
c© 2021 Puoya Tabaghi

MACHINE LEARNING IN SPACE FORMS:
EMBEDDINGS, CLASSIFICATION, AND SIMILARITY COMPARISONS

BY

PUOYA TABAGHI

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois Urbana-Champaign, 2021

Urbana, Illinois

Doctoral Committee:

Associate Professor Ivan Dokmanić, Chair
Professor Olgica Milenković
Professor Bruce Hajek
Associate Professor Maxim Raginsky

ABSTRACT

We take a non-Euclidean view at three classical machine learning subjects:

low-dimensional embedding, classification, and similarity comparisons.

We first introduce kinetic Euclidean distance matrices to solve kinetic

distance geometry problems. In distance geometry problems (DGPs), the task

is to find a geometric representation, that is, an embedding, for a collection

of entities consistent with pairwise distance (metric) or similarity (nonmetric)

measurements. In kinetic DGPs, the twist is that the points are dynamic. And

our goal is to localize them by exploiting the information about their trajectory

class. We show that a semidefinite relaxation can reconstruct trajectories from

incomplete, noisy, time-varying distance observations. We then introduce

another distance-geometric object: hyperbolic distance matrices. Recent works

have focused on hyperbolic embedding methods for low-distortion embedding

of distance measurements associated with hierarchical data. We derive a

semidefinite relaxation to estimate the missing distance measurements and

denoise them. Further, we formalize the hyperbolic Procrustes analysis, which

uses extraneous information in the form of anchor points, to uniquely identify

the embedded points.

Next, we address the design of learning algorithms in mixed-curvature

spaces. Learning algorithms in low-dimensional mixed-curvature spaces have

been limited to certain non-Euclidean neural networks. Here, we study the

problem of learning a linear classifier (a perceptron) in product of Euclidean,

spherical, and hyperbolic spaces, i.e., space forms. We introduce a notion

of linear separation surfaces in Riemannian manifolds and use a metric that

renders distances in different space forms compatible with each other and

integrates them into one classifier.

Lastly, we show how similarity comparisons carry information about the

underlying space of geometric graphs. We introduce the ordinal spread

of a distance list and relate it to the ordinal capacity of their underlying

ii

space, a notion that quantifies the space’s ability to host extreme patterns in

nonmetric measurements. Then, we use the distribution of random ordinal

spread variables as a practical tool to identify the underlying space form.

iii

To my parents, Mehri and Javad.

iv

ACKNOWLEDGMENTS

I have been extremely fortunate to study at UIUC and have the opportunity

to be inspired by many talented people during my PhD studies. From day

one, Professor Dokmanić was a positive, energetic, and supportive force as he

taught me how to be a researcher. He encouraged me to branch out, utilize

experimental techniques, develop theories, and present our findings in the

most palatable ways. I have been lucky to work with such a brilliant and

caring advisor. I will continue to admire him as a role model throughout my

scientific career.

I joined Professor Milenkovic’s research group in 2020, shortly after Professor

Dokmanić moved to Europe. Professor Milenkovic’s effective leadership,

breadth of knowledge, creative mindset, and supportive role for students

never stop to inspire me. I simply cannot thank her enough for believing in

me and my abilities even when, at times, I did not.

I would like to thank the members of my doctoral committee: Professor

Raginsky and Professor Hajek. They have given me excellent suggestions

regarding the greater scope and the presentation of my work. Finally, special

thanks to my friends and colleagues who made these years a great learning

experience: Sidharth, Eli, Chao, Konik, and Jianhao.

v

TABLE OF CONTENTS

LIST OF SYMBOLS . viii

CHAPTER 1 INTRODUCTION . 1
1.1 Overview of Contributions . 3

CHAPTER 2 KINETIC EUCLIDEAN DISTANCE MATRICES . . . 6
2.1 Introduction . 6
2.2 Static and Kinetic Distance Geometry Problems 9
2.3 Trajectory Models and Basis Gramians 15
2.4 Computing the KEDM from Noisy, Incomplete Data by

Semidefinite Programming . 19
2.5 Spectral Factorization of the Gramian 23
2.6 Simulation Results . 27
2.7 Conclusion . 35

CHAPTER 3 HYPERBOLIC DISTANCE MATRICES 37
3.1 Introduction . 37
3.2 Hyperbolic Distance Geometry Problems 40
3.3 Hyperbolic Distance Matrices 44
3.4 Experimental Results . 52
3.5 Conclusion . 57

CHAPTER 4 HYPERBOLIC PROCRUSTES ANALYSIS 58
4.1 Introduction . 58
4.2 Isometries in the ’Loid Model 61
4.3 Procrustes Analysis . 62
4.4 Numerical Analysis . 67
4.5 Conclusion . 68

CHAPTER 5 LINEAR CLASSIFIERS IN PRODUCT SPACE FORMS 69
5.1 Introduction . 69
5.2 Linear Classifiers in Euclidean Space 71
5.3 Linear Classifiers in Space Forms 73
5.4 Linear Classifiers in Product Space Forms 77
5.5 Numerical Experiments: Real-world Datasets 84
5.6 Conclusion . 86

vi

CHAPTER 6 GEOMETRY OF SIMILARITY MEASUREMENTS . 88
6.1 Introduction . 88
6.2 The Ordinal Spread . 92
6.3 The Ordinal Capacity . 96
6.4 The Support of Ordinal Spread Random Variables 99
6.5 Numerical Experiments: Single-cell RNA Sequencing Data . . 101
6.6 Conclusion . 104

APPENDIX A KINETIC EUCLIDEAN DISTANCE MATRICES . . 105
A.1 Spectral Factorization of the Time-varying Gramians 105
A.2 Proof of Proposition 1 . 106
A.3 Proof of Proposition 2 . 106
A.4 Proof of Proposition 3 . 106
A.5 Proof of Proposition 4 . 107
A.6 Proof of Proposition 5 . 107

APPENDIX B HYPERBOLIC DISTANCE MATRICES 108
B.1 Proof of Proposition 6 . 108
B.2 Derivations for Algorithm 6 109
B.3 The Projection Map — Project : Rd → Ld 112
B.4 Proof Outline of Proposition 7 114

APPENDIX C HYPERBOLIC PROCRUSTES ANALYSIS 115
C.1 Proof of Proposition 8 . 115
C.2 Proof of Proposition 9 . 116

APPENDIX D LINEAR CLASSIFIERS IN PRODUCT SPACE
FORMS . 117
D.1 Proof of Proposition 10 . 117
D.2 Proof of Proposition 11 . 120
D.3 Proof of Theorem 1 . 121
D.4 Proof of Proposition 12 . 124
D.5 Proof of Theorem 2 . 125
D.6 Proof of Theorem 3 . 128
D.7 Proof of Proposition 13 . 130
D.8 Experiments . 132

APPENDIX E GEOMETRY OF SIMILARITY MEASUREMENTS . 138
E.1 Proof of Proposition 14 . 138
E.2 Proof of Theorem 4 . 139
E.3 Proof of Theorem 5 . 146
E.4 Proof of Proposition 15 . 148
E.5 Numerical Experiments . 148
E.6 Nonmetric Embedding Algorithms 156

REFERENCES . 161

vii

LIST OF SYMBOLS

[N] Short for {1, . . . , N}
[N]2as Asymmetric pairs {(i, j) : i < j, i, j ∈ [N]}
x = (x0, . . . , xd−1)> A vector in Rd
X = (xi,j)i∈[d1],j∈[d2] A matrix in Rd1×d2
X � 0 A positive semidefinite (square) matrix
‖X‖F Frobenius norm of X
‖X‖2 Operator norm of X
‖X‖1,2 The `2 norm of columns’ `1 norms,

∥∥[‖x1‖1 , . . . , ‖xd2‖1]>
∥∥
2

EN [x] Empirical expectation of a random variable, N−1
∑N
n=1 xn

ei ∈ Rd The i-th standard basis vector in Rd
Pr(X) The projection of X � 0 onto the span of its top r eigenvectors
1 All-one vector of appropriate dimension
0 All-zero vector of appropriate dimension
a ∨ b The maximum value of {a, b}
a ∧ b The minimum value of {a, b}
〈x, y〉 The dot product of vectors x and y

[x, y] Lorentzian product, i.e., [x, y] = −x0y0 +
∑d
i=1 xiyi

card C The cardinality of a discrete set C
x1 Either the first element of vector x or an indexed vector
O(d) The set of d-dimensional orthonormal matrices

viii

CHAPTER 1

INTRODUCTION

The study of distance geometry problems (DGPs) began with the work of

Menger [1], Schoenberg [2], Blumenthal [3], and Young and Householder [4].

DGPs are generally concerned with finding a geometric representation of a set

of entities from a set of measured Euclidean distances [5]. Euclidean DGPs

have a rich history of applications in robotics [6, 7], wireless sensor networks [8],

molecular conformation analysis [9] and dimensionality reduction [10]. A

class of approaches to solve DGPs relies on semidefinite characterization

of Euclidean Distance Matrices (EDMs) [11, 12] in which the localization

problem is reparameterized in terms of the Gram matrix of the point set.

This leads to a rank-constrained semidefinite program in which the rank

constraint is often relaxed to arrive at a semidefinite relaxation. Solvable

DGPs have solution orbits, as opposed to having one unique solution, due

to the invariance of distances to rigid motions. In order to obtain a unique

solution in applications, we may be given absolute positions of a set of anchor

points. We can then use Procrustes analysis to find the best match between

the anchors and their corresponding points in the orbit. This is a common

technique used in localization problems [5, 7]. In this thesis, we formalize two

variations of the classical DGPs: kinetic and hyperbolic DGPs.

Kinetic DGPs are a time-varying version of the classical DGPs in which our

goal is to localize dynamic point sets from a few snapshots of interpoint dis-

tances. These problems find applications in autonomous localization of robot

swarms [13], especially in remote situations such as extraterrestrial explo-

ration [14] or deep-water missions [15], and are further related to simultaneous

localization and mapping [16, 17].

On the other hand, non-Euclidean spaces have recently been shown to

provide significantly improved representations for various data structures [18]

and measurement modalities [19, 20]. For instance, hyperbolic spaces are

suitable for representing hierarchical data associated with trees [21, 22, 23, 24],

1

human-interpretable images [25], and olfactory data [26]. Further, spherical

spaces are well-suited for capturing cycle-structures in graphs [27, 28], distance

problems on Earth [29], and texture mapping [30]. Euclidean, spherical and

hyperbolic geometries are categorical examples of constant curvature spaces,

or space forms.

It is thus opportune to match the embedding space to the properties of

data at hand. For example, in developmental biology and cancer genomics,

single-cell RNA sequencing is used to differentiate cell types and cycles. The

classification results have important implications for lineage identification and

monitoring cell trajectories and dynamic cellular processes [31]. Klimovskaia

et al. [32] use hyperbolic rather than Euclidean spaces for low-distortion em-

bedding of complex cell trajectories (hierarchical structures). For embedding

hierarchical structures, Ganea et al. [33] model order relations as a family of

nested geodesically convex cones in a hyperbolic space. Zhou et al. [26] show

that odors can be efficiently embedded in hyperbolic space provided that the

similarity between odors is based on the statistics of their co-occurrences

within natural mixtures.

Commonly in hyperbolic embedding applications, there is a tree-like data

structure which encodes similarity between a number of entities. In most

works that leverage hyperbolic geometry, e.g., hyperbolic multidimensional

scaling [34], the embedding technique is not the primary focus and the

related computations are often ad hoc. There exist Riemann gradient-based

approaches [35, 36, 21, 37] which can be used to directly estimate such

embeddings from metric measurements [38]. These methods are iterative and

only guaranteed to return a locally optimal solution.

Among important developments in non-Euclidean representation learning

are methods for finding “good” mixed-curvature representations for com-

plex heterogeneous datasets [28]. However, despite these recent advances

in nontraditional data spaces, almost all accompanying learning approaches

have focused on (heuristic) designs of neural networks in constant curvature

spaces [39, 40, 41, 42, 43, 44, 45]. The fundamental building block of these

neural networks, the perceptron, has received little attention outside the

domain of learning in Euclidean spaces. In this thesis we propose a princi-

pled design of perceptrons in product space forms with provable convergence

guarantees.

Finally, in most practical embedding problems, we seek a representation

2

for a group of entities based on their pairwise dissimilarities, because the

exact magnitudes of the distances may be unavailable. Relevant applications

are found in neural coding [46], developmental biology [32], learning from

perceptual data [47], and cognitive psychology [48]. Nonmetric embedding

problems date back to the works of Shepard [49, 50] and Kruskal [51] in

1970s. Agarwal et al. [52] introduce generalized nonmetric multidimensional

scaling, which is based on a semidefinite relaxation. Related to nonmetric

embedding problems are techniques that study topological properties of graphs

independently of the metric and geometric properties such as curvature [53].

An important problem in this domain is to detect intrinsic structure in

neural firing patterns, invariant under nonlinear monotone transformations of

measurements. Giusti et al. [46] propose to use a method based on statistical

behavior of Betti curves method based on clique topology of the graph of

correlations between pairs of neurons. In this thesis, we consider nonmetric

embedding problems in which similarity measurements are sampled from a

space form. Then, we propose novel tools to reveal the underlying geometry

(i.e., curvature sign) of the embedded entities.

1.1 Overview of Contributions

Chapter 2: Kinetic Euclidean Distance Matrices

Kinetic distance geometry problems: a set of points moves according to an

unknown trajectory that belongs to a known class of trajectories. At given

time instants we measure a subset of pairwise distances; the subset changes

in time and is too small to allow localization at any time alone. We ask: Can

we localize the points and reconstruct trajectories by exploiting the trajectory

class? To tackle kinetic DGPs, we introduce kinetic Euclidean distance

matrices — time-dependent distance matrices that incorporate a class of

trajectories. We show that polynomial and bandlimitted trajectories can be

reconstructed from incomplete, noisy temporal distance measurements. Our

proposed solution is based on semidefinite relaxation and gives us distance

trajectories. To convert them to point trajectories, we utilize known and new

results on spectral factorization of polynomial matrices.

3

Chapter 3: Hyperbolic Distance Matrices

We study DGPs in hyperbolic spaces: we aim to find a realization for a set

of entities in a hyperbolic space given their incomplete and noisy pairwise

non-Euclidean distances (e.g., distances on a weighted tree). Analogous to the

Euclidean DGPs, we introduce hyperbolic distance matrices (HDMs). Then,

we propose a semidefinite characterization of HDMs by studying the properties

of hyperbolic Gram matrices—matrices of pairwise Lorentzian inner products

for the point set. Together with a spectral factorization method to directly

estimate the hyperbolic points, our proposed semidefinite characterization

gives rise to flexible embedding algorithms that can handle diverse constraints

and mixed metric and nonmetric data.

Chapter 4: Hyperbolic Procrustes Analysis

In order to uniquely identify the correct point locations, from the orbit of

possible solutions generated by distance-preserving bijections, we may be

given the exact position of a subset of points, called anchors. The Procrustes

analysis picks the correct solution by finding the best match between the

anchors with their corresponding points in the solution orbit. We formalize

and use hyperbolic Procrustes analysis to find a joint estimate for hyperbolic

translation and rotation maps that best aligns two sets of points. This joint

estimation problem is then decoupled in the following steps: (1) translate the

center mass of each point set to the coordinate origin, and (2) estimate the

unknown rotation factor. We prove that this approach gives the theoretically

optimal isometry if the point sets match perfectly.

Chapter 5: Linear Classification in Product Space Forms

We address the problem of linear classification in product space forms, i.e.,

product of Euclidean, hyperbolic and spherical spaces. An important property

of such spaces is that they are endowed with logarithmic and exponential

maps which help us establish rigorous performance results. We describe the

“point-line” formulation for linear classifiers in d-dimensional space forms.

Then, we prove that linear classifiers in d-dimensional space forms of any

curvature can shatter exactly d + 1 points regardless of the curvature of

4

the underlying space form. The key idea behind our analysis is to define

separation surfaces in space forms directly through the use of geodesics on

Riemannian manifolds. We then introduce metrics that make distances in

different space forms compatible with each other and integrate them in linear

classifiers (in a product space form) with majority signed distance criteria.

We propose the corresponding perceptron and SVM classifiers and establish

convergence results for the former.

Chapter 6: Geometry of Similarity Comparisons

We argue that nonmetric information such as distance comparisons carries

valuable information about the space the data points originated from. We

introduce the notion of ordinal spread of a distance list which describes

a pattern in which entities appear in the list. This notion is related to

the ordinal capacity of their underlying space. The ordinal capacity of a

metric space quantifies the space’s ability to host extreme patterns of ordinal

spreads (computed from similarity measurements). We show that the ordinal

capacity of Euclidean and spherical spaces are equal and grow exponentially

with their dimensions, while the ordinal capacity of a hyperbolic space is

infinite — regardless of its dimension. We also associate an ordinal spread

random variable with sets of random points in a space form and show how

the distribution of this random variable serves as a practical tool to identify

the underlying space form given nonmetric measurements. In numerical

experiments, we correctly uncover the hyperbolicity of weighted trees, detect

Euclidean and spherical geometries for ordinal measurements derived from

local and global cartographic data, and uncover heterogeneous cell populations

from noisy single-cell RNA sequencing data.

Appendices A to E

We delegate the proofs of theorems, propositions, and lemmas, additional

numerical experiments, further discussions and analysis to their corresponding

appendix sections.

5

CHAPTER 2

KINETIC EUCLIDEAN DISTANCE
MATRICES

2.1 Introduction1

The famous distance geometry problem (DGP) [54] asks to reconstruct the

geometry of a point set from a subset of interpoint distances. It models a wide

gamut of practical problems, from sensor network localization [55, 56, 57] and

microphone positioning [58, 59, 60, 61] to clock synchronization [62, 63], to

molecular geometry reconstruction from nuclear magnetic resonance data [64,

65]. Among the most successful vehicles for the design of DGP algorithms

are the Euclidean distance matrices (EDM) [5].

EDMs model static objects. When things move, they characterize a snapshot

of the interpoint distances and the point set geometry. It seems intuitive

that with a good model for the trajectories, we should be able to leverage the

motion and improve trajectory estimation.

In this chapter, we review distance matrices for moving points, which we call

Kinetic EDMs (KEDMs) inspired by the notion of kinetic data structures [66]

for moving points. KEDMs are a generalization of EDMs whose entries

now become functions of time. We show how by using KEDMs we can

neatly address the kinetic distance geometry problem (KDGP), a natural

generalization of the classical, static distance geometry problem (DGP) defined

in Section 2.2. Unlike with the static DGP, in order to make the kinetic

version well posed, we must constrain the point trajectories to belong to a

class of functions, for example polynomial trajectories of a bounded degree.

Informally, we ask the following question: Suppose a set of points move

according to a known trajectory model. At given time instants we measure

1 c© 2019 IEEE. Reprinted, with permission, from P. Tabaghi, I. Dokmanic, and M.
Vetterli, Kinetic Euclidean Distance Matrices, IEEE Transactions on Signal Processing
(Volume: 68), December 2019. The published manuscript is available at https://doi.

org/10.1109/TSP.2019.2959260

6

a subset of pairwise distances; the subset can change between measurements

and it may be too small to allow localization at any time alone. Can we

systematically localize the points and reconstruct trajectories by exploiting the

trajectory model?

Localization of dynamic point sets from distance measurements finds ap-

plications whenever objects move. Robot swarms, for example, often must

localize autonomously [13], especially in remote situations such as extraterres-

trial exploration [14] or deep-water missions [15]. Related applications exist in

environmental monitoring, for example for dynamic sensor networks composed

of river-borne sensing nodes [67]. An important application of localization of

moving objects is in global positioning with satellites where both the satellites

and the users move. Applications are emerging where sensing is opportunistic

and the positions of reference objects are not known [68]; in Section 2.6.4,

we present a simulated example of global positioning with unknown satellite

trajectories. This problem is further related to simultaneous localization

and mapping (SLAM) [16, 17]. Kinetic distance geometry problems are

common in computer vision. Examples are action recognition from dynamic

interjoint distance skeleton data [69] and more generally data structures for

describing kinetic point sets [66]. Applications in multi-robot coordination,

crowd simulations, and motion retargeting are explored in [70, 71], where

the authors introduce the dynamical distance geometry problem (dynDGP).2

Even in applications to proteins and molecules, the atoms move (for example,

proteins fold) in specific ways [72].

The study of distance geometry and EDMs began with the work of

Menger [1], Schoenberg [2], Blumenthal [3], and Young and Householder [4].

Gower derived numerous results on EDMs [73, 74] including a complete rank

characterization [74]. An extensive treatise on EDMs with many original

results and an elegant characterization of the EDM cone was written by

Dattorro [75]; a tutorial-style introduction to EDMs is presented in [5].

A large class of approaches to point set localization from distance measure-

ments relies on semidefinite programming [11, 12]. Namely, the localization

problem is written in terms of the Gram matrix of the point set which leads

to a rank-constrained semidefinite program. The rank constraint is often

relaxed to arrive at a semidefinite relaxation which is a convex optimization

2Though related, the dynDGP is rather different from our KDGP.

7

problem and can be solved using standard tools.

We take inspiration from these approaches and show how trajectory local-

ization can also be formulated as a semidefinite program, thus answering the

above question in the affirmative. Concretely, we show that the parameters of

chosen trajectory models can be recovered by a semidefinite program and a

tailor-made alignment procedure akin to Procrustes analysis. The latter can

be interpreted as spectral factorization of semidefinite polynomial matrices

with side information, and our developments rely on the related spectral

factorization results [76].

2.1.1 Contributions and Outline

In Section 2.2, we extend the definition of the distance geometry problem

(DGP) to its kinetic version and review the essential facts about Euclidean

distance matrices and associated semidefinite programs. In Section 2.3,

we introduce Kinetic Euclidean Distance Matrices (KEDMs)—a new kind

of time-dependent distance matrices that incorporate motion. The entries

of KEDMs become functions of time, the squared time-varying distances.

Then, we study two smooth trajectory models—polynomial and bandlimited

trajectories. In Section 2.4, we present our main contribution which is a

semidefinite relaxation, inspired by similar strategies for static EDMs. We

show that polynomial and bandlimitted trajectories can be reconstructed from

incomplete, noisy distance observations, scattered over multiple time instants.

The solution to the SDP, however, only gives us distance trajectories. To

convert them to point trajectories, we need known and new results on spectral

factorization of polynomial matrices developed in Section 2.5. Finally, we

show through computational experiments that our semidefinite relaxation can

indeed reconstruct model trajectories from sparse and noisy measurements.

We can also reduce the number of measurements per time instant well below

that minimally required for localization in the static case. The proofs of all

propositions are delegated to Appendix A.3

3Documented code and data to reproduce all experiments is available online at https:
//github.com/swing-research/kedm/

8

2.2 Static and Kinetic Distance Geometry Problems

We begin by introducing the classical distance geometry problem (DGP)

and then formulate its generalization to moving points. We also discuss an

EDM-based approach to the DGP with noisy and incomplete distances.

The DGP can be informally stated as follows: find the d-dimensional

locations
{
xn ∈ Rd

}N
n=1

of a set of points, given a subset of possibly noisy

pairwise distances {dmn : 1 ≤ m < n ≤ N}. We will work only with Euclidean

distances so that dmn = ‖xm − xn‖.
An elegant formalization can be made in graph-theoretic terms. Consider

a graph G = (V,E) whose vertex set V corresponds to the points {xn}Nn=1.

The edge set E tells us which distances are measured and which are not.

Given two vertices u, v ∈ V and the corresponding undirected edge e = {u, v},
we have e ∈ E if and only if the distance between u and v is known. Let

f : E → R+ be the weight function that assigns those known, measured

distances to edges. Then we can pose the following problem [54].

Problem 1 (Distance Geometry Problem). Given an integer d > 0

(the ambient dimension) and an undirected graph G = (V,E) whose

edges are weighted by a non-negative function f : E → R+ (distance),

determine whether there is a function x : V → Rd such that

‖x(u)− x(v)‖ = f({u, v}) for all {u, v} ∈ E.

The function x which assigns coordinates to vertices is called an embedding

or a realization of the graph in Rd. Of course, in practice the measurements

are corrupted by measurement errors, and the goal is to minimize some notion

of discrepancy between the measured distances and the distances induced by

our estimate; for example:

minimize
x:V→Rd

∑
{u,v}∈E

(‖x(u)− x(v)‖ − f({u, v}))2 . (2.1)

Section 2.2.1 explains how to use EDMs to proceed in this case. Figure 2.1

illustrates the DGP with an intermediate step of constructing an EDM. The

EDM can be interpreted as a weighted adjacency matrix in which weights

are squared distances.

In this chapter, we want to formalize distance geometry problems when the

9

1

1

2

2

3

3

4

4

5

5

Spectral factorization
+ Procrustes analysis

1
1

1

1

1

2

2

22

2

3

3

3

3

3

4

4
4

4

4

5

5

5

5

?
?

?
?

?

1

2

3

4

5

Incomplete EDM Completed EDM Localized pointsPartial distance data Anchors

+
?

Figure 2.1: The objective of DGP is to find an embedding for a given partial
pairwise distance data. This can be done in two steps: (a) Completing EDM
associated with the measurements, i.e. estimating the missing measurements
and (b) Estimating an embedding and using anchor points to resolve the
rigid transformation ambiguity, discussed in Section 2.2.1.

points move and the set of measured distance changes over time. Instead of

localizing the points only at the measurement times, our goal is to estimate

entire trajectories for all times. To make this problem well posed we must

introduce a class of admissible continuous trajectories X . Then, we can

formulate the following kinetic version of Problem 1.

Problem 2 (Kinetic Distance Geometry Problem). Given an embedding

dimension d > 0, a set of T sampling times T = {t1, . . . , tT} ⊂ R, and

a sequence of undirected graphs Gi = (V,Ei) whose edges are weighted

by non-negative functions fi : Ei → R+, for i ∈ {1, . . . , T}, determine

whether there is a function x : V × R→ Rd, where x ∈ X and for all

ti ∈ T we have:

‖x(u, ti)− x(v, ti)‖ = fi({u, v}) for all {u, v} ∈ Ei,

where X is the set of admissible trajectories.

Figure 2.2 illustrates the KDGP for four trajectories. One way to interpret

KDGP is as a sequence of static DGPs with additional information about

sampling times and the trajectory model. Indeed, the KDGP can be seen as

a nonlinear spatio–temporal sampling problem, with the nonlinear samples

(distances) spread in space in time. A natural question is whether we can

compensate for a reduction in the number of spatial samples by oversampling

in time. We answer this question in affirmative in Section 2.6.

The first step is to estimate the continuous KEDM from samples distributed

in space and time; this is discussed in Section 2.4. The second step is to use

10

?

?
?

?
?

?
?

?

?
?
??

?
??

?
?

?
?

??
?

1

2

3

4

+

Points and trajectories Partial distance data

SDR Full
trajectories

Figure 2.2: KDGP: Estimate an embedded trajectory for a given sequence of
partial pairwise distances at different times, t1, · · · , tT . We estimate the
corresponding KEDM with a semidefinite relaxation Algorithm 1, and then
use anchors to estimate the trajectories.

information about the absolute positions of a set of anchor points in order to

assign absolute locations to trajectories; this is discussed in Section 2.5.

2.2.1 Solving the Distance Geometry Problem by EDMs

It is useful to recall the EDM-based approach to the DGP. Ascribe the

coordinates of N points in a d-dimensional space to the columns of matrix

X ∈ Rd×N , X = [x1, x2, · · · , xN]. The squared distance between xi and xj

is

d2
ij = ‖xi − xj‖2 = ‖xi‖2 − 2x>i xj + ‖xj‖2 ,

from which we can read out the equation for the EDM D = (d2
ij) as

D = K(G)
def
= diag(G)1> − 2G+ 1 diag(G)>, (2.2)

where 1 denotes the column vector of all ones, G = X>X is the Gram matrix

and diag(G) is a column vector of the diagonal entries of G. We see that the

EDM of a point set is a linear function of its Gram matrix. Reformulating

the problem in terms of the Gram matrix is beneficial because it will lead to

a semidefinite program. If we can find the Gram matrix, the point set can be

obtained by an eigenvalue decomposition.

To see how, let G = UΛU>, where Λ = diag(λ1, . . . , λN) with all eigen-

values λi non-negative, and U orthonormal, as G is a symmetric positive

semidefinite matrix. Assume that the eigenvalues are sorted in decreas-

ing order λ1 ≥ λ2 ≥ · · · ≥ λN . Then we can estimate the point set as

X̂
def
=
[

diag
(√

λ1, . . . ,
√
λd
)
, 0d×(N−d)

]
U>. Since the EDM only specifies the

points up to a rigid transform, X̂ will be a rotated, reflected and translated

version of X.

11

One way to estimate D from noisy, incomplete distance data is by semidefi-

nite programming. This hinges on the one-to-one equivalence between EDMs

with embedding dimension d and centered Gram matrices of rank d. Define

the geometric centering matrix J as

JN
def
= I − 1

N
11>.

Then K(G) is an invertible map on the set of Gram matrices which correspond

to centered point sets (implying G1 = 0) with the inverse given by

−1

2
JNK(G)JN = G.

In particular, we have the following equivalence that holds for matrices D

with a zero diagonal:

D = D(X)

affdim(X) ≤ d

}
⇐⇒

−1
2
JNDJN � 0

rank(JNDJN) ≤ d,

where D(X) = K(X>X) and affdim denotes the dimension of the smallest

affine space that can hold X. In other words, instead of directly searching

for the points X given distance data, we can search for the suitable Gram

matrix.

Let D̃ be the noisy, incomplete EDM from which we want to estimate the

point locations, with unknown entries replaced by zeroes. Define the mask

matrix W = (wij) as

wij
def
=

1, (i, j) ∈ E

0, otherwise.

This mask matrix will let us compute the loss only on those entries that were

actually measured. Note that W is precisely the adjacency matrix of the

undirected graph from Problem 1.

Then the above discussion is summarized in the following rank-constrained

12

semidefinite program:

minimize
G

‖D̃ −W ◦ K (G) ‖2
F (2.3)

subject to G � 0

G1 = 0

rank (G) ≤ d.

Since the Gram matrix (Gramian) is linearly related to the EDM, the

objective function is convex. However, the rank constraint, rank (G) ≤ d,

makes the feasible set in (2.3) non-convex. Note that (2.1) is also a non-convex

program.

The value of reformulation in terms of G is that it admits a simple convex-

ification strategy—a semidefinite relaxation—which was repeatedly shown

to perform well in the context of distance geometry [5, 11]. An intuitive

explanation is that while the rank condition ensures the correct embedding

dimension, the constraint that G be positive semidefinite (in other words, that

it be a Gramian) enforces a number of geometric constraints. For instance, it

ensures that the entries of the EDM verify triangle inequalities, as well as

other subtle properties (see, for example, the Cayley-Menger conditions [77]).

We should add that a semidefinite relaxation is by no means the only way

to convexify (2.1) or (2.3). The mathematical optimization literature knows

a number of others, many of which could also be applied in the X-domain

(2.1). One may, for example, replace nonlinear terms in (2.3) by suitable

convex over- and under-estimators. A well-known example is McCormick’s

convexification for bilinear terms [78], and similar strategies for quadratic

and higher-order terms [79]. In this work we limit ourselves to semidefinite

relaxation.

Once the rank constraint is discarded, the embedding dimension of the

reconstructed point set is dictated by the measurements. One often looks for

a solution with the lowest possible embedding dimension via various rank-

minimization heuristics [5]. In general, especially with noisy measurements,

our best expectation is that the reconstructed points will lie close to a linear

variety of the desired dimension.4 To ensure the right embedding dimension,

a suboptimal solution can be computed by replacing the estimated Gramian

4An empirical study of the number of required measurements is available in [5].

13

with its best rank-d approximation; see Section 2.5 for the kinetic case.

The constraint G1 = 0 serves to set the centroid of the recovered point set

at the origin of the coordinate system as it implies X1 = 0. This resolves

the translational invariance of the problem. The remaining rotational (and

reflection) invariance must be resolved once the points are estimated from

the Gramian. The Gramian itself is invariant to the rotations of the point set

since G = X>X = (UX)>UX for any orthonormal matrix U ∈ O(d).

2.2.2 Orthogonal Procrustes Problem

As mentioned before, the EDM only specifies the point set up to a rigid

transformation (rotation, translation, and reflection). If the task requires

determining absolute positions of points, the standard method is to designate

a subset of points as anchors whose positions are known, and use anchors to

align the reconstructed point set.

Let Xa ∈ Rd×Na be the submatrix (a selection of columns) of X that should

be aligned with the anchors listed as columns of Y ∈ Rd×Na . We note that

the number of anchors—columns in Xa—is typically small compared with the

total number of points—columns in X.

We first center the columns of Y and Xa by subtracting the corresponding

column means yc = Y JNa and xa,c = XaJNa , obtaining matrices Y and Xa.

Next, we perform the orthogonal Procrustes analysis—we search for the

rotation and reflection that best maps Xa onto Y :

R = arg min
Q:QQ>=I

∥∥QXa − Y
∥∥2

F
. (2.4)

The solution to (2.4) is given by the singular value decomposition (SVD) [80]

as follows. Let UΣV > be the SVD of XaY
>

; then R = V U>. The best

alignment is applied to the reconstructed point set as

Xaligned = R(X − xa,c1>) + yc1
>.

14

2.3 Trajectory Models and Basis Gramians

In order to extend the EDM-based tools to the KDGP, we must define the

class of trajectories X . We introduce two trajectory models—polynomial

and bandlimited—and show how they can be parameterized in terms of the

so-called basis Gramians.

The chosen trajectory models are standard; they model many interesting

trajectories. The polynomial model is common in simultaneous localization

and mapping as well as tracking, where it appears as constant velocity

or constant acceleration model [81, 82]. The bandlimited model describes

periodic trajectories of varying degrees of smoothness which are locally well-

approximated by polynomials.

We use similar notation as in the static case. Let X(t) = [x1(t), . . . , xN (t)]

be the trajectory matrix of N points in Rd where xn(t) is the position of n-th

point at time t. We define the KEDM in a natural way.

Definition 1 (KEDM). Given a set of trajectories X(t) ∈ Rd×N , the

corresponding KEDM is the time-dependent matrix D(t) ∈ RN×N [t] of

time-varying squared distances between the points:

D(t)
def
= D(X(t)).

2.3.1 Polynomial Trajectories

For a set of N points in Rd, we define the set of polynomial trajectories of

degree P as

Xpoly =

{
P∑
p=0

tpAp

∣∣∣∣ Ap ∈ Rd×N , p ∈ {0, . . . , P}

}
. (2.5)

For X(t) ∈ Xpoly, the Gramian at time t can be written as

G(t) =
K∑
k=0

Bkt
k, (2.6)

15

where Bk =
∑min{k,p}

i=max{0,k−p}A
>
i Ak−i and K = 2P .5 Similar to the static case,

our goal is to cast the trajectory retrieval problem as a semidefinite program;

we do so via the time-dependent Gramian in Section 2.4.

The key step is to parameterize the problem entirely in terms of (constant)

positive semidefinite matrices, instead of the parameterization in terms of Ap

or Bk. To do so, we fix K + 1 time instants τ0, . . . , τK and define Gk
def
= G(τk).

The matrices Gk should be interpreted as elementary, or basis Gramians in

the sense that the Gramian G(t) can be written as a linear combination of

G0, . . . , GK as elaborated in the following proposition.

Proposition 1. Consider the polynomial trajectory in (2.5). Let

Gk, k ∈ {0, 1, . . . , K} , K = 2P be given as above with τk all dis-

tinct. Then we have

G(t) =
K∑
k=0

wk(t)Gk,

with the weights w(t) = [w0(t), · · · , wK(t)]> given as

w(t) =

1 1 · · · 1
...

...
. . .

...

τK0 τK1 · · · τKK

−1

1

t
...

tK

 .

This result is a matrix version of Lagrange interpolation. Since entries

of G(t) are polynomials of degree 2P in t, they are completely determined

by their values at 2P + 1 points. However, in this Gram matrix version it

gives us something rather useful: a way to write a positive semidefinite G(t)

as a linear combination of positive semidefinite Gk, which lends itself nicely

to convex optimization. We note that the question of how to choose the

sampling times τk is beyond the scope of this article, though we give empirical

results in Section 2.6.

2.3.2 Bandlimited Trajectories

Our second model is the set of periodic bandlimited trajectories. For a set of

N points in Rd, the set of periodic bandlimited trajectory of degree P can be

5Simplified from G(t) =
(∑P

p=0 t
pAp

)>(∑P
p=0 t

pAp
)
.

16

written as

XBL =

{
B0 +

P∑
p=1

{Ap sin(pωt) +Bp cos(pωt)}
∣∣∣∣

Ap, B0, Bp ∈ Rd×N , p ∈ {1, . . . , P} , ω ∈ R+

}
.

(2.7)

Similar to the polynomial case, we represent the Gramian G(t) as a linear

combination of some Gramian basis.

Proposition 2. Consider the bandlimited trajectory in (2.7). Let

Gk, k ∈ {0, 1, . . . , K} , K = 4P be given as above with τk all distinct

(modulo 2π
ω

). We have

G(t) =
K∑
k=0

wk(t)Gk,

with the weights w(t) = [w0(t), · · · , wK(t)]> given as

w(t) =

1 · · · 1

sin(ωτ0) · · · sin(ωτK)

cos(ωτ0) · · · cos(ωτK)
...

. . .
...

cos(2Pωτ0) · · · cos(2PωτK)

−1

1

sin(ωt)

cos(ωt)
...

sin(2Pωt)

cos(2Pωt)

.

We have thus developed a way to write a time-dependent Gramian in terms

of a linear combination of positive semidefinite (constant) basis Gramians.

2.3.3 Ambiguities Beyond Rigid Transformations in KDGP

Same as the static DGP, the KDGP suffers from rigid transformation ambigu-

ity. Namely, the rotated and translated trajectory sets cannot be distinguished

from pairwise distance data. However, since at every time instant we can

apply a different rigid transform, the set of ambiguities that arise in the

KDGP is much larger than just the rigid transforms.

In particular, trajectory sets which look rather differently (nothing like

rotations and translations of each other) could generate the same KEDM.

17

Figure 2.3: Two trajectory sets which are not rigid transforms of each other,
but which generate the same KEDM. Corresponding points have the same
color.

We give an example in Figure 2.3. The following straightforward result

characterizes trajectories that lead to the same KEDM.

Definition 2. We say that the two trajectories X(t), Y (t) ∈ Rd[t]

defined over some time interval T are distance-equivalent and write

X
D∼ Y if and only if D(X(t)) = D(Y (t)) for all t ∈ T .

Proposition 3. Let X(t), Y (t) be arbitrary trajectories in Rd[t]. Then,

the following statements are equivalent:

1. X
D∼ Y .

2. Y (t) = U(t)X(t) + c(t)1> where U(t)>U(t) = I and c(t) is a

d-dimensional time-varying vector.

Requiring that the trajectories follow a particular model (for example

polynomial or bandlimited) limits possible choices of the time-varying rigid

transform parameters U(t) and c(t). In particular, known results on spectral

factorization of polynomial matrices imply that the orthogonal U(t) must be

a constant matrix [83, 84]. On the other hand, as long as c(t) is polynomial

(or bandlimited) of the same degree as X(t), it is a legal choice in the sense

that the trajectories remain polynomial or bandlimited. But even with a fixed

U(t) = U , varying c(t) can produce trajectories of rather different shapes

which are indistinguishable from their time-varying distances.

In Section 2.5, we propose a method for spectral factorization of kinetic

Gramians based on anchor points and show how it resolves the described

ambiguities. In our algorithms we will choose c(t) so that the centroid of the

18

point set is kept fixed at the origin at all times, and then recover the correct

centroid using anchor points. The following proposition will be useful.

Proposition 4. For trajectories of the form (2.5) or (2.7), the following

statements are equivalent:

1. All coefficient matrices {Ap}Pp=0 have zero-mean columns.

2. X(t)1 = 0, ∀t ∈ R.

3. Gk1 = 0, ∀k ∈ {0, · · · , K}.

2.4 Computing the KEDM from Noisy, Incomplete

Data by Semidefinite Programming

In this section we use the basis Gramian representation to derive an algorithm

that solves the KDGP. Just as in the static case, we can either search directly

for the set of trajectories X(t) which reproduces the measured distances, or we

can search for the time-varying Gramian G(t) and use spectral factorization

to estimate X(t). In the static case, the two formulations are equivalent (they

produce the same solution up to a rigid transform), but the formulation in

terms of the Gram matrix led to a convenient semidefinite relaxation. In

the time-varying case, we again state both formulations, and argue that the

difference is now more significant.

