapshots to build the data matrix. We choose T = 20

and collect 200 snapshots to cover multiple period of oscillations of the exponentially growing

perturbations. Linear approximations of rank 20 using DMD, OMD and lrDMD are used to

generate the LQR controllers. Since T = 20, the feedback control is applied after every 20

timesteps of the nonlinear flow solver. A rank of 20 is high enough to faithfully reconstruct

the dynamics but much lower than the dimension of the full order system which is of O(104).

Figure 3.7 shows the evolution of CD as the controller is switched on at the three time points.

Figure 3.7a shows DMD, OMD and lrDMD are all able to prevent the growth of perturbations

in the flow when the controller is activated at t0 = 170. This is expected since the perturbations
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are small and the flow is in the linear regime. In Fig. 3.7b at t0 = 190, OMD and lrDMD show

very similar control performance and are able to suppress the vortex shedding earlier than DMD.

Finally in Fig. 3.7c, lrDMD clearly outperforms both OMD and DMD in bringing the flow back

to the steady state. This shows that in the linear regime all three methods are equivalent in

performance. As the perturbations grow and nonlinear effects in the flow become significant, the

additional flexibility of lrDMD that allows a different input and output subspaces results in a

better control performance compared to OMD and DMD.

Figure 3.8 shows the control input with time for the three activation times of the controllers

built using DMD, OMD and lrDMD whose performance was shown in Fig. 3.7. The results follow

the same trend as Fig. 3.7. Specifically, in Fig. 3.8a, we see that when the controller is activated at

t0 = 170, all three controllers show similar performance. However, at t0 = 190 in Fig. 3.8b, OMD

and lrDMD incur much lower cost compared to DMD. Finally, in Fig. 3.8c, the lrDMD controller

is the only controller able to stabilize the flow in the given time horizon and also incurs lower

cost compared to the DMD and OMD controllers.

Method
t0 = 170 t0 = 190 t0 = 210

T = 50 T = 100 T = 50 T = 100 T = 50 T = 100

DMD 3 3 3 7 7 7

OMD 3 3 3 3 3 7

lrDMD 3 3 3 3 3 7

Table 3.5.: Summary of the feedback control performance of DMD, OMD and lrDMD based controllers
for flow over inclined flat plate. The time at which the controller was activated is indicated by t0 and
T = {50, 100} refers to the time separation of corresponding data snapshots in the data matrix used to
construct the controllers. 3 indicates that the flow converged to steady state and 7 indicates that the flow
became unstable.

We repeat this numerical experiment using data matrices with consecutive snapshots that are 50

and 100 iterations apart. Table 3.5 shows the results of feedback based control at different initial

conditions of the flow for DMD, OMD and lrDMD based controllers. As the separation between

the flow snapshots increases, the actuation is being applied further apart in time which makes it

harder to suppress the vortex shedding process. OMD and lrDMD controllers are successful in

controlling the flow at all conditions except when the snapshots are 100 timesteps apart and the
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(a)

(b) (c)

Figure 3.8.: lrDMD enables efficient feedback control of flow over an inclined flat plate. Strength of the
actuation when the controller was switched on at (a) t0 = 170 (b) t0 = 190 and (c) t0 = 210 for a 35◦

inclined flat plate using DMD, OMD and lrDMD based reduced-order controllers.

initial condition is at t0 = 210 at which the flow becomes unstable. DMD however fails more often

especially when the snapshots are 100 timesteps apart, it is only able to control when t0 = 170.

3.5. Conclusion

To summarize, we introduce a method to approximate the dynamics of an unsteady fluid flow

by a rank-constrained linear representation. We solve for the optimal linear map of a fixed user

defined rank that reconstructs the data snapshots by minimizing the L2 norm of the reconstruction

error. Two methods of solving the optimization problem are presented and their limitations are

discussed. The first method is a subspace projection method that is very fast and provides a good

approximation to the optimal solution of the optimization problem. The second method employs
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a gradient descent approach which is guaranteed to converge at a local minimum. Reduced-order

models generated using lrDMD are shown to produce lower reconstruction errors compared to

Optimal Mode Decomposition (OMD) and Dynamic Mode Decomposition (DMD) while incurring

comparable computational times. These reduced-order models are used to construct low-rank

full-state feedback controllers to control model fluid flows.

We employ LQR based feedback control using the reduced-order models on the linearized

Ginzburg-Landau equation in the globally unstable regime. lrDMD is able to stabilize the system

at a much lower rank approximation as compared to DMD. The reduced-order models are also

used to find optimal actuator location using brute force sampling approach. The true optimal

actuator location is obtained using lrDMD at a rank-5 approximation, whereas DMD requires

a rank-5 approximation to provide the true optimal actuator location. We also employed LQR

based feedback control on unsteady flow over an inclined flat plate. OMD and lrDMD perform

equally well in controlling the flow whereas DMD incurs much higher costs in the control for all

cases.

There are a number of future directions to extend this research. The current method finds a

low-rank description of an autonomous, possibly nonlinear, dynamical system. One possible

direction is to extend the current method to incorporate the effect of control input similarly to

DMDc (Dynamic Mode Decomposition with control) [119]. Section 6.1.1 formulates this exten-

sion and discusses possible methods to make this extension. Another extension is to consider

partially observed system with low-order hidden state dynamics. There is also the possibility

of allowing arbitrary sampling times for the snapshots as is often the case in experimental data.

An alternate approach of reduced-order modeling when using DMD and ERA based methods is

to first generate models with higher rank and then perform balanced truncation [53] to obtain

the final model of desired rank. This approach is called overspecification and has been shown

in perform better than just DMD or ERA (Section 3.5 of [125]). It would be interesting to see

if overspecification applied to lrDMD and OMD would result in similar improvements as seen

in DMD and ERA. In conclusion, this study shows the potential of using a linear map that

is a mapping between different subspaces to construct reduced-order controllers for unsteady

high-dimensional systems. We observe that these linear maps fit the data better and can lead to

better performing reduced-order controllers.
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CHAPTER 4

DATA-DRIVEN SENSOR PLACEMENT

This chapter describes a data-driven sensor placement method that leverages recent advance-

ments in Koopman-based data-driven reduced-order modeling methods. Section 4.1 describes the

motivation for the proposed method and Section 4.2 outlines the data-driven sensor placement

problem. In Section 4.3, we pose the sensor placement optimization problem and derive the

adjoint equations that can efficiently compute the gradient of the objective function with respect

to the sensor locations. The reconstruction, prediction and control application results are shown

in Section 4.4, and Section 4.5 concludes the chapter.

4.1. Motivation

Sensor and actuator placement is critical for state estimation and control of fluid flows in vari-

ous applications such as weather forecasting [29], hydraulic fluid machinery [54], rapid detection

of infectious diseases [49], increasing lift of airfoils [128] and suppression of noise in high-speed

jets [112]. Appropriately-placed sensors improve the performance of the observers, leading to

better analysis and control decisions. The need to place limited numbers of sensors and actuators

in a large space of possible locations makes exploring the solution space challenging. The problem

of a large solution space is further aggravated by the multi-scale, and possibly multi-physics, na-

ture of fluid dynamics. Upon discretization, these features lead to a high-dimensional dynamical

system that makes exact methods for optimal sensor and actuator placement intractable [33]. Con-

sequentially, several approximate and heuristic methods have been proposed that place sensors

in the regions of high instability [6, 13] or large structural sensitivity [50, 111] characterized by

regions of both high instability and sensitivity. Greedy algorithms that optimize scalar measures

51



of observability and controllability have also been proposed [106]. However, these methods re-

quire complete knowledge of the flow dynamics that might not be available or achievable. An

alternative is to use data collected from experiments or numerical simulations to guide the sensor

placement.

Several data-driven methods for sensor placement make use of the fact that the dynamics of

fluid flows can sometimes be approximated by a low-dimensional representation. Such methods

include gappy Proper Orthogonal Decomposition (POD) [26, 150] that selects sensor locations that

will enable the POD modal coefficients to be determined most accurately, and discrete empirical

interpolation methods (DEIM) [32, 42] that provide sampling strategies for a near-optimal recon-

struction of nonlinear terms in reduced-order models. Manohar et al. [105] introduced a sparse

sensor placement method, SSPOR, that extended the EIM approach to allow for oversampling,

where the number of sensors can exceed the number of dimensions of the low-dimensional repre-

sentation. This allows greater reduction in reconstruction error compared to the DEIM approach.

Additionally, several compressive sensing based methods [15, 43] have been proposed that allow

signal reconstruction with sparse measurements. However, these data-driven methods do not

model the dynamics of the fluid to aid in sensor and actuator placement. Data-driven reduced-

order modeling methods that construct a linear approximation of the flow dynamics allow us to

use tools from linear control theory for control of complex fluid flows. With this motivation, we

focus on the problem of sensor placement using data-driven reduced-order modeling and a linear

observer-based objective function.

We leverage recent developments in Koopman-based data-driven modeling of fluid flows

(see Section 2.1.3) to solve the sensor placement problem. These modeling methods have en-

abled stability analysis [107, 142], estimation [139–141] and control [18, 39, 71, 89, 118] of fluid

flows. Data-driven models such as Dynamic Mode Decomposition (DMD) [34, 132] and its vari-

ants [34, 37, 48, 57, 63, 64, 129, 154] provide a finite-dimensional approximation of the Koopman

operator. These methods are closely related to more traditional system identification methods

such as Observer/Kalman Filter Identification (OKID) [147], N4SID [145, 146] and Eigensystem

Realization Algorithm (ERA) [79], which have been used for data-driven sensor and actuator

selection in fluid flows [21]. For a given linear approximation of the flow dynamics, we use the

Kalman filter to estimate the hidden state variable. In the absence of the full-order model, we use
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an empirical approximation of the estimation error covariance matrix to construct the objective

function parameterized by the sensor parameters. The optimal sensor parameters are selected

through gradient-based minimization of the objective function, where the gradient is computed

using an adjoint framework. Since we use reduced-order modeling along with adjoint-based

optimization, our method scales well with both the dimension of the full-order system and the

number of sensors. The proposed method can also be targeted to serve specific applications using

different objective functions. We demonstrate this by proposing different objective functions for

prediction and control applications.

4.2. Preliminaries

Consider the following discrete time stochastic dynamical system,

qk+1 = f (qk) + h(uk) + wk, (4.1)

zk = g(qk) + vk,

with time indexed by k and initial condition q0. The output of the system zk ∈ Cp is a function

of the state variable qk ∈ Cm and the control input uk ∈ Cd. In fluid experiments, the output is

generally single or multiple local sensor measurements of the flow variables, such as temperature

or pressure, with associated measurement noise. For many fluid flows, h and g can be represented

as a linear functions of the control input uk and the state variable qk, respectively. We represent

g as an observation matrix CΘ ∈ Cp×m parameterized by the sensor profile specifications Θ that

include sensor location and shape parameters. Similarly, h is represented by a control matrix

B ∈ Cm×d. The plant noise is denoted by wk while the measurement noise is denoted by vk. We

assume that wk and vk are zero mean Gaussian variables with covariance matrices W ∈ Cm×m

and V ∈ Cp×p respectively. If we assume that the state variable q lies in a low-dimensional linear

subspace of dimension r, we get the following reduced-order model

ak+1 = LH f (Lak) + LHBuk + LHwk, (4.2)

zk = CΘLak + vk,
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where L ∈ Cm×r is an orthonormal basis of the r-dimensional subspace, a ∈ Cr is the projection

of the state variable q onto the space spanned by the columns of L and the initial condition is

a0 = LHq0. Note that LHwk is a Gaussian random variable with zero mean and covariance matrix

given by LHWL.

Computation of the projected dynamics LH f (Lak) requires complete knowledge of the full order

dynamics described by f (·), which is not always available for complex fluid flows. Data-driven

reduced-order modeling methods provide an alternative in such scenarios. Using n + 1 full-state

observations qn := {q0, · · · , qn} of the system for a series of control input un−1 := {u0, · · · , un−1},

these methods provide a linear approximation of the dynamics restricted to low-dimensional

space such that LH f (Lak) ≈ Aak, where A ∈ Cr×r (see Section 2.1.3). This results in the following

representation of the flow dynamics.

ak+1 = Aak + LHBuk + LHwk, (4.3)

zk = CΘLak + vk.

For a given set of full-state observations qn and control inputs un−1, a reduced-order model

of the flow A and control matrix B, our goal is to find sensor parameters Θ (which determine

the matrix CΘ) that would provide the optimal filtered estimates for the full-state observations.

Under the assumption of Gaussian zero-mean noise, we use the Kalman Filter equations [148]

that provide closed-form expressions for the filtered estimate of the full-state variables qn (see

Section 2.2.1).

We construct an objective function that penalizes the error between the full-state observations

qn and the filtered estimates of the state variable. A gradient-based optimization framework is

employed to find the optimal sensor parameters Θ. The gradient of the objective function with

respect to the sensor parameters is computed using adjoint equations. In the next section, we for-

mally pose the optimization problem and describe the details of the gradient-based optimization

method.
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4.3. Mathematical Formulation

We formulate the sensor placement problem as a constrained optimization problem. First, we

describe the constraints of the optimization problem. We then propose two objective functions, for

flow reconstruction/prediction applications and flow control applications, respectively. Finally,

we derive the adjoint equations for the optimization problem that are used to efficiently compute

the gradient of the objective function with respect to the sensor locations.

4.3.1. Constraints

For the reduced-order dynamical model of the fluid flow (Eq. (4.3)), let the estimate of ak given

observations z` := {z0, z1, · · · , z`} and control inputs u` := {u0, · · · , u`} be denoted by ak|`. The

estimate for the full-state variable qk will be similarly denoted as qk|` = Lak|`. Using the steady

state Kalman filter equations (see Section 2.2.1 for details), we get the following recursion for the

estimate ak|k,

a0|0 =E[a0],

ak+1|k = Aak|k + LHBuk,

ak+1|k+1 = ak+1|k + K(zk+1 − CΘLak+1|k),

Σ =AΣAH + LHWL− AΣLHCH
Θ S−1CΘLΣAH,

K =ΣLHCH
Θ S−1,

S =CΘLΣLHCH
Θ + V,

where at each iteration k, ak|k ∈ Cr, ak+1|k ∈ Cr are the estimates, Σ ∈ Cr×r and S ∈ Cr×r are error

covariance matrices and K ∈ Cr×p is the Kalman filter gain matrix.

