
© 2021 Ameya D. Patil

HARNESSING NOISE TO ENHANCE ROBUSTNESS VS. EFFICIENCY
TRADE-OFF IN MACHINE LEARNING

BY

AMEYA D. PATIL

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois Urbana-Champaign, 2021

Urbana, Illinois

Doctoral Committee:

Professor Naresh R. Shanbhag, Chair
Assistant Professor Alexander Schwing
Professor Pavan Kumar Hanumolu
Professor Romit Roy Choudhury

ABSTRACT

While deep nets have achieved human-comparable accuracy in various clas-

sification tasks, they fall short significantly in terms of the robustness and

cost metrics. For example, tiny engineered corruptions in deep net inputs

can reduce their accuracy to zero. Furthermore, deep nets also require mil-

lions of trainable parameters, resulting in significant training and inference

costs. These robustness and cost challenges are well recognized today. In re-

sponse, there have been a plethora of works focusing on improving either the

accuracy vs. robustness trade-off, or the accuracy vs. cost trade-off. How-

ever, simultaneous consideration of accuracy, robustness, and cost metrics is

largely absent today, in part, because far fewer works have explored the ro-

bustness vs. cost trade-off. This dissertation aims to fill this gap by focusing

explicitly on the robustness vs. cost trade-off in the presence of data noise,

as well as hardware noise. Specifically, we explore how to harness the noise in

order to enhance this trade-off. We characterize and improve robustness vs.

cost trade-offs across diverse problem settings, ranging from beyond-CMOS

hardware implementations of machine learning (ML) classifiers to efficient

training of deep nets that are robust to multiple types of corruptions in their

inputs. This dissertation can be roughly divided into two part, one focusing

on hardware noise and the other on data noise.

In the first part, we start by focusing on harnessing noise in spintronic

hardware implementations, where the logic gates become error prone when

operated at lower switching energy/delay. We propose techniques to shape

the resulting hardware noise distribution and to efficiently compensate it

at the system-level output. As a result, we observe 1000× improvement in

tolerance to gate-level switching error rates, while keeping the area/energy

overhead of compensation circuits to as low as 15%. These robustness en-

hancements further enable 3× reduction in iso-throughput energy consump-

tion of a binary ML classifier employed for EEG-based seizure detection.

ii

Building on this work, we propose spintronic channel networks, exponential

decay of spin current to efficiently realize multi-bit dot product computation.

We employ error-prone nanomagnets as efficient stochastic slicers biased by

spin currents proportional to the likelihood of the classification decision. We

achieve 112×-to-22.5× and 14×-to-2.5× higher energy-efficiency over con-

ventional spin-based and 20 nm CMOS designs, respectively, when realizing

10-to-100-dimensional binary classifiers. Furthermore, we also consider the

impact of hardware noise originated from process variations and readout cir-

cuits in in-memory computing implementations employing non-volatile resis-

tive crossbar arrays. Based on our analysis, we identify design configurations

achieving the highest signal-to-noise ratio (SNR), and further estimate how

such robustness trades off with the array energy consumption.

In the second part, we switch gears to improve the robustness vs. cost

trade-off for deep nets in the presence of data noise. Specifically, we focus on

the impact of adversarial perturbations in the deep nets inputs. We propose

and validate the hypotheses about orientations of dominant subspaces of

adversarial perturbations. We demonstrate how changes in the curvature of

decision boundary of the deep nets affects the orientations of the adversarial

perturbations. Based on these insights we demonstrate how shaped noise can

be introduced as a feature to enhance robustness vs. cost trade-off in deep

nets. Specifically, we propose shaped noise augmented processing (SNAP),

a method to efficiently train deep nets that are robust to multiple types of

adversarial perturbations, simultaneously. SNAP prepends a deep net with a

shaped noise augmentation layer whose distribution is learned along with the

network parameters using any established robust training framework. Based

on extensive comparisons with nine state-of-the-art (SOTA) robust training

frameworks, we show that SNAP achieves the best robustness vs. training

cost trade-off. In particular, it enables 4× reduction in the training cost

compared to the SOTA approach published just this last year. Furthermore,

thanks to the computational simplicity of SNAP, it is the first technique of

its kind that is scalable to large datasets, such as ImageNet.

We conclude by identifying potential directions for future research.

iii

To my parents, for all their love and support.

iv

ACKNOWLEDGMENTS

First and foremost, I would like to thank my advisor, Prof. Naresh Shanbhag.

He gave me immense freedom to work on a diverse set of problems, was always

available for discussions, and provided unwavering support when our ideas

didn’t work out as expected. I really appreciate his strategic mentorship

in helping us make better research and career decisions. I am grateful for

his guidance in making me a better researcher and teaching me to accept

rejections in stride as a natural part of the process. I would also like to

thank my dissertation committee members, Prof. Alex Schwing, Prof. Pavan

Hanumolu, and Prof. Romit Roy Choudhury for providing helpful feedback

for my research and dissertations. Prof. Schwing’s passion and commitment

for deep learning research was very inspiring, and I am grateful for all his help

and support in our collaborative work in the field of adversarial robustness

of deep nets. I also enjoyed interacting with Prof. Hanumolu regarding

different aspects of circuit design for in-memory computing and I learned a

lot from those. Finally, I really appreciated insightful discussions with Prof.

Roy Choudhury about different aspects of our work.

I was fortunate to get a chance to collaborate with Sasi Manipatruni,

Dmitri Nikonov, and Ian Young from Component Research group in Intel

for our spintronic work and wish to sincerely thank them for their help. I

also want to thank Ram Krishnamurthy, Greg Chen, Phil Knag, Huseyin

Ekin Sumbul, and Raghavan Kumar for hosting me as an intern in Summer

2018 at Intel Labs, which was a wonderful experience. Being a part of Prof.

Shanbhag’s research group, it was great to know and collaborate with its

excellent members over the years: Sujan Gonugondla, Charbel Sakr, Mingu

Kang, Michael Tuttle, Hassan Dbouk, Saion Roy, Kuk-Hwan Kim, Yingyan

Lin, Sai Zhang, Sungmin Lim, Yongjune Kim, Han-Mo Ou, and Hanfei Geng.

I appreciate all our interactions which have shaped both my research, career,

and personality.

v

The research in this dissertation was funded in part by SONIC, C-BRIC,

AIHW programs supported by SRC and DARPA, as well as DARPA’s FRANC

program. I feel lucky to have been a part of the SRC community as a graduate

student and interacting with other faculties and students from different uni-

versities that are part of these programs was a formative experience. Thank

you to the ECE Illinois Department for providing me with this opportunity to

pursue a PhD degree and recognizing my work through multiple fellowships

and awards.

I am lucky to have met an amazing set of friends over the past decade

of staying away from home. Thanks to Zaid Ahsan, Navjot Singh, Krishan

Swaminathan-Gopalan, Mubin Khan, Shripad Gade, Anadi Chaman, Kusha-

gra Singhal, and Anurup Ganguly for making my stay in Urbana-Champaign

enjoyable. All our fun activities together – long discussions, soccer games,

IPL, and cooking – helped me deal with the stress and grind of the grad-

uate school. Pranav Madadi has been an amazing friend and a source of

constant support over both IIT and UIUC years. Thank you Nachiket Don-

gre, Sumit Jadhav, Onkar Deshpande, Abhishek Gune, Niranjan Natekar,

Piyush Kulkarni, Rutuparna Karandikar, Rohan Dutte, Omkar Waikar, Vib-

hav Bhave, Anad Bhattad, and Jayesh Tandale for making a point to stay in

touch despite being scattered all over the world. I cherished our regular calls

as well as Pune meet-ups, which I always found extremely rejuvenating.

Finally, and most importantly, I would like to thank my parents, Dhanan-

jay and Madhura Patil for all their efforts and sacrifices in helping me to get

where I am today. I cannot find words to describe their love for me. I feel

devastated that my mother didn’t make it to see me reaching this milestone,

having lost her battle to cancer just over three months ago. I wish that her

soul may rest in peace and thank her from the bottom of my heart in all my

prayers.

vi

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . 1
1.1 Accuracy vs. Robustness Trade-off 4
1.2 Accuracy vs. Cost Trade-off 6
1.3 Dissertation Contribution: Improving Robustness vs. Cost

Trade-off . 8
1.4 Dissertation Organization . 10

CHAPTER 2 ROBUST SPINTRONICS VIA SHANNON-INSPIRED
APPROACH . 13
2.1 Overview . 13
2.2 Background . 14
2.3 Modeling Stochasticity of ASL Devices 18
2.4 Shannon-inspired ASL Architecture 21
2.5 Simulation Results . 29
2.6 Discussion . 31

CHAPTER 3 EFFICIENT INFERENCE VIA SPIN CHANNEL
NETWORKS . 32
3.1 Overview . 32
3.2 Background . 33
3.3 Spin Channel Networks . 35
3.4 Design of SCN-based Classifiers 41
3.5 Simulation Results . 46
3.6 Related Works . 51
3.7 Discussion . 51

CHAPTER 4 EFFICIENT INFERENCE VIA MRAM-BASED
DEEP IN-MEMORY ARCHITECTURE 53
4.1 Overview . 53
4.2 Preliminaries . 55
4.3 Voltage Driven MRAM-based Deep In-memory Architecture . 57
4.4 Simulation Results for Voltage Driven MRAM-DIMA 61
4.5 Current Driven MRAM-DIMA 64
4.6 Prototype Chip Tape-out . 68
4.7 Discussion . 69

vii

CHAPTER 5 SNR ANALYSIS OF IN-MEMORY COMPUTING
EMPLOYING RESISTIVE CROSSBAR ARRAYS 70
5.1 Overview . 70
5.2 Analysis Setup . 71
5.3 Voltage Driven Crossbars . 73
5.4 Current Driven Crossbars . 86
5.5 Discussion . 88

CHAPTER 6 SUBSPACE ANALYSIS OF ADVERSARIAL PER-
TURBATIONS . 91
6.1 Overview . 91
6.2 Orthogonality between Images and Adversarial Perturbations . 92
6.3 Distinction between Different Perturbation Models 95
6.4 Discussion . 98

CHAPTER 7 EFFICIENT AND ROBUST DEEP NET TRAIN-
ING VIA NOISE SHAPING . 99
7.1 Overview . 99
7.2 Shaped Noise Augmented Processing (SNAP) 101
7.3 Experimental Results . 105
7.4 Robustness Stress Tests . 114
7.5 Additional Investigations . 116
7.6 Relationship between SNAP and Randomized Smoothing . . . 121
7.7 Related Works . 126
7.8 Discussion . 128

CHAPTER 8 CONCLUSION AND FUTURE WORK 129
8.1 Summary of Contributions . 129
8.2 Future Prospects . 130

APPENDIX A DERIVATION OF EQ. (5.4) 133

APPENDIX B DERIVATION OF EQ. (5.12) 135

APPENDIX C PROOF OF THEOREM 7.1 138
C.1 Preliminary Lemmas . 138
C.2 Theorem Proof . 139

REFERENCES . 144

viii

CHAPTER 1

INTRODUCTION

Machine learning (ML) systems strive to perform recognition, synthesis and

policy-making tasks on the given input data. The examples of such systems

include, robots using cameras to learn navigation in unseen environments,

voice/chat assistants, and others. Such systems, when perfected and de-

ployed, have potential to revolutionize multiple industries. The last five

years have seen a huge surge of interest in the research and development of

ML systems. It stems from the recent success of deep nets (see Fig. 1.1) in

achieving human-comparable accuracy across diverse well-defined tasks, such

as image recognition [1], speech recognition [2], and strategy games including

Chess and Go [3].

The above accuracy metric measures the probability of given ML systems

making correct decisions on unseen inputs, under idealistic conditions, i.e.

the training data distribution is the same as that of the test data and the

underlying hardware provides high precision deterministic implementation.

Achieving high accuracy is necessary, but not sufficient to enable wide-scale

deployment of ML systems in the real world. This is because the real world,

as we all are aware, is often messy, noisy, non-ideal, and at times, even ad-

versarial. For example, the underlying hardware itself could be erroneous

due to device/circuit-level variations and noise [4, 5, 6, 7, 8]. Similarly, the

inputs to ML systems could be corrupted via natural or engineered per-

turbations [9, 10]. Hence, it is necessary for ML systems to preserve their

accuracy in the presence of noisy/non-ideal conditions. In adversarial ML

research area, the term robust accuracy is defined as the accuracy of the

classifier in the presence of engineered perturbations in its inputs. Hence, in

this dissertation, we extend it to define robustness of a given ML system as

a measure of the probability of correct decisions under non-ideal and noisy

conditions. While noise is omnipresent, it can be broadly classified into two

categories based on its sources:

1

(b) (c)

w
or

d
ac

cu
ra

cy
 (%

)

speech recognition

Distr
ibuted

AlphaGo
AlphaGo

Fan Hui

(Human

Champion)

strategy games (Go)
(a)

Cl
as

sif
ica

tio
n

er
ro

r (
to

p
5)

 (%
)

image recognition

10

20

30

0
2011 2012

AlexNet
2013 2014

VGG
2014

GoogleNet
Human 2015

ResNet
2016

GoogleNet-v4

80

70

90

100

2013 2014 2015 2016 2017

Human

Google

Figure 1.1: Recent success of deep nets: They have achieved state-of-the-art,
human-comparable accuracy across diverse set of tasks, such as (a) image
recognition [1], (b) speech recognition [2], and (c) strategy games [3].

• Data noise: this category includes natural weather-like corruptions,

engineered adversarial transformations, and/or the noise in front-end

sensing circuits of the ML systems.

• Hardware noise: this category includes switching errors in hardware

logic gates, noise due to reduced precision and analog computation,

and/or impact of process and voltage variations.

Unfortunately, human-comparable accuracy of state-of-the-art (SOTA) ML

algorithms does not translate to equivalently high robustness. For example,

the image recognition accuracy of deep nets gets severely lowered in the pres-

ence of common corruptions [10] (e.g . snow, fog, and others). Furthermore,

even tiny, imperceptible perturbations in their inputs can fool deep nets to

make decision errors on every single input in the test dataset [9, 11, 12, 13,

2

14]. Similarly, emerging beyond-CMOS devices suffer from increased vulner-

ability to hardware noise and variations [4, 8, 15, 16], causing significant drop

in the inference accuracy. Hence, it is important to develop techniques that

enhance robustness of ML systems, while preserving their accuracy.

The discussion of accuracy and robustness of ML systems is incomplete

without the consideration of their efficiency. In this dissertation, we capture

it via the cost metrics, which include both the time required to train the

model (training cost), as well as energy and latency associated with produc-

ing single decision in deployment (inference cost per decision). Deep nets

today require millions of trainable parameters to achieve their state-of-the-

art accuracy [1, 17], resulting in significant training and inference costs. This

challenge is further exacerbated due to current hardware limitations such as

expensive memory accesses [18], slowing down of CMOS scaling [19, 20], and

increased vulnerability to process variations in both CMOS [5] and beyond-

CMOS [4, 21, 8] devices.

Today both robustness and cost challenges are well-recognized. In re-

sponse, a large number of works have focused on improving either accuracy

vs. robustness trade-off (see Sec. 1.1), or accuracy vs. cost trade-off (see

Sec. 1.2). However, simultaneous consideration of accuracy, robustness, and

cost metrics is largely absent today, in part, because far fewer works have

explored robustness vs. cost trade-off. This dissertation aims to fill this

gap by focusing explicitly on robustness vs. cost trade-off in the presence of

data noise, as well as hardware noise (see Sec. 1.3). We outline dissertation

organization in Sec. 1.4.

original
image

engineered
perturbation

perturbed
image

original decision
“panda”

final decision
“gibbon” 44 45 46 47 48 49 50 51

81

82

83

84

85

86

87

88
ResNet-18 on CIFAR-10

Adversarial accuracy (%)

Na
tu

ra
l a

cc
ur

ac
y

(%
)

Robust accuracy (%)

(b)(a)

state-of-the-art defense:
TRADES
[ICML’19]

Figure 1.2: Adversarial vulnerability of deep nets: (a) example of imper-
ceptible adversarial perturbation resulting in incorrect decision [9], and (b)
trade-off between natural accuracy and robust accuracy observed for the
state-of-the-art defense TRADES [22].

3

1.1 Accuracy vs. Robustness Trade-off

In spite of the high classification accuracy of deep nets [1], they are sur-

prisingly easily fooled by corruptions in their inputs. For example, their

accuracy reduces significantly in the presence of common weather-like cor-

ruptions [10], strange poses of familiar objects [23], and image rotations [24].

Furthermore, even tiny imperceptible changes in their inputs, i.e. adversarial

perturbations [9], are sufficient to cause incorrect classification. Figure 1.2(a)

shows an example of such perturbation, where despite being imperceptible,

it changes the classification decision of a deep network AlexNet [9]. Similar

perturbations can be found for any given deep net and any given input of

that network. Furthermore, such a phenomenon has been observed across

domains, i.e., in image [9], speech [25], text [26], as well as, video games [27].

Multiple approaches to construct adversarial examples (attack methods)

have been proposed [28, 11, 29, 12, 30, 31, 32, 33, 34]. While the basic

idea is to move the input in the direction of increasing loss, stronger at-

tacks [13, 12, 34, 30, 31] operate iteratively by perturbing the input in small

increments. Almost all of these attacks succeed deterministically, i.e., they

cause classification errors for all inputs in the test dataset, against a naturally

trained deep net. On the defense side, early attempts to provide adversarial

defenses employed techniques such as introducing non-differentiable and/or

randomized operations in the forward pass, ensemble of multiple networks

[35, 36, 37, 38, 39, 40, 41]. However, such defenses were shown to be ineffec-

tive [42, 14], especially when the attacker takes explicit measures to evade

that particular defense, i.e., adaptive attacks. One example of adaptive at-

tack is when an attacker employs expectation over transformation (EOT)

to eliminate the impact of randomization in defense technique [42]. Thus,

defending DNNs against adversarial attacks remains a formidable challenge

partly due to a lack of in-depth understanding of the underlying cause of its

vulnerability to adversarial perturbations.

Today adversarial training (AT) provides state-of-the-art (SOTA) empir-

ical defense against adversarial perturbations. In AT, adversarial perturba-

tions are computed during training to optimize a robust loss function [13].

After its initial success, multiple extensions and improvements in AT have

been proposed [22, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54]. In all these

works, an improvement in robustness was always accompanied with some

4

reduction in natural accuracy, i.e., all of them observe a trade-off between

accuracy vs. robustness [55, 56]. For example, Fig. 1.2(b) shows such a trade-

off for one of the SOTA AT framework called TRADES [22] on CIFAR-10

dataset. Notice that robust accuracy increases only at an expense of reduc-

tion in natural accuracy. Furthermore, robust accuracy is significantly (by

∼40%) lower than natural accuracy even for the state-of-the-art defense. We

will discuss in Sec. 1.3 how any efforts in further improving the robustness

requires one to start considering robustness vs. cost trade-off.

The second source of noise is the device/circuit-level non-determinism in

hardware implementations. Today, all digital CMOS implementations re-

quire deterministic switching of their component switches and gates. The

problem of robustifying computation in the presence of unreliable/noisy com-

ponents was posed, as early as, in 1956 by John von Neumann in [57]. He

defined robust logic network as one whose output exhibits a probability of er-

ror pe < 0.5 when designed using ε-noisy logic gates, i.e., gates whose outputs

are in error with probability ε. It was further demonstrated that a robust

logic network can be designed for any logic function provided ε ≤ 0.0073

and that it is impossible to do so if ε > 1
6
. Later tighter upper bounds on ε

were obtained in a series of papers [58, 59] culminating with those of Evans

and Schulman [60]. In all these works, the overhead of additional gates re-

quired to achieve robustness was found to be impractically high, i.e. the cost

associated with improving accuracy vs. robustness trade-off was too large.

More recently, a class of statistical error compensation (SEC) techniques

was proposed to achieve robust computation in the presence of process/voltage

induced delay variations in CMOS digital implementations of signal process-

ing/ML applications [7, 61, 62]. In SEC, the hardware errors due to delay

variations were compensated at the final system-level output to maintain the

complexity of compensation circuits within 15%-to-20% of the main block

computation [63]. As a result, up to 16× increase in error tolerance was

achieved at a marginal drop in accuracy [7]. Such robustness gains were

traded-off with up to 4× improvement in the energy-efficiency.

Finally, researchers explored modifying ML classifier training flow to en-

hance its robustness to hardware noise during inference. The examples in-

clude hardware-in-a-loop training of classifiers [64, 65] and hardware-aware

noise injection during training [8, 16, 66, 15]. For emerging non-volatile mem-

ories, such approaches can also be combined with adaptive program-verify

5

(a) (b)

Figure 1.3: Accuracy vs. cost trade-off in deep nets [67]: classification accu-
racy vs. (a) number of floating-point operations and (b) images per second
on NVIDIA Jetson TX1 GPU of the deep nets classifying Imagenet [68] 2012
ILSVRC dataset. The size of each ball in Fig. (a) denotes the number of
parameters in the network. Millions of parameters and floating-point opera-
tions are required to achieve the SOTA accuracy.

write techniques employed to minimize the impact of write variations [21].

All these methods achieve certain improvements in the robustness to hard-

ware noise and variations at a cost of small reduction in the accuracy.

1.2 Accuracy vs. Cost Trade-off

As shown in Fig. 1.1(a), deep nets achieved human-comparable accuracy in

image classification tasks in 2014-15. Early proposals, such as VGGNet, were

very expensive in terms of the number of network parameters and floating-

point operations (FLOPs) required to produce a single decision. Since then,

plethora of efforts have focused on improving accuracy vs. cost trade-off in

deep nets as observed in Fig. 1.3(a). The proposals included both improved

network architectures (e.g . [1, 17, 69, 70, 71, 72, 73, 74, 75]), as well as better

training techniques (e.g . [76, 77, 78]) to achieve significant gains in accuracy

vs. cost (FLOPs per inference) trade-off. The reduction in the parameter

count and FLOPs also translates in improved throughput in hardware for

image classification. For example, Fig. 1.3(b) shows corresponding accuracy

vs. images classified per second for recently proposed deep nets running on

6

Spin after device
improvements

Spintronic
Electronic
CMOS

vdWFET

spinFET
GpnJ

ITFET

gnrTFET
ThinTFET GaNTFET

HomJTFET
TMDTFET

HetJTFET

SWD
SMG

STT/DW

NML

STOlogic

[Nikonov-JXCDC-2015] [Manipatruni-PRApplied-2016]

ASL

int ADD
float ADD

Register File
int MULT

float MULT
on-chip SRAM
off-chip DRAM

32-bit precision (45nm CMOS)

(b)(a)

Figure 1.4: Hardware Challenges: (a) NAND2 gate switching energy vs.
switching delay comparisons of the multiple beyond-CMOS devices under
exploration, and their comparison with 14 nm CMOS [97, 98], (b) relative
energy costs of different 32 bit operations for 45 nm CMOS implementa-
tions [18]. None of the beyond-CMOS devices on horizon significantly outper-
form CMOS and both on-chip and off-chip memory accesses are significantly
costlier than compute operations in CMOS.

NVIDIA Jetson TX1 GPU. Researchers have also explored strategies, such as

pruning [79, 80, 81, 82, 83, 84, 53, 85], aggressive quantization [86, 87, 88, 89],

and neural architecture search (NAS) [90, 91, 92, 93, 94, 95, 54], to push

the envelop of accuracy vs. robustness trade-off. Thanks to all these efforts,

bringing the power of deep nets to the cost-constrained microcontroller-based

edge devices is now a real possibility [96]. However, almost all these works do

not focus on the robustness aspects discussed in Sec. 1.1. Only recently early

exploration in this direction was started by combining adversarial training

with pruning/NAS techniques [53, 85, 54].

All of the works discussed above improve accuracy vs. cost trade-off within

the constraints of the current hardware. In order to push their envelope fur-

ther, one needs to address today’s hardware limitations. For instance, as

the channel lengths continue to reduce beyond a few tens of nanometers, the

energy and delay reductions due to CMOS scaling have stagnated. Further-

more, while multiple beyond-CMOS devices are under exploration, none of

them significantly outperform CMOS in terms of gate-level switching energy

and delay [97, 98], as evident in Fig. 1.4(a). Even in CMOS implementations,

accessing data from memory is more expensive than doing computations on

that data [18], as shown in Fig. 1.4(b). For example, fetching 32 bit word

from register file or on-chip SRAM is almost 10× more energy-expensive

7

105 106 107
35

40

45

50

R
ob

us
t a

cc
ur

ac
y

(%
)

Ef
fe

ct
iv

e
tra

in
in

g
tim

e
(×
10
00
0s

)

1 2
0

1

2

3

4 104

TRADES

Standard

8×

ResNet-20 on CIFAR-10 LeNet on MNIST

(b)(a) (c)

No. of parameters

ResNet-18 on CIFAR-10

60

80

100

A
cc

ur
ac

y
(%

)

103 104

robust

natural

size of training dataset

Figure 1.5: Interwoven robustness and cost challenges: Robust accuracy vs.
(a) no. of model parameters [99] for ResNet-20 network trained on CIFAR-
10 dataset, (b) natural and robust accuracy vs. size of training dataset
for MNIST dataset [100], and (c) comparison of effective training time for
standard training and TRADES adversarial training [22].

than 32 bit int ADD operation. Furthermore, off-chip DRAM accesses are

almost 10× more energy-expensive than even iso-precision int MULT. This

challenge is particularly exacerbated for deep net implementations due to

their large parameter requirements. In the Sec. 1.3, we will discuss how the

current approaches addressing these challenges, in fact, requires one to focus

on robustness vs. cost trade-off due to hardware noise.