To treat polynomial and bandlimited trajectories at once, we define the

symbol Θ to mean either Θ = {Ap}Pp=0 for the polynomial model or Θ =

{Ap, Bp}Pp=1 ∪ {B0} for the bandlimited model, and similarly let XΘ(t) =∑P
p=0 Apt

p
(

resp. XΘ(t) = B0 +
∑P

p=1Ap cos(pωt) +Bp sin(pωt)
)
.

Formalizing in X domain In this case, trajectory retrieval is written as

minimize
Θ∈A

T∑
i=1

αi

∥∥∥D̃ti −Wi ◦ D (XΘ(ti))
∥∥∥2

F

subject to XΘ(t)1 = 0,∀ t ∈ R,

(2.8)

19

where D(X) = K(X>X), D̃ti is the matrix of partial measured distances at

time ti, Wi is the adjacency matrix corresponding to measurements, αi ≥ 0

are non-negative weights, and A is the set of all feasible parameters. It is

not hard to see that the objective in (2.8) is nonconvex in Θ (even though

the constraint set is convex by Proposition 4). Hence, this problem involves

minimizing a nonconvex functional which is in general difficult.

Formalizing in G Domain Next, we derive a semidefinite program in-

spired by (2.3) for the trajectory recovery problem. The key ingredient is

the basis Gramian representation of G(t) from Section 2.3. Since the actual

kinetic Gramian is linear in basis Gramians, the overall objective will be

convex as long as the data fidelity metric is convex. The latter holds true

since we use the squared Frobenius norm:

minimize
(Gk:Gk�0)Kk=0

T∑
i=1

αi

∥∥∥∥∥D̃ti −Wi ◦ K

(
K∑
k=0

wk(ti)Gk

)∥∥∥∥∥
2

F

subject to G(t)1 = 0,∀t ∈ R

G(t) � 0,∀t ∈ R

max
t∈R

rankG(t) = d.

(2.9)

The constraints ensure that the solution corresponds to a time-varying

Gramian G(t) with correct rank.

Recall that any trajectory generates a Gramian with the form G(t) =∑K
k=0 wk(t)Gk. Hence, it is clear that the set

G =

{
(Gk : Gk � 0)Kk=0 :

K∑
k=0

wk(t)Gk � 0 for all t

}

is non-empty. Further, G is convex as an (infinite) intersection of convex sets,

G =
⋂
t∈R

{(Gk : Gk � 0)Kk=0 :
K∑
k=0

wk(t)Gk � 0}.

Let us emphasize that even though the objective is convex, the problem (2.9)

is not easy to solve: it is still non-convex (due to the rank constraint) and in

fact uncountably infinite (due to the continuous-time constraints).

There is no rotation ambiguity associated with this formulation because

20

the Gramian is invariant to rotation and reflection of the points. Translation

ambiguity has been resolved by requiring that G(t)1 = 0 which implies that

the recovered point set shall be centered at all times.

2.4.1 Equivalence Between (2.8) and (2.9)

The two formulations are equivalent if for every possible set of measurements,

the solution sets produce the same KEDM. Denoting the optimizers (which

could be sets) by Θ∗ and (G∗k)
K
k=0, it should hold that

D (XΘ∗(t)) = K

(
K∑
k=0

wk(t)G
∗
k

)
, t ∈ R.

By Propositions 1 and 2, for any optimizer Θ∗ of (2.8) and the corre-

sponding trajectory XΘ∗(t), we can find a Gramian basis (G̃k)
K
k=0 such that

D (XΘ∗(t)) = K
(∑K

k=0wk(t)G̃k

)
. Therefore, we have

J1(Θ∗) = J2((G̃k)
K
k=0) ≥ J2((G∗k)

K
k=0),

where J1 denotes the loss in (2.8), and J2 denotes the loss in (2.9). The

question is whether this inequality can be made strict. Could the solution

to (2.9) lead to a Gramian G(t) with no corresponding trajectory in A? An

in-depth study of this question is beyond the scope of this work, but to see

that this is indeed possible consider a contrived case of no measurements at

all, that is to say, a feasibility search.

Trivially, any Θ ∈ A is a solution to (2.8) and any set of basis Gramians

(Gk : Gk � 0)Kk=0 is a solution to (2.9). By Lemma 1 every Gramian G(t)

produced by its basis (Gk)
K
k=0 has a polynomial spectral factor, that is, it

corresponds to a polynomial trajectory X(t) such that G(t) = X(t)>X(t).

Even though G(t) is real, its spectral factor, however, need not be; see [76]

for a characterization of rank-deficient polynomial Gramians G(t) without

real spectral factors. This situation is fundamentally different from what we

had in the static case. Hence, we can construct feasible “complex trajectories”

which are outside of A. Consequently, the constraints in (2.8) are necessary

but not sufficient for the two formulations to be equivalent. Nonetheless, they

become equivalent with sufficient measurements.

21

Proposition 5. Suppose that D̃i = Wi ◦ D(XΘ(ti)) and (2.9) has a

unique optimizer G∗(t) =
∑K

k=0wk(t)G
∗
k. Then

G∗(t) = XΘ∗(t)
>XΘ∗(t), (2.10)

where XΘ∗(t) = UXΘ(t)JN for some orthogonal matrix U ∈ Rd×d (that

is, it is a centered, rotated version of the true geometry).

It is useful to interpret the two approaches in (2.8) and (2.9) in terms of

graph-based definition of the KDGP (Problem 2). The sequence of incomplete

and noisy distances, D̃t1 , · · · , D̃tT is modeled as a series of incomplete graphs

whose edge weights correspond to the measured distances. The goal of KDGP

is to find a node function x(u, t) that maps vertices of measurement graphs

to points in Rd whose pairwise distances match the measured distances at

sampling times tk ∈ T . From this perspective, the formulation (2.8) aims to

directly estimate the node function x(u, t) from distance measurements, while

in formulation (2.9), we break the KDGP into two subproblems:

1. Completing the measurement graphs: This amounts to estimating

the edge function, f(e, t) for every e ∈ Et instead of only for e ∈ Ei,
with Ei being the edges measured at time ti ∈ T .

2. Estimating the node function, x(u, t): This is equivalent to spectral

factorization of the time-dependent Gramian.

The formulation (2.9) solves the first subproblem since it outputs a time-

varying Gramian G(t) from which we easily get the KEDM as K(G(t)). The

second problem is addressed in Section 2.5.

Finally, we note that the KEDM formulation in (2.9) is a generalization of

the static EDM formulation in (2.3). To see the equivalence, note that static

points are modeled by a polynomial of degree zero, P = 0, in which case the

Gramian becomes G(t) = G0 since w0(t) = 1.

2.4.2 Practical Considerations: Relax and Sample

To get a practical algorithm for (2.9), we sample the continuous-time semidef-

initeness constraint, G(t) � 0 for all t ∈ R, and relax the non-convex rank

22

constraint. In Algorithm 1, we denote the set of sampling times for this

constraint by Tpsd.

In relaxations for static EDMs, instead of simply removing the rank con-

straint, it is often replaced by a regularizer. Perhaps counterintuitively (see [5]

for a longer discussion), a strategy that works well is to maximize the rank

of the Gram matrix, as this corresponds to pushing the points apart and

minimizing the embedding dimension. We use a similar strategy in our KEDM

semidefinite relaxation (Algorithm 1).

One issue with the semidefinite relaxation for the standard DGP is that

there are often no strictly feasible points; the feasible Gram matrices lie on the

low-rank faces of the positive semidefinite cone. This is troublesome for the

primal–dual interior point solvers since it precludes strong duality (Slater’s

constraint qualification fails). On the other hand, Krislock and Wolkowicz

skillfully exploit it by noting that the degeneracy is due to the existence of

cliques in the DGP graph. They characterize faces of the positive semidefinite

cone associated with individual cliques, and design fast, accurate solvers for

noiseless instances [85].

Whether their ideas can be applied to the KDGP remains an open question.

At a glance, it seems challenging: not only does the connectivity graph in the

KDGP change between the sampling instants, but we work with a non-unique

decomposition of the time-varying Gramian into basis Gramians.

Thus, even with low-rank-promoting regularization, the recovered Gram

matrices will rarely be exactly rank-d due noise and numerical issues of the

off-the-shelf semidefinite solvers. To address this, we apply a standard rank

projection to the retrieved Gramians by setting the least significant N − d
singular values to 0.

2.5 Spectral Factorization of the Gramian

Algorithm 1 produces a time-varying Gramian whose KEDM best represents

the measured distance sequence. In this section, we show how to estimate

the corresponding trajectory by factoring the Gramian as G(t) = X(t)>X(t),

where X(t) is the set of point trajectories. We know that the trajectory can

only be estimated up to a time-invariant rotation (and possibly reflection) [83]

and a time-varying translation. To resolve this uncertainty, we introduce a

23

Algorithm 1 Semidefinite relaxation to solve KDGPs —
SDR
(
{ti}Ti=1 , {D̃ti}Ti=1, {Wi}Ti=1

)
.

1: Solve for {Gk}Kk=0:

minimize
T∑
i=1

αi

∥∥∥∥∥D̃ti −Wi ◦ K

(
K∑
k=0

wk(ti)Gk

)∥∥∥∥∥
2

F

− λ
K∑
k=0

Tr(Gk)

w.r.t G0, · · · , GK � 0

such that Gk1 = 0 k ∈ {0, · · · , K},
K∑
k=0

wk(t)Gk � 0 t ∈ Tpsd.

2: Gk ← RankProjection(Gk, d), k ∈ {0, · · · , K}
3: return D̂(t) = K

(∑K
k=0wk(t)Gk

)

set of anchors—points whose absolute positions are known.

In practice, anchors might correspond to nodes whose position is fixed

such as buoys and beacons, or nodes equipped with a positioning technology

such as GPS. Because in the KDGP the anchors can move (unlike in the

usual DGP), we have more possibilities for anchor measurements than in the

static case. For our trajectory models, we only need to know the positions

of the anchor points at some fixed, finite set of times, but we could measure

positions of different sets of points at different times.

Given a spectral factor6 X(t) of the time-varying Gramian, the true trajec-

tory X(t) can be found as

X(t) = UX(t) + x(t)1> +N(t),

where U is a d× d orthogonal matrix, x(t) is a d× 1 time-varying vector and

N(t) represents the net effect of model mismatch and measurement noise.

The matrix U is constant (by the spectral factorization theorem) whereas

the translation factor x(t) is a function of time. On the other hand, the

translation factor x(t) must belong to the same trajectory model as X(t)

(polynomial or bandlimited). Hence, x(t) can be written as

x(t) = Mz(t),

6One out of infinitely many possible.

24

where for the polynomial model Xpoly, we have

z(t) = [1, t, · · · , tP]> and M ∈ Rd×(P+1).

For the bandlimited model XBL, we have

z(t) = [1, sin(ωt), cos(ωt), · · · , sin(Pωt), cos(Pωt)]> and M ∈ Rd×(2P+1).

A difficulty compared to the static case is that spectral factorization of

polynomial Gram matrices is not straightforward and becomes brittle in

the presence of noise. It is thus desirable to develop trajectory estimation

methods that do not require full polynomial factorization. We show that this

is possible at the expense of additional anchor measurements.

2.5.1 Known Spectral Factor

We start by assuming that we have access to some spectral factor X(t) such

that G(t) = X(t)>X(t). In this case, to estimate the unknown rotation

and translation, we assume that at L distinct times τ1, . . . , τL we measure

positions of points I1, . . . , IL, with I` being the index set of points whose

positions are measured at τ`. We let XI` denote the column selection of X(τ`)

corresponding to indices in I`.
An estimate for U and M can be computed by solving

arg min
U∈Md(R),M∈Rd×L

L∑
`=1

∥∥XI` − UX(τ`)−Mz(τ`)1
>∥∥2

F
,

where Md(R) is the set of d× d orthonormal matrices and L = P + 1 (resp.

2P + 1) for polynomial (resp. bandlimited) trajectories. This is a non-convex

problem because Md(R) is a non-convex set.

The above optimization can be decoupled as in standard Procrustes analysis

provided that there exists a time τ̃` ∈ {τ1, . . . , τL} at which we know the

positions of at least d+ 1 anchors. In this case, U can be estimated at this

time alone using the technique described in Section 2.2.2. Once the rotation

Û is found, we can estimate the matrix M by solving the following convex

25

problem:

M̂ = arg min
M∈Rd×L

L∑
`=1

∥∥∥∥Mz(τ`)−
1

Nτ`

(
XI`(τ`)− ÛX(τ`)

)
1

∥∥∥∥2

2

,

where Nτl ≥ 1 for ` ≥ 2. Finally, we note that matching d points (instead of

d+ 1 points) leaves us with a flip ambiguity. So d+ 1 is indeed the smallest

number of anchors that lets us to properly use the Procrustes analysis.

2.5.2 Unknown Spectral Factor (Practical Algorithm)

The previous section implies that L+d anchor points are necessary to estimate

the rotation U and translation M provided that a spectral factor X(t) of

G(t) is given. Unfortunately, algorithms for spectral factorization rely on

unstable computations involving determinants and are often computationally

demanding, which makes them unsuitable for our application where noise can

be significant [86]. To avoid this step, we propose a method which relies on

additional anchor measurements.

Assume that at each of L distinct times we measure positions of at least

d+ 1 anchors; as before, denote the anchor indices at time τ` by I`, and the

corresponding positions by XI` . Now we can use Procrustes analysis at each

time individually (that is, applied to constant matrices that are evaluations

of time-varying matrices at these particular times) to estimate rotation and

translation, Ûτl and x̂(τl) at time τl. Denote by X(τ`) any matrix such that

X(τ`)
>X(τ`) = G(τ`); since this involves only constant matrices, we can use

the eigendecomposition method described in Section 2.2.1 to compute X(τ`).

Note that in doing so, there is no guarantee that these “marginal” estimates

for the rotation correspond to the unique global U we are looking for, because

we do not exploit any temporal model in computing the spectral factors

X(τ`). In other words, all Ûτl could be distinct, and in principle they will.

Nevertheless, we can use them to estimate the trajectory by solving the

following problem:

Θ∗ = arg min
Θ∈A

L∑
l=1

∥∥∥XΘ(τl)−
(
ÛτlX(τl) + x̂(τl)1

>)∥∥∥2

F
. (2.11)

26

Algorithm 2 Spectral Factorization — SF(D̂(t), {XI`}Ll=1).

1: for l ∈ {1, · · · , L}
2: Ĝ(τl)← −1

2
JND̂(τl)JN

3: X(τl)← Ĝ(τl)
1/2

4: Solve for Ûτl using Procrustes analysis
5: Estimate the translation at time τ`:

x̂(τl)←
1

Nτl

(XI` − ÛXI`(τl)l)1

6: Estimate point positions at time τ`:

X̂(τl)← ÛτlX(τl) + x̂(τl)1
>

7: end for
8: Find the trajectory:

Θ← arg min
Θ∈A

L∑
`=1

‖XΘ(τ`)−
(
Ûτ`X(τ`) + x̂(τ`)1

>)‖2
F

9: return XΘ(t)

The logic behind (2.11) is that even though the matrices Ûτ` are “wrong”,

the product ÛτlX(τl) is correct thanks to the anchors. With sufficiently

many marginal estimates, there is a unique set of polynomial trajectories

passing through them. The described procedure is summarized in Algorithm

2 and the complete KDGP trajectory localization algorithm with anchors in

Algorithm 3.

2.6 Simulation Results

We empirically evaluate different aspects of the proposed algorithm. We first

study the influence of sampling time distribution in Section 2.6.1 as this choice

Algorithm 3 Overall KDGP algorithm — KDGP({XI`}, {ti} , {D̃ti}, {Wi}).

1: D̂(t) = SDR({ti} , {D̃ti}, {Wi})
2: XΘ(t) = SF(D̂(t), {XI`})
3: return XΘ(t)

27

affects the other experiments. In Section 2.6.2, we look at the maximum

achievable measurement sparsity:7 KDGP measurements are a sequence of

incomplete EDMs and it is interesting to understand what proportion of

missing entries we can tolerate.8

• For polynomial model, we uniformly generate samples ti from [T−, T+]

for some T− � 0 � T+. Then, T +
psd = {eti}. Similarly T −psd = {−eti}

and Tpsd = T +
psd ∪ T

−
psd.

• For bandlimited, Tpsd is comprised of uniformly generated samples in

[0, 2π
ω

].

Finally, in Section 2.6.3 we study the effect of measurement noise on the

quality of the estimated trajectories. We conclude this section by applying

our algorithms to a synthetic problem of satellite localization from noisy and

very sparse distance measurements.

2.6.1 Distribution of Sampling Times

The measurements in Algorithm 3 are a sequence of (incomplete) snapshots

of KEDM at different times, {Wi ◦ D(X(ti))}i. We experiment with different

choices of sampling times {ti}i. To exclude the influence of other factors,

we assume having access to all pairwise distances, and we contaminate the

measurements by noise. Note that without noise, we can compute the Gramian

basis simply by solving a linear system of equations so that any sampling

strategy with sufficiently many samples gives the perfect estimation.

Let the true, noiseless distances be dij(t) = ‖xi(t)− xj(t)‖ and noisy

measurements given as

d̃ij(t) = dij(t) + nij(t), (2.12)

where nij(t) ∼ N (0, σ2) is iid measurement noise. The corresponding KEDMs

are D(t) = [d 2
ij(t)]ij and D̃(t) = [d̃ 2

ij(t)]ij.

7We use the term “sparsity” to refer to sparse or subsampled measured data, as is
common in the inverse problems theory.

8In all experiments we sample the positive semidefinite constraint at random times.
We have found empirically that this choice does not matter much, unlike the choice
of measurement times. The exact details can be found in the reproducible code at
https://github.com/swing-research/kedm/

28

Figure 2.4: Relative reconstruction error eD(t) averaged over M = 200
realizations. The number of points is N = 10, ambient dimension d = 2,
trajectory degree P = 3 and noise variance σ2 = 1 for both models. The
trajectory parameters, Ap, are drawn iid Gaussian—real valued for
polynomial and complex for bandlimited with complex exponential basis.
The sampled interval of interest is [−1, 1] for the polynomial and [0, 1] for
the bandlimited model.

To compare the different sampling protocols, we average the reconstruction

error over many trajectory and noise realizations. The reconstruction error is

defined as

eD(t) =
‖D(t)− D̂(t)‖F
‖D(t)‖F

,

where D̂(t) = SDR(({ti} , {D̃ti}, {Wi})}Ti=1) is the KEDM estimated by Algo-

rithm 3. The goal is to determine which sampling pattern minimizes eD(t)

for all t in the interval of interest [T1, T2]. In Figure 2.4, we show the average

errors for the following sampling patterns:

• random: ti ∼ Unif([T1, T2]),

• Chebyshev: ti = 1
2
(T1 + T2) + 1

2
(T2 − T1) cos(2i−1

2T
π),

• equispaced: ti = T1 + (T2 − T1) i
T

,

where i = 1, . . . , T . We can see that random sampling performs poorly for

both the polynomial and the bandlimited model. Chebyshev and equispaced

nodes give a similar relative error, with equispaced nodes performing slightly

29

better for the bandlimited model. Studying individual realizations shows that

the worst-case error for Chebyshev and equispaced sampling is on the same

order as the average error, but it is much worse for random sampling: large

reconstruction errors occur when two consecutive measurement times are far

apart. In the following experiments, we use equispaced measurement times.

All experiments were run on a laptop with a 2.9 GHz Core i5 processor

and 16 GB of memory, using the cvxpy package [87, 88]. The interior point

methods used by solvers in cvxpy tend to become slow as the number of

points and the polynomial degree grow (e.g., for N ≥ 20, P ≥ 5), and should

be replaced by faster, tailor-made optimizers.

2.6.2 Measurement Sparsity

Trajectory estimation from distances is a nonlinear sampling problem, with

trajectory models allowing us to trade spatial for temporal samples. Here we

empirically study the maximum sparsity level for spatial measurements. Given

a sequence of measurement masks W1, · · · ,WT ∈ {0, 1}N×N , the sparsity level,

0 ≤ S ≤ 1, is defined as the ratio of average to total number of pairwise

distances:

S =
1(
N
2

) 1

T

T∑
i=1

of missing measurements at time ti.

We can expect the maximum sparsity level to vary with factors such as the

trajectory model, temporal sampling pattern, measurement masks, and noise.

To evaluate it, we fix parameters the trajectory class, degree, number of points,

and ambient dimension. We declare a localization experiment successful if

the relative trajectory mismatch

eX =

∫
T
‖X(t)− X̂(t)‖F/‖X(t)‖F dt,

which we approximate by discretizing T , is below some prescribe threshold

δ. We are interested in numerically evaluating the probability that the

localization succeeds (within tolerance δ) if on average over sampling times,

m pairwise distances are missing. Denote this probability by p(δ,m). We

would like to find conditions on m such that p(δ,m) is large. In particular,

30

Figure 2.5: The estimated sparsity level Ŝ for polynomial degrees P and
numbers of points N . The success threshold δ is set to 0.99 and the target
fraction of successful reconstructions q to 0.9.

for 0 ≤ q < 1, let m(δ, q) be the largest m such that p(δ,m) ≥ q.

We run M localization trials for different realizations of random trajectories,

and denote the number of succesful trials by M1. For a given average number

of missing pairwise distances m, the probability of correct localization is

estimated as p̂M(δ,m) = M1

M
. The estimate of m(δ, q) is then simply

m̂(δ, q) := max {m : p̂M(δ,m) ≥ q} .

To compute m̂(δ, q), we increase the number of missing measurements per

sampling time, m, and count the number of δ-accurate estimates to compute

m̂(δ, q) and the corresponding Ŝ(δ, q) = m̂(δ, q)/
(
N
2

)
.

In the first experiment, we fix the number of sampling times, T , and vary the

number of points N and polynomial (or bandlimited) degree P . Specifically,

in Figure 3.3 we choose T = 7 for polynomial and T = 13 for bandlimited

models.

As expected, we observe that for a fixed N , as P grows (and consequently

the number of parameters) the allowable sparsity level decreases, meaning

that more complicated trajectories require more spatial samples. This is due

to fact that ratio of number of measurements, which is fixed in this case,

to number of parameters decreases. Importantly, compared to the static

DGP, we see that KEDMs and the proposed semidefinite relaxation allow us

to measure fewer distances at any given time, and compensate for this by

sampling at multiple times.

31

In the second experiment we attempt to better characterize the observed

spatio–temporal sampling tradeoff. To this end, we fix the parameters so

that the ratio of the number of measurements to the number of the degrees

of freedom is constant. That is, we keep the number of sampling times

proportional to the number of basis Gramians, T = K + 1 for the polynomial

and T = 2K + 1 for the bandlimited model.

As Tables 2.1 and 2.2 show, with this scaling the sparsity level is approx-

imately constant as the polynomial degree P grows. In other words, even

though the trajectories become more and more complicated, we can keep the

number of spatial measurements fixed as long as we adjust the number of tem-

poral sampling instants. The empirical observation that the required number

of measurements scales linearly with the number of the degrees of freedom

suggests that the proposed algorithms require an order-optimal number of

samples.

However, there is a meaningful difference between sparsity levels for P = 0,

i.e. static DGP, and P 6= 0 models. For simplicity, let us compare the

polynomial models with P = 0 and P = 1. In the static model of P = 0, we

sample the distance matrix one time and estimate point positions at that

time, i.e. estimate A0. On the other hand, for P = 1 model, we sample

KEDM at K + 1 = 3 time instants to estimate A0, A1. This redundancy in

parameterization of Gramian G(t), which is due to convolution operator in

(2.6), lets us achieve sparser measurements in non-trivial, P 6= 0, trajectory

models.

Table 2.1: Maximal sparsity for the polynomial model and d = 2.

P\N 5 6 7 8 9 10 11 12 13 14 15

P = 1 0.1 0.2 0.28 0.39 0.44 0.46 0.52 0.56 0.57 0.60 0.62
P = 2 0.1 0.2 0.33 0.35 0.41 0.46 0.51 0.54 0.57 0.60 0.62
P = 3 0.1 0.2 0.28 0.35 0.41 0.46 0.51 0.54 0.57 0.59 0.62

Table 2.2: Maximal sparsity for the bandlimited model and d = 2.

P\N 5 6 7 8 9 10 11 12 13 14 15

P = 1 0.1 0.26 0.33 0.39 0.44 0.48 0.51 0.56 0.57 0.60 0.63
P = 2 0.1 0.2 0.28 0.35 0.41 0.44 0.49 0.53 0.56 0.60 0.63
P = 3 0.1 0.2 0.28 0.35 0.38 0.46 0.49 0.53 0.56 0.58 0.60

32

2

-4

-3 4

4

-6
-8 8

Figure 2.6: Estimated trajectories, X̂(t), for N = 6 points in R2 at different
levels of measurement noise and number of temporal measurements. The
time interval of interest is t ∈ [−1, 1] for polynomial and t ∈ [0, 1] for
bandlimited trajectories.

2.6.3 Noisy Measurements

We again quantify the influence of noise by the relative trajectory mismatch.

We fix a trajectory, shown in Figure 2.6, and a set of distance sampling times

{tk}Kk=0, and generate many realizations of noisy measurement sequences

D̃t0 , · · · , D̃tK with the same noise variance σ2. The i.i.d. noise is added to

the non-squared distances. The empirical trajectory mismatch is an average

of relative trajectory mismatches over realizations, 1
M

∑
m e

(m)
X .

In Figure 2.6, we show many estimated trajectories X̂(t). As expected,

the mismatch increases with measurement noise σ2 and decreases with the

number of measurements. In all cases, the estimated trajectories concentrate

around the true ones.

33

2.6.4 A Stylized Application: Satellite Positioning

In this section we apply KEDMs in a stylized satellite positioning scenario

where measurements are both very sparse and noisy. We consider a set of

satellites moving with constant angular velocity, with angular frequency being

an integer multiple of the fundamental frequency ω0. Such trajectories have

the form

x(t) = R

 a cos(ωt)

b sin(ωt)

0

 ,

where R is a 3× 3 rotation matrix.

The set of all satellite trajectories

X(t) = [x1(t, p1), · · · , xN(t, pN)]

follows the bandlimited trajectory model. Concretely,

x(t, p) = a1 cos(pω0t) + a2 sin(pω0t)

is the trajectory of a satellite whose angular frequency is p times the funda-

mental frequency ω0 and a1, a2 ∈ R3. The ensemble trajectory, X(t), is a

bandlimited trajectory of degree P = maxn pn.

We apply Algorithm 3 in two experiments. In Figure 2.7, we show trajecto-

ries of N = 8 satellites with the same orbiting frequency ω0. Since the ellipses

are of different sizes, the inner points can also be interpreted as vehicles on

the earth. We measure three noisy pairwise distances, out of 28 available,

per sampling time instant. This could model, for instance, occlusions by the

Earth and other adversarial effects. We compensate for undersampling in

space by oversampling in time, taking samples at T = 30 different times.

Similarly, in Figure 2.8 we show N = 5 satellites with angular frequencies ω0

and 2ω0, that is, with P = 2; we measure only two pairwise distances per

sampling time instant (these are extremely sparse measurements with which

static localization is hopeless), at T = 30 sampling times. As figures show, in

both experiments, we successfully reconstruct trajectories of the satellites.

34

Figure 2.7: Reconstructing the trajectories of eight orbiting satellites.
Colored and dashed lines represent actual and estimated trajectories. All
satellites have the same angular frequency with P = 1. The measurement
matrices are missing about 9/10 measurements, and noise level is set to
σ = 0.05. The average reconstruction error is 1

M

∑
i eD(ti) = 0.01.

Figure 2.8: Reconstructing the trajectories of five orbiting satellites with
angular frequencies of ω0 and 2ω0. The measurement matrices are 80%
sparse, and average reconstruction error is 1

M

∑
i eD(ti) = 0.03.

2.7 Conclusion

We extended the algebraic tools for localization from distances to the case

when points are moving. We defined kinetic Euclidean distance matrices for

polynomial and bandlimited trajectories, and we derived algorithms based

on semidefinite programming to solve the associated trajectory localization

problem. The chosen trajectory models are expressive and can approximate

continuous trajectories commonly used in localization and tracking. The

key step in our method is to represent the time-varying Gram matrices as

time-varying linear combinations of certain constant matrices. This allowed

us to rewrite the localization problem as a semidefinite program. Same as

in the static case, the actual localization involves an additional spectral

35

factorization step. However, for polynomial matrices, this is much harder

than a simple SVD, and especially from noisy data like those that we get.

We circumvent the related difficulties by deriving a spectral factorization

method that directly uses anchor measurements. We demonstrated through

numerical experiments that the proposed algorithms can indeed reconstruct

model trajectories from sparse and noisy measurements, and that they can

explore the tradeoff between the number of distances measured at any given

time, and the number of sampling times.

36

CHAPTER 3

HYPERBOLIC DISTANCE MATRICES

3.1 Introduction1

Hyperbolic spaces can embed hierarchical structures uniformly and with

arbitrarily low distortion [23, 24]. In comparison, Euclidean spaces cannot

achieve comparably low distortion even using an unbounded number of

dimensions [89]. Embedding objects in hyperbolic spaces has found a myriad

applications in exploratory science, from visualizing hierarchical structures

such as social networks and link prediction for symbolic data [90, 21] to

natural language processing [91, 37], brain networks [92], gene ontologies [93]

and recommender systems [94, 95].

Commonly in these applications, there is a tree-like data structure which

encodes similarity between a number of entities. We experimentally observe

some relational information about the structure and the data mining task is to

find a geometric representation of the entities consistent with the experimental

information. In other words, the task is to compute an embedding. This

concept is closely related to the classical distance geometry problems and

multidimensional scaling (MDS) [96] in Euclidean spaces [10, 5].

The observations can be metric or nonmetric. Metric observations convey

(inexact) distances; for example, in internet distance embedding a small

subset of nodes with complete distance information are used to estimate

the remaining distances [97]. Nonmetric observations tell us which pairs of

entities are closer and which are further apart. The measure of closeness

is typically derived from domain knowledge; for example, word embedding

algorithms aim to relate semantically close words and their topics [98, 99].

1Reprinted, with permission, from P. Tabaghi and I. Dokmanic, Hyperbolic Distance
Matrices, Proceedings of the 26th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, 2020 [19]. The published manuscript is available at https:

//doi.org/10.1145/3394486.3403224

37

In scientific applications it is desirable to compute good low-dimensional

hyperbolic embeddings. Insisting on low dimension not only facilitates visual-

ization, but also promotes simple explanations of the phenomenon under study.

However, in most works that leverage hyperbolic geometry the embedding

technique is not the primary focus and the related computations are often

ad hoc. The situation is different in the Euclidean case, where the notions

of MDS, Euclidean distance matrices (EDMs) and their characterization in

terms of positive semidefinite Gram matrices play a central role in the design

and analysis of algorithms [10, 100].

In this chapter, we focus on computing low-dimensional hyperbolic em-

beddings. While there exists a strong link between Euclidean geometry and

positive (semi)definiteness, we prove that what we call hyperbolic distance ma-

trices (HDMs) can also be characterized via semidefinite constraints. Unlike

in the Euclidean case, the hyperbolic analogy of the Euclidean Gram matrix is

a linear combination of two rank-constrained semidefinite variables. Together

with a spectral factorization method to directly estimate the hyperbolic points,

this characterization gives rise to flexible embedding algorithms which can

handle diverse constraints and mixed metric and nonmetric data.

3.1.1 Related Work

The usefulness of hyperbolic space stems from its ability to efficiently rep-

resent the geometry of complex networks [101, 102]. Embedding metric

graphs with underlying hyperbolic geometry has applications in word em-

bedding [98, 99], geographic routing [103], routing in dynamical graphs [104],

odor embedding [26], internet network embedding for delay estimation and

server selection [97, 105], to name a few. In the literature such problems are

known as hyperbolic multidimensional scaling [34].

There exist Riemann gradient-based approaches [35, 36, 21, 37] which can

be used to directly estimate such embeddings from metric measurements [38].

We emphasize that these methods are iterative and only guaranteed to return

a locally optimal solution. On the other hand, there exist one-shot methods

to estimate hyperbolic embeddings from a complete set of measured distances.

The method of Wilson et al. [106] is based on spectral factorization of an

inner product matrix (we refer to it as hyperbolic Gramian) that directly

38

minimizes a suitable stress. In this chapter, we derive a semidefinite relaxation

to estimate the missing measurements and denoise the distance matrix, and

then follow it with the spectral embedding algorithm to find the embeddings.

Nonmetric (or order) embedding has been proposed to learn visual-semantic

hierarchies from ordered input pairs by embedding symbolic objects into

a low-dimensional space [107]. In the Euclidean case, stochastic triplet

embeddings [108], crowd kernels [109], and generalized nonmetric MDS [52]

are some well-known order embedding algorithms. For embedding hierarchical

structures, Ganea et al. [33] model order relations as a family of nested

geodesically convex cones. Zhou et al. [26] show that odors can be efficiently

embedded in hyperbolic space provided that the similarity between odors is

based on the statistics of their co-occurrences within natural mixtures.

3.1.2 Contributions

We summarize our main contributions as follows:

• Semidefinite characterization of HDMs: We introduce HDMs as

an elegant tool to formalize distance problems in hyperbolic space;

this is analogous to Euclidean distance matrices (EDM). We derive a

semidefinite characterization of HDMs by studying the properties of

hyperbolic Gram matrices—matrices of Lorentzian (indefinite) inner

products of points in a hyperbolic space.

• A flexible algorithm for hyperbolic distance geometry prob-

lems (HDGPs): We use the semidefinite characterization to propose

a flexible embedding algorithm based on semidefinite programming. It

allows us to seamlessly combine metric and nonmetric problems in one

framework and to handle a diverse set of constraints. The nonmetric and

metric measurements are imputed as linear and quadratic constraints.

• Estimate the embedded points: We propose a suboptimal method

to find a low-rank approximation of the hyperbolic Gramian in the

desired dimension. This method relies on a spectral factorization tech-

nique that was proposed at least as early as in [106], and as a result,

gives the points’ positions in the hyperbolic space.

39

Table 3.1: Essential elements in semidefinite approach for distance problems,
Euclidean versus hyperbolic space.

Euclidean Hyperbolic

Euclidean Distance Matrix Hyperbolic Distance Matrix
Gramian H-Gramian

Semidefinite relaxation Semidefinite relaxation
to complete an EDM to complete an HDM

Spectral factorization of a Spectral factorization of an
Gramian to estimate the points H-Gramian to estimate the points

3.1.3 Outline

We first briefly review the analytical models of hyperbolic space and formalize

hyperbolic distance geometry problems (HDGPs) in Section 3.2.3. Our frame-

work is parallel with semidefinite approaches for Euclidean distance problems

as per Table 3.1. In the hyperboloid (’Loid) model, we define hyperbolic

distance matrices to compactly encode hyperbolic distance measurements.

We show that an HDM can be characterized in terms of the matrix of in-

definite inner products, the hyperbolic Gramian. In Section 3.3, we propose

a semidefinite representation of hyperbolic Gramians, and in turn HDMs.

We cast HDGPs as rank-constrained semidefinite programs, which are then

convexified by relaxing the rank constraints. We use a spectral method to

find a sub-optimal low-rank approximation of the hyperbolic Gramian, to

the correct embedding dimension. Lastly, we use closed-form factorization

and rank correction methods to estimate the embedded points. Our pro-

posed framework lets us tackle a variety of embedding problems, as shown

in Section 3.4, with real (odors) and synthetic (random trees) data. Finally,

in Appendix B, we present the derivations of proposed algorithms and the

proofs of all propositions.

3.2 Hyperbolic Distance Geometry Problems

Hyperbolic space is a simply connected Riemannian manifold with constant

negative curvature [110, 111]. In comparison, Euclidean and elliptic geometries

are spaces with zero (flat) and constant positive curvatures. There are five

isometric models for hyperbolic space: half-space (Hd), Poincaré (interior of

40

the disk) (Id), jemisphere (Jd), Klein (Kd), and ’Loid (Ld) [110] (Figure 3.1).

Each provides unique insights into the properties of hyperbolic geometry.

In the machine learning community the most popular models of hyperbolic

geometry are Poincaré and ’Loid. We work in the ’Loid model as it has a

simple, tractable distance function. It lets us cast the HDGP (formally defined

in Section 3.2.3) as a rank-constrained semidefinite program. Importantly,

it also leads to a closed-form embedding by a spectral method. For better

visualization, however, we map the final embedded points to the Poincaré

model via the stereographic projection, see Sections 3.2.2 and 3.4.

3.2.1 ’Loid Model

Let x and y be vectors in Rd+1 with d ≥ 1. The Lorentzian inner product of

x and y is defined as

[x, y] = x>Hy, (3.1)

where

H =

(
−1 0>

0 I

)
∈ R(d+1)×(d+1). (3.2)

Figure 3.1: Models of hyperbolic space with level sets (colors) illustrating
isometries.

41

This is an indefinite inner product on Rd+1. The Lorentzian inner product

has almost all the properties of ordinary inner products, except that

‖x‖2
H

def
= [x, x]

can be positive, zero, or negative. The vector space Rd+1 equipped with the

Lorentzian inner product (5.5) is called a Lorentzian (d + 1)-space, and is

denoted by R1,d. In a Lorentzian space we can define notions similar to the

Gram matrix, adjoint, and unitary matrices known from Euclidean spaces as

follows.

Definition 3 (H-adjoint [112]). The H-adjoint R[∗] of an arbitrary

matrix R ∈ R(d+1)×(d+1) is characterized by

[Rx, y] = [x,R[∗]y], ∀x, y ∈ Rd+1.

Equivalently,

R[∗] = H−1R>H.

Definition 4 (H-unitary matrix [112]). An invertible matrix R is called

H-unitary if R[∗] = R−1 .

The ’Loid model of d-dimensional hyperbolic space is a Riemannian manifold

Ld = (Ld, (gx)x), where

Ld =
{
x ∈ Rd+1 : ‖x‖2

H = −1, x0 > 0
}

and gx = H is the Riemannian metric.

Definition 5 (Lorentz Gramian, H-Gramian). Let the columns of

X = [x1, x2, · · · , xN] be the positions of N points in Rd+1 (resp. Ld).

We define their corresponding Lorentz Gramian (resp. H-Gramian) as

G = ([xi, xj])i,j∈[N]

= X>HX,

where H is the indefinite matrix given by (3.2).

The subtle difference between the Lorentz Gramian (defined for points in

42

Rd+1) and the H-Gramian (defined only on Ld ⊂ Rd+1) will be important for

the low-rank projection and the spectral factorization steps in Section 3.3. The

indefinite inner product (5.5) also determines the distance between x, y ∈ Ld

as

d(x, y) = acosh(−[x, y]).

3.2.2 Poincaré Model

In the Poincaré model (Id), the points reside in the unit d-dimensional

Euclidean ball. The distance between x, y ∈ Id is given by

d(x, y) = acosh
(

1 + 2
‖x− y‖2

(1− ‖x‖2)(1− ‖y‖2)

)
.

The isometry between the ’Loid and the Poincaré models, h : Ld → Id is

called the stereographic projection. For y = h(x), we have

yi =
xi+1

x0 + 1
. (3.3)

The inverse of stereographic projection is given by

x = h−1 (y) =
1

1− ‖y‖2

[
1 + ‖y‖2

2y

]
.

The isometry between the ’Loid and Poincaré models makes them equivalent

in their embedding capabilities. However, the Poincaré model facilitates

visualization of the embedded points in a bounded disk, whereas the ’Loid

model is an unbounded space.

3.2.3 Hyperbolic Distance Problems

In a metric hyperbolic distance problem, we want to find a point set x1, . . . , xN ∈
Ld such that

for all (m,n) ∈ C : dmn = acosh (−[xm, xn]) ,

for a subset of measured distances D = {dmn : (m,n) ∈ C ⊆ [N]2as}.