4.3.2. Objective Function

Reconstruction and Prediction Applications Here, we consider the setting in which we are

interested in finding sensor locations such that the Kalman filter estimate of the state variable is

close to the observed values. To that end, we define the objective function as the L2 norm of the
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estimation error of the state variable,

J(qn, Θ) =
1
2

n

∑
k=1

∥∥qk − Lak|k
∥∥2 , (4.4)

where Θ denotes the sensor parameters that determine the estimate ak|k of the hidden state ak

given the observations {z0, . . . , zk}. This objective function can be seen as a data-driven approxi-

mation of the trace of the estimation error covariance matrix averaged over time. This approach

is closely related to A-optimal design [7, 76] that minimizes the trace of the inverse of the Fisher

information matrix1.

Control Applications For control applications, we are interested in getting the correct control

input at each time iteration. Under the linear-quadratic control framework [12, 56, 67, 82, 83] (see

Section 2.2.2), the observer-based control input uk at iteration k is given by uk = −Gak, where G

is called the reduced-order control gain matrix. In terms of the full-state variable qk, the control

input will be −GLHqk. This is the motivation to use a weighted estimation error given by

J′(qn, Θ) =
1
2

n

∑
k=1

∥∥∥G(LHqk − ak|k)
∥∥∥2

. (4.5)

Due to the principle of separation of estimation and control for linear systems [153], the control

matrix G is independent of the sensor locations with simplifies the derivation of the gradient of

the objective function J′ with respect to the sensor locations. This objective function can be viewed

as weighted norm of the estimation error where the directions that contribute to the feedback

control input are given higher weights.

1The inverse of the Fisher information matrix gives the lower bound for the estimation error covariance matrix of any
unbiased estimator (such as the Kalman filter). This is known as the Cramer-Rao Inequality [45].
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4.3.3. Optimization Problem

The constrained optimization problem we seek to solve is

min
Θ

J(qn, Θ)

s.t. a0|0 = E[a0],

ak+1|k = Aak|k + LHBuk, ∀k ∈ [n− 1]

ak+1|k+1 = ak+1|k + K(zk+1 − CΘLak+1|k), ∀k ∈ [n− 1]

Σ = AΣAH + LHWL− AΣLHCH
Θ S−1CΘLΣAH,

K = ΣLHCH
Θ S−1,

S = CΘLΣLHCH
Θ + V,

where ak|k ∈ Cr, k ∈ [n]

ak+1|k ∈ Cr, k ∈ [n− 1]

Σ ∈ Cr×r, K ∈ Cr×p, S ∈ Cr×r,

(4.6)

and [n] denotes the set {0, 1, · · · , n}. Note that the optimization problem has O(r2 + rn + rp)

variables and O(r2 + rn + rp) constraints. Importantly, the number of variables and constraints

both are independent of the size m of the state variable q and scale linearly with the length n

of the time horizon and the number of sensors p. This scaling of the size of our optimization

problem is favourable in engineering flow applications, where the size m of the state vector is

much larger than the number of observations n and the number of sensors p.
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4.3.4. Adjoint Equations

We use the Lagrangian formalism to derive the adjoint equations to solve the optimization

problem (Eq. (4.6)). We first construct a Lagrangian as follows,

L = J − ηH
0|0(a0|0 − a0)−

n−1

∑
k=0

ηH
k+1|k(ak+1|k − Aak|k − LHBuk)

−
n

∑
k=1

ηH
k|k(ak|k − ak|k−1 − KCΘ(qk − Lak|k−1))

− tr(ΛH(Σ− AΣAH −W + AΣCH
Θ S−1CΘΣAH))

− tr(HH(K− ΣCH
Θ S−1))− tr(TH(S− CΘΣCH

Θ −V)),

(4.7)

where ηk|k ∈ Cr, ηk|k−1 ∈ Cr, Λ ∈ Cr×r, H ∈ Cr×p and T ∈ Cr×r are adjoint variables, each

corresponding to the forward variables ak|k, ak|k−1, Σ, K and S respectively. J is defined in Eq. (4.4).

Taking the variation of the Lagrangian L with respect to the adjoint variables and setting it to

zero gives us the Kalman equations which are the constraints of our optimization problem.

If we set the variation with respect to ak|k, ak|k−1, Σ, K and S to zero, we get the following adjoint

equations,

ηn|n = −(LHqn − an|n)

ηk|k−1 = ηk|k − LH(CH
Θ KHηk|k),

ηk|k = AHηk+1|k − (LHqk − ak|k),

H =
n

∑
k=1

ηk|k(CΘ(qk − Lak|k−1))
H,

Λ = ZAHΛAZH + ZHS−TCΘ,

T = KH(AHΛAΣLHCH
Θ − H)S−T,

where Z = (I − LHCH
Θ KH). At the optimal solution, both the adjoint equations and the Kalman

filter equations must be simultaneously satisfied. Note that while the Kalman filter equations had

nonlinear terms, all the adjoint equations are linear. Specifically, the equation for Λ is in the form

of a discrete Lyapnov equation which allows us to use efficient algorithms to solve it [14].

The optimality condition is that the variation of L with respect to the sensor parameters is also
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zero. This gradient is given by,

∂L
∂Θ

=
dCΘ

dΘ
· ∂L

∂CΘ
,

∂L
∂CΘ

=
n

∑
k=1

KHηH
k|k(qk − Lak|k−1)

H − S−1CΘLΣAH(Λ + ΛH)AΣLH,
(4.8)

where dCΘ/dΘ depends on the sensor model. We use a gradient descent to find the optimal

value of Θ while solving the Kalman filter and the adjoint equations at each iteration to get the

gradient. When the gradient with respect to the sensor location Θ is sufficiently close to zero, we

have reached the optimal solution. Any first-order optimization method can be used to find the

optimal solution. In this study we use gradient descent with the Armijo rule to determine the

step-size at each iteration [19]. Adjoint-based optimization methods have been used to perform

control [84], sensitivity analyses [131] and stability analyses [98] of fluid flows in previous studies.

Remark 4.3.1. In some applications it might be useful simultaneously to find the optimal model

parameters for the state transition matrix A and the reduced-order basis L that minimizes the

objective function J defined in Eq. (4.4). This formulation can be easily adapted to allow for that

by computing the variation of the Lagrangian L with respect to A and L, respectively, and then

using chain rule following Eq. (4.8). The gradient and details of model parameter optimization

are shown in Appendix A.2.

4.4. Results

4.4.1. Linearized Ginzburg Landau Equation

In this section we apply the optimal sensor placement method on the linearized complex

Ginzburg-Landau (GL) equation, previous described in Section 3.4.1. There have been many

studies focusing on the stability [13] as well as optimal sensor and actuator placement [33, 113]

for this system. The GL equations are descirbed as follows.

∂q
∂t

+ ν
∂q
∂x

= µ(x)q + γ
∂2q
∂x2 ,

with µ(x) = µ0 − c2
u + µ2x2/2,

59



where the real part of q(x, t) represents a velocity or stream function perturbation amplitude.

For this study we have taken the value of these constants µ, cu, µ0 and µ2 corresponding to the

supercritical, globally unstable regime case in [33, 130], also shown in Table 3.3. We model our

sensors with Gaussian spatial support such that for each sensor at location xs,i with i ∈ {1, · · · , p}

zi(t) =
∫ ∞

−∞
exp

(
− (x− xs,i)

2

2σ2
i

)
q(x, t)dx. (4.9)

where zi(t) is the ith component of the observation z(t) ∈ Cp at time t and σi ∈ R+ determines

the shape of the sensor profile.

In discrete space we use a spectral formulation of the derivative operators based on Hermite

polynomials evaluated at the Hermite nodes [13]. Time discretization is performed using forward

Euler time-stepping scheme. In this study we consider m = 220 grid points with the compu-

tational domain x ∈ [−85, 85] and a time-step of dt = 1. For more details about the system

the reader is referred to [13]. We denote the state transition matrix by F ∈ Cm×m and the state

variable at iteration k as qk ∈ Cm. The integral in Eq. (4.9) is discretized using the trapezoidal

integration rule. As such, the sensor model translates to zk = Cqk for each iteration k where

C = ĈM ∈ Cp×m, in the absence of observation noise. Each row ĉi of Ĉ, corresponds to the

spatial discretization of exp(−(x− xs,i)
2/2σ2

i ) into a 1×m vector and M ∈ Rm×m is a diagonal

weighting matrix corresponding to the trapezoidal integration rule. More formally, the matrix

C = [Ci,j], ∀i ∈ {1, . . . , p}, j ∈ {1, . . . , m} is defined as follows,

Ci,j =


exp

(
−(xj − xs,i)

2/2σ2
i
)
(x2 − x1)/2, when j = 1,

exp
(
−(xj − xs,i)

2/2σ2
i
)
(xj+1 − xj−1)/2, when 1 < j < m,

exp
(
−(xj − xs,i)

2/2σ2
i
)
(xm − xm−1)/2, when j = m.

Figure 4.1a shows sensor profiles centered at xs = 0 with three shape parameters σ. The discrete

space and discrete time system in the presence of noise is described by the following equations.

qk+1 = Fqk + wk, (4.10)

zk = Cqk + vk,
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Figure 4.1.: Localization of sensor profiles increases the non-convexity of the objective function. (a) The
sensor profiles for three values of variance σ ∈ {0.25, 0.5, 1} at the same sensor location. (b) The normalized
estimation error for different sensor locations using the three sensor profiles. The straight lines indicate the
gradient with respect to the sensor location computed using the adjoint formulation. (c) The normalized
estimation error for different sensor locations at a higher resolution clearly showing the non-convexity for
σ = 0.25. The legend depicts the ∆x/σ, where ∆x is the smallest distance between consecutive grid points
in the computational grid.

where v and w are zero mean complex Gaussian random variables with covariance matrices

W = wIm and V = vIp. For the training data, we set the scalars w and v to 0.01.

Effect of Sensor Localization

In this section we look closely at the objective function (Eq. (4.4)), defined by the reconstruction

error, for the the sensor placement problem (Section 4.3.2). Specifically, we explore the effect of
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sensor model parameters on the location of the minima and the non-convexity of the objective

function.

Suppose we seek to place a single sensor (p = 1) in the physical domain with a given shape

parameter σ. As such, the sensor parameter we need to optimize is θ = {xs,1}. We consider

the three values of the shape parameter σ ∈ {0.25, 0.5, 1}. As shown in Figure 4.1a, the shape

parameter σ determines the apparent width of the sensor profile. The relation between the sensor

width and the grid resolution is represented by the ratio ∆x/σ, where ∆x is the smallest distance

between consecutive grid points in the computational grid. For the grid with m = 220 points, we

have ∆x = 0.625.

Since we are only interested in the effect of the sensor profile on the objective function, we use

the full-order state transition matrix F to construct the observer that finds the estimate qk|k of the

state qk at each iteration k. We set the initial condition as a Gaussian centered at x0 = 8 with

variance of σ0 = 5 and collect snapshots for n = 200 iterations. Figure 4.1b shows the normalized

reconstruction error

error =
∑n

k=1

∥∥(qk − qk|k)
∥∥2

∑n
k=1 ‖qk‖2

for the three sensor shape parameters at different sensor locations. The lines in the plot represent

the gradient computed using the adjoint formulation. Figure 4.1c shows the normalized estima-

tion error with a finer resolution for the sensor location. In this figure we can clearly see that

although the objective function is convex for σ ∈ {0.5, 1}, it is non-convex for σ = 0.25. In general,

we observe non-convexity in the objective function as the apparent width of the sensor profile

approaches the grid resolution. This means that solving the optimization problem for σ = 0.25

will be more difficult compared to larger σ values. One way to overcome this difficulty is to use

the solution of a problem instance with a larger σ as initial guess for the optimization problem.

We employ this strategy in the next section.

Effect of Dynamic Modeling

In this section we show the effect of dynamic modeling on the resulting estimation error. We

also compare our results with another data-driven method called SSPOR [105]. SSPOR places
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Figure 4.2.: The proposed method significantly outperforms SSPOR in terms of reconstruction using sparse
sensing. (a) The location of sensors obtained using KF-DMD and SSPOR for different number of sensors.
The amplification region in the physical domain is shaded gray. (b) The normalized estimation error for
increasing number of sensors using KF-DMD, SSPOR and POD. (c) Time taken by KF-DMD and SSPOR
for placing different number of sensors. (d) The normalized estimation error for increasing system-level
noise using KF-DMD and SSPOR.

point-sensors in the physical domain to generate a reconstruction of the full state variable. It

employs a heuristic to solve the D-optimal2 sensor selection problem while neglecting the system

noise and only considering the measurement noise. In comparison, our method models the

system and the measurement noise as zero-mean Gaussian random variables and solves the A-

optimal sensor placement problem using a data-driven approximation of the error covariance

2D-optimality criteria is to minimize the determinant of the covariance matrix of the estimation error. Geometrically
this is equivalent to minimizing the volume of the uncertainty ellipsoid for the estimates.
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matrix. We model a point sensor as a Gaussian with low variance (σ = 0.25, see Fig. 4.1a) with

the sensor location given by the mean of the Gaussian. As such, we have Θ = {xs,1, · · · , xs,p}

where p is the number of sensors. To overcome the non-convexity associated with localized sensor

profiles, we successively decrease the sensor profile shape parameter from 1, halving it at each

step until we reach 0.25 and solving for the optimal sensor locations Θ at each step. We use the

same training data with 200 snapshots as in the previous section and use DMD to find a rank

r = 10 approximation of the state transition matrix. Recall that the system noise level v and

measurement noise level w are set to 0.01. Since we use the Kalman filter to find the optimal

sensor location and DMD for the reduced-order modeling, we refer to our method as ‘KF-DMD’ in

the following. Note that DMD can be replaced with other reduced-order modeling methods that

provide a linear approximation of the flow dynamics and our approach will still be applicable.