1.3 Dissertation Contribution: Improving Robustness

vs. Cost Trade-off

As discussed in Sec. 1.1 and Sec. 1.2 the accuracy vs. robustness trade-off

and accuracy vs. cost trade-off are primarily explored independently today.

However, they start getting interwoven as one attempts to design ML imple-

mentations at the limits of accuracy, robustness, and efficiency. For instance,

while pushing the envelop of accuracy vs. robustness trade-off via AT, one

begins to run into prohibitive increase in training and inference costs as

shown in Fig. 1.5, i.e. one needs bigger models [99, 104] (Fig. 1.5(a)), larger

training dataset [100, 105] (Fig. 1.5(a)), and at times, even 8×-to-10× more

complex training algorithms [22, 106, 107]. On the other hand, quest for

achieving leaps of energy-efficiency in hardware requires addressing the ro-

bustness challenge in the presence of hardware noise [108, 65, 5]. For instance,

prominent beyond-CMOS devices, such as RRAM and spin-based devices,

8

0.7 0.8 0.9 1.0 1.1

102

103

104

Pulse Amplitude (V)

Pu
ls

e
W

id
th

 (n
s)

0.000

0.2500

0.5000

0.7500

1.000

0.7 0.8 0.9 1.0 1.1

102

103

104

Pulse Amplitude (V)

Pu
ls

e
W

id
th

 (n
s)

0.000

0.2500

0.5000

0.7500

1.000

0%

100%

50%

25%

75%

50%

Experimental	data

RRAM Spin devices

(b)(a)

measured switching probability simulated switching error rate

Pulse width (ns)

sw
itc

hi
ng

 e
rro

r r
at

e

Figure 1.6: Intrinsically non-deterministic nature of emerging beyond CMOS
devices: (a) measured switching probability vs. pulse width vs. pulse am-
plitude trade-off for RRAM devices [101], (b) simulated switching error rate
vs. pulse width trade-off for spin-based devices with different energy barriers
[102, 103].

are inherently non-deterministic in nature [102, 101, 103]. Their switching

error rates increase with the reduction in their switching energy/delay as

shown in Fig. 1.6. Similar trends are also observed in one of the promising

approach called in-memory computing (IMC), where one strives to embed

computation within the bitcell array (BCA) and its peripherals in order re-

duce the memory access costs. Due to severe area constraints in the BCA,

such in-memory computation often needs to happen in the analog domain

along bitlines (BLs) by using change in BL voltage ∆VBLB to represent multi-

bit information (see e.g . Fig. 1.7(a)). With decreasing BL discharge, a key

knob for reducing energy cost of SRAM read, the variations in ∆VBLB in-

crease as shown in Fig. 1.7(b) [65]. It adversely affects the classifier accuracy

(also shown in Fig. 1.7(b) [65]) indicating the need for improving robustness

against hardware noise to achieve maximum energy benefits.

In summary, improving the accuracy vs. robustness trade-off in the pres-

ence of data noise exacerbates the need for cost-efficiency, while one needs to

achieve robustness against hardware noise to further enhance the accuracy

vs. cost trade-off. To address this predicament, we believe that one needs to

focus explicitly on improving the robustness vs. cost trade-off. Specifically,

we ask following fundamental questions:

How should the noise be managed in order to enhance robustness

vs. cost trade-off in ML systems? Is noise always a problem that

should be mitigated? Can it be exploited as a feature?

9

MR-FR
driver

Ro
w
	d
ec
od

er

Ro
w
de
co
de
r

decision

Cross	BL processor	(CBLP) A/D	&	Slicer

d0

d1

d2

d3
...
...

BLP BLP BLP BLP BLP BLP

Precharge

SA SA SA

Col.	mux

mux &	buffer

Col.
dec.

K-bus

Col.	mux Col.	mux

deep	in-memory

(b)(a)

Figure 1.7: Need for robustness against hardware noise in in-memory comput-
ing: (a) deep in-memory architecture (DIMA), and (b) variations in ∆VBLB
and their impact on classifier accuracy as a function of maximum BL dis-
charge, a key knob controlling energy consumption.

This dissertation attempts to address these questions in diverse problem

settings across the design stack. Based on our work, we find that noise need

not always be mitigated, but the robustness vs. cost trade-off in the presence

of both hardware noise and data noise can be enhanced via noise shaping. For

example, in Chapter 2, we show how hardware noise distribution in spintronic

digital implementations can be shaped to achieve robust computation even in

the presence of error-prone logic gates. As an another example, in Chapter 7,

we demonstrate how shaped noise can be specifically introduced in the deep

nets to achieve high adversarial robustness at significantly lower training cost.

1.4 Dissertation Organization

Our contributions in this dissertation are organized as follows:

Chapter 2 explores how the noise distribution in spin-based digital im-

plementations can be shaped by exploiting inherent trade-off between error

rate, energy, and delay for spin-based logic gates. Such noise shaping en-

abled efficient error compensation via a Shannon-inspired model of computa-

tion. Resulting classifier implementation is 1000× more tolerant to gate-level

switching error rate compared to the conventional implementation. These ro-

bustness improvements are translated into energy-efficiency gains.

Chapter 3 demonstrates how the impact of spin device noise is fun-

damentally changed via novel circuit design and algorithmic techniques to

10

achieve energy-efficient inference implementations. In particular, this chap-

ter presents spin channel networks (SCN) – a novel spin-based circuit design

approach that exploit exponential decay of spin current to efficiently realize

multi-bit dot product computation. Furthermore, Adaptive Boosting (Ad-

aBoost) framework is employed to design multiple isolated tiny spin channel

networks (t-SCNs) that work in unison to solve an arbitrary binary classifi-

cation task. Such boosted t-SCNs achieve 112×-to-22.5× and 14×-to-2.5×
higher energy-efficiency over conventional spin-based and 20 nm CMOS de-

signs, respectively, when realizing 10-to-100-dimensional binary classifiers.

Chapter 4 proposes an MRAM-based deep in-memory architecture to

achieve multi-bit matrix-vector multiplication (MVM) within a single read

operation of MRAM bitcell array (MRAM-BCA). The MRAM-BCA periph-

eral circuits are modified to potentially achieve such multi-bit computation

at 20× and 10× lower energy and delay, respectively, compared to digital

MRAM implementation. The robustness challenges that emerge as a byprod-

uct of achieved energy benefits are further characterized, and techniques to

address them are discussed.

Chapter 5 presents signal-to-noise ratio (SNR) analysis for in-memory

computing in resistive crossbar arrays. Specifically, we show how the circuit-

level specifications of peripherals affect SNR as a function of array size, sens-

ing circuit impedance, as well as energy per operation for PCM, MRAM, and

RRAM. The noise sources considered are mismatch in the conductance and

input digital-to-analog converters (DACs), as well as, clipping and quanti-

zation noise in the readout circuits. We conclude by proving some design

guidelines for appropriate noise budgeting in order to achieve accurate in-

memory matrix vector multiplication in the in-memory crossbar arrays.

Chapter 6 aims to develop deeper understanding of geometric orientations

of adversarial perturbations of deep nets via subspace analysis for image

classification tasks. Specifically, we propose and validate the hypotheses

about orientations of dominant subspaces of adversarial perturbations. We

demonstrate how changes in the curvature of decision boundary of the deep

nets affects the orientations of the adversarial perturbations. The hypotheses

and insights developed in this chapter lead to noise shaping and augmentation

techniques proposed in Chapter 7.

Chapter 7 explores how shaped noise can be employed as to enhance

adversarial robustness vs. cost trade-off in deep nets based on the insights

11

from Chapter 6. Specifically, we propose shaped noise augmented processing

(SNAP), a method to efficiently train deep nets that are robust to mul-

tiple types of adversarial perturbations, simultaneously. SNAP prepends

a deep net with a shaped noise augmentation layer whose distribution is

learned along with the network parameters using any established robust

training framework. Based on extensive comparisons with nine state-of-the-

art (SOTA) robust training frameworks, we show that SNAP achieves the

best robustness vs. training cost trade-off. Furthermore, thanks to the com-

putational efficiency of our approach, we report for the first time ResNet-50

(ResNet-101) networks on ImageNet that achieve > 30% robust accuracy

against the union of (`∞, `2, `1) adversarial perturbations.

Chapter 8 outlines a few potential extensions and future research direc-

tions.

12

CHAPTER 2

ROBUST SPINTRONICS VIA
SHANNON-INSPIRED APPROACH

2.1 Overview

As we discussed in Chapter 1, CMOS scaling is slowing down and none

of the beyond-CMOS devices are yet able to significantly outperform CMOS

[97, 98]. Spin-based computational devices built with nanomagnets and spin-

polarized transport have emerged as a viable beyond CMOS option, due to

their following favorable attributes: (i) non-volatility, (ii) higher logical effi-

ciency, and (iii) high integration density and compatibility with the state-of-

art back-end electronics manufacturing processes. These devices are a subset

of the beyond-CMOS devices which include devices based on electron spin

[109, 103] and magneto-electric [110, 111] phenomena. However, spin-based

devices are not competitive to CMOS [98], in terms of switching energy and

delay, due to their high energy-delay requirements to achieve deterministic

switching [102, 112, 113, 114]. As switching energy or delay is reduced, their

switching error probability increases, rendering them incompatible with the

required determinism of the digital logic.

In this chapter, we demonstrate how spin-based digital implementations of

ML classifiers can be made robust to a significant increase in the switching

error probability of their component logic gates. We employ the Shannon-

inspired model of computation [5] to enhance such gate-level switching error

tolerance. In the Shannon-inspired framework, hardware errors are engi-

neered and then efficiently compensated via the introduction of tailored re-

dundancy, in the spirit of Shannon’s theory for communications [115]. The

detailed contributions of this chapter are as follows:

• We characterize the ε-energy-delay trade-off for ASL gates to enable

non-uniform ε assignments across logic gates.

13

• We propose logic-level path delay reallocation techniques to assign ap-

propriate error rates to individual gates such that the resulting output

error distributions are shaped to facilitate error compensation.

• We propose a novel maximum likelihood (ML) error compensation

scheme that exploits these shaped output error statistics to compensate

the errors efficiently.

• We demonstrate a 1000× higher average error rate tolerance and a 3×
lower energy-per-decision for an ASL-based digital support vector ma-

chine (SVM) implementation, while maintaining its system-level clas-

sification accuracy.

2.2 Background

2.2.1 All Spin Logic Device

Figure 2.1(a) shows a diagram of an ASL inverter. It consists of two nano-

magnets separated by a conducting channel of length L. The input magnet

(Min) polarizes the supply current passing through it. This creates a spin con-

centration gradient and propagates a spin current in the channel of length L.

This spin current, in turn, exerts a torque on the magnetization of the output

magnet (Mout) forcing it to switch. Since the magnets are non-volatile, they

retain the magnetization vector state when the supply current is switched

off.

Electrical current in the order of 10µA-to-100µA is required to generate

sufficient spin current to switch the output magnet. Since the nanomag-

nets and the spin channel are metallic, the equivalent electrical resistance

across the nanomagnet-channel stack is small (few Ωs), enabling these de-

vices to operate at ultra-low supply voltages. However, the electrical current

through the input nanomagnet flows irrespective of output activity, causing

high static energy consumption. The nanomagnets, being non-volatile, retain

the magnetization vector state even when the supply current is switched off.

Hence, researchers propose to clock these devices via a MOSFET [116, 117],

operating in the linear region, which acts as a switch turning ON the ASL

device only when it needs to compute as shown in Fig. 2.1(a). The ON

14

Spin Torque Transfer

!""

!## ≈ 20mV- 50mV

Output
Magnetization

(*)

Input
Magnetization

(+)

,-CLK= 1!
CLK

CLK= 0!
+
0

CLK

1

*+

CLK

(a)

(b)

(c)

MAJ
*

Spin Transfer Torque

!""

!## ≈ 20mV- 50mV

Output
Magnet (*+,-)

Input
Magnet (*./)

01!2 = 1!

!2

!2 = 0!

567 68

Figure 2.1: All Spin Logic (ASL) (a) diagram of clocked ASL inverter gate
[118, 117], (b) clocked ASL inverter symbol, and (c) clocked ASL 3-majority
gate symbol.

duration Tg of clock can be externally controlled for each gate. Thus, the

energy consumption of the clocked ASL gates is completely determined by

Tg and the ON current of the gating MOSFET. Figure 2.1(b) and 2.1(c)

show the logical symbols for clocked ASL inverter and 3-majority gate, re-

spectively. Pajouhi et al . [116] proposed to share a single MOSFET across

multiple nanomagnets by electrically stacking their supply terminals in series

to significantly amortize the clock pulse generation and MOSFET switching

overheads. In this work, we assume such amortization described in [116] and

focus on the impact of gate-level switching errors on the final output.

2.2.2 Support Vector Machine

Linear SVM [119] is a simple and popular machine learning algorithm for

binary classification. The SVM learns a hyperplane to separate the training

feature vectors into two regions, each corresponding to one class, as shown

below:

wTx + b
ẑ=1

R
ẑ=−1

0

where w and b denote the trained weight vector and bias representing the

separating hyperplane, respectively, x denotes the N -dimensional input fea-

ture vector, and ẑ denotes the predicted label. If the true label is denoted

by z, the accuracy of SVM is given by the probability of classification error

pe = Pr{ẑ 6= z}, which can be empirically estimated for a given dataset.

15

(a)

0

𝑃"(𝜂) 𝑃&(𝑒)

0

(d)

Nanoscale	
Fabric	
Noise	𝜂

Input
𝑋

𝑌* = 𝑓(𝑋)Error-free
Computation	

𝑓 ⋅ 𝑌 =
𝑓 𝑋; 𝜂

noisy	device	fabric

Output
𝑌/Encoder Decoder

	𝑓123 𝑋; 𝜂 𝑌/𝑋
Statistical

Error
Compensator
𝑔 𝑌5,… , 𝑌8

𝑌5

𝑌9

𝑌8

⋮

Main	Block
𝑥5 𝑦= = 𝑦* + 𝜂

𝑥?

…

estimation
error

Estimator
𝑥5
𝑥?

… 𝑦& = 𝑦* + 𝑒 𝑦@

computational
error

Statistical	
Error	

Compensator

𝑘

𝑚

estimator
output

𝑙

𝑞
𝑙

correct
output

erroneous
output

(c)

(b)

Figure 2.2: The Shannon-inspired model of computation: (a) model, (b) sta-
tistical error compensation (SEC), (c) algorithmic noise tolerance (ANT), a
special case of SEC, where the error compensator combines two unreliable
outputs ya and ye, (d) illustrative distributions of computational error η,
estimation error e that lead to a low-complexity and accurate error compen-
sator.

2.2.3 Shannon-inspired Model of Computation

The Shannon-inspired model of computation [5] (Fig. 2.2(a)) comprises an

encoder, a noise-free computation of the desired correct output Yo = f(X)

being corrupted by noise in nanoscale fabrics parametrized by variable η to

generate the observed output Y = f(X; η) of the error-prone device fabric

(the channel), followed by the decoder that recovers the corrected output

Ŷ . In Fig. 2.2(a), all variables (X, Yo, η, Y, Ŷ) are random variables. In

this chapter, we use capitals to denote random variables and small letters to

denote their particular instance. For example, Y denotes a random variable,

while y denotes a specific value of Y .

Statistical error compensation (SEC) (Fig. 2.2(b)), one class of the de-

sign techniques within the Shannon-inspired framework [5, 120], introduces

a statistical error compensator block as a decoder, which combines multiple

unreliable outputs Y1, . . . , Yn to compute corrected output Ŷ . Algorithmic

noise tolerance (ANT) (Fig. 2.2(c)) is a special case of SEC where the error

compensator combines two unreliable outputs ya and ye. ANT consists of a

main block designed using unreliable/noisy device fabric accounts for 85%-

16

90% of total gate count complexity. It strives to compute correct output yo,

but ends up computing ya due to the unreliability of the underlying device

fabric. ANT augments the main block with a low complexity estimator that

computes an estimate ye of the correct output yo. Under the assumption of

additive noise model, the main block and estimator outputs are described as

follows:

ya = yo + η (2.1)

ye = yo + e (2.2)

where η is a system-level hardware error observed at the main block output,

and e is the estimation error incurred due to inherent lower complexity of

the estimator.

The estimator and the error compensator are designed using reliable, and

hence energy-inefficient, circuits, constituting the error compensation over-

head in ANT. Hence, their combined complexity (in terms of gate count)

needs to be significantly (≈ 5-to-10×) smaller than the main block. Pre-

viously, it has been shown that [7, 121, 122] the complexity of the error

compensator can be reduced by shaping the distributions of η and e, Pη(η)

and Pe(e), respectively, to be disparate from each other as shown in Fig.

2.2(b) and 2.2(c). In particular, a dense Pe(e) is realized by introducing a

reduced-precision estimator, while a sparse Pη(η) is realized by permitting

MSB errors in the LSB-first architectures [121, 123, 63, 122]. Various design

techniques to reduce the overhead of the estimator and the error compensator

have been proposed [63, 124, 125, 123].

2.2.4 Mutual Information (MI)

The mutual information (MI) I(X;Y) between two random variables X and

Y quantifies the amount of information conveyed about X by knowing the

value of Y , and vice versa. The MI I(X;Y) is defined as:

I(X;Y) = H(X)−H(X|Y) = H(Y)−H(Y |X) (2.3)

where H(X) and H(X|Y) denote the entropy of X and conditional en-

tropy of X given Y , respectively. The entropy H(X) of a random vari-

17

10-17 10-16 10-15 10-14

Energy E (J)

10-11

10-10

10-9

10-8

D
el

ay
 T

g (s
)

=10-14

=10-12

=10-10

=10-8

=10-6

=10-4

=10-2
=10-1=0.5

Average delay (0.5)
LV CMOS FO4 INV 20nm

𝟖×

𝟖.𝟑×

𝟓×
𝟔×

Figure 2.3: Trade-off between switching error rate ε, switching energy Eg,
and switching delay Tg for a clocked ASL inverter gate.

able X quantifies the uncertainty about the value of X, and is a function

of its probability distribution. In this chapter, we use MI metric to show

that the Shannon-inspired model of computation (Fig. 2.2) enhances the MI

I(Yo;Ya, Ye), thereby enabling an accurate recovery of yo from ya and ye.

2.3 Modeling Stochasticity of ASL Devices

In this section, we develop a gate-level model to capture the inherent device-

level stochasticity of ASL at the circuit and architecture level. Even after

receiving supply current Ion (> Icrit) at the input nanomagnet, the output

nanomagnet of the ASL gate may not switch due to the presence of Langevin

thermal noise [102, 112, 113, 114], where Icrit denotes the minimum current

required for nanomagnetic switching. In this chapter, we refer to this proba-

bilistic event as switching error , and its probability ε as the switching error

rate. In [102], an analytical expression for ε was derived by employing the

Fokker-Planck equation for magnetization vector switching dynamics gov-

erned by the fundamental LLG equation and was validated against Landau-

Lifshitz simulations of a macrospin including appropriate thermal field. This

analysis indicates a gate-level trade-off between switching error rate ε, the

switching energy Eg, and the switching delay Tg of ASL gates.

Figure 2.3 shows the iso-error rate delay vs. energy contours of an ASL

inverter at various error rates. As expected, the error rate decreases with

18

1

0
Error-free

gate

𝑇"

𝑡	 𝑡	 + 𝑇"
OFFONOFF

𝐴'
𝐵'

𝑀' = maj(𝐴', 𝐵', 𝐶')

𝜃

𝕀 45675

𝑌'9:;D Q

CLK

CLK

𝐴'
𝐵'

CLK

𝑌'9:; 𝐴

𝐵

CLK

𝑌

(b)(a)

MAJ
𝐶'

𝐶
MAJ

𝐶'

Figure 2.4: The modified ε-noisy gate model for clocked ASL: (a) a gate-
level schematic emulating the stochastic behavior of a non-volatile, clocked
ASL 3-majority gate, and (b) timing diagram illustrating the phase where
the gate is ON and OFF.

≈≈≈

"

$
"

≈≈≈

"

$
"

(a) (b) (c)

8 8

!" !#

8

$% = !" + !# + (

1)*
1)′*

1
),-

1)′,-

) .

CLK

.
/

CLK

0 MAJ
)

≈≈≈

"

$
"

≈≈≈

"

$
"

(a) (b) (c)

8 8

!" !#

8

$% = !" + !# + (

1)*
1)′*

1
),-

1)′,-

) .

CLK

.
/

CLK

0 MAJ
)

Figure 2.5: RCA with gate-level uniform error rate ε assignment operating at
total delay of 1.24 ns: (a) schematic of 8 bit RCA showing all gates operating
at ε = εcp-avg = 10−2, and error distribution Pη(η) for a 15 bit RCA (b)
when ε = εcp-avg = 10−2, ERCA15 = 90 fJ, and (c) when εcp-avg = 10−1,
ERCA15 = 60 fJ, where ERCA15 denotes total switching energy of 15 bit RCA.

19

≈≈≈

"

$
"

"

$
"

(a) (b) (c)

8 8

!" !#

8

$% = !" + !# + (

1)*
1)′*

1
),-

1)′,-

≈≈≈

"

$
"

"

$
"

(a) (b) (c)

8 8

!" !#

8

$% = !" + !# + (

1)*
1)′*

1
),-

1)′,-

Figure 2.6: RCA with shaped error statistics operating at total delay of
1.24 ns: (a) schematic of an 8 bit RCA illustrating spatial distribution of gate-
level ε after applying PDB and PDR, and error distribution Pη(η) for a 15 bit
RCA (b) when εcp-avg = 10−2, ERCA15 = 90 fJ, and (c) when εcp-avg = 10−1,
ERCA15 = 60 fJ. The colors in (a) approximately convey the error rates of
the gates as per the color code in Fig. 2.3.

increasing energy or delay. In fact, when Ion � Icrit, the expression for ε

[102] can be simplified via Taylor series approximation to:

ε(Eg, Tg) = β exp(−ζ
√
EgTg) (2.4)

where β and ζ are device-dependent constants A 3-majority ASL gate oper-

ates with error rate of ε(Eg, Tg) if all its inputs are equal, and with higher

error rate of ε(Eg
3
, Tg) otherwise. In this work, we conservatively upper-bound

the error rate of 3-majority gate to ε(Eg
3
, Tg). Equation (2.4) explains the ob-

served linearity of the contours at higher values of Eg or Tg in Fig. 2.3. We

further note that ASL inverter consumes 8× more energy compared to 20 nm

CMOS FO4 inverter [103] at ε = 10−14 and at identical switching delays.

Hence, ASL-based conventional digital architectures remain non-competitive

with respect to present day CMOS. As ε is increased beyond 1%, the ASL

inverter becomes more energy-efficient than CMOS, demonstrating the po-

tential for achieving energy-efficiency, if one can tolerate such high gate-level

error rates while maintaining final system-level accuracy.

20

We develop a modified ε-noisy gate model (Fig. 2.4(a)) to describe a

clocked ASL gate, which comprehends its underlying stochastic behavior,

while being sufficiently abstract to permit the design and analysis of complex

ASL networks. The modified ε-noisy gate model captures: (a) the logic-level

manifestation of device-level stochasticity, (b) the input dependence of ASL

errors due to the non-volatility of the nanomagnets, i.e., the ASL gate makes

an error only when the output nanomagnet fails to switch when it should,

implying a dependence of the error event on the input data, and (c) the role

of the CLK terminal in the gate operation.

Figure 2.4(b) shows the timing diagram for the modified ε-noisy model.

The Boolean inputs A, B, and C are applied at time t. The ASL gate gener-

ates its output Y at time t+ Tg where Tg is the switching delay assigned to

the ASL gate. The model comprises of an ideal noise-free Boolean gate whose

output Mt = maj{At, Bt, Ct} is EXORed with a Bernoulli random variable

θ with parameter ε, i.e., Pr{θ = 1} = ε. The output selector (implemented

using a multiplexer in Fig. 2.4(b)) computes the final output Yt+Tg by choos-

ing either the output of the EXOR gate Mt ⊕ θ or the error-free output Mt.

The D flip-flop models the non-volatility, i.e., the ability to retain the output

when CLK = 0. The EXOR gate output is chosen only if Yt 6= Mt, capturing

the fact that the switching error can occur only if the output nanomagnet is

required to switch.

2.4 Shannon-inspired ASL Architecture

In this section, we describe how the Shannon-inspired approach can be ap-

plied to clocked ASL networks to increase their tolerance to switching errors.

In Sec. 2.4.1, we propose path delay reallocation techniques that exploit the

gate-level trade-off between ε, Eg, and Tg to shape the output error statistics

and thereby ease error recovery. In Sec. 2.4.2, we propose a novel fusion

block architecture to compensate for the switching errors.