43

In many applications we have access to the true distances only through an

unknown nonlinear map d̃mn = φ(dmn); examples are connectivity strength of

neurons [46] or odor co-ocurrence statistics [26]. If all we know is that φ(·) is

a monotonically increasing function, then only the ordinal information has

remained intact, i.e.,

dkl ≤ dmn ⇔ d̃kl ≤ d̃mn.

This leads to nonmetric problems in which the measurements are in the form

of binary comparisons [52].

Definition 6. For a set of binary distance comparisons of the form

dkl ≤ dmn, we define the set of ordinal distance measurements as

O =
{

(k, l,m, n) : dkl ≤ dmn, (k, l), (m,n) ∈ [N]2as

}
.

We are now in a position to give a unified definition of metric and nonmetric

embedding problems in a hyperbolic space.

Problem 3. A hyperbolic distance geometry problem aims to find

x1, . . . , xN ∈ Ld, given

• a subset of pairwise distances D such that

dmn = d(xm, xn), for all dmn ∈ D

• and/or a subset of ordinal distances measurements O such that

d(xi1 , xi2) ≤ d(xi3 , xi4), for all i ∈ O,

where d(x, y) = acosh (−[x, y]) and i = (i1, i2, i3, i4).

We denote the complete sets of metric and nonmetric measurements by Dc
and Oc.

3.3 Hyperbolic Distance Matrices

We now introduce hyperbolic distance matrices in analogy with Euclidean

distance matrices to compactly encode interpoint distances of a set of points

44

x1, . . . , xN ∈ Ld.

Definition 7. The hyperbolic distance matrix (HDM) corresponding

to the list of points X = [x1, . . . , xN] ∈ (Ld)N is defined as

D = D(X) = (d(xi, xj))i,j∈[N] .

The ij-th element of D(X) is hyperbolic distance between xi and xj,

given by d(xi, xj) = acosh(−[xi, xj]) and for all i, j ∈ [N].

HDMs are characterized by Lorentzian inner products which allows us

to leverage the definition of an H-Gramian (Definition 5). Given points

x1, . . . , xN ∈ Ld, we compactly write the HDM corresponding to G as

D = acosh[−G],

where acosh[·] is an elementwise acosh(·) operator.

We now state our first main result: a semidefinite characterization of

H-Gramians. This is a key step in casting HDGPs as rank-constrained

semidefinite programs.

Proposition 6 (Semidefinite characterization of H-Gramian). Let G be

the hyperbolic Gram matrix for a set of points x1, · · · , xN ∈ Ld. Then,

G = G+ −G−

where G+, G− � 0

rankG+ ≤ d

rankG− ≤ 1

diagG = −1

e>i Gej ≤ −1, ∀i, j ∈ [N].

Conversely, any matrix G ∈ RN×N that satisfies the above conditions is

a hyperbolic Gramian for a set of N points in Ld.

45

3.3.1 Solving for H-Gramians

While Problem 3 could be formalized directly in X domain, this approach

is unfavorable as the optimization domain, Ld, is a non-convex set. What is

more, the hyperbolic distances

d(xm, xn) = acosh
(
−e>mX>HXen

)
are nonlinear functions of X with an unbounded gradient [34]. Similar issues

arise when computing embeddings in other spaces such as Euclidean [5] or

the space of polynomial trajectories [7]. A particularly effective strategy in

the Euclidean case is the semidefinite relaxation which relies on the simple

fact that the Euclidean Gramian is positive semidefinite. We thus proceed

by formulating a semidefinite relaxation for hyperbolic embeddings based on

Proposition 6.

Solving the HDGP involves two steps, summarized in Algorithm 4:

1. Complete and denoise the HDM via a semidefinite program.

2. Compute an embedding of the clean HDM: we propose a closed-form

spectral factorization method.

Note that step (2) is independent of step (1): given accurate hyperbolic

distances, spectral factorization will give the points that reproduce them.

However, since the semidefinite relaxation might give a Gramian with a

higher rank than desired, eigenvalue thresholding in step (2) might move

the points off of Ld. That is because eigenvalue thresholding can violate the

necessary condition for the hyperbolic norm, ‖x‖2
H = −1, or diagG = −1 in

Proposition 6. We fix this by projecting each individual point to Ld. The

spectral factorization and the projection are given in Algorithms 6 and 9.

Let D̃ be the measured noisy and incomplete HDM, with unknown entries

replaced by zeroes. We define the mask matrix W = (wij) as

wij
def
=

1, for (i, j) ∈ C ∨ (j, i) ∈ C

0, otherwise.
.

This mask matrix lets us compute the loss only at those entries that were

actually measured. We use the semidefinite characterization of hyperbolic

46

Algorithm 4 HDGP algorithm — HDGP(D̃, Õ, d).

Input: Incomplete and noisy distance matrix, D̃, and ordinal measure-
ments, Õ, and embedding dimension, d.
G = SDR(D̃, Õ, d) =⇒ Complete & denoise HDM
X = Embed(G, d) =⇒ Embed points in Ld

yn = h(xn), ∀n ∈ [N]

where h(·) is given by (3.3) =⇒ Map the points to Id

return Y = [y1, · · · , yN] ∈
(
Id
)N

.

Gramians in Proposition 6 to complete and denoise the measured HDM, and

eventually solve HDGP.

Although the set of hyperbolic Gramians for a given embedding dimension

is non-convex due to the rank constraints, discarding the rank constraints

results in a straightforward semidefinite relaxation.

However, if we convexify the problem by simply discarding the rank con-

straints, then all pairs (G1, G2) ∈ {(G+ + P,G− + P) : P � 0} become a

valid solution. On the other hand, since

rank G+ P ≥ rank G for G,P � 0,

we can eliminate this ambiguity by promoting low-rank solutions for G+ and

G−. While directly minimizing

rank G+ + rank G− (3.4)

is NP-hard [113], there exist many approaches to make (3.4) computationally

tractable, such as trace norm minimization [114], iteratively reweighted least

squares minimization [115], or the log-det heuristic [116] that minimizes the

following smooth surrogate for (3.4):

log det(G+ + δI) + log det(G− + δI),

where δ > 0 is a small regularization constant. This objective function

is linearized as C + Tr W+
k G

+ + Tr W−
k G

− for W+
k = (G+

k + δI)−1 and

W−
k = (G−k + δI)−1, which can be iteratively minimized.2 In our numeri-

2In practice, we choose a diminishing sequence of δk.

47

Algorithm 5 Semidefinite relaxation for HDGP — SDR(D̃, Õ, d).

Input: Incomplete and noisy distance matrix, D̃, and ordinal measure-
ments, Õ, and embedding dimension, d.
Let W be the measurement mask. For small ε1, ε2 > 0, solve for G:

minimize Tr G+ + Tr G−

w.r.t G+, G− � 0

subject to G = G+ −G−,
diagG = −1,

e>i Gej ≤ −1, ∀i, j ∈ [N]∥∥∥W ◦ (cosh[D̃] +G
)∥∥∥2

F
≤ ε1,

Lk(G) ≥ ε2, ∀k ∈ Õ.

return G.

cal experiments we will uset he trace norm minimization unless otherwise

stated. Then, we enforce the data fidelity objectives and the properties of

the embeddings space (Proposition 6) in the form of a variety of constraints.

Metric embedding: The quadratic constraint∥∥∥W ◦ (cosh[D̃] +G
)∥∥∥2

F
≤ ε1

makes sure the hyperbolic Gramian G accurately reproduces the given distance

data.

Nonmetric embedding: The ordinal measurement constraint of

d(xi1 , xi2) ≤ d(xi3 , xi4),

is simply a linear constraint in form of

Li(G) = e>i1Gei2 − e
>
i3
Gei4 ≥ 0,

where i ∈ O and i = (i1, i2, i3, i4). In practice, we replace this constraint by

Li(G) ≥ ε2 > 0 to avoid trivial solutions.

’Loid model: The unit hyperbolic norm appears as a linear constraint,

diagG = −1,, which guarantees that the embedded points reside in sheets

Ld ∪ −Ld. Finally, e>i Gej ≤ −1 enforces all embedded points to belong to

48

the same hyperbolic sheet, i.e. xn ∈ Ld for all n ∈ [N].

This framework can serve as a bedrock for multitude of other data fidelity ob-

jectives. We can seamlessly incorporate outlier removal schemes by introduc-

ing slack variables into the objective function and constraints [117, 118, 119].

For example, the modified objective function

Tr G+ + Tr G− +
∑
k

εk

can be minimized subject to Lk(G) + εk ≥ 0 and εk ≥ 0 as a means of

removing outlier comparisons (we allow some comparisons to be violated; see

Section 3.4.3 for an example).

We can similarly implement outlier detection in metric embedding problems.

As an example, we can adapt the outlier pursuit algorithm [120]. Consider

the measured H-Gramian of a point set with a few outliers

Ĝ = G+ C +N,

where G is outlier-free hyperbolic Gramian, C is a matrix with only few

nonzero columns and N represents the measurement noise. Outlier pursuit

aims to minimize a convex surrogate for

rankG+ λ ‖C‖0,c s.t.
∥∥∥Ĝ−G− C∥∥∥2

F
≤ ε,

where ‖C‖0,c is the number of nonzero columns of C.

We note that scalability of semidefinite programs has been studied in a

number of recent works [121], for example based on matrix sketching [122, 123].

3.3.2 Low-rank Approximation of H-Gramians

From Proposition 6, it is clear that the rank of a hyperbolic Gramian of

points in Ld is at most d + 1. However, the H-Gramian estimated by the

semidefinite relaxation in Algorithm 5 does not necessarily have the correct

rank. Therefore, we want to find its best rank-(d+ 1) approximation, namely

Ĝ, such that ∥∥∥G− Ĝ∥∥∥2

F
= inf

X∈(Ld)
N

∥∥G−X>HX∥∥2

F
. (3.5)

49

In Algorithm 6 we propose a simple but suboptimal procedure to solve this

low-rank approximation problem. Unlike iterative refinement algorithms

based on optimization on manifolds [124], our proposed method is one-shot.

It is based on the spectral factorization of the the estimated hyperbolic

Gramian and involves the following steps:

Step 1: We find a set of points {zn} in Rd+1, whose Lorentz Gramian best

approximates G; See Definition 5 and lines 2 to 5 of Algorithm 6. In other

words, we relax the optimization domain of (3.5) from Ld to Rd+1,

Z = arg min
X∈R(d+1)×N

∥∥G−X>HX∥∥2
.

Step 2: We project each point zn onto Ld, i.e.,

X̂ = arg min
X∈(Ld)

N

‖X − Z‖2
F .

This gives us an approximate rank-(d+ 1) hyperbolic Gramian, Ĝ = X̂>HX̂;

see Figure 3.2 and Algorithm 6.

The first step of low-rank approximation of a hyperbolic Gramian G can

Algorithm 6 Low-rank approximation and spectral factorization of hyper-
bolic Gramian — Embed(G, d).

Input: Hyperbolic Gramian G, and embedding dimension d.
Let U>ΛU be eigenvalue decomposition of G, where Λ =
diag (λ0, · · · , λN−1) such that

• λ0 = mini λi,

• λi is the top i-th element of {λi} for i ∈ [N]− 1.

Let Gd+1 = U>d ΛdUd, where

Λd = diag
(
λ0, u(λ1), · · · , u(λd)

)
,

u(x) = max {x, 0}, and Ud be the corresponding sliced eigenvalue matrix.
Z = R|Λd|1/2U>d , for an arbitrary H-unitary matrix R.
For Z = [z1, . . . , zN], let

xn = Project(zn), ∀n ∈ [N].

return X = [x1, . . . , xN] ∈
(
Ld
)N

.

50

Figure 3.2: Projecting a point in Rd+1 (blue) to Ld (red).

be interpreted as finding the positions of points in Rd+1 (not necessarily on

Ld) whose Lorentz Gramian best approximates G.

3.3.3 Spectral Factorization of H-Gramians

To finally compute the point locations, we describe a spectral factorization

method, proposed in [106], to estimate point positions from their Lorentz

Gramian. This method exploits the fact that Lorentz Gramians have only

one non-positive eigenvalue (see Lemma 2 in Appendix B) as detailed in the

following proposition.

Proposition 7. Let G be a hyperbolic Gramian for X ∈
(
Ld
)N

, with

eigenvalue decomposition G = UΛU>, and eigenvalues λ0 ≤ 0 ≤
λ1 ≤ . . . ≤ λd. Then, there exists an H-unitary matrix R such that

X = R|Λ|1/2U .

Note that regardless of the choice of R, X = R|Λ|1/2U will reproduce G

and thus the corresponding distances. This is the rigid motion ambiguity

familiar from the Euclidean case [110]. If we start with an H-Gramian with

a wrong rank, we need to follow the spectral factorization by Step 2 where

we project each point zn ∈ Rd+1 onto Ld. This heuristic is suboptimal, but it

is nevertheless appealing since it only requires a single one-shot calculation

as detailed in Proposition 7.

51

3.4 Experimental Results

In this section we numerically demonstrate different properties of Algorithm 4

in solving HDGPs. In a general hyperbolic embedding problem, we have a

mix of metric and nonmetric distance measurements which can be noisy and

incomplete. Code, data and documentation to reproduce the experimental

results are available at https://github.com/puoya/hyperbolic-distance-

matrices.

3.4.1 Missing Measurements

Missing measurements are a common problem in hyperbolic embeddings of

concept hierarchies. For example, hyperbolic embeddings of words based on

Hearst-like patterns rely on co-occurrence probabilities of word pairs in a

corpus such as WordNet [125]. These patterns are sparse since word pairs

must be detected in the right configuration [37]. In perceptual embedding

problems, we ask individuals to rate pairwise similarities for a set of objects. It

may be difficult to collect and embed all pairwise comparisons in applications

with large number of objects [52].

The proposed semidefinite relaxation gives a simple way to handle missing

measurements. The metric sampling density 0 ≤ S ≤ 1 of a measured HDM is

the ratio of the number of missing measurements to total number of pairwise

distances, S = 1 − |D|
|Dc| . We want to find the probability p(S) of successful

estimation given a sampling density S. In practice, we fix the embedding

dimension, d, and the number of points, N , and randomly generate a point

set, X ∈
(
Ld
)N

. A trial is successful if we can solve the HDGP for noise-free

Figure 3.3: Left and middle: The probability of δ-accurate estimation for
metric sampling density S, M = 100, and δ = 10−2. Right: The empirical
error erel = EK [erel(X)] for ordinal sampling density S, d = 2, M = 50, and
K = 10. In each bar, shading width represents the empirical standard
deviation of erel(X).

52

measurements and a random mask W of a fixed size so that the estimated

hyperbolic Gramian has a small relative error, erel(Ĝ) =
‖D(X)−acosh[−Ĝ]‖

F

‖D(X)‖F
≤ δ.

We repeat for M trials, and empirically estimate the success probability as

p̂(S) = Ms

M
where Ms is the number of successful trials. We repeat the

experiment for different values of N and d, see Figure 3.3.

For nonmetric embedding applications, we want to have consistent em-

bedding for missing ordinal measurements. The ordinal sampling density

0 ≤ S ≤ 1 of a randomly selected set of ordinal measurements is defined

as S = 1 − |O|
|Oc| . For a point set X ∈

(
Ld
)N

, we define the average relative

error of estimated HDMs as erel(X) = EM ‖DO−EM [DO]‖F
‖EM [DO]‖F

where DO is the

estimated HDM for ordinal measurements O, and empirical expectation is

with respect to the random ordinal set O. We repeat the experiment for K

different realizations of X ∈
(
Ld
)N

(Figure 3.3). We can observe that across

different embedding dimensions, the maximum allowed fraction of missing

measurements for a consistent and accurate estimation increases with the

number of points.

3.4.2 Weighted Tree Embedding

Tree-like hierarchical data occurs commonly in natural scenarios. In this

section, we want to compare the embedding quality of weighted trees in

hyperbolic and the baseline in Euclidean space.

We generate a random tree T with N nodes, maximum degree of ∆(T) = 3,

and i.i.d. edge weights from unif(0, 1)3. Let DT be the distance matrix for T ,

where the distance between each two nodes is defined as the weight of the

path joining them.

For the hyperbolic embedding, we apply Algorithm 5 with log-det heuristic

objective function to acquire a low-rank embedding. On the other hand, Eu-

clidean embedding of T is the solution to the following semidefinite relaxation

minimize
∥∥D◦2T −K(G)

∥∥2

F
(3.6)

w.r.t G � 0

subject to G1 = 0

3The most likely maximum degree for trees with N ≤ 25 [126].

53

where K(G) = −2G+diag(G)1>+1diag(G)> and D◦2T is the entrywise square

of DT . This semidefinite relaxation (SDR) yields a minimum error embedding

of T , since the embedded points can reside in an arbitrary dimensional

Euclidean space.

The embedding methods based on semidefinite relaxation are generally

accompanied by a projection step to account for the potentially incorrect

embedding dimension. For hyperbolic embedding problems, this step is

summarized in Algorithm 6, whereas it is simply a singular value thresholding

of the Gramian for Euclidean problems. Note that the SDRs always find a

(N − 1)-dimensional embedding for a set of N points; see Algorithm 5 and

(3.6). In this experiment, we define the optimal embedding dimension as

d0 = min

{
d ∈ N :

‖DN−1 −Dd‖F
‖DN−1 −Dd+1‖F

≥ 1− δ
}
,

where Dn is the distance matrix for embedded points in Ln (or Rn), and

δ = 10−3. This way, we accurately represent the estimated distance matrix in

a low-dimensional space. Finally, we define the relative (or normalized) error

Figure 3.4: Tree embedding in hyperbolic (red) and Euclidean (green) space.
Discrete distribution of optimal embedding dimension for M = 100, (a) and
(b). Average, EM [erel(T)], and standard deviation of embedding error, (c)
and (d).

54

of embedding T in d0-dimensional space as erel(T) =
‖DT−Dd0‖F
‖DT ‖F

. We repeat

the experiment for M randomly generated trees T with a varying number of

vertices N . The hyperbolic embedding yields smaller average relative error

EM [erel(T)] compared to Euclidean embedding, see Figure 3.4. It should

also noted that the hyperbolic embedding has a lower optimal embedding

dimension, even though the low-rank hyperbolic Gramian approximation is

sub-optimal.

3.4.3 Odor Embedding

In this section, we want to compare hyperbolic and Euclidean nonmetric

embeddings of olfactory data following the work of Zhou et al. [26]. We

conduct identical experiments in each space, and compare embedding quality

of points from Algorithm 5 in hyperbolic space to its semidefinite relaxation

counterpart in Euclidean space, namely generalized nonmetric MDS [52].

We use an olfactory dataset comprising mono-molecular odor concentrations

measured from blueberries [127]. In this dataset, there are N = 52 odors

across the total of M = 164 fruit samples. Like Zhou et al. [26], we begin by

computing correlations between odor concentrations across samples [26]. The

correlation coefficient between two odors xi and xj is defined as

C(i, j) =
(xi − µxi1)>(xj − µxj1)

‖xi − µxi1‖
∥∥xj − µxj1∥∥ ,

where xn = (x
(1)
n , . . . , x

(M)
n)>, x

(m)
i is the concentration of i-th odor in m-th

fruit sample, M is total number of fruit samples and µxn = 1
M

∑M
m=1 x

(m)
n .

The goal is to find an embedding for odors y1, . . . , yN ∈ Id (or Rd) such that

d(yi1 , yi2) ≤ d(yi3 , yi4), (i1, i2, i3, i4) ∈ O,

where O ⊆ Oc =
{

(i1, i2, i3, i4) ∈ ([N]2as)
2

: C(i1, i2) ≥ C(i3, i4)
}

. The total

number of distinct comparisons grows rapidly with the number of points,

namely |Oc| = 0.87 million. In this experiment, we choose a random set of size

|O| = 2K
(
N
2

)
for K = 4 to have the sampling density of S = 98.79%, which

brings the size of ordinal measurements to |O| ≈ 104. In hyperbolic embedding,

the sampling density is the ratio of number of ordinal measurements to number

55

of variables, i.e., K = |O|
2(N2)

.

We ensure the embedded points do not collapse by imposing the follow-

ing minimum distance constraint d(xi, xj) ≥ 1 for all (i, j) ∈ [N]2as; this

corresponds to a simple linear constraint in the proposed formulation. An

ideal order embedding accurately reconstructs the missing comparisons. We

calculate the percentage of correctly reconstructed distance comparisons as

γd = |Ôc,d ∩ Oc|/|Oc|, where Ôc,d is the complete ordinal set corresponding

to a d-dimensional embedding.

A simple regularization technique helps to remove outlier measurements

and improve the generalized accuracy of embedding algorithms. We introduce

the parameter ζp to permit SDR algorithms to dismiss at most p-percent of

measurements, namely

Lk(G) + εk ≥ ε2 and εk ≥ 0, ∀k ∈ O and
∑
k

εk ≤ ζp,

where ζp = p
100
|O|ε2.

In Figure 3.5, we show the embedded points in I2 and R2 with different

levels of allowable violated measurements. We can observe in Table 3.2 that

hyperbolic space better represents the structure of olfactory data compared

to Euclidean space of the same dimension. This is despite the fact that the

Figure 3.5: Embedding of odors for different levels of allowable violated
measurements ζp. Clusters with the matching colors contain the same odors.

56

Table 3.2: Reconstruction accuracy of ordinal measurements γd for different
levels of allowable violation ζp.

Space d = 2 d = 4 d = 6 d = 8 d = 10
ζ0 76.06 83.60 86.87 89.48 91.03

Hyperbolic ζ0.5 76.52 83.71 86.94 89.68 91.16
ζ1 76.43 83.71 86.92 89.76 91.21
ζ0 73.44 78.86 82.23 85.06 88.67

Euclidean ζ0.5 73.27 79.03 82.65 86.24 88.98
ζ1 73.12 78.92 82.51 86.01 89.02

number of measurements per variable is in favor of Euclidean embedding,

and that the low-rank approximation of hyperbolic Gramians is suboptimal.

Moreover, if we remove a small number of outliers we can produce more

accurate embeddings. These results corroborate the statistical analysis of

Zhou et al. [26] that aims to identify the geometry of the olfactory space.4

3.5 Conclusion

We introduced hyperbolic distance matrices, an analogy to Euclidean distance

matrices, to encode pairwise distances in the ’Loid model of hyperbolic

geometry. Same as in the Euclidean case, although the definition of hyperbolic

distance matrices is trivial, analyzing their properties gives rise to powerful

algorithms based on semidefinite programming. We proposed a semidefinite

relaxation which is essentially plug-and-play: it easily handles a variety of

metric and nonmetric constraints, outlier removal, and missing information

and can serve as a template for different applications. Finally, we proposed a

closed-form spectral factorization algorithm to estimate the point position

from hyperbolic Gramians. In the next chapter, we study the role of the

isometries in the ’Loid model and the related concepts such as Procrustes

analysis.

4Statistical analysis of Betti curve behavior of underlying clique topology [46].

57

CHAPTER 4

HYPERBOLIC PROCRUSTES ANALYSIS

4.1 Introduction1

In 1962, Hurley and Catell introduced a point set matching problem known

as Procrustes analysis [128].

Problem 4. Let {zn}Nn=1 and {z′n}
N
n=1 be two point sets in Rd. Pro-

crustes problem aims to find a map T̂ that minimizes the mismatch

norm, i.e.,

T̂ = arg min
T∈T

N∑
n=1

‖zn − T (z′n)‖2
2 ,

where T is the set of “valid” maps, e.g., rotation, reflection, translation,

and uniform scaling [129].

In computer vision, Procrustes analysis is relevant in point cloud register-

ing problems. The task of rigid registration is to find an isometry between

two (or more) sets of points sampled from a two- or three-dimensional ob-

ject. Point registration has applications in object recognition [130], medical

application [131] and localization of mobile robotics [132].

In signal processing, Procrustes analysis often refers to aligning shapes or

point sets by a distance preserving bijection. Naturally, Procrustes analysis

finds applications in distance geometry problems (DGPs) where we want

to find the location of a point set that best matches with a set of given

incomplete distances, i.e.,

z1, . . . , zN ∈ Rd : ‖zn − zm‖ = dmn, ∀(m,n) ∈M,

1 c© 2021 IEEE. Reprinted, with permission, from P. Tabaghi and I. Dokmanic, On
Procrustes Analysis in Hyperbolic Space, IEEE Signal Processing Letters, May 2021.

58

where {dm,n : (m,n) ∈M} is the set of measured distances [10]. If any, a

distance geometry problem has a solution orbit of the form

OZ =
{
{T (zn)}Nn=1 : T : Rd → Rd is an isometry

}
,

where Z = {zn}Nn=1 is a particular solution. In order to uniquely identify

the correct solution, from all the possible solutions in the orbit OZ , we may

be given the exact position of a subset of points, called anchors. We use

Procrustes analysis to pick the correct solution by finding the best match

between the anchors with their corresponding points in the orbit. This

technique is commonly used in localization problems [5, 7].

Procrustes analysis can be defined in any metric space. Hyperbolic Pro-

crustes analysis is relevant since, in recent years, hyperbolic embedding

problems are gaining attention in the machine learning community [19, 34].

Hierarchical or tree-like data structure is at the heart of hyperbolic embedding

applications. Therefore, we can use hyperbolic Procrustes analysis to align

hierarchical data, e.g., ontologies [133, 134]. In these problems, we want to

find a (distance preserving) map between a fixed number of entities in two

tree-like structures that best superimpose them on each other; see Figure 4.1.

4.1.1 Related Work

In unsupervised matching problems, an important first step is to find the

correspondence between two point clouds, e.g., by iterative closest point

algorithm [135]. A related line of research is ontology matching that aims to

Figure 4.1: Tree alignment in Poincaré disk. Hyperbolic Procrustes analysis
aims to align two trees — far left and far right figures. (a) and (b): we center
each point set and (c) estimate the unknown rotation map.

59

find correspondences between semantically related entities in heterogeneous

ontologies and has applications in ontology merging, query answering, or

data translation [133]. Recently, Alvarez-Melis et al. [136]cast unsupervised

hierarchy matching problem in hyperbolic space. Their proposed method

jointly learns the “soft” correspondence and the aligning map characterized

by a hyperbolic neural network.

4.1.2 Contributions and Outline

We review parametric isometries in the ’Loid model of hyperbolic spaces.

We show how one can decompose any isometry into elementary isometries,

e.g., hyperbolic translation, rotation, and reflection. The goal of Procrustes

analysis is to find a joint estimate for hyperbolic translation and rotation maps

that best aligns two point sets. In Section 4.3, we review the definition of

center mass, or centroid, for a set of points in hyperbolic space. This enables

us to “center” each set, and decouple the aforementioned joint estimation

problems into the following steps: (1) translate the center mass of each point

set to the coordinate origin (of the Poincaré model), and (2) estimate the

unknown rotation factor. While hyperbolic centering have been studied in the

literature [137], we present here a framework of Procrustes analysis similar to

Euclidean counterpart, and give an optimal estimate for the unknown rotation

factor — based on the weighted mean of pairwise inner products. More over,

we prove that our proposed approach gives the theoretically optimal isometry

if the point sets match perfectly. Finally, in Section 4.4, we give numerical

performance bounds for matching noisy point sets. All proofs are delegated

to Appendix C.

60

Summary: Let {xn}n∈[N], and {x′n}n∈[N] be two sets of points in a hy-

perbolic space, related through an isometric map, i.e., x′n = T (xn),∀n ∈
[N]. Then,

T = Tmx′ ◦ TU ◦ T−mx ,

where mx,my ∈ Rd are points’ centeroids, Tb is the translation operator

by vector b ∈ Rd, and TU is a rotation operator by unitary matrix U ∈
O(d); see Section 4.3. For noisy points, i.e., x′n = T (xn) + εn,∀n ∈ [N],

this isometry is suboptimal (in `2 sense) and can be fine-tuned via a

gradient-based algorithm.

4.2 Isometries in the ’Loid Model

Notations. Depending on the context, x1 can either be the first element of

vector x or an indexed vector. We denote the set of orthogonal matrix as

O(d) =
{
R ∈ Rd×d : R>R = I

}
. For any function f and its inputs x1, . . . , xN ,

we define f(xn) = 1
N

∑
n∈[N] f(xn).

The ’Loid model of d-dimensional hyperbolic space is a Riemannian manifold

Ld = (Ld, (gx)x), where

Ld =
{
x ∈ Rd+1 : [x, x] = −1, x1 > 0

}
and gx = H is the Riemannian metric. Finally, ’Loid model’s metric function

is characterized by Lorentzian inner product, viz.

d(x, x′) = acosh(−[x, x′]),∀x, x′ ∈ Ld.

The map T : Ld → Ld is an isometry if it is bijective and preserves distances,

i.e.,

d(x, x′) = d
(
T (x), T (x′)

)
, ∀x, x′ ∈ Ld.

We can represent any hyperbolic isometry as a composition of two elementary

maps that are parameterized by a d-dimensional vector and a d× d unitary

matrix.

61

Fact 1. [138] The function T : Ld → Ld is an isometry if and only if

it can be written as T (x) = RURbx, where

RU =

[
1 0>

0 U

]
, Rb =

 √1 + ‖b‖2 b>

b (I + bb>)
1
2

for a unitary matrix U ∈ O(d) and a vector b ∈ Rd.

Fact 1 can be directly verified by finding the conditions for a real matrix

R to be H-unitary, i.e., R>HR = H or simply R = H−
1
2CH

1
2 ∈ R(d+1)×(d+1),

where C>C = I and C ∈ C(d+1)×(d+1). We use this parametric decomposition

of rigid transformations to solve the Procrustes problem in Ld; see Section 4.3.

Fact 2. T−1
b = T−b and T−1

U = TU>, where b ∈ Rd and U ∈ O(d).

The hyperbolic translation map Tb : Ld → Ld and hyperbolic rotation map

TU : Ld → Ld are defined as

Tb(x) = Rbx, for b ∈ Rd

TU(x) = RUx, for U ∈ O(d).

4.3 Procrustes Analysis

Euclidean (orthogonal) Procrustes analysis has two main steps:

• Centering: moving the center mass of each points set to the origin of

Cartesian coordinates.

• Finding the optimal rotation/reflection.

In this section, we review and visualize the textbook definition of center mass

of point sets in hyperbolic space [137, Chapter 13].

We begin by projecting each point x ∈ Ld to the following sub-space

Hd =
{
x ∈ Rd+1 : x1 = 0

}
.

Then, we can simply neglect the first element of the projected point (which

62

Figure 4.2: Geometric illustration of P , Q, and stereographic projection h.

is always zero), and define a bijection P between Ld and Rd; see Figure 4.2.

In Definition 8, we formalize this projection and its inverse function.

Definition 8. We define the projection operator P : Ld → Rd and its

inverse function Q as

P
(√1 + ‖z‖2

z

) = z, Q(z) =

√1 + ‖z‖2

z

 .
For brevity, we define P(X)

def
= [P(x1), . . . ,P(xN)] whereX = [x1, . . . , xN] ∈

(Ld)N . Similarly, we consider this extension for Q as well.

In Section 4.3.1, we review the hyperbolic centering process [137]. In other

words, we find a map Tb to move the center mass of projected point sets to

0 ∈ Rd, i.e., P
(
Tb(xn)

)
= 0. Then, we show how this centering method gives

point sets whose locations are invariant with respect to arbitrary translations.

4.3.1 Hyperbolic Centering

In Euclidean Procrustes analysis, we have two point sets z1, . . . , zN and

z′1, . . . z
′
N that are related via a composition of rotation, reflection, and trans-

lation maps, i.e.,

zn = Uz′n + b,

63

where U ∈ O(d) and b ∈ Rd. We extract translation invariant features by

moving their point mass to 0 ∈ Rd, i.e.,

zn − zn = U(z′n − z′n).

The main purpose of centering is to map each point set to new locations,

zn − zn and z′n − z′n, that are invariant to the unknown translation b. This

way, we can estimate the unknown unitary matrix Û , and the estimated

translation term would be b̂ = zn − Ûz′n.

In hyperbolic Procrustes analysis, we have

xn = RbRUx
′
n, ∀n ∈ [N], (4.1)

where U ∈ O(d) and b ∈ Rd. In a similar way, we pre-process a point set

to extract (hyperbolic) translation invariant locations, i.e., centered point

sets. In Proposition 8, we show that T−mx is the canonical translation map

to center the point set X ∈
(
Ld
)N

.

Proposition 8. Let x1, . . . , xN and x′1, . . . x
′
N in Ld such that

xn = RbRUx
′
n, ∀n ∈ [N],

for b ∈ Rd and U ∈ O(d). Then, R−mxxn = RVR−mx′x
′
n where RV is

a hyperbolic rotation matrix.

The map T−mx not only centers a set of points, but also rotates them. This

phenomenon is rooted in non-commutative property of hyperbolic translation

or gyration. More clearly, for any two vectors b1, b2 ∈ Rd, we have

Rb1Rb2 = RVRb2Rb1

for a specific unitary matrix V ∈ O(d) that accounts for the gyration factor;

see the example in Figure 4.3 and further discussions in Section 4.3.3. This

does not interfere with Procrustes analysis since any such rotation will be

absorbed in U , and we estimate their collective unitary transformation.

Now, let us consider the following noisy case,

xn = RbRURεnx
′
n, ∀n ∈ [N],

64

where εn ∈ Rd is a translation noise for the point x′n. Let zn = Rεnx
′
n, then

we have R−mxxn = RVR−mzzn. The centroid mz is a related to mx′ and

{εn}n∈[N]. Therefore, we can write mz = mx′ + ε for a ε ∈ Rd. Therefore, we

have

R−mxxn = RVRε′nR−mx′x
′
n, ∀n ∈ [N],

where Rε′n = R−mx′−εRεnRmx′
. If translation noises are sufficiently small, then

RVRε′n ≈ RV ′ for a V ′ ∈ O(d).

4.3.2 Hyperbolic Rotation & Reflection

To estimate the unknown hyperbolic rotation, we consider minimizing a

weighted discrepancy between the centered point sets. More precisely, we

have

Û = arg min
V ∈O(d)

∑
n∈[N]

wnf
(
d
(
R−mxxn, RVR−mx′x

′
n

))
, (4.2)

where d(x, x′) = acosh(−x>Hx′), {wn}n∈[N] are positive weights, and f(·) =

cosh(·) is a monotonic function.

Figure 4.3: (a): Red and blue are projected points related by a translation,
i.e., X = RbX

′. (b, c): Centering each point set. (d): Centered points are
related via a rotation, i.e., RmxRbR−mx′ 6= Id.

65

Proposition 9. The optimal unitary matrix that solves (4.2) is

Û = UlU
>
r , where UlΣU

>
r is the singular value decomposition of

P(R−mxX)WP(R−mx′X
′)> and W = diag(w1, . . . , wN).

4.3.3 Möbius Addition

In the Poincaré model, the points reside in the unit d-dimensional Euclidean

ball. The isometry between the ’Loid and the Poincaré models h : Ld → Id

is called the stereographic projection. The distance between y, y′ ∈ Id is

given by d(y, y′) = 2tanh−1(‖−y ⊕ y′‖) where ⊕ is Möbius addition — a non-

commutative and non-associative operator. Gyration measures the deviation

of Möbius addition from commutativity, i.e., gyr[y, y′](y′ ⊕ y) = y ⊕ y′ [139].

Fact 3. The maps h ◦RU ◦ h−1 and h ◦ TU ◦ h−1 are the isometries in

the Poincaré model, and can be written as

h ◦ TU ◦ h−1(y) = Uy, h ◦ Tb ◦ h−1(y) = b′ ⊕ y,

where b′ = h ◦ Q(b).

The translation isometry is a result of Gyrotranslation theorem equality,

−(c⊕ y)⊕ c⊕ y′ = gyr[c, y](−y ⊕ y′),

where c ∈ Id [139]. Therefore, left Möbius addition preserves the distance

of point sets in Poincaré model.2 We can perform Procrustes analysis in

Poincaré model by (1) centering each point set, i.e., subtracting their center

mass from the left-hand side of Möbius addition, and (2) estimating the

remaining rotation factor — a composition of gyrations and the unknown

rotation between the two point sets.

2Möbius gyrations keep invariant the norm that they inherit from Rd, i.e.,
‖gyr[c, y](−y ⊕ y′)‖ = ‖−y ⊕ y′‖ [139].

66

4.4 Numerical Analysis

Let xn = R∗Rεnx
′
n, ∀n ∈ [N] where R∗ is an H-unitary matrix and ε1, . . . , εN

is the set of translation noise samples. We consider the following three

methods to compute an isometry that best matches the point sets X,X ′:

• Hyperbolic Procrustes (P): This method solves the hyperbolic Procrustes

analysis using our proposed approach and returns the H-unitary matrix

RP .

• Gradient descent (GD): This method solves the hyperbolic Procrustes

analysis using a gradient descent approach and returns the H-unitary

matrix RGD. To compute this matrix, we define the normalized discrep-

ancy between X and X as e(X,X)
def
= 1

Nd

∑
n∈[N] d(xn, xn). We then

initialize RGD = Id+1 and iterate over the following steps:

1. b̂ = −α ∂
∂b
e(X,RbRGDX

′)|b=0 for a small α > 0.

2. Û = arg maxU∈O(d)

∑
n∈[N][xn, RURb̂RGDx

′
n].

3. Update RGD ← RÛRb̂RGD.

Figure 4.4: (a) Normalized discrepancy for random hyperbolic point sets of
size N ∈ {5, . . . , 10} and dimensions d ∈ {2, 4}. For 103 trials, we report
quartiles Q1, Q2 and Q3 since they are robust to outliers. (b) The probability
of an outlier event P◦ = 10−3 × total number of outliers, e.g., failed to
converge or outlier in the sense of (4.3).

67

• GD+P: This method iteratively applies both previous methods and

returns the H-unitary matrix RGD+P.

For a random H-unitary R∗ and all n ∈ [N], we sample d-dimensional zn ∼
N (0, I) and εn ∼ 10−2N (0, I). Then, we let x′n = Q(zn) and xn = R∗Rεnx

′
n.

For 103 random (X,X ′) pairs, we compute their normalized discrepancy

e(X,RX ′), where R ∈ {RP , RGD, RGD+P}. All methods successfully denoise

the measurements, i.e., e(X,R∗X ′) > e(X,RX ′); see Figure 4.4 (a).

However, the gradient descent method does not always converge to an

acceptable solution. We define an outlier trial as follows:

(X,X ′) : |e(X,RX ′)−Q2| >
k

2
|Q3 −Q1|, (4.3)

where Q1, Q2, and Q3 are the first, second, and third quartiles of the total

reported discrepancies. We choose k = 5 for a conservative criterion to detect

outliers (see Figure 4.4 (b)). The gradient descent method has the highest

number of outliers (unstable solutions). On the opposite end, our proposed

method has the minimum number of outliers — comparable to the number

of outliers in the measurement noise. Therefore, the proposed close-form

algorithm provides stable solutions for the hyperbolic Procrustes problem.

Also, for noisy point sets — after removing the outlier trials — the accuracy

of our proposed method is comparable to that of the gradient-based method

and can be moderately improved with the post fine-tuning method.

4.5 Conclusion

Inspired by Euclidean counterpart, we posed the Procrustes problem in

hyperbolic space. Using the parameterized decomposition of hyperbolic

isometries in terms of hyperbolic rotation and translation, we showed that

moving the center mass to the origin gives point sets that are invariant to

hyperbolic translation (in cases with no measurement noise). This allows us

to use the centered point sets to estimate the unknown rotation factor.

68

CHAPTER 5

LINEAR CLASSIFIERS IN PRODUCT
SPACE FORMS

5.1 Introduction

Many practical datasets lie in Euclidean spaces and are thus naturally repre-

sented and processed using Euclidean geometry. Nevertheless, non-Euclidean

spaces have recently been shown to provide significantly improved represen-

tations compared to Euclidean spaces for various data structures [18] and

measurement modalities (e.g., metric and nonmetric) [19, 20]. Examples in-

clude hyperbolic spaces, suitable for representing hierarchical data associated

with trees [21, 22], human-interpretable images [25], and olfactory data [26];

as well as spherical spaces, which are well-suited for capturing similarities

in text embeddings and cycle-structures in graphs [27, 28]. Other impor-

tant developments in non-Euclidean representation learning are methods for

finding “good” mixed-curvature or hyperbolic representations for various

types of complex heterogeneous datasets [28]. All three spaces considered —

hyperbolic, Euclidean, and spherical — have constant curvatures but differ in

their curvature sign (negative, zero and positive, respectively).