Figure 4.2a shows the sensor locations obtained using our method (KF-DMD) and SSPOR

for different numbers of sensor locations p ∈ {1, 2, 3, 4, 5}. The grey shaded region depicts the

amplification region x ∈ [−8.6, 8.6] in the physical domain. While KF-DMD places all the sensors

in the amplification region, we see SSPOR places sensor locations outside this region when

number of sensors p > 2.

Figure 4.2b shows the normalized estimation error for KF-DMD and SSPOR-DMD along with

SSPOR for different numbers of sensors p. The POD results show p-rank approximation of the

input data matrix. It provides the theoretical lower limit for methods like SSPOR that do not

use dynamical modeling for estimating the state variable. When the number of sensors is more

than 3, the POD results are better than KF-DMD and SSPOR. However, in practice we want to

use as few sensors as possible. For fewer sensors than three, we see KF-DMD perform much

better than SSPOR and POD in reconstruction. Compared to SSPOR, we can see that KF-DMD

gives superior performance for any number of sensors being placed in the domain. KF-DMD also

provides the flexibility of user-defined sensor profiles while SSPOR can only place point sensors.

This performance comes at the cost of computational time as seen in Figure 4.2c. An additional

advantage of KF-DMD is robustness towards noise, shown in Figure 4.2d. The figure shows

normalized estimation error incurred by KF-DMD and SSPOR while placing a single sensor for

increasing system level noise v. KF-DMD incurs lower errors for all values of system noise than

SSPOR. To summarize, we show that dynamical modeling, using methods such as DMD, not
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Figure 4.3.: Data-driven reduced-order modeling provides a good approximation of the optimal sensor
locations at a reduced cost. (a) The location of sensors obtained using the DMD reduced-order model and
the full-order model (baseline) for different number of sensors. (b) Time taken to place different number
of sensors using the DMD reduced-order model and the full-order model.

only provides the ability to do prediction, but also improves reconstruction when the number of

sensors is small.

Data-driven Optimal Sensor Placement

In the data-driven setting, we do not have access to the full-order model F. In this case, we use

non-intrusive reduced-order modeling methods to find a low-order approximation of F. Similar

to the previous section, we use DMD to learn a rank r = 10 approximation of the state transition

matrix from the n = 200 snapshots of the flow. The resulting low-rank state transition matrix A

is used for placing sensors in the physical domain. We compare the results of this completely

data-driven approach to sensor locations obtained using the full-order matrix F under the same

settings. We refer to the results obtained using the full-order model as the baseline. For both the

cases, we fix the shape parameter of all the sensors to σ = 2. Alternatively, the shape parameters

of the sensors can also be optimized, which we show in Appendix A.3.

Figure 4.3a shows the resulting sensor locations using the reduced-order model (purple cross)

and the full-order model (orange circle). We can see that the reduced-order model gives a very

good approximation of the optimal sensor locations even for placement of multiple sensors si-

multaneously. Figure 4.3b shows the time taken by the reduced-order model compared to the
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full-order model. Here we see that the reduced-order model takes more than an order of magni-

tude less time compared to the full-order model to get the optimal sensor locations.

Next, we compare the performance of the completely data-driven approach with the baseline.

Figure 4.4 show the relative estimation error from the comparison of the two methods. A relative

estimation error of greater than one means that the data-driven approach performs better than the

baseline. We demonstrate the performance of our method at different values of four independent

parameters which are number of sensors (p), rank of the reduced-order model (r), noise level (v)

and time horizon of estimation (nt). For each set of parameter values, we generate testing data by

running 20 independent simulations with different initial conditions. The initial conditions are

Gaussian functions with σ = 5 and mean samples from 8 +N (0, 1). Recall that the training data

for both the methods has n = 200.

Surprisingly, in Fig. 4.4a and Fig. 4.4b we see that, even though the baseline uses the full-order

model, our data-driven approach performs better than the baseline when time horizon of the

testing data is less than the time horizon of the training data n = 200. The relative estimation

error is close to 1 even when nt = 300 but deteriorates for nt = 400. This demonstrates the

robustness of our proposed method in terms of the initial condition as well as the time horizon.

Figure 4.4c and 4.4d show the relative error is only moderately affected by the noise level in

the testing data. We show the relative error for p = 1, r = 10 and two different time horizons,

nt = 200 (Figure 4.4c) which matches the training data and nt = 400 (Figure 4.4d). Note that the

training data was generated with a noise level of v = 0.01. In Figure 4.4d we see that for nt = 400,

when the peak performance of our method is achieved when the noise level in the testing data

exactly matches the noise level that was used in the training data.

Finally, in Figure 4.4e and 4.4f we look at the effect of rank r on the relative estimation error

for fixed values of p, v and nt. Figure 4.4e shows the results for nt = 200 and Figure 4.4f shows

the results for nt = 400. Both the figures show a positive trend in the relative estimation error

for increasing rank of the reduced-order model. The improvement is stronger when the time

horizon is nt = 200 which matches the time horizon of the training data. These results show that

increasing the rank of the reduced-order model improves the predictive power of the proposed

method.
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Figure 4.4.: Data-driven reduced-order modeling generates low error for reconstruction as well as predic-
tion. We demonstrate the performance of our method at different values of four independent parameters –
number of sensors (p), rank of the reduced-order model (r), noise level (v) and time horizon of estimation
(nt). We show the relative estimation error of the reduced-order model compared to the full-order model
(baseline) is shown for 20 independent simulations with random initial conditions for each set of test pa-
rameters. Relative error greater than 1 indicates that the reduced-order model outperformed the full-order
model. The training data for all the results is the same with a time-horizon of n = 200.
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U∞

(a) (b)

Figure 4.5.: Schematic for flow over an inclined flat plate geometry. (a) The black line indicates the position
of the flat plate in the computational domain. The red crosses show the actuator location and the gray
shaded region is the region of interest to place the sensors. (b) The region of interest to place sensors is
chosen to encompass the locations where the value of the control gain matrix G is large.

4.4.2. Observer-based Feedback Control of Flow over Inclined Flat Plate

In the previous section, we looked at the performance of the proposed method for reconstruction

and prediction applications. In this section we show that our proposed method can be used for

strategically placing sensors to yield good observer-based feedback control performance. Our

goal is to stabilize the two-dimensional uniform flow approaching an inclined flat plate. The

freestream flow is at a low Reynolds number of 100 and the flat plate is inclined at an angle of 35◦.

At these conditions, it has been shown that the steady state of the flow is unstable and the flow

exhibits periodic vortex shedding [4]. We use an observer-based feedback controller (described

in Section 2.2.2) to bring the system to steady state in the presence of system and measurement

noise with a completely data-driven approach.

Computational Setup

The flow is simulated using the fast immersed boundary method developed in [35]. It is an

efficient method to solve the incompressible Navier-Stokes equations. In order to achieve uniform

flow conditions in the far field, a multi-domain approach is employed. The domain of interest is
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considered to be embedded in a series of domains, each twice-as-large as the preceding but with

the same number of the uniform grid points. The numerical parameters of the flow are taken

to follow the work of [4]. The grid size used is 250× 250 and the domain of interest is given by

[−2, 3]× [−2.5, 2.5] where the lengths are non-dimensionalized by the chord length of the flat

plate, L. The center of the flat plate is located at the origin. Five domains, each with the same

number of grid points are used for an effective computational domain that is 24 times larger than

the domain of interest. The time-step is taken as dt = 0.01L/U∞ where U∞ is the freestream

velocity. We compute the steady-state solution q by performing Newton-GMRES iterations on

the nonlinear flow solution until convergence.

An actuator is placed near the leading edge of the flat plate. We use a simple model of a

localized body force [3] at the actuator location near the leading edge of the flat plate. The

instantaneous vorticity field generated by impulse control input of the actuator is

B(r) = c[(1− ar2
1) exp(−ar2

1)− (1− ar2
2) exp(−ar2

2)] (4.11)

where r2
i = (x− xc,i)

2 + (y− yc,i)
2 for i = 1, 2. We set (xc,1, yc,1) and (xc,2, yc,2) to (0, 1.342) and

(0, 0.89) respectively. The constants a and c determine the shape and strength of the control,

respectively. In this study we use a = 20 and c = 2. These values were used in our previous

study for stabilizing the flow with a full-state feedback controller [130] and therefore we know

that the system is controllable with this actuator. Figure 4.5a shows that computational domain

with the position of the flat plate (thick black line) and the actuator (red cross). Our goal is to

place a Gaussian sensor given by,

C(r) = exp
(
−r2

2σ2

)
, (4.12)

where r = (x− xs)2 + (y− ys)2, with a fixed variance of σ = 2, in the region of interest depicted

by gray rectangle in Figure 4.5a. The region of interest has been chosen to enclose the locations

where the absolute value of the control gain matrix is high, as shown in Figure 4.5b. The contours

of control gain matrix looks noisy because the input data used for the reduced-order modeling

is noisy. The x coordinate in the region of interest lies in [0.5, 2.9] and the y coordinate lies in
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Figure 4.6.: Data-driven sensor placement shows near-optimal performance for observer-based feedback
control of flow over an inclined flat plate. (a) Perturbation and controller energy for 143 independent
simulations each with a different sensor location. The red marker shows the optimal sensor location
predicted by the proposed method. (b) The landscape of the log of the predicted control objective function.
The black marker indicates the predicted optimal sensor location while the red marker shows the sensor
locations that outperformed the prediction. Green marker is the true optimal sensor location and the white
markers indicate simulations that were numerically unstable.

[−1, 1]. This control gain matrix is build using a data-driven reduced-order model of the flow

and is independent of the sensor location (as discussed in Section 2.2.2). It signifies the region in

which the controller will be most sensitive to perturbations.

Governing Equations

Let the nonlinear evolution of the vorticity field be described as

qk+1 = φT(qk) + Buk + diag(α(T))wk,

yk = ψ(qk) + diag(γ)vk,
(4.13)

where k is the iteration number, φT is the nonlinear solver that advances the state q by T timesteps

(each timestep has dt = 0.01L/U), B is the actuator described in Eq. (4.11) while wk and vk are

vectors of standard normal Gaussian variables with appropriate dimensions. The system noise

level α(T) is a linear function of T and the measurement noise is independent of T. Similar to our

study in Chapter 3, we set γ = 0.01 and α = 5× 10−4. Note that at T = 20, the measurement and

system noise are of the same strength. When we collect full-state observations for the training
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data, we set ψ(qk) = qk and during observer-based feedback control for a given sensor location

we set ψ(qk) = Cqk where C is described in Eq. (4.12).

Training Data

The snapshots for the study are generated from the impulse response to the actuator with

the steady-state q as the initial condition. The steady state of the flow is subtracted from the

snapshots so that we work with the dynamics of the perturbations (deviation from the steady

state). We generate two sets of training data, first to evaluate the performance of the controller

with the objective function defined in Eq. (4.5) and second for building the reduced-order model.

For the first set of training data to use in the objective function we generate 250 snapshots with

observations of system described in Eq. (4.13) with T = 20. For learning the reduced-order model

using DMD (see Section 2.1.3), we generate snapshots with observations of system described

in Eq. (4.13) with T = 5. The data matrices used by the DMD algorithm are constructed with

250 pairs of snapshots that are 4 iterations apart so that the total timesteps between the pair of

snapshots is 20 and matches the first set of training data. Following our previous work [130],

a linear approximation of the flow dynamics of rank r = 20 is computed using DMD. In our

previous study, we stabilized this flow with a full-state feedback controller built using a rank

r = 20 state transition matrix [130].

Setup of the Optimization Problem

Since our goal is to perform flow control, we employ the control-oriented objective function

(Eq. (4.5)). The control gain matrix G is computed by solving a discrete Ricatti equation, as

described in Section 2.2.2. The β parameter, which determines the trade-off between minimizing

the perturbation and the control input in the reduced-order system, is set to 107. This is because

the size m of the state vector q is much larger than the size d of the control input u. As discussed

in Section 4.3.2, the control gain matrix G is independent of the sensor locations, which simplifies

the gradient of the new objective function J′ with respect to the sensor locations.
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Figure 4.7.: The performance of the controller with the sensor at the predicted optimal sensor location is
close to the performance of the controller with the sensor at the true optimal sensor location. Value of the
(a) sensor and (b) actuator as a function of time for simulations with the sensor placed at four different
sensor locations.

Optimal Sensor Placement

We discretize the region of interest with a uniform grid within [0.5, 2.9]× [−1, 1] with ∆x =

0.2 and ∆y = 0.2, i.e. xs ∈ {0.5, 0.7, · · · , 2.7, 2.9} and ys ∈ {−1,−0.8, · · · , 0.8, 1}, to get 143

candidate sensor locations.We choose the candidate sensor location that has the smallest value of

the objective function in Eq. (4.5). The predicted optimal candidate sensor location reported by

our method is (xs, ys) = (1.9,−0.2).

To evaluate the performance of our method, we run 143 independent nonlinear control simula-

tions, one for each candidate sensor location in the region of interest, for 250 iterations (same as

the length of the training data). Figure 4.6a shows the perturbation energy and the input control

energy of the 143 simulations. The positive correlation between the two quantities is due to the

use of a feedback controller. The predicted optimal solution predicted by our method is shown

with a black marker. Even though it is not the true optimal solution, there are only 11 sensor

locations that perform better than our prediction. This means that our prediction is in the top

90th percentile of the probed sensor locations in the region of interest. The sensor locations that

perform better than our prediction are shown in Figure 4.6b. The true optimal solution (2.5, 0.8)

is shown with a green marker whereas our prediction of optimal sensor location is shown with a
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black marker. The contour plots show the prediction of estimation error using the DMD reduced-

order model. The white markers represent sensor locations for which the controller was not

able to stabilize the flow and the numerical simulation blew up. Running all the 143 nonlinear

simulations took 10 hours on an Intel Xeon Phi 7250 with 64 cores. On the other hand, the optimal

sensor location prediction using our method took only a few minutes (≈ 10 mins) on a single

core of Intel Core i7 for the optimization method to converge and training data worth a single

nonlinear simulation.