2.4.1 Shaping Error Statistics

In clocked digital ASL networks, the random switching errors occur at the

output of every logic gate as modeled in Sec. 2.3. The impact of such gate-

21

level errors accumulates as the input propagates to the final output. For

example, consider a clocked ASL-based 8 bit ripple carry adder (RCA) con-

sisting of all ASL gates operating at identical switching delay Tg, switch-

ing energy per nanomagnet Eg, and hence, identical ε(Eg, Tg) as shown in

Fig. 2.5(a). The resulting distribution Pη(η) of output error η for a 15 bit

RCA is dense as shown in Fig. 2.5(b) and 2.5(c) for ε(Eg, Tg) = 10−2

and ε(Eg, Tg) = 10−1, respectively. Brute force compensation of the er-

rors having such distributions can be computationally expensive as discussed

in Sec. 2.4.2. We propose error statistics shaping techniques to impose a

structure on Pη(η) to reduce the complexity of error compensation.

We exploit the error rate, energy, and delay trade-off of the clocked ASL

gates (shown in Fig. 2.3) to shape the distribution of error η. In particular,

we control the gate-level switching delay via clock pulse width modulation

as described in Sec. 2.2.1 [117, 116]. Exploiting this degree-of-freedom, we

propose two logic-level delay assignment steps, namely path delay balancing

(PDB) and path delay redistribution (PDR). We begin with a logic gate

network with all gate delays equal to Tg. Thus, the critical paths are those

with the maximum number of gates Ncp and therefore have the path delay

Tcp = TgNcp. In PDB and PDR steps, the gate delays are reassigned at

a constant switching energy (per nanomagnet) of Eg (moving vertically in

Fig. 2.3) and at a constant throughput (identical critical path delay Tcp) as

follows.

PDB

In PDB, delays of gates lying on the shorter paths are increased, at a constant

energy Eg, making every gate to lie on one or more critical paths. Thus, PDB

reduces error rate of gates on shorter paths, while leaving the original critical

path unaltered, now containing gates with highest error rates.

PDR

In PDR, the gates delays along all critical paths are further redistributed to

further enhance the sparsity of Pη(η), while keeping their path delay constant.

In particular, the delays of the few gates in the middle of the critical path are

increased (lowering ε) at the expense of the reduction in the delays (increasing

22

𝜂0

𝑃#(𝜂) 1

0−ℒ ℒ

1
ℒ

𝜂)* 𝜂*𝜂+𝜂)+ 𝜂), 𝜂,

𝑝)*
𝑝)+

𝑝),

𝑝.

𝑝, 𝑝+ 𝑝*𝑑

𝑒

𝑃1(𝑒)

𝑦310

𝑓5(𝑦31, 𝜂+)

𝜂)* 𝜂*𝜂+𝜂)+ 𝜂), 𝜂,

𝜏)* 𝜏)+ 𝜏), 𝜏*𝜏+𝜏,

(a) (b) (c)

(d)

𝑓5(𝑦31, 𝜂.)

𝑦31 > 0

𝑦31 > 𝜏), 𝑦31 < 𝜏,

YN

YN

𝜂̂ = 𝜂.𝑦31 > 𝜏)+
YN

𝜂̂ = 𝜂),𝑦31 > 𝜏)*
YN

𝜂̂ = 𝜂)+𝜂̂ = 𝜂)*

N

𝜂̂ = 𝜂.

Y

𝑦31 < 𝜏+
Y N

𝜂̂ = 𝜂, 𝑦31 < 𝜏*
Y N

𝜂̂ = 𝜂+ 𝜂̂ = 𝜂*

Figure 2.7: Maximum likelihood (ML) error compensation: (a) illustrative
Pη(η) consisting of seven distinct peaks, (b) illustrative Pe(e), (c) correspond-
ing fc(yae, ηi) defined in (2.8), and (d) TreeCompensator, the resulting ML
error compensator having a decision-tree structure.

23

ε) of the gates lying at the beginning and at the end of the critical path. Such

delay redistribution increases the error rates of the top few MSBs and bottom

few LSBs, while reducing the error rates of the other bits in the middle. Doing

so results in increased probability of errors having extreme magnitudes (both

very high and very low), leading to a highly sparse Pη(η).

We define the average device error rate of the clocked ASL network as

εcp-avg = ε(Eg, Tcp-avg), where Tcp-avg = Tcp

Ncp
. Note: Tcp-avg = Tg, when all gates

on the critical path have equal delay. Figure 2.6(a) illustrates the spatial

distribution in gate-level switching error rates (employing the color code from

Fig. 2.3) for an 8 bit clocked ASL-based RCA after applying both PDB and

PDR. The resulting Pη(η) for a 15 bit RCA subject to PDB and PDR is shown

in Fig. 2.6(b) and (c) for εcp-avg = 10−2 and εcp-avg = 10−1, respectively.

Compared to the distributions in 2.5(b) and (c), the distributions in 2.6(b)

and (c) are sparse, i.e., they have distinct well-separated peaks with relatively

smaller spread around them.

Next, we show that error statistics shaping via PDB and PDR preserves

the information in the erroneous output ya about the correct output yo, which

can be quantified via the MI I(Ya;Yo). We empirically estimate I(Ya;Yo) for

the 15 bit RCA example in Fig. 2.5 and Fig. 2.6. For an error-free RCA,

I(Ya;Yo) = 13.98 bits, which drops to 6.18 bits, with all gates are operating

at an identical error rate of εcp-avg = 10−1. The resulting Pη(η) in Fig. 2.5(c)

is dense. The shaped error statistics in Fig. 2.6(c) enhances MI I(Ya;Yo)

to 11.15 bits. Noted that there exist multiple methods of shaping Pη(η) to

increase the MI. Furthermore, a high value of I(Ya;Yo) only guarantees the

existence of an error compensation scheme to reliably recover yo from ya.

However, such scheme need not be efficient. In Sec. 2.4.2, we derive a near-

optimal low-complexity error compensation scheme that exploits the sparsity

of Pη(η).

2.4.2 Maximum Likelihood (ML) Error Compensator

The role of the fusion block in SEC is to compute the estimate ŷ of the correct

output yo, as a function of two error-prone observations ya and ye (see Fig.

2.2(a)). One approach to make ŷ a good estimate of yo is to choose ŷ such

24

(a)

(b)

Figure 2.8: Digital clocked ASL-based 120-dimensional SVM classifiers:
(a) conventional serial architecture with uniform delay assignments, (b)
Shannon-inspired architecture.

25

10-5 10-4 10-3 10-2 10-1 100

Spin device error rate ()

0

0.2

0.4

0.6

0.8

1

Tr
ue

 P
os

itiv
e

Ra
te

Error free ideal
Serial
3-MR
Shannon-inspired
Shannon-inspired Est. Only

Tr
ue

	p
os
iti
ve
	ra
te
	! "

#

Average	device	error	rate	$%&'()*

1000×

100×

102 103

Energy/decision (pJ)

0

0.2

0.4

0.6

0.8

1

Tr
ue

 P
os

itiv
e

Ra
te

Error free ideal
Serial
3-MR
Shannon-inspired
Estimator Only
LV CMOS 20nm

3× 2.3×1.7×

Tr
ue

	p
os
iti
ve
	ra
te
	' (

)

(a) (b) (c)

10-5 10-4 10-3 10-2 10-1 100

Spin device average error rate

0

1

2

3

4

5

6

7

8

M
ut

ua
l i

nf
or

m
at

io
n

(b
its

)

0

0.2

0.4

0.6

0.8

1

D
et

ec
tio

n
er

ro
r r

at
e

Average	device	error	rate	!"#$%&'

M
ut
ua
l	i
nf
or
m
at
io
n	
()

*;
)

(b
its
)

cla
ss
ifi
ca
tio

n	
er
ro
r	r
at
e	
	1
−
. /

0
)

) ≡)2 conventional	serial
) ≡)2 post	error	shaping
) ≡)3 Shannon-inspired

10-5 10-4 10-3 10-2 10-1 100

Spin device error rate ()

0

0.2

0.4

0.6

0.8

1

Tr
ue

 P
os

itiv
e

Ra
te

Error free ideal
Serial
3-MR
Shannon-inspired
Shannon-inspired Est. Only

Tr
ue

	p
os
iti
ve
	ra
te
	! "

#

Average	device	error	rate	$%&'()*

1000×

100×

102 103

Energy/decision (pJ)

0

0.2

0.4

0.6

0.8

1

Tr
ue

 P
os

itiv
e

Ra
te

Error free ideal
Serial
3-MR
Shannon-inspired
Estimator Only
LV CMOS 20nm

3× 2.3×1.7×

Tr
ue

	p
os
iti
ve
	ra
te
	' (

)

(a) (b) (c)

10-5 10-4 10-3 10-2 10-1 100

Spin device average error rate

0

1

2

3

4

5

6

7

8
M

ut
ua

l in
fo

rm
at

io
n

(b
its

)

0

0.2

0.4

0.6

0.8

1

De
te

ct
io

n
er

ro
r r

at
e

Average	device	error	rate	!"#$%&'

M
ut
ua
l	in

fo
rm

at
io
n	
()

*;
)

(b
its
)

cla
ss
ifi
ca
tio

n	
er
ro
r	r
at
e	
	1
−
. /

0
)

) ≡)2 conventional	serial
) ≡)2 post	error	shaping
) ≡)3 Shannon-inspired

Figure 2.9: Accuracy vs. energy, error rate trade-off for different digital
clocked ASL-based 120-dimensional SVM classifier implementations operat-
ing at a fixed decision delay and pFA of 1%: (a) True positive rate pTP vs.
average device error rate εcp-avg, (b) pTP vs. total classifier energy per deci-
sion, (c) mutual information (MI) I(Yo;Y) and corresponding classification
error rate (1−pTP) vs. εcp-avg curves for serial architecture (black), and after
shaping its error η statistics (blue), and Shannon-inspired architecture (red).

that it maximizes the likelihood of the observations ya and ye as follows:

ŷ = arg max
y
PYa,Ye|Yo

{
Ya = ya, Ye = ye

∣∣∣∣Yo = y

}
(2.5)

where PYa,Ye|Yo denotes the likelihood of Ya and Ye given Yo and y denotes

a free variable in the maximization that is swept over the range of possible

values of correct output yo. Thus, ŷ is a maximum likelihood (ML) estimate

of yo. In general, it can be computationally expensive to compute and max-

imize PYa,Ye|Yo . However, the error statistics shaping described in Sec. 2.4.1

significantly reduces the computation of the ML estimate ŷ as shown next.

Noting the independence of η and e conditioned on Yo in (2.5), we get,

ŷ = arg max
y
Pη(ya − y)Pe(ye − y) (2.6)

We employ parametric models for Pη(η) and Pe(e) [123] as shown in Fig.

26

2.7(a) and 2.7(b), respectively, to simplify (2.6) to:

ŷ = ya − η̂ (2.7)

with η̂ given as:

η̂ = arg max
ηi

[
pi1{ηi−L<yae<ηi+L}fe(−yae + ηi)︸ ︷︷ ︸

fc(yae,ηi)

]
(2.8)

where yae = ya − ye = η − e, Pr{η = ηi} = pi, mini,j |ηi − ηj| = d, Pr{|e| <
L} = 1, and fe denotes a functional description of Pe when |e| < L.

Given ya, ye, a brute-force computation of the ML estimate ŷ requires

evaluating (2.7) by calculating RHS of (2.8) for every ηi, and selecting ηi = η̂

that maximizes it. Figure 2.7(c) illustrates plots of fc(yae, η) as a function

of yae for all values of η. It can be observed that η̂ can be approximately

computed via comparisons of yae with thresholds τis. Thus, the ML error

compensator has a decision tree structure as shown in Fig. 2.7(d), and is

henceforth referred to as a TreeCompensator. The thresholds τis in the

TreeCompensator are a function of error distributions Pη and Pe. For a

given implementation, these distributions can be characterized once during

simulations, or one-time calibration phase of the prototype chip. Once the

thresholds are computed offline and stored, the TreeCompensator can be

implemented efficiently using only a few subtracters.

2.4.3 Digital Clocked ASL-based Dot Product
Implementations

Figure 2.8(a) shows the conventional serial architecture of a 120-dimensional

SVM classifier. It employs 8 bit signed Baugh Wooley multipliers (BWM)

and a carry save adder (CSA). All gates in this architecture operate at iden-

tical error rates. The Shannon-inspired architecture in Fig. 2.8(b) employs

the conventional serial architecture as the main block (MB), and applies

PDB and PDR to shape its output error distribution. Since PDB and PDR

techniques make some gates operate at a lower error rate, few reliable inter-

mediate signals in BWMs can be employed as the estimates of the BWM out-

puts indicated via green reduced-precision embedded estimator (RPE-EST)

27

(a) (b) (c)

10-5 10-4 10-3 10-2 10-1 100
0

0.2

0.4

0.6

0.8

1

Error free ideal
Ideal Clock Pulses
Quantized Clock Pulses

Tr
ue

	p
os
iti
ve
	ra
te
	! "

#

Average	device	error	rate	$%&'()*

Tr
ue

	P
os
iti
ve
	R
at
e	
! "

#

$
% of (%)

2,3,5 4,5,7 6,7,9 7,8,10 10,11,13 13,14,16 19,20,2216,17,19

12, 3, 456
0 2 5 7 10 20 50 70 10025 45403530

clock	network	variations	 !
"#,%&'

(in	%)	

Tr
ue

	p
os
iti
ve
	ra
te
	("

)

(a) (b) (c)

10-5 10-4 10-3 10-2 10-1 100
0

0.2

0.4

0.6

0.8

1

Error free ideal
Ideal Clock Pulses
Quantized Clock Pulses

Tr
ue

	p
os
iti
ve
	ra
te
	! "

#

Average	device	error	rate	$%&'()*

Tr
ue

	P
os
iti
ve
	R
at
e	
! "

#

$
% of (%)

2,3,5 4,5,7 6,7,9 7,8,10 10,11,13 13,14,16 19,20,2216,17,19

12, 3, 456
0 2 5 7 10 20 50 70 10025 45403530

clock	network	variations	 !
"#,%&'

(in	%)	

Tr
ue

	p
os
iti
ve
	ra
te
	("

)

Figure 2.10: Impact of non-idealities and process variations on the Shannon-
inspired implementation: (a) pTP vs εcp-avg trade-off for Shannon-inspired
implementation having 46 distinct clock pulse widths, (b) pTP box plot for
different levels of static within-die process variations measured in terms of σ

µ

Eb, α, and Ion for Shannon-inspired implementation having 46 distinct clock
pulse widths, and (c) pTP box plot as a function of extent of dynamic clock
network variations β

Tg,min
for the Shannon-inspired implementation having 46

distinct clock pulse widths, and σ
µ

of Eb, α, and Ion set at 4%, 5%, and 7%,
respectively.

blocks in BWMs, similar to techniques discussed in [63] to reduce estimator

overhead. The additional overhead consists of a CSA and a digital clocked

ASL implementation of the TreeCompensator derived in Sec. 2.4.2 to com-

pute error compensated output ŷ. The bit precisions in the estimator and

the compensator blocks are primarily dictated by the number of dominant

peaks in the sparse shape of the η distribution of the main block. The CSA

and the compensator overhead amounts to 11% of the gate complexity of

the MB. We assume a low error rate ε = 10−4εcp-avg for all the gates in the

CSA and TreeCompensator (marked green in Fig. 2.8(b)). We assume that

the TreeCompensator computation can be pipelined since it operates only

on the final outputs of the MB and the estimator. This allows the gates in

the TreeCompensator to operate at a lower energy since its critical path is

shorter than that of the MB.

28

2.5 Simulation Results

We demonstrate the benefits of the Shannon-inspired model of computation

for a digital clocked ASL architecture of SVM classifier used for electroen-

cephalogram (EEG) based seizure detection. The accuracy of the classifier

is captured in terms of true positive (TP) rate pTP and false alarm (FA) rate

pFA, where pTP = Pr{ẑ = 1|z = 1} and pFA = Pr{ẑ = 1|z = 0}, and the

probabilities are estimated empirically (via leave-one-out cross-validation)

[126] for the MIT-CHB EEG dataset [127] by running extensive Monte Carlo

simulations. We compare the Shannon-inspired architecture (Fig. 2.8(b))

with (i) clocked ASL-based conventional serial architecture (Fig. 2.8(a))

consisting of 54,332 gates, (ii) clocked ASL-based 3-MR architecture, which

replicates the conventional serial architecture thrice and takes a bitwise ma-

jority vote on their outputs, and (iii) 20 nm LV CMOS architecture, which

consists of the exact same full adder-level logic network as that of the serial

architecture. We compare pTP vs. energy per decision and εcp-avg trade-offs

at a fixed decision delay of 9.7 ns and pFA = 1%.

2.5.1 Accuracy vs. εcp-avg and Energy Trade-off

We observe in Fig. 2.9(a) that Shannon-inspired architecture (Fig. 2.8(b))

can tolerate 1000× higher εcp-avg compared to the conventional serial architec-

ture (Fig. 2.8(a)) while maintaining the pTP close to that of the fixed-point

ideal error-free architecture. In particular, the pTP for Shannon-inspired ar-

chitecture is close to 93% even though εcp-avg is as high as 1%. The 3-MR

architecture tolerates an εcp-avg up to 0.01%. It is greater than that of the se-

rial architecture but worse by 100× when compared to the Shannon-inspired

architecture. Furthermore, we show that intermediate estimator-only output

(ye in Fig. 2.8(b)) achieves lower accuracy, emphasizing the requirement to

combine the two erroneous outputs (ya,ye in Fig. 2.8(b)) to achieve close-to-

ideal accuracy.

The Shannon-inspired architecture achieves a 3× lower energy compared

to the conventional serial architecture (Fig. 2.9(b)) while maintaining pTP =

93%. The 3-MR architecture, however, consumes 2.3× more energy than the

serial architecture even though it operates at a higher device error rate. This

is because the energy overhead of replication offsets the energy reduction

29

achieved by operating at higher device error rate. However, despite its high

error tolerance, the Shannon-inspired architecture still requires 1.7× more

energy compared to the 20 nm LV CMOS architecture, indicating the need

to explore devices with improved energy vs. error rate trade-offs and/or the

use of increasingly powerful SEC techniques [128, 129, 61]. We also note in

Fig. 2.9(b) that the estimator block (consisting only of the green CSA block

in Fig. 2.8(b)) consumes 20% of the total energy (“Estimator Only” curve

in Fig. 2.9(b)).

The reason for the effectiveness of the Shannon-inspired model in compen-

sating for errors is the enhancement in MI I(Yo;Ya) due to error statistics

shaping via PDB and PDR as shown Fig. 2.9(c). Despite error statistics

shaping, ya remains a poor estimate of yo, as evident from its high classifi-

cation error rate (1 − pTP). Since I(Yo;Ya) is high, it implies that Yo can

be estimated accurately from Ya. However, such an error compensator need

not be efficient. Hence, in the Shannon-inspired model, we rely on two error-

prone observations ya and ye to estimate yo both efficiently and accurately.

The MI I(Yo; Ŷ) is even higher than I(Yo;Ya) due to additional information

about yo contributed by ye.

2.5.2 Impact of Non-idealities and Process Variations

Next, we evaluate the tolerance of the proposed Shannon-inspired architec-

ture to various practical non-idealities, such as, finite number of distinct clock

pulse widths, process variations, and clock pulse width variations. While

PDB and PDR can potentially assign a unique delay to each gate, in prac-

tice, those delays need to be further quantized to take one value out of the

finite set of available distinct clock pulse widths. Figure 2.10(a) shows the

pTP vs. εcp-avg curves for the Shannon-inspired architecture after quantiz-

ing the ideal clock pulse widths to 46 distinct pulse widths for the SVM

implementation (Fig. 2.8(b)) consisting of 54,332 gates. The number of

distinct clock pulse widths is of the same order as the number of gating do-

mains explored in [116]. We observe negligible deterioration in the accuracy

of Shannon-inspired architecture (in εcp-avg < 1% regime). Such gate clock

pulse width quantization enables amortization of the clock pulse generation

circuitry, including the sharing of the clocking transistors across different

nanomagnets [116]. The clock network design is further simplified since the

30

quantized clock pulse widths are integer multiples of the shortest reference

clock, and multiple parallel dot products (in applications such as filter banks,

neural networks) can share a single clock generation circuitry.

Process variations present an additional challenge in beyond-CMOS sys-

tems. We evaluate the tolerance of the Shannon-inspired approach to static

within-die variations in three device parameters, namely, energy barrier Eb

and damping coefficient α of the nanomagnets, and clocking transistor ON

current Ion. We observe in Fig. 2.10(b) that the Shannon-inspired architec-

ture with quantized clock pulse widths can tolerate a 3(σ
µ
) variations of up to

24% in each of the three device parameters. When dynamic variations in the

clock pulse widths are included in addition to their quantization and process

variations, we find in Fig. 2.10(c) that the Shannon-inspired architecture can

tolerate a maximum deviation (β) of 20% of the minimum clock pulse width

(Tg,min).

2.6 Discussion

In this chapter, we demonstrated how the Shannon-inspired model of compu-

tation can be employed to make digital clocked ASL implementations robust

to random gate-level switching errors. Such an approach can be extended to

many other spintronic devices, such as MESO [110], CoMET [111], as long as

they use nanomagnet switching for information processing. Shannon-inspired

techniques have previously been applied to CMOS implementations to fur-

ther reduce their energy consumption via voltage overscaling [7, 129]. In

contrast, ASL/spintronics provides a new way to trade off stochasticity with

energy by realizing this energy-accuracy trade-off at the device level.

This chapter also showed how the hardware noise distribution in digital

clocked ASL-based implementations can be shaped to enhance the robust-

ness vs. cost trade-off discussed in Chapter 1. Such trade-off enhancements

enable the use of a highly error prone but scalable physical devices (e.g .

ASL, MESO, CoMET, MRAM, RRAM, and others) in ML inference imple-

mentations by meeting the system-level accuracy requirements despite the

device-level unreliability.

31

CHAPTER 3

EFFICIENT INFERENCE VIA SPIN
CHANNEL NETWORKS

3.1 Overview

In Chapter 2, we demonstrated how the robustness enhancement can be ex-

ploited to improve energy-efficiency of spin-based digital implementations.

However, despite 1000× improvement in the robustness to gate-level switch-

ing errors, the energy-efficiency improvements fell short of outperforming

CMOS implementations. Recently, Ganguly et al . [130] took a physics-

based approach for examining the power dissipation in spintronic switches.

They identified that nanomagnetic switching consumes 103×-to-104× higher

switching charge (Qsw) compared to the CMOS inverter of comparable size.

Such a large gap in the switching charge requirements underscores the fun-

damentally expensive nature of the nanomagnetic switching. ASL networks

(Fig. 3.1(a)) use nanomagnetic switching at the output of every gate to

implement digital logic. Hence, they require switching of a large number

intermediate nanomagnets leading to a high energy consumption.

In this chapter, we propose spin channel networks (SCN) (Fig. 3.1(b)),

where all intermediate nanomagnets are eliminated and all input nanomag-

… …

ASL Network Spin Channel Network

Input

Final
Decision

Input

(a) (b)

𝑛

1

Final
Decision

𝑛

1

Figure 3.1: Illustration of (a) an all spin logic (ASL) network, and (b) a spin
channel network (SCN) implementing an inference kernel by mapping a large
n bit input vector to 1 bit decision.

32

nets contribute to the charge required to switch a single output nanomagnet

to represent a final decision, thereby amortizing the energy consumed in

switching it. It is particularly suited for inference implementations. While

elimination of intermediate nanomagnetic switching is expected to enhance

the energy-efficiency, it also presents following two key challenges:

(1) how does one realize arbitrary computation while accumulating analog

spin currents from multiple nanomagnets?

(2) will this approach scale with the input vector dimensionality (complex-

ity) of the inference kernel?

To address challenge (1), we show that the exponential decay property

of spin current along the spin channel, a disadvantage in digital ASL net-

works, can be exploited to achieve energy-efficient analog dot product imple-

mentation. To circumvent the challenge (2) we employ Adaptive Boosting

(AdaBoost) [131] framework to design multiple isolated tiny spin channel

networks (t-SCNs) that work in unison to solve an arbitrary binary classifi-

cation task. Such boosted t-SCNs achieve 112×-to-22.5× and 14×-to-2.5×
higher energy-efficiency over conventional ASL-based and 20 nm CMOS de-

signs, respectively, when realizing 10-to-100-dimensional binary classifiers.

3.2 Background

3.2.1 ASL Device Primitives

Figure 3.2 identifies two ASL primitives and their functionalities, that will be

used to design SCNs in Sec. 3.3. The primitives are nanomagnet with a spin

channel and a spin channel. In particular, nanomagnet takes input charge

current Ic and injects proportional spin current Is,o in the channel, where

βm is a proportionality constant that depends upon the device material and

geometry, including the channel length Lc. The input spin current Is,in into a

spin channel is reduced by a factor of e
L
λ to generate an output spin current

Is,o, where L denotes channel length, and λ is the spin flip length [132, 133].

The layouts are obtained by following the λ-rules in [98].