Despite these recent advances in nontraditional data spaces, almost all

accompanying learning approaches have focused on (heuristic) designs of

neural networks in constant curvature spaces [39, 40, 41, 42, 43, 44, 45]. The

fundamental building block of these neural networks, the perceptron, has

received little attention outside the domain of learning in Euclidean spaces.

Here, we address for the first time the problem of designing linear classifiers

for product space forms (and generally, for geodesically complete Riemannian

manifolds) with provable performance guarantees. Product space forms arise

in a variety of applications in which graph-structured data captures both

cycles and tree-like entities; examples of particular interest include social

networks, such as the Facebook network for which product spaces reduce

69

the embedding distortion by more than 30% when compared to Euclidean or

hyperbolic spaces alone [28]. An important property of such spaces is that

they are endowed with logarithmic and exponential maps which play a crucial

role in establishing rigorous performance results.

5.1.1 Related Work

Linear classifiers in spherical spaces have been studied in a number of

works [140, 141]. More recent work has discussed linear classifiers in the

Poincaré model of hyperbolic spaces, in the context of hyperbolic neural

networks [40]. Specifically, linear classifiers (perceptrons and SVMs) in purely

hyperbolic spaces has been studied in [142, 143]. However, simulation evi-

dence and straightforward counterexamples show that the pure hyperbolic

perceptron algorithm in [143] does not converge (see Appendix D for details).

And although discussed within a limited context in [144, 39], classification in

product spaces remains largely unexplored, especially from the theoretical

aspect.

5.1.2 Contributions and Outline

We address the problem of linear classification in product space forms. In

Sections 5.2 and 5.3, we describe the “point-line” formulation for linear clas-

sifiers in d-dimensional constant curvature spaces, e.g., Euclidean, hyperbolic

and spherical spaces, using geodesics and Riemannian metrics which general-

ize straight lines and inner products in vector spaces. Also, we prove that

linear classifiers in d-dimensional space forms of any curvature have the same

expressive power, i.e., they can shatter exactly d+ 1 points regardless of the

curvature of the underlying space form.

Section 5.4 contains our main results, a description of our approach for

generalizing linear classifiers in space forms to product spaces. The key idea

behind our analysis is defining separation surfaces in constant curvature

spaces directly through the use of geodesics on Riemannian manifolds (this

definition matches the one proposed in [40, 44] for implementing hyperbolic

neural networks); and, introducing metrics that render distances in different

spaces compatible with each other and integrate them in linear classifiers with

70

majority signed distance criteria. We propose the corresponding perceptron

and SVM classification algorithms and establish convergence results for the

former. The proof techniques allow for generalizations to SVMs, discussed in

Section 5.4.2.

In Section 5.5 and Appendix D, we demonstrate that our product space

perceptron offers excellent performance on real-world datasets, such as

the simple MNIST [145] and Omniglot [146] datasets, but also more com-

plex structures such as CIFAR-100 [147] and single-cell expression mea-

surements [148, 149, 150] which are paramount in computational biology,

outperforming methods in Euclidean, spherical, or hyperbolic spaces which

ignore the hybrid geometry of the data. The experimental results for syn-

thetic and practical datasets such MNIST and Omniglot are delegated to

Appendix D.

5.2 Linear Classifiers in Euclidean Space

Finite-dimensional Euclidean spaces are inner product vector spaces over the

reals. In contrast, hyperbolic and (hyper)spherical spaces do not have the

structure of a vector space. Therefore, we first have to clarify what linear

classification means in spaces with nonzero curvatures. To introduce our

approach, we begin by recasting the definition of Euclidean linear classifiers

in terms of commonly used concepts in differential geometry such as geodesics

and Riemannian metrics [151]. This will allow us to (1) present a unified

view of the classification procedure in metric spaces that are not necessarily

vector spaces; (2) formalize distance-based linear classifiers in space forms,

i.e., classifiers that label data points based on their signed distances to the

separation surface (Section 5.3); and (3) use the aforementioned classifiers

as canonical building blocks for linear classifiers in product space forms

(Section 5.4).

In a linear (more precisely, affine) binary classification problem we are

given a set of N points in a Euclidean space and their binary labels, i.e.,

(xn, yn) ∈ Rd × {−1, 1} for n ∈ [N]
def
= {1, . . . , N}. The goal is to learn a

linear classifier that produces the most accurate estimate of the labels. We

71

Figure 5.1: Linear classifiers in a three-dimensional Euclidean space (left)
and on a manifold M (right). The location-varying metric in M causes the
geodesics (shortest paths) to appear curved.

define a linear classifier with weight w ∈ Rd and bias b ∈ R as

lEb,w(x) = sgn(w>x+ b), (5.1)

where ‖w‖2 = 1, and lEb,w(x) denotes the estimated label of x ∈ Rd for the

given classifier parameters b, w. The expression (5.1) may be reformulated in

terms of a “point-line” pair as follows: Let p be any point on the decision

boundary and w a corresponding normal vector. Then, we have

lEb,w(x) = sgn(〈w, x− p〉), (5.2)

where b = −p>w and 〈·, ·〉 stands for the dot product. To see how this

definition may be generalized, note that the linear classifier returns the sign

of the inner product of tangent vectors of two straight lines, namely

γp,x(t) = (1− t)p+ tx and γn(t) = p+ tw, (5.3)

at their point of intersection p ∈ Rd (see Figure 5.1). Here, γn is the normal

line and γp,x is the line determined by p and the point x whose label we want

to determine. These lines are smooth curves parameterized by t ∈ [0, 1] (or

an open interval in R), which we interpret as time.

The linear classifier in (5.2) can be reformulated as

lEb,w(x) = sgn(〈 d
dt
γp,x(t)|t=0,

d

dt
γn(t)|t=0〉),

where the derivative of a line γ(t) at time 0 represents the tangent vector

(or velocity) at the point p = γ(0). This particular formulation leads to the

following intuitive definition of linear classifiers in Euclidean spaces, which

can be generalized for hyperbolic and spherical spaces.

72

Definition 9. A linear classifier in Euclidean space returns the sign of

the inner product between tangent vectors of two straight lines, described

in (5.3), at their unique meeting point.

Often, we are interested in large-margin Euclidean linear classifiers for

which we have yn〈w, xn − p〉 ≥ ε, for all n ∈ [N], and some margin ε > 0.

For distance-based classifiers, we want ε to relate to the distance between

the points xn and the separation surface. For the classifier in (5.2), the

distance between a point x ∈ Rd and the classification boundary, defined as

Hp,w =
{
x ∈ Rd : 〈w, x− p〉 = 0

}
, can be computed as

min
y∈Hp,w

d(x, y) = |〈w, x− p〉| =
∣∣w>x+ b

∣∣.
Note that in the point-line definition (5.2), the point p can be anywhere

on the decision boundary and it has d degrees of freedom whereas b from

definition (5.1) is a scalar parameter. Therefore, we prefer definition (5.1)

as it represents a distance-based Euclidean classifier with only d + 1 free

parameters — w and b — and a norm constraint, 〈w,w〉 = 1. In Section 5.3,

we show that distance-based classifiers in d-dimensional space forms — of

any constant curvature — can be defined with d+ 1 free parameters and a

norm constraint.

5.3 Linear Classifiers in Space Forms

A space form is a complete, simply connected Riemannian manifold of dimen-

sion d ≥ 2 and constant curvature. Space forms are equivalent to spherical,

Euclidean, or hyperbolic spaces up to an isomorphism [152]. To define linear

classifiers in space forms, we first review basic concepts from differential ge-

ometry such as geodesics, tangent vectors and Riemannian metrics needed to

generalize the key terms in Definition 9. For a detailed review, see [153, 151].

Let M be a Riemannian manifold and let p ∈ M. The tangent space at

the point p, denoted by TpM, is the collection of all tangent vectors at p.

The Riemannian metric gp : TpM× TpM→ R is given by a positive-definite

inner product in the tangent space TpM which depends smoothly on the base

point p. A Riemannian metric generalizes the notion of inner products for

73

Riemannian manifolds. The norm of a tangent vector v ∈ TpM is given by

‖v‖ =
√
gp(v, v). The length of a smooth curve γ : [0, 1]→M (or path) can

be computed as L[γ] =
∫ 1

0
‖γ′(t)‖ dt. A geodesic γp1,p2 on a manifold is the

shortest-length smooth path between the points p1, p2 ∈M,

γp1,p2 = arg min
γ

L[γ] : γ(0) = p1, γ(1) = p2;

a geodesic generalizes the notion of a straight line in Euclidean space. Next,

consider a geodesic γ(t) starting at p and with initial velocity v ∈ TpM, e.g.,

γ(0) = p and γ′(0) = v. The exponential map gives the position of this

geodesic at t = 1, i.e., expp(v) = γ(1). Conversely, the logarithmic map is its

inverse, i.e., logp = exp−1
p :M→ TpM. In other words, for two points p and

x ∈M, the logarithmic map logp(x) gives the initial velocity (tangent vector)

at which we can move — along the geodesic — from p to x in one time step.

In geodesically complete Riemannian manifolds, the exponential and loga-

rithm maps are well-defined operators. Therefore, analogous to Definition 9,

we can define a general notion of linear classifiers as described next.

Definition 10. Let (M, g) be a geodesically complete Riemannian

manifold, let p ∈ M and let w ∈ TpM be a normal vector. A linear

classifier lp,w over the manifold M is defined as

lMp,w(x) = sgn
(
gp(w, logp(x))

)
, where x ∈M.

Definition 10 is very general, but also has the following drawbacks: (1) The

decision rule does not formalize a distance-based classifier since
∣∣gp(w, logp(x))

∣∣
is not necessarily related to the distance of x to the decision boundary. (2)

For a fixed x ∈M, the decision rule gp(w, logp(x)) varies with the choice of

p, which is an arbitrary point on the decision boundary. (3) Often, we can

represent the decision boundary with other parameters that have a smaller

number of degrees of freedom compared to that of w and p required by

Definition 10 (see the Euclidean linear classifiers defined in (5.2) and (5.1)).

We therefore next resolve these issues for linear classifiers in space forms.

74

5.3.1 Spherical Spaces

Let p ∈ Sd and w ∈ TpSd (see Table 5.1). The decision boundary is given by

Hp,w =

{
x ∈ Sd : 〈w, θ

sin(θ)
(x− p cos θ)〉 = 0, θ = acos(x>p)

}
(a)
=
{
x ∈ Sd : w>x = 0

}
= Sd ∩ w⊥, (5.4)

where (a) is due to the fact that w ∈ TpSd = p⊥. This formulation uses

two parameters p ∈ Sd and w ∈ TpSd to define the decision boundary (5.4).

We note that one can actually characterize the same boundary with fewer

parameters. Observe that for any w ∈ Rd+1, we can pick an arbitrary base

vector p ∈ w⊥ ∩ Sd which ensures that w ∈ TpSd. Therefore, without loss

of generality, we can define the decision boundary using only one vector

w ∈ Rd+1, which has d+ 1 degrees of freedom. In Proposition 10, we identify

a specific choice of p ∈ w⊥ ∩ Sd that allows us to classify each data point

based on its signed distance from the classification boundary.

Proposition 10. Let p ∈ Sd, w ∈ TpSd, and Hp,w be the decision

boundary in (5.4). If 〈w,w〉 = 1, then

∀x ∈ Sd : min
y∈Hp,w

d(x, y) = asin|w>x| =
∣∣gSp◦(w, logp◦(x))

∣∣,
where gS is the Riemannian metric for a spherical space given in Ta-

ble 5.1, and p◦ =
∥∥P⊥w x∥∥−1

P⊥w x ∈ Hp,w. Here, the projection operator

is defined as P⊥w x = x− 〈x,w〉w.

It is important to point out that the classification boundary is invariant

with respect to the choice of the base vectors, i.e., Hp,w = Hp◦,w. From

Table 5.1: Key properties of Euclidean (Rd), spherical (Sd), and hyperbolic
(’Loid, Ld) manifolds.

M TpM gp(u, v) logp(x) : θ = d(x, p) expp(v) d(x, p)

Rd Rd 〈u, v〉 x− p p+ v ‖x− p‖2
Sd p⊥ 〈u, v〉 θ

sin(θ) (x− p cos θ) cos ‖v‖ p+ sin(‖v‖) v
‖v‖ acos(〈x, p〉)

Ld p⊥ [u, v] θ
sinh(θ) (x− p cosh θ) cosh ‖v‖ p+ sinh(‖v‖) v

‖v‖ acosh(−[x, p])

75

Proposition 10, if we have

∀n ∈ [N] : ynasin (w>xn) ≥ ε,

then all data points are correctly classified and have the minimum distance

of ε to the classification boundary. In summary, we can define distance-based

linear classifiers in a spherical space as follows.

Definition 11. Let w ∈ Rd+1 with 〈w,w〉 = 1. A spherical linear

classifier is defined as

lSw(x) = sgn
(
asin(〈w, x〉)

)
.

5.3.2 Hyperbolic Spaces

The ’Loid model of a d-dimensional hyperbolic space [110] is a Riemannian

manifold Ld = (Ld, gH) for which Ld =
{
x ∈ Rd+1 : [x, x] = −1, x1 > 0

}
, and

gHp (u, v) corresponds to the Lorentzian inner product of u and v ∈ TpLd,
defined as

[u, v] = u>Hv, H =

(
−1 0>

0 Id

)
, (5.5)

where Id is the d × d identity matrix. Let p ∈ Ld and w ∈ TpLd. The

classification boundary of interest is given by

Hp,w =

{
x ∈ Ld : [w,

θ

sinh(θ)
(x− p cos θ)] = 0

}
=
{
x ∈ Ld : [w, x] = 0

}
= Ld ∩ w⊥. (5.6)

Similar to the case of spherical spaces, we can simplify the formulation as fol-

lows. If w is a time-like vector — a vector that satisfies w ∈ {x : [x, x] > 0} [151]

— and p ∈ Ld∩w⊥, then we have w ∈ TpLd. In Proposition 11, we derive the ex-

pression for a special p ∈ Ld∩w⊥ that allows us to formulate a distance-based

hyperbolic linear classifier.

76

Proposition 11. Let p ∈ Ld, w ∈ TpLd, and let Hp,w be the decision

boundary in (5.6). If [w,w] = 1, then

min
y∈Hp,w

d(x, y) = asinh|[w, x]| =
∣∣gHp◦(w, logp◦(x))

∣∣,
where gH is the Riemannian metric for the hyperbolic space (given in

Table 5.1), and p◦ =
∥∥P⊥w x∥∥−1

P⊥w x ∈ Hp,w. Note that P⊥w x is the

orthogonal projection of x onto w⊥, i.e., P⊥w x = x− [x,w]w. Therefore,

p◦ =
√

1
1+[x,w]2

(x− [x,w]w).

As a result, we have the following definition of distance-based linear classi-

fiers in a hyperbolic spaces.

Definition 12. Let w ∈ Rd+1 with [w,w] = 1. A hyperbolic linear

classifier is defined as

lHw(x) = sgn
(
asinh([w, x])

)
.

From the previous discussion, we can deduce that linear classifiers in

d-dimensional space forms can be characterized with d + 1 free parameters

and a norm constraint. This supports the following result pertaining to the

Vapnik-Chervonenkis (VC) dimension [154] of linear classifiers in space forms.

Theorem 1. The VC dimension of a linear classifier in a d-dimensional

space form is d+ 1.

Figure 5.2 illustrates linear classifiers in two-dimensional hyperbolic, Eu-

clidean, spherical spaces and two product space forms. Next, we show how

the first three classifiers — all of which have the same expressive power —

can be “mixed” to define a linear classifier in product space forms.

5.4 Linear Classifiers in Product Space Forms

Definition 10 of linear classifiers applies to geodesically complete Riemannian

manifolds. Our focus is linear classifiers in product space forms which are a

special case of the aforementioned manifolds. We now describe a perceptron

77

Figure 5.2: Linear classifiers in Euclidean, spherical, hyperbolic spaces and
product spaces. A hyperbolic space has dimension ≥ 2, but we reduced it to
1 for visualization purposes only.

algorithm for such spaces that provably learns an optimal classifier for linearly

separable points in a finite number of iterations. Then, we extend this learning

scheme to large-margin classifiers in product space forms.

Consider Euclidean, spherical, and hyperbolic manifolds, e.g., (EdE , gE),

(SdS , gS), (HdH , gH) with sectional curvatures 0, CS, CH, respectively (see Ap-

pendix D for detailed informations on space forms with arbitrary curvatures).

The Euclidean manifold is simply RdE while the hyperbolic space is the ’Loid

model LdH .

The product manifoldM = EdE×SdS×HdH admits a canonical Riemannian

metric g, called the product Riemannian metric. The tangent space of M at

a point p = (pE, pS, pH) can be decomposed as [155]

TpM =
⊕

S∈{E,S,H}

TpSS
dS , (5.7)

where the right-hand side expression is the direct sum
⊕

of individual tangent

spaces TpEEdE , TpSSdS , and TpHHdH . The scaled Riemannian metric used on

M is

gp(u, v) =
∑

S∈{E,S,H}

αSg
S
pS

(uS, vS), (5.8)

where u = (uE, uS, uH), v = (vE, vS, vH) ∈ TpM, p = (pE, pS, pH), and αE,

αS, αH are positive weights. The choice of the scaled Riemannian metric in

Equation (5.8) — and hence the classification criteria — resolves the potential

“distance compatibility” issues that arise from possibly vastly different ranges

and variances of each component (e.g., xE, xS, and xH) which could lead to a

classification criterion that is dominated by the component with the largest

variance.

Based on our previous discussions, in order to describe linear classifiers

on the above manifold M, we first need to identify the logarithmic map

(see Definition 10). For this purpose, we invoke the following known result

78

that formalizes geodesics, exponential and logarithmic maps on M.

Fact 4. [153] Let M = EdE × SdS × HdH with Riemannian metric given

by (5.8). Then, the geodesics, exponential, and logarithmic maps on M are

the concatenation of the corresponding maps of the individual space forms,

i.e., γ(t) =
(
γE(t), γS(t), γH(t)

)
, expp(v) =

(
exppE(vE), exppS(vS), exppH(vH)

)
,

and logp(x) =
(
logpE(xE), logpS(xS), logpH(xH)

)
, where p = (pE, pS, pH), x =

(xE, xS, xH) ∈ M, v = (vE, vS, vH) ∈ TpM, and γE, γS, γH are geodesics in

their corresponding space form.1

Combining the results regarding distance-based linear classifiers in space

forms (Section 5.3), the definition of tangent product spaces in terms of the

product of tangent spaces in (5.7), and the choice of the Riemannian metrics

given in Table 5.1, we arrive at the following formulation for a product space

linear classifier. For detailed derivations, the reader is referred to Appendix D.

Proposition 12. Let SdS and HdH be space forms with curvatures

CS > 0, and CH < 0. Let M = EdE × SdS ×HdH with the metric given

by (5.8). The linear classifier on M is defined as

lMw (x) = sgn
(
〈wE, xE〉+ αSasin(〈wS, xS〉) + αHasinh([wH, xH]) + b

)
,

where w = (b, wE, wS, wH), wE, wS, and wH have norms of αE,
√
CS,

and
√
−CH, respectively.

This classifier can be associated with three linear classifiers, Euclidean,

hyperbolic, and spherical space classifiers. For a point x = (xE, xS, xH) ∈M,

the product space classifier takes a weighted vote based on the signed distances

of each component (e.g, xE, xS, and xH) to its corresponding classifier’s

boundary. Figure 5.2 illustrates two classifiers in product space forms.

We now turn our attention to an algorithm for training linear classifiers

in Proposition 12. To establish provable performance guarantees, we assume

that the datasets satisfy the ε > 0 margin property, i.e.,

∀(x, y) ∈ X : y
(
w>E xE + b+ αSasin(w>S xS) + αHasinh([wH, xH]

)
≥ ε, (5.9)

1The distance between x, y ∈ M is given by d(x, y) =
(∑

S∈{E,S,H} α
2
SdS(xS , yS)2

) 1
2 ;

see Table 5.1.

79

where X is the set of labeled training data, ‖wE‖2 = αE, ‖wS‖2 =
√
CS, and√

[wH, wH] =
√
−CH.

5.4.1 A Product Space Form Perceptron

The classification function is nonlinear in wS and wE and it requires equality

constraints for all the weights involved. To analyze the classifier and allow

for sequential updates of its parameters, we relax the norm constraints and

propose perceptron updates in a Reproducing Kernel Hilbert Space (RKHS)

which we denote by H 2. We seek a map φ : M → H to represent the

classifier in (5.9) as an inner product of two vectors in H, i.e., lMw (x) =

sgn
(
〈ψ(w), φ(x)〉H

)
, where 〈·, ·〉H is the inner product defined on H.3 The

kernels KE(wE, xE) = w>E xE + b and KS(wS, xS) = asin(w>S xS) are symmetric

and positive definite. Hence, they lend themselves to the construction of a valid

RKHS. Unfortunately, KH(wH, xH) = asinh([wH, xH]) is an indefinite kernel.

To resolve this issue, we introduce an indefinite linear operator M : H′ → H′,
where H′ ⊇ H is the set of functions M → R and M>M = Id, with Id

denoting the identity operator.4 Therefore, we can write the classifier (5.9) as

lMw (x) = sgn
(
〈ψ(w),Mφ(x)〉H

)
, (5.10)

where ψ(w), φ(x) ∈ H′, and 〈·,M ·〉H is also well-defined on H′. This separable

form allows us to formulate the update rule of the perceptron in H′. Note

that the decision rule (5.10) only depends on the inner products of vectors in

H′, i.e., kernel function evaluations for a point x and the misclassified training

data points (see Algorithm 7). In Theorem 2, we prove that the product

space perceptron in Algorithm 7 converges in a finite number of steps.

2This kernel approach is used to establish convergence results and is not a part of the
algorithmic solution.

3We used ψ(w) instead of φ(w) because the classification criteria might not be a
symmetric function of x and w. In fact, we present the exact expression for ψ(w), related
to product space form classifiers, in Appendix D.

4The operator M can be obtained by analyzing the Taylor series of asinh(·), as explained
in Appendix D.

80

Theorem 2. Let {xn, yn}Nn=1 be points in a compact subset of M with

labels in {−1, 1}, and ‖xH,n‖2 ≤ R for all n ∈ [N]. If the point set

is ε-margin linearly separable and ‖wH‖2 ≤ 1/R, then Algorithm 7

converges in O(1
ε2

) steps.

The norm constraint on ‖wH‖2 is imposed to ensure that the norm of ψ(w)

is bounded in H′. This is necessary to establish the convergence bound for

Algorithm 7.

Related Works and the Hyperbolic Perceptron

Linear classifiers in spherical spaces have been studied in a number of

works [140, 141], while more recent work has focused on linear classifiers

in the Poincaré model of hyperbolic spaces, in the context of hyperbolic

neural networks [40]. A purely hyperbolic perceptron was described in [143].

Simulation evidence and some straightforward counterexamples show that

the algorithm does not converge (see Appendix D for details). We therefore

propose a modified update rule for a purely hyperbolic perceptron which is of

independent interest given many emerging learning paradigms in hyperbolic

spaces. Our hyperbolic perceptron uses a specialized update direction and

provably converges, as described below (see more details in Appendix D).

Algorithm 7 A Product Space Form Perceptron.

Input: {xn, yn}Nn=1: a set of pairs of point-labels in M×{−1, 1}.
Initialization: k = 0, n = 1, x

def
= (xE, xS, xH), f1(x) = 0.

repeat
if sgn

(
fk(xn)

)
6= yn then

fk+1(x) = fk(x) + yn
(
x>E,nxE + 1 + αSasin(CSx

>
S,nxS) + αHasin(

〈xH,n,xH〉
R2)

)
k ← k + 1

end if
n← mod(n,N) + 1

until A convergence criterion is met.

81

Theorem 3. Let {xn, yn}Nn=1 be a labeled point set from a bounded

subset of HdH. Assume the point set is linearly separable by a margin ε.

Then, the hyperbolic perceptron with the update rule sgn([wk, xn]) 6= yn :

wk+1 = wk + ynHxn, converges in O
(

1
sinh2(ε)

)
steps.

5.4.2 A Product Space Form SVM

In the previous section, we showed that the classification criterion for linear

classifiers defined in Proposition 12 is a linear function of the feature vectors, or,

more precisely, of {Mφ(xn)}n∈[N]. This fact and the subsequent performance

guarantees are due to the update rule operating in the RKHS which, in effect,

lifts a finite-dimensional point to a feature vector. Here, we use this analysis

to formulate large-margin classifiers in product space forms. The idea behind

our algorithm is to use the feature vector representation of linear classifiers,

and maximize the distance between the points and the classification boundary.

The closed-form expression of this distance is not available, but we can still

provide an upper bound for this distance and perform maximum-margin

classification. The described solution complements and extends the prior

work on hyperbolic SVMs [142].

Let x1, . . . , xN ∈ M be a fixed set of points. The representer theorem

expresses the set of feasible parameters — in the space H′ — as linear

combinations of measured feature vectors.5 In other words, any estimated

parameter ŵN must satisfy the following condition:

ψ(ŵN) ∈ L = {
∑
n∈[N]

βnMφ(xn) :
∑
n∈[N]

β2
n <∞}.

Let us assume that ψ(w) =
∑

n∈[N] βnMφ(xn). Then, the classification

criterion is a linear function of β = (β1, . . . , βN), i.e.,

lMw (x) = sgn
(∑
n∈[N]

βn〈φ(x), φ(xn)〉H
)

= sgn
(∑
n∈[N]

βnk(xn, x)
)
, (5.11)

where k(x, xn) = 1 + x>ExE,n + αSasin(CSx
>
S xS,n) + αHasin(R−2x>HxH,n). In

5Feasible parameters are a subset of vectors in H′ that can be used to define a proper
distance-based linear classifiers in M.

82

Algorithm 8 A Product Space Form SVM.

Input: {xn, yn}Nn=1: a set of point-labels in M×{−1, 1}, and r > 0.
Let B =

{
t : t>GEt < α2

E, t
>GSt <

π
2 , t
>G−Ht ≤ r, t>G

+
Ht ≤ r + asinh(−R2CH)

}
.

Solve for β ∈ B:

maximize ε−
∑
n∈[N]

ζn

w.r.t ε > 0, {ζn ≥ 0}

subject to ∀n ∈ [N] : yn
∑
m∈[N]

βmk(xn, xm) ≥ ε− ζn

Algorithm 7, the weights are sequentially updated after each missclassification.

Here, we directly optimize the weight vector β to ensure the maximum

separability condition. In Proposition 13, we derive necessary conditions for

the vector β that are conducive to a proper distance-based classifier.

Proposition 13. For the classifier in (5.11), we have the following

equivalent conditions:

• 〈wE, wE〉 = α2
E ⇒ β>GEβ = α2

E

• 〈wS, wS〉 = CS ⇒ β>asin
[
CSGS

]
β = π

2

• [wH, wH] = −CH ⇒ β>asinh
[
R−2GH

]
β = asinh(−R2CH),

where ‖xH,n‖ ≤ R for all n ∈ [N]. The N ×N matrices GE, GS, and

GH are Euclidean, spherical, and hyperbolic Gramians, respectively.

The constraints in Proposition 13, if they are met, define a product space

form classifier in which the classification margin is the sum (`1 norm) of

the distances of the individual space components to the corresponding classi-

fiers, which is related to the weighted vote majority classification approach

of Section 5.4.1. This distance is a proper upper bound (or a proxy) for

the true distance of a point to the classification boundary which involves

computing the `2 norm of the individual components’ distances; see the

footnote for Fact 4. To convexify the constraints in Proposition 136, we

replace the Euclidean and spherical constraints with their convex hulls. The

hyperbolic constraint, [wH, wH] = −CH, leads to a nonconvex second-order

6The set A =
{
x : x>Ax = 1

}
is a non-convex set for any symmetric matrix A.

83

equality constraint on β. We let GH = G+
H − G

−
H for two positive semidef-

inite matrices G+
H and G−H. Then, we relax this second-order condition to

β>G−Hβ ≤ r and β>G+
Hβ ≤ r + asinh(−R2CH) for a small r > 0, i.e., we

have −r < β>GHβ < r + asinh(−R2CH). The Algorithm 8 is our proposed

soft-margin SVM classifier, for points with noisy labels, in product space

forms.

5.5 Numerical Experiments: Real-world Datasets

We illustrate the practical performance of our product space form classifiers –

Algorithms 7 and 8 – on (1) CIFAR-100 [147] (100 classes of size 600 each)

and two scRNA datasets, (2) Lymphoma/Healthy donor with a targeted set

of genes (two classes with 13, 410 samples total), and (3) blood cells with 965

landmark genes [156] only (landmark genes can be used to infer the activities

of all other genes, and in this case we had 10 classes with 94, 655 samples

total) [148, 149, 150]. In Appendix D, we present the convergence of our

classifiers on synthetic datasets, Omniglot, and MNIST datasets.

5.5.1 CIFAR-100 Dataset

We use the mixed-curvature VAEs algorithm [144] to embed the dataset

into chosen (product) space forms. We perform binary classification for 100

randomly selected pairs of classes. To enable K-class classification, we use K

binary classifiers that are independently trained on the same training set to

separate each single class from the remaining classes. For each classifier, we

transform the resulting prediction scores into probabilities via Platt’s scaling

technique [157]. The predicted labels are decided by maximum a posteriori

criteria, using the probability of each class.

Perceptron: We split the data into 80% training and 20% test points. We

allow all perceptron algorithms to go over the whole dataset only once. In

Table 5.2, we report the mean accuracy results with confidence intervals

derived from repeated trials (over 10 repeated trials).

In Figure 5.3, we show the performance of the ternary classifiers. This is

obtained by randomly selecting 100 sets of three classes; each point in the

figure corresponds to one such combination, and its coordinate value equals

84

Figure 5.3: Classification accuracy of different product space form
perceptrons on CIFAR-100 datasets. The labels on the x and y axes indicate
the embedding spaces, and the counts in the top-left-corner indicate how
often a binary classifier in one space outperforms that in another.

the averaged Macro F1 score of three independent runs. Red-colored points

indicate better performance of the product space form perceptron specified

on the y-axis, while green-colored points indicate better performance for the

spaces specified on the x-axis.

SVM : To train a product space form SVM, we relax the optimization

problem by removing the hyperbolic constraints to improve the run time of

the method; see Algorithm 8.7 We only use 100 training samples, and reserve

the remaining samples for testing. Then, we compute the mean accuracy

and the confidence levels for all selected class pairs and repeated trials; see

Table 5.2. For simplicity, we let αE = αS = αH = 1 in our implementation.

Hyperbolic SVM is adopted from previous work [142].

Table 5.2: Classification mean accuracy (%)± 95% confidence interval for
perceptron (P) and SVM (S) algorithms in a product space (dE, dH, dS) on
CIFAR-100.

(dE, dH, dS) (2, 2, 2) (6, 0, 0) (2, 22, 2) (2, 4, 2) (8, 0, 0) (0, 8, 0)

(P) 70.26± 1.34 68.58± 1.29 71.23± 1.28 69.93± 1.25 69.96± 1.29 69.90± 1.43
(S) 69.51± 0.66 75.69± 0.58 73.05± 0.62 62.02± 0.10 74.53± 0.56 70.65± 0.93

7In Algorithm 8, the hyperbolic constraints are t>G−H t ≤ r and t>G+
H t ≤ r +

asinh(−R2CH).

85

5.5.2 Single-cell RNA Datasets

Our first dataset, Lymphoma/Healthy donor with targeted set of genes, con-

tains binary labeled samples. The second dataset, blood cells with landmark

genes, contains 10 different labels. We use the standard experimental setups,

similar to the ones for CIFAR-100 dataset, to conduct various classification

experiments. In Table 5.3, we report the mean accuracy results, of our product

space form perceptron and SVM algorithms, with confidence intervals derived

from repeated trials (over 10 repeated trials).

The results across different datasets, learning methods, and embedding

signatures (i.e., choices of dimensions of the components in the product spaces)

suggest that product spaces can offer better low-dimensional representations

for complex data structures, especially for scRNA sequencing data; see Fig-

ure 5.3 and Table 5.3. Generally, a higher-dimensional signature should lead

to a better classification accuracy. However, the performance of the classifica-

tion method dependents on the quality of discriminative features extracted

from the mixed-curvature VAEs. This algorithm is not guaranteed to improve

the embedding quality with increased dimensions when hyperparameters are

fixed. Furthermore, finding a signature that allows for near-optimal embed-

ding distortion is a hard problem that requires a sophisticated analysis of

the geometry of datasets, and is thus beyond the scope of this work. The

improvements in classification accuracy appear modest ∼ 2%.

5.6 Conclusion

We proposed linear classifiers for product space forms with provable per-

formance guarantees. We showed how the “point-line” formulation for a

Table 5.3: Classification mean accuracy (%)± 95% confidence interval for
perceptron (P) and SVM (S) algorithms in a product space (dE, dH, dS).
Datasets are Lymphoma (LMPH), and Blood-cells-landmark (BCL).

(dE, dH, dS) (2, 2, 2) (6, 0, 0) (2, 22, 2) (2, 4, 2) (8, 0, 0) (0, 8, 0)

(P)-LMPH 94.33± 1.89 59.16± 11.56 46.66± 9.1 44.69± 9.01 75.42± 11.97 59.16± 8.51
(P)- BCL 70.79± 6.26 66.03± 6.83 65.01± 3.84 62.41± 3.89 72.33± 5.79 66.85± 6.30
(S)-LMPH 94.48± 1.31 70.61± 1.59 50.68± 7.03 43.9± 0.004 91.44± 2.38 65.83± 3.42
(S)-BCL 83.17± 5.42 74.61± 5.39 57.62± 8.15 74.18± 5.19 89.89± 7.09 77.75± 8.15

86

linear classifier in d-dimensional space forms can be simplified to a distance-

based classifier. For linear classifiers in product space forms, we used an

additive Riemannian metric that renders distances in different space forms

compatible with each other. This formulation let us develop product space

form perceptron and SVM. The perceptron algorithm comes with provable

performance guarantees established via the use of indefinite kernels and their

Taylor series. Our theoretical findings are supported with experimental results

on several datasets, including synthetic data, CIFAR-100, MNIST, Omniglot,

and single-cell RNA sequencing data. The results show that learning methods

applied to low-dimensional embeddings in product space forms outperform

their algorithmic counterparts in each space form.

87

CHAPTER 6

GEOMETRY OF SIMILARITY
MEASUREMENTS

6.1 Introduction

Distances reveal the geometry of their underlying space. They are at the core

of many machine learning algorithms. In particular, finding a geometrical

representation for point sets based on pairwise distances is the subject of

distance geometry problems (DGPs). Euclidean DGPs have a rich history

of applications in robotics [6, 7], wireless sensor networks [8], molecular con-

formation analysis [9] and dimensionality reduction [10]. One is typically

concerned with finding a geometric representation for a set of measured Eu-

clidean distances [5]. Beyond Euclidean DGPs, recent works have focused

of hyperbolic geometry methods in data analysis, most notably when deal-

ing with hierarchical data. Social and FoodWeb networks [90, 158], gene

ontologies [93], and Hearst graphs of hypernyms [37] are interesting examples

of hierarchical datasets. Spherical embeddings represent sets of points on a

(hyper)sphere [159], and have found applications in astronomy [160], distance

problems on Earth [29], and texture mapping [30]. Euclidean, spherical and

hyperbolic geometries are categorical examples of constant curvature spaces,

or space forms, which are characterized by their curvature and dimension.

The above examples represent instances of metric embeddings in space forms,

as opposed to what is termed nonmetric embeddings. In the latter setting, one

is provided with nonmetric information about data points, such as quantized

distances or ordinal measurements such as comparisons or rankings.

We argue that nonmetric information such as distance comparisons carries

valuable information about the space the data points originated from. To

formally state our claims, assume that we are given a set of points x1, . . . , xN

in an unknown metric space S. In nonmetric embedding problems [51, 52],

88

we work with dissimilarity (similarity) measurements of the form

∀m,n ∈ [N] : ym,n = φ
(
d(xm, xn)

)
,

where d(xm, xn) is the distance between xm and xn in S, and φ(·) is an un-

known monotonically increasing (or decreasing) function. Since φ is unknown,

we can only interpret the measurements as distance comparisons or ordinal

measurements, i.e., if the entities indexed by n1, n2 are more similar than

those indexed by n3, n4, then

yn1,n2 ≤ yn3,n4 ⇔ d(xn1 , xn2) ≤ d(xn3 , xn4).

We hence ask: What do distance/similarity comparisons as those described

above reveal about the space S? Our work shows that one can use ordinal

measurements to deduce the sign of the curvature and a lower-bound for the

dimension of the underlying space form (in Euclidean and spherical spaces).

6.1.1 Related Work

In many applications we seek a representation for a group of entities based

on their distances, but the exact magnitudes of the distances may be un-

available. What often is available (and prevalent) in applied sciences are

nonmetric – dissimilarity or similarity – measurements: In neural coding [46],

developmental biology [32], learning from perceptual data [47], and cognitive

psychology [48]. Unfortunately, the datasets used in most of these studies are

small (often involving fewer than 100 entities) and have limited utility for

learning tasks that require sufficiently large sample complexity.

Nonmetric embedding problems originate from the works of Shepard [49, 50]

and Kruskal [51]. Inspired by the Shepard-Kruskal scaling problem, Agarwal

et al. [52] introduce generalized nonmetric multidimensional scaling, a semidef-

inite relaxation used to embed dissimilarity (or similarity) ratings of a set of

entities in Euclidean space. Stochastic triplet embeddings [108] and crowd

kernel learning [109] are used to embed triadic comparisons using probabilistic

information. Tabaghi and Dokmanić [19] propose a semidefinite relaxation for

metric and nonmetric embedding problems in hyperbolic space. In all these

scenarios, the embedding space has to properly represent the measured data.

89

For example, in developmental biology and cancer genomics, single-cell RNA

sequencing (scRNAseq) is used to differentiate cell types and cycles. The

classification results have important implications for lineage identification and

monitoring cell trajectories and dynamic cellular processes [31]. Klimovskaia

et al. [32] use hyperbolic rather than Euclidean spaces for low-distortion

embedding of complex cell trajectories (hierarchical structures).

Learning from distance comparisons is an active area of research. Among the

relevant research topics are ranking objects from pairwise comparisons [161,

162], theoretical analysis of necessary number of distance comparisons to

uniquely determine the embedding [163], nearest neighbor search [164], ran-

dom forests [165], and classification based on triplet comparisons [166]. Un-

derstanding the underlying geometry of ordinal measurements is important

in designing relevant algorithms.

Related to nonmetric embedding problems are the various techniques that

study topological properties of point clouds independently of the choice of

metric and of the geometric properties such as curvature [53]. An important

problem in this domain is to detect intrinsic structure in neural firing pat-

terns, invariant under nonlinear monotone transformations of measurements.

Giusti et al. [46] propose a method based on clique topology of the graph

of correlations between pairs of neurons. The clique topology of a weighted

graph describes the behavior of cycles in its order complex [46] as a function

of edge densities; these entities are also known as Betti curves. The statis-

tical behavior of Betti curves is used to distinguish random and geometric

structures of moderate sizes in Euclidean space. The more recent work of

Zhou et al. [26] generalizes this statistical approach to hyperbolic spaces.

These two works are the most closely related contributions to our proposed

problem area. Nevertheless, the technical approaches used in there and in our

work are fundamentally different. First, we provide a theoretical foundation

for the study of geometric properties of space forms using similarity compar-

isons and derive the first known rigorous results related to their dimensions

and curvatures. Second, we propose a computationally efficient method for

inferring the sign of the curvature. The proposed statistical method can

operate on large datasets as it uses subsampling techniques. Furthermore,

we introduce new application areas in outlier identification, heterogeneity

detection and imputation analysis for single-cell data measurements. To

the best of our knowledge, we report the first study regarding the effect of

90

different imputation degrees on the geometry of similarity measurements in

these datasets.

6.1.2 Contributions and Outline

The main results of our analysis are as follows:

1. We introduce the notion of ordinal spread of the sorted distance list, which

is of fundamental importance in the study of the geometry of distance

comparisons. The spread of ordinal measurements describes a pattern in

which entities appear in the sorted list of distances, i.e., the ordinal spread

gives the ranking of the first appearance of a data point in the list. This

notion is related to another important geometric entity termed the ordinal

capacity.