Figure 4.7 shows the sensor values and actuator value for 4 simulation corresponding to differ-

ent sensor locations. We show that the sensor value observed and the actuator response of the

simulation with the true optimal sensor (2.5, 0.8) location are very close to the simulation with

the optimal sensor location predicted by our method (1.9,−0.2). For comparison we show the

results corresponding to a sensor location (0.9,−0.2) that outperforms our prediction and a ran-

domly chosen sensor location (2.5, 0.2). These results show that our method can be used to find

near-optimal sensor placement for control applications with a completely data-driven approach.

4.5. Conclusion

We introduce a completely data-driven method for sensor placement in fluid flows using

full-state noisy observations. The full-state observations are first used to generate a linear approx-

imation of the dynamics of the flow. Any modeling technique that generates a linear model of

the system dynamics can be used to generate the reduced-order model. Under the assumption

of zero-mean Gaussian noise, Kalman filter equations provide closed-form expressions for the

filtered estimates of the state variable in terms of the sensor locations. These expressions pro-

vide constraints to the sensor placement optimization problem. We propose different objective

functions for reconstruction, prediction and flow control applications. For instance, for accurate

reconstruction or prediction, we propose minimization of the trace of an empirical approximation

of the estimation error covariance matrix. We derive adjoint equations to efficiently compute to

gradient of the objective function with respect to multiple sensor locations simultaneously. The

performance of our method for reconstruction and prediction is demonstrated on the complex

linearized Ginzburg-Landau equations in the globally unstable regime. Further, using a control-
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oriented objective function, we place sensors in the wake of over an inclined flat plate to yield the

near-optimal observer-based feedback control performance.

There are several avenues for future research. This method in its current form can be used to

solve time-varying optimal sensor locations and simultaneous optimization of sensor and model

parameters. It would be interesting to explore some information theoretic objective functions as

well. We plan to extend the current approach to simultaneously place actuators and sensors in the

flow. We can further increase the applicability of the method for sensor placement in nonlinear

regimes of the flow by incorporating nonlinear terms in the reduced-order model or successive

linearization of the flow dynamics.
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CHAPTER 5

MODAL ANALYSIS OF MULTIPHASE FLOWS

This chapter addresses data-driven modal analysis and interface tracking of multiphase flows.

Section 5.1 provides background and motivation for the problem. The rest of the chapter is orga-

nized in two main sections. The first section, Section 5.2, describes modal analysis of instabilities

of a liquid core within a swirling co-axial airblast atomizer. The second section, Section 5.3, de-

scribes a novel method for interface reconstruction and tracking in multiphase flows. Section 5.4

presents conclusions of the study and proposes directions for future research.

5.1. Motivation

Liquid sprays are ubiquitous in engineering devices with applications in food processing,

coating, printing and combustion chamber fuel injection [9]. The efficiency of these devices

relies heavily on the atomization of the liquid spray and its dispersion into an ambient gas.

For example, increased atomization of the liquid fuel into a combustion chamber leads to more

effective evaporation and increases the efficiency of the fuel combustion [94]. Devices, such as

airblast atomizers, that enhance the spray atomization and dispersion by triggering instabilities

in the flow can therefore positively impact numerous industries.

The primary breakup of a liquid core by an airblast atomizer is a complex phenomenon. Several

instabilities are simultaneously triggered in the flow that result in droplet generation and disper-

sion. One way to extract the spatio-temporal flow features is to perform modal analysis on the

shadowgraph or back-lit image data of the spray. Several studies have applied projection-based

modal analysis techniques such as Proper Orthogonal Decomposition (POD) [31] and Dynamic

Mode Decomposition (DMD) [132, 144] on multiphase flows [11, 30, 70, 91, 92]. However, there
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are several limitations in these analyses. Firstly, these studies only use a single camera to capture

the images of the flows, which leads to a projected view of the three-dimensional features of the

flow. Secondly, although projection-based modal analysis provides valuable information about

the spatio-temporal structure of the instabilities, they are not able to resolve spatial or temporal

discontinuities, such as the liquid-gas interface, in the data. As a result, the information about

the position and shape of the interface separating the liquid and gas phases in the flow is not

recovered in these studies.

In this study we provide solutions to both these limitations. To accurately visualize the three-

dimensional large-scale instabilities of the liquid jet, two synchronized high-speed cameras are

used to simultaneously capture black-lit images of the air-bast atomized liquid jet from orthog-

onal directions. Instabilities due to flapping, swirling and radial expansion of the liquid jet are

recognized. We show that these different forms of instabilities can not be accurately characterized

with a single camera. We also propose a two-step approach for interface tracking using modal

decomposition techniques. More specifically, we apply DMD on the optical flow field extracted

from the back-lit images, which generates a rank-reduced spatially and temporally coherent ve-

locity field that approximately reconstructs the flow field present in the back-lit imaging data. We

use optical flow methods to compute a dense estimation of the flow field using two snapshots

at a time. DMD is then applied on the flow field data to extract a reduced order model of the

flow. The reduced-order velocity field is used to advect the interface location forward in time

for reconstruction and prediction applications. The method is demonstrated on a toy problem of

an oscillating drop, a numerically-simulated planar liquid jet with a gas co-flow using reduced

order velocity extracted from volume of fluid data, and an experimental liquid spray with co-axial

air-blast atomizer using back-lit imaging data.

5.2. Modal Analysis of Flow Instabilities

The use of Dynamic Mode Decomposition (DMD) [132, 144] to perform data-driven modal

analysis of multiphase flows can be split into two parts, (i) identification of spatio-temporal modes

of flow instability and (ii) estimating the relative amplitude of the identified instability modes in

the flow. We provide details for both these components in A.4.1 and A.4.2, respectively. In this
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(a) Spray nozzle (b) Experimental setup

Figure 5.1.: The experimental setup to take stereographic images of liquid jet in a swirling co-axial airblast
atomizer. (a) Orthogonal placement of the two synchronized high-speed cameras is shown. The flow is
illuminated with LED backlights of different frequencies in the two directions. (b) A close-up view of the
spray nozzle exit showing the liquid and the air flow.

section, we present the results of applying the modal analysis on a real experimental multiphase

flow. Subsection 5.2.1 describes the experimental setup while subsection 5.2.2 describes the DMD

results on the experimental data.

5.2.1. Experimental Setup

A two-fluid coaxial atomizer is used in this study (see Fig. 5.1a). The liquid is injected through

the inner jet surrounded by a gas stream through an annulus shaped nozzle. The liquid nozzle

has an inner diameter of d` = 2.1 mm and an outer diameter of D` = 2.7 mm, while the gas

nozzle has an inner diameter of dg = 10 mm. The liquid Reynolds number Re` and gas Reynolds

number Reg are defined as follows

Re` =
U`d`

µ`
, (5.1)

Reg =
Ug

√
d2

g − D2
`

µg
, (5.2)

where U` is the mean liquid velocity, µ` is the kinematic viscosity of the liquid, Ug is the mean

gas velocity and µg is the kinematic viscosity of the gas.

We use distilled water as the liquid and compressed air as the gas. The gas injected through
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(a) no swirl (b) with swirl

Figure 5.2.: Amplitude spectrum of the DMD modes for the two experimental cases, case 1 (with no
swirling gas velocity) and case 2 (with swirl ratio of 0.5) considered in the study. For both the cases, The
liquid Reynolds number Re` = 1100 and gas Reynolds number Reg = 21300.

the gas nozzle can be imparted both axial and tangential velocities which can be controlled

independently. We use PID controllers to regulate the liquid velocity and the gas velocities (both

axial and tangential). Further details of the nozzle configuration can be found in [95, 103].

Stereographic back-lit imaging of the flow is performed using two synchronized high-speed

cameras mounted perpendicular to each other. Figure 5.1b shows the placement of the cameras

relative to the spray nozzle. The cameras are fitted with frequency-selective filters that match

the illumination frequency of the high-intensity LED panels facing them. We capture images of

the flow at a frame rate of 10000 frames per second and an exposure of 99 microseconds. More

details on the back-lit imaging process can be found in [110].

5.2.2. DMD Spectrum and Modes

We consider two cases, case 1 and case 2, with similar flow conditions in this study. Both the

cases have same liquid Reynolds number Re` = 1100 and gas Reynolds number Reg = 21300. The

swirl ratio, defined as the ratio of the tangential gas flow rate to the axial gas flow rate, is 0 for

case 1 and 0.5 for case 2. The Strouhal number for the oscillations of frequency f is defined as,

St =
f d`
U`

. (5.3)

As described in A.4.1, DMD decomposes the spatio-temporal field w(x, t) as linear combination
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of r modes as follows.

w(x, t) =
r

∑
k=1

ak(t)φk(x)αk

where, αk is the amplitude of the k-th mode, φk(x) is the spatial structure and ak(t) is the temporal

dynamics of the mode. The decomposition is performed in a way so that the temporal dynamics

ak(t) for each mode is given by ak(t) = exp(iωkt), where i =
√
−1 and ωk ∈ C determines the

frequency and the growth or decay rate of the mode. Since the input flow field w(x, t) for our

problem has no imaginary parts, DMD will generate oscillatory modes (with ωk > 0) in conjugate

pairs. This is because the complex eigenvalues in the eigenvalue decomposition of matrices with

real entries occur in conjugate pairs. These pairs of modes oscillate in the same frequency but are

phase-shifted from each other by π/2.

In all the figures showing the DMD modes, the positive and negative regions are depicted

using red and blue colors, respectively. The modes extracted from images of the cameras are

shown adjacent to each other in each figure. The limits of colormap for the images for all the

DMD modes is [−0.01, 0.01] using the amplitude definition given in Appendix A.4.

Case 1 (without swirl) Fig. 5.2a shows the amplitudes of oscillations with different frequencies

for the swirl-free flow. The amplitude spectrum is symmetric about the origin as expected because

the DMD algorithm generate two modes for each frequency. These modes are oscillating at a 90◦

phase difference with each other with the same frequency. The high amplitude around St = 0

is the contribution of the mean flow shown in Fig. A.4a in Appendix A.5. This mode provides

information about the steady behaviour of the flow such as spray angle [23]. We see three other

distinct peaks in the amplitude spectrum. The first peak is at St = 3.5 with the associated modes

shown in Fig. 5.3a and Fig. 5.3b. We split these modes into three regions, described in Fig. 5.4,

and characterize each region separately. In ‘Region 1’, we see that both the DMD modes and

the phase-shifted modes have low intensity and the characteristics of the dynamics are not clear.

However, in ‘Region 2’ we see a positive (red) lobe on the left and a negative (blue) lobe on the

right for the DMD mode from the perspective of both camera 1 and 2. For the phase-shifted

DMD mode, the perspective of camera 1 has the same parity as the DMD mode while camera 2
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Camera 1 Camera 2
(a) DMD mode for St = 3.5

Camera 1 Camera 2
(b) phase-shifted DMD mode for St = 3.5

Camera 1 Camera 2
(c) DMD mode for St = 5.688

Camera 1 Camera 2
(d) phase-shifted DMD mode for St = 5.688

Camera 1 Camera 2
(e) DMD mode for St = 11.16

Camera 1 Camera 2
(f) phase-shifted DMD mode for St = 11.16

Figure 5.3.: DMD modes at different Strouhal numbers for the flow case 1 (with no swirling gas). For both
the cases, The liquid Reynolds number Re` = 1100 and gas Reynolds number Reg = 21300.

has a negative lobe surrounded by positive region. This can be characterized as predominantly a

flapping mode, although the phase-shifted DMD mode from the perspective of camera 2 exhibits

features of radial expansion. Finally, in ‘Region 3’, we see positive intensity regions from both

the perspective of both the cameras for the DMD mode, while the phase-shifted mode shows

asymmetry, with a negative lobe on the right and positive lobe on the left. Again, this can be

characterized as a mixture of flapping and radial expansion.
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Region 1

Region 2

Region 3

DMD mode Phase-shifted DMD mode

Camera 1 Camera 2 Camera 1 Camera 2

Figure 5.4.: Three regions showing different spatial structures in the mode corresponding to St = 3.5 of a
liquid jet surrounded by a co-axial airblast atomizer.

The second and the third peak occur at St = 5.688 and St = 11.16 respective. Since 11.16 is close

to twice of 5.688, we infer that the third mode is a higher harmonic of the second mode. The DMD

modes for these frequencies are also shown in Fig. 5.3, where see a chain of alternating positive

and negative lobes in these modes vertically stacked. These are characterized as ‘wavy-breakup’

modes in [92]. Interestingly, the number of lobes is higher in the modes that correspond to the

higher harmonic frequency.

Case 2 (with swirl) Fig. 5.2b shows the amplitudes of oscillations with different frequencies

while Fig. A.4a in A.5 shows the mean of all the flow snapshots, for the flow with swirl ratio of 0.5.

This time we see two large peaks at St = 4.6 and 8.3, and two small peaks at higher frequencies

of St = 12.7 and 14.9. In this study we ignore the smaller peaks and concentrate on the larger

peaks at St = 4.6 and 8.3. The modes associated with St = 4.6 are shown in Fig. 5.5a and Fig. 5.5b.

These modes have been characterized as flapping modes by the authors in [92]. However looking

at the two phase-shifted modes together, we can infer that these are in fact modes associated with

swirling of the liquid jet. In Fig. 5.5a we can see a positive lobe on the left and a negative lobe

right for camera 1 while a negative lobe on the left and positive lobe on the right for camera 2. If

the phase-shifted mode also had the same structure then this would have been consistent with

flapping of the jet. However we see in Fig. 5.5b that from the perspective of both camera 1 and

camera 2, the positive lobe on the right and negative lobe on the left. This means that the jet is

in fact swirling about its axis which appears as though the jet is flapping when observed with a

single camera. Fig. 5.6 shows a schematic of the evolution of this mode with a top view of the
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Camera 1 Camera 2
(a) DMD mode for St = 4.594

Camera 1 Camera 2
(b) phase-shifted DMD mode for St = 4.594

Camera 1 Camera 2
(c) DMD mode for St = 8.313

Camera 1 Camera 2
(d) phase-shifted DMD mode for St = 8.313

Figure 5.5.: DMD modes at different Strouhal numbers for the flow case 2 (with swirl ratio of 0.5). For
both the cases, The liquid Reynolds number Re` = 1100 and gas Reynolds number Reg = 21300.

liquid jet. This behaviour can be correctly characterized only if the liquid jet is imaged from two

orthogonal perspectives.