33

Conceptual	
diagrams	

Transfer	
function

Symbols for	
schematics

Layouts

Nano-
magnet	

with	a	spin	
channel

Spin	
channel

𝐼",$

𝐼%

𝐿'

𝑚

𝐿

𝐼",$𝐼",)*

𝐼",$
= 𝛽-𝐼%𝑚

𝐼",$ = 𝐼",)*𝑒
/01

𝐼%

𝐼",$

𝐼",$𝐼",)*

𝐿

𝐿' = 5𝐹

Via 1 Via 2

Ferromagnet Metal 1

𝐿

Figure 3.2: SCN primitives derived from ASL: symbol, transfer function,
and layout. Each layout grid cell is of size F

2
× F

2
= 7.5 nm× 7.5 nm [97].

𝑏"𝑏# 𝑏$ 𝑏%

𝑎"

𝑎%

𝑎$

𝑎#

𝑉((

𝑎"

𝑎%

𝑎$

𝑎#

𝑎"

𝑎%

𝑎$

𝑎#

𝑎"

𝑎%

𝑎$

𝑎#

𝐿$ 𝐿$ = 𝜆 ln 2 𝐿$

𝐿$

𝐿$

𝐿$

𝐿$

𝐿$

𝐿$

𝐿$

𝐿$

𝐿$

𝐿$

𝐿$

𝐿$

𝐿$

𝐿$

𝐿$

𝐿$

𝐼0,2

𝑉((

𝑉((

𝐿$

𝐿%

𝐿"

𝑎$

𝑎%

𝐼0,2

(a)

𝑉((

𝐿$

𝐿%

𝐿"

𝑎"

𝑎%

𝑎$

𝑎#

𝐼0,2

(b)

𝑉((

𝐿$3

𝐿%3

𝐿"3

𝐼0,2
𝑎"

𝑎%

𝑎$

𝑎#

(c) (d)

Figure 3.3: Conceptual spin channel network topologies: (a) basic, (b) lad-
der, (c) star, and (d) a ladder-of-ladders topology of a 4× 4 bit spin channel
network multiplier (SCNM).

34

3.2.2 Classifier Ensemble via Adaptive Boosting (AdaBoost)

A classifier ensemble consists of multiple weak classifiers. Each weak classifier

is computationally simple but inaccurate, i.e., with pe close to 0.5. However,

decisions of the weak classifiers can be combined to obtain a highly accurate

final decision. Adaptive boosting (AdaBoost) [134] is a technique to train

these weak classifiers sequentially. Each weak classifier is specifically trained

to correct errors made by the other weak classifiers trained earlier (see [134]

for the training algorithm). Let the output label of ith weak classifier be

denoted as ŷi = fwi(x), where fwi(.) denotes the ith weak classifier func-

tion parametrized by weight vector wi, which is computed during training.

The final decision ŷf is computed by linearly combining the weak classifier

decisions ŷi, followed by thresholding as shown below:

M∑
i=1

αiŷi

ŷf=1

R
ŷf=−1

0 (3.1)

where output weights αis of the linear combiner are also learned during the

training phase.

3.3 Spin Channel Networks

3.3.1 Basic Concept

Spin channel networks exploit the exponential decay of spin current along

spin channels for efficient computation. They compute via weighted analog

accumulation of spin currents by careful choice of spin channel lengths. SCNs

are composed of the two primitives defined in Fig. 3.2. The most basic SCN

consists of two nanomagnets connected using spin channels having different

lengths is shown in Fig. 3.3(a). The resulting output spin current Is,o, is

approximately given by

Is,o = βmIc
(
a1m1e

−L1
λ + a2m2e

−(L2+L3)
λ

)
(3.2)

where a1, a2 ∈ {0, 1} are the digital Boolean inputs, m1,m2 ∈ {−1, 1} denote

the directions of magnetization vectors of two nanomagnets, λ denotes spin

35

(a) (b)

: cluster centroid : Ferromagnet layer : Metal 1 layer : Via 1 : Via 2

① ② ③ ④ ⑤ ⑥
(c)

Figure 3.4: Layouts of spin channel networks: (a) a set of clusters along with
their centroids, (b) a ladder topology of three clusters, (c) a star-of-ladders
layout topology of a 4 × 4 bit spin channel network multiplier. The layout
grid cell is of size 7.5 nm× 7.5 nm [97].

flip length, Ic denotes the ON current of the NMOS transistors. Each bit ai

controls the charge current through one nanomagnet, and the corresponding

spin current is weighed by a factor exponential in its channel length. More

complex SCNs can be designed to achieve weighted accumulation of spin

currents from M nanomagnets placed at lengths Lis, where i ∈ {0, . . . ,M −
1}.

3.3.2 SCN Topologies

For M > 2, multiple circuit topologies can achieve the same input-to-output

transfer function (up to a scaling constant) depending upon how the nano-

magnets and spin channels are interconnected. For example, conceptual di-

agrams of two extreme topologies, namely the ladder and the star topology,

are shown for M = 4 in Fig. 3.3(b) and 3.3(c), respectively. In the ladder

topology, all nanomagnets share a single spin channel that connects them to

the output node. The star topology, on the other hand, consists of a unique

channel connecting each nanomagnet to the output node.

Weighted accumulation of spin currents in SCNs can be used to efficiently

implement multiplication in analog. The M×N bit SCN multiplier (SCNM)

in Fig. 3.3(d) takes two charge-domain digital operands A and B having

bitwidths M and N , respectively, and generates an output spin current pro-

portional to their product A×B. The SCNM consists of M ×N input nano-

magnets, each contributing spin current corresponding to a partial product.

Individual partial products are computed by the AND gates with bits ais

36

and bjs of operands A and B, respectively. The AND gates drive the gate

of the NMOS, thereby controlling the input charge current through the SCN

nanomagnets. Figure 3.3(d) shows a ladder-of-ladders topology of a 4× 4 bit

SCNM, where four vertical ladders are connected horizontally in a ladder

topology. Note that at all the spin channel lengths are multiples of λ ln 2 in

order to achieve appropriate weighing (in the powers of two) of spin currents

corresponding to individual partial products. The output spin current of this

4× 4 bit SCNM is given by:

Is,o = Is,lsb

3∑
i,j=0

aibj2
(i+j) (3.3)

where the unit spin current Is,lsb corresponds to the least significant partial

product for a given NMOS ON current Ic. For the SCNM in Fig. 3.3(d),

Is,lsb = βmIc
27 . The signs of these operands can be accounted for by changing

the magnetization vector directions of the corresponding magnets (for A),

and by using a differential supply [135] (for B). The energy consumption of

such an SCNM is given by:

Emult(A,B) =

[
I2
cTg(Rspin +Rmos) + CgV

2
g + Eand

] 3∑
i,j=0

aibj (3.4)

where Rspin denotes the series resistance of the nanomagnet and channel,

Eand denotes the energy consumed in switching of the AND gate, while Rmos

and Cg denote the ON resistance and gate capacitance of the transistor,

respectively. The gate voltage Vg is applied to switch ON the NMOS for Tg

duration.

The other topologies such as star-of-ladders, star-of-stars and ladder-of-

stars are also possible, and this topological degree of freedom will be explored

while identifying the energy-efficient layout in the following Sec. 3.3.3.

3.3.3 Hierarchical Layout Construction

Topological schematic diagrams in Fig. 3.3 are idealized and convey the

SCN functionality at a very high level. They neither account for spin current

branching at the spin channel junction, nor the physical constraints of com-

ponent placements and maintaining spin channel lengths. We address both

37

of these issues by developing precise layouts for SCN circuits, and obtain

input-to-output transfer function from SCN layouts.

For layouts, we choose F = 15 nm, where F denotes the DRAM half pitch

[97, 98]. All SCN layouts need to satisfy λ-rules described (in terms of F)

in [97]. For example, the layout pitch between any two contacts needs to

be at least 4F . The value of channel length Lc turns out to be 5F (in Fig.

3.2) as a direct consequence of λ-rule constraints. Similarly, λ-rules impose

constraints on minimum distance between nanomagnet and a spin channel,

and two parallel spin channels.

The layouts of more complex SCNs are particularly challenging, since there

is a trade-off between satisfying λ-rule constraints and the magnitude of the

output spin current, and hence the energy consumption. We propose a hi-

erarchical construction of SCN layouts. We define nine primitive topologies

referred to as clusters (see Fig. 3.4(a)). Each nanomagnet in a cluster con-

tributes identical spin currents to the output node, referred to as the cluster

centroid. The layouts of the clusters are fixed per λ-rules. These clusters can

be connected in various topologies, such as a ladder, star or a ladder-of-stars,

to generate layouts of more complex SCNs in a hierarchical manner. An il-

lustrative ladder topology of three clusters is shown in Fig. 3.4(b). Once the

clusters are connected, only the lengths between their centroids need to be

adjusted to achieve appropriate weighing of the corresponding spin currents

and simultaneously satisfy λ-rules.

Figure 3.4(c) shows a star-of-ladders layout topology of a 4×4 bit SCNM.

Each cluster centroid Jk generates spin current corresponding to pk, where

pk is defined as the sum of partial products having identical binary weight k

as follows:

pk =

(3∑
i,j=0
i+j=k

aibj

)
(3.5)

The final output spin current in Eq. (3.3) can be computed as:

Is,o = Is,lsb

6∑
k=0

2kpk (3.6)

where the binary weighing of 2k among the spin current contributions is

achieved by adjusting spin channel lengths between them. The clusters are

sequentially placed in a spiral order along three ladders as shown in Fig.

38

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Sw
itc

hi
ng

 P
ro

b.
 P

sw

slicer switches

slicer
does not switch

slicer should
switch
𝐼" > 𝐼",%&

slicer should
not switch
𝐼" < 𝐼",%&

𝛾
−𝛾*+, 𝛾*+,

error prone
region

sw
itc

hi
ng

 p
ro

ba
bi

lit
y
𝑝 "
.

Figure 3.5: The switching probability psw of stochastic slicer as a function of
γ (given approximately by Eq. (3.7)) with Eb = 35kT and T = 300 K. The
dotted outlines of the gray region mark the minimum energy operating point
(MEOP) at γmin = 0.5 corresponding to slicer switching accuracy of 99%.

3.4(c). Thus, along a single ladder, the minimum channel length between

any two consecutive clusters corresponds to the spin current weighing of 2−3,

thus allowing sufficient spacing to satisfy λ-rules. Hence, this layout topology

effectively spreads out the nanomagnets radially. The actual channel lengths

in the layout are chosen via extensive simulations using SPICE-based circuit

models of spin current injection and propagation in spin devices [133] in order

to account for spin current branching at the spin channel junctions.

3.3.4 Stochastic Slicer

The output of SCN circuits is an analog spin current. We use a nanomagnet

as the final decision device. It acts as a sink for the spin current and thresh-

olds it to produce the final decision represented by its magnetization vector.

The nanomagnetic switching is stochastic due dominant thermal noise in the

nanomagnet [102]. Hence, we refer to such decision generating nanomagnet

as a stochastic slicer . The stochastic slicer switches when the magnetiza-

tion direction of the corresponding nanomagnets flips due to the input spin

current.

In this work, we operate the stochastic slicer for the fixed duration of Tg.

If the slicer switches during this duration, it corresponds to final decision

ŷ = 1, otherwise, ŷ = −1. The slicer is reset after every decision. For a given

duration Tg, the probability that slicer switches psw can be approximated as

39

a function of its input spin current Is as follows:

psw(Is) ≈
(

1

2

)[(β1
ln 2

)−γ]
(3.7)

where γ =
(Is−Is,Tg

Is,Tg

)
, Is,Tg denotes the spin current for which psw(Is,Tg) ≈ 0.5,

and β1 = π2Eb
4kT

. In particular, Eb denotes the energy barrier of the nanomag-

net, while k and T denote Boltzmann constant and absolute temperature,

respectively. The spin current value Is,Tg is a device-dependent constant for a

given switching duration Tg. Equation (3.7) provides a good approximation

of the psw expression in [102], when |Is|, Is,Tg � Icrit, where Icrit denotes the

minimum spin current required for nanomagnet to switch with probability 1

as Tg →∞. The stochastic slicer strives realize the thresholding operation:

Is

ŷ=1

R
ŷ=−1

Is,Tg (3.8)

However, due its stochastic nature, stochastic slicer probabilistically makes

switching errors, i.e., it switches with certain non-zero probability even when

Is < Is,Tg , and vice versa as shown in Fig. 3.5. Thus, there exists a trade-off

between input spin current magnitude Is (proportional to energy consump-

tion) and switching probability psw (see Eq. (3.7)). There exists a minimum

energy operating point (MEOP) for a target switching probability. For ex-

ample, as shown in Fig. 3.5, |Is| > 1.5Is,Tg to achieve slicer switching accu-

racy of 99%. This MEOP of slicer dictates the minimum charge current Ic,min

through each nanomagnet required for SCN-based binary classifier to achieve

certain classification error probability pe. For a fixed decision delay and error

probability, MEOP for SCN-based binary classifiers is uniquely defined by

the value of Ic,min as shown in Sec. 3.5.

3.3.5 CMOS Driver

Figure 3.6(a) and (b) show the abstract model and transistor-level schematic

of the CMOS input driver in a 14 nm technology, respectively. The nanomag-

net is controlled by an NMOS, which should switch ON only when ai = 1

and bj = 1. This is achieved via a CMOS NOR gate driving the gate of

40

𝑉""# = 10	mV	
𝑉""* = 0.6	V	

𝑁1
nfin = 50

nfin = 4 nfin = 1

nfin = 1

nfin = 8

𝑎/

𝑏1

Input driver NOR gate

Switching energy
~𝐶𝑉""*# Conduction

energy
~𝐼5#𝑅𝑇8Charge

current
~𝐼5

𝑉""# = 10	mV	

𝑎/

𝑏1

𝐼9

(a) (b)

𝐼9

Figure 3.6: Detailed schematic of the CMOS input driver designed and
simulated using 14 nm HP FinFET ASU predictive technology models [136],
where nfin denotes number of fins in the FinFET [137].

the NMOS N1 as shown in Fig. 3.6(b). The inputs to the NOR gate are

driven by identical inverters, who receive ideal step inputs. The NMOS N1

is sized to provide a charge current of Ic,min, while satisfying VDS < 10 mV.

The gate voltage of N1 gets raised to 600 mV, turning it ON in the linear

region with overdrive voltage ≥ 350 mV. The NOR gate is sized so that the

CMOS driver switches within 50 ps while driving N1 and the inverters are

minimum sized. We simulate this schematic using 14 nm HP FinFET ASU

predictive technology models [136] to estimate its switching delay and energy

consumption.

3.4 Design of SCN-based Classifiers

3.4.1 Linear Support Vector Machine (SVM) Classifier

A linear SVM classifier can be realized using the proposed SCNs by con-

necting multiple SCNMs in parallel (Fig. 3.7(c)) and one stochastic slicer

to generate the final classification decision. The SCNM and slicer symbols

are defined in Fig. 3.7(a) and (b), respectively. Each multiplier generates

spin current corresponding to the product xiwi, where xi and wi denote ith

dimension of input feature vector x and the weight vector w, respectively.

Both xi and wi are fixed-point binary numbers. The spin currents at the out-

put of SCNMs accumulate in a common channel (generating Is,o) and feed

41

into the stochastic slicer.

The inputs are kept ON for the duration Tg since the stochastic slicer

requires that much time to produce its decision. Noting that the stochastic

slicer thresholding involves a comparison of its input spin current with Is,Tg ,

Eq. (2.1) of SVM can be realized as follows:

Is,o = (wTx + b)Is,lsb + Is,bias

ŷ=1

R
ŷ=−1

Is,Tg (3.9)

where Is,bias is additional bias current.

When Is,o = Is,Tg , the slicer switches with probability 0.5. In SVM, this

operating point would occur when the input feature vector x lies on the

classifier hyperplane, i.e. when wTx + b = 0, resulting in

(Is,o)|wTx+b=0 = Is,Tg = Is,bias (3.10)

To avoid large bias currents, we modify the feature vector x to (x + d1),

where 1 denotes the all-one vector and d is a constant, thereby transforming

Eq. (3.9) into

[
wT (x + d1)

]
Is,lsb + Is,bias

ŷ=1

R
ŷ=−1

Is,Tg (3.11)

where Is,bias is now given by:

Is,bias = Is,Tg + bIs,lsb −
[
d
(∑

i

wi
)]
Is,lsb (3.12)

The bias current Is,bias is generated by having an additional magnet with a

supply current Ic,bias as shown in Fig. 3.7. If the signed precision of xi is

M bits, we choose d to be 2M−1. This makes (xi + d) an unsigned number,

removing the need for differential supply. The sign of w is accounted for

by changing the magnetization vector directions of the corresponding spin-

current injecting nanomagnets appropriately.

42

𝑤"
𝑥"

𝐼%,'
𝑦)

𝐼* 𝐼*,+,-%

𝑤./"

𝑥./"

𝐼*	

𝑤1

𝑥1
𝐼*

𝐼%,"

𝐼%,1

𝐼%,./"

𝐼*

𝑤.
𝑥.

𝐼*
𝐼%,.

𝐼%,23

charge-based

spin channel

interconnect type:

(a)
𝐵

𝐴
𝐼*	

𝐼%,'

𝐼%
𝑦)

(b)

(c)

Figure 3.7: SCN-based linear SVM classifier: (a) SCNM symbol, (b) stochas-
tic slicer symbol, and (c) the SCN-based N -dimensional linear SVM classifier
architecture.

Feature vector dimension 𝑁

N
or

m
al

iz
ed

 𝐼 #
,%

Figure 3.8: Normalized magnitude of Is,o in Fig. 3.7(c) as a function of
classifier dimensionality N , when x1 = c1 6= 0, w1 = c2 6= 0, and xi = wi = 0
for all i ∈ {2, . . . , N}, where c1 and c2 are some constants.

43

𝑤"
𝑥"

𝐼%,'" 𝑦)"

𝐼* 𝐼*,+,-%"

𝑤./"
𝑥./"

𝐼*	

𝑤1

𝑥1
𝐼*

𝐼%,"

𝐼%,1

𝐼%,./"

𝑤2
𝑥2

𝐼*

𝑤3
𝑥3

𝐼*

𝐼%,2

𝐼%,3

𝑤.
𝑥.

𝐼*
𝐼%,.

𝐼*,+,-%1

𝐼
*,+,-%41

𝐼%,'1 𝑦)1

𝐼
%,'41

𝑦)4
1

…

𝑦)6

𝐼%,78

𝐼%,78

𝐼%,78

Weighted
sum

𝛼" 𝛼.
1…

.
1th t-SCN

weak
decisions

final
decision

charge-based

spin channel

interconnect type:

Figure 3.9: Boosted tiny SCNs architecture: adaptively boosted ensemble of
N
2

tiny SCNs (t-SCNs), where each t-SCN consists of 2 SCNMs in parallel and
one stochastic slicer to implement a two-dimensional linear SVM classifier.

3.4.2 Classifier Dimensionality Scaling via Boosted Tiny
SCNs (t-SCNs)

The exponential decay of spin current exploited in SCNM makes it very hard

to route the output spin current to another block as doing so inevitably incurs

a significant loss in the spin current magnitude. This severely limits the

ability to scale the classifier dimensionality (Fig. 3.7(c)), which requires the

N multiplier output spin currents to be routed to a single stochastic slicer.

Assuming a circular layout of N SCNMs with the slicer at its center, we

estimate the loss in the spin current Is,o magnitude as a function of classifier

dimensionality N as shown in Fig. 3.8, when x1 = c1 6= 0, w1 = c2 6= 0, and

xi = wi = 0 for all i ∈ {2, . . . , N}, where c1 and c2 are some constants. Recall

from Fig. 3.5 that the stochastic slicer requires minimum magnitude of the

input spin current in order to operate accurately for a given switching delay.

Thus, the exponential loss in the output spin current magnitude results in

exponentially increasing classifier energy consumption in order to maintain

classifier accuracy.

In order to address the problem, we limit the dimensionality of the SCN-

based linear SVM classifier to only two dimensions, and refer to the resulting

44

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

1.2 10-5

A=4
A=12
A=20
A=28
A=36
A=44
A=52
A=63

𝐵

𝐼 #
,%
	𝜇
𝐴

2

4

6

8

10

Figure 3.10: Simulated transfer function of a 6 × 6 bit SCNM realizing
A×B.

design as tiny SCN (t-SCN). We then employ AdaBoost to design an en-

semble of multiple such t-SCNs to implement an arbitrary N -dimensional

binary classification task. Figure 3.9 shows the boosted t-SCNs architecture.

In particular, given an N -dimensional input feature vector, each t-SCN ob-

serves only two unique feature dimensions and computes its local decision ŷi.

These local decisions could be inaccurate with higher probability, and hence

are referred to as weak decisions . The final weighted sum block combines

these weak decisions to obtain the final decision ŷf as per Eq. (3.1). We re-

strict the number of weak classifiers to N
2

so that computational complexity

of the boosted t-SCNs architecture is similar to the standard N -dimensional

linear SVM implementation (Fig. 3.7(c)).

It is important to note that, in the boosted architecture, the output spin

current of the channel network gets processed locally, and only the binary

weak decisions are routed to the final weighted sum block, thus requiring

much shorter spin interconnect routing within each t-SCN. It is straightfor-

ward to convert the binary slicer decisions ŷi i ∈ {1, . . . , N2 } to equivalent

voltage [138] and then route it using charge interconnects. We designed the

linear combiner in Eq. (3.1) in conventional digital 14 nm CMOS. Its com-

plexity in terms of the full adder count is less than 5% of the total complexity

of the N
2

t-SCNs. One can also employ other schemes, such as Boolean logic,

Winner-Take-All, to efficiently combine binary t-SCN outputs, achieving sim-

ilar energy benefits.

45

SPICE
simulation

CAD
drawing

tools

Benchmarking
methodology

[5,6]

Fixed-
point

MATLAB

Device
parameters

[7]

Layout
!-rules

[5]

SPICE models of spin torque
switching and spin propagation

[1]

Trained
classifier models Test

dataset

SCNM transfer
function

Layout

Energy and delay

System-level
accuracy

Floating-
point

MATLAB

Training
dataset

LibSVM library
[4]

stochastic
slicer model

([3] and (8) in
main text)

[74]

([44] and eq.
(3.7))

[81]

[36,37]

[46]

[36]

Figure 3.11: Simulation methodology.

3.5 Simulation Results

3.5.1 Simulation Methodology

Our simulation methodology is shown in Fig. 3.11. We first develop the

SCNM layout and obtain its transfer function via SPICE-based simulations.

We employ SPICE-based spin device models [133] for SCNM schematic sim-

ulations and use CAD drawing tools for corresponding layouts and λ-rule

checks. We assume the material parameters provided in Table 3.1. We de-

sign and characterize a 6×6 bit SCNM using the SPICE-based spin device

models [133]. The channel lengths between the clusters in the SCNM lay-

outs are repeatedly adjusted until the appropriate spin current weighting is

achieved and all λ-rules are satisfied. Figure 3.10 shows the interpolated

SCNM transfer function after carrying out detailed spice simulations for 289

different A and B values. The observed (σ
µ
) of the deviations from linearity in

output spin current is 2%. Such good linearity was achieved, in part, because

process variations (such as line edge roughness etc.) and length quantization

between two clusters are not yet accounted for. However, this does indicate

that there is still room to budget such impact of more variations within in-

46

Table 3.1: The SPICE-based models developed in [133] were employed to
simulate all spin channel network designs in this chapter. Hence, most of the
device and material parameters of nanomangets and the copper channel are
chosen as mentioned in [133]. Few device parameters that were specifically
chosen for the designs in this chapter are given in this table.

Variable Value
Saturation magnetization [103] 250× 103 A/m
Effective internal anisotropic field [103] 16× 104 A/m
Damping coefficient[103] 0.007
Nanomagnet dimensions 30 nm×30 nm×10 nm
Slicer dimensions 30 nm×80 nm×2 nm
Spin channel width 30 nm
Spin channel thickness 100 nm

herent tolerance of machine learning classifiers. Also, since all such variations

within the layouts are static, one can employ retraining [64] to alleviate their

impact. We leave this exploration for future work.

We use the SCNM transfer function and stochastic slicer model (based on

Eq. (3.7) in the main text and analysis in [102]) for system-level classifier

accuracy predictions. We estimate the classification error probability pe of

boosted t-SCN implementation in MATLAB. We use LIBSVM [139] to train

all SVM classifiers. The classifier training always happens in floating-point

precision in MATLAB. We then quantize the trained classifier model and test

data to have 6 bit precision, which we found out to be sufficient. We carry

out 6-fold cross validation over the available data to estimate the average

accuracy of all classifier implementations.

We employ benchmarking methodology [97, 98] to estimate energy and

delay for all classifier implementations compared in Sec. 3.5.2. For ASL

implementations, we assume ASL device consisting of nanomagnets with im-

proved anisotropy reported in [103]. We also assume ASL gates to be clocked

using a MOSFET to avoid static power consumptions. For digital CMOS im-

plementations, we use the delay vs. energy curve of 20 nm LV CMOS FO4

inverter reported in [103], and assume activity factor of 33%.