2. We define the notion of ordinal capacity of a space form to characterize the

space’s ability to host extreme patterns of ordinal spreads (computed from

similarity measurements). We show that the ordinal capacity of a space

form is related to its dimension and curvature sign. The ordinal capacity

of Euclidean and spherical spaces are equal and grow exponentially with

their dimensions, while the ordinal capacity of a hyperbolic space is infinite

for any possible dimension of the space.

3. We derive a deterministic lower bound for Euclidean and spherical embed-

ding dimensions using ordinal spreads and the (finite) ordinal capacity. We

also associate an ordinal spread random variable with (1) a set of random

points in a space form, and (2) a set of random vertex subsets from a

similarity graph – a complete graph with edge weights corresponding to

similarity scores of their defining nodes. The distributions of these random

variables serves as a practical tool to identify the underlying space form

given a similarity graph.

4. We illustrate the utility of our theoretical analysis by using them to cor-

rectly uncover the hyperbolicity of weighted trees. Moreover, we use them

to detect Euclidean and spherical geometries for ordinal measurements

derived from local and global cartographic data. Finally, we use the ordinal

spread variables to determine the degree of heterogeneity of cell popula-

91

tions based on noisy scRNAseq data and how data imputation influences

the geometry of the cell space trajectories.

6.2 The Ordinal Spread

Preliminaries. A space form is a complete, simply connected Riemannian

manifold of dimension d ≥ 2 and constant sectional curvature. Up to an

isomorphism, space forms are equivalent to spherical (Sd), Euclidean (Ed),
or hyperbolic spaces (Hd) [167]. Distance geometry problems (DGPs) are

concerned with finding an embedding for a set of pairwise measurements in a

space form. DGP problems can be categorized as metric [19], nonmetric [52],

or unlabeled [168, 169, 170], depending on the data modality and application

domain. A nonmetric DGP aims to find x1, . . . , xN in a space form S, given

a set of ordinal distance measurements O ⊆ [N]4 such that

∀(n1, n2, n3, n4) ∈ O : d(xn1 , xn2) ≤ d(xn3 , xn4). (6.1)

Although there exist theoretical results on the uniqueness of Euclidean em-

beddings [171] (up to an ordinal invariant transformation, i.e., an isotony),

most often the underlying geometry of ordinal measurements is not known a

priori [32, 172, 173].

We consider the problem of identifying the underlying space form from a

given set of pairwise distance comparisons. For sufficiently many comparisons,

this problem is equivalent to inferring geometrical information through the

sorted distance list associated with ordinal measurements (6.1). A determin-

istic or a randomized binary sort algorithm needs at least Θ(
(
N
2

)
log
(
N
2

)
)

pairwise comparisons to uniquely find the sorted distance list, if such a list

exists [174]. Hence, we can define the sorted index list (ir, jr)r∈(N2) according

to

d(xi1 , xj1) ≥ · · · ≥ d(xi
(N2)

, xj
(N2)

), (6.2)

where ir < jr for all r ∈
[(
N
2

)]
and all pairs of indices are distinct. Any

geometry-related inference problem must be invariant with respect to arbitrary

permutations of the point indices. In particular, the pattern of the newly

added indices in the sorted index list 6.2 is invariant to the permutations of

point indices and has important geometrical implications. We formalize this

92

notion in Definition 13.

Definition 13. The n-th ordinal spread of N points with a sorted index

list is defined as

∀n ∈ [N] : αn = min

{
m ∈ N : card

m⋃
r=1

{ir, jr} ≥ n

}
.

Alternatively, the ordinal spread αn is the rank of the first appearance of

the n-th point in the sorted index list, i.e.,

card
αn−1⋃
r=1

{ir, jr} < n, card
αn⋃
r=1

{ir, jr} ≥ n.

As an example, for d(x1, x2) ≥ d(x1, x3) ≥ · · · , we have α3 = 2. From Defi-

nition 13, we observe that one can compute the ordinal spread αn without

knowing the point set positions, the distance and φ(·) function or even the

type of underlying space. For example, let {sm,n = φ(d(xm, xn)}m,n∈[N] be

a set of pairwise similarities for a set of N points and φ(·) be a strictly

decreasing function. If sn1,n2 ≥ sn3,n4 , then (n1, n2, n3, n4) ∈ O. Nevertheless,

in Section 6.2.1 and later on, we use αn({xn}Nn=1) to denote the n-th ordinal

spread computed for the points {xn}Nn=1 in a metric space.

In general, the ordinal spreads {αn}n∈[N] depend on the configuration

of the underlying point set, up to a similarity preserving map [171]. In

Proposition 14, we make the first step in studying ordinal spread variables by

computing their range of possible values.

Proposition 14. For a set of N ≥ 4 points with a given sorted index

list, we have the following:

• α1 = α2 = 1, α3 = 2. • 4 ≤ n ≤ N : [n
2
] ≤ αn ≤

(
n−1

2

)
+ 1.

Clearly, the N -th ordinal spread variable, αN , is the largest ordinal spread

value which makes it a good choice for inferring geometry-related properties.

In comparison, α1, α2, and α3 are fixed and independent on the space and

hence noninformative (see Appendix E for more details). We next provide two

illustrative examples that show how the ordinal spread αN may be used to

reveal the hyperbolic, Euclidean, and spherical geometry of the measurements.

These results motivate the study of ordinal capacity.

93

6.2.1 Hyperbolicity of Trees

Hyperbolic spaces are space forms that offer small distortion when embedding

trees [24, 33]. Here, we describe how to verify this hyperbolicity by using

ordinal spread random variables. We generate a random tree T with the

vertex set V = [104]. The maximum node degree is 3 and edge weights are

i.i.d. realizations of a unif(0, 1)-distributed random variable. Let dm,n be the

distance between nodes m and n in V , defined as the sum of the weights on

the unique path connecting the vertices. Then, we randomly subsample 106

different node subsets, or sub-cliques, of size N ∈ {10, 20} (N � |V | = 104)

from T as shown in Figure 6.1 (a). For each randomly selected sub-clique, we

compute its N -th ordinal spread, αN . Due to the inherently random nature of

the clique selection process, αN is a random variable which we term the ordinal

spread random variable for the tree T . We can then compute the empirical

distribution of the random variable, as illustrated in Figure 6.1(b1, c1). This

motivates the following definition.

Definition 14. Let S be a metric space, and P be a probability dis-

tribution on S. With a slight abuse of notation, we define the ordinal

spread random variable αN as

∀N ∈ N : αN = αN(X), X ∼ P⊗N .

An ordinal spread random variable is defined with respect to the distribution

P . Let us assume an oracle picks a set of distributions for embedded points

in each space form, e.g., (projected) normal for hyperbolic and Euclidean

spaces, and uniform distribution in the spherical space. The distribution

of the corresponding ordinal spread random variable αN is invariant with

respect to scaling. More precisely, it is invariant to strongly isotonic point

transformations (more information in Appendix E). Then, we can compute the

distribution of the random ordinal spread variable αN for points generated in

hyperbolic, Euclidean, and spherical spaces. As the results in Figure 6.1(b1, c1)

indicate, the empirical distribution of αN derived from a weighted tree T

best matches (in the sense of total variation distance between the probability

measures) with that of a random hyperbolic point set. For further verification,

we repeated the same experiment for a random tree T with (1) additive

measurements noise, e.g., d̃m,n = dm,n + η where η is a sample of a zero-

94

Figure 6.1: (a) Random selection of a sub-tree of size N . PMFs of α10 (top
row) and α20 (bottom row) for random points in H2 (red), E2 (green), and S2

(blue). The black plots are empirical PMFs of αN derived from (b1, c1) the
noise-less tree T , (b2, c2) the additive noise contaminated tree, (b3, c3) the tree
with permutation noise, and (b4, c4) a tree with both previous forms of noise.

mean Gaussian noise (with 20 decibel signal-to-noise ratio), (2) random

permutation noise for the sorted index lists, e.g., ĩ = π(i) and j̃ = π(j) where

π is a permutation with average displacement of |V | = 104, and (3) both

additive and permutation noise; see Figure 6.1(b2, c2), (b3, c3), and (b4, c4).

The results clearly show that the distribution of the ordinal spread variable

αN is robust to noise and that it closely matches with that of a random

hyperbolic point cloud. An important implication of this example is that

ordinal spread variables can be used to determine the curvature sign of the

underlying space. A more rigorous justification is provided in the subsequent

exposition in Sections 6.3 and 6.4, where we formally connect the support

of ordinal spread variables to a specific property of their underlying space

forms, i.e., their ordinal capacity. In Appendix E, we show how to use ordinal

capacity to compute a deterministic lower bound for the Euclidean embedding

dimension of this tree.

6.2.2 Euclidean and Spherical Geometries of Cartographic
Data

We describe next an experiment pertaining to the ordinal spread (random)

variables of a similarity graph for geospatial data. The main idea is to use the

distribution of these variables to show that the intrinsic geometry of small

regions on the globe, which are “flat,” is close to Euclidean, whereas that of

large regions, which are spread across the globe, are close to spherical.

We use three datasets: (1) 1, 627 counties in the state of Illinois, (2) 11, 954

counties in Midwestern states, and (3) 104 (subsampled) cities and towns

across the world; refer to Appendix E for details on data sources. We construct

95

Figure 6.2: The empirical PMFs of α20 derived from subsampling the
dissimilarity (distance) graph associated with points in the state of Illinois,
across the Midwestern USA, and the world. Colored plots are PMFs of
random points in H2 (red), E2 (green), and S2 (blue).

the dissimilarity graph by computing the pairwise distances between the

points using the Haversine formula, which determines the great-circle distance

between two points on the globe given their longitudes and latitudes [175].

For each dataset, we compute the empirical PMF of α20 from 106 randomly

selected cliques of size 20 each; the results are shown in Figure 6.2. Comparing

the PMFs for α20 and for random hyperbolic, Euclidean, and spherical points,

we clearly observe the shift from an (approximately) Euclidean to a spherical

geometry as the area spanned by the sampled points increases. We emphasize

that these results are derived from distance comparisons only, since we discard

the metric information in the distances.

6.3 The Ordinal Capacity

In the numerical experiment of Section 6.2.1, we discovered a distinguishing

statistical behavior for the ordinal spread of randomly generated points in each

possible space form. We show in what follows that this distinguishing pattern

is related to the capacity of each space form to accommodate ordinal spread

random variables with their underlying distributions. We define ordinally

dense sets and show how they can help determine the support (the range of

possible values) of the ordinal spread random variables in a space form.1

1We adopt Mirsky’s notation {m,n}6= for a set with two distinct elements m and
n [176].

96

Definition 15. Let {x1, . . . , xN} be a set of distinct points in a metric

space S. If

∃n0 ∈ [N] : sup
n∈[N]\{n0}

d(xn, xn0) ≤ inf
{m,n}6=⊆[N]\{n0}

d(xm, xn),

then we say that {xn}Nn=1 is an ordinally dense set in S, or in short

{xn}Nn=1 v S.

In a nutshell, Definition 15 identifies point configurations that have a

maximum possible ordinal spread. Intuitively, a set of N points is ordinally

dense in S if and only if it has a subset of N − 1 points whose pairwise

distances are all larger than (or equal to) their distances to the N -th point,

i.e.,

{xn}Nn=1 v S ⇐⇒ αN

(
{xn}Nn=1

)
=

(
N − 1

2

)
+ 1. (6.3)

The existence of an ordinally dense set of size N depends on the geometry

of the underlying metric space, and is closely tied to what we term the ordinal

capacity of the space (see Figure 6.3).

Definition 16. The ordinal capacity of a metric space S is defined as

K(S) = sup {card {xn} : {xn} v S} .

The ordinal capacity is an indicator of the capability of a metric space

to realize an extremal pattern of point indices in the sorted index list (6.3).

In the next theorem, we show that the ordinal capacity of a space form is

intimately related to a spherical cap packing problem [177], which is concerned

with the maximum number of non-overlapping spherical caps (or domes with

a certain polar angle) in a hypersphere.

Theorem 4. Let Nd be the spherical π
6

-cap packing number of Sd. The

ordinal capacity of a space form S is given by

K(S) =

{
+∞, if S ∼= Hd

Nd + 1, if S ∼= Ed, S ∼= Sd.

97

Figure 6.3: Ordinally dense point sets in two-dimensional space forms. As all
distances in the (Euclidean) hexagon are greater than or equal to their
distances to the center, the point set achieves the capacity K(E2) = 7.

Theorem 4 shows that the ordinal capacity of space forms depends on their

curvature sign and dimension. The ordinal capacity of a hyperbolic space is

infinite, regardless of its dimension. This implies that for any N ∈ N, there

exists an ordinally dense hyperbolic point set {xn}Nn=1. In the Poincaré model,

a centered regular (N − 1)-gon with an additional point in the “center” is

an ordinally dense set (see Figure 6.3). In contrast, Euclidean and spherical

spaces have equal and finite ordinal capacities. This finding is intuitively clear

because any tangent space of Sd is a linear space of dimension d, and the

spherical distance converges to the `2 distance as the distance between the

points diminishes. In Appendix E, we propose a refinement for the ordinal

capacity of spherical spaces by imposing a minimum distance constraint for

the point sets. We note that the current notion of ordinal capacity does not

distinguish between hyperbolic spaces of different dimensions. Therefore, one

may need to develop a more refined notion of ordinal capacity for hyperbolic

spaces, e.g., based on extremal appearance patterns of multiple indices in the

distance lists.

Using the previous result, we can numerically compute an upper bound

on of Nd, ρd, as a function of d, e.g. ρ1 = 2, ρ2 = 6, ρ3 = 15, ρ4 = 31, ρ5 =

59, ρ6 = 106 [177]. Note that the packing number Nd grows exponentially

with the dimension d [178]. Hence, we have the following assymptotic bound

for the ordinal capacity of a d-dimensional Euclidean (or spherical) space:

− log
(√3

2

)
+ o(d) ≤ 1

d
logK(Ed) ≤ − log

(√2

2

)
+ o(d).

98

Table 6.1: Numerical values for ρd.

d 1 2 3 4 5 6 7 8 9
ρd 2 6 15 31 59 106 183 308 507

6.4 The Support of Ordinal Spread Random Variables

In Section 6.2, we showed numerical evidence that ordinal spread random

variables in Euclidean, spherical, and hyperbolic geometries have different

supports. We therefore ask: What is the maximum achievable ordinal spread,

αN , for a point set of size N > K(S)? The answer to this question determines

the support of ordinal spread random variables in Euclidean and spherical

spaces, regardless of their underlying distribution P (see Definition 14). Note

that since the ordinal capacity of a hyperbolic space is infinite, there always

exists a point set of size N with maximum ordinal spread of
(
N−1

2

)
+ 1

(see Proposition 14). For our subsequent analysis, we define the N-point

ordinal spread of a space form S to be the maximum attainable ordinal spread

αN for the points in S. In Theorem 5, we express this quantity in terms of

the ordinal capacity of S.

Theorem 5. The N -point ordinal spread of a space form S is given by

AN(S)
def
= sup

X∈SN
αN (X) = E

(
T (N − 1, K(S)− 1)

)
+ 1,

where E
(
T (N,K)

)
is the number of edges of T (N,K), the K-partite

Turán graph [179] with N vertices.

As a conclusion, the N -point ordinal spread of a space form, i.e., the

support of its ordinal spread random variable αN , depends on its ordinal

capacity and the number of points N . For a space S with finite ordinal

capacity, there exists a point set X ∈ SN such that αN (X) <
(
N−1

2

)
+ 1. This

holds if N > K(S). With this result, we can revise the ordinal spread bound

in Proposition 14.

Proposition 15. For a set of N ≥ 4 points in a space form S, we

have the following:

• α1 = α2 = 1, α3 = 2. • 4 ≤ n ≤ N : [n
2
] ≤ αn ≤ An(S).

99

Theorem 5 and Proposition 15 explain in part the discriminatory ability of

the support of ordinal spread random variables across different space forms.

The N -point ordinal spread of a hyperbolic space Hd is the maximum value

possible, i.e., AN(Hd) =
(
N−1

2

)
+ 1, regardless of its dimension. Even though

the N -point ordinal spread of Euclidean and spherical spaces, Ed and Sd,
varies with their dimension, they are equal to each other. This is evident

from our distribution-free analysis of the ordinal capacity of these spaces

(see Theorem 4 and its subsequent discussion). However, we can extend our

distribution-free results to the following coarse lower bound for Euclidean (or

spherical) embedding dimension of a similarity graph,

min

{
d : sup

X⊆V :|X|=N
αN(X) ≤ AN(Ed),∀N ∈ [|V |]

}
≤ d,

where V is the vertex set of the graph. We may relax an exhaustive search

over all 2N vertex subsets, to a search over a random subselection of vertices.

In Appendix E, we use such a relaxation to compute a lower bound for the

embedding dimension of the tree discussed in Section 6.2.1.

6.4.1 Visualizing Point Sets with Maximum Ordinal Spread

Here, we aim to gain geometrical intuition about the point sets with maximum

ordinal spread in different space forms. To this end, we generate independent

and identically distributed point sets from a (projected) normal distribution

in two-dimensional hyperbolic and Euclidean spaces. For each realization

{xn}Nn=1, we compute the corresponding ordinal spread αN . The maximum

ordinal spread of the generated point sets, ÂN , gives an estimate for AN(E2)

and AN (H2) (see Theorem 5). We repeat this experiment for varying size of

the point sets N ∈ {4, 5, . . . , 13}.
For 5× 105 realizations, we pick the point configurations with maximum

ordinal spread; see Figure 6.4 (a, b). Recall that the point set with the

theoretical maximum ordinal spread must have N − 1 points sampled from a

sphere centered at the N -th point. So, we repeat this experiment by fixing a

point at 0, and projecting the remaining points to their circumscribed circle,

i.e., ∀n ∈ [N − 1] : yn = r
‖xn‖xn, and yN = 0, where r = maxn∈[N−1] ‖xn‖.

The randomly selected points {yn}Nn=1 produce a more accurate estimate for

100

Figure 6.4: Ordinal spread of 5× 105 i.i.d. point sets in E2 and H2. For fixed
N , we mark the set with the maximum ordinal spread: {xn}Nn=1 in (a) and

(b) and {yn}Nn=1 in (c) and (d).

AN (H2) and AN (E2); see Figure 6.4 (c, d). For example, we have Â13(E2) = 56,

compared to the theoretical bound A13(E2) ≤ 58. Also, the estimated N -point

ordinal spread of a hyperbolic space perfectly matches with the theoretical

bound AN(H2) =
(
N−1

2

)
+ 1. The latter result is due to the capacity of

hyperbolic spaces to host infinitely many ordinally dense point sets. Hence,

the probability of randomly selecting an ordinally dense hyperbolic point set,

of size N , is greater than its Euclidean counterpart.

Perhaps the most important observation is that the individual points in the

extremal sets aggregate on nonoverlapping spherical caps of a circle, as seen

in Figure 6.4 (c). The ordinal capacity of a space form equals the total number

of such caps plus one (for the center point), i.e., Nd + 1. For example, there

are five strictly non-overlapping spherical caps for two-dimensional Euclidean

space, whereas this number is infinite for hyperbolic spaces. Finally, these

results illustrate that the N -th ordinal spread of each space form, AN(S), is

the total number of edges in Turán graphs (see Theorems 4 and 5).

6.5 Numerical Experiments: Single-cell RNA

Sequencing Data

Here, we focus on results pertaining to an important new data format om-

nipresent in computational molecular biology: single-cell RNA sequencing

(scRNAseq) data. By using recently developed single-cell isolation and bar-

coding techniques, and by trading individual cell coverage for the number of

101

Figure 6.5: The empirical PMFs of α20 derived from subsampling the RFA
similarity graph associated with scRNAseq data from homogeneous B cells
(≈ 10, 000 cells) and memory T cells (≈ 10, 000), and heterogeneous PBMCs
(≈ 10, 000) and lymph node tumor cells (≈ 3, 000). The left column shows
the results for the raw data. From left to right, we increase the percentage of
imputed data (densities are shown in the top-right corner).

cells captured, scRNA-seq data for the first time enables studying the activity

patterns of millions of individual cells. This is in stark contrast to traditional

bulk sequencing techniques that only provide averaged snapshots of cellular

activity; scRNAseq measurements are also of special importance in cancer biol-

ogy, as cancer cells are known to contain highly heterogeneous cell populations

and the degree of heterogeneity carries significant information about disease

progressions and the effectiveness of treatments [180]. Important for our

study is the fact that due to the large number of different cells sequenced, cell

measurements are extremely sparse and imputed in practice [181, 182, 183].

Further, it has been pointed out [183, 184] that scRNA-seq data is very

noisy due to biological stochasticity as well as dropouts and systemic noise.

Existing methods for denoising and imputation of raw scRNA-seq data often

involve building connection graphs among cells [182, 181] using the distance

between cells to diffuse the expression profiles among neighboring cells and

smooth out possible outliers. Thus, relative expression differences (compar-

isons), rather than absolute expression values, enable more accurate biological

data mining via clustering, lineage detection, or inference of pseudotemporal

orderings of cells [185]. As an example, [32] constructs similarity probabilities

from a relative forest accessibility (RFA) matrix [186] and uses the obtained

values to suggest that hyperbolic spaces are more suitable than Euclidean

spaces for scRNAseq data embedding. We illustrate next that identifying

the geometric properties of scRNAseq data using comparisons also provides

102

unique information about the diversity of cellular populations [180], out-

liers and the properties of imputation methods. Furthermore, since scRNA

captures temporal hierarchical information about cells, as well as the cyclic

nature of cell cycles, we expect spherical space forms to be equally useful as

hyperbolic space forms in the process of embedding. To this end, we compute

the empirical distribution of ordinal spread random variables associated with

scRNA lymphoma (cancer) cells and cell families known as mononuclear cells

(PBMCs), comprising T cells, B cells, and monocytes, which are often targeted

in cancer immunotherapy. In this case, as illustrated by our numerical findings

in Figure 6.5, these distributions contain peaks for small values that indicate

that the data is sparse and contains outliers or highly heterogeneous cellular

populations. Intuitively, probability peaks for small values of αN arise when

newly added indices in the ordered distance list appear in quick succession

which can be attributed to one or multiple points at large distance from the

remaining points (outliers); for more details see Appendix E. As imputation

adds new data points by using averaged and smoothed information of ob-

served measurements, it is expected to remove peaks in the aforementioned

distributions, which is clearly the case for homogeneous cellular populations,

but not for cancer cells and PBMCs. The reason why imputation does not

remove peaks for the latter two categories can be attributed to the fact that

the peaks arise due to the presence of many different cell types (e.g., recall

that PBMCs contain B,T and monocytes and consequently, multiple peaks

are observed in the ordinal spread distributions of raw data) which cannot

and should not be smoothed out to form one class as this defeats the purpose

of using single-cell measurements. Equally importantly, the results show that

the Magic imputation software we used [181] imputes information into the

noisy measurements without changing the geometry of the data, which is an

important indicator of the quality of the procedure.

6.5.1 Nonmetric Embedding

Our next results pertain to the actual embedding quality of the measured

similarities. We consider nonmetric embeddings [19, 52] of RFA scores of

scRNAseq data from adult planarians [185]. The dataset contains N ≈ 26, 000

cells with gene expression vectors of dimension d ≈ 21, 000. In Figure 6.6

103

(a), we report the empirical probability of incorrect comparison ENpe for

embedding RFA similarities in different space forms of varying dimensions.

The results thus confirm that a spherical geometry is actually better suited

for accurate nonmetric embeddings, which supports the frequently ignored

understanding that cells are measured at various stages of the same cell cycle.

For our analysis, we compute P̂α20 from the similarity graph G. Due to

the heavy-tailed nature of the original data distribution, we choose (oracle)

log-normal distributions for the points in each space form. Then, we repeat

the experiments for various dimensions and each space form/distribution

parameters to find the closest ordinal spread variable to P̂α20 . From Figure 6.6

(b), we conclude that an ordinal spread variable from a high-dimensional

(≈ 1, 000) spherical space best matches P̂α20 .

6.6 Conclusion

This work offers a discussion about inferring the geometry of space forms from

similarity comparisons between a set of entities. We introduce novel notions

such as ordinal capacity and spread for metric spaces, as well as ordinally

dense discrete sets. We provide theoretical and statistical analysis of ordinal

spread variables. The proposed analysis, along with reasonable priors for

the distribution of entities in a set of target spaces, can be used to identify

the curvature sign of similarity graphs. This geometry driven approach for

studying embedding spaces brings new perspective in designing algorithms

related to similarity measurements.

Figure 6.6: (a) PMFs of α20 from the RFA similarity graph (G) vs. random
points in space forms of optimal dimensions. (b) ENpe for embedded points
in d-dimensional space forms.

104

APPENDIX A

KINETIC EUCLIDEAN DISTANCE
MATRICES

A.1 Spectral Factorization of the Time-varying

Gramians

Let q stand for t for the polynomial model, or ejωt for the bandlimited

model. Similarly, let P = {0, . . . , P} for polynomial or P = {−P, . . . , P} for

bandlimited, and P + P def
= {p1 + p2 : p1, p2 ∈ P}.1

Lemma 1. Let G(q) =
∑

p∈P+P Bpq
p (with Bp ∈ CN×N) be rank-d

and positive semidefinite. Then there exists a unique (up to a d × d
left unitary factor) d×N matrix X(q) =

∑
p∈P Akq

p such that G(q) =

X(q)HX(q).

The statement has been proved for Laurent matrix polynomials in [84].

For q = t it is equivalent to spectral factorization of polynomial matrices

on the real line. Ephremidze [83] proved the full rank version; an entirely

parallel construction to those in [83, 84] implies that it holds of rank-deficient

matrices.

1A Laurent polynomial with coefficients in a field F, is expressed as x(z) =
∑
p cpz

p

where z is a formal variable and can have negative powers. Bandlimited trajectories are a
special case of Laurent polynomials where F = Cd×N and z = ejω.

105

A.2 Proof of Proposition 1

The Gramians can be written as linear combinations of a set of monomial

terms (cf. (2.6)), which gives

G0 = B0 + τ0B1 + · · ·+ τK0 BK

...

GK = B0 + τKB1 + · · ·+ τKKBK .

(A.1)

Each matrix equation in (A.1) consists of N ×N scalar equations for entries

of Gk. Focusing on a particular entry (i, j) gives a linear system g = Mb

with column vector g = [g0, · · · , gK]> where gk is the (i, j)-th element of Gk,

the matrix M
def
= [τ k

′

k]0≤k,k′≤K , and b = [b0, · · · , bK]> where bk is the (i, j)-th

element of Bk. We also have from (2.6) that [G(t)]ij = (1, t, t2, . . . , tK)b
def
= t>b.

Since τk are distinct, the square Vandermonde matrix M is invertible. We

have b = M−1g which gives [G(t)]ij = t>M−1g. Denoting w(t) = (M>)−1t

we have that [G(t)]ij = w(t)>g =
∑K

k=0 wk(t)[Gk]ij which proves the claim.

A.3 Proof of Proposition 2

The proof is analogous to the polynomial case. We only need to show that

the system matrix is full rank which is a standard result [187].

A.4 Proof of Proposition 3

(2)⇒ (1) is trivial. (1)⇒ (2): From X
D∼ Y , by definition we have

K(X(t)>X(t)) = K(Y (t)>Y (t)), ∀t ∈ T.

Then, from (2.2) there is an orthogonal matrix U(t) such that

JY (t) = U(t)JX(t)

106

for all t ∈ T . On the other hand, X(t) = JX(t) + x(t)1>, and Y (t) =

JY (t) + y(t)1> for x(t), y(t) ∈ Rd. Finally, we have

Y (t) = JY (t) + y(t)1>

= U(t)JX(t) + y(t)1>

= U(t)(X(t)− x(t)1>) + y(t)1>

= U(t)X(t) + (y(t)− U(t)x(t))1>.

A.5 Proof of Proposition 4

For polynomial trajectories, we prove that (1) is equivalent to (2) and (2)

is equivalent to (3). We leave the straightforward extension to bandlimited

trajectories to the reader.

It is obvious that (1) implies (2) and (2) implies (3). (2) implies (1): We

have X(t)1 =
∑P

p=0(Ap1)tp = 0. Since the monomials {t 7→ tp}Pp=0 form a

linearly independent set, the coefficients Ap1 must all be zero. In other words,

the column centroid of all Ap must be at the origin.

(3) implies (2): Since G(t)1 =
∑K

k=0wk(t)Gk1 = 0, we have

‖X(t)1‖2
2 = 1>X(t)>X(t)1 = 1>G(t)1 = 0.

Hence X(t)1 = 0 for all t ∈ R.

A.6 Proof of Proposition 5

We prove this proposition by construction. Let us define

G∗k = JNXΘ(τk)
>XΘ(τk)JN

for k ∈ {0, · · · , K} and G∗(t) =
∑K

k=0wk(t)G
∗
k. From Propositions 1 and 2,

we deduce that G∗(t) = JNXΘ(t)>XΘ(t)JN . Hence, G∗(t) belongs to the

feasible set of (2.9) as JNXΘ(t)>XΘ(t)JN is a zero-mean positive semidefinite

matrix for all t ∈ R, with rank at most d. On the other hand, sinceD(XΘ(t)) =

K(G∗(t)), we have J2(G∗) = 0. Finally, since (2.9) has a unique solution, the

minimizer of (2.9) must have the form (2.10).

107

APPENDIX B

HYPERBOLIC DISTANCE MATRICES

B.1 Proof of Proposition 6

A hyperbolic Gramian can be written as G = X>HX for a X = [x1, . . . , xN] ∈(
Ld
)N

. Let us rewrite it as

G =
d∑
i=1

gig
>
i − g0g

>
0

= G+ −G−,

where g>i is the (i + 1)-th row of X, G− = g0g
>
0 and G+ =

∑d
i=1 gig

>
i are

positive semidefinite matrices. We have rankG− ≤ 1 and rankG+ ≤ d. On

the other hand, we have

e>i Gej
def
= [xi, xj]

= −x0,ix0,j +
d∑

k=1

xk,ixk,j

(a)
= −

√
1 + ‖x̄i‖2

√
1 + ‖x̄j‖2 + x̄>i x̄j

(b)

≤ −(1 + x̄>i x̄j) + x̄>i x̄j = −1,

where xk,i is the (k + 1)-th element of xi, x̄i = (x1,i, . . . , xd,i)
>, and (a) is due

to ‖xi‖2
H = ‖xj‖2

H = −1, and (b) results from Cauchy-Shwartz inequality.

The equality holds for i = j, which yields the diagG = −1 condition.

Conversely, let G = G+ − G−, where G+, G− � 0, rankG− ≤ 1, and

rankG+ ≤ d. Let us write G− = g0g
>
0 and G+ =

∑d
i=1 gig

>
i for g0, . . . , gd ∈

108

RN . Then, we define

X
def
=

g>0
...

g>d

 = [x1, · · · , xN] ∈ R(d+1)×N ,

where xn ∈ Rd+1 for all n ∈ [N]. By construction, we have X>HX = G and

diagG = −1⇒ ‖xn‖2
H = −1, ∀n ∈ [N].

Finally, the inequality e>i Gej ≤ −1 guarantees that xn ∈ Ld for all n ∈ [N].

We prove the contrapositive statement. Let xi and xj belong to different the

hyperbolic sheets, e.g., xi ∈ Ld, xj ∈ −Ld. Then,

e>i Gej
def
= [xi, xj]

= −x0,ix0,j +
d∑

k=1

xk,ixk,j

(a)

≥
√

1 + ‖x̄i‖2
√

1 + ‖x̄j‖2 − ‖x̄i‖ ‖x̄j‖ ≥ 0,

where (a) is due to Cauchy-Shwartz inequality. This is in contradiction with

e>i Gej ≤ −1 condition. Therefore, {xn} belong to the same hyperbolic sheet,

namely Ld.

B.2 Derivations for Algorithm 6

Theorem 6. Let G ∈ RN×N be a hyperbolic Gramian, with eigenvalue de-

composition

G = U>ΛU, (B.1)

where Λ = diag (λ0, · · · , λN−1) such that

• λ0 = mini λi.

• λi is the i-th top element of {λi} for i ∈ {1, · · · , d}.

The best rank-(d+ 1) Lorentz Gramian approximation of G, in `2 sense, is

given by

Gd+1 = U>d ΛdUd,

109

where Λd = diag [λ0, u(λ1), · · · , u(λd)], u(x) = max {x, 0}, and Ud ∈ R(d+1)×N

is the corresponding sliced eigenvalue matrix.

Proof. We begin by characterizing the eigenvalues of a Lorentz Gramian.

Lemma 2. Let G ∈ RN×N be a Lorentz Gramian of rank d + 1 with

eigenvalues ψ0 ≤ · · · ≤ ψd. Then, ψ0 < 0, and ψi > 0, for i ∈
{1, · · · , d}.

Proof. We write Lorentzian Gramian, G = (gi,j), as G = X>HX where

X = [x1, · · · , xN]
def
=

g>0
...

g>d

 ∈ R(d+1)×N .

Then, G = G+−G− where G+ def
=
∑d

i=1 gig
>
i is a positive semi-definite matrix

of rank d and with eigenvalues 0 < γ1 ≤ · · · ≤ γd, and −G− def
= −g0g

>
0 is

a negative definite matrix of rank 1, with eigenvalue µ ≤ 0. From Weyl’s

inequality [188], we have

µ+ γ1 ≤ ψ0 ≤ µ+ γd,

where ψ0 is the smallest eigenvalue of G. Therefore, ψ0 can be non-positive

(negative if µ+ γd < 0). For other eigenvalues of G, we have

0 + γ1 ≤ ψi ≤ γd, for 1 ≤ i ≤ d.

Hence, ψi > 0 for i ∈ {1, · · · , d}. This is result is irrespective to the order of

eigenvalues.

Now, let us prove ψ0 < 0. Suppose g0 ∈ S = span {gi : i ∈ {1, · · · , d}}.
Then,

rankG = rank

g>0
...

g>d

 < d+ 1,

which is a contradiction. Therefore, we write g0 = αt + βs where s ∈ S,

110

t ∈ S⊥ with ‖t‖ = 1, α, β ∈ R and α 6= 0. Then, we have

ψ0 ≤ t>Gt

(a)
= −t>g0g

>
0 t

= −α2 < 0,

where (a) is due to G = −g0g
>
0 +

∑d
i=1 gig

>
i and t ∈ S⊥.

Consider eigenvalue decomposition of G in (B.1). Without loss of generality,

we assume

• λ0 = mini λi < 0.

• λi is the i-th top element of {λi} for i ∈ {1, · · · , d}.

By construction G = X>HX and from diagG = −1 condition, we have∑
λi = −N.

Therefore, λ0 < 0. From Lemma 2, one eigenvalue of a Lorentz Gramian is

negative and the rest must be positive. Therefore, Ĝ = U>d ΛdUd with eigen-

values Λd = diag {λ0, u(λ1), · · · , u(λd)} and eigenvectors Ud = [u0, · · · , ud], is

the best rank-(d+ 1) Lorentz Gramian approximation to G, i.e.,∥∥∥Ĝ−G∥∥∥2

2
= inf

H: Lorentz Gram. of rank ≤d+1
‖H −G‖2

2 .

Finally, a rank-(d+ 1) Lorentz Gramian with eigenvalue decomposition

Gd+1 = UdΛdU
>
d

can be decomposed as X = R|Λ|1/2U>d ∈ R(d+1)×N where R is an arbitrary

H-unitary matrix and Gd+1 = X>HX.

111

B.3 The Projection Map — Project : Rd → Ld

Algorithm 9 The projection map — Project(x) Rd+1 to Ld.
1: For x ∈ Rd+1, let

x̂ =

(1, 0>)> x ∈

{
(x0, 0

>)> : x0 ≤ 2
}
.

(1
2
x0, x̂1, · · · , x̂d)> x ∈

{
(x0, 0

>)> : x0 > 2
}
.

x(λ∗) λ∗ : x(λ∗) ∈ S, or ‖x(λ∗)‖2
H = −1.

Definitions: x(λ) = (I + λH)−1x and

S =

{
(x0, x1, · · · , xd) : x2

1 + · · ·+ x2
d = −1 +

1

4
x2

0

}
.

2: return x̂.

Proof. Let us reformulate the following projection problem

x̂ ∈ arg min
y∈Ld

‖y − x‖2 (B.2)

as unconstrained augmented Lagrangian minimization, i.e.,

L(y, λ) = ‖y − x‖2 + λ(y>Hy + 1).

The first-order necessary condition for x̂ to be a (local) minimum of (B.2) is

(I + λ∗H)x̂ = x (B.3)

for a λ∗ ∈ R such that x̂ ∈ Ld.
λ∗ = −1: This happens when x = (x0, 0

>)> and x0 ≥ 2. Following from

optimality condition of (B.3) and ‖x̂‖2
H = −1, we have x̂ = (1

2
x0, x̂1, · · · , x̂d)>,

where

x̂2
1 + · · ·+ x̂2

d = −1 +
1

4
x2

0.

Therefore, x̂ could be any point on a (d− 1)-dimensional sphere on Ld. For

x = (x0, 0
>)> and x0 ≤ 2, we have x̂ = (1, 0>)>.

λ∗ = 1: This happens for x = (0, x1, · · · , xd)>. From optimality condition

of (B.3), we have x̂ = (x̂0,
1
2
x1, · · · , 1

2
xd), where x̂0 = 1

2

√
x2

1 + · · ·+ x2
d + 4.

112

For non-degenerate cases of λ∗ 6= ±1, we have

x̂ = (I + λ∗H)−1x, (B.4)

where λ∗ ∈
{
λ : ‖(I + λH)−1x‖2

H = −1, x̂0 ≥ 0
}

.

(1) λ∗ ∈ (−1, 1): First, we define

f(λ) =
∥∥(I + λH)−1x

∥∥2

H
.

This is a monotonous function on (−1, 1), with limλ→1− f(λ) = −∞, and

limλ→−1+ f(λ) = +∞. Hence, f(λ) = −1 has a unique solution λ∗ ∈ (−1, 1).

Finally, x̂ is a local minima since the second-order sufficient condition

I + λ∗H � 0

is satisfied for λ∗ ∈ (−1, 1). Lastly, from (B.4), we have x̂0x0 ≥ 0. In other

words, λ∗ ∈ [−1, 1] if and only if x is in the same half-space as Ld, i.e., x0 ≥ 0.

(2) λ∗ ∈ (−∞,−1): Similarly, f(λ) is a continuous function in this interval

with limλ→−1− f(λ) = +∞, limλ→−∞ f(λ) = 0, and its first-order derivative

d

dλ
f(λ) = − 2

(1− λ)3
x2

0 −
2

(1 + λ)3

d∑
i=1

x2
i

has at most one zero. Therefore, f(λ) = −1 has at most two solutions. The

second-order necessary condition for local minima is v>(I + λ∗H)v ≥ 0 for

all v ∈ Tx̂Ld, where

Tx̂Ld =
{
v ∈ Rd+1 : x>(I + λ∗H)−1Hv = 0

}
.

However, there exists a v ∈ Tx̂Ld where v = (0, v̄>)> which violates the

second-order necessary condition, v>(I + λ∗H)v < 0. Therefore, x̂ – even if

it exists – is not a local minima.

(3) λ∗ ∈ (1,∞): We can easily see that limλ→1+ f(λ) = −∞, limλ→+∞ f(λ) =

0, and d
dλ
f(λ) = 0 has at most one solution in this interval. Therefore,

f(λ) = −1 has exactly one solution. However, we have x̂0x0 ≤ 0 from (B.4).

In other words, λ∗ ∈ (1,∞) if and only if x is in the opposite half-space of Ld,
i.e., x0 ≤ 0. Finally, x̂ is the unique minima, since the projection of x /∈ S to

113

the closed and convex set of

S =
{
x : x0 ≥ 0, ‖x‖2

H ≤ −1
}

always exits and is unique.

B.4 Proof Outline of Proposition 7

Let X = R|Λ|1/2U>. Then,

X>HX = U |Λ|1/2R>HR|Λ|1/2U>

(a)
= U |Λ|1/2H|Λ|1/2U>

(b)
= G,

where (a) is due to properties of H-unitary matrices, (b) from |λ0|1/2(−1)|λ0|1/2 =

λ0 for λ0 ≤ 0. Therefore X = R|Λ|1/2U> is a hyperbolic spectral factor of G.