For St = 8.3 the modes are shown in Fig. 5.5c and Fig. 5.5d. We see that some of the modes have

a negative/positive lobe sandwiched between two positive/negative lobes while other modes

have a clear asymmetry. This shows that the oscillation associated with this mode is mixture

between radial expansion and flapping modes.

5.3. Interface Reconstruction and Tracking

In the previous section, we saw that while modal analysis of the experimental multiphase flow

revealed the temporal dynamics and spatial structure of flow instabilities, the interface location

is unclear. In this section we describe a novel data-driven interface reconstruction and tracking

method for multiphase flows. We use data-driven modeling in conjunction with optical flow
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𝑡0 𝑡1 𝑡2 𝑡3 𝑡0 𝑡1

𝑡2𝑡3

Camera 1 Camera 2

Phase shifted DMD mode

DMD mode

Camera 1

Camera 2

Schematic of top view of the liquid jetEvolution of the two modes

Figure 5.6.: This schematic shows the evolution of the swirling mode (St = 4.6) of a liquid jet in a co-axial
airblast atomizer with gas swirl velocity ratio 0.5. Dashed lines in the diagrams on the right depict the
position of the liquid jet with the center being the location of the nozzle.

methods to construct spatially and temporally coherent velocity field of the flow. Specifically, we

propose a two step approach to compute the reduced-order velocity field. First, we use optical

flow methods to compute a dense estimation of the flow field using two snapshots at a time.

DMD is then applied on the flow field data to extract a reduced order model of the flow. This

velocity field can be used to advect the liquid-gas interface forward in time.

5.3.1. Optical Flow Methods

Velocity field estimation from experimental data is of fundamental importance in fluid mechan-

ics. Experimental image data generally comprises tracer particles populated in the domain of

interest and advected by the surrounding flow field. The motion of the tracer particles in time is

used to infer the underlying velocity field. One of the most widely used methods for flow veloc-

ity estimation is Particle Image Velocimetry (PIV) [123, 149] which uses local spatial correlation

between consecutive images for global estimation of the velocity field. When the particle density

is low, Particle Tracking Velocimetry (PTV) [102, 104] is used instead.

For multiphase flows, the most common non-intrusive visualization methods do not use tracer

particles, such as visual light shadowgraphy [66, 68], back-lit imaging [55] and X-ray flow visual-

ization [59, 60]. In back-lit imaging, an intense LED light is arranged behind the object of interest

(e.g., a spray) and directed into a camera. A shadow of the liquid region is then captured where

the liquid region is darker than the gas. In this study we are interested in recovering the velocity
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of the liquid-gas interface during the primary atomization of a liquid spray visualized through

back-lit imaging.

Optical flow methods are used to construct a vector field that captures the apparent motion

implied by consecutive images in time. Following the seminal work by [69], considerable progress

has been made on applying optical flow methods to estimate fluid flow velocities [97, 121, 155].

For a detailed review of optical flow methods used for fluid flow estimation and their comparison

with correlation based methods, the reader is referred to [96].

The optical flow problem is defined as follows. Let Ω ∈ R2 be an image section and (x, y) ∈ Ω

any point on it. Let t be the time within an interval [0, T]. The given image data can be represented

by an intensity function

I : Ω× [0, T]→ I(x, y, t). (5.4)

Our goal is to compute the velocity field w(x, y, t) = [u(x, y, t), v(x, y, t)]> that minimizes the

following objective function

J =
∫

Ω
‖I(x + udt, y + vdt, t + dt)− I(x, t)‖ dx (5.5)

at each time t. In the following sections we will describe the popular Horn-Schunck method and

a streamfunction based formulation of the optical flow problem.

Horn-Schunck Method

The Horn-Schunck (HS) method [69] models the evolution of the flow as governed by the

advection equation,

It(x, y, t) + w(x, y, t) · ∇I(x, y, t) = 0 (5.6)

where the operator ∇ is the gradient operator such that ∇I(x, y, t) = [Ix(x, y, t), Iy(x, y, t)]> and

It(x, y, t) is the time-derivative of I(x, y, t). This approximation holds for small displacements

w dt between consecutive snapshot images. The Horn-Schunck vector field w(x, y, t) is inferred
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by using the minimizer of

E(w) =
∫

Ω
(It(x, y, t) + w(x, y, t) · ∇I(x, y, t))2dΩ + α

∫
Ω
‖div(w)‖2 dΩ (5.7)

where only the first term depends on the image data and the second term is a regularization term

that penalizes the divergence of the velocity field and α is a user-selected parameter. Therefore

the underlying velocity field is given by

w∗ = arg min
w

E(w) (5.8)

This optimization problem is solved iteratively using the method described in [69] and shown

here for completeness. Using calculus of variations for the energy function given in Equation 5.7,

we get that u and v must satisfy the coupled equations,

I2
xu− Ix Iyv = α2∇2u− Ix It, (5.9)

Ix Iyu− I2
y u = α2∇2v− Iy It. (5.10)

At any time t, and spatial coordinates x and y, the spatial and temporal derivatives of the image

intensity field needed in Eq. (5.7) are approximated by the following simple finite difference

estimates,

Ix(x, y, t) ≈ 1
4

(
I(x + dx, y, t)− I(x, y, t)+ (5.11)

I(x + dx, y + dy, t)− I(x, y + dy, t)+

I(x + dx, y, t + dt)− I(x, y, t + dt)+

I(x + dx, y + dy, t + dt)− I(x, y + dy, t + dt)
)

,

Iy(x, y, t) ≈ 1
4

(
I(x, y + dy, t)− I(x, y, t)+ (5.12)

I(x + dx, y + dy, t)− I(x + dx, y, t)+

I(x, y + dy, t + dt)− I(x, y, t + dt)+

I(x + dx, y + dy, t + dt)− I(x + dx, y, t + dt)
)

,
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It(x, y, t) ≈ 1
4

(
I(x, y, t + dt)− I(x, y, t)+ (5.13)

I(x + dx, y, t + dt)− I(x + dx, y, t)+

I(x, y + dy, t + dt)− I(x, y + dy, t)+

I(x + dx, y + dy, t + dt)− I(x + dx, y + dy, t)
)

.

where dx and dy are given by the pixel resolution of the images and dt is the camera frame rate.

We solve these equations iteratively. Using a finite difference based approximation for the

Laplacians of u and v, we get the following iterative recursion for the new estimate for the

velocities (un+1, vn+1) based on the old estimates (un, vn),

un+1 = ūn − Ix[Ixūn + Iyv̄n + It]/(α2 + I2
x + I2

y), (5.14)

un+1 = ūn − Ix[Ixūn + Iyv̄n + It]/(α2 + I2
x + I2

y), (5.15)

where

ūn =
1
6

(
un(x + dx, y, t) + un(x, y + dy, t) (5.16)

+ un(x− dx, y, t) + un(x, y− dy, t)
)
+

1
12

(
un(x + dx, y + dy, t) + un(x + dy, y− dy, t)

+ un(x− dx, y + dy, t) + un(x− dx, y− dy, t)
)

,

v̄n =
1
6

(
vn(x + dx, y, t) + vn(x, y + dy, t) (5.17)

+ vn(x− dx, y, t) + vn(x, y− dy, t)
)
+

1
12

(
vn(x + dx, y + dy, t) + vn(x + dy, y− dy, t)

+ vn(x− dx, y + dy, t) + vn(x− dx, y− dy, t)
)

.

The natural boundary conditions for this discretization is a zero normal derivative at all bound-

aries. It is interesting to note that the new estimates of the velocity at some point (x, y), do not

depend directly on the previous estimates of the velocity at that point.
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Streamfunction Formulation

One of the limitations of optical flow methods is the color constancy constraint [61]. A direct

consequence of this constraint is that only the velocity field normal to the interface can be recov-

ered from the image data. To circumvent this problem, we use a global streamfunction [100, 101]

to describe the underlying velocity field. The streamfunction is estimated by formulating a cost

function similar to Equation (5.8) with an appropriate regularization term. The physical signif-

icance of using a streamfunction is the incompressibility constraint that is valid for fluid flows

at low Mach numbers. Similar formulations using physics based constraints such as Hemholtz

decomposition of the velocity fields [36] and spatial domain decomposition of the fluid flows [58]

have been used successfully for atmospheric flow estimation from satellite images.

We impose the incompressibility constraint on the flow by introducing a streamfunction φ such

that

(u, v) = ∇Hφ (5.18)

where ∇H is the symplectic gradient so that ∇Hφ = (−φy, φx). The streamfunction is computed

as the minimizer of

Eα(φ) =
∫

Ω
(It(x, t) +∇I(x, t) · ∇Hφ(x, t))2dΩ + (5.19)

α
∫

Ω
φ2

xx + φ2
xy + φ2

yx + φ2
yydΩ

where the second term is a regularization term similar to that used in the Horn-Schunck method.

The optimization problem is to find the streamfunction that minimizes the cost function Eα(φ)

for some given α. We apply zero-velocity normal velocity boundary conditions at all sides of the

domain which prevents the entry or exit of the flow from the domain. A second-order central

finite difference stencil is applied to construct the first order spatial derivatives and the symplectic

gradient operator. We define the operator A by

Avec(φ) = vec(∇I∇Hφ). (5.20)
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where vec is a function that vectorizes the matrix φ. The second order derivatives are computed us-

ing multiple operations of the first order derivatives. We denote the variation of the regularization

term using the matrix B defined as follows,

B = DT
xxDxx + DT

xyDxy + DT
yxDyx + DT

yyDyy, (5.21)

where the matrix Dij is such that Dijvec(φ) is the finite difference approximation of vec(φij) for

i, j ∈ {x, y}. The minimizer of the objective function in Equation (5.19) is given by the solution of

the following linear equation,

(AT A + α(B + BT))vec(φ) = −ATvec(It). (5.22)

We solve this equation using GMRES (Generalized Minimal Residual Algorithm) [127].

Image 1
Image 2

Estimate Flow

Warp⊕

Estimate Flow
...

Figure 5.7.: Schematic of the coarse-to-fine resolution in the multi-resolution scheme used for optical flow
estimation between two consecutive images. The ⊕ symbol is used to denote addition.

Multi-Resolution Scheme

The variational formulation used in optical flow estimation is limited to small displacements

wdt between consecutive images. In order to handle large displacements of the interface and

liquid droplets, as might occur when the image frame rate is low, we use a multiresolution scheme

around the variational methods described in the sections above [61]. The multiresolution scheme,
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also known as pyramidal scheme, works by generating a series of incrementally coarse-grained

images. This scheme can be applied with any optical flow estimation method. Let the two images

at consecutive time steps be I1 and I2. For some optical flow estimation method, let the estimated

velocity field be given by

w = F(I1, I2). (5.23)

For a d−level pyramidal scheme, we first down-sample the images d times to generate two series of

images with increasing resolution, {I0
1 , I1

1 , · · · , Id
1} and {I0

2 , I1
2 , · · · , Id

2} from I1 and I2 respectively

such that Id
1 = I1 and Id

2 = I2. At each level, flow estimation is conducted on subsampled images

to generate a coarse-grained velocity field. This velocity field is used to warp the finer level

images and the whole process is repeated. More formally, at any level k, the estimated velocity

field wk = (uk, vk) is given by

wk = wk−1 + F(Ik
1 , Ik

2(x + uk−1dt, y + vk−1dt)), (5.24)

where the recursion is started with w0 = F(I0
1 , I0

2 ). A schematic of the procedure is shown in

Figure 5.7. In this study we use a 5 step pyramidal scheme with a 2× refinement at each level for

both the Horn-Schunck and the streamfunction formulations.

5.3.2. Image Reconstruction

In this section we describe the method to advect the interface location using the estimated flow

field. At each time t, image reconstruction using the estimated flow field wr(x, t) is performed

using a displacement vector given by

dxr =
∫ t+dt

t
wr dt. (5.25)

The resulting image intensity field at each time is

Ir(x, t + dt) = I(x− dxr, t). (5.26)
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In the discrete setting, we perform a linear interpolation of the intensity field onto the pixel

locations. This allows for the reconstruction to have a sharp interface, which is crucial for

interpretable and accurate multiphase flow prediction.

5.3.3. Numerical and Experimental Results

In this section we present the results of applying the proposed method on a fabricated toy

problem, a planar liquid jet undergoing primary atomization and on back-lit images of a liquid

jet with a co-axial gas flow. We compare the optical flow based model reduction with Dynamic

Mode Decomposition (DMD) for the same input data of volume-of-fluid in the computational

domain. Model reduction using Horn-Schunck in conjunction with DMD will be referred to as

‘HS-DMD’ while we use ‘stream-DMD’ for streamfunction based optical flow estimation followed

by application of DMD.

Toy Problem

(a) initial condition (b) velocity field at t = 0.3

Figure 5.8.: (a) The initial condition for the flow advected by the velocity field corresponding to the
streamfunction in Equation (5.27). (b) The velocity field generated by the streamfunction at time t = 0.3.

The toy problem represents an oscillating drop and we choose data that is representative of

back-lit imaging data that is obtained from experiments. The initial snapshot at t = 0 is shown

in Figure 5.8 which represents a circular blob of fluid of radius r = 1 placed in the center of a
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[−2, 2]× [−2, 2] domain. The liquid is represented by the dark region and the surrounded white

region represents the gas phase. Similar to the volume of fluid formulation, the value q = 1

represents the liquid phase and q = 0 represents the gas phase. We advect the circular blob of

liquid using a velocity field derived from the following streamfuction

φ = (x2 − y2) sin(ωt) (5.27)

where ω = 3π/2. The computational domain in discretized into a uniform grid of [201× 201]

points and constant timestep of ∆ = 0.1 is used to advance the flow in time.