47

10-5 10-4 10-3 10-2

0.4

0.6

0.8

0.9

1

10-14

10-13

10-12

10-11

Detection rate pdet
Total energy

classifier MEOP
for 𝑝"#$ ≥ 95.5%

CMOS sized to operate at 𝐼+ = 90𝜇A

Charge current through each nanomagnet 𝐼+	 𝐴

D
et

ec
tio

n
ac

cu
ra

cy
 𝑝
"#
$ Total Energy/decision (J)𝑝"#$

𝐼+ = 𝐼2,456

10-5 10-4 10-3 10-2

0.4

0.6

0.8

0.9

1

10-14

10-13

10-12

10-11

Detection rate pdet
Total energy

Figure 3.12: Accuracy pdet and total energy vs. Ic trade-off for 10-
dimensional boosted t-SCN classifier operating at a final decision delay
of 3 ns. The minimum energy operating point (MEOP) is achieved at
Ic,min = 90µA.

3.5.2 Results

We demonstrate the effectiveness of proposed approach for two classification

tasks: (1) 10-dimensional (10D) breast cancer detection (UCI repository

dataset[140], [141]), and (2) 100-dimensional (100D) face detection (MIT

CBCL dataset [142]). We quantify classification accuracy in terms of detec-

tion rate pdet = 1− pe, where pe is classification error probability.

For each t-SCN, there exists a trade-off between NMOS current Ic and

weak decision delay Tg for fixed psw. We choose Tg = 2.5 ns throughout this

chapter to make sure that CMOS driver switching energy ≤ ≈ 33% of the

total energy. We compare the energy consumption and accuracy of 10D and

100D classifier implementations at a fixed final decision delay of 3 ns and 4 ns,

respectively. The remaining duration accounts for the delay of CMOS driver

switching, slicer reset, and weighted logic block operation. In particular, the

CMOS driver can be switched within 50 ps. For 10D classifier, weighted logic

block operation can be approximated as a majority operation. We choose

identical Ic for all weak classifiers. Given Ic and Tg, Ic,bias is chosen according

to Eq. (3.12) for each weak classifier.

For a fixed final decision delay (of 3 ns), the trade-off between the accuracy

and total energy consumption of the 10D boosted t-SCN classifier is shown

in Fig. 3.12 as a function of Ic. As expected, both accuracy and total energy

decrease with Ic. The accuracy degradation occurs due to reductions in psws

48

10-14 10-13 10-12 10-11 10-10
0.3

0.4

0.5

0.6

0.7

0.8

0.9

Boosted t-SCNs
Boosted CMOS 20nm
SVM CMOS 20nm
Boosted ASL (= 10-6)
SVM ASL (= 10-6)

14×
112×

D
et

ec
tio

n
ac

cu
ra

cy
	𝑝
'(
)

Total energy/decision (J)

Figure 3.13: Classification accuracy pdet vs. energy trade-off for different
10-dimensional classifier implementations operating at a final decision delay
of 3 ns.

of the stochastic slicers. For accuracy of 95.5%, the classifier MEOP (defined

in Sec. 3.3.4) is achieved at Ic,min = 90µA. Hence, we size the NMOS N1 to

provide Ic of 90µA at VDD2 = 10 mV (see Fig. 3.6).

Figure 3.13 shows the accuracy vs. energy trade-off for different 10D clas-

sifier implementations. Boosted t-SCN classifier achieves at least 112× lower

energy per decision compared to that of the conventional boosted ASL im-

plementation, while maintaining accuracy. Such large energy savings can be

attributed to the elimination of all intermediate switching nanomagnets in

the spin channel network implementation. It also achieves 14× lower energy

compared to boosted 20 nm LV CMOS digital implementation, while operat-

ing at the identical final decision delay. We also observe that both boosted

CMOS and boosted ASL implementations achieve energy consumption sim-

ilar to the corresponding N -dimensional linear SVM implementations. For

100D classifier (Fig. 3.14), the energy benefits of boosted t-SCN implementa-

tion reduce to 2.5× and 22.5× over CMOS and ASL SVM implementations,

respectively. This is primarily because of higher Ic requirements for its weak

SVM classifiers, resulting from lower class separability of the dataset. Thus,

the energy benefits are a function of the input data statistics as well. We only

compare dynamic energy here, but leakage energy will be the least for SCN

implementations due to having fewer transistors compared to both CMOS

and ASL implementations. For all ASL implementations, we assume that

49

10-12 10-11 10-10 10-9
0.3

0.4

0.5

0.6

0.7

0.8

0.9

Boosted t-SCNs
Boosted CMOS 20nm
SVM CMOS 20nm
Boosted ASL (= 10-6)
SVM ASL (= 10-6)

2.5×
22.5×

D
et

ec
tio

n
ac

cu
ra

cy
	𝑝
'(
)

Total energy/decision (J)

Figure 3.14: Classification accuracy pdet vs. energy trade-off for different
100-dimensional classifier implementations operating at a final decision delay
of 4 ns.

9%

36%

36%

13%

6%

CMOS driver
conduction

CMOS driver
switching

Bias

Nanomagnet
conduction

Weighted logic
and slicer reset

9% 6%

13%

36%
36%

Figure 3.15: Category-wise energy breakdown for 10-dimensional boosted
t-SCN implementation operating at a decision delay of 3 ns and with Ic,min =
90µA.

the clocking transistors are shared across multiple nanomagnets [116], signif-

icantly amortizing their energy consumption.

In Fig. 3.15, we observe that the CMOS driver conduction energy and

switching energy are comparable, and together dominate the energy con-

sumption of the 10D boosted SCN classifier. The CMOS driver is expensive

to switch due to large size of NMOS N1, which is necessary due to large

charge current requirements (Ic,min ≈ 100µA) of SCN classifiers. Conduction

energies of CMOS driver and nanomagnet add up to a constant VDD2Ic,minTg.

These trends are similar to ASL implementations.

50

3.6 Related Works

There have been few works that exploit the stochastic nature of nanomagnetic

switching to achieve energy-efficiency. In [138], the switching behavior of

magnets in super-paramagnetic regime was shown to resemble the dynamics

of a Boltzmann machine, and thus a nanomagnetic network was trained to

implement certain inference tasks. Stochastic magnets were also employed for

energy-efficient random number generation [143] in stochastic computing, as

well as for spike generation [144] in spiking neural network implementation.

Several research efforts have explored the neuromorphic design space us-

ing spin-devices in order to achieve energy-efficiency. While it is clear that

the switching of nanomagnet naturally implements thresholding function of

a neuron, these approaches use additional devices (resistive memory [145],

domain wall magnets [146, 147, 148]) to achieve synaptic weighing of spin

currents feeding into the nanomagnet. In [135], multiple binary weighted

CMOS drivers along with a clever nanomagnet configuration were employed

to obtain spin-current weighing in cellular neural network implementation.

There exists work at the architectural-level to fully exploit the advantages

of emerging spin-device configurations such as racetrack memory [149, 150].

For example, high area-efficiency and serial access of racetrack memory was

exploited to achieve reconfigurable precision [151] and efficient logic opera-

tions [152]. In [153], a novel data converter design was proposed by exploiting

the serial structure of racetrack memory devices.

3.7 Discussion

In this chapter, we proposed spin channel networks where multiple input

nanomagnets contribute to the spin current required to switch a single deci-

sion nanomagnet. These networks exploit diffusive spin current for efficient

local computation to achieve very high energy-efficiency and ensemble of

such isolated networks can solve any given classification task. Note that the

exponential decay of the spin current and error-prone switching of the nano-

magnets have been viewed as disadvantages in the digital all spin logic (ASL)

implementations. This chapter demonstrates how the synergistic application

of algorithmic techniques can turn apparent disadvantages of the emerging

51

devices into their strengths, and improve the system-level robustness vs. cost

trade-off significantly in the process. For example, the proposed spin chan-

nel networks with their diffusive spin currents and unreliable nanomagnets

achieved comparable accuracy at 10× lower energy per decision compared to

conventional digital 20 nm CMOS implementations.

52

CHAPTER 4

EFFICIENT INFERENCE VIA
MRAM-BASED DEEP IN-MEMORY

ARCHITECTURE

4.1 Overview

As discussed in Sec. 1.2, the energy to access data from memory is signif-

icantly more than doing computations on that data [18]. This challenge is

particularly exacerbated for deep net implementations, since they require mil-

lions of stored parameters to be accessed and computed upon. To address this

concern, recently, in-memory computing (IMC) approach has emerged as one

of the promising directions. In this approach, one strives to embed processing

elements (PEs) in the periphery of memory bit-cell array (BCA) [108, 65],

in order to directly readout a computed function of the stored data as a part

of the memory access. For example, given a matrix W stored in BCA and

input activation vector x, IMC strives to compute output vector a = Wx

within a single BCA read access. This is particularly useful for efficient deep

net inference implementations, since almost all memory intensive operations

can be viewed as matrix vector multiplications (MVMs). However, they of-

ten need to be implemented in analog, due to severe area/pitch-matching

constraints arising due to the high density nature of BCAs. Such embedded

in-memory computation, while fast and energy-efficient, remains vulnerable

to process variations [65]. Thus, in this approach, one needs to balance the

energy/latency cost vs. robustness in order to maximize the benefits.

Much of the recent work in IMC focuses on SRAMs [108, 65, 154, 155,

156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 156]. Most notably, [108, 65]

proposed an SRAM-based deep in-memory architecture (DIMA) to achieve a

multi-bit vector dot product without requiring any modification in the stan-

dard 6T SRAM BCA. However, for state-of-the-art deep nets, on-chip SRAM

may not be sufficient to store all the parameters, requiring highly energy

and latency expensive off-chip DRAM accesses. Hence, it is necessary to ex-

53

magnetic
tunnel

junction
(MTJ)

L:1

Sense
Amplifier

1

…

Sense
Amplifier

2

Sense
Amplifier
!"!/L

…

L:1 L:1

…

…

…

…

!!"
"##

Read Bit 1 Read Bit 2 Read Bit N/L

Digital ProcessorInput vector
!

Output vector
"#$ #$

#$#

%

BLWL

SL

"%&' "%&' "%&'

$%&() $%&() $%&()

"*+,-

"*+,.

"*+,/

"*+,0

Figure 4.1: Digital implementation of matrix-vector multiplication (MVM)
with weights stored in 1T-1MTJ MRAM bitcell array (BCA).

tend such an approach to emerging memories such as RRAM/PCM/MRAM,

which are attractive alternatives due to their higher density and non-volatility.

They seem particularly promising for hardware implementations of deep nets

due to the possibility of having larger on-chip memory and potentially fewer

memory write operations.

In the area of emerging memories, most of the recent works have focused

on RRAM/PCM-based in-memory computing [166, 167, 168, 169, 170, 171,

8, 172] by exploiting multi-bit storage and/or large ON/OFF resistance ratio

in RRAM/PCM bitcells. However, MRAM-based in-memory computing re-

mains unexplored today even though MRAM has started to become available

as a standard digital memory as a part of commercial process development

kits [173]. This is, in part, because low ON/OFF resistance ratio and the

absence of multi-state bitcells in MRAM makes it challenging to achieve

multi-bit dot product computation within MRAM BCA.

In this chapter, we explore MRAM-based DIMA (MRAM-DIMA) to achieve

multi-bit matrix-vector multiplication (MVM) within a single read operation.

We employ a standard MRAM-BCA, without any modifications, to preserve

its density. We propose modified peripheral circuits to achieve such multi-

54

bit computation, even though, unlike RRAM/PCM, each bitcell stores only

1 bit. The proposed MRAM-DIMA is shown to potentially achieve 10×
and 20× lower energy and delay, respectively, compared to digital MRAM

implementations with the matrix stored in an identical MRAM array.

4.2 Preliminaries

4.2.1 Notation

In this chapter, we assume the following MVM computation needs to be

executed:

a = Wx (4.1)

where W denotes a M × N weight matrix, and x and a denote the in-

put and output vectors, respectively. Each weight is denoted as wij ∀ i ∈
{1, . . .M}, j ∈ {1, . . . N} and is quantized to Bw bits. Each element of the

vectors x and a, denoted as xi and ai, respectively, is quantized to Ba bits.

4.2.2 Digital MRAM Architecture

Figure 4.1 shows a diagram of a conventional digital MRAM architecture

with a BCA of size Nrow ×Ncol = M ×NBw which stores the weight matrix

W. This BCA has sourcelines (SLs) and wordlines (WLs) perpendicular to

the bitlines (BLs). The MRAM bitcell consists of an NMOS access transistor

and a magnetic tunnel junction (MTJ) (1T-1MTJ). The stored bit is read

by sensing the resistance across the MTJ, which is low when the two magne-

tization vectors within the MTJ are parallel to each other (P state), and is

high when they are antiparallel (AP state). In this chapter, bit value 1 (0)

corresponds to the P (AP) state. We denote total bitcell resistance (conduc-

tance) by RP (GP) when MTJ is the P state, and by RAP (GAP) when it is

in the AP state.

During an MRAM read operation, a constant current of Iread is passed

through the bitcells and the voltage developed on the BLs is sensed to de-

termine the MTJ state. Access transistors of a single row are activated for

55

(b)

…

…

…

…
+

-

!!

Δ!",$

#%

$$$,&

!!"

Δ!",'

Δ!(

…

…

$$$,$

$$$,'

$$$,)

$$$,*

ADC "!
#!

WL0

WL4

WL1

WL2

WL3

CI

(c)

…
…
…
…

…
…
…
…

… … … … …

#

%

…

BL drivers

W
L

dr
iv

er
s

W
L

dr
iv

er
s

CI
 +

 A
DC

1st row of $ &$ = (
+,$

-
$$,+)+

*.

*.

CI
 +

 A
DC

Mth row of $ &/ = (
+,$

-
$/,+)+

WRB 1

WRB +

0!

0!

0!

(a)
W

L
dr

iv
er

s

WL0

WL1

WL2

WL3

WL4

(= 0 (= 3*+,

2*-

4*-

8*-

*-

Δ01,3

Δ04 Δ04,5600

077

Δ04,+,

(= 2*+,(= *+,

2*+, − *-

functional	read	
(FR)

bias	removal	
(BR)

Figure 4.2: The proposed MRAM-based deep in-memory architecture
(MRAM-DIMA): (a) the overall architecture consisting of M parallel word-
row blocks (WRBs) each sharing N BL drivers but possessing separate WL
drivers and current integrators (CIs), (b) schematic of a WRB, and (c) the
read access timing diagram.

56

Ton duration by driving its WL to VDD. A sense amplifier (SA) converts the

voltage on the BL to a bit decision. Since the SA is typically wider than a

bitcell, it is shared across multiple columns via L : 1 multiplexers (typical

value of L is from 8 to 32). Thus, N
L

weights are read per cycle, which are

then input to a digital processor consisting of N
L

parallel multipliers followed

by an adder tree for computing a dot product.

The average energy required by the MRAM-digital architecture to imple-

ment the MVM computation in Eq. (4.1) is given by:

Edigital = MNBw

[
(IreadVDDTon + ESA) + LCwl-cellV

2
DD

]
+ Eproc (4.2)

where ESA and Eproc denote the sense amplifier energy and the total digital

processor energy, respectively, Ton is the ON time of a single row during BCA

read operation, and Cwl-cell denotes the WL capacitance per bitcell. Similarly,

the delay to complete the MVM operation is given by:

Tdigital = MLTon + Tproc (4.3)

where Tproc denotes the delay of the digital processor in Fig. 4.1.

4.3 Voltage Driven MRAM-based Deep In-memory

Architecture

4.3.1 Overall Architecture

Figure 4.2(a) shows the MRAM-DIMA consists of a conventional MRAM

BCA and peripheral blocks including WL drivers, BL drivers, and current

integrators (CIs) on SLs. The weights are stored in the BCA in a column

major format. A set of Bw rows of BCA storing one row of W constitutes

a word-row block (WRB). Each WRB implements a vector dot product to

compute one element of the output vector a in Eq. (4.1). All WRBs operate

in parallel, sharing the BLs, but possess separate WL drivers and SL CIs, as

shown in Fig. 4.2(a).

57

4.3.2 MRAM-DIMA Operation

In this subsection, we describe the operation of a single WRB in detail.

Figure 4.2(b) shows a schematic of WRB 1 with Bw = 5 and Ba = 4. Analog

voltages ∆Vx,i = −xiVlsb are applied to the BLs via per column DACs (Vlsb

denotes the DAC output resolution). Next, a functional read (FR) [108] step

is initiated, in which the bottom Bw − 1 WLs are activated simultaneously

by applying pulse-width modulated (PWM) access pulses with the bth WL

turned ON for a duration of 2Bw−b−1T0. Total FR phase duration is TFR =

2Bw−2T0. All SL currents are summed in the CI, followed by an ADC to

generate the digital outputs ais. At the end of the FR phase, the resulting

CI output voltage ∆Vo,FR is given by:

∆Vo,FR =
ToVlsb

Co

[
∆G

N∑
j=1

wijxj

]
︸ ︷︷ ︸

=∆Vo,dp (dot product)

+
ToVlsb

Co

[
(2Bw−1 − 1)

N∑
j=1

Gjxj︸ ︷︷ ︸
=∆Vo,bias (bias)

]
(4.4)

where ∆G = GP − GAP , GP = 1
RP+Rmos

, GAP = 1
RAP+Rmos

, Co denotes the

capacitor in the CI, and Gj = GAP (= GP), when wij ≥ 0 (wij < 0).

The bias term ∆Vo,bias in Eq. (4.4) is generated by the non-zero bitcell

current when storing a zero-valued bit. This bias term is removed in bias

removal (BR) step which discharges Co appropriately by enabling only WL0

as shown in Fig. 4.2(c).

4.3.3 Scaled-up MRAM-DIMA

The current integrator in Fig. 4.2(b) has a finite output swing, i.e., ∆Vo ≤
∆Vo,max. This output swing limitation is exploited to naturally implement

clipped ReLU activation function in DNNs. However, in order to achieve

correct computation, it is also necessary that ∆Vo,FR < ∆Vo,max. This condi-

tion is challenging to meet as vector dimension N increases (see Eq. (4.4)),

since ∆Vo,bias gets canceled only during the BR step.

To design MRAM-DIMA for large N , we propose swing budgeting via

phase multiplexed computation within each WRB. We partition the MBw×N
BCA vertically into three sub-arrays, each consisting of N

3
columns as shown

in Fig. 4.3(a). All three sub-arrays share their SLs and CIs. However, we

58

Sub-array
0

Sub-array
1

Sub-array
2

…………

BL drivers 1:#

… … …

…

!!

!!

… ……
……

"
3

"
3

……
……

"
3

$"

$#

Sub-array 0

Sub-array 1

Sub-array 2

" = 0 " = %%& " = 3%%&

FR BR BR

BR BR

FR

FR

BRBR

" = 2%%&
(b)

(a)
…

…
shared SLs shared SLs

(
W

RB
s

Figure 4.3: Realizing scaled-up MRAM-DIMA via phase multiplexed com-
putations: (a) architecture, and (b) timing diagram.

introduce distinct WL drivers for individual sub-arrays to operate two in the

BR phase, while the third in FR step as shown in Fig. 4.3(b). This approach

drastically reduces the resulting ∆Vo,FR at t = TFR and t = 2TFR. For

LeNet-300-100 DNN on MNIST dataset, it is estimated that Pr{∆Vo,FR >

∆Vo,max} < 0.01% at any given time instant using the behavioral models

developed in Sec. 4.3.4, resulting in negligible system-level accuracy drop.

4.3.4 Modeling Energy, Delay, and MTJ Process Variations

The average energy consumption of MRAM-DIMA for implementing M ×N
MVM is:

Edima = MNBw

[(
2Bw − 2

Bw

)
x̄VlsbGcellVDDT0 + Cwl-cellV

2
DD

]
+MEadc +MECI +NEdac (4.5)

where Gcell = GP+GAP
2

, x̄ denotes the average value of x across its N com-

ponents, Eadc, ECI, and Edac denote the energy consumed in the ADC, CI,

and DAC, respectively. The DAC is assumed to be equipped with an opamp-

based voltage follower to drive the required current in BL [174]. Hence, Edac

59

-15 -10 -5 0 5 10 15
-0.04

-0.02

0

0.02

0.04 xVlsb = 0mV
xVlsb = 16mV
xVlsb = 32mV
xVlsb = 48mV
xVlsb = 64mV

Δ"!

no
m

in
al

 Δ"
!,#

"

#

$
% < 0 0.955 2.9×10"#
% ≥ 0 0.93 0.6×10"#

Δ"!
Δ"!
Δ"!
Δ"!

(b)

(a)

Figure 4.4: Transfer function of a scalar multiplier in WRB operating on two
operands w and x ∝ ∆Vx for Bw = 5 in a commercial 22 nm CMOS-MRAM
process: (a) simulated (circles) and modeled (lines) and (b) estimated fitting
parameters.

and ECI are dominated by the respective opamp bias current energies. The

value of x̄ is estimated from the distribution of activations in DNNs. Com-

pared to the digital MRAM energy consumption (in Eq. (4.2)), the BCA

energy is reduced due to two factors: (1) the small value of x̄, thanks to

high activation sparsity in DNNs, caused by ReLU, and (2) the reduced read

current per bitcell, since multiple bitcell currents are aggregated before ADC

operation. The MRAM-DIMA delay is:

Tdima = 3× 2Bw−2T0 + Tadc + Tdac (4.6)

where Tadc, Tdac denotes the delay of ADC and the DAC, respectively. The

delay of MRAM-DIMA is nearly constant, resulting in the speed-up increas-

ing with the number of rows M .

The expression in Eq. (4.4) for an analog vector dot product output ∆Vo,dp

ignores the impact of circuit non-idealities such as the body-effect of access

transistors, virtual ground voltage bounce in the current integrator, and pro-

cess variations in the MTJ. To account for these non-idealities, we model the

analog output of a multiplier with a Bw bit operand w and an analog input

60

x in the WRB as follows:

∆Vo,m =
γT0Vlsb

Co

[
∆Gw + (2Bw−1 − 1)β

]
x+ η (4.7)

where η denotes the spatial noise arising due to process variations in the

MTJ. The fitting parameters β and γ are obtained via circuit simulations in

a commercial 22 nm CMOS-MRAM process (see in Fig. 4.4).

Process variations at the multiplier output arises from RMTJ variations

across different bitcells. Hence, η in Eq. (4.7) follows a zero-mean Gaussian

distribution with the variance σ2
η given by:

σ2
η =

(
T0Vlsb

C0

x

)2
(

(2Bw−1 − 1)2G2
0 +

Bw−1∑
b=1

4b−1Gb
2

)(
σ

µ

)2

G-bc

(4.8)

where
(
σ
µ

)
G-bc

denotes σ-to-µ ratio of Gcell, and Gb ∈ {GP , GAP} is the

conductance of the b-th cell in a column, where b ∈ {0, . . . , Bw − 1}. It is

to be noted that both nominal ∆Vo,m and ση scale linearly with T0 and Vlsb

keeping the signal-to-noise ratio unchanged. We estimate
(
σ
µ

)
G-bc
≤ 6% via

Monte Carlo circuit simulations for both P and AP states.

4.4 Simulation Results for Voltage Driven

MRAM-DIMA

4.4.1 Design Choices

In this chapter, we choose Bw = 5 and Ba = 4, since these are typical DNN

precision requirements for inference [175, 176]. For MRAM-DIMA, we as-

sume a single-slope ADC architecture with a shared ramp generation circuit

across the WRBs, typically employed in column-parallel ADCs in CMOS

image sensors [177]. From the measured 8 bit, 7.1 MS/s 65 nm single-slope

ADC results in [108], we conservatively estimate Eadc = 0.84 pJ/sample and

Tadc + Tdac = 25 ns for 4 bit precision, with Tadc dominating the delay. Fur-

thermore, assuming ∆Vo,max = VDD
3

= 300 mV and Vlsb = 4 mV, the system-

level output swing requirements for mapping DNN computations described

in Sec. 4.4.3 dictate T0 = 1 ns, which is previously shown to be achievable

61

MRAM-
Digital

MRAM-
DIMA

10×

75%
25%

51%
49%

(a)

(c) (d)

(b)

To
ta

l M
VM

 d
el

ay
 (s

)

$

20× lower
delay for
$ = 32

Fig. (c)

Fig. (d)

BCA

Compute
BCA
ADC+DAC

To
ta

l M
VM

 e
ne

rg
y (
×1
0n
J)

BCA
SA

Compute
ADC+DAC

To
ta

l M
VM

 e
ne

rg
y (
nJ

)

MRAM-Digital
MRAM-DIMA

Figure 4.5: Simulation results for MVM operation: (a) energy breakdown,
(b) delay as a function of M , (c) component-wise delay contributions in
digital MRAM, (d) component-wise delay contributions in MRAM-DIMA
for M ×N = 32× 192, Bw = 5, and Ba = 4.

[178, 179, 180] without significant energy overhead.

In the digital MRAM architecture, we use a BCA of identical capacity as in

DIMA to store the weight matrix. Using the measured offset voltage variation

in SA [181] and observed
(
σ
µ

)
G-bc

in the PDK, we derive Iread = 40µA.