Finally, the uniqueness of these factors is due to fact that H-unitary operators

fully characterize isometries in the ’Loid model [110].

114

APPENDIX C

HYPERBOLIC PROCRUSTES ANALYSIS

C.1 Proof of Proposition 8

Lemma 3 gives a simple method to center a projected point set.

Lemma 3. [137] Let x1, x2, . . . , xN ∈ Ld. Then, we have

P
(
R−mxxn

)
= 0,

where mx
def
= 1√

−[xn,xn]
P(xn).

From Lemma 3, we have

R−mxxn =

[
a1

0

]
, R−mx′x

′
n =

[
a2

0

]

for a1, a2 ∈ R. On the other hand, we can rewrite (4.1) in the following form

R−mxxn = R′R−mx′x
′
n,∀n ∈ [N],

where R′ = R−mxRbRURmx′
. Since R′ is an H-unitary matrix, we can

decompose it as R′ = RcRV for some c ∈ Rd and V ∈ O(d). Therefore, we

have [
a1

0

]
= RcRV

[
a2

0

]
.

This gives c = 0.

115

C.2 Proof of Proposition 9

We can simplify (4.2) as follows:

Û = arg max
V ∈O(d)

∑
n∈[N]

TrR−mx′x
′
nwn(R−mxxn)>HRV .

From Fact 1, RV is only parameterized on its lower-right block. The proof

follows from matrix representation of the summation and von Neumann trace

inequality [189].

116

APPENDIX D

LINEAR CLASSIFIERS IN PRODUCT
SPACE FORMS

Space forms are Riemannian manifolds of dimension d ≥ 2 that are isomorphic

to spherical, Euclidean or hyperbolic spaces [152]. A d-dimensional spherical

space with curvature C > 0 is a collection of points

Sd =
{
x ∈ Rd+1 : 〈x, x〉 = C−1

}
,

where 〈·, ·〉 is defined in the main text. Similarly, a d-dimensional hyperbolic

space (i.e., the ’Loid model) with curvature C < 0 is a collection of points of

the form

Hd =
{
x ∈ Rd+1 : [x, x] = C−1

}
,

where [·, ·] is defined in the main text. In Table D.1, we list the Riemannian

metric, exponential and logarithmic maps for each of these spaces.

D.1 Proof of Proposition 10

Let p ∈ Sd and w ∈ TpSd = p⊥ such that 〈w,w〉 = C. The separation surface

Hp,w is defined as

Hp,w =
{
x ∈ Sd : gp(logp(x), w) = 0

}
=
{
x ∈ Sd : 〈x,w〉 = 0

}
.

Table D.1: Summary of relevant operators in Euclidean, spherical, and
hyperbolic (’Loid model) spaces with arbitrary curvatures.

M TpM gp(u, v) logp(x) : θ =
√
|C|d(x, p) expp(v) d(x, p)

Rd Rd 〈u, v〉 x− p p+ v ‖x− p‖2
Sd p⊥ 〈u, v〉 θ

sin(θ)
(x− p cos θ) cos(

√
C ‖v‖)p+ sin(

√
C ‖v‖) v√

C‖v‖
1√
C

acos(C〈x, p〉)
Ld p⊥ [u, v] θ

sinh(θ)
(x− p cosh θ) cosh(

√
−C ‖v‖)p+ sinh(

√
−C ‖v‖) v√

−C‖v‖
1√
−C acosh(C[x, p])

117

We can compute the distance between x ∈ Sd and Hp,w as

d(x,Hp,w) = min
y∈Hp,w

1√
C

acos(Cy>x).

The projection of a point onto Hp,w can be computed by solving the following

constrained optimization problem

max
y∈Rd+1

x>y such that w>y = 0, 〈y, y〉 = C−1.

From the first-order optimality condition for the Lagrangian, the projected

point takes the form P(x) = αx+ βw, where α, β ∈ R. Now, we impose the

following subspace constraint,

w>P(x) = w>(αx+ βw)

= αw>x+ βw>w

= αw>x+ βC

= 0,

which gives β = −αC−1x>w. Subsequently, we have P(x) = α(x−C−1x>ww).

On the other hand, from the norm constraint, we have

‖P(x)‖2 = α2(C−1 + C−1(x>w)2 − 2C−1(x>w)2)

= α2C−1(1− (x>w)2)

= C−1,

which gives α = (1− (x>w)2)−
1
2 . Then,

P(x) =

√
1

1− (x>w)2
(x− x>w

w>w
w) =

C−
1
2

‖P⊥w x‖2

P⊥w x, (D.1)

where P⊥w x = x− 1
〈w,w〉〈x,w〉w.

Next, let us define ψ = acos(x>w), where ψ ∈ [0, π]. Then, the minimum

118

distance is given by

d(x,P(x)) =
1√
C

acos
(
Cx>P(x)

)
=

1√
C

acos
(√ 1

1− cos2 ψ
(1− cos2 ψ)

)
=

1√
C

acos
(
|sinψ|

)
(a)
=

1√
C

asin
(
|cosψ|

)
=

1√
C

asin|x>w|,

where (a) follows due to acos(|sin(ψ)|) = asin(|cos(ψ)|), or

cos
(
asin(|cosψ|)

)
= cos

(
asin

∣∣∣(sin(
π

2
− ψ)

∣∣∣)
= cos

(∣∣∣asin(sin(
π

2
− ψ)

)∣∣∣
= cos(

∣∣∣π
2
− ψ

∣∣∣)
= |sinψ|,

for ψ ∈ [0, π]. Now, let x ∈ Sd, and let P(x) be as given in (D.1). We readily

have P(x) ⊥ w. Therefore,

w>logP(x)(x) =
acos(CP(x)>x)

sin(acos(CP(x)>x))
x>w

(a)
=

acos(CP(x)>x)

|x>w|
x>w

= asin(|x>w|)sgn(x>w)

= asin(x>w) = sgn(x>w)
√
Cd(x,P(x)),

where (a) follows from

sin
(
acos(CP(x)>x)

)
= sin

(
acos(

√
1− (x>w)2)

)
= sin

(
asin(|x>w|)

)
= |x>w|.

This completes the proof.

119

D.2 Proof of Proposition 11

Let Hd be the ’Loid model with curvature C < 0 (usually set to C = −1 for

simplicity). The projection of x ∈ Hd onto Hp,w is a point P(x) ∈ Hp,w that

has the smallest distance to x. In other words, P(x) is the solution to the

following constrained optimization problem

max
y

[y, x] such that [y, y] = C−1, [w, y] = 0,

where [w,w] = −C. The solution to this problem takes the form of P(x) =

αx+ βw, where α, β ∈ R. We can enforce the subspace condition as follows:

[P(x), w] = α[x,w] + β[w,w]

= α[x,w] + β(−C)

= 0,

which gives β = αC−1[x,w], or P(x) = α(x + C−1[x,w]w). On the other

hand, we also have

[P(x),P(x)] = α2(C−1 − C−1[x,w]2 + 2C−1[x,w]2)

= α2C−1(1 + [x,w]2)

= C−1.

Then, we have

P(x) =

√
1

1 + [x,w]2
(x+ C−1[x,w]w) =

(−C)−
1
2

‖P⊥w x‖
P⊥w x, (D.2)

where P⊥w x = x− 1
[w,w]

[x,w]w and
∥∥P⊥w x∥∥ =

√
−[P⊥w x, P

⊥
w x]. The minimum

distance can be computed as

d(x,P(x)) =
1√
−C

acosh(C[P(x), x])

=
1√
−C

acosh(C

√
1

1 + [x,w]2
C−1(1 + [x,w]2))

=
1√
−C

acosh(
√

1 + [x,w]2).

120

We can further simplify this expression to:1

d(x,P(x)) =
1√
−C

asinh|[x,w]|.

Now, let x ∈ Ld and let P(x) be given in (D.2). We can easily see that

[P(x), w] = 0. Therefore, we have

gP(x)(w, logP(x)(x)) =
acosh(C[P(x), x])

sinh(acosh(C[P(x), x]))
[x,w]

=
asinh(|[x,w]|)
|[x,w]|

[x,w]

= asinh(|[x,w]|)sgn([x,w])

= asinh([x,w]) = sgn([x,w])
√
−Cd(x,P(x)).

This completes the proof.

D.3 Proof of Theorem 1

The Vapnik-Chervonenkis (VC) dimension [154] of a linear classifier is equal

to the maximum size of a point set that a set of linear classifiers can shatter,

i.e., completely partition into classes independent on how the point in the

set are labelled. We establish the VC dimension for all three space forms

M = Rd,Sd, and Ld (clearly, the VC dimension of Euclidean space forms is

well-known, as described below).

The Vapnik-Chervonenkis (VC) dimension of affine classifiers in Rd is d+ 1

(see the treatment of VC dimensions of Dudley classes described in [190]).

Therefore, there exists a set of d+ 1 points that affine classifiers in Rd can

shatter. Note again the distinction between affine and linear classifiers in

Euclidean spaces.

Next, let x1, . . . , xN ∈ Sd be a set of point in spherical space Sd, which can

be shattered by linear classifiers. In other words, we have

yn = sgn
(
asin(w>S xn)

)
, ∀n ∈ [N],

and for any set of binary labels (yn)n∈[N]. The linear classifiers in spherical

1Since cosh(x)2 − sinh(x)2 = 1.

121

space are a subset of linear classifiers in a (d + 1)−dimensional Euclidean

space. Hence, their VC dimension must be less than or equal to d+ 1. On the

other hand, if we project a set of d+ 1 points in Rd+1 onto Sd, that can be

shattered by linear classifiers in Euclidean space (by a simple normalization).

This way, we can find a set of (exactly) d+ 1 points that can be shattered by

linear classifiers in Sd. Hence, the VC dimension of linear classifiers in Sd is

exactly d+ 1.

Next, let us turn our attention to d-dimensional hyperbolic spaces, namely

the ’Loid model. Let X = {xn}n∈[d+1] be a set of d+1 points in d-dimensional

’Loid model of hyperbolic space such that

xn =

√1 + ‖zn‖2

zn,

for zn ∈ Rd and all n ∈ [d + 1]. Furthermore, we assume that z1 = 0, and

zn = en−1 for n ∈ {2, . . . , d+ 1}, where en is the n-th standard basis vector

of Rd.

We claim that this point set can be shattered by the set of linear classifiers

in hyperbolic spaces, i.e.,

lHw(x) = sgn
(
asinh([w, x])

)
(D.3)

where w ∈
{
x ∈ Rd+1 : [x, x] > 0

}
. Let (y1, . . . , yd+1) be an arbitrary set of

labels in {−1, 1}. Then, we define

∀n ∈ {2, . . . , d+ 1} : t1 = y1, tn = kyn, (D.4)

where k >
√

2 + 1. Therefore, if we can show that there exists a w ∈{
x ∈ Rd+1 : [x, x] > 0

}
such that

∀n ∈ [d+ 1] : tn = [w, xn],

then we have yn = lHw(xn) for all n ∈ [d + 1]. This is equivalent to showing

that the following equation has a solution w ∈ {x : [x, x] > 0},

t = X>Hw,

122

where t = (t1, . . . , td+1) and

X> =

√
1 + ‖z1‖2 z>1√
1 + ‖z2‖2 z>2

...
...√

1 + ‖zd+1‖2 z>d+1

 =

1 0>√
2 e>1

...
...√

2 e>d

 .

The solution is w = H(X>)−1t, described below,

w = H

1 0>

−
√

2 e>1
...

...

−
√

2 e>d

 t =

−t1

−
√

2t1 + t2
...

−
√

2t1 + td+1

 .

As the final step, we show that w ∈ {x : [x, x] > 0}. To this end we observe

that

[w,w] = −t21 +
d+1∑
n=2

(−
√

2t1 + tn)2

(a)
= y2

1

(
− 1 +

d+1∑
n=2

(−
√

2 + k
yn
y1

)2
)

(b
= −1 +

d+1∑
n=2

(−
√

2 + k
yn
y1

)2

(c)
> 0,

where (a) is due to (D.4), (b) follows from yn ∈ {−1, 1}, and (c) is obvious

if k >
√

2 + 1. Therefore, linear hyperbolic classifiers can generate any set

of labels for the point set {xn}n∈[d+1]. Furthermore, hyperbolic classifiers in

(D.3) can be seen as linear classifiers in (d+ 1)-dimensional Euclidean space.

Hence, the VC dimension of linear classifiers in hyperbolic space is exactly

d+ 1.

From Theorem 1 and the fundamental theorem of concept learning [191], the

set of linear product space form classifiers L is probably accurately correctly

(PAC) learnable. More precisely, let ∆ be a family of probability distributions

onM×{−1, 1}, and let {(xn, yn)}n∈[N] be a set of i.i.d. samples from P ∈ ∆.

123

Then, we have

inf
l∈L

P (l̂N(X) 6= Y) ≤ inf
l∈L

P (l(X) 6= Y) + C

√
d+ 1

n
+

√
2 log(1

δ
)

n
,

where l̂N = arg minl∈L
1
N

∑
n∈[N] 1(l(xn) 6= yn) is the empirical risk minimizer.

Therefore, spherical, hyperbolic, and Euclidean linear classifiers have the

same learning complexity.

D.4 Proof of Proposition 12

Let M = EdE × SdS ×HdH be a product space with the Riemannian metric

g = αEg
E+αSg

S+αHg
H. Fact 1 gives us the logarithm map and tangent space

at a point p = (pE, pS, pH) ∈M. A tangent vector w ∈ TpM can be expressed

as w = (wE, wS, wH) where wE ∈ TpEEdE , wS ∈ TpSSdS , and wH ∈ TpHHdH .

From the point-line definition of linear classifiers (Definition 2), we have

lMp,w(x) = sgn
(
gp(logp(x), w)

)
= sgn

(∑
S∈{E,S,H}

αSg
S
pS

(logpS(xS), wS)
)
.

In Propositions 10 and 11, we derived specific spherical and hyperbolic base

points to formalize distance-based classifiers. From these results, we may

define a linear classifier inM that is parameterized only with a tangent vector

w, i.e.,

lMw (x) = sgn
(
(αEwE)>xE + b+ αSasin(w>S xS) + αHasinh([wH, xH])

)
, (D.5)

where ‖wE‖ = 1, ‖wS‖ = CS, and [wH, wH] = −CH. This completes the proof.

Remark. The linear classifier of (D.5) is not a distance-based classifier

with respect to our choice of the Riemannian metric g. The distance between

a point x and the classification boundary Hp,w can be computed as

d(x,Hp,x) = min
y∈Hp,w

d(x, y)

=
(
α2
E ‖xE − y∗E‖

2 + α2
S

1

CS
acos2(CSx

>
S y
∗
S) + α2

H
1

−CH
acosh2(CH[xH, y

∗
H])
)1/2

,

124

where y∗ is the projection of x onto the separation plane Hp,w. It is easy to

verify that this distance is not related to the decision criteria, i.e., (αEwE)>xE+

b+ αSasin(w>S xS) + αHasinh([wH, xH]), which only takes the weighted sum of

(signed) distances between xS and HpS ,wS for S ∈ {E,S,H}.

D.5 Proof of Theorem 2

Lemma 4. Let K(x1, x2) = asin(x>1 x2), where x1, x2 ∈ B◦ ={
x ∈ Rd : ‖x‖2 ≤ 1

}
. Then, there exists a Hilbert space H◦, and a

mapping φ◦ : B◦ → H◦ such that

K(x1, x2) = 〈φ◦(x1), φ◦(x2)〉H◦ ,

where 〈·, ·〉H◦ is the inner product on H◦. Moreover, we can construct a

space H′◦ ⊃ H◦ such that indefinite inner products of the form 〈·,M◦·〉H◦
are well-defined on H′◦. The indefinite operator M◦ : H′◦ → H′◦ admits

the following representation

KH(x1, x2) = asinh(x>1 x2) = 〈φ◦(x1),M◦φ◦(x2)〉H◦ ,

for all x1, x2 in a compact subset of Rd, and it satisfies M>
◦ M◦ = Id,

where Id denotes the identity operator.

Proof. The Taylor series expansion of asin can be used to establish that

asin(x>1 x2) =
∞∑
n=0

(2n)!

22n(n!)2(2n+ 1)
(x>1 x2)2n+1, (D.6)

where
∣∣x>1 x2

∣∣ ≤ 1. All the coefficients of this Taylor series are non-negative.

Hence, from Theorem 2.1 in [192], this is a valid positive-definite kernel.

Therefore, there is a Hilbert space H◦ endowed with an inner product 〈·, ·〉H◦
such that

asin(x>1 x2) = 〈φ◦(x1), φ◦(x2)〉H◦ ,

for x1, x2 ∈ B◦ and vectors φ◦(x1) and φ◦(x2) ∈ H◦.

125

On the other hand, we have

asinh(x>1 x2) =
∞∑
n=0

(−1)n
(2n)!

22n(n!)2(2n+ 1)
(x>1 x2)2n+1,

where x1, x2 ∈ B ⊆ Rd — a compact subset of Rd. This Taylor series is

the same as the one given in (D.6) except for the alternating signs of the

coefficients. The analytical construction of the vector φ◦(x) in [192] gives a

straightforward way to define an indefinite operator M◦ : H′◦ → H′◦ such that

M>
◦ M◦ = Id and

asinh(x>1 x2) = 〈φ◦(x1),M◦φ◦(x2)〉H′◦ .

Note that M◦ is a finite-dimensional diagonal matrix with elements ±1 that

represent the signs of the Taylor series coefficients.

The space H′◦ contains H◦ with the same definite inner product, i.e., if

φ◦(x), φ◦(y) ∈ H′◦ ∩H, then 〈φ◦(x), φ◦(y)〉H◦ = 〈φ◦(x), φ◦(y)〉H′◦ . However, a

point φ◦(x) ∈ H′◦ \H◦ may have an unbounded norm, i.e., 〈φ◦(x), φ◦(x)〉H′◦ =

∞. Nevertheless, the indefinite inner products of the form 〈φ◦(x),M◦φ◦(x)〉H′◦
are always well-defined so long as x ∈ B, a compact subset of Rd. This

is due to the fact that the convergence domain for the Taylor series of

asinh(·) is any compact subset of R. Hence, we can simply define H′◦ ={
φ(x) : x ∈ B ⊂ Rd

}
, where B is a compact subset of Rd.

Let {x1, . . . , xN} be a set of N points in the product space M. For any

point x = [xE, xS, xH] ∈M, we define

φ(x) =
(
1, xE,

√
αSφ◦(

√
CSxS),

√
αHφ◦(H

1

R
xH)
)
,

where φ(x) is defined as in the proof of Lemma 4, and R is an upper bound

for the norm of the hyperbolic component of x, i.e., ‖xH‖2 ≤ R. Note that

in order to distinguish the curvatures of different space forms, we added

appropriate subscripts.

The linear classifier in product space form can be written as

lMw (x) = sgn
(
w>E xE + b+ αSasin(w>S xS) + αHasinh((RwH)>

1

R
HxH)

)
= sgn

(
〈ψ(w),Mφ(x)〉H

)
,

126

where H is a simple product of RdE+1, H◦ and H′◦ accompanied by their corre-

sponding inner products, ψ(w) =
(
b, wE,

√
αSφ◦(

1√
CS
wS),
√
αHφ◦(RwH)

)
∈ H,

and M = diag {I, I,M◦} is a product operator on H such that

〈ψ(w),Mφ(x)〉H = w>E xE + b+ αS〈φ◦(
1√
CS
wS), φ◦(

√
CSxS)〉H◦

+ αH〈φ◦(RwH),M◦φ◦(
1

R
HxH)〉H′◦ .

From the problem assumptions, we assume the data points are linearly

separable, i.e.,

∀n ∈ [N] : yn〈w∗,Mφ(xn)〉H ≥ ε,

for a specific w∗ in H. Similar to the hyperbolic perceptron setting, we use

the following update rule in RKHS

wk+1 = wk + ynMφ(xn) if yn〈wk,Mφ(xn)〉H ≤ 0.

If we initialize w0 = 0 ∈ H, we have

〈w∗, wk+1〉H = 〈w∗, wk〉H + 〈w∗,Mynφ(xn)〉H
≥ 〈w∗, wk〉H + ε

≥ kε.

On the other hand, we can bound the norm as

〈wk+1, wk+1〉H
= 〈wk, wk〉H + 〈ynMφ(xn), ynMφ(xn)〉H + 2〈wk, ynMφ(xn)〉H
≤ 〈wk, wk〉H + 〈φ(xn), φ(xn)〉H
≤ 〈wk, wk〉H + 1 + ‖xE,n‖2

2 + αS〈φ◦(
√
CSxS,n), φ◦(

√
CSxS,n)〉H◦

+ αH〈φ◦(
1

R
HxH,n), φ◦(

1

R
HxH,n)〉H′◦

(a)

≤ k(1 +R2
E + (αS + αH)

π

2
),

where RE is an upper bound for the norm of the Euclidean components of

the vectors, and (a) is due to

〈φ◦(
√
CSxS,n), φ◦(

√
CSxS,n)〉H◦ = asin(CSx

>
S,nxS,n) =

π

2
,

127

and

〈φ◦(
1

R
HxH,n), φ◦(

1

R
HxH,n)〉H′◦ = asin(

1

R2
x>H,nxH,n) ≤ π

2
.

Hence, we have

(〈wk+1, w∗〉H)2

〈wk+1, wk+1〉H〈w∗, w∗〉H
≥ k2ε2

kBT 〈w∗, w∗〉H

= k
ε2

BT 〈w∗, w∗〉H
,

where BT = 1 + R2
E + (αS + αH)π

2
. Therefore, convergence is guaranteed

in k ≤ BT 〈w∗,w∗〉H
ε2

steps. Finally, the upper bound for the `2 norm of wH

guarantees the boundedness of 〈w∗, w∗〉H.

D.6 Proof of Theorem 3

Let w0 = 0 ∈ Rd+1 and let wk ∈ Rd+1 be the estimated normal vector at the

k-th iteration of the perceptron algorithm (see Algorithm 10). If the point

xn ∈ Ld (yn[wk, xn] < 0) is misclassified, the perceptron algorithm produces

the (k + 1)-th estimate of the normal vector according to

wk+1 = wk + ynHxn.

Let w∗ be the normal vector that classifies all the points with margin of at

least ε, i.e., yn asinh([w∗, xn]) ≥ ε, ∀n ∈ [N], and [w∗, w∗] = 1. Then, we

have

(w∗)>wk+1 = (w∗)>wk + yn[w∗, xn]

≥ (w∗)>wk + sinh(ε)

≥ ksinh(ε).

128

Algorithm 10 The hyperbolic perceptron.

Input: {xn, yn}Nn=1 : a set of point-labels in HdH × {−1, 1}.
Initialization: w0 = 0 ∈ RdH+1, k = 0, n = 1.
repeat

if sgn([wk, xn]) 6= yn then
wk+1 = wk + ynHxn;
k = k + 1;

end if
n = mod(n,N) + 1;

until Convergence criteria is met.

In what follows, we provide an upper bound on the term2
∥∥wk+1

∥∥,

∥∥wk+1
∥∥2

=
∥∥wk + ynHxn

∥∥2

=
∥∥wk∥∥2

+ ‖xn‖2 + 2yn[wk, xn]

(a)

≤
∥∥wk∥∥2

+R2

= kR2,

where (a) is due to ‖xn‖2 ≤ R2 and yn[wk, xn] ≤ 0, due to the error in

classifying the point xn. Hence,

∥∥wk+1
∥∥ ≤ √kR and (w∗)>wk+1 ≥ ksinh(ε). (D.7)

To complete the proof, define θk = acos((wk)>w∗

‖wk‖‖w∗‖). Then,

(wk+1)>w∗

‖wk+1‖ ‖w∗‖
(a)

≥ ksinh(ε)√
kR ‖w∗‖

=
√
k

sinh(ε)

R ‖w∗‖
,

where (a) follows from (D.7). For k ≥
(
R‖w∗‖
sinh(ε)

)2

, we have wk+1 = αk+1w
∗ for

a positive scalar αk+1. Hence, 1√
[wk+1,wk+1]

wk+1 = w∗.

2Here, the norm is taken in the Euclidean sense, i.e., ‖w‖ =
√
w>w.

129

D.6.1 Discussion

Linear classifiers in spherical spaces have been studied in a number of

works [140, 141], while more recent work has focused on linear classifiers

in the Poincaré model of hyperbolic spaces, in the context of hyperbolic

neural networks [33]. A purely hyperbolic perceptron (in the same ’Loid

model used in this work) was described in [143]. The proposed update rule

reads as

uk = wk + ynxn if − yn[wk, xn] < 0 (D.8)

wk+1 = uk/min{1,
√

[uk, uk]}, (D.9)

where (D.9) is a “normalization step”. Unfortunately, the above update rule

does not allow the hyperbolic perceptron algorithm (equations (D.8) and

(D.9)) to converge, which is due to the choice of the update direction. The

convergence issue is also illustrated by the following two examples.

Let x1 = [
√

2, 1, 0]> ∈ L2 with label y1 = 1. We choose the initial vector in

the update rule to be w0 = [−
√

2+3
4

, −1+3
√

2
4

, 0]> (in contrast to w0 = e2, which

was chosen in the proof [143]). This is a valid choice because [w0, w0] = 1
2
> 0.

In the first iteration, we must hence update w0 since −y1[w0, x1] = −1
4
< 0.

From (D.8), we have u0 = w0 + y1x1 = [3
√

2+3
4

, 3+3
√

2
4

, 0]>, and [u0, u0] = 0.

This means that w1 = 1√
[u0,u0]

u0 is clearly ill-defined.

As another example, let w? be the optimal vector with which we can classify

all data points with margin ε. If we simply choose w0 = 0, then we can satisfy

the required condition [w0, w?] ≥ 0 postulated for the hyperbolic perceptron.

This leads to u0 = x1. Then, for any x1 ∈ L2, we have [x1, x1] = −1, which

leads to a normalization factor
√

[u0u0] that is a complex number.

D.7 Proof of Proposition 13

Let ψ(w) = [b, wE,
√
αSφ◦(

1√
CS
wS),
√
αHφ◦(RwH)] =

∑
n∈[N] βnMφ(xn). We

now consider the norm constraint for each component separately.

The parameters for Euclidean component can be written as

b =
∑
n∈[N]

βn, wE =
∑
n∈[N]

βnxE,n.

130

The distance-based Euclidean classifier asks for a vector such that ‖w∗E‖2 = αE.

We can impose this condition as a quadratic equality constraint on the vector

β = (β1, . . . , βN) as follows

‖wE‖2 = β>KEβ = α2
E,

where KE =
(
x>E,ixE,j

)
i,j∈[N]

. The parameter of the spherical component can

be written as

φ◦(
1√
CS
wS) =

∑
n∈[N]

βnφ◦(
√
CSxS,n).

A distance-based spherical classifier requires wS : ‖wS‖2 =
√
CS. Therefore,

we must have φ◦(
1√
CS
wS)

>φ◦(
1√
CS
wS) = asin(1), which can be imposed by the

following quadratic constraint∥∥∥∥φ◦(1√
CS
wS)

∥∥∥∥2

= β>KSβ =
π

2
,

where KS =
(
asin(CSx

>
S,ixS,j)

)
i,j∈[N]

. Finally, we can write the hyperbolic

component as follows

φ◦(RwH) =
∑
n∈[N]

βnM◦φ◦(
1

R
HxH,n).

The distance-based hyperbolic classifier wH must satisfy the norm constraint

of [RwH, RwH] = −R2CH. Consequently, we must have

φ◦(RwH)>M◦φ◦(RHwH) = asinh(−R2CH).

Lemma 5. φ◦(RHwH) =
∑

i∈[N] βnM◦φ◦(
1
R
xH,n).

131

Proof.

asinh(x>HwH) = φ◦(
1

R
xH)>M◦φ◦(RwH)

(a)
=
∑
n∈[N]

βnasin(
1

R2
[xH, xH,n])

=
∑
n∈[N]

βnφ◦(
1

R
HxH)>M◦M◦φ◦(

1

R
xH,n)

= φ◦(
1

R
HxH)>M◦

∑
n∈[N]

βnM◦φ◦(
1

R
xH,n),

where (a) is due to φ◦(RwH) =
∑

n∈[N] βnM◦φ◦(
1
R
HxH,n). From asinh(x>HwH) =

φ◦(
1
R
HxH)>M◦φ◦(RHwH), we have φ◦(RHwH) =

∑
n∈[N] βnMφ◦(

1
R
xH,n).

From the lemma, we have

asinh([RwH, RwH]) = φ◦(RwH)>Mφ◦(RHwH)

=
∑
i,j

βiβjasinh(
1

R2
[xH,i, xH,j])

= asinh(−R2CH).

The kernel matrix KH =
(
asinh(1

R2 [xH,i, xH,j])
)
i,j∈[N]

is an indefinite matrix.

Therefore, we have the following non-convex second-order equality constraint

φ>◦ (RwH)M◦φ◦(RHwH) = β>KHβ = asinh(−R2CH).

D.8 Experiments

We present additional experimental results that are not covered in the main

text. All experiments were conducted on a Linux machine with 48 cores,

376GB of system memory.

132

D.8.1 Datasets

MNIST3 [145], Omniglot4 [146], CIFAR-1005 [147], and single-cell expres-

sions [148, 149, 150]6,7,8 are publicly available datasets. Specific details of

the three single-cell expressions datasets are as follows:

1. Lymphoma patient. Human dissociated lymph node tumor cells of a

19-year-old male Hodgkins Lymphoma patient were obtained by 10x

Genomics from Discovery Life Sciences. Whole transcriptome libraries

were generated with Chromium Next GEM Single Cell 3’ Reagent Kits

v3.1 (Dual Index) User Guide (CG000315) and sequenced on an Illumina

NovaSeq 6000. The targeted libraries were generated using the Targeted

Gene Expression Reagent Kits User Guide (CG000293) and Human

Immunology Panel reagent (PN-1000246) and sequenced on an Illumina

NovaSeq 6000.

2. Lymphoma-healthy donor. Human peripheral blood mononuclear cells

(PBMCs) of a healthy female donor aged 25 were obtained by 10x

Genomics from AllCells. Whole transcriptome libraries were generated

with Chromium Next GEM Single Cell 3’ Reagent Kits v3.1 (Dual

Index) User Guide (CG000315) and sequenced on an Illumina NovaSeq

6000. The aforementioned two datasets have 13410 samples (combined)

and each for a class (binary classification). The dimension of each cell

expression vector is 1020 (both datasets).

3. Blood cells landmark. We use the dataset originally from this paper and

extract the gene expression data for (1) B cells, (2) Cd14 monocytes,

(3) Cd34 monocytes, (4) Cd4 t helper cells, (5) Cd56 natural killer cells,

(6) Cytotoxic T cells, (7) Memory T cells, (8) Naive cytotoxic cells, (9)

Native T cells, and (10) Regulatory T cells. This dataset has 94655

samples from the total 10 classes. The dimension of each cell expression

vector is 965.

3yann.lecun.com/exdb/mnist/
4github.com/brendenlake/omniglot
5www.cs.toronto.edu/~kriz/cifar.html
610xgenomics.com/resources/datasets/hodgkins-lymphoma-dissociated-

tumor-targeted-compare-immunology-panel-3-1-standard
710xgenomics.com/resources/datasets/pbm-cs-from-a-healthy-donor-

targeted-immunology-panel-3-1-standard
8nature.com/articles/ncomms14049

133

D.8.2 Convergence Analysis of Hyperbolic Perceptron

As pointed out in Appendix D.6.1, the hyperbolic perceptron described in [143]

does not converge, which can be shown both through counterexamples and

simulation studies. We report the following experimental results to validate

this point and in particular, demonstrate that a convergence rate of O
(

1
sinh(ε)

)
is not possible.

First, we randomly generate a valid w∗ such that [w∗, w∗] = 1. Then, we

generate a random set of N = 5, 000 points {xi}Ni=1 in L2. For margin values

ε ∈ [0.1, 1], we remove points that violate the required distance to the classifier

(parameterized with w∗), i.e., we decimate the points so that the condition

∀n : |[w∗, xn]| ≥ sinh(ε) is satisfied. Then, we assign binary labels to each data

point according to the optimal classifier, so that yn = sgn
(
asinh([w∗, xn])

)
.

We repeat this process for 100 different values of ε.

In the first experiment, we compare our proposed hyperbolic perceptron Al-

gorithm 10 and the Algorithm 1 in [143] by running the methods until the

number of updates achieved a predetermined upper bound (stated in Theorem

3) or until the classifier correctly classified all the data points. In Figure D.1

(a), we report the classification accuracy of each method on the training

data. Note that our theoretically established convergence rate O
(

1
sinh2(ε)

)
is larger than O

(
1

sinh(ε)

)
, the rate derived in Theorem 3.1 in [143]. So, for

the second experiment, we repeated the same process but terminate both

algorithms after O
(

1
sinh(ε)

)
updates. The classification performance of the

two algorithms under this setting is shown in Figure D.1 (b). From these

results, we can easily conclude that (1) our algorithm always converge within

the theoretical upper bound provided in Theorem 3, and (2) both methods

violate the theoretical convergence rate upper bound of [143].

D.8.3 Synthetic Data

We illustrate the practical performance of our product space form perceptron

Algorithm 1 on both synthetic and real-world datasets. In order to establish

the benefits of product space form embeddings and learning, we compare our

results with those obtained by using a Euclidean perceptron. As is a common

approach for perceptron methods, we evaluate the classification accuracy on

the training sets. To ensure a fair comparison, we restrict the latent dimension

134

Figure D.1: A comparison between the classification accuracy of our
hyperbolic perceptron Algorithm 10 and the algorithm in [143] for different
values of the margin ε. The classification accuracy is the average of five
independent random trials. The stopping criterion is either a 100%
classification accuracy or the theoretical upper bound in Theorem 3 (Figure
(a)), and Theorem 3.1 in [143] (Figure (b)).

of the embeddings of both methods to be the same, meaning that data points

lie in EdE × SdS ×HdH for the product space form perceptron and in EdE+dS+dH

for the Euclidean perceptron.

We generate binary-labeled synthetic data satisfying a ε-margin assumption

as follows. First, we randomly and independently sample N points from a

Gaussian distribution in each of the three spaces E2,E3,E3; subsequently,

we project the points in E3 and E3 onto S2
1 and H2

−1, respectively. Then,

we concatenate the coordinates from the three space form components to

obtain the product space form embeddings. Finally, we randomly generate

the optimal decision hyperplane w∗ = (w∗E, 0, w
∗
S, w

∗
H) under the constraints

stated in Theorem 1 and assign binary labels to data points. To ensure that

the ε-margin assumption is satisfied, we translate points that violate this

assumption.

We use the same data for both the Euclidean and product space form

Figure D.2: Classification accuracy after each update of the Euclidean and
product space form perceptron algorithms for N = 300 and different values
of ε.

135

Figure D.3: Classification accuracy after each update of the Euclidean and
product space form perceptron algorithms for nine different combinations of
(N, ε).

perceptron to demonstrate the efficiency and performance gains of the former

method. This is because our method respects the geometry of data, whereas

the purely Euclidean setting assumes input data lies in E8. In Figure D.2,

we show four different typical experimental convergence plots for N = 300

points with the same optimal decision hyperplane w∗, but with different

separation margins, i.e., ε. We observe that the number of updates made

by the product space form perceptron is always smaller than the theoretical

upper bound provided in Theorem 1. When the margin is small, the data is

not linearly separable in Euclidean space and the Euclidean perceptron does

not converge to a 100% accurate solution. As ε increases, the data becomes

easy to classify for both algorithms, and the number of updates made by the

Euclidean perceptron decreases. The performance guarantees of the proposed

methods is independent of the size of datasets.

We now fix the optimal decision hyperplane w∗. In Figure D.3, we show

nine more experiments with different combinations of (N, ε). We observe that

the number of updates made by the product space form perceptron is always

smaller than the theoretical upper bound described in Theorem 2. And, in

most cases, the product space form perceptron requires a smaller number of

136

updates to converge then the Euclidean perceptron due to the fact that it

accounts for the geometry of the data.

137

APPENDIX E

GEOMETRY OF SIMILARITY
MEASUREMENTS

Notation For any two numbers a, b ∈ R, we let a ∨ b and a ∧ b be their

maximum and minimum. Let C be a subset of a metric space (S, d), and

x ∈ S; We define

dmin(C) = inf {d(x, y) : x, y ∈ C, x 6= y} ,

dmax(x,C) = sup {d(x, y) : y ∈ C} .

The cardinality of a discrete set C is denoted by card C. The graph-theoretic

notations simplifies our main results. For a graph G, we denote its edge

set as E(G). Let Gp1,...,pK be a complete K-partite graph with part sizes

p1, . . . pK . The Turán graph [179] T (N,K) is a complete K-partite graph

with N vertices, and part sizes1

pk =

N1 + 1, for 1 ≤ k ≤ K1

N1, for K1 + 1 ≤ k ≤ K.

Then, card E
(
T (N,K)

)
=
(
N
2

)
−K1

(
N1+1

2

)
− (K −K1)

(
N1

2

)
.2

E.1 Proof of Proposition 14

From Definition 1, the values for α1(X), α2(X) and α3(X) are trivial. The

lower bound for αN(X) simply follows from the uniqueness of pairwise dis-

1From
∑K
k=1 pk = N , we have N1 = [NK], K1 = N −KN1.

2This is simplified from card E
(
Gp1,...,pK

)
=
(
N
2

)
−
∑K
k=1

(
pk
2

)
. For K > N , we assume

the graph is complete and E(T (N,K)) =
(
N
2

)
.

138

tances. To put formally, we have

αN (X) = min
1≤m≤(N2)

{
card

m⋃
s=1

{λ1,s, λ2,s} = N

}
≥ [

N

2
].

For the upper bound, αN(X) is maximum when all N − 1 smallest pairwise

distances are incident to a unique point (see Figure 6.3). The total length of

the distance list is
(
N
2

)
. Therefore, we have

αN (X) ≤
(
N

2

)
− (N − 1) + 1 =

(
N − 1

2

)
+ 1.

E.2 Proof of Theorem 4

Let us separately consider hyperbolic, Euclidean, and spherical spaces.

E.2.1 Hyperbolic Space

Let r ∈ R+, and x1(r), . . . , xN(r) ∈ Ld be a set of parameterized points in

’Loid model of d-dimensional hyperbolic space with C = −1 (see Table D.1),

such that

xn(r) =

√1 + ‖yn(r)‖2

yn(r)

 ,∀n ∈ [N],

where yN(r) = 0, and yi(r)
>yj(r) = r2 cos 2π |i−j|

N−1
, ∀i, j ∈ [N − 1]. To see an

example, see Figure E.1.

Figure E.1: An example of N = 8 parameterized points {xn(r)}Nn=1 in L2

and {yn(r)}Nn=1 in R2.

139

For these data points, we have

dmin

(
{xn(r)}N−1

n=1

)
= acosh

(
1 + r2(1− cos

2π

N − 1
)

)
dmax

(
{xn(r)}N−1

n=1 , xN(r)
)

= acosh
(√

1 + r2
)
.

Therefore, for any N ∈ N, there exists a r ∈ R+ such that {xn(r)}Nn=1 v Ld.
Hence,

K(Ld) = sup
{
N : {xn(r)}Nn=1 v Ld

}
=∞.

This result hold for all dimensions d ≥ 2.

E.2.2 Euclidean Space

Lemma 6. There is a set of points x1, . . . , xN in Rd such that

‖xn − xN‖ = 1,∀n ∈ [N − 1],

where dmax(xN , {xn}N−1
n=1) ≤ dmin({xn}N−1

n=1) and N = K(Rd).

Proof. Let {yn}Nn=1 be a set of points in Rd such that

dmax(yN , {yn}N−1
n=1) ≤ dmin({yn}N−1

n=1),

or αN({yn}Nn=1) =
(
N−1

2

)
+ 1. Without loss of generality, we assume yN = 0

and dmax(yN , {yn}N−1
n=1) = 1. Let xn = 1

‖yn‖yn, ∀n ∈ [N − 1] and xN = yN .