The resulting image snapshots have [201× 201] pixels and we collect 41 such snapshots for

a total time period of T = 4. The spatial and temporal resolution is low enough so that the

interface is not completely resolved which is similar to the features that are often observed in

real experimental multiphase flow images. Figure 5.9 shows images of the oscillating droplet at 4

different time points. The period of oscillation of the droplet is 2π/ω = 1.33 and therefore the

total time period consisted of 3 periods of oscillations of the droplet.

We compare the reconstruction of HS-DMD and stream-DMD with regular DMD for time t = 1

in Figure 5.10. The interface is completely smeared and diffused in the DMD reconstruction in

Figure 5.10b. On the other hand, the reconstruction using HS-DMD and stream-DMD both have

sharp interfaces close to the true snapshot shown in Figure 5.10a.

Reconstruction and Prediction Error

The quality of a data-driven reduced order model can be judged by the reconstruction and

prediction error. Reconstruction error is defined by the difference between the training data used

to learn the reduced order model and the reduced order data obtained from the model for the

same time points. In this study, we use the relative L2 error to find the difference between the

reduced order and full order data. Prediction error is defined by the relative L2 error between the

reduced order data, from the full order data, generated beyond the time points that were used to

learn the reduced order model.

To test the reconstruction and prediction capabilities of the reduced order models, we generate
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(a) t = 0 (b) t = 1

(c) t = 2 (d) t = 3

Figure 5.9.: Snapshots of the oscillating liquid drop at different time instances. The period of oscillation is
2π/ω = 1.33.

20 snapshots of training data for t ∈ [0, 2]. We compute the reconstruction error for the time period

t ∈ [0, 2] and prediction error for t ∈ [2, 4]. Figure 5.11 shows the reconstruction and prediction

error as a function of time for DMD, HS-DMD and stream-DMD. Although DMD is able to

reconstruct the first few snapshots accurately, it incurs considerably higher errors compared to

HS-DMD and stream-DMD during the reconstruction period (i.e., t ∈ [0, 2]). Towards to end of the

prediction period for t ∈ [3.5, 4], we see DMD and HS-DMD showing comparable errors. However,

the L2 error alone is not a good representative of the reduced order model performance, since

DMD reconstruction and prediction loses all interpretation since the interface is not sharp and well
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(a) true snapshot (b) DMD reconstruction

(c) HS-DMD reconstruction (d) stream-DMD reconstruction

Figure 5.10.: Comparison of (a) the true droplet snapshot at t = 1 to the reconstruction generated using
a rank 20 approximation generated using (b) DMD, (c) HS-DMD and (d) stream-DMD. The training
data consists of snapshots until t = 2 for HS-DMD and stream-DMD whereas regular DMD uses all the
snapshots from t ∈ [0, 4].

defined. For instance, even though the relative error is lower for the DMD prediction compared

to the HS-DMD prediction at t = 3, the HS-DMD prediction (Fig. 5.11c) more closely resembles

the true snapshot (Fig. 5.11b) compared to the DMD prediction (Fig. 5.11d). Finally, stream-DMD

outperforms both DMD and HS-DMD over almost the entire period in both reconstruction and

prediction.
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(a) reconstruction error

(b) true snapshot (c) HS-DMD prediction (d) DMD prediction

Figure 5.11.: (a) Relative error of reduced order reconstruction (t ∈ [0, 2]) and prediction (t ∈ [2, 4]) for
DMD (◦), HS-DMD (4) and stream-DMD (). The training data consists of snapshots until t = 2 for all
the reduced order models. (b) True snapshot of the oscillating drop at t = 3, while (c) and (d) show the
HS-DMD and the DMD predictions respectively.

Liquid Volume Conservation

We next look at the conservation of liquid in the computational domain with the reduced order

models. We define the total liquid proportion as the fraction of area in the entire computational

domain that is occupied by the liquid phase. This area can only be defined in the presence of a

sharp interface separating the liquid and the gas phases. Therefore, we only include the optical

flow based reduced order models in this analysis.

Since the velocity field is incompressible and no liquid phase is entering or leaving the compu-

tational domain, the area of liquid in the domain should remain unchanged during the course of

the simulation. The total liquid proportion is given by the area of the initial drop divided by the
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Figure 5.12.: Total liquid volume in the reconstruction (t ∈ [0, 2]) and prediction (t ∈ [2, 4]) periods of the
flow for HS-DMD (4) and stream-DMD ( ). The total liquid proportion is shown with (◦) and the ideal
accurate volume in the continuum limit is shown in solid line ( )

area of the entire computational domain. However due to numerical discretization, even the full

order model has some deviation from the full conservation of the total liquid volume.

Figure 5.12 shows the true total liquid volume has an oscillation around a constant mean

and the ideal liquid volume proportion in the continuum limit, given by π/16, is shown by a

solid black line. The total liquid proportion for HS-DMD and stream-DMD are also shown in

Figure 5.12. HS-DMD reconstruction and prediction has a consistently higher liquid proportion

than the true liquid proportion. The total liquid proportion of the flow generated by the HS-

DMD model oscillated around a mean that monotonically increases in time. On the other hand,

stream-DMD follows the true liquid proportion reasonably well in the reconstruction period of

t ∈ [0, 2] but loses liquid volume gradually in the prediction period of t ∈ [2, 4]. The superior

performance of stream-DMD compared to HS-DMD in total liquid volume conservation can be

explained by the volume preserving nature of the divergence-free velocity field generated by the

streamfunction formulation. This example demonstrates that physics-based constraints can bring

significant improvement in the performance of reduced order models.
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Figure 5.13.: A schematic of the computational domain of a planar liquid jet atomization simulation
with relevant scales indicated. The leftmost gray region indicates the liquid column width, whereas the
rightmost gray region indicates the sponge region

Numerical Planar Liquid Jet

To demonstrate the model reduction methodology on a more realistic flow, we construct a

reduced order model for a planar liquid jet with gas co-flow. The configuration of the flow is

schematically shown in Figure 5.13. We use the NGA multiphase flow solver for the simula-

tion ([41]). We impose the velocity profile of the incoming flow in Figure 5.13 using hyperbolic

tangent functions such that

u(0, y, t) =Ug,o +
1
2
(Ug,i −Ug,o) tanh

(
y +

D`

2
+ Dg

)
+ (5.28)

1
2
(U` −Ug,i) tanh

(
y +

D`

2

)
+

1
2
(Ug,i −U`) tanh

(
y− D`

2

)
+

1
2
(Ug,o −Ug,i) tanh

(
y− D`

2
− Dg

)
.

The simulation uses a volume-of-fluid (VOF) formulation [117] for tracking and locating the

liquid-gas interface. We restrict ourselves to only the VOF data as input for the model reduction

in order to resemble the back-lit images that can be captured for experimental flows. The flow

parameters used for the numerical simulation are shown in Table 5.1. All quantities in Table 5.1
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Parameter Description Value

D` Incoming liquid jet diameter 5
Dg Gas co-flow effective diameter 5

Lx, Ly Computational domain size 10
Ls Sponge size 1.5

Ug,i Gas co-flow inner velocity 10
Ug,o Gas co-flow outer velocity 10
ρg Gas relative density 1.2× 10−3

vmax Perturbation velocity amplitude 0.25
σ Perturbation kernel width 0.5
ω Perturbation velocity frequency π

Table 5.1.: Flow parameters used for the numerical simulation of a planar liquid jet with a gas co-flow. All
quantities are normalized by the liquid jet diameter D`, the liquid jet velocity U` and liquid jet density ρ`.

are normalized by the liquid jet diameter D`, liquid jet velocity U` and liquid jet density ρ`. The

Weber number for the flow is defined as We = ρgU2
gδg/γ = 33, where δg is the inflow vorticity

thickness and γ is the surface tension coefficient. The gas and liquid phase Reynolds numbers

are Reg = ρgUgDg/µg = 3.5× 106 and Re` = ρ`U`D`/µ` = 1× 106 respectively.

In order to reduce the time it takes for the liquid jet to break up and atomize, we modulate the

incoming jet with a sinusoidal vertical velocity perturbation. This perturbation is performed at

x = 0 and localized using Gaussian kernels at y1 = D`/2 and y2 = −D`/2, i.e. at the upper and

lower edge of the incoming liquid jet. The imposed vertical perturbation velocity, as a function of

x, y and time t, is of the form

v(0, y, t) = vmax

(
e−(y+y1)

2/σ2
+ e−(y+y2)

2/σ2
)

sin(ωt). (5.29)

The perturbation parameters such as vmax, σ and ω are given in Table 5.1. Snapshots of the flow

are collected at an interval of 0.1D`/U` and sample snapshots are shown in Figure 5.14. The

liquid phase is indicated by black pixels while the gas phase is indicated by white pixels.

Similar to the toy problem, we look at the reconstruction and prediction error for the planar

jet using DMD, HS-DMD and stream-DMD. Using a training period of only 5 snapshots from

t ∈ [0, 0.5], we will try to predict the flow for the time period t ∈ [0, 1]. We will see that although

DMD is able to reconstruct the flow very accurately for t ∈ [0, 0.5], it looses the prediction

capabilities completely for t ∈ [0.5, 1]. Figure 5.15 shows the comparison of the true snapshot
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(a) t = 0 (b) t = 0.5

(c) t = 1

Figure 5.14.: Snapshots of volume of fluid of a planar liquid jet in gas co-flow at different time instances.

with reduced order prediction from DMD, HS-DMD and stream-DMD for t = 1. The DMD

prediction at t = 1 in Figure 5.15b is nearly similar to the initial snapshot of the flow at t = 0. In

fact, all the prediction for t ∈ [0.5, 1] using DMD results in the same snapshot that looks identical

for the flow at t = 0. This is because the advection of the VOF field is a highly nonlinear process

which is approximated with a linear function in the DMD method. Although it leads to accurate

reconstruction when the flow snapshots are in the span of the columns of the data matrix, DMD

fails to predict the evolution of the flow in the testing time horizon. On the contrary, optical

flow based methods are able to learn the overall motion of the flow and are able to predict the
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(a) true snapshot at t = 1 (b) DMD prediction (t = 1)

(c) HS-DMD prediction (t = 1) (d) stream-DMD prediction (t = 1)

Figure 5.15.: Comparison of the (a) true snapshots with the reduced order prediction obtained by (b) DMD,
(c) HS-DMD and (d) stream-DMD compared for the numerical planar liquid jet with a gas co-flow.

future flow more reliably, as can be seen in Figure 5.15. HS-DMD can be seen to significantly

outperform stream-DMD for the flow prediction at t = 1. This can be explained by the incorrect

boundary conditions imposed for the streamfunction formulation. We use zero normal velocity

as the boundary conditions while in reality the liquid phase enters and leaves the domain from

the left and the right boundaries respectively. This discrepancy causes significant accumulation

of error for the predictions using the streamfunction formulation. Incorporation of more general

boundary conditions for the streamfunction formulation is part of ongoing investigation.

Finally, we look at the reconstruction and prediction error for the reduced order models for for
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Figure 5.16.: Relative error of reduced order reconstruction (t ∈ [0, 0.5]) and prediction (t ∈ [0.5, 1]) for
DMD (◦), HS-DMD (4) and stream-DMD ( ) for a numerical planar liquid jet. The training data
consists of snapshots until t = 0.5 for all the reduced order models.

all the reduced order models in Figure 5.16. As expected, even though DMD is able to reconstruct

the flow accurately, the relative error shoots up in the prediction region t ∈ [0.5, 1]. Due to the

discrepancy in the boundary conditions, we see HS-DMD outperform stream-DMD in both the

reconstruction and prediction of the planar liquid jet. HS-DMD outperforms both stream-DMD

and DMD in the prediction of the flow for all time points in the prediction region.

Experimental Liquid Jet with Co-axial Gas Atomizer

We now test the interface tracking algorithms on the experimental data described in Sec-

tion 5.2.1. Since we are using only images from one of the cameras, We consider the flow

configuration with no swirl velocity in the gas stream (case1). As such, both liquid and gas

flows only have axial velocity as they exit their respective nozzles. Back-lit imaging of the flow

is performed using a high-speed camera that captures images of the flow at a frame rate of 5000

frames per second (an image every 200 µs) with a exposure of 99µs. For this study, we set the

liquid Reynolds number Re` = 1100 and gas Reynolds number Reg = 21300. Figure 5.17 shows

the images of the flow at different times with intact liquid core as well as the droplets.

Our goal is to use only five snapshots of the flow, separated by ∆t = 200µs, and predict the

flow at five more time-steps in the future, so we have the flow images from t = [0, 1000µs] and
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(a) t = 0 (b) t = 1000 µs (c) t = 2000 µs

Figure 5.17.: Back-lit images of the experimental liquid jet with co-axial gas atomizer collected every 200 µs.

we need to predict the flow at t = 2000µs. We employ the same procedure as described in the

Section on the numerical jet. Figure 5.18 shows the comparison of the ground-truth with the

prediction using the reduced order models. For ease of visualization, we only show the interface

locations for the ground-truth and the predictions. The green contours represent the ground-truth,

magenta contours are the predicted interface locations and the black contours are regions where

the prediction matches the ground-truth exactly. Just like the numerical jet case, the DMD results

look similar to the flow at t = 0. HS-DMD and stream-DMD on the other hand advect the jet core

as well as the droplets downstream. The stream-DMD method gets high errors at the boundaries

of the image. This is due to the boundary conditions not matching the ground truth. Although the

streamfunction formulation shows good results for problems when the boundary conditions are

known, in practice it has significant errors at the boundaries. A fruitful direction for future work

is to incorporate boundary effects in the streamfunction formulation to reduce or even remove

the error at the boundaries. Figure 5.19 shows the reconstruction and prediction error for the
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(a) DMD prediction (b) HS-DMD prediction (c) stream-DMD prediction

Figure 5.18.: Comparison of the true snapshot of the experimental liquid jet with co-axial gas atomizer with
prediction obtained by (a) DMD, (b) HS-DMD and (c) stream-DMD. Only the interface is visualized for
clear comparison. The green contours represent the ground-truth, the magenta contours are the prediction
and black contours are the regions where the true snapshot and the prediction coincide.

reduced order models. Similar to the numerical jet, DMD is able to reconstruct the flow but has

significant relative errors in the prediction region t ∈ [1000µs, 2000µs]. The stream-DMD method

has the worst performance due to the high errors at the boundaries, while HS-DMD outperforms

both stream-DMD and DMD in the prediction of the flow.