Similarly, we assume Ton = 3 ns, L = 8, and ESA = 40 fJ from the results

reported in [182, 181, 183, 184]. We obtain energy and delay of a full-adder

via SPICE simulations and use it to estimate Eproc and Tproc in Eq. (4.2) and

Eq. (4.3), respectively.

4.4.2 Energy and Throughput Benefits

In Fig. 4.5, we plot energy and delay models in Sec. 4.3.4 forM×N = 32×192

MVM computation corresponding to a 3×3 convolutional layer with 64 input

and output channels. The MRAM-DIMA achieves a 10× lower energy as

shown in Fig. 4.5(a), primarily due to elimination of SA, and BCA energy

reduction due to activation sparsity and reduced read current per bitcell.

In MRAM-DIMA, Edac and ECI dominate due to their large opmap bias

62

LeNet-300-100 on MNIST 9-layer CNN on CIFAR-10

(a) (b)

Figure 4.6: Classification accuracy vs
(
σ
µ

)
G-bc

obtained using the models in

Sec. 4.3.4 for: (a) LeNet-300-100 on MNIST dataset, and (b) nine-layer CNN
on CIFAR-10 dataset. For each value of

(
σ
µ

)
G-bc

, 100 instances of the BCA
were generated to obtain the statistics shown in the error bars.

currents. The aggregated maximum current on SLs in a WRB is smaller

than maximum current on single BL due to activation sparsity and phase

multiplexed bias removal. This leads to smaller bias current energy in ECI

than that of the voltage follower in Edac. The delay benefits of MRAM-DIMA

over digital MRAM scale linearly with M due to the inherent parallelism in

MRAM-DIMA (see Fig. 4.5(b)). A delay reduction of up to 20× is achieved

for M = 32. While memory access delay dominates in digital MRAM, (see

Fig. 4.5(c)), Tadc constitutes ≈ 50% of Tdima (Fig. 4.5(d)).

4.4.3 Impact on System-level Accuracy

We estimate the impact of MRAM-DIMA’s analog computation and pro-

cess variations on the system-level accuracy of: (a) LeNet-300-100 MLP on

MNIST dataset, and (b) a nine-layer CNN on CIFAR-10 dataset. These net-

works were trained using DoReFa-net [185] training methodology. The acti-

vations pass through a clipped ReLU activation function and are quantized

between [0, 1]. The weights lie in the range between [−αij,+αij], where αij is

the scaling parameter for the i-th filter in the j-th layer, and they all lie in the

range [0.03, 0.15]. Limitation on the voltage swing at the CI output (∆Vo,max)

naturally implements clipped ReLU, while the αijs are implemented by ap-

propriately scaling T0. We emulate MRAM-DIMA’s computation in PyTorch

by using nominal behavioral models described in Sec. 4.3.4 for deterministic

63

…
…
…
…

…
…
…
…

… … … … …

"

2$

…

BL DACs

W
L d

riv
er

s
W

L d
riv

er
s

SL
 S

en
sin

g

1st row
of %

& '
−
1

& '
−
1

SL
 S

en
sin

g

Mth row
of %

&*

&*

&*

+,

+-

.//,/

.//,1

.//,2

.//,3

.//,4

.//,4

.//,4

.//,4

Column-major
format

"[i]

… …
5678"[i] 5678"[i]

.9:,2 .9:,4

5;<,9:,1

.9:,3

.9:,1

.9:,/

.9:,4

.9:,4

.9:,4

(a) (b)

NDACPDAC

𝑥!

𝑎"

𝑎#

𝐼!"#𝑥$𝐼!"#𝑥$

Figure 4.7: Current driven MRAM-DIMA design details: (a) column-major
storage pattern of matrix W in BCA, and (b) current DAC driven BLs.

non-idealities and add bitwise random noise in bitcell conductance values

to model MTJ variations. The MRAM-DIMA is able to tolerate a 4× and

2× higher
(
σ
µ

)
G-bc

than its typical value while maintaining < 1% drop in

accuracy compared to ideal fixed-point computation for LeNet-300-100 and

nine-layer CNN as shown in Fig. 4.6(a) and (b), respectively.

4.5 Current Driven MRAM-DIMA

In this section, we present a modified version of, where the BLs are driven

by current DACs instead of the voltage DACs as discussed in Sec. 4.3. We

discuss corresponding changes in the BCA storage and BL/SL peripherals.

4.5.1 BCA

As shown in Fig. 4.7(a), the weight matrix W is stored in the BCA in a

column-major format, where wij,0 . . . wij,4 denote individual bits of 5 bit scalar

elements wij represented in 1’s complement format. Here wij,0 indicates the

sign, while wij,1 is treated as the most significant bit (MSB). Thus, 5 bit

scalar element wij occupies eight bitcells, with the sign bit wij,0 replicated

64

four times in the adjacent column. Again, a WRB is formed by combining

four rows of BCA storing one row of W (similar to voltage driven design in

Fig. 4.2(a). Furthermore, the pulse-width modulation for the WLs in each

WRB is also same as that of the voltage driven design. However, the BR

phase in voltage driven design is eliminated here by employing both P-type

and N-type current DACs as discussed in the next subsection.

4.5.2 Current Driven BLs

BLs are driven by current DACs as shown in Fig. 4.7(b). This enables inde-

pendent control of the current through each BL. Assuming ideal SL sensing,

i.e. with zero input impedance looking into SL sensing circuit, the current

through bitcell storing wji,2 can be written as:

Iji,2 =
1

GBL,i

[
GAP + ∆Gwji,2

]
xiIlsb (4.9)

where GBL,i denotes total conductance looking into the BL in ith column

storing wji,2, ∆G = GP−GAP, and Ilsb denotes the LSB current of BL DAC.

Eq. (4.9) indicates that for achieving accurate dot product in single WRB,

each BL needs to have identical conductance looking into it, i.e., GBL,i = GBL

∀i. Note that this does not occur naturally, since each GBL,i is a function of

data stored in that column. For now, we assume that BL conductances for

all columns are equal to GBL, and address BL conductance equalization in

Sec. 4.5.4.

It is also to be noted that only the second term in the above Eq. (4.9) is

desired for the dot product computation, while the first term is an additional

bias that needs to be cancelled. It arises due to the fact that GAP 6= 0, i.e.,

the bitcell contributes a non-zero current despite storing a 0 bit. This bias

can be removed via an N-type current DAC connected to BL in the adjoining

column storing replicated sign bit wji,0, as shown in Fig. 4.7(b). The resulting

unbiased SL current contribution from bitcell pair wji,2 and wji,0 is given as:

ISL,ji,2 =
∆G

GBL

(wji,2 − wji,0)xiIlsb (4.10)

It is to be noted that such bias removal via N-type current DAC also

naturally enables signed computation, where resulting SL is negative for

65

…

WL1

Current
integrator

(CI)

x[i]

%&

%'

%(

%)

%*

%*

%*

%*

…
…

WL2

WL3

WL4

Voltage to
Current

(V2I)
conversion

Time-based
ADC a[j]

4

5

……

./0 12345

4

677
Delay Chain

(DC1)

Delay Chain
(DC2)

8
91

92

./0
12345

Sam
pler D

FF

O
U

T REG

SAR Logic

12345

125:4;

5
a[j]

x[i]

… …

"#$,& "#$,'

"#$,(

"#$,)

"#$,*

"#$,'

"#$,'

"#$,'

WL1

…
…
…

WL2

WL3

WL4

NDACPDAC

!!

""

""

Figure 4.8: Block diagram of SL sensing circuits in MRAM-DIMA.

negative valued weight wji.

4.5.3 Time-based Sensing Circuits

Figure 4.8 shows a block diagram of sensing circuits at the SL. They consist

of three stages, namely, current integrator (CI), voltage-to-time conversion,

and time-based ADC. In CI, the incoming SL currents are integrated to

develop voltage change ∆Vint at its output, which is proportional to the dot

product computed in that WRB. The CI is implemented as an inverter with

a capacitive feedback. This integrator output ∆Vint is converted to a digital

code via a time-based ADC to produce 5 bit output aj. In particular, it

is applied to a delay chain DC1 (see Fig. 4.8) such that it proportionately

changes the time it takes for the rising edge to pass through the delay chain.

Thus, it is compared with a tunable reference voltage ∆Vtune by comparing

the delays of DC1 and DC2 via sampling D-flipflop. Then, ∆Vtune is adjusted

via standard successive approximation register and a current DAC, until

∆Vtune is within one LSB of ∆Vint. The resulting digital code corresponding

to ∆Vint is read out via the OUT register.

The simplicity and component-efficiency of the proposed sensing circuit

offers one crucial advantage – it enables pitch-matched layouts of this block,

i.e., the layout of each sensing circuit is pitch-matched to the height of each

WRB, which equals to four times individual bitcell pitch. We discuss these

layout constraints further in Sec. 4.6.

66

𝐺"
𝐺#
𝐺$

𝐺%&"
𝐺%

𝐺′"

𝐺′%(

…
…
…

…

…

…

…

BCA storing
weights 𝐖

BL
conductance

equalizer
(BCE)

𝑀

𝑀𝑟 Pr
𝐺/ 0

1
−
𝐺 3

45
67
>
0.
05
𝐺 3

45
67

Fraction of extra rows 𝑟 (in BCC)

design point
𝑟 = 0.25

(a) (b)

BL

Figure 4.9: BL conductance equalization in MRAM-DIMA: (a) pictorial
representation of BL conductance equalizer (BCE) with respect to BCA,
and (b) probability of encountering a column whose conductance can not be
compensated within ±5% of Gconst as a function of the fraction of extra rows
r constituting BCE.

4.5.4 BL Conductance Variations across Columns

When BLs are driven by current DACs, each bitcell current contribution gets

scaled by total BL conductance in that column GBL,i Eq. (4.9), deteriorating

the accuracy of the dot product in each WRB. Hence, we propose to explicitly

equalize the BL conductance across the by adding extra rows in the BCA,

as shown in Fig. 4.9. We refer to these additional rows as BL conductance

equalizer (BCE), and denote the equalized conductance by ĜBL. Note that

the BCE array is an identical BCA receiving the same WL pulses. The

data the BCE is written such that total BL conductance (include BCA and

BCE) is equal for each column. For example, in Fig. 4.9, the values of bitcell

conductances G′1, . . . , G
′
Mr in BCE depend upon the bitcell conductances

G1, . . . , GM in BCA column above them.

Let r denote a ratio of the numbers of rows in BCE to the number of

rows in BCA. It is clear that the BL conductances are equalized perfectly

across the columns, if r = 1. However, it also involves 100% overhead for

such equalization. Hence, a key question is, can one achieve good enough

equalization across the columns at much smaller values of r? This question

can be answered rigorously as follows.

Let Gconst denote the desired conductance after equalization for each col-

umn. One way to quantify the quality of equalization is by determining the

probability (pbad) of encountering a column whose conductance cannot be

67

SL
SensingBC

A-
0

BC
A-

1

IDAC IDAC

IDAC IDAC

R/
W

R/
W

Technology GF 22-FDSOI

Die size 1.5mm X 1.5mm

Pins 72

!!! 0.8 V

MRAM
Capacity

5 kB
(2 of "#$×"&')

Figure 4.10: Layout and details of the chip prototype of current driven
MRAM-DIMA.

compensated within 10% of Gconst, despite having r rows in BCE, i.e.,

pbad = Pr
{
|ĜBL −Gconst| > 0.05Gconst

}
(4.11)

Under the assumption of Bernoulli data distribution, the relationship pbad

vs . r can be derived analytically for different values of BCA rows M , as

shown in Fig. 4.9(b). Observe that, for a given pbad, the required overhead r

decreases, as expected, with increasing M . In this design, we have M = 32,

and choose r = 0.25 to achieve pbad ≈ 5% as a sweet-spot between the

accuracy vs . overhead of the conductance equalization.

4.6 Prototype Chip Tape-out

Figure 4.10 shows the details and the layout of our chip prototype of current

driven MRAM-DIMA designed using GF-22 nm-FDSOI process development

kit. The prototype was designed to implement 32× 128 MVM computation.

It consists of 160× 256 MRAM crossbar which is columnwise split into two

sub-arrays, namely BCA-0 and BCA-1. The SL sensing is located in the

middle, reducing the impact of SL parasitic resistance. The standard digital

MRAM read & write circuits (R/W blocks in Fig. 4.10) are located on the

other sides of the two subarrays. Note that the SL sensing circuits are pitch-

matched to the BCAs. This was challenging due to the high density of

MRAMs. In particular, MRAM bitcells are so small that the pitch width of a

single D flip-flop in the OUT Register (see Fig. 4.8) is comparable to the pitch

of eight MRAM bitcells. Such tight pitch-matching constraints were met by

68

component-efficient time-based sensing circuits (see Sec. 4.5.3) and extensive

manual layout efforts. At the end, SL sensing circuits corresponding to the

consecutive WRBs are stacked sideways, and are pitch-matched to eight BCA

rows.

During the prototype chip measurements, we found it challenging to achieve

desired dot product accuracy due to significantly low signal-to-noise ratio

(SNR) at the SL currents. In particular, we observed that the SL sensing

circuits are overwhelmed by the sum of mismatch currents in all current DAC

pairs, resulting in a large bias current at the SL that is not proportional to

the dot product. This observation, while perplexing at first, motivated the

detailed SNR analysis for IMC employing resistive crossbars presented in

Chapter 5, where we analytically provide the reason behind this observation.

4.7 Discussion

In this chapter, we proposed an MRAM-based deep in-memory architecture

to achieve matrix-vector multiplication within a single BCA read operation.

It employed standard MRAM-BCA, without any modifications and modi-

fied peripheral circuits to achieve multi-bit computation even though each

MRAM bitcell stores only 1 bit. We discussed both voltage-driven and cur-

rent driven MRAM-DIMA. We showed that MRAM-DIMA can potentially

achieve 10× and 20× lower energy and delay, respectively, compared to dig-

ital MRAM implementation with the matrix stored in an identical MRAM

array.

While we designed a prototype chip implementing current-driven MRAM-

DIMA, we observed prohibitively low SNR during measurements. This ob-

servation motivated a detailed SNR analysis of resistive crossbar IMCs pre-

sented in Chapter 5. Based on our analysis, we concluded that such am-

plification of the impact of input DAC mismatches does occur in current

driven MRAM crossbars due to lower resistance states in MRAM and the

larger input impedance (≈ 2 kΩ) of sensing circuits. This being a funda-

mental device-level limitation, we recommend on-chip learning based error

compensation techniques to improve the output SNR.

69

CHAPTER 5

SNR ANALYSIS OF IN-MEMORY
COMPUTING EMPLOYING RESISTIVE

CROSSBAR ARRAYS

5.1 Overview

In this chapter, we focus on understanding the compute SNR of IMCs em-

ploying emerging 1T-1R crossbar memories, such as RRAM, PCM, or MRAM.

This SNR is significantly affected by the presence of process variations in the

bitcell resistance as well as in the input digital-to-analog converters (DACs).

While the recent works [166, 167, 168, 169, 170, 171, 8, 172] present indi-

vidual design points, the understanding of how SNR is affected by the non-

zero impedance of peripheral sensing circuits, the dimensionality of the dot

product, and inherent ON/OFF resistance ratio for the bitcells remains in-

complete. It is important to complete this understanding in order to identify

the true capabilities of resistive IMC crossbars and develop design guidelines.

This indeed is the goal of this chapter.

We conduct an SNR analysis of voltage driven resistive crossbars employed

for in-memory MVM computations. The analysis is device-agnostic and is

applicable to any resistive crossbar. Specifically, we use our analysis to com-

prehend the SNR trade-offs for PCM, MRAM, as well as RRAM. We consider

the impact of device and circuit non-idealites such as the finite impedance

Rs of the sensing circuits, and the mismatch in bitcells and input DACs. We

also capture the impact of output analog-to-digital converters (ADCs) via

accounting for clipping and quantization noise. In the case of voltage DAC

(VDAC) driven crossbars, we show how SNR trades-off with Rs, the number

of columns N in the crossbar, as well as the normalized energy per opera-

tion. Finally, we also consider current DAC driven crossbars and identify

their challenges compared to voltage driven crossbars.

70

…

…

…

…

!

"

BL

WL

SL

WL
Drivers

DAC
1

DAC
2

DAC
3

DAC
4

DAC
!

Sensing

Sensing

Sensing

…

ADC

ADC

ADC

…

#"

…
…

DAC
1

DAC
2

DAC
3

DAC
4

DAC
!

Input vector #

…

…

…

#"

#"

#"

…

BL

SL… …
$$$$$% $$&

%'(,%

!

%'(,$

%'(,*

%'(,*+%

(a) (b)

Output
vector
,

!!

!"

!#

"

"! "" "$ "% "&
Input vector #

#'(

#'(

#'(

#'(

"! "" "$ "% "&
Input vector #

Figure 5.1: IMC with resistive non-volatile memories: (a) block diagram of
a typical architecture, and (b) its abstraction for steady-state SNR analysis
presented in this chapter.

5.2 Analysis Setup

Figure 5.1(a) shows a block diagram of a canonical crossbar architecture

employing an M ×N resistive BCA and associated peripherals required for

MVM computation. Each bitcell in the BCA consists of an access transistor

controlled via horizontal wordlines (WL) and a resistive memory device whose

conductance is proportional to the value of data stored in the bitcell. Note

that MRAM devices can have only two distinct conductance states, storing

single bit per bitcell. However, RRAM/PCM devices can potentially store

multiple bits within single bitcell via multiple distinct conductance states.

The input vector x is applied to the bitlines (BLs) via current/voltage

DACs (see Fig. 5.1(a)), while the BCA stores the matrix W with every

element stored in the corresponding bitcell. The elements of the output

vector a = Wx needs to be estimated from the row-wise horizontal sourceline

(SL) currents via SL sensing circuits followed by analog-to-digital converters

(ADCs). Notice that during the IMC operation all WLs are turned ON.

Hence, for the SNR analysis in this chapter, we make the following two

abstractions (see Fig. 5.1(b)): (i) the BCA is represented as a purely resistive

crossbar array, where each resistance value includes both the ON resistance

of the access transistor and the resistance of the memory device, and (ii)

we represent the SL sensing circuits as a resistance Rs, which represents

the Thevenin equivalent resistance looking into the input of the SL sensing

circuit. We account for the impact of the ADC, such as quantization noise

71

and clipping noise, by referring those to the input of the SL sensing circuits.

We denote the resistance of a bitcell in ith row and jth column as Rij ∈
{Ron, Roff} and corresponding conductance Gij = 1

Rij
∈ {Gon, Goff}, where we

assume each bitcell stores a single bit with two distinct resistance states: low

resistance state Ron and high resistance state Roff, and Gon and Goff denote

the corresponding conductance values. We consider following three memory

device technologies since they cover a wide range of Roff/Ron values:

• MRAM [186]: Ron ≈ 3 kΩ and Roff ≈ 6 kΩ =⇒ Roff

Ron
≈ 2

• RRAM [172]: Ron ≈ 25 kΩ and Roff ≈ 300 kΩ =⇒ Roff

Ron
≈ 12

• PCM [8]: Ron ≈ 40 kΩ and Roff ≈ 3 MΩ =⇒ Roff

Ron
≈ 75

where we define the ratio Roff/Ron as the resistive contrast of the bitcell.

In a resistive crossbar, the signal of interest is the SL current ISL,i in ith row

whose ideal value is given by

(∑N
k=1 VkGi,k

)
where Vk denotes the voltage

applied at the kth BL. We first derive an exact closed-form expression of

the nominal value of ISL,i as a function of Rs and N . Then, we consider the

impact of variations and noise on ISL,i. Specifically, the noise SL current ISL

for each row is written as (dropping index i for simplicity):

ISL = Isig + Ibm + Idm + Icn + Iqn (5.1)

where Isig denotes nominal SL current in the absence of any variations, and

the other terms are defined below:

• Ibm: impact of mismatch variations in the bitcell conductances. It is

well known that Ron and Roff values in the crossbars vary by 4%-to-6%.

• Idm: impact of mismatch variations in the input DACs. Due to the

threshold voltage variations, the ON current of each DAC finger varies

by ∼ 5%, resulting in an input-dependent variation in the total cur-

rent of each current DAC. This phenomenon is also present in voltage

DACs if they are constructed by cascading a current DAC and a trans-

impedance amplifier (TIA). Such voltage DAC design is preferred due

to the strict area constraints in the IMC crossbars.

• Icn: noise originated due to the clipping of ISL beyond range −Iclip

to Iclip. When SL sensing circuits convert ISL to voltage before ADC,

72

!!
…

DAC
1

DAC
2

DAC
3

DAC
4

DAC
"

…

…

…

!!

!!

!!

…

BL

SL… …

"##"#$ "#%

#&',$

$

#&',#

#&',)

#&',)*$

(b)

%$ %# %% %+ %,

&

Figure 5.2: Voltage driven crossbar.

Iclip is dictated by the input voltage swing of the ADC. For advanced

process technologies such as CMOS 22 nm, Iclip is typically in the range

of a few µA for time-based successive approximation ADCs discussed

in Sec. 4.5.3.

• Iqn: noise due to quantization via ADC. Iqn ∼ U
(
− Iclip

2Badc
,
Iclip

2Badc

)
, where

U(L,H) denotes the uniform noise distribution between L and H, and

Badc denotes the ADC bit precision. For most resistive IMC crossbars

with on-chip ADCs, B is typically chosen as 3-to-6 bits.

We define the SNR at the SL as:

SNR =
E
[
I2

sig

]
E
[
I2

bm

]
+ E

[
I2

dm

]
+ E

[
I2

cn

]
+ E

[
I2

qn

] (5.2)

where the expectation E[·] is taken over the joint distribution of data, varia-

tions, and noise.

5.3 Voltage Driven Crossbars

In a voltage driven crossbar (see Fig. 5.2), the jth BL is driven by voltage

VBL,j = VDC +Vj, where VDC denotes the DC bias voltage, Vj = xjVlsb input-

dependent small-signal voltage, xj denotes jth element of vector x, and Vlsb

denotes minimum DAC voltage step corresponding to least significant bit

(LSB). For ISL,i to be proportional to the Vjs, the DC voltage of SLs needs to

be set to VDC. This can be achieved by using the same TIA topology as that

73

of the voltage DACs in the SL sensing to convert resulting ISL,i into voltage.

For the analysis in this chapter, we assume this to be the case. Furthermore,

in practice, VDC of each DAC and each SL also varies due to the threshold

voltage variations in the constituent transistors of the corresponding TIAs.

In this chapter, however, we do not include those variations in our analysis

since they are input-independent and can be compensated by a one-time

tuning of the TIAs per chip.

Notice that even if ith crossbar row stores a vector of all zeros, i.e., when

Gij = Goff, j ∈ 1, . . . , N , the resulting current ISL,i 6= 0 since Goff 6= 0. In

order to remove any non-zero DC current when Gij = Goff, it is a common

practice to [171, 8]: (i) apply differential inputs on the BLs, i.e., V2k−1 =

−V2k, k ∈ {1, . . . , N
2
}, and (ii) employ two bitcells (Gi,2k−1, Gi,2k) to store

a single signed bit as follows:

bi,2k =


1 if Gi,2k−1 > Gi,2k

0 if Gi,2k−1 = Gi,2k

−1 if Gi,2k−1 < Gi,2k

(5.3)

where bi,2k denotes the value stored in the bitcell pair (Gi,2k−1, Gi,2k). Note

that with this data storage scheme, the dimension of the computed dot prod-

uct in a single row is N
2

. Also, this scheme can be extended to bitcells storing

multi-bit information in a straightforward manner.

In the absence of any variations and noise, one can derive an expression

for the nominal SL current in ith row by applying Kirchhoff’s current law at

the SL to obtain (see Appendix A for a detailed derivation):

Isig,i =

[
Rarr,i

Rarr,i +Rs

](N/2∑
k=1

V2k∆Gi,2k

)
= SIIideal,i (5.4)

where 0 < SI < 1 (first term) is a scale factor, Iideal,i (second term) denotes

ideal SL current when Rs = 0, ∆Gi,2k = Gi,2k−1 − Gi,2k, and Rarr,i (array

resistance) is the Thevenin resistance looking into the ith SL given by:

Rarr,i =
1∑N

j=1 Gi,j

(5.5)

In the typical data storage scheme (see Eq. (5.3)), almost half bitcells store

74

!!"#$% =#
&'(

⁄* +
$+&Δ&,,+&

!.!/ = '0×!!"#$%

).)$11

!!"#$% =#
&'(

⁄* +
$+&%,,+&

!.!/ = &0×!!"#$%

(.($11

!!"#: Distribution of #!"#

!"$%&': Distribution of #"$%&'

#"$%&'

#!"#−#('") #('")

−#('") #('")

−#('") #('")

!!"#: Distribution of #!"#

!!"#: Distribution of #!"#

Quantization
step size

Clipping
probability

(a) (b)

(c)

(d)

(e)

#!"#

#!"#

%* is large

%* is optimum
maximum SNR

%* is small

!+,!(,

!+,!(,

!+,!(,

Std. dev. of
quantization

noise

Std. dev. of
clipping noise

= #&--
#&-- +#. %"$%&'

Figure 5.3: Interpreting Eq. (5.4): (a) equivalent circuit representation, (b)
probability distribution of Iideal and the probability distribution of Isig when:
(c) SI is large (σcn � σqn), (d) SI is optimum (σcn ≈ σqn), and (e) SI is
small (σcn � σqn), where σcn and σqn denote the standard deviations of
clipping and quantization noise. The vertical dotted lines in (c)-(e) denote
ADC quantization bins reflected to the input of the SL sensing circuit.