We want to show that αN ({xn}Nn=1) ≥ αN ({yn}Nn=1). Following the definition

140

of ordinal spread, we have

αN

(
{xn}Nn=1

)
(a)

≥ card
{

(i, j) : d(xi, xj) ≥ dmax(xN , {xn}N−1
n=1), i, j ∈ [N − 1], i > j

}
+ 1

(b)
= card {(i, j) : d(xi, xj) ≥ 1, i, j ∈ [N − 1], i > j}+ 1

(c)

≥ card {(i, j) : d(yi, yj) ≥ 1, i, j ∈ [N − 1], i > j}+ 1

= αN({yn}Nn=1),

where (a) holds with equality if xN appears last in the sorted distance list,

i.e., if xN = x(N), (b) is due to dmax(xN , {xn}N−1
n=1) = 1 = dmax(yN , {yn}N−1

n=1).

To prove inequality (c), let d(yi, yj) ≥ 1 for distinct i, j ∈ [N − 1]. Then,

d(yi, yj)
2 =
‖yi‖ − 1

‖yi‖
(
‖yi − yj‖2 − ‖yj‖2 + ‖yi‖

)
+

∥∥∥∥ 1

‖yi‖
yi − yj

∥∥∥∥2

=
d(yN , yi)− 1

‖yi‖
(
d(yi, yj)

2 − d(yN , yj)
2 + d(yN , yi)

)
+

∥∥∥∥ 1

‖yi‖
yi − yj

∥∥∥∥2

(a)

≤
∥∥∥∥ 1

‖yi‖
yi − yj

∥∥∥∥2

(b)

≤
∥∥∥∥ 1

‖yi‖
yi −

1

‖yj‖
yj

∥∥∥∥2

= d(xi, xj)
2,

where (a) follows from d(yN , yi) ≤ 1, d(yN , yj) ≤ 1, d(yi, yj)
2 ≥ 1, and (b)

follows from the symmetry in the argument. Therefore, we have

{
(i, j) ∈ [N − 1]2as : d(yi, yj) ≥ 1

}
⊆
{

(i, j) ∈ [N − 1]2as : d(xi, xj) ≥ 1
}
.

Hence, {xn}Nn=1 is an ordinally dense subset of Rd.

From Lemma 6, we want find an ordinally dense set of points x1, . . . , xN in

Rd such that

‖xn‖ = 1, n ∈ [N − 1] and xN = 0.

141

From the definition of ordinal spread, we have

αN({xn}Nn=1)

= card
{

(i, j) : d(xi, xj) ≥ dmax(xN , {xn}N−1
n=1), i, j ∈ [N − 1], i > j

}
+ 1

= card
{

(i, j) : ‖xi‖2 + ‖xj‖2 − 2x>i xj ≥ 12, i, j ∈ [N − 1], i > j
}

+ 1

= card
{

(i, j) : acos(x>i xj) ≥
π

3
, i, j ∈ [N − 1], i > j

}
+ 1.

We can find a maximum number of ordinally dense points by solving a

spherical cap packing problem; see Figure E.2.

Figure E.2: Spherical π
6
-cap packing on the surface of a unit sphere S1.

Definition 17. Let Sd−1 be the (d− 1)-dimensional unit sphere in Rd.

We define the spherical α-cap Cx(α) as follows

Cx(α) =
{
y ∈ Sd−1 : x>y < cos(α)

}
,

for any x ∈ Sd−1.

Definition 18. The maximum number of non-overlapping Cx(α) is

defined as follows

N(α) = max
N∈N
{N : ∃x1, . . . , xN ∈ Sd−1such that⋃
j∈I,j 6=i

Cxj(α) ∩ Cxi(α) = ∅,∀I ⊆ [N],∀i ∈ [N]}.

142

Therefore, we have

K(Rd) = sup
{

card {xn} : {xn} v Rd
}

= sup

{
N : x1, . . . , xN ∈ Rd, αN

(
{xn}Nn=1

)
=

(
N − 1

2

)
+ 1

}
= sup{N : x1, . . . , xN ∈ Rd such that

card
{

(i, j) ∈ [N − 1]2as : acos(x>i xj) ≥
π

3

}
=

(
N − 1

2

)
}

= sup{N : x1, . . . , xN ∈ Rd such that

acos(x>i xj) ≥
π

3
, i, j ∈ [N]2as}+ 1

(a)
= N(

π

6
) + 1

(b)

≤ [

√
π

8

Γ
(
d−1

2

)
Γ
(
d
2

) ∫ π
4

0
sind−2 θ

(
cos θ −

√
2

2

)
dθ

] + 1,

where (a) follows from a simple illustration in Figure E.2, and (b) is given

in [177]. For large d, Rankin provided the following approximation,

N(α) ∼
(1

2
πd3 cos 2α)

1
2

(
√

2 sinα)d−1
.

Therefore, we have N(π
6
) ∼
√
πd

3
2 2

d−3
2 = O(2

d+3 log d
2). The maximum number

of non-overlapping spherical caps of half angle θ which can be placed on the

unit sphere in Rd is not less than exp(−d log sin 2θ + o(d)) [178]. Therefore,

the lower bound on N(π
6
) is given by exp(−d log

√
3

2
+ o(d)).

The centers of spherical caps in R2 form a regular hexagon; see Figure 6.3.

Therefore, we have K(R2) = 6 + 1 = 7. However, these spherical caps overlap

each other at exactly one point. Hence, the number of strictly non-overlapping

spherical caps in R2 is 5. This leads to the pentagon configuration in Figure 6.4

(b).

143

E.2.3 Spherical Space

Lemma 7. There is a set of points x1, . . . , xN in Sd such that

d (xn, xN) = acos (1− ε) ,∀n ∈ [N − 1],

where dmax(xN , {xn}N−1
n=1) ≤ dmin({xn}N−1

n=1), N = K(Sd), and for some

ε ≥ 0.

Proof. Let {yn}Nn=1 be a set of points in Sd such that

dmax(yN , {yn}N−1
n=1) ≤ dmin({yn}N−1

n=1),

or αN ({yn}Nn=1) =
(
N−1

2

)
+1. Without loss of generality, we assume αN ({yn}Nn=1) =(

N−1
2

)
+ 1, yN = e1,

3 and dmax(yN , {yn}N−1
n=1) = acos (1− ε). From the latter

condition, we have

yn
def
=

√1− ‖zn‖2

zn

 , such that ‖zn‖ ≤
√

1− (1− ε)2.

Let us define

xn =

[
1− ε√

1− (1− ε)2 1
‖zn‖zn

]
,∀n ∈ [N − 1]

and xN = e1. Then, we claim αN({xn}Nn=1) ≥ αN({yn}Nn=1). Following the

definition of ordinal spread, we have

αN({xn}Nn=1)

(a)
= card

{
(i, j) ∈ [N − 1]2as : d(xi, xj) ≥ dmax(xN , {xn}N−1

n=1)
}

+ 1

(b)
= card

{
(i, j) ∈ [N − 1]2as : d(xi, xj) ≥ acos (1− ε) ,

}
+ 1

(c)

≥ card
{

(i, j) : d(yi, yj) ≥ acos (1− ε) , i, j ∈ [N − 1]2as

}
+ 1

= αN({yn}Nn=1),

where (a) holds with equality if xN appears last in the sorted distance list,

3e1 is the first standard base vector for Rd+1.

144

(b) is due to dmax(xN , {xn}N−1
n=1) = acos (1− ε) = dmax(yN , {yn}N−1

n=1). For

inequality (c), let d(yi, yj) ≥ acos (1− ε) for distinct i, j ∈ [N − 1] and

z>i zj = ‖zi‖ ‖zj‖ cos θij. Therefore, we have

cos θij =
1

‖zi‖ ‖zj‖
z>i zj

(a)

≤ 1

‖zi‖ ‖zj‖

(
1− ε−

√
1− ‖zi‖2

√
1− ‖zj‖2

)
(b)

≤ 0,

where (a) is due to

y>i yj =

√
1− ‖zi‖2

√
1− ‖zj‖2 + z>i zj ≤ 1− ε

and inequality (b) is due
√

1− ‖zi‖2 ≥
√

1−
√

1− (1− ε)2
2

=
√

1− ε2.4

Then, since (1− (1− ε)2) cos θij ≤ ‖zi‖ ‖zj‖ cos θij if cos θij ≤ 0, we have

d(xi, xj) = acos
(
(1− ε)2 + (1− (1− ε)2) cos θij

)
≥ acos

(√
1− ‖zi‖2

√
1− ‖zj‖2 + z>i zj

)
= d(yi, yj).

Therefore, we have

{
(i, j) ∈ [N − 1]2as : d(yi, yj) ≥ δ

}
⊆
{

(i, j) ∈ [N − 1]2as : d(xi, xj) ≥ δ
}
,

where δ = acos (1− ε). Hence, {xn}Nn=1 is an ordinally dense subset of Sd.

Now, let us find ordinally dense set of points x1, . . . , xN in Sd with

xn =

[
1− ε
zn

]
,∀n ∈ [N − 1] and xN = e1.

We have ‖zn‖2 = 1−(1−ε)2 for all ∀n ∈ [N−1]. We begin from the definition

4Similarly, we have
√

1− ‖zj‖2 ≥
√

1− ε2.

145

of ordinal spread as follows

αN({xn}Nn=1)

= card
{

(i, j) ∈ [N − 1]2as : d(xi, xj) ≥ dmax(xN , {xn}N−1
n=1)

}
+ 1

= card
{

(i, j) ∈ [N − 1]2as : d(xi, xj) ≥ acos(1− ε)
}

+ 1

= card

{
(i, j) ∈ [N − 1]2as :

1

‖zi‖ ‖zj‖
z>i zj ≤

ε(1− ε)
1− (1− ε)2

}
+ 1

= card
{

(i, j) ∈ [N − 1]2as : acos(ẑ>i ẑj) ≥
π

3

}
+ 1,

where ẑi = 1
‖zi‖zi, ẑj = 1

‖zj‖zj , and supε
ε(1−ε)

1−(1−ε)2 = 1
2
. Similar to the Euclidean

space, this problem is equivalent to spherical π
6
-cap packing number in Rd,

since ẑn ∈ Rd. Finally, if we assume mini,j∈[N],i>j d(xi, xj) = δ, we have

dmax(xN , {xn}N−1
n=1) ≥ δ. Therefore, the cap angles can be computed as follows

α = min
ε≥1−cos δ

1

2
acos

ε(1− ε)
1− (1− ε)2

=
1

2
acos

cos δ

1 + cos δ
>
π

6
.

In this case, the ordinal capacity can be refined as spherical α-cap packing

number.

E.3 Proof of Theorem 5

Let S be a d-dimensional space form, and N ≤ K(S). From Definition 4, we

can find an ordinally dense subset x1, . . . , xN ∈ S. Hence, we have

AN(S) = sup
x1,...,xN∈S

αN

(
{xn}Nn=1

)
(a)
=

(
N − 1

2

)
+ 1,

where (a) directly follows from Proposition 1. This is the number of edges of

a complete graph with N − 1 vertices plus one.

Now, let us consider N > K(S). This could only happen in (d-dimensional)

Euclidean and spherical spaces, since hyperbolic spaces have infinite ordinal

capacity, i.e., K(Hd) =∞.

146

In Appendix E.2, we proved that there is a set of points x1, . . . , xN−1 ∈ Rd

on the unit sphere and xN = 0 such that

AN(S) = αN

(
{xn}Nn=1

)
= card {(i, j) : d(xi, xj) ≥ 1, i, j ∈ [N − 1], i > j}+ 1.

Consider a pair of points xi, xj ∈ Rd with d(xi, xj) < 1. We can move the

point xi and place it on xj if

card
{

(i, k) ∈ [N − 1]2as : d(xi, xk) ≥ 1
}
≤

card
{

(j, k) ∈ [N − 1]2as : d(xj, xk) ≥ 1
}
.

This condition is to ensure that we do not decrease αN

(
{xn}Nn=1

)
. We repeat

this process and lump the set of N − 1 point on K < N − 1 positions,

i.e., p1, . . . , pK . At each position pk, we place multiple vertices. Finally,

αN

(
{xn}Nn=1

)
is equal to the number of edges – with length greater than

1 – in this K-partite graph with N − 1 vertices. This graph is K-partite

because the distance between points in a partition have distances of zero.

Hence, their edges do not contribute in calculating the ordinal spread of the

point set. This graph becomes a complete K-partite graph if all distinct

positions {pk} belong to the centers of spherical π
6
-caps on the unit sphere.

On the other hand, the number of edges in a complete K-partite graph is

maximized when the size of the parts differs by at most one, i.e., Turán graph

T (N − 1, K) [179]. Therefore, the N -point ordinal spread of S (Euclidean or

spherical space) is given by

AN(S) = card E(T (N − 1, K(S)− 1)) + 1.

The maximum number of possible partitions (K(S)− 1) gives the maximum

number of edges, i.e.,

card E(T (N−1, 1)) ≤ card E(T (N−1, 2)) ≤ · · · ≤ card E(T (N−1, K(S)−1)).

This completes the proof.

147

E.4 Proof of Proposition 15

The proof follows from the definition of AN(S), the N -point ordinal spread

of a space form S, in Theorem 5.

E.5 Numerical Experiments

All our experiments were conducted on a Dual-Core Intel Core i5 Mac machine,

16GB of system memory.

E.5.1 Datasets

We used cartographic data (counties in the state of Illinois, counties in

Midwestern states,5 and cities and towns across the world6 and single-cell

RNA expression data7,8,9,10 [148, 149, 150, 185] which are publicly available

datasets. Details of the single-cell expressions datasets are as follows:

1. Lymphoma patient. Human dissociated lymph node tumor cells of a

19-year-old male Hodgkins Lymphoma patient were obtained by 10x

Genomics from Discovery Life Sciences. Whole transcriptome libraries

were generated with Chromium Next GEM Single Cell 3’ Reagent Kits

v3.1 (Dual Index) User Guide (CG000315) and sequenced on an Illumina

NovaSeq 6000. The targeted libraries were generated using the Targeted

Gene Expression Reagent Kits User Guide (CG000293) and Human

Immunology Panel reagent (PN-1000246) and sequenced on an Illumina

NovaSeq 6000.

2. Lymphoma-healthy donor. Human peripheral blood mononuclear cells

(PBMCs) of a healthy female donor aged 25 were obtained by 10x

Genomics from AllCells. Whole transcriptome libraries were generated

5public.opendatasoft.com/explore/dataset/us-zip-code-latitude-and-

longitude/.
6simplemaps.com/data/world-cities
710xgenomics.com/resources/datasets/hodgkins-lymphoma-dissociated-

tumor-targeted-compare-immunology-panel-3-1-standard
810xgenomics.com/resources/datasets/pbm-cs-from-a-healthy-donor-

targeted-immunology-panel-3-1-standard
9nature.com/articles/ncomms14049

10shiny.mdc-berlin.de/psca/

148

with Chromium Next GEM Single Cell 3’ Reagent Kits v3.1 (Dual

Index) User Guide (CG000315) and sequenced on an Illumina NovaSeq

6000. The aforementioned two datasets have 13410 samples (combined)

and each for a class (binary classification). The dimension of each cell

expression vector is 1020.

3. Blood cells landmark. We use the dataset originally from this paper and

extract the gene expression data for (1) B cells, (2) Memory T cells,

and (3) Native T cells. The complete dataset has 94655 samples, and

the dimension of each cell expression vector is 965.

4. We use the single-cell RNA sequencing atlas provided in [185]. This atlas

contains 26000 cell expression vectors for adult planarians. Each cell is

a 21000-dimensional integer-valued vector representing read counts of

gene expressions. Therefore, this raw data reside in a 21000-dimensional

Euclidean space.

Imputations. Existing methods for denoising and imputation of raw scRNA-

seq data often involve building connection graphs among cells [182, 181] using

the distance between cells to diffuse the expression profiles among neighbor

cells and smooth out possible outliers. In our experiment we used MAGIC [181]

to impute our raw sequencing data with different number of neighbors and

steps in the diffusion process to get different level of imputation results.

RFA score. For datasets (1− 3), we construct the five-nearest neighbbor

graph, and set the kernel width (σ) to have an (soft) average of three neighbors;

see Appendix E.5.3 for more detail on computing RFA scores.

E.5.2 Hyperbolicity of Trees

We generate random weighted trees with N = 104 nodes. The edge weights

are drawn from i.i.d. uniform distribution in [0, 1]. The distance between

each two nodes is the weight of the path joining them. We contaminate the

corresponding distance matrix by an additive zero mean Gaussian noise with

the signal to noise ratio of 40 dB. In this experiment, we consider three

different trees with maximum degrees of 4, 5, 6.11 In Figure E.3, we show the

distribution of node degrees for each tree.

11In the main manuscript, we only considered a binary tree with ∆(T) = 3.

149

Figure E.3: The distribution of node degrees for each random tree.

We generate random points in space forms of dimension d = 2, . . . , 5, from

the following distributions

• Hyperbolic space: x = [
√

1 + ‖z‖2, z>]>, where z ∼ N (0, σ2I) and

σ = 100;

• Euclidean space: x ∼ N (0, σ2I);

• Spherical space: x = 1
‖z‖z, where z ∼ N (0, I).12

Commonly, in embedding trees, the leaves concentrate near the boundary of

the Poincaré disk. Hence, we choose a large variance σ to heavily sample the

points closer to the boundary of Poincaré disk. Finally, we devise a hypothesis

test based on the total variation distance of probability measures,13 i.e.,

δ(P,Q) = ‖P −Q‖1 .

For each tree T with ∆(T) = 4, 5 and 6, we report the distances between

the target (oracle) and empirical probability mass functions (PMF) of αk for

a set of N points generated in each space form. In Tables E.1 to E.3, we

consider sub-cliques — randomly sampled from each tree — with N = 20

nodes. From the hypothesis tests for αk, k ∈ {3, . . . , 20}, we conclude that

the ordinal spread variables of random trees better match with hyperbolic

ordinal spread variables.

12Therefore, the points are distributed uniformly on Sd.
13The total variation distance is δ(P,Q) = 1

2 ‖P −Q‖1, but we can ignore the constant
term.

150

Table E.1: δ(Pαk , P̂αk)× 10−3 for different space forms — ∆(T) = 4.

k 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

H2 0 1.6 1.9 1.7 1.8 2.1 2.4 2.5 2.3 2.1 2.1 2.0 2.0 2.1 2.2 2.3 2.4 2.2

H3 0 2.3 2.8 2.5 2.4 2.5 2.9 3.0 2.9 2.6 2.5 2.3 2.2 2.0 1.9 1.8 1.8 1.7

H4 0 2.7 3.3 3.0 2.8 2.8 3.0 3.2 3.3 3.0 2.8 2.6 2.4 2.2 2.0 1.7 1.5 1.3

H5 0 3.0 3.6 3.4 3.0 3.1 3.2 3.4 3.5 3.3 3.0 2.8 2.6 2.3 2.1 1.8 1.5 1.1

E2 0 1.5 1.9 2.1 2.4 2.8 2.9 3.1 3.2 3.3 3.4 3.5 3.7 3.9 4.2 4.7 5.4 6.7

E3 0 2.2 2.7 2.6 2.8 3.4 3.5 3.7 3.7 3.8 3.9 4.0 4.1 4.1 4.3 4.5 4.9 5.9

E4 0 2.6 3.2 3.1 3.1 3.6 3.8 3.9 4.0 4.1 4.2 4.3 4.3 4.3 4.3 4.4 4.7 5.4

E5 0 2.8 3.5 3.5 3.3 3.8 3.9 4.1 4.1 4.2 4.4 4.4 4.4 4.3 4.3 4.4 4.6 5.1

S2 0 8.4 9.9 10.2 10.1 10 9.9 9.8 9.6 9.2 8.7 8.6 8.6 8.6 8.5 8.5 8.5 8.8

S3 0 8.4 9.8 10.2 10.1 10.1 10 9.9 9.6 9.3 8.8 8.7 8.7 8.7 8.7 8.7 8.7 8.8

S4 0 8.4 9.8 10.1 10.2 10.1 10 9.9 9.7 9.4 8.9 8.8 8.8 8.8 8.8 8.8 8.8 8.8

S5 0 8.5 9.8 10.1 10.2 10.1 10.1 9.9 9.7 9.4 8.9 8.9 8.9 8.9 8.8 8.8 8.8 8.7

Table E.2: δ(Pαk , P̂αk)× 10−3 for different space forms — ∆(T) = 5.

k 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
H2 0 1.6 2.0 2.6 2.8 2, 8 2.8 2.6 2.6 2.5 2.4 2.2 2.1 1.9 1.7 1.4 1.1 0.7
H3 0 2.3 2.8 3.1 3.4 3.5 3.5 3.5 3.3 3.3 3.1 3.0 2.8 2.6 2.3 2.0 1.5 0.8
H4 0 2.7 3.3 3.4 3.7 3.9 3.9 3.9 3.8 3.7 3.6 3.5 3.3 3.1 2.8 2.5 2.0 1.2
H5 0 3.0 3.6 3.6 3.8 4.2 4.2 4.2 4.2 4.0 3.9 3.8 3.6 3.4 3.1 2.8 2.3 1.6
E2 0 1.5 2.3 3.4 3.6 4.0 4.2 4.4 4.6 4.8 5.0 5.3 5.6 5.9 6.3 6.9 7.5 8.4
E3 0 2.2 2.7 3.8 4.2 4.6 4.8 5.0 5.1 5.2 5.4 5.6 5.8 6.0 6.3 6.7 7.1 7.8
E4 0 2.6 3.2 3.9 4.5 4.9 5.0 5.2 5.4 5.5 5.6 5.8 5.9 6.1 6.3 6.6 6.9 7.3
E5 0 2.8 3.5 4.1 4.6 5.0 5.2 5.4 5.5 5.7 5.8 5.9 6.0 6.1 6.3 6.5 6.7 7.0
S2 0 8.4 9.9 10.2 10.1 10 9.9 9.8 9.6 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.6 9.7
S3 0 8.4 9.8 10.2 10.1 10.1 10 9.9 9.6 9.5 9.6 9.6 9.6 9.6 9.7 9.7 9.7 9.7
S4 0 8.4 9.8 10.1 10.2 10.1 10 9.9 9.7 9.6 9.6 9.7 9.7 9.7 9.7 9.8 9.8 9.7
S5 0 8.5 9.8 10.1 10.2 10.1 10.1 9.9 9.7 9.7 9.7 9.7 9.7 9.8 9.8 9.8 9.8 9.7

Note that we can also deign an aggregate hypothesis test based on αN

by defining the following distance function between PαN and P̂αN , e.g.,

δ
(
PαN , P̂αN

)
=
∑N

k=1 δ(Pαk , P̂αk). This definition involves all ordinal spread

variables related to sub-cliques of size N , i.e., αk. Then, we can perform

minimum-distance hypothesis tests for sub-cliques of sizes N ∈ {5, . . . 20}.
For each experiment, hyperbolic spaces provide the best matches for ordinal

151

Table E.3: δ(Pαk , P̂αk)× 10−3 for different space forms — ∆(T) = 6.

k 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
H2 0 1.6 2.5 3.0 3.2 3.2 3.1 2.9 2.9 2.7 2.5 2.3 2.1 1.9 1.6 1.3 1.1 1.4
H3 0 2.3 2.8 3.6 3.8 3.8 3.8 3.7 3.6 3.5 3.3 3.0 2.8 2.5 2.1 1.6 1.0 0.8
H4 0 2.7 3.3 3.9 4.0 4.2 4.2 4.2 4.0 3.9 3.7 3.5 3.2 2.9 2.5 1.9 1.2 0.4
H5 0 3.0 3.6 4.0 4.2 4.5 4.5 4.4 4.3 4.1 4.0 3.8 3.5 3.2 2.8 2.2 1.5 0.5
E2 0 1.5 2.8 3.8 4.0 4.3 4.5 4.6 4.7 4.9 5.0 5.2 5.4 5.6 5.8 6.2 6.7 7.5
E3 0 2.2 3.0 4.2 4.5 4.9 5.0 5.2 5.3 5.3 5.4 5.5 5.6 5.7 5.8 6.0 6.2 6.8
E4 0 2.6 3.2 4.4 4.8 5.2 5.3 5.4 5.5 5.6 5.6 5.7 5.7 5.8 5.8 5.9 6.0 6.3
E5 0 2.8 3.5 4.5 5.0 5.3 5.4 5.6 5.7 5.7 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.9
S2 0 8.4 9.9 10.2 10.1 10 9.9 9.8 9.6 9.4 9.4 9.4 9.4 9.3 9.3 9.3 9.2 9.3
S3 0 8.4 9.8 10.2 10.1 10.1 10 9.9 9.6 9.5 9.5 9.5 9.5 9.5 9.5 9.4 9.4 9.3
S4 0 8.4 9.8 10.1 10.2 10.1 10 9.9 9.7 9.6 9.6 9.6 9.6 9.5 9.5 9.5 9.4 9.3
S5 0 8.5 9.8 10.1 10.2 10.1 10.1 9.9 9.7 9.6 9.6 9.6 9.6 9.6 9.6 9.5 9.5 9.3

spread variables of each random tree; see Tables E.4 to E.6. This aggregate

hypothesis test proves to more robustly reveal the hyperbolicity of weighted

trees, compared to the individual tests based on ordinal spread variable αN .

Table E.4: δ
(
PαN , P̂αN

)
× 10−2 for different space forms — ∆(T) = 4.

N 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

H2 3.3 3.7 3.9 4.1 4.2 4.2 4.1 4.1 4.0 4.0 3.9 3.8 3.8 3.7 3.6 3.6

H3 3.0 3.8 4.2 4.6 4.7 4.7 4.7 4.6 4.6 4.5 4.4 4.4 4.3 4.2 4.1 4.0

H4 3.4 4.1 4.7 5.0 5.2 5.2 5.1 5.1 5.0 4.9 4.8 4.8 4.7 4.5 4.4 4.4

H5 3.7 4.4 5.0 5.3 5.5 5.5 5.5 5.4 5.3 5.3 5.2 5.1 5.0 4.9 4.8 4.7

E2 7.0 8.0 8.3 8.4 8.2 8.0 7.8 7.6 7.3 7.1 6.8 6.6 6.4 6.2 6.0 5.9

E3 5.9 6.9 7.9 8.1 8.0 7.9 7.9 7.8 7.6 7.5 7.3 7.1 6.9 6.7 6.6 6.4

E4 5.2 6.6 7.6 7.9 7.9 7.9 8.0 8.0 7.8 7.7 7.5 7.3 7.2 7.0 6.9 6.7

E5 5.0 6.4 7.4 7.8 7.9 8.0 8.1 8.1 8.0 7.8 7.6 7.5 7.4 7.2 7.1 6.9

S2 12.0 15.5 17.8 19.4 20.2 20.3 20.2 19.8 19.3 18.8 18.3 17.7 17.1 16.6 16.1 15.6

S3 11.8 15.5 17.8 19.5 20.2 20.4 20.3 19.9 19.5 18.9 18.4 17.9 17.3 16.8 16.2 15.7

S4 11.7 15.4 17.8 19.5 20.1 20.4 20.3 20.0 19.6 19.0 18.5 17.9 17.4 16.9 16.3 15.8

S5 11.6 15.4 17.8 19.4 20.1 20.4 20.4 20.0 19.6 19.1 18.6 18.0 17.5 16.9 16.4 15.9

152

Table E.5: δ
(
PαN , P̂αN

)
× 10−2 for different space forms — ∆(T) = 5.

N 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

H2 5.4 5.5 5.3 5.4 5.2 5.1 4.9 4.8 4.5 4.4 4.2 4.1 3.9 3.8 3.7 3.6

H3 4.5 4.8 5.4 5.9 5.9 5.9 5.8 5.7 5.5 5.4 5.3 5.2 5.1 4.9 4.8 4.7

H4 4.1 5.0 5.9 6.3 6.4 6.4 6.4 6.3 6.2 6.2 6.1 5.9 5.8 5.7 5.5 5.4

H5 4.2 5.2 6.2 6.6 6.8 6.8 6.8 6.8 6.8 6.7 6.6 6.4 6.3 6.2 6.1 5.9

E2 9.3 10.8 11.5 11.5 11.3 11.1 10.9 10.7 10.3 10 9.7 9.4 9.1 8.9 8.6 8.4

E3 8.0 9.6 10.6 11.0 11.0 11.1 11.0 10.8 10.5 10.3 10.0 9.7 9.5 9.3 9.0 8.8

E4 7.4 9.0 10.3 10.8 10.9 11.0 11.0 10.8 10.6 10.4 10.1 9.9 9.7 9.5 9.3 9.1

E5 6.9 8.7 10.1 10.6 10.8 10.9 10.9 10.8 10.6 10.4 10.2 10.0 9.8 9.6 9.4 9.2

S2 13.6 17.2 19.6 21.0 21.7 21.8 21.6 21.2 20.6 20.0 19.4 18.8 18.1 17.5 16.9 16.4

S3 13.4 17.3 19.8 21.1 21.8 21.9 21.8 21.3 20.8 20.2 19.6 18.9 18.3 17.7 17.1 16.5

S4 13.3 17.3 19.8 21.1 21.8 22.0 21.8 21.4 20.9 20.3 19.7 19.0 18.4 17.8 17.1 16.6

S5 13.1 17.3 19.7 21.1 21.9 22.0 21.8 21.5 20.9 20.3 19.7 19.0 18.4 17.8 17.2 16.6

Table E.6: δ
(
PαN , P̂αN

)
× 10−2 for different space forms — ∆(T) = 6.

N 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

H2 5.8 5.8 5.9 5.8 5.7 5.5 5.2 5.0 4.9 4.7 4.6 4.4 4.3 4.2 4.1 3.9

H3 4.8 5.2 5.7 5.9 6.1 6.1 5.9 5.8 5.7 5.5 5.4 5.3 5.2 5.0 4.9 4.8

H4 4.5 5.0 5.9 6.4 6.6 6.5 6.4 6.3 6.3 6.2 6.0 5.9 5.8 5.6 5.5 5.4

H5 4.3 5.1 6.2 6.7 6.9 6.9 6.8 6.7 6.7 6.6 6.5 6.3 6.2 6.1 6.0 5.8

E2 9.6 11.1 11.7 11.7 11.4 11.1 10.8 10.5 10.2 9.9 9.6 9.3 9.0 8.7 8.5 8.3

E3 8.3 9.9 10.8 11.0 10.9 10.9 10.8 10.6 10.4 10.1 9.8 9.6 9.3 9.1 8.9 8.7

E4 7.7 9.2 10.3 10.7 10.8 10.8 10.8 10.6 10.4 10.2 10.0 9.7 9.5 9.3 9.1 8.9

E5 7.2 8.8 10.0 10.5 10.6 10.8 10.8 10.6 10.4 10.2 10.0 9.8 9.6 9.4 9.2 9.0

S2 13.3 17.0 19.3 20.6 21.3 21.4 21.2 20.8 20.3 19.7 19.1 18.5 17.9 17.3 16.7 16.2

S3 13.1 17.1 19.4 20.7 21.4 21.5 21.4 20.9 20.5 19.9 19.3 18.7 18.0 17.4 16.9 16.3

S4 13.0 17.1 19.4 20.7 21.4 21.6 21.4 21.0 20.5 20.0 19.4 18.7 18.1 17.5 16.9 16.4

S5 12.9 17.1 19.4 20.7 21.4 21.6 21.5 21.1 20.6 20.0 19.4 18.8 18.2 17.6 17.0 16.4

153

On Euclidean Embedding Dimension of Trees

We generate a random tree T with N = 104 nodes, maximum degree of ∆, and

i.i.d. edge weights from unif(0, 1). Let D̃∆ = D∆ + n, where n is a zero mean

Gaussian noise with 40 decibel signal-to-noise ratio, be the noisy distance

matrix for T . The embedding goal is to find a representation x1, . . . , xN for

tree nodes in S, such that

d(xi, xj) ≤ d(xk, xl)⇐⇒ D̃∆(i, j) ≤ D̃∆(k, l).

We randomly select 106 sub-cliques of sizes N ∈ {2, 4, . . . , 20, 100}. In

Table E.7, we give the empirical N -th ordinal spread based on nonmetric

measurements associated with the sub-cliques, i.e., ÂN . The distribution-free

test gives a lower bound of d̂ ≥ 4 for Euclidean embedding dimension.

On the other hand, consider a random weighted tree and a node xn with

degree ∆n.14 We can easily see that

max
i∈[∆n]

d(xn, xni) ≤ min
i,j∈[∆n]
i 6=j

d(xni , xnj),

where xn1 , . . . , xn∆
are adjacent points to xn. Hence, {xn} ∪ {xni}

∆n

i=1 is a set

of ∆n + 1 points with maximum ordinal spread. Therefore, a lower bound for

embedding dimension of a metric tree T (in Euclidean space) is given by

d̂ ≥ min
{
d : K(Rd) ≥ ∆(T) + 1

}
.

The exponential growth of ρd gives d̂ = Ω(log ∆(T)).

Remark. In absence of any prior information for proper distributions

of data points, the estimate for the dimension of underlying space form is

unreliable. The statistics of the ordinal spread variables are invariant with

respect isotonic transformation of data points, e.g., rotation, translation, and

uniform scaling in Euclidean space.

Fact 5. Let {xn}Nn=1 be a set of points in (S, d). The ordinal spread vector

is invariant with respect to strongly isotonic transformation [171] of points.

In other words, let ψ : S → S be an arbitrary function such that for all

14We assume the existence of a perfect embedding.

154

Table E.7: The N -point ordinal spread for E2,E3,E4 versus ÂN estimated
from D̃4, D̃5 and D̃6.

N 6 8 10 12 14 16 18 20 100

D̃4 : ÂN 11 22 37 56 79 106 137 169 4421

D̃5 : ÂN 11 22 37 56 79 106 136 172 4412

D̃6 : ÂN 11 22 37 56 79 106 137 170 4454
AM(E2) 11 21 34 51 71 94 121 151 4048
AN(E3) 11 22 37 56 79 106 135 168 4573
AN(E4) 11 22 37 56 79 106 137 172 4741

x, y, z, w ∈ S we have

d(x, y) < d(z, w)⇒ d
(
ψ(x), ψ(y)

)
< d
(
ψ(z), ψ(w)

)
d(x, y) = d(z, w)⇒ d

(
ψ(x), ψ(y)

)
= d
(
ψ(z), ψ(w)

)
then, α

(
{xn}Nn=1

)
= α

(
{ψ(xn)}Nn=1

)
.

Therefore, we can also use compact distributions, e.g., the multivariate

uniform distribution. The arbitrary choices of Gaussian and uniform distribu-

tions do not significantly change the statistics of the ordinal spread variables

— at least, it does not affect the key results in this experiment.

E.5.3 Single-cell RNA Expression Data

We use the single-cell RNA sequencing atlas provided in [185]. This atlas

contains 26000 cell expression vectors for adult planarians. Each cell is

an integer-valued vector representing read counts of gene expressions. The

specific choices of pre-processing method and the comparison criteria imply

a geometry — namely, geometry of similarity comparisons — that is not

necessarily related to the domain of data vectors. The choice of comparison

is the relative forest accessibility score:

Relative forest accessibility (RFA) index: For a set of points x1 . . . , xN ,

we construct the local connectivity edge set E from a symmetric k-nearest

neighbor method. The relative forest accessibility matrix is a N ×N doubly

stochastic matrix defined as P = (I +L)−1 where L = D−A is the Laplacian

155

matrix, A = (Ai,j) such that

Ai,j = exp
(
− ‖xi − xj‖

2

2σ2

)
[(i, j) ∈ E],

where the Iverson bracket [(i, j) ∈ E] = 1 if (i, j) ∈ E and is 0 otherwise,

and D is a diagonal matrix with Dii =
∑

j∈[N] Ai,j. The ij-th element of

P is the probability of a spanning forest includes a rooted tree at xi and is

connected to xj — a measure of similarity between xi and xj [32]. In this

experiment, we let σ = 1√
10N2

∑
i,j∈[N] ‖xi − xj‖ and ignore the hard edge

assignment since the conservative choice of kernel width performs a soft edge

assignment. For a fast implementation of P = (I +L)−1, we approximate the

weighted adjacency matrix A ∈ RN×N with a rank-500 semidefinite matrix —

via a simple eigenvalue thresholding — and use Woodbury matrix identity to

compute P . The points xi, xj are more similar than xk, xl if the relative forest

accessibility index pi,j is greater than pk,l. The geometry of RFA comparisons

is unknown.

For embedding ordinal measurements, we pick a random clique of size 200

and embed it in low-dimensional space forms of different dimensions. Then,

we compute the empirical probability of erroneous comparison, i.e., error

occurs if d(xi, xj) ≥ d(xk, xl) whereas the points xi, xj are more similar to

each other compared to the points xk, xl. We repeat the experiment 200

times, and report the mean and standard deviations of the probability of error

pe. An important observation is that higher dimensional of space forms do

not necessarily give better matches for the empirical PMF of ordinal spread

variables.

E.6 Nonmetric Embedding Algorithms

We can use semidefinite programs to solve nonmetric embedding problems in

hyperbolic and Euclidean spaces [19, 52]. The main objects in these problems

are distance matrices, and the matrix of inner products, e.g., Gramian in

Euclidean space and Lorentzian matrix in hyperbolic space. The traditional

interior point method to solve semidefinite programs do not scale to large

problems. This is especially the case for nonmetric embedding problems

in which we have
((N2)

2

)
= O(N4) distinct inequality constraints related to

156

pairwise distance comparisons. Therefore, we propose nonmetric embedding

algorithms based on the method of alternative projections; see Algorithms 11

to 13.

E.6.1 Hyperbolic Embedding

We start with an arbitrary hyperbolic distance matrix (refer to [19]), and

a sorted index list. The function IndexList(D) computes the index list

associated with the distance matrix D.

We begin with arranging the elements of D according to the target index

list (i, j). In other words, we have

sort(D, (i, j)) = (dπ(ir,jr))ir,jr∈[N]

where π : [N]2 → [N2] is a one-to-one map, such that π(ir, jr) = π(jr, ir),

π(ir, ir) = (ir, ir), and IndexList(sort(D, (i, j))) = (i, j). The resulting

symmetric matrix is no longer a valid hyperbolic distance matrix. Therefore,

we proceed with finding the best rank-(d+ 1) Lorentzian matrix— the matrix

of Lorentizan inner products. We compute the corresponding point set,

in Rd+1, by a simple spectral factorization of the Lorentizan matrix; see

Algorithm 11 lines 6− 8 and refer to [19]. Finally, we use a simple method to

map each point (columns of X) to Ld, viz.,

PRd+1→Ld(x) =

√1 + ‖y‖2

y

 where y = (x2, . . . xd+1)>.

We compute the hyperbolic Gramian, G = X>HX, whereH = diag(−1, 1, . . . , 1) ∈
R(d+1)×(d+1). This gives us the update for hyperbolic distance matrix D =

acosh[−G]; refer to [19]. We repeat this process till convergence.

157

Algorithm 11 Non-metric hyperbolic embedding.

1: input: Index list (i, j), and embedding dimension d.

2: initialize: a hyperbolic distance matrix D, and an arbitrary index list

(̃i, j̃).

3: while
∥∥(̃i, j̃)− IndexList(D)

∥∥ > 0 do

4: (̃i, j̃)← IndexList(D). The index list related to D

5: D ← sort(D, (i, j)). Update D by sort distances according to (i, j)

6: Let UΣU> be the eigenvalue decomposition of G = − cosh[D] such

that σ1 ≥ . . . ≥ σN ∈ R.

7: X = |Σd|1/2U>d , where Σd = diag[(σ1)+, . . . , (σd)+, (σN)−] and Ud is the

sliced eigenvector matrix.

8: X ← PRd+1→Ld(X). Map each column of X ∈ R(d+1)×N to Ld

9: G = X>HX. Hyperbolic Gramian

10: D ← acosh[−G]. Hyperbolic distance matrix

11: end while

12: return X

E.6.2 Spherical Embedding

We propose a similar method for spherical embedding. The matrix of inner

products G and the spherical distance matrix D are related via D = acos[G].

For points in d-dimensional spherical space, the matrix G is a positive semidef-

inite matrix of rank (d+ 1), and with diagonal elements of 1. The spectral

factorization of G gives us the point positions.

158

Algorithm 12 Non-metric spherical Embedding.

1: input: Index list (i, j), and embedding dimension d.

2: initialize: A spherical distance matrix D, and an arbitrary index list

(̃i, j̃).