5.4. Conclusion

In this study, we perform data-driven modal analysis and interface tracking of multiphase flows.

Specifically, we use Dynamic Mode Decomposition (DMD) [132] to analyze the flow of liquid

core within a swirling co-axial airblast atomizer. We perform back-lit imaging of the flow with

two synchronized high-speed cameras from orthogonal directions. Our study is composed of two
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Figure 5.19.: Relative error of reduced order reconstruction (t ∈ [0, 1000µs]) and prediction (t ∈
[1000µs, 2000µs]) for DMD (◦), HS-DMD (4) and stream-DMD ( ) for an experimental liquid jet with
co-axial gas atomizer. The training data consists of snapshots until t = 1000µs separated with ∆t = 200µs
for all the reduced order models.

parts. In the first part, we perform data-driven modal analysis of the flow to extract large-scale

instabilities of the liquid jet. The stereographic imaging of the flow using two camera allows to

capture the three-dimensional nature of the instabilities. While this analysis provides valuable

information about the spatio-temporal structure of flow instabilities, they are not sufficient to

resolve the location and shape of the interface. In the second part of the study, we propose a two-

step method of interface reconstruction and tracking using data-driven reduced order modeling.

We use optical flow methods to estimate the flow, which is used to construct a reduced order

model. This model is then used to track and predict the position of the liquid-gas interface in the

flow. The method is demonstrated on a fabricated toy problem, primary atomization of a planar

liquid jet and an experimental liquid jet with a co-axial gas atomizer. The reduced order model is

shown to preserve the sharpness of the interface and reliably reconstruct and predict the interface

location which is critical for understanding and controlling multiphase flows.

There are several avenues for future research. The current flow estimation methods do not

leverage synchronized images from multiple images. Extending the proposed method to integrate

images from multiple cameras will lead to more accurate flow estimation and, as a result, better

interface reconstruction and prediction. Another important application of reduced order modeling

of multiphase flows is for real-time control applications. Accurate prediction and reconstruction

of the flow will enable real-time image-based feedback control of multiphase flows [23, 115].
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CHAPTER 6

DISCUSSION AND FUTURE DIRECTIONS

In this dissertation, we introduce novel data-driven methods of reduced-order modeling, control

and sensing of fluid flows. First, we introduce low-rank Dynamic Mode Decomposition (lrDMD),

which is a data-driven non-intrusive reduced-order modeling method that approximates the

dynamics of the system using a linear map between different subspaces. This is a generalization

of the approach of existing methods that fit an endomorphic linear function to model the flow

dynamics. We show that the flexibility of using different input and output subspaces leads to

the design of better feedback controllers. The reduced-order model is constructed by solving

a rank-constrained matrix optimization problem. On the algorithmic side, we developed two

methods to solve the problem. The first method, is a computationally efficient subspace projection

method that provides an approximate solution. The second method is a gradient-based method

that is guaranteed to converge to a local minimum. We provide guidelines for the usage of

these methods to construct the reduced-order model. On the application side, we demonstrate

the superior performance of our method, compared to existing methods, on stabilization and

estimation of optimal actuator location for the linearized Ginzburg-Landau equations in the

supercritical regime. We also show that, compared to existing methods, feedback control using

our method leads to faster and more efficient suppression of vortex shedding in the wake of an

inclined flat plate in uniform flow.

Second, we developed a sensor placement framework for fluid flows, which can work in con-

junction with any reduced-order modeling technique that provides a linear description of the

flow dynamics. We use the Kalman filter equations to provide closed-form expressions of the

estimate of the state vector for a given placement of sensors. An adjoint-based framework is used

to find the optimal sensor locations. We propose different objective functions for the prediction

104



and control applications. For flow reconstruction and prediction, we minimize the trace of an em-

pirical approximation of the estimation error covariance matrix. We demonstrate this approach

with accurate reconstruction and prediction of solutions of the complex linearized Ginzburg-

Landau equations in the globally unstable regime. For control applications, we propose using

weighted estimation error, where the weights are determined by the control gain matrix used

in the feedback controller. We show that our method places sensors enabling better estimates,

compared to existing methods, for flow reconstruction and prediction applications. Using this

approach, we also place sensors in the wake of over an inclined flat plate to yield the near-optimal

observer-based feedback control performance.

Third, we demonstrate that current methods for data-driven modeling of fluid flows are not

suitable for reconstruction and prediction of the interface location in multiphase flows. To that

end, we develop a novel data-driven two-step approach for reduced order modeling of multiphase

flows using imaging data. Our method uses Dynamic Mode Decomposition (DMD) on the optical

flow field estimated from consecutive image snapshots. We demonstrate the performance of

our method on a real experiment of liquid jet surrounded by a coaxial airblast atomizer that is

visualized using back-lit imaging. Our method is able to accurately reconstruct and predict the

flow while preserving the sharpness of the liquid-gas interface.

6.1. Future Work

There are several avenues for future work. Here we describe two research directions in detail.

First, we formulate a way to incorporate the effect of control in the low-rank Dynamic Mode

Decomposition (lrDMD) framework. Second, we propose a new method for stochastic flow

control using hidden Markov models.

6.1.1. lrDMD with Control

The lrDMD framework can easily be extended to incorporate the effect of control. Consider a

dynamical system with state vector q ∈ Rm such that

qk+1 = f (qk, uk),
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where u ∈ Rp is the control input and the subscripts denote the time iteration. We have access to a

sequence of time snapshots of the state vector which we represent as a data matrices X, Y ∈ Rm×n

formed by n pairs of data snapshots as follows,

X := [q0| . . . |qn−1], Y := [q1| . . . |qn].

We additionally have access to a sequence of control inputs which we arrange in the following

matrix

Ω := [u0| . . . |un−1].

Our goal is to use matrices X, Y and Ω to obtain a low-order approximation of the function f (·).

To this end, we construct a linear approximation of f in both the state q and u such that

f (q, u) = Âx + B̂u.

Along with a rank-constraint on the system dynamical matrix, we get the following optimization

problem

min
L,D,R,B

∥∥∥Y− LDRTX− LBΩ
∥∥∥2

F
, (6.1)

where D ∈ Rr×r, B ∈ Rr×p, L, R ∈ Rm×r and LT L = RTR = Ir (where Ir is the r × r identity

matrix) such that Â = LDRT is the r-ranked matrix approximating the state dynamics and B̂ = LB

accounts for the effect of control input on the state evolution.

For a fixed L and R we observe that the objective function is convex for both D and B. The

optimality conditions for the solution of D and B for fixed L and R are

D(RTXXTR) + B(ΩXTR) = LTYXTR,

B(ΩΩT) + D(RTXΩT) = LTYΩT,
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which can be rewritten as

[
D B

] RTXXTR ΩXTR

RTXΩT ΩΩT

 =

[
LTYXTR LTYΩT

]
(6.2)

We propose two ways to solve this problem. Both methods work with an initial guess for the

optimal (L, R) which can be obtained from leading singular vectors of the data matrices as shown

in Section 3.3. The first method is alternating minimization by solving for optimal (D, B) for fixed

(L, R) by solving Eq. (6.2) followed by gradient based minimization of the objective function (6.1)

for fixed (D, B). The second method is to use Schur complements to get closed form expressions

for the optimal (D∗(L, R), B∗(L, R)), substitute that in the objective function 6.1 and use gradient

based methods to find on optimal (L, R) solution.

6.1.2. Stochastic Flow Control using Hidden Markov Models

The data-driven methods proposed in this thesis construct finite dimensional approximation of

the Koopman operator. Alternatively, there has also been work on using the dual of the Koopman

operator, called the Perron-Frobenius operator, for flow modeling and control. While Koopman

operator acts on the space of functions of the state vector, the Perron-Frobenius operator describes

the evolution of measures (or probability densities). A classical approach to approximate the

Perron-Frobenius operator is Ulam’s method [40], in which the state space is partitioned into finite

number of disjoint sets and the transition probabilities between these sets is numerically estimated.

The resulting state transition matrix is shown to approximate the Perron-Frobenius operator. More

recent data-driven methods of approximating the Perron-Frobenious operator draw inspiration

from dynamic mode decomposition and exploit the duality between the Koopman and the Perron-

Frobenius operator [51, 72].

In this subsection, we propose using input-output hidden Markov models, i.e. partially ob-

served Markov models parameterized by control input, to model the dynamics of the system

and formulate a control framework that drives the system to the desired asymptotic behaviour.

The proposed method can be viewed as a generalization of cluster-based reduced-order models

(CROM) [81] which approximates the Perron-Frobenius operator and has been used to reduce
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the size of recirculation area of a separating flow over a smoothly contoured ramp. We pose the

control problem as a combinatorial optimization problem and demonstrate the performance of

our method by driving the asymptotic probability distribution of the Lorenz system to a desired

distribution.

Preliminaries

Consider a finite state dynamical system with the following state-space description

qk = f (qk−1, uk−1),

yk = g(qk),

where uk is the input, yk is the output and qk is the state variable at time iteration k. Let Q be the

set of feasible states with |Q| = m, Σ be the set of possible outputs with |Σ| = p and Ω = [ωi] be

the set of possible inputs with |Ω| = d.

We look at the probabilistic version of this system where the current input and state distribution

is used to estimate the state distribution and output distribution at the next time step. Since f (·)

is a function of both q and u, we consider d state transition matrices A = [A1, . . . , Ad] where the

entries of the transition matrix Ai = [as,t,i] denote the probability of transition from state s to state

t under the action of control input i ∈ Ω. We define the distribution of the initial condition q0

with P(q0 = s) = p0,s. The output function g(·) is modeled by the emission probability matrix

E = [es,i] whose entries es,i indicate the probability of emission of output i from state s. This is

known as an input-output hidden Markov model (I/O HMM).

Figure 6.1 shows the schematic of the I/O HMM architecture with the Bayesian dependence of

the variables indicated by arrows. The top layer contains the input variables u; the middle layer

contains the hidden state variables q; and the bottom layer contains the observed output variables

y. The total number of unknown parameters including all the matrices is ((m− 1)d + (m− 1)p +

m− 1).

We have the following objectives.

• Model Learning We need a way to learn the I/O HMM model parameters θ = (A, E, p0)

from a set of observation yn := {y0, . . . , yn} and control inputs un−1 = {u0, . . . , un−1}.

108



qk−1

uk−1

yk−1

qk

uk

yk

qk+1

uk+1

yk+1

Figure 6.1.: Schematic of the I/O HMM architecture. The shaded nodes are observed information while
white nodes are hidden random variables.

• Control Framework We need a control law to perform stochastic control of the flow using

the I/O HMM model learned from data.

Model Learning

An important property of the Markov model is that given state qk, states qk+1 and qk−1 are

independent of each other, i.e.

qk+1 ⊥ qk−1 | qk.

This is known as the Markovian property of the model. This property allows for the use of

dynamic programming for efficient computation of posterior probability for a given set of obser-

vations yn and control inputs un−1. We use the Baum-Welch algorithm [16] find the maximum

likelihood estimate of model parameters θ = (A, E, p0) by maximizing

P(yn|θ, un−1) = ∑
qn

P(qn, yn|θ, un−1).

Control Framework

In several engineering applications, control of asymptotic behavior is of interest. For ergodic

systems, the infinite horizon average can be represented in terms of the spatial average weighted

by the asymptotic probability density function. In this study we construct feedback controllers
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that manipulate the asymptotic probability density function p∞ ∈ Rm. The goal is to construct a

controller that minimizes the expected cost of the asymptotic behavior of the system given by

E(J) = ∑
s∈Q

c(s) · p∞
s

where c(s) is the cost associated with the hidden state s ∈ Q. The cost is given by

c(s) = ∑
k∈Σ

Es,k c̃(k)

where c̃ is the cost associated with the observation k ∈ Σ.

Remark 6.1.1. We can also drive the asymptotic probability distribution to a desired distribution

by minimizing the following quadratic cost function

∑
s∈Q

(pd
s − p∞

s )
2

where pd ∈ Rm is the desired distribution.

Belief Propagation

We design the control law such that at each time step, the controller chooses a control input u ∈ Ω

based on the hidden state of the system at that time step. To do this at any given time step i we

define a new variable called belief b ∈ [0, 1]m, where

bs = P(qi = s|yi, ui−1, θ).

Clearly we have that ∑
s∈Q

bs = 1 and the belief coincides with p0 for the initial condition. If the

belief from the previous iteration i − 1 is denoted as b̃ ∈ Rm, ui−1 is the control input at the

previous iteration and yi is the observation of the current iteration, the updated belief b ∈ Rm is

given by

bs = Es,yi ∑
t∈Q

At,s,ui−1 b̃t.
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We pick the hidden state with the highest belief value at each iteration for choose the control

input based on the control law.

Control Law

The control law Λ : Q → Ω picks a control input depending on the hidden state with the higher

belief at each iteration. We define a decision variable z ∈ {0, 1}m×d where zs,k = 1 if and only if

Λ(qs) = ωk. The state transition matrix, denoted by Â, of the system controlled using the control

law Λ can be build as follows,

Âs,t = As,t,Λ(s).

We also introduce a variable p ∈ [0, 1]m which is the asymptotic probability distribution of the

system. We require the following constraints,

m

∑
s=1

ps = 1

Âp = p.

Under the above constraints, we minimize the cost function

E(Λ) = ∑
s∈Q

c(s) · ps,

using combinatorial optimization techniques. We use Gurobi [114], which is an efficient solver

for mixed linear integer programs, to perform the optimization.

Remark 6.1.2. An alternate approach would be a stochastic controller that chooses the control

input based only the belief with probability given by

P(ui = Λ(s)) = bs

where b is the belief at time step i and s ∈ Q.
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(a) (b) (c)

Figure 6.2.: Feedback stochastic control of the Lorenz system using data-driven reduced-order modeling.
(a) Data-driven discretization of the state space of the Lorenz system into 5 clusters differentiated by color.
Black dots represent the cluster centroids. (b) Bayesian Information Criteria (BIC) for increasing number of
hidden states for the Lorenz system. (c) Comparison of asymptotic average cost using a random controller,
CROM based controller and I/O HMM based controller.