75

Gon and remaining store Goff in every row. Hence, the array resistance can

be approximated as:

Rarr,i ≈
1

N
(
Gon+Goff

2

) =
1

NGavg

=
Ravg

N
(5.6)

where Gavg = Gon+Goff

2
= Ravg

N
denotes the average of two bitcell conductance

states, and its inverse Ravg is referred to as average bitcell resistance.

Substituting the value of Rarr,i from Eq. (5.6) in Eq. (5.4) and writing

∆Gi,2k = bi,2k
1
Roff

(
Roff

Ron
− 1
)

and V2k = x2kVlsb, we get,

Isig,i ≈
[

Ravg

Ravg +NRs

](
Roff

Ron

− 1

)(N/2∑
k=1

bi,2kx2k

)(
Vlsb

Roff

)
(5.7)

where the term Vlsb

Roff
is the minimum current through a bitcell. Notice that

the third and fourth terms can be viewed as a numerical dot product scaled

by the minimum bitcell current, while the first two terms are dimensionless

gain factors. Naturally, in order to achieve high SNR, both of these factors

need to be large. This shows that ideally bitcell resistance states should be

such that their average Ravg � NRs and their contrast Roff

Ron
� 1 in order to

achieve high SNR.

Equation (5.4) can be interpreted (see Fig. 5.3(a)) as describing the pro-

cess of current division of Iideal across two resistors in parallel, viz. Rs and

Rarr, where Isig flows through Rs and Iideal − Isig flows through Rarr. Since

SI linearly scales Isig, its value controls the clipping vs. quantization noise

trade-off. For example, a larger value of SI results in higher clipping prob-

ability, and consequently a higher standard deviation of clipping noise σnc

(see Fig. 5.3(b)). On the other hand, if SI is too small, it squeezes the Isig

distribution close to zero, resulting in a higher standard deviation of quanti-

zation noise σnq (see Fig. 5.3(d)). Thus, there exists an optimum value of SI

when the clipping and quantization noise are balanced, i.e. when σnc ≈ σnq

(see Fig. 5.3(c)), which maximizes the SNR.

Notice that the value of SI in Eq. (5.4) is dictated by both Rs and Rarr as

follows:

• A smaller value of Rs
Rarr,i

results in a higher SI . For example, when

Rs → 0, then SI → 1 and Isig,i ≈ Iideal,i. However, achieving such small

76

Table 5.1: Typical simulation parameter values

Parameter Value
VDAC bit precision (Bx) 5 bit
ADC bit precision (Badc) 6 bit
Vlsb 3 mV
Iclip 2µA(
σ
µ

)
bc

4%(
σ
µ

)
Vlsb

4%

value of Rs (< 500Ω) can be very challenging due to significant area and

energy overhead of the SL sensing circuits with low input resistance.

• Increasing the number of columns N decreases SI since Rarr,i ∝ 1
N

.

This limits the dot product dimension N
2

that can be implemented.

• Smaller resistive contrast in the bitcell requires a smaller value of Rs

for maintaining SI . Thus, we can expect MRAM crossbar requiring a

smaller Rs to achieve maximum SNR compared to RRAM and PCM.

Now we account for the impact of mismatch variations in the input voltage

DACs by substituting V2k ← V2k + δV2k in Eq. (5.4) and separating out the

mismatch term to obtain

Idm,i =

[
Rarr,i

Rarr,i +Rs

](N/2∑
k=1

δV2k∆Gi,2k

)
= SI

(N/2∑
k=1

δV2k∆Gi,2k

)
(5.8)

where δV2k denotes variation in the 2k-th DAC pair. Recall that we as-

sume VDAC is designed using a current DAC followed by a TIA. Hence, its

variations are dominated by the variations in the current DAC, i.e. δV2k ∼

N
(

0, 2ViVlsb

(
σ
µ

)2

Vlsb

)
, where

(
σ
µ

)
Vlsb

corresponds to the deviation-to-mean ra-

tio of the mismatch variations in a single current DAC finger. Similarly, we

account for the impact of variations in the bitcell conductances by substitut-

ing ∆Gi,2k ← ∆Gi,2k + δGi,2k in Eq. (5.4) and separating out the mismatch

term to obtain

Ibm,i =

[
Rarr,i

Rarr,i +Rs

](N/2∑
k=1

V2kδGi,2k

)
= SI

(N/2∑
k=1

V2kδGi,2k

)
(5.9)

where δGi,2k ∼ N
(

0,
(
σ
µ

)2

bc
(G2

off +G2
on)

)
denotes the variation in the dif-

77

ference in conductances of 2k-th pair of bitcells,
(
σ
µ

)
bc

denotes standard

deviation-to-mean ratio for bitcell conductance mismatch. Also, notice that

these conductance variations cause variations in Rarr,i. However, it only

changes the range of Isig,i independent of the input vector x. Hence, we do

not include it in our analysis in this chapter since it can be accounted for by

a corresponding small change in the ADC dynamic range. Note in Eq. (5.8)

and Eq. (5.9) that both Ibm,i and Idm,i scale with SI in the same manner

as Isig. Hence, the ratios
Isig
Ibm,i

and
Isig
Idm,i

do not depend on SI , and hence on

Rs. The implications will become clear in Sec. 5.3.1 where we will see that

two of the SNR regimes are primarily dictated by the other two noise, i.e.

quantization and clipping noise.

Next, we employ the expressions in Eq. (5.8) and Eq. (5.9) to study the im-

pact of Rs, N as well as the BCA energy per operation for all three memory

types on the SNR. Note that the expectations in SNR are estimated empiri-

cally via Monte Carlo simulations. The typical values of parameters chosen

for these simulations are given in Table 5.1. Also, we constrain bi,2k ∈ {−1, 1}
in our simulations for simplicity.

5.3.1 SNR vs. Rs Trade-off

We begin with a study of SNR vs. Rs trade-off. Given the tight area con-

straints on the SL sensing circuits, achieving very low Rs could be pro-

hibitively expensive in resistive IMC crossbars. Hence it is important to

understand how SNR changes with Rs and be able to estimate the value of

Rs which maximizes the SNR. Figures 5.4(a), (b), and (c) show SNR vs. Rs

trade-off for VDAC driven crossbars consisting of PCM, RRAM, and MRAM

memory devices, respectively. We make following observations from Fig. 5.4:

• For each value of N , SNR is maximized at a particular value of Rs

(defined as R∗s) for all three memory device technologies. Furthermore,

we observe that R∗s decreases with N . This is expected since Rarr

decreases with N .

• Recall that Isig decreases when Rs increases. Thus, when Rs < R∗s,

clipping noise dominates, while quantization noise dominates when

Rs > R∗s.

78

SN
R

(d
B)

!! (#)

% = '()
% = '*(+
% = (*+)

SN
R

(d
B)

!! (#)
(a)

!!∗ = (,#

clipping noise
dominated

quantization noise
dominated

% = '()
% = '*(+

% = (*+)

!!∗ ≈ (,#

clipping noise
dominated

quantization noise
dominated

(b)

SN
R

(d
B)

!! (#)

% = '()
% = '*(+

% = (*+)

(c)

clipping noise
dominated

quantization noise
dominated

!!∗ = ',#

quantization noise

Figure 5.4: SNR vs. Rs trade-off in IMC with VDAC driven crossbars
consisting of (a) PCM, (b) RRAM, and (c) MRAM memory devices.

79

SN
R

(d
B)

!! = #$%

SN
R

(d
B)

(a) (b)
& &

!! = '$%

!! = '((%

!! =)$%

!! = #$%
!! = '$%

!! = '((%

!! =)$%

!! = #$%

!! = '$%

!! = '((%
!! =)$%

SN
R

(d
B)

&
(c)

Figure 5.5: SNR vs. N trade-off in IMC with VDAC driven crossbars
consisting of (a) PCM, (b) RRAM, and (c) MRAM memory devices.

• For a given value of N , R∗s also depends weakly upon the resistive

contrast of the memory device. For example, with N = 1024, R∗s for

MRAM is smaller than that of PCM and RRAM due to smaller resistive

contrast of MRAM.

Notice that R∗s ≈1 kΩ-to-2 kΩ for all three memory technologies, which is

feasible even with the pitch-matching contraints of IMCs.

5.3.2 SNR vs. N Trade-off

Next, we now study the SNR vs. N trade-off for distinct values of Rs.

Figures 5.5(a), (b), and (c) show the SNR vs. N trade-off for distinct values

of Rs for VDAC driven crossbars consisting of PCM, RRAM, and MRAM

memory devices, respectively. For RRAM and PCM, when Rs is too small

(e.g . Rs ≤ 1 kΩ), SNR increases with N since it remains dominated by

clipping noise until N = 3000. For larger Rs values (e.g . 2 kΩ ≤ Rs ≤ 5 kΩ),

SNR first increases with N until N = N∗ and then decreases when N > N∗,

80

where it remains dominated by quantization noise. For example, with Rs =

R∗s = 2 kΩ, N∗ ≈ 1000 and N∗ ≈ 750 for PCM and RRAM, respectively.

Also, notice that the decrease in SNR as a function of N in this case is very

gradual for both PCM and RRAM.This is due to the opposing influence of

two effects (see Eq. (5.4)): (i) O(1
N

) decrease in Isig via Rarr, and (ii) O(
√
N)

increase in Isig on average via
∑N/2

k=1 V2k∆Gi,2k. Thus, SNR remains high for

a broad range of N values.

Similar observations can be made for MRAM in Fig. 5.5(c). For instance,

high SNR is achieved at a broad range of 500 ≤ N ≤ 1000 with Rs =

R∗s = 1 kΩ. Also note that the maximum value of SNR for MRAM is only

20 dB, which is 5 dB smaller than that for PCM/RRAM. This is a direct

consequence of MRAM’s smaller resistive contrast.

5.3.3 Bound on M

Increasing M in IMC crossbars linearly improves throughput via parallelism.

Naturally one would want to choose as high M as possible. Hence it is

important to address following question: “How large can the number of rows

(M) be in VDAC driven crossbars?”. We address it in this subsection.

The value of M is limited by the constraint that IBL,max < IVDAC,max, where

IVDAC,max denotes the maximum current that can be provided by VDAC while

preserving its voltage. Based on Eq. (5.4), we first derive an expression for

the maximum BL current IBL,m in a single column in a given crossbar with

the sensing circuit resistance Rs by summing the maximum individual bitcell

currents along the column to obtain:

IBL,max =
M∑
i=1

[
Rarr,i

Rarr,i +Rs

]
VmaxGon (5.10)

where Vmax maximum output voltage of VDAC. Note that a VDAC needs to

provide the maximum current when all bitcell in its column are ON and its

input corresponds to the Vmax. For a Bx bit VDAC, Vmax = 2BxVlsb.

As observed in Eq. (5.10), IBL,max increases linearly with M . We plot

IBL,max vs. M for N = 200 and N = 1000 in Fig. 5.6 for all three memory

device technologies. For RRAM/PCM, we choose R∗s = 5 kΩ (R∗s = 2 kΩ)

corresponding to N = 200 (N = 1000) (recall from Fig. 5.5). Similarly, for

81

!

". $

%

". %

&

!

MRAM ('! = !)*)
RRAM ('! = %)*)

PCM ('! = %)*)

4824 3216

For " = $%%%

MRAM ('! = %)*)
RRAM ('! = $)*)
PCM ('! = $)*)

For " = &%%
+ "
#,%

&'
(,
-)

!

.

(a)

(b)

!"

36

!

+()*+,%&' = !/0

+()*+,%&' = %/0

+()*+,%&' = ./0

+ "
#,%

&'
(,
-)

Figure 5.6: IBL,max vs. M trade-off in IMC with voltage driven crossbars.

82

SN
R

(d
B)

1 10

5 dB

!"×

Normalized $!"#,%&

MRAM

RRAM

PCM

Figure 5.7: SNR vs. normalized BCA energy trade-off in IMC with VDAC
driven crossbars consisting of PCM, RRAM, and MRAM memory devices.

MRAM, we choose R∗s = 2 kΩ and R∗s = 1 kΩ corresponding to N = 200 and

N = 1000, respectively.

Note that given the stringent area constraints in the IMC crossbars, IVDAC,max

of a couple of µA is feasible to achieve. With IVDAC,max = 2µA (IVDAC,max =

1µA), we find thatM = 48 (M = 24) satisfies the constraint for RRAM/PCM

with N = 1000 (see Fig. 5.6(b)). For MRAM, corresponding M values are

reduced to 32 and 16, respectively. For smaller value of N = 200, we find that

IBL,max is higher for the similar range of M values for all three memory device

technologies. Specifically, with larger IVDAC,max = 3µA, we get M = 36 and

M = 20 for RRAM/PCM and MRAM, respectively (see Fig. 5.6(a)).

5.3.4 SNR vs. Energy Trade-off

IMCs have a fundamental trade-off between the SNR and energy consump-

tion, which determines their applicability in different tasks [65]. Figure 5.7

plots SNR vs. EBCA,op trade-off for PCM, RRAM, and MRAM, where

EBCA,op denotes the BCA energy per 1 bit×1 bit MAC operation consumed

during steady-state IMC operation. We estimate EBCA,op as

EBCA,op =
1

N

1

Bx

VDDTBCAE
[
|Isig|

]
(5.11)

where VDD, TBCA denote supply voltage and the ON duration of BL DACs,

respectively, and | · | denotes the absolute value operation. We assume VDD,

TBCA to be same across the three memory types: RRAM, PCM, and MRAM.

83

SN
R

(d
B)

!! (#)

% = '()

% = '*(+

% = (*+)

!!∗ = ',#

MRAM: !!"# = #$% and &$!%& = '() MRAM: !!"# = *$% and &$!%& = '()

SN
R

(d
B)

!! (#)

% = '()

% = '*(+

% = (*+)

!!∗ = --*#

(a) (b)

Figure 5.8: SNR vs. Rs trade-off in IMC MRAM crossbars with Iclip = 2µA
and: (a) Vlsb = 3 mV, and (b) Vlsb = 1 mV.

In Fig. 5.7, N is swept to obtain different points in the plot and EBCA,op values

are normalized with respect to the smallest EBCA,op for MRAM (correspond-

ing to N = 1950). For comparable EBCA,op, SNR for MRAM crossbar is

5 dB smaller than that for RRAM/PCM crossbars. As we also discussed

in Sec. 5.3.2, this is a direct consequence of smaller resistive contrast in

MRAM. Figure 5.7 also quantifies the energy penalty of small resistive con-

trast. Specifically, RRAM and PCM achieve ≈ 10× smaller EBCA,op com-

pared to MRAM for comparable SNR of 20 dB. The larger separation be-

tween Ron and Roff values in RRAM/PCM enables their operation at smaller

bitcell currents compared to MRAM while achieving similar computation

accuracy.

5.3.5 Impact of Vlsb and Iclip

In earlier sections (from Sec. 5.3.1 to Sec. 5.3.4), we assumed Vlsb = 3 mV

and Iclip = 2µA. While they can be reasonably realized in advanced process

technologies, in this section, we discuss how the SNR trade-off will change w.

r. t. both Vlsb and Iclip. We focus particularly on MRAM in this section since

it turns out to be the most challenging due to its lower resistive contrast.

However, similar conclusions can also be drawn for RRAM and PCM.

Figure 5.8 shows the impact of reducing Vlsb on SNR vs. Rs trade-off.

Specifically, we find that a reduction in Vlsb results in a proportionate re-

duction in R∗s. For example, in Fig. 5.8, changing Vlsb from 3 mV to 1 mV

results in a proportionate 3× reduction in R∗s. This is expected since Vlsb

84

SN
R

(d
B)

!! (#)

% = '()

% = '*(+

% = (*+)

SNR dominated by
clipping noise quantization noise

!!∗ = ',#

MRAM: !!"# = #$%, &$!%& = '(), and *'() = +

SN
R

(d
B)

!! (#)

% = '()

% = '*(+

% = (*+)

SNR dominated by
clipping noise quantization noise

!!∗ = '(-#

MRAM: !!"# = #$%, &$!%& = ,+(), and *'() = +

SN
R

(d
B)

!! (#)

% = '()

% = '*(+
% = (*+)

SNR dominated by
clipping

noise
quantization

noise

!!∗ = ',#

MRAM: !!"# = #$%, &$!%& = ,+(), and *'() = -

DAC and bitcell
mismatch

Maximum SNR

(a) (b)

(c)

Figure 5.9: SNR vs. Rs trade-off in IMC MRAM crossbars with: (a) Iclip

= 2µA and Badc = 6 bit, (b) Iclip = 16µA and Badc = 6 bit, and (c) Iclip =
16µA and Badc = 9 bit.

linearly changes Iideal in Eq. (5.4). Hence, the SI needs to be correspondingly

adjusted via a proportionate change in the Rs for maintaining the same SNR.

Similarly, we explore the impact of Iclip on SNR vs. Rs trade-off in Fig. 5.9.

Note that the choice of Iclip is closely linked with the ADC bit precision Badc

since the quantization noise Iqn ∼ U
(
− Iclip

2Badc
,
Iclip

2Badc

)
(recall from Sec. 5.2).

Hence, we consider following two cases in Fig. 5.9: Iclip is increased 8× from

2µA to 16µA (1) while preserving Badc = 6 bit (Fig. 5.9(b)), and (2) while

proportionately increasing Badc from 6 bit to 9 bit in order to accommodate

the larger current range (Fig. 5.9(c)). In Fig. 5.9(a) and Fig. 5.9(b), we find

that when Iclip is increased while maintaining the Badc, the same SNR vs.

Rs trade-off is achieved at lower Rs values. Higher Iclip increases quantiza-

tion noise, which needs to be compensated by appropriately increasing SI

85

!!

…

…

DAC
1

DAC
2

DAC
3

DAC
4

DAC
"

…

…

…

!!

!!

!!

…

BL

SL… …

"##"#$ "#%

#&',$

$

#&',#

#&',)

#&',)*$

(b)

#$ ## #% #+ #,

%

Figure 5.10: Current driven crossbar.

via proportionate reduction in Rs. Thus, the optimal value R∗s is propor-

tionately lower at the higher Iclip. The scenario gets interesting when Badc is

increased along with Iclip. In Fig. 5.9(c), there is a broad range of Rs (from

80 Ω to 1 kΩ) where the SNR is maximized. In this regime, both quantization

and clipping noise are small and the SNR is dominated by DAC and bitcell

conductance mismatch variations. Note that the impact of these mismatch

variations in Eq. (5.9) and Eq. (5.8) also gets scaled by the SI making the

SNR independent of Rs when these variations are dominant. Thus, higher

Iclip and Badc enable a broader design space by reducing clipping noise with-

out any increase in the quantization noise.

5.4 Current Driven Crossbars

Figure 5.10 shows current driven crossbar, where each BL current Ii = xiIlsb

and Ilsb corresponds to the change in DAC current corresponding to the LSB.

Unlike voltage driven crossbars, deriving a closed-form analytical expression

for ISL,i is mathematically intractable for an arbitrary value of M . Hence,

we analyze a 2 × N crossbar array. Doing so provides very good insights

regarding the challenges involved in current DAC driven crossbars.

In the absence of any variations or noise, we apply the Kirchhoff’s current

law at the ith SL along with the charge conservation principle to obtain the

SL current for 2×N crossbar array (i ∈ {1, 2}) as follows (see Appendix B

86

for a detailed derivation):

Isig,i =

[
Rs

Rarr + 2Rs

](N∑
j=1

Ij

)
+

[
Rarr

Rarr + 2Rs

](N∑
j=1

G1jIj
G1j +G2j

)
(5.12)

= βcmItot + βdpIdp (5.13)

=
1

2
(1− βdp)Itot + βdpIdp (5.14)

where βdp corresponds to the scaling of Isig,i component that is proportional

to the dot product (signal component), βcm corresponds the scaling of the

constant bias current component (bias component), and Rarr denotes the

equivalent resistance corresponding to columnwise parallel combination of

all bitcells as follows:

1

Rarr

=
N∑
j=1

1

R1,j +R2,j

(5.15)

Notice that the SL currents in current DAC driven crossbars differ from those

in VDAC driven crossbars in the following two ways:

1. Need for constant sum of bitcell conductances along BL: Each

elementwise multiplication in Idp is scaled by the sum of bitcell con-

ductances along that particular BL. Hence, this sum needs to be con-

stant across columns in order to achieve an accurate dot product. As

discussed in Sec. 4.5.4, this sum can be equalized along columns by

incorporating redundant BCA rows.

2. Large input-dependent bias current: Notice that the first term

(1
2
(1− βdp)Itot) in Eq. (5.12) corresponds to an input vector x depen-

dent bias current that is identical across all rows. Notice that this

term appears due to the non-zero input impedance of sensing circuits,

i.e. Rs 6= 0. Since Rarr and hence βdp decreases with N , the relative

proportion of this bias current increases with N . For example, with

N = 200 and R∗s = 5 kΩ (2 kΩ) for PCM/RRAM (MRAM), we have:

• PCM: βdp = 0.603,
βdp

βcm
≈ 304%

• RRAM: βdp = 0.140,
βdp

βcm
≈ 32.5%

• MRAM: βdp = 0.004,
βdp

βcm
≈ 0.9%

87

In PCM, thanks to its large Roff values, βdp remains 3× higher than βcm.

Even in RRAM, βdp and βcm remain comparable. However, in MRAM,

βdp turns out to be only 0.9% of βcm due to its smaller Ron/Roff values.

Thus, a significant portion of Isig,i corresponds to the constant bias cur-

rent. Also, a larger value of βcm corresponds to an amplified impact of

the mismatch variations in the current DACs on Isig,i. Specifically, the

impact of DAC mismatch variations, Idm,i (recall Sec. 5.2), in current

driven crossbars is given as:

Idm,i = βcm

(N∑
j=1

δIj

)
+ βdp

(N∑
j=1

G1jδIj
G1j +G2j

)
(5.16)

where δIj denotes the variation in jth current DAC. Notice that βcm

also scales the sum of total variations in the current DACs (first term

in Eq. (5.16)). Thus, when βcm � βdp (as is in the case of MRAM), the

impact of mismatch variations in DACs will be larger than the signal

current, i.e. Idm,i � βdpIdp.

Challenge 2 discussed above turned out to be the key difficulty in our chip

prototype of current driven MRAM-DIMA in Sec. 4.6. In our prototype, it

did turn out that βcm � βdp, resulting in SL currents getting overwhelmed

by the signal-independent bias current βcm

(∑N
j=1 δIj

)
, resulting in a very

low SNR during the chip measurements of current driven MRAM-DIMA

prototype. This being the fundamental device-level limitation in the current

drive setting, we concluded that one needs to employ on-chip learning based

compensation to accurately recover βdpIdp in the presence of DAC mismatch

variations in the current driven MRAM crossbars.

5.5 Discussion

In this chapter, we analyzed the SNR of resistive crossbar arrays employed for

in-memory computing. The analysis is device-agnostic and we study three

memory device types, namely PCM, RRAM, and MRAM, having distinct

resistive contrast. We find that there are optimal values sensing impedance

and the number of columns that achieve maximum SNR in the case of voltage

driven crossbars. We also considered current driven crossbars and identified

88

their challenges compared to VDAC driven crossbars. Based on our analysis,

we draw the following four key conclusions:

• Voltage drive works well for IMC with resistive crossbars for all three

memory device technologies (PCM, RRAM, and MRAM), despite large

differences in their resistive contrast. The highest SNR is achieved with

Rs ≈ 2 kΩ for N = 1000, which is certainly feasible even after stringent

area constraints. Furthermore, with M ≈ 20 and N ≈ 1000, one can

reap the benefits of IMC while maintaining maximum DAC current

reasonably low (< 1µA).

• Current drive has a key disadvantage of large impact of DAC mis-

matches compared to voltage drive. It is particularly exacerbated in

the case of MRAM due to its low resistive contrast and relatively large

sensing impedance Rs. While reducing Rs by orders of magnitude will

alleviate this challenge, it is often prohibitively expensive in terms of

area and energy. Since the first term in Eq. (5.16) depends only on

the inputs and is same for all SLs, one can compensate it via a shared

circuit.

• MRAM achieves significantly poorer SNR vs. energy trade-off com-

pared to RRAM and PCM (see Fig. 5.7), primarily due to its lower

resistive contrast. Since this is a fundamental device limitation, it un-

derscores the need to employ on-chip learning [65] based statistical error

compensation (SEC) for improving SNR in MRAM based IMC.

• Equation (5.7) shows that ideally the bitcell resistance states should

have their average Ravg � NRs and their contrast Roff

Ron
� 1 in or-

der to achieve high SNR. Furthermore, given EBCA,op ∝ Isig, one can

trade-off the SNR improvements obtained via high average bitcell resis-

tance and high resistive contrast to appropriately minimize the energy

consumption. For example, higher Ravg and Roff

Ron
can enable smaller

sensing circuit impedance Rs and higher ADC quantization step size,

simplifying the sensing circuit design for the same target SNR.