3: while
∥∥(̃i, j̃)− IndexList(D)

∥∥ > 0 do

4: (̃i, j̃) = IndexList(D). The index list related to D

5: D ← sort(D, (i, j)). Update D by sort distances according to (i, j)

6: Let UΣU> be eigenvalue decomposition of G = cos[D] such that σ1 ≥
. . . ≥ σN ∈ R.

7: Let Σd = diag[(σ1)+, . . . , (σd+1)+], and Ud be corresponding eigenvector

matrix.

8: X = Σ
1/2
d U>d .

9: X ← PRd+1→Sd(X). Map each column of X ∈ R(d+1)×N to Sd

10: G = X>X. Gram matrix

11: D ← acos[G].

12: end while

13: return X

E.6.3 Euclidean Embedding

Unlike hyperbolic and spherical counterparts, Euclidean distance matrix

D ∈ RN×N is the matrix of squared distances between a set of N points

X ∈ Rd×N . This definition lets us to express it as a linear function of the

Gram matrix G = X>X, i.e., D = K(G) = −2G+ diag(G)1> + 1diag(G)>,

where diag(G) is a vector of diagonal elements of G, and 1 ∈ RN is the vector

of all ones. The Gram matrix G is positive semidefinite of rank at most d. We

can find the centered Gramian from a given distance matrix as G = −1
2
JDJ ,

where J = I − 1
N

11>. At each iteration of Algorithm 13, we find the best

rank-d positive semidefinite matrix via a simple eigenvalue thresholding of

G = −1
2
JDJ ; see lines 7− 8 of Algorithm 13. The spectral factorization of

G gives the point set in Rd. We repeat this process until convergence.

159

Algorithm 13 Non-metric Euclidean embedding.

1: input: Index list (i, j), and embedding dimension d.

2: initialize: A Euclidean distance matrix D, and an arbitrary index list

(̃i, j̃).

3: while
∥∥(̃i, j̃)− IndexList(D)

∥∥ > 0 do

4: (̃i, j̃)← IndexList(D). The index list related to D

5: D = sort(D, (i, j)).

6: Let UΣU> be the eigenvalue decomposition of G = −1
2
JDJ such that

σ1 ≥ . . . ≥ σN ∈ R.

7: G = UdΣdU
>
d , where Σd = diag[(σ1)+, . . . , (σd)+] and Ud is the sliced

eigenvector matrix.

8: D ← K(G). Euclidean distance matrix

9: end while

10: return X = Σ
1/2
d U>d .

160

REFERENCES

[1] K. Menger, “Untersuchungen über allgemeine Metrik,” Mathematische
Annalen, vol. 100, no. 1, pp. 75–163, 1928.

[2] I. J. Schoenberg, “Remarks to Maurice Frechet’s Article ‘Sur La Defi-
nition Axiomatique D’Une Classe D’Espace Distances Vectoriellement
Applicable Sur L’Espace De Hilbert’,” Annals of Mathematics, pp. 724–
732, 1935.

[3] L. M. Blumenthal, Theory and Applications of Distance Geometry.
Clarendon Press, 1953.

[4] M. Browne, “The Young-Householder algorithm and the least squares
multidimensional scaling of squared distances,” Journal Classification,
vol. 4, no. 2, pp. 175–190, 1987.

[5] I. Dokmanić, R. Parhizkar, J. Ranieri, and M. Vetterli, “Euclidean
distance matrices: Essential theory, algorithms, and applications,” IEEE
Signal Processing Magazine, vol. 32, no. 6, pp. 12–30, 2015.

[6] J. M. Porta, L. Ros, F. Thomas, and C. Torras, “A branch-and-prune
solver for distance constraints,” IEEE Transactions on Robotics, vol. 21,
no. 2, pp. 176–187, 2005.

[7] P. Tabaghi, I. Dokmanić, and M. Vetterli, “Kinetic Euclidean distance
matrices,” IEEE Transactions on Signal Processing, vol. 68, pp. 452–465,
2019.

[8] A. M.-C. So and Y. Ye, “Theory of semidefinite programming for sensor
network localization,” Mathematical Programming, vol. 109, no. 2-3,
pp. 367–384, 2007.

[9] G. M. Crippen and T. F. Havel, Distance Geometry and Molecular
Conformation, vol. 74. Taunton: Research Studies Press, 1988.

[10] L. Liberti, C. Lavor, N. Maculan, and A. Mucherino, “Euclidean distance
geometry and applications,” SIAM Review, vol. 56, no. 1, pp. 3–69,
2014.

161

[11] N. Krislock and H. Wolkowicz, “Euclidean distance matrices and ap-
plications,” in Handbook on Semidefinite, Conic and Polynomial Opti-
mization, pp. 879–914, Boston, MA: Springer, Jan. 2012.

[12] A. M.-C. So and Y. Ye, “Theory of semidefinite programming for sensor
network localization,” Mathematical Programming, vol. 109, pp. 367–
384, Mar. 2007.

[13] A. Cornejo and R. Nagpal, “Distributed range-based relative localization
of robot swarms,” in Algorithmic Foundations of Robotics XI, pp. 91–
107, Springer, 2015.

[14] J. Matthaei, T. Krüger, S. Nowak, and U. Bestmann, “Swarm explo-
ration of unknown areas on Mars using SLAM,” in International Micro
Air Vehicle Conference and Flight Competition, 2013.

[15] J. S. Jaffe, P. J. Franks, P. L. Roberts, D. Mirza, C. Schurgers, R. Kast-
ner, and A. Boch, “A swarm of autonomous miniature underwater
robot drifters for exploring submesoscale ocean dynamics,” Nature
Communications, vol. 8, p. 14189, 2017.

[16] H. Durrant-Whyte and T. Bailey, “Simultaneous localization and map-
ping: Part I,” IEEE Robotics and Automation Magazine, vol. 13, no. 2,
pp. 99–110, 2006.

[17] M. Kreković, I. Dokmanić, and M. Vetterli, “EchoSLAM: Simultaneous
localization and mapping with acoustic echoes,” in Proceedings of the
International Conference on Acoustics, Speech, & Signal Processing,
pp. 11–15, IEEE, 2016.

[18] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst,
“Geometric deep learning: Going beyond Euclidean data,” IEEE Signal
Processing Magazine, vol. 34, no. 4, pp. 18–42, 2017.

[19] P. Tabaghi and I. Dokmanić, “Hyperbolic distance matrices,” in Proceed-
ings of the 26th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pp. 1728–1738, 2020.

[20] P. Tabaghi and I. Dokmanić, “Geometry of comparisons,” arXiv preprint
arXiv:2006.09858, 2020.

[21] M. Nickel and D. Kiela, “Poincaré embeddings for learning hierarchical
representations,” in Advances in Neural Information Processing Systems,
pp. 6338–6347, 2017.

[22] F. Sala, C. De Sa, A. Gu, and C. Ré, “Representation tradeoffs for
hyperbolic embeddings,” in Proceedings of the International Conference
on Machine Learning, pp. 4460–4469, PMLR, 2018.

162

[23] J. Lamping and R. Rao, “Laying out and visualizing large trees using a
hyperbolic space,” in Proceedings of the 7th Annual ACM Symposium
on User Interface Software and Technology, pp. 13–14, ACM, 1994.

[24] R. Sarkar, “Low distortion delaunay embedding of trees in hyperbolic
plane,” in International Symposium on Graph Drawing, pp. 355–366,
Springer, 2011.

[25] V. Khrulkov, L. Mirvakhabova, E. Ustinova, I. Oseledets, and V. Lempit-
sky, “Hyperbolic image embeddings,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 6418–6428,
2020.

[26] Y. Zhou, B. H. Smith, and T. O. Sharpee, “Hyperbolic geometry of the
olfactory space,” Science Advances, vol. 4, no. 8, p. eaaq1458, 2018.

[27] Y. Meng, J. Huang, G. Wang, C. Zhang, H. Zhuang, L. Kaplan, and
J. Han, “Spherical text embedding,” in Advances in Neural Information
Processing Systems, pp. 8208–8217, 2019.

[28] A. Gu, F. Sala, B. Gunel, and C. Ré, “Learning mixed-curvature
representations in product spaces,” in Proceedings of the International
Conference on Learning Representations, 2018.

[29] S. Bai, H.-D. Qi, and N. Xiu, “Constrained best Euclidean distance
embedding on a sphere: A matrix optimization approach,” SIAM
Journal on Optimization, vol. 25, no. 1, pp. 439–467, 2015.

[30] A. Elad, Y. Keller, and R. Kimmel, “Texture mapping via spherical
multi-dimensional scaling,” in International Conference on Scale-Space
Theories in Computer Vision, pp. 443–455, Springer, 2005.

[31] A. Tanay and A. Regev, “Scaling single-cell genomics from phenomenol-
ogy to mechanism,” Nature, vol. 541, no. 7637, pp. 331–338, 2017.

[32] A. Klimovskaia, D. Lopez-Paz, L. Bottou, and M. Nickel, “Poincaré
maps for analyzing complex hierarchies in single-cell data,” Nature
Communications, vol. 11, no. 1, pp. 1–9, 2020.

[33] O. Ganea, G. Bécigneul, and T. Hofmann, “Hyperbolic entailment cones
for learning hierarchical embeddings,” in Proceedings of the International
Conference on Machine Learning, pp. 1646–1655, PMLR, 2018.

[34] C. De Sa, A. Gu, C. Ré, and F. Sala, “Representation tradeoffs for
hyperbolic embeddings,” vol. 80, p. 4460, NIH Public Access, 2018.

[35] K. Chowdhary and T. G. Kolda, “An improved hyperbolic embedding
algorithm,” Journal of Complex Networks, vol. 6, no. 3, pp. 321–341,
2018.

163

[36] M. Nickel and D. Kiela, “Learning continuous hierarchies in the Lorentz
model of hyperbolic geometry,” arXiv preprint arXiv:1806.03417, 2018.

[37] M. Le, S. Roller, L. Papaxanthos, D. Kiela, and M. Nickel, “Inferring
concept hierarchies from text corpora via hyperbolic embeddings,” arXiv
preprint arXiv:1902.00913, 2019.

[38] S. Roller, D. Kiela, and M. Nickel, “Hearst patterns revisited: Auto-
matic hypernym detection from large text corpora,” arXiv preprint
arXiv:1806.03191, 2018.

[39] G. Bachmann, G. Bécigneul, and O. Ganea, “Constant curvature graph
convolutional networks,” in Proceedings of the International Conference
on Machine Learning, pp. 486–496, PMLR, 2020.

[40] O.-E. Ganea, G. Bécigneul, and T. Hofmann, “Hyperbolic neural net-
works,” arXiv preprint arXiv:1805.09112, 2018.

[41] I. Chami, Z. Ying, C. Ré, and J. Leskovec, “Hyperbolic graph convolu-
tional neural networks,” in Advances in Neural Information Processing
Systems, pp. 4868–4879, 2019.

[42] A. Tifrea, G. Bécigneul, and O.-E. Ganea, “Poincaré GloVe: Hyperbolic
word embeddings,” arXiv preprint arXiv:1810.06546, 2018.

[43] Q. Liu, M. Nickel, and D. Kiela, “Hyperbolic graph neural networks,”
in Advances in Neural Information Processing Systems, pp. 8230–8241,
2019.

[44] R. Shimizu, Y. Mukuta, and T. Harada, “Hyperbolic neural net-
works++,” arXiv preprint arXiv:2006.08210, 2020.

[45] J. Dai, Y. Wu, Z. Gao, and Y. Jia, “A hyperbolic-to-hyperbolic graph
convolutional network,” arXiv preprint arXiv:2104.06942, 2021.

[46] C. Giusti, E. Pastalkova, C. Curto, and V. Itskov, “Clique topology re-
veals intrinsic geometric structure in neural correlations,” in Proceedings
of the National Academy of Sciences, vol. 112, no. 44, pp. 13455–13460,
2015.

[47] Ç. Demiralp, M. S. Bernstein, and J. Heer, “Learning perceptual kernels
for visualization design,” IEEE Transactions on Visualization and
Computer Graphics, vol. 20, no. 12, pp. 1933–1942, 2014.

[48] D. J. Navarro and M. D. Lee, “Common and distinctive features in stim-
ulus similarity: A modified version of the contrast model,” Psychonomic
Bulletin & Review, vol. 11, no. 6, pp. 961–974, 2004.

164

[49] R. N. Shepard, “The analysis of proximities: Multidimensional scaling
with an unknown distance function. I.,” Psychometrika, vol. 27, no. 2,
pp. 125–140, 1962.

[50] R. N. Shepard, “The analysis of proximities: Multidimensional scaling
with an unknown distance function. II.,” Psychometrika, vol. 27, no. 3,
pp. 219–246, 1962.

[51] J. B. Kruskal, “Nonmetric multidimensional scaling: A numerical
method,” Psychometrika, vol. 29, no. 2, pp. 115–129, 1964.

[52] S. Agarwal, J. Wills, L. Cayton, G. Lanckriet, D. Kriegman, and
S. Belongie, “Generalized non-metric multidimensional scaling,” in
Artificial Intelligence and Statistics, pp. 11–18, 2007.

[53] G. Carlsson, “Topology and data,” Bulletin of the American Mathemat-
ical Society, vol. 46, no. 2, pp. 255–308, 2009.

[54] L. Liberti, C. Lavor, N. Maculan, and A. Mucherino, “Euclidean distance
geometry and applications,” SIAM Review, vol. 56, no. 1, pp. 3–69,
2014.

[55] P. Biswas, T. C. Liang, K. C. Toh, Y. Ye, and T. C. Wang, “Semidefinite
programming approaches for sensor network localization with noisy
distance measurements,” IEEE Transactions on Automation Science
and Engineering, vol. 3, no. 4, pp. 360–371, 2006.

[56] N. Krislock and H. Wolkowicz, “Explicit sensor network localization
using semidefinite representations and facial reductions,” SIAM Journal
on Optimization, vol. 20, pp. 2679–2708, Jan. 2010.

[57] S. Bai and H. Qi, “Tackling the flip ambiguity in wireless sensor network
localization and beyond,” Digital Signal Processing, vol. 55, pp. 85–97,
July 2016.

[58] I. Dokmanić, J. Ranieri, and M. Vetterli, “Relax and unfold: Microphone
localization with Euclidean distance matrices,” in Proceedings of the
European Signal Processing Conference, pp. 265–269, IEEE, 2015.

[59] I. Dokmanić and M. Vetterli, “Room helps: Acoustic localization with
finite elements,” in International Conference on Acoustics, Speech, &
Signal Processing, pp. 2617–2620, IEEE, 2012.

[60] I. Dokmanić, R. Parhizkar, A. Walther, Y. M. Lu, and M. Vetterli,
“Acoustic echoes reveal room shape,” in Proceedings of the National
Academy of Sciences, vol. 110, no. 30, pp. 12186–12191, 2013.

165

[61] R. Parhizkar, I. Dokmanić, and M. Vetterli, “Single-channel indoor
microphone localization,” in Proceedings of the International Conference
on Acoustics, Speech, & Signal Processing, pp. 1434–1438, IEEE, 2014.

[62] A. Singer, “A remark on global positioning from local distances,” in
Proceedings of the National Academy of Sciences, vol. 105, no. 28,
pp. 9507–9511, 2008.

[63] L. Liberti and C. Lavor, “Open research areas in distance geometry,”
in Open Problems in Optimization and Data Analysis, pp. 183–223,
Springer, 2018.

[64] B. Hendrickson, “The molecule problem: Exploiting structure in global
optimization,” SIAM Journal on Optimization, vol. 5, no. 4, pp. 835–857,
1995.

[65] B. A. Hendrickson, “The molecule problem: Determining conformation
from pairwise distances,” tech. rep., Cornell University, 1990.

[66] L. J. Guibas, “Kinetic data structures—A state of the art report,” tech.
rep., Stanford University, 1998.

[67] Q. Wu, A. Tinka, K. Weekly, J. Beard, and A. M. Bayen, “Varia-
tional Lagrangian data assimilation in open channel networks,” Water
Resources Research, vol. 51, pp. 1916–1938, Apr. 2015.

[68] J. Morales, P. Roysdon, Z. M. Kassas, and 2016, “Signals of opportunity
aided inertial navigation,” in Proceedings of the International Tech-
nical Meeting of the Satellite Division of The Institute of Navigation,
(Portland, OR), 2016.

[69] A. Hernandez Ruiz, L. Porzi, S. Rota Bulò, and F. Moreno-Noguer, “3D
CNNs on distance matrices for human action recognition,” in Proceedings
of the 2017 ACM on Multimedia Conference, pp. 1087–1095, ACM, 2017.

[70] A. Mucherino and D. S. Gonçalves, “An approach to dynamical dis-
tance geometry,” in International Conference on Geometric Science of
Information, pp. 821–829, Springer, 2017.

[71] A. Mucherino, J. Omer, L. Hoyet, P. R. Giordano, and F. Multon,
“An application-based characterization of dynamical distance geometry
problems,” Optimization Letters, pp. 1–15, 2018.

[72] “Protein folding—Wikipedia, the free encyclopedia,” 2018. [Online;
accessed 19-October-2018].

[73] J. C. Gower, “Euclidean distance geometry,” Mathematical Sciences,
vol. 7, no. 1, pp. 1–14, 1982.

166

[74] J. C. Gower, “Properties of Euclidean and non-Euclidean distance
matrices,” Linear Algebra and Its Applications, vol. 67, pp. 81–97, 1985.

[75] J. Dattorro, Convex Optimization & Euclidean Distance Geometry.
Meboo, 2011.

[76] P. Tabaghi and I. Dokmanić, “Real polynomial gram matrices without
real spectral factors,” arXiv preprint arXiv:1903.04085, 2019.

[77] L. Blumenthal and B. Gillam, “Distribution of points in n-space,” The
American Mathematical Monthly, vol. 50, no. 3, pp. 181–185, 1943.

[78] G. P. McCormick, “Computability of global solutions to factorable
nonconvex programs: Part I—convex underestimating problems,” Math-
ematical Programming, vol. 10, no. 1, pp. 147–175, 1976.

[79] E. M. Smith and C. C. Pantelides, “A symbolic reformulation/spatial
branch-and-bound algorithm for the global optimisation of nonconvex
minlps,” Computers & Chemical Engineering, vol. 23, no. 4-5, pp. 457–
478, 1999.

[80] P. H. Schönemann, A solution of the orthogonal Procrustes problem with
applications to orthogonal and oblique rotation. PhD thesis, University
of Illinois at Urbana-Champaign, 1964.

[81] C.-C. Wang, C. Thorpe, and S. Thrun, “Online simultaneous localization
and mapping with detection and tracking of moving objects: theory and
results from a ground vehicle in crowded urban areas,” in The IEEE
International Conference on Robotics and Automation, pp. 842–849,
IEEE, 2003.

[82] C.-C. Wang, C. Thorpe, and A. Suppe, “Ladar-based detection and
tracking of moving objects from a ground vehicle at high speeds,” in
The 2003 IEEE Intelligent Vehicles Symposium, pp. 416–421, IEEE,
2003.

[83] L. Ephremidze, “An elementary proof of the polynomial matrix spectral
factorization theorem,” in Proceedings of the Royal Society of Edinburgh
Section A: Mathematics, vol. 144, no. 4, pp. 747–751, 2014.

[84] L. Ephremidze, I. Spitkovsky, and E. Lagvilava, “Rank-deficient spectral
factorization and wavelets completion problem,” International Journal
of Wavelets, Multiresolution and Information Processing, vol. 13, no. 03,
p. 1550013, 2015.

[85] N. Krislock and H. Wolkowicz, “Explicit sensor network localization
using semidefinite representations and facial reductions,” SIAM Journal
on Optimization, vol. 20, no. 5, pp. 2679–2708, 2010.

167

[86] L. Ephremidze, F. Saied, and I. M. Spitkovsky, “On the algorithmization
of Janashia-Lagvilava matrix spectral factorization method,” IEEE
Transactions on Information Theory, vol. 64, no. 2, pp. 728–737, 2018.

[87] S. Diamond and S. Boyd, “CVXPY: A Python-embedded modeling lan-
guage for convex optimization,” Journal of Machine Learning Research,
vol. 17, no. 83, pp. 1–5, 2016.

[88] A. Agrawal, R. Verschueren, S. Diamond, and S. Boyd, “A rewriting
system for convex optimization problems,” Journal of Control and
Decision, vol. 5, no. 1, pp. 42–60, 2018.

[89] N. Linial, E. London, and Y. Rabinovich, “The geometry of graphs
and some of its algorithmic applications,” Combinatorica, vol. 15, no. 2,
pp. 215–245, 1995.

[90] K. Verbeek and S. Suri, “Metric embedding, hyperbolic space, and
social networks,” in Proceedings of the Thirtieth Annual Symposium on
Computational geometry, pp. 501–510, 2014.

[91] B. Dhingra, C. J. Shallue, M. Norouzi, A. M. Dai, and G. E. Dahl,
“Embedding text in hyperbolic spaces,” arXiv preprint arXiv:1806.04313,
2018.

[92] C. V. Cannistraci, G. Alanis-Lobato, and T. Ravasi, “From link-
prediction in brain connectomes and protein interactomes to the local-
community-paradigm in complex networks,” Scientific Reports, vol. 3,
p. 1613, 2013.

[93] M. Ashburner, C. A. Ball, J. A. Blake, D. Botstein, H. Butler, J. M.
Cherry, A. P. Davis, K. Dolinski, S. S. Dwight, J. T. Eppig, et al.,
“Gene ontology: Tool for the unification of biology,” Nature Genetics,
vol. 25, no. 1, p. 25, 2000.

[94] T. D. Q. Vinh, Y. Tay, S. Zhang, G. Cong, and X.-L. Li, “Hyperbolic
recommender systems,” arXiv preprint arXiv:1809.01703, 2018.

[95] B. P. Chamberlain, S. R. Hardwick, D. R. Wardrope, F. Dzogang,
F. Daolio, and S. Vargas, “Scalable hyperbolic recommender systems,”
arXiv preprint arXiv:1902.08648, 2019.

[96] J. B. Kruskal and M. Wish, Multidimensional Scaling. No. 11, Sage,
1978.

[97] Y. Shavitt and T. Tankel, “Hyperbolic embedding of internet graph for
distance estimation and overlay construction,” IEEE/ACM Transactions
on Networking, vol. 16, no. 1, pp. 25–36, 2008.

168

[98] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Dis-
tributed representations of words and phrases and their compositional-
ity,” in Advances in Neural Information Processing Systems, pp. 3111–
3119, 2013.

[99] J. Pennington, R. Socher, and C. Manning, “Glove: Global vectors
for word representation,” in Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing (EMNLP), pp. 1532–
1543, 2014.

[100] A. Y. Alfakih, A. Khandani, and H. Wolkowicz, “Solving Euclidean
distance matrix completion problems via semidefinite programming,”
Computational Optimization and Applications, vol. 12, no. 1-3, pp. 13–
30, 1999.

[101] D. Asta and C. R. Shalizi, “Geometric network comparison,” arXiv
preprint arXiv:1411.1350, 2014.

[102] D. Krioukov, F. Papadopoulos, M. Kitsak, A. Vahdat, and M. Boguná,
“Hyperbolic geometry of complex networks,” Physical Review E, vol. 82,
no. 3, p. 036106, 2010.

[103] R. Kleinberg, “Geographic routing using hyperbolic space,” in 26th
IEEE International Conference on Computer Communications, pp. 1902–
1909, IEEE, 2007.

[104] A. Cvetkovski and M. Crovella, “Hyperbolic embedding and routing
for dynamic graphs,” in IEEE International Conference on Computer
Communications, pp. 1647–1655, IEEE, 2009.

[105] M. Boguná, F. Papadopoulos, and D. Krioukov, “Sustaining the internet
with hyperbolic mapping,” Nature Communications, vol. 1, p. 62, 2010.

[106] R. C. Wilson, E. R. Hancock, E. Pekalska, and R. P. Duin, “Spherical
and hyperbolic embeddings of data,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 36, no. 11, pp. 2255–2269, 2014.

[107] I. Vendrov, R. Kiros, S. Fidler, and R. Urtasun, “Order-embeddings of
images and language,” arXiv preprint arXiv:1511.06361, 2015.

[108] L. Van Der Maaten and K. Weinberger, “Stochastic triplet embedding,”
in 2012 IEEE International Workshop on Machine Learning for Signal
Processing, pp. 1–6, IEEE, 2012.

[109] O. Tamuz, C. Liu, S. Belongie, O. Shamir, and A. T. Kalai, “Adaptively
learning the crowd kernel,” arXiv preprint arXiv:1105.1033, 2011.

[110] J. W. Cannon, W. J. Floyd, R. Kenyon, W. R. Parry, et al., “Hyperbolic
geometry,” Flavors of Geometry, vol. 31, pp. 59–115, 1997.

169

[111] R. Benedetti and C. Petronio, Lectures on Hyperbolic Geometry.
Springer Science & Business Media, 2012.

[112] I. Gohberg, P. Lancaster, and L. Rodman, “Matrices and indefinite
scalar products,” Acta Applicandae Mathematica, vol. 6, pp. 101–102,
May 1986.

[113] L. Vandenberghe and S. Boyd, “Semidefinite programming,” SIAM
Review, vol. 38, no. 1, pp. 49–95, 1996.

[114] B. Mishra, G. Meyer, F. Bach, and R. Sepulchre, “Low-rank optimiza-
tion with trace norm penalty,” SIAM Journal on Optimization, vol. 23,
no. 4, pp. 2124–2149, 2013.

[115] M. Fornasier, H. Rauhut, and R. Ward, “Low-rank matrix recovery via
iteratively reweighted least squares minimization,” SIAM Journal on
Optimization, vol. 21, no. 4, pp. 1614–1640, 2011.

[116] M. Fazel, H. Hindi, and S. P. Boyd, “Log-det heuristic for matrix
rank minimization with applications to Hankel and Euclidean distance
matrices,” in Proceedings of the 2003 American Control Conference,
2003., vol. 3, pp. 2156–2162, IEEE, 2003.

[117] C. Olsson, A. Eriksson, and R. Hartley, “Outlier removal using duality,”
in Proceedings of 2010 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, pp. 1450–1457, IEEE, 2010.

[118] Y. Seo, H. Lee, and S. W. Lee, “Outlier removal by convex optimization
for l-infinity approaches,” in Pacific-Rim Symposium on Image and
Video Technology, pp. 203–214, Springer, 2009.

[119] J. Yu, A. Eriksson, T.-J. Chin, and D. Suter, “An adversarial optimiza-
tion approach to efficient outlier removal,” Journal of Mathematical
Imaging and Vision, vol. 48, no. 3, pp. 451–466, 2014.

[120] H. Xu, C. Caramanis, and S. Sanghavi, “Robust PCA via outlier pursuit,”
in Advances in Neural Information Processing Systems, pp. 2496–2504,
2010.

[121] A. Majumdar, G. Hall, and A. A. Ahmadi, “Recent scalability im-
provements for semidefinite programming with applications in machine
learning, control, and robotics,” Annual Review of Control, Robotics,
and Autonomous Systems, vol. 3, 2019.

[122] A. Yurtsever, J. A. Tropp, O. Fercoq, M. Udell, and V. Cevher, “Scalable
semidefinite programming,” arXiv preprint arXiv:1912.02949, 2019.

170

[123] A. Yurtsever, M. Udell, J. A. Tropp, and V. Cevher, “Sketchy decisions:
Convex low-rank matrix optimization with optimal storage,” arXiv
preprint arXiv:1702.06838, 2017.

[124] P. Jawanpuria, M. Meghwanshi, and B. Mishra, “Low-rank approxi-
mations of hyperbolic embeddings,” arXiv preprint arXiv:1903.07307,
2019.

[125] G. A. Miller, WordNet: An Electronic Lexical Database. MIT Press,
1998.

[126] J. W. Moon et al., “On the maximum degree in a random tree.,” The
Michigan Mathematical Journal, vol. 15, no. 4, pp. 429–432, 1968.

[127] J. L. Gilbert, M. J. Guthart, S. A. Gezan, M. P. de Carvalho, M. L.
Schwieterman, T. A. Colquhoun, L. M. Bartoshuk, C. A. Sims, D. G.
Clark, and J. W. Olmstead, “Identifying breeding priorities for blue-
berry flavor using biochemical, sensory, and genotype by environment
analyses,” PLoS One, vol. 10, no. 9, p. e0138494, 2015.

[128] J. R. Hurley and R. B. Cattell, “The Procrustes program: Producing
direct rotation to test a hypothesized factor structure,” Behavioral
Science, vol. 7, no. 2, p. 258, 1962.

[129] J. C. Gower, “Generalized procrustes analysis,” Psychometrika, vol. 40,
no. 1, pp. 33–51, 1975.

[130] N. J. Mitra, N. Gelfand, H. Pottmann, and L. Guibas, “Registration
of point cloud data from a geometric optimization perspective,” in
Proceedings of the 2004 Eurographics/ACM SIGGRAPH Symposium
on Geometry Processing, pp. 22–31, 2004.

[131] J. M. Fitzpatrick, J. B. West, and C. R. Maurer, “Predicting error in
rigid-body point-based registration,” IEEE Transactions on Medical
Imaging, vol. 17, no. 5, pp. 694–702, 1998.

[132] F. Pomerleau, F. Colas, and R. Siegwart, “A review of point cloud
registration algorithms for mobile robotics,” Foundations and Trends
in Robotics, vol. 4, no. 1, pp. 1–104, 2015.

[133] P. Shvaiko and J. Euzenat, “Ontology matching: state of the art
and future challenges,” IEEE Transactions on Knowledge and Data
Engineering, vol. 25, no. 1, pp. 158–176, 2011.

[134] J. Euzenat, P. Shvaiko, et al., Ontology Matching, vol. 18. Springer,
2007.

171

[135] S. Rusinkiewicz and M. Levoy, “Efficient variants of the ICP algorithm,”
in Proceedings Third International Conference on 3-D Digital Imaging
and Modeling, pp. 145–152, IEEE, 2001.

[136] D. Alvarez-Melis, Y. Mroueh, and T. Jaakkola, “Unsupervised hierarchy
matching with optimal transport over hyperbolic spaces,” in Interna-
tional Conference on Artificial Intelligence and Statistics, pp. 1606–1617,
PMLR, 2020.

[137] K. V. Mardia and P. E. Jupp, Directional Statistics, vol. 494. John
Wiley & Sons, 2009.

[138] J. G. Ratcliffe, S. Axler, and K. Ribet, Foundations of Hyperbolic
Manifolds, vol. 149. Springer, 2006.

[139] A. A. Ungar, “A gyrovector space approach to hyperbolic geometry,”
Synthesis Lectures on Mathematics and Statistics, vol. 1, no. 1, pp. 1–194,
2008.

[140] A. B. Novikoff, “On convergence proofs for perceptrons,” tech. rep.,
Stanford Research Institute, 1963.

[141] S. Dasgupta, A. T. Kalai, and A. Tauman, “Analysis of perceptron-
based active learning,” Journal of Machine Learning Research, vol. 10,
no. 2, 2009.

[142] H. Cho, B. DeMeo, J. Peng, and B. Berger, “Large-margin classification
in hyperbolic space,” in Proceedings of the 22nd International Confer-
ence on Artificial Intelligence and Statistics, pp. 1832–1840, PMLR,
2019.

[143] M. Weber, M. Zaheer, A. S. Rawat, A. Menon, and S. Kumar,
“Robust large-margin learning in hyperbolic space,” arXiv preprint
arXiv:2004.05465, 2020.

[144] O. Skopek, O.-E. Ganea, and G. Bcigneul, “Mixed-curvature variational
autoencoders,” in International Conference on Learning Representations,
2020.

[145] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” vol. 86, pp. 2278–2324, Ieee,
1998.

[146] B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum, “Human-level
concept learning through probabilistic program induction,” Science,
vol. 350, no. 6266, pp. 1332–1338, 2015.

[147] A. Krizhevsky, G. Hinton, et al., Learning Multiple Layers of Features
From Tiny Images. Citeseer, 2009.

172

[148] G. X. Zheng, J. M. Terry, P. Belgrader, P. Ryvkin, Z. W. Bent, R. Wil-
son, S. B. Ziraldo, T. D. Wheeler, G. P. McDermott, J. Zhu, et al.,
“Massively parallel digital transcriptional profiling of single cells,” Nature
Communications, vol. 8, no. 1, pp. 1–12, 2017.

[149] “Hodgkin’s Lymphoma, Dissociated Tumor: Targeted-Compare, Im-
munology Panel by Cell Ranger 4.0.0,” 10x Genomics, July 7th, 2020.

[150] “PBMCs from a Healthy Donor: Targeted, Immunology Panel by Cell
Ranger 4.0.0,” 10x Genomics, July 7th, 2020.

[151] J. G. Ratcliffe, S. Axler, and K. Ribet, Foundations of Hyperbolic
Manifolds, vol. 149. Springer, 1994.

[152] J. M. Lee, Riemannian Manifolds: An Introduction to Curvature,
vol. 176. Springer Science & Business Media, 2006.

[153] J. H. Gallier and J. Quaintance, Differential Geometry and Lie Groups:
A Computational Perspective, vol. 12. Springer Nature, 2020.

[154] V. Vapnik, The Nature of Statistical Learning Theory. Springer Science
& Business Media, 2013.

[155] L. W. Tu, An Introduction to Manifolds. Springer, New York, 2011.

[156] A. Subramanian, R. Narayan, S. M. Corsello, D. D. Peck, T. E. Natoli,
X. Lu, J. Gould, J. F. Davis, A. A. Tubelli, J. K. Asiedu, et al., “A next
generation connectivity map: L1000 platform and the first 1,000,000
profiles,” Cell, vol. 171, no. 6, pp. 1437–1452, 2017.

[157] J. Platt et al., “Probabilistic outputs for support vector machines and
comparisons to regularized likelihood methods,” Advances in Large
Margin Classifiers, vol. 10, no. 3, pp. 61–74, 1999.

[158] P. Li and O. Milenkovic, “Inhomogoenous hypergraph clustering with
applications,” in Advances in Neural Information Processing Systems,
pp. 2305–2315, 2017.

[159] R. C. Wilson, E. R. Hancock, E. Pkekalska, and R. P. Duin, “Spherical
embeddings for non-Euclidean dissimilarities,” in 2010 IEEE Com-
puter Society Conference on Computer Vision and Pattern Recognition,
pp. 1903–1910, IEEE, 2010.

[160] R. M. Green and R. M. Green, Spherical Astronomy. Cambridge
University Press, 1985.

[161] F. Wauthier, M. Jordan, and N. Jojic, “Efficient ranking from pair-
wise comparisons,” in Proceedings of the International Conference on
Machine Learning, pp. 109–117, PMLR, 2013.

173

[162] K. G. Jamieson and R. Nowak, “Active ranking using pairwise compar-
isons,” in Proceedings of the Advances in Neural Information Processing
Systems, pp. 2240–2248, 2011.

[163] K. G. Jamieson and R. D. Nowak, “Low-dimensional embedding using
adaptively selected ordinal data,” in 2011 49th Annual Allerton Con-
ference on Communication, Control, and Computing, pp. 1077–1084,
IEEE, 2011.

[164] S. Haghiri, D. Ghoshdastidar, and U. von Luxburg, “Comparison-
based nearest neighbor search,” in Artificial Intelligence and Statistics,
pp. 851–859, PMLR, 2017.

[165] S. Haghiri, D. Garreau, and U. Luxburg, “Comparison-based random
forests,” in Proceedings of the International Conference on Machine
Learning, pp. 1871–1880, PMLR, 2018.

[166] Z. Cui, N. Charoenphakdee, I. Sato, and M. Sugiyama, “Classification
from triplet comparison data,” Neural Computation, vol. 32, no. 3,
pp. 659–681, 2020.

[167] J. M. Lee, Riemannian Manifolds: An Introduction to Curvature.
Springer New York, 2007.

[168] S. S. Skiena, W. D. Smith, and P. Lemke, “Reconstructing sets from
interpoint distances,” in Proceedings of the sixth annual symposium on
Computational geometry, pp. 332–339, 1990.

[169] N. C. Jones, P. A. Pevzner, and P. Pevzner, An Introduction to Bioin-
formatics Algorithms. MIT Press, 2004.

[170] S. Huang and I. Dokmanić, “Reconstructing point sets from distance
distributions,” arXiv preprint arXiv:1804.02465, 2018.

[171] M. Kleindessner and U. Luxburg, “Uniqueness of ordinal embedding,”
in Proceedings the Conference on Learning Theory, pp. 40–67, PMLR,
2014.

[172] Q. Cao, Y. Ying, and P. Li, “Similarity metric learning for face recogni-
tion,” in Proceedings of the IEEE International Conference on Computer
Vision, pp. 2408–2415, 2013.

[173] B. McFee and G. Lanckriet, “Learning multi-modal similarity,” Journal
of Machine Learning Research, vol. 12, no. Feb, pp. 491–523, 2011.

[174] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms. MIT Press, 2009.

174

[175] G. Van Brummelen and E. A. Hamm, “Heavenly mathematics: The
forgotten art of spherical trigonometry,” Aestimatio: Critical Reviews
in the History of Science, vol. 11, pp. 127–130, 2014.

[176] L. Mirsky, Transversal Theory: An Account of Some Aspects of Combi-
natorial Mathematics. Academic Press, 1971.

[177] R. A. Rankin, “The closest packing of spherical caps in n dimensions,”
Glasgow Mathematical Journal, vol. 2, no. 3, pp. 139–144, 1955.

[178] A. D. Wyner, “Random packings and coverings of the unit n-sphere,”
The Bell System Technical Journal, vol. 46, no. 9, pp. 2111–2118, 1967.

[179] P. Turán, “On an external problem in graph theory,” Középiskolai
Matematikai és Fizikai Lapok, vol. 48, pp. 436–452, 1941.

[180] C. E. Meacham and S. J. Morrison, “Tumour heterogeneity and cancer
cell plasticity,” Nature, vol. 501, no. 7467, pp. 328–337, 2013.

[181] D. van Dijk, J. Nainys, R. Sharma, P. Kaithail, A. J. Carr, K. R. Moon,
L. Mazutis, G. Wolf, S. Krishnaswamy, and D. Pe’er, “MAGIC: A
diffusion-based imputation method reveals gene-gene interactions in
single-cell RNA-sequencing data,” BioRxiv, p. 111591, 2017.

[182] W. V. Li and J. J. Li, “An accurate and robust imputation method
scimpute for single-cell RNA-seq data,” Nature Communications, vol. 9,
no. 1, pp. 1–9, 2018.

[183] S. C. Hicks, F. W. Townes, M. Teng, and R. A. Irizarry, “Missing data
and technical variability in single-cell RNA-sequencing experiments,”
Biostatistics, vol. 19, no. 4, pp. 562–578, 2018.

[184] G. Eraslan, L. M. Simon, M. Mircea, N. S. Mueller, and F. J. Theis,
“Single-cell RNA-seq denoising using a deep count autoencoder,” Nature
Communications, vol. 10, no. 1, pp. 1–14, 2019.

[185] M. Plass, J. Solana, F. A. Wolf, S. Ayoub, A. Misios, P. Glažar, B. Ober-
mayer, F. J. Theis, C. Kocks, and N. Rajewsky, “Cell type atlas and
lineage tree of a whole complex animal by single-cell transcriptomics,”
Science, vol. 360, no. 6391, 2018.

[186] P. Chebotarev and E. Shamis, “The matrix-forest theorem and mea-
suring relations in small social groups,” arXiv preprint math/0602070,
2006.

[187] R. F. Bass and K. Gröchenig, “Random sampling of multivariate trigono-
metric polynomials,” SIAM Journal on Mathematical Analysis, vol. 36,
pp. 773–795, Jan. 2005.

175

[188] R. A. Horn and C. R. Johnson, Matrix Analysis. Cambridge University
Press, 2012.

[189] L. Mirsky, “A trace inequality of John von Neumann,” Monatshefte für
mathematik, vol. 79, no. 4, pp. 303–306, 1975.

[190] R. M. Dudley, “Central limit theorems for empirical measures,” The
Annals of Probability, pp. 899–929, 1978.

[191] S. Shalev-Shwartz and S. Ben-David, Understanding Machine Learning:
From Theory to Algorithms. Cambridge University Press, 2014.

[192] I. Steinwart, “On the influence of the kernel on the consistency of
support vector machines,” Journal of Machine Learning Research, vol. 2,
no. Nov, pp. 67–93, 2001.

176