Results

We employ I/O HMM control framework to control the transitions and manipulate the station-

ary distribution of the Lorenz system. Consider the Lorenz system with the following state-space

description,

dx
dt

= σ(y− x) + f (x, y, z, t)

dy
dt

= x(ρ− z)− y

dz
dt

= xy− βz

where σ = 10, ρ = 28, β = 8/3 and f (x, y, z) is the forcing term. This system is nonlinear, chaotic

and for f = 0 it has three unstable fixed points at (0, 0, 0) and (±
√

72,±
√

72, 27). We generate

training data from this system with δt = 0.1 for a time period T = 100 under uniform random

forcing with Ω = {−10, 0, 10}. The state space is discretized into p = 5 clusters using K-means

algorithm [8] as shown in Figure 6.2a. Clusters 2 (light blue) and 4 (orange) reside in the left

wing of the Lorenz system while clusters 1 (blue) and 5 (yellow) belong to the right wing. Cluster

3 (green) acts as a transition cluster between the two wings. This training data is then used to

generate parameterized CROM and I/O HMM with increasing number of hidden states m.

112



We use the Bayesian Information Criteria (BIC) [136] for selecting the I/O HMM model for

given observation sequence. BIC is given by

BIC = ln(2n)((m− 1)d + (m− 1)p + m− 1)− 2 ln

(
∑

s∈Q
f [s, n]

)
.

The model with the lowest BIC is selected. Figure 6.2b shows I/O HMM model with m = 10

has the lowest BIC score. The cost function for the optimization at any cluster is defined as the

distance of the cluster centroid for the centroid of cluster 2. This is intended to drive the system

to towards the left wing of the Lorenz system. Figure 6.2c shows comparison of cost incurred by

a random controller, CROM based controller and I/O HMM controller with m = 10. It is clear

that I/O HMM based controller outperforms CROM in this case.

Outlook

The results shown above on the Lorenz system serve as a proof-of-concept for the proposed

approach of stochastic control of fluid flows. In future work, this method can be applied to more

realistic fluid flow data, either from numerical simulations or real experiments. Moreover, the

current framework can be extended to allow adaptive online learning or reinforcement learning,

in which the reduced-order model is updated as new observations are gathered during the flow

control application. Similar machine learning techniques have been successfully applied for active

flow control [22, 46, 122] and hold the potential to enable robust flow control strategies for several

real-life applications.
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APPENDIX A

SUPPLEMENTARY RESULTS

A.1. Comparison of lrDMD with ERA

ERA [79] is a system identification method proposed for linear systems. Consider a linear

system with state variable q ∈ Rm and control input u ∈ Rp governed by the equation

qk+1 = Aqk + Buk

where subscripts denote the time iteration, A ∈ Rm×m is the state transition matrix and B ∈ Rm×p

captures the effect of control on the state variable. The data matrix X ∈ Rm×p(mc+1) using impulse

response of this system will be

X =

[
B AB · · · Amc B

]

where mc + 1 is the number of snapshots.

The first step of the ERA method is to form Hankel matrices from impulse response data of the

system. We construct a generalized Hankel matrix H ∈ Rm(mo+1)×p(mc+1)

H =



B AB · · · Amc B

AB A2B · · · Amc+1B
...

...
. . .

...

Amo B Amo+1B · · · Amo+mc B


where mc and mo are chosen such that mc + mo ≤ m. We then compute the singular value
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(a) (b)

Figure A.1.: (a) Projection error for the unstable eigenmode and (b)Projection error for the unstable adjoint
mode for DMD (red, circle), OMD (blue, cross), lrDMD (green, square) and ERA (black, diamond) for
different rank approximations.

decomposition of H to obtain left and right singular vectors U ∈ Rm(mo+1)×p(mc+1) and V ∈

Rp(mc+1)×p(mc+1), and the diagonal matrix with decreasing singular values Σ ∈ Rp(mc+1)×p(mc+1)

such that

H = UΣVT.

The primal modes φ ∈ Rm×p(mc+1) and adjoint modes ψ ∈ Rp(mc+1) are given by

φ = XVΣ−1/2

ψ = φ(φTφ)−1.

To compare the projection error for r-ranked reduced order model, we consider the r leading

columns φ and ψ to get φr and ψr respectively. The projection errors for eigenmode v and

adjoint mode w are given by ε(v, φr) and ε(w, ψr) where ε(·) is defined in Equation (3.15). For

consistency with Section 3.4.1, we use mc = 14 so that we use the same number of snapshots in

the data matrix X. mo is chosen to be 4. The comparison of projection error of lrDMD, OMD

and DMD with ERA is shown in Figure A.1. Even though ERA has the same projection error

for the unstable eigenmode compared to DMD, it shows significant improvement in the unstable
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(a) (b)

Figure A.2.: (a) Projection error for the unstable eigenmode and (b)Projection error for the unstable adjoint
mode for lrDMD (green, square), ERA with mo = 4 (black, diamond) and ERA with mo = 15 for different
rank approximations.

adjoint mode projection error. As seen in Figure A.1b, lrDMD outperforms ERA only at ranks

higher than 5. However, Figure A.2 shows that increasing mo improves ERA performance in

adjoint projection error and even outperforms lrDMD although having the same higher error in

eigenmode projection. This shows that adding delay coordinates by increasing mo can significantly

decrease the adjoint projection error but does not affect the eigenmode projection.

A.2. Model Parameters Optimization for Flow Reconstruction

In this appendix we give the closed form expressions for computing the gradient of the

Lagrangian described in Equation 4.7 with respect to the state transition matrix A, the low-

dimensional basis L and the observation matrix C. The gradients are as follows,

∂L
∂A

=
n−1

∑
k=0

ηk+1|kaH
k|k

+ (Λ + ΛH)AΣ(I − LHCHS−1CLΣ),

∂L
∂L

=
n

∑
k=1

CHKHηk|kaH
k|k−1 +

n−1

∑
k=1

ηk+1|kuH
k BH

+ CHS−1HHΣ + CH(T + TH)CLΣ + WL(Λ + ΛH)

− CHS−1CLΣAH(Λ + ΛH)AΣ
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+ q0ηH
0|0 +

n

∑
k=1

(Lak|k − qk)aH
k|k,

∂L
∂C

=
n

∑
k=1

KHηH
k|k(qk − Lak|k−1)

H − S−1CLΣAH(Λ + ΛH)AΣLH.

These gradients can be used to update the reduced-order model A, the low-dimensional sub-

space basis L and observation matrix C to optimize the objective function J described in Equa-

tion 4.4.

A.3. Optimization of Sensor Parameters

In this section we optimize for both the sensor location xs and the shape parameter σ simul-

taneously for the Ginzburg-Landau system (Section 4.4.1). We also impose a constraint that the

sensor shape parameter can not exceed 2, i.e. σ ≤ 2. The setup of the Ginzburg-Landau system

and data collection is the same as described in Section 4.4.1. The number of snapshots used as the

training data is n = 200 and the rank of the reduced-order operator is r = 10. In this section we

find optimal sensor locations and shape parameters for number of sensors p ∈ {1, 2, 3, 4, 5} using

the DMD reduced-order model and the full-order model. We then compare the performance of

the estimation error for varying lengths of time horizons nt ∈ {100, 200, 300, 400}.

Figure A.3 shows the sensor locations and shape parameters obtained using the DMD reduced-

order model and the full-order model for number of sensors p ∈ {1, 2, 3, 4, 5}. The value of

the shape parameter σ is signified as an interval of length σ around the sensor location xs. In

Figure A.3a, we see that the sensor locations and shape parameter values obtained using the

reduced-order model closely approximate the solution using the full-order model. Moreover,

time taken by by the reduced-order models is significantly lower than the full-order model (Fig-

ure A.3b). Finally, Figure A.3c and Figure A.3d show that for nt ∈ {100, 200, 300}, the median

relative estimation error of the DMD reduced-order model compared to the full-order model is

greater than one. This shows that the reduced-order model outperforms the full-order model in

terms of estimation error when the number of sensors p ∈ {1, 2, 3, 4, 5} and the time horizon is

short nt ≤ 300.
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Figure A.3.: Simultaneous optimization of sensor location and shape parameter for the Ginzburg-Landau
system. (a) The location of sensors and sensor shape parameters (indicated by an interval around the sensor
location) obtained using the DMD reduced-order model and the full-order model (baseline) for different
number of sensors. (b) Time taken to place different number of sensors using the DMD reduced-order
model and the full-order model. Relative estimation error of the reduced-order model compared to the
full-order model (baseline) for 20 independent simulation with random initial conditions for number of
sensors (c) p = 1 and (d) p = 5, rank r = 10 and noise levels v = 0.01 and w = 0.01.

A.4. Data-driven Modal Analysis

A.4.1. Modal Decomposition

We have seen in Section 2.1.3, DMD provides a data-driven linear description of the dynamics

of a system for a given set of snapshots. In this section we will show how DMD provides a

decomposition of the flow as a linear combination of modes, each with a characteristic frequency
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of oscillation. Consider the spatio-temporal flow field w(x, t) that can be expanded as follows

w(x, t) =
r

∑
k=1

ak(t)φk(x)αk (A.1)

where r is the number of modes, αk is the magnitude of the contribution of the mode, while φk(x)

is the spatial support and ak(t) is the temporal dynamics of the mode. DMD performs modal

decomposition in such a way that the resulting modes have a single frequency dynamics. So if φk

are the DMD modes, the temporal dynamics ak(t) for the mode can be written as

ak(t) = eiωkt, (A.2)

where ωk ∈ C. The real part of ωk gives the frequency of oscillation for the mode φk(x), while

the imaginary part is the decay rate of the mode. Self-sustaining modes have real ωk value while

transient modes have a positive imaginary component in ωk resulting in a decaying mode.

Let A ∈ Rr×r be the r-ranked linear model for the flow provided by the DMD algorithm (see

Section 2.1.3). This operator is used to generate the DMD modes and the associated oscillation

frequencies. First, the eigenvalues and eigenvectors of A are found such that

AW = WΛ, (A.3)

where the columns of the matrix W are the eigenvectors of A and Λ is the diagonal matrix built

with the eigenvalues λk. Here λk is an approximation of e(iωk∆t). Therefore, the frequency of

oscillation of the DMD modes is given by Imag(ln(λk))/∆t while the exponential growth rate is

given by Real(ln(λk))/∆t. Finally, the DMD modes are given by

Φ = UW (A.4)

where the columns of the matrix Φ are the DMD modes, i.e. Φ := [φ1 · · · φr].
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A.4.2. Mode Amplitude Estimation

Let V j
i denote a matrix with columns given by the flow snapshots such that V j

i = [w(x, ti), · · · , w(x, tj)].

There are several ways of defining the amplitudes {α1, · · · , αk} of the DMD modes {φ1, · · · , φk}.

One of the simplest ways is to look at the projection of the first snapshot V0
0 onto the DMD modes

Φ. However, this does not account for the higher contribution of the temporally growing DMD

modes and lower contribution of decaying DMD modes in the flow. Instead, we employ the

method described in [77] to compute the optimal amplitudes of the DMD modes. Consider the

modal decomposition described in Equation A.1 in the matrix form

Vn−1
0 = Φ Dα R (A.5)

where Dα is the diagonal matrix of the DMD mode amplitudes {α1, · · · , αr} and R is the following

Vandermonde matrix,

R =



1 λ1 · · · λn−1
1

1 λ2 · · · λn−1
2

...
...

. . .
...

1 λr · · · λn−1
r


. (A.6)

Let the vector α be defined as

α :=


α1
...

αr

 . (A.7)

We find the optimal amplitudes α by solving the following optimization problem

min
α

∥∥∥Vn−1
0 −Φ Dα R

∥∥∥2

F
(A.8)
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where ‖A‖F is the Frobenius norm of A. This optimization problem is convex and can be solved

using the least-squares approach. The optimal solution is given by

α = P−1q (A.9)

where P = Φ∗Φ ◦ (RR∗) and q = diag(RVΣT). The overline represents complex-conjuate of a

matrix or a vector while diag of a matrix is a vector determined by the main diagonal of the given

matrix.

Accounting for Experimental Noise

In any experimental data, there is going to be some noise in the estimated eigenvalues of the

flow dynamics. To account for the noise, we run the experiment at the same flow conditions

p > 1 times and the imaging data is collected independently. In this study we choose p = 5. The

following smoothing technique is then employed to find the dominant frequencies in the flow.

Let αi,j and fi,j be the amplitude and frequency of oscillation respectively for the i-th DMD

mode in the j-th run of the experiment at the same flow conditions. We use a Gaussian kernel

κ( f , f ′) = exp(( f − f ′)/(2σ)) with σ = 0.01 to filter the DMD mode amplitude profiles where f

and f ′ are frequencies. The estimated amplitude α is a function of the frequency f such that

α( f ) =
1
p

r

∑
i=1

p

∑
j=1

κ( f , fi,j)αi,j. (A.10)

For our experimental data we observe that the resulting amplitude profile α( f ) is more robust to

the choice of the number r of DMD modes compared to the frequency spectrum extracted from a

single run of the experiment.

A.5. Stationary Modes of Liquid Jet with a Co-axial Airblast Atomizer

Figure A.4 shows the stationary DMD modes, corresponding to St = 0, for a liquid core

surrounded by a co-axial airblast atomizer without swirling gas-stream and with gas velocity

swirl ratio of 0.5. While these modes do not provide information about the temporal dynamics of

the flow, they can elucidate physically important parameters of the flow such as spray angle [23].
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Camera 1 Camera 2
(a) no swirl

Camera 1 Camera 2
(b) with swirl

Figure A.4.: Stationary DMD mode corresponding to St = 0 for the flow (a) case 1 (with no swirling gas)
and (b) case 2 (with swirl ratio of 0.5). For both the cases, The liquid Reynolds number Re` = 1100 and gas
Reynolds number Reg = 21300.

In Figure A.4, we see that the liquid core shape is consistent with the two orthogonally facing

cameras for both the flow conditions, with higher spray angle for the flow with gas velocity swirl

ratio of 0.5.
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