Moving forward, an important next step is to characterize the impact of

BL/SL parasitic impedance in crossbars on the SNR of in-memory compu-

tation. Also, in this chapter, we focus on crossbar arrays, where BLs are

89

perpendicular to SL. However, our approach can be followed to carry out

similar analysis for parallel-bar arrays where BLs are parallel to SL.

90

CHAPTER 6

SUBSPACE ANALYSIS OF ADVERSARIAL
PERTURBATIONS

6.1 Overview

Deep nets are vulnerable to adversarial perturbations [9], i.e., changes imper-

ceptible to humans result in incorrect decisions. Multiple approaches to con-

struct adversarial examples (attack methods) have been proposed [28, 11, 29,

12, 30]. While the basic idea is to move the input in the direction of increas-

ing loss, stronger attacks [13, 12] operate iteratively by perturbing the input

in small increments. On the defense side, early attempts to provide adversar-

ial defenses obfuscate gradient computation by introducing non-differentiable

and/or randomized operations in the forward pass [35, 36, 37, 38]. However,

such defenses were shown to be ineffective [42, 14], especially when the at-

tacker employs adaptive attacks, i.e., the attacks that modified specifically

to evade a given defense. Today adversarial training (AT) [13, 22, 43] is

the only empirical defense that has remained robust to a wide variety of the

strongest possible known attacks.

Thus, defending deep nets against adversarial perturbations remains a

formidable challenge. This is in part due to a lack of in-depth understanding

of the underlying cause of deep nets’ vulnerability to adversarial perturba-

tions. Indeed, efforts to improve such understanding have led to intrigu-

ing observations/insights such as the role of the geometry of the decision

boundary [187, 188], and the existence of an inherent trade-off between gen-

eralization and robustness [22, 55], the existence of universal perturbations

[189], and the notion of robust vs. non-robust features [190]. Such insights,

however, do not yet completely explain the cause of a DNN’s adversarial vul-

nerability. Hence, further efforts are required to deepen our understanding

of this phenomenon so that effective defenses against adversarial attacks can

be developed.

91

In this chapter, we employ subspace analysis to understand the geometric

orientations of adversarial perturbations, and how they differ after vanilla

vs. adversarial training. Specifically, we present and validate two hypotheses

about geometric orientations of adversarial perturbations. In Sec. 6.2, we ob-

serve how adversarial perturbations are oriented relative to dominant image

subspace and vice versa. In Sec. 6.3, we explore how orientations pertur-

bations of different types, namely `∞, `2, and `1 perturbations, differ from

each other in terms of their dominant subspaces. Note that the eventual

goal of analysis presented in this chapter is to develop insights for improving

robustness vs. cost trade-off in deep nets. We discuss the implications of our

analysis in Sec. 6.4.

Without loss of generality, we employ ResNet-18 network on CIFAR-10

for the subspace analysis in this chapter. The analysis can be repeated for

any other network or dataset. We refer to deep net parameterized by θ as

fθ(x), and the training set as X = {xi}Ri=1 with cardinality |X| = R and

xi ∈ RD. For the CIFAR-10 dataset R = 50, 000 and D = 3072. We employ

vanilla training to obtain a non-robust network fvan
θ , while use TRADES [22]

training (one of the SOTA defense) to obtain a robust network f rob
θ .

6.2 Orthogonality between Images and Adversarial

Perturbations

We begin by a following hypothesis (briefly alluded to in [188]): adversarial

perturbations of vanilla trained networks lie predominantly in a subspace or-

thogonal to that occupied by the input. Conversely, an adversarially trained

network will find its adversarial perturbations to lie in the same subspace as

the input. We refer to this hypothesis as Subspace Orthogonality of Adver-

sarial Perturbations (SOAP).

We employ a subspace analysis to empirically validate the SOAP hypothe-

sis of adversarial perturbations. For both robust and non-robust deep nets we

generate adversarial perturbations via DeepFool [11], i.e., we iteratively find

a perturbation vector δα ∈ RD ∀α ∈ {van, rob} as an approximate solution

92

500 1000 1500 2000 2500 3000
0

20

40

60

80

0

0.05

0.1

0.15

0.2

0 500 1000 1500 2000 2500 3000
0

10

20

30

40

0

0.5

1

1.5

2

2.5

3
10-4

Index 𝑗 of vectors 𝒑#$%& in perturbations basis 𝒫$%&

𝔼 𝒙
∈+

𝒙,
𝒑 #$

%&
-

𝔼 𝒙
∈+

𝜹$
%&
,𝒑
#$%
&
-

Index 𝑗 of vectors 𝒑#/0 perturbation basis 𝒫/10

𝔼 𝒙
∈+

𝒙,
𝒑 #/

10
-

𝔼 𝒙
∈+

𝜹/
10
,𝒑
#/1
0
-

With vanilla training (ResNet-18 on CIFAR-10) with TRADES training (ResNet-18 on CIFAR-10)

𝑆 = 𝐴$%& 𝑆 = 𝐵$%& 𝑆 = 𝐴$%& ∪ 𝐵$%&

𝔼𝒙∈7 89𝒙 :
:

𝔼𝒙∈7 𝒙 :
:

2.42% 97.58% 100%

𝔼𝒙∈7 89𝜹;<= :
:

𝔼𝒙∈7 𝜹;<= :
:

96.82% 3.18% 100%

Subspace
𝐴$%&

Subspace
𝐵$%&

Subspace
𝐴/10

(b)

Subspace
𝐵/10

(a)

𝑆 = 𝐴/10 𝑆 = 𝐵/10 𝑆 = 𝐴/10 ∪ 𝐵/10

𝔼𝒙∈7 89𝒙 :
:

𝔼𝒙∈7 𝒙 :
:

98.08% 1.98% 100%

𝔼𝒙∈7 89𝜹>?@ :
:

𝔼𝒙∈7 𝜹>?@ :
:

93.56% 6.44% 100%

Figure 6.1: Dominant adversarial perturbation subspaces in robust vs. non-
robust networks: (top plots) average squared projections of training images
Ex∈X [〈x,pαj 〉2] and DeepFool perturbations Ex∈X [〈δα,pαj 〉2] on the perturba-
tion basis Pα for (a) non-robust ResNet-18 α = van, and (b) robust ResNet-
18 α = rob, where 〈·〉 denotes dot product. (bottom tables) Fraction of aver-
age squared norm within the two orthogonal subspaces Aα = {pα1 , . . . ,pα1200},
Bα = {pα1201, . . . ,p

α
3072}, together spanning entire perturbation basis Pα for

(a) non-robust network α = van, and (b) robust network α = rob, where
STa denotes projection of vector a on subspace S.

to the problem:

arg min
δα
‖δα‖2 s.t. fαθ (x+ δα) 6= fαθ (x), α ∈ {van, rob} (6.1)

Note that DeepFool perturbations are the vectors with approaximately the

smallest `2 magnitude. Hence, they can be viewed as directions to the nearest

decision boundary for their corresponding inputs.

Further, following [188], we compute the singular vector basis Pα = {pα1 ,
. . . ,pαD} for the set of adversarial (DeepFool) perturbations ∆α = {δα1 , . . . , δαD}
∀i, α ∈ {van, rob}. Again, the singular vectors pαi are ordered in descending

order of the corresponding singular values. We refer to the basis Pα as the

perturbation basis.

Figure 6.1(a) shows the mean squared projections of the images xi (red)

and DeepFool perturbations δvan
i (blue) onto the perturbation basis Pvan,

averaged over the dataset X. We find that the adversarial perturbations

for fvan
θ (blue) lie in a subspace that is (mostly) orthogonal to that of the

93

dominant image subspace (red). Indeed, it can be seen that these adversarial

perturbations exploit dimensions with small input projections. One might

conjecture that the dimensions having small input projections may not be

critical for a classification task. However, [188] demonstrates that the small

image projections on the dominant singular vectors Pvan do in fact contribute

significantly to the network’s natural accuracy. Thus, small perturbations in

those dimensions cause a catastrophic drop in the network’s robust accuracy.

In contrast, for the robust deep net f rob
θ , Fig. 6.1(b) indicates that the ad-

versarial perturbations and images predominantly lie in the same subspace.

We quantify this orthogonality (SOAP) property by computing the ratio of

the squared norm of the projections in the two mutually orthogonal subspaces

Aα = {pαj }1200
j=1 and Bα = {pαj }3072

j=1201 of basis Pα = Aα
⋃
Bα. Hence, for a

given image xi,

‖xi‖2
2 = ‖(Aα)Txi‖2

2 + ‖(Bα)Txi‖2
2 (6.2)

where STa denotes the projection of vector a onto the subspace S, and ‖ · ‖2

denotes `2 norm. Hence, the ratio ‖(Aα)Txi‖2
2/‖xi‖2

2 indicates the extent

to which a given vector xi lies in the subspace Aα. Note that Aα is the

dominant subspace for the DeepFool perturbations since the singular vectors

are ordered in the descending order of the corresponding singular values.

The table in Fig. 6.1(a) shows that the vanilla network fvan
θ has 96.82%

of the average squared `2 norm of the perturbations δi lying in Avan while

97.58% of the average squared `2 norm of the training images lie in the

orthogonal subspace Bvan. Thus, the DeepFool perturbations and the train-

ing images lie almost entirely in mutually orthogonal subspaces. In con-

trast, Fig. 6.1(b) shows that the adversarially trained robust network f rob
θ

has 93.56% of the average squared `2 norm of the adversarial perturbations

and 98.08% of that of the training images lie in the same subspace Arob.

Thus, both images and the DeepFool perturbations for a robust network

predominantly lie in the same subspace.

The distinction between non-robust and robust networks observed in Fig. 6.1

corroborates the generative behavior of adversarial perturbations of robust

networks [190, 43]: adversarial perturbations of robust networks exhibit se-

mantics similar to images because they predominantly lie in the same sub-

space. In the case of non-robust networks, the perturbations remain seman-

94

500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

0

0.02

0.04

0.06

0.08

0.1

0.12

0 500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

0.8

1
10-4

Index ! of vectors "# in image basis

$ %
∈'

%,
" #

)

$ %
∈'

*+
,-
," #

)

with vanilla training

Index ! of vectors "# in image basis

$ %
∈'

%,
" .

)

$ %
∈'

*,
- ,
" .

)

with TRADES training

(b)

(a)

500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

0

0.02

0.04

0.06

0.08

0.1

0.12

0 500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

0.8

1
10-4

Index ! of vectors "# in image basis

$ %
∈'

%,
" #

)

$ %
∈'

*+
,-
," #

)

with vanilla training

Index ! of vectors "# in image basis

$ %
∈'

%,
" .

)

$ %
∈'

*,
- ,
" .

)

with TRADES training

(b)

(a)

Figure 6.2: Average squared projections of training images Ex∈X [〈x,vj〉2]
and DeepFool perturbations Ex∈X [〈δα,vαj 〉2] on the singular vector basis
{v1, . . . ,v3072} of training images for: (a) ResNet-18 trained with standard
training (α = van), and (b) ResNet-18 trained with TRADES training,
(α = rob).

tically uninterpretable because of their orthogonality to the image subspace.

The distinction between the alignment of adversarial perturbations and

the images for fvan
θ and f rob

θ is also observed when projecting onto the image

basis V = {v1, . . . ,vD} as shown in Fig. 6.2. The image basis V is obtained

via a singular vector decomposition of the training images and vectors vi

in V are ordered in descending order of the corresponding singular values.

Figure 6.2(a) shows the orthogonality of the DeepFool perturbations observed

after vanilla training, while Fig. 6.2(b) shows the collinearity between the

perturbation and image subspaces after TRADES training.

6.3 Distinction between Different Perturbation Models

In this section, we employ subspace methods to comprehend the distinction

between `∞, `2 and `1 perturbation types. For each input xi ∈ RD in dataset

X, consider adversarial perturbations αi, βi, and γi bounded within `∞, `2,

and `1 norms, respectively. We can employ standard PGD attacks to obtain

these perturbations.

We begin with the following hypothesis illustrated in Fig. 6.3: The per-

turbations α, β, and γ corresponding to input x have directions that differ

significantly if the curvature of the decision boundary is high in the neighbor-

hood of x. Conversely, if the curvature of the decision boundary is low, the

perturbations α, β, and γ tend to lie in similar directions.

In fact, the curvature of the decision boundary of deep nets has been stud-

95

! !

!: ℓ! norm bounded; $: ℓ" norm bounded; %: ℓ# norm bounded
Perturbation models

High curvature in decision
boundary

Low curvature in decision
boundary

(vanilla training) (adversarial training)

" "

#
$

#

$

Figure 6.3: Illustration of the impact of AT on the curvature of the classifier
decision boundary curvature and therefore on the orientation of perturbations
α, β and γ for an input x.

ied thoroughly [191, 192, 188]. For example, Moosavi-Dezfooli et al . [191]

observed high curvature of the decision boundary around most inputs after

vanilla training and employed it to explain the existence of universal pertur-

bations [189]. Furthermore,Moosavi-Dezfooli et al . [192] made a remarkable

observation that employing single-attack AT alone reduces the curvature of

the decision boundary and regularizing decision boundary curvature leads to

gains in adversarial robustness.

Since single-attack AT reduces the curvature of the decision boundary,

we test our hypothesis by studying the following two networks on CIFAR-10

data: a non-robust ResNet18 fvan
θ trained using vanilla training, and a robust

ResNet18 f rob
θ trained using the TRADES [22] single-attack AT framework

employing `∞ perturbations.

We compute perturbations ακi , β
κ
i , and γκi for each xi ∈ X for both

networks, i.e., κ ∈ {van, rob}. Now we treat them as vectors in RD and study

their relative orientations via a subspace analysis. We compute the singular

vector basis Pκ = {pκ1 , . . . ,pκD} for the set of `2 bounded perturbations ∆κ =

{βκ1 , . . . ,βκD} ∀i, κ ∈ {van, rob}. The singular vectors pκi are ordered in

descending order of their singular values.

We plot the normalized mean squared projections of the three perturba-

tion types on the perturbation basis Pκ for κ ∈ {van, rob} in Fig. 6.4(a)

and Fig. 6.4(b), respectively. The contrast is clear immediately. The per-

turbations of a vanilla trained network roll-off gradually to occupy a larger

96

Index ! of singular vectors "!"#$ in basis #"#$

$ %
∈'

%,
" !"

#$
(

'
((

% =)"#$
% = *"#$

% = +"#$

after Vanilla training

after TRADES AT

Index ! of singular vectors "!)*+ in basis #)*+

$ %
∈'

%,
" !)
*+

(

'
((

(a)

(b)

,,#-

0.1,,#-

,,#-

0.1,,#-

% =))*+
% = *)*+

% = +)*+

3000-D

250-D

Figure 6.4: Normalized mean squared projections of three perturbation types
on the singular vector basis Pκ of βκ perturbations): (a) after vanilla training
(κ ≡ van), and (b) after TRADES training (κ ≡ rob) for ResNet18 on
CIFAR-10.

subspace as indicated in Fig. 6.4(a). Specifically, the projections of αvan

and γvan occupy almost all 3000 directions in the basis Pκ, i.e., their mean

squared projections are within ∼ 10% of the maximum mean squared pro-

jection value mmax. This shows that the dominant singular vectors of βvan

are not well-aligned with αvan and γvan. This misalignment between the

perturbation vectors implies that all three would need to be included during

training (multi-attack AT) in order to provide robustness against the union of

perturbation models. This is exactly the approach taken by Maini et al . [107]

resulting the significant (10×) complexity increase over single-attack AT.

In contrast, with TRADES AT, all three perturbations types are squeezed

into a much smaller subspace spanning only the top 250 singular vectors in

the perturbation basis Prob. Outside these 250 dimensions, the mean squared

projections fall to < 10% of their maximum value. Thus, single-`∞ attack

AT enhances the alignment between different perturbations which in turn

97

improves robustness. However, this improvement is small, e.g., while robust

accuracy of 50% is achieved against `∞ perturbations, robust accuracy of

only 15% is realized against `1 attacks. Nevertheless, this type of subspace

analysis hints at other methods to enhance the alignment between various

perturbation vectors within a single-attack AT framework. The discovery of

such methods will provide robustness to union of perturbation models at the

complexity of single-attack AT.

In summary, the results in Fig. 6.4 validate the hypothesis that single-

attack AT increases the alignment of different perturbation types on average

due to the reduction in the decision boundary curvature around most inputs.

6.4 Discussion

In this chapter, we carried out subspace analysis of adversarial perturbations.

Specifically, we proposed and validated two hypotheses about geometric ori-

entations of adversarial perturbations. The SOAP hypothesis shows that the

decision boundary of vanilla trained deep net gets warped around the natu-

ral images in the dimensions orthogonal to dominant image subspace. This

also aligns well with the observation that deep nets overfit in the dimensions

having low data variance.

The second hypothesis conveys that the different types of adversarial per-

turbations are squeezed into a smaller subspace even after an adversarial

training employing only one type of perturbations. We exploit this insight

in Chapter 7 to minimize the training cost of adversarially robust deep nets

via shaped noise augmented processing.

98

CHAPTER 7

EFFICIENT AND ROBUST DEEP NET
TRAINING VIA NOISE SHAPING

7.1 Overview

Today adversarial training (AT) provides state-of-the-art (SOTA) empirical

defense against adversarial perturbations. For this, adversarial perturbations

are used during training to optimize a robust loss function [13, 22, 43, 44].

Early AT frameworks [13, 22] were 7×-to-10× more computationally de-

manding than vanilla training. More recent works [43, 44, 47] have signifi-

cantly reduced the computational demands of AT via single-step attacks and

superconvergence.

However, today’s AT frameworks predominantly focus on a single-attack,

i.e., they seek robustness to a single perturbation, typically `∞-bounded [43,

44, 45, 22, 46, 47, 48, 49, 50, 51, 52, 53, 54, 193]. This results in low perfor-

mance against other perturbations such as `2, `1, or the union of (`∞, `2, `1).

Indeed, as shown in Fig. 7.1, four SOTA single-attack AT frameworks (black

markers) employing only `∞-bounded perturbations achieve low adversarial

accuracy A(U)
adv of ≈ 15%-to-20% against the union of (`∞, `2, `1) perturba-

tions. Recent extensions in AT [107, 106, 194] do seek higher A(U)
adv but only at

the expense of a 6×-to-10× increase in the total training time (blue markers

in Fig. 7.1). The large training time of these AT frameworks has inhibited

their application to large-scale datasets such as ImageNet, e.g ., [107, 106]

show results for MNIST and CIFAR-10 only, while [194] only additionally

shows 64× 64 ImageNet-100 results.

The high training time for AT frameworks arises from two sources: (i) the

need to employ larger networks, e.g ., MSD [107] with ResNet-18 achieves

higher A(U)
adv than PAT [194] with ResNet-50 (see Fig. 7.1); and (ii) the need

to incorporate multiple perturbations during each attack step and a higher

overall number of attack steps, e.g ., 50 in MSD [107], 20 in AVG [106].

99

TRADES
[Zhang et al.’19]

TRADES+SNAP

[Maini et al.’20]

PGD
[Madry et al.’18]

FreeAdv
[shahafi et al.’19]

FreeAdv+SNAP

PGD+SNAP

Desir
ed

!
!"
#

(%
)
(%

)

Total training time (minutes)

MSD-50

MSD-20

MSD-30

MSD-10

MSD-5

FastAdv
[Wong et al.’20]

FastAdv+SNAP PAT
[Laidlaw et al.’21]

AVG-50AVG-20

AVG-5

AVG-10

[Tramer et al.’19]

AVG-2

Figure 7.1: Adversarial accuracy (A(U)
adv) against union of (`∞, `2, `1) vs. mea-

sured wall-clock total training time on CIFAR-10 with different AT frame-
works on single NVIDIA TESLA P100 GPU. ε = (0.031, 0.5, 12) for (`∞,
`2, `1) perturbations, respectively. SNAP enhances robustness with a small
increase in training time. All frameworks except PAT employ ResNet-18.

Obviously one can always reduce the number of attack steps in MSD/AVG

to proportionally reduce training time. Doing so results in training time and

A(U)
adv to rapidly approach the training complexity and A(U)

adv of standard AT

frameworks, e.g ., a five-step MSD and two-step AVG is equivalent in training

time and accuracy to PGD and TRADES, respectively. Notwithstanding the

expensive nature of 50-step multi-attack training, today MSD [107] achieves

a SOTA A(U)
adv of 47% with ResNet-18 on CIFAR-10.

This poses a question: Can we approach the high robustness of multiple-

attack AT such as 50-step MSD against the union of (`∞, `2, `1) perturbations

while maintaining the low training time of fast single-attack AT frameworks

such as FreeAdv [43] and FastAdv [44]?

In our quest to answer this question we find that noise augmentation using

adequately shaped noise within standard single-attack AT frameworks em-

ploying `∞-bounded perturbations significantly improves robustness against

the union of (`∞, `2, `1) perturbations. The improvement appears to be a con-

sequence of a well-established byproduct of AT frameworks – the reduction

in the curvature of the decision boundary of networks trained using single-

attack AT [191, 192]. We confirm this connection by quantifying the impact

of single-attack AT on the geometric orientations of different perturbations.

100

Based on this insight, we propose Shaped Noise Augmented Processing

(SNAP) – a method to enhance robustness against the union of perturbation

types by augmenting single-attack AT frameworks. SNAP prepends a deep

net with a shaped noise (SN) augmentation layer (see Fig. 7.2) whose dis-

tribution parameter Σ is learned with that of the network (θ) within any

standard single-attack AT framework. SNAP improves the robustness of

four SOTA `∞-AT frameworks against the union of (`∞, `2, `1) perturbations

by 15%-to-20% on CIFAR-10 (red markers in Fig. 7.1) with only a modest

(∼ 10%) increase in training time. This expands the capabilities of widely

popular single-attack `∞ AT frameworks to providing robustness to the union

of (`∞, `2, `1) perturbations without sacrificing training efficiency. We vali-

date SNAP’s benefits via thorough comparisons with nine SOTA adversarial

training and randomized smoothing frameworks across different operating

regimes on both CIFAR-10 and ImageNet.

One tangible outcome of our work – we demonstrate for the first time

ResNet-50 (ResNet-101) networks on ImageNet that achieve A(U)
adv = 32%

(35%) against the union of (`∞(ε = 2/255), `2(ε = 2.0), `1(ε = 72.0)) pertur-

bations.

Our code is available at https://github.com/adpatil2/SNAP.

7.2 Shaped Noise Augmented Processing (SNAP)

We show that single-attack AT can be enhanced to address multiple pertur-

bations by introducing noise to appropriately wiggle the `∞-bounded pertur-

bations (Fig. 7.2(a)). However, to do so, the noise distribution needs to be

chosen and shaped appropriately to minimize its impact on natural accuracy

and robustness to `∞-bounded perturbations.

We experiment with both `∞ and `2 perturbations in single-attack AT

frameworks and find `∞-AT to be suitable for our proposed shaped noise

augmentation (see Sec. 7.3.2 for details). Hence, in this section, we describe

SNAP for single-attack AT frameworks employing `∞ perturbations.

101

!
!

!

net perturbation
in AT+SNAP

shaped noise
samples

most likely

least likely

!: ℓ! norm bounded; $: ℓ" norm bounded; %: ℓ# norm bounded
Perturbation models

!
!

!

net perturbation
in AT+SNAP

shaped noise
samples

most likely

least likely

(a) (b)

Deep Net
! = #! $"

!%! " = $&,()* !

Σ &

SN

Figure 7.2: SNAP: (a) intuition underlying SNAP (not an exact depic-
tion), and (b) SNAPnet fSN

θ,Σ(x) constructed from a given deep net fθ(x)
by prepending a shaped noise (SN) augmentation layer which perturbs the
primary input x with noise n whose distribution parameter Σ is learned
during AT along with the base network parameter θ.

7.2.1 SNAPnet

A deep net fθ(x) : RD → {0, 1}C parametrized by θ maps the input x ∈ RD

to a one-hot vector y ∈ {0, 1}C over C classes.

We construct a SNAP-based deep net (SNAPnet) fSN
θ,Σ(x) by introducing

an additive shaped noise (SN) layer (Fig. 7.2(b)), where the noise distribution

parameter Σ is learned during training. Formally,

y = fSN
θ,Σ(x) = fθ

(
x+ n

)
= fθ

(
x+ V Σn0

)
(7.1)

where n0 ∼ L(0, ID×D) is an isotropic Laplace noise vector with zero mean

and identity covariance matrix, Σ = Diag[σ1, . . . , σD] is a distribution pa-

rameter denoting its per-dimension standard deviation, ID×D denotes the

D × D identity matrix, and V = [v1, . . . ,vD] denotes a basis in RD. We

also studied Gaussian and Uniform distributed n0, but empirically find the

Laplace distribution to yield better results (Sec. 7.3.2). We use V = ID×D

for all our experiments everywhere except in Sec.7.5.2 where we study other

options for V .

The final classification decision d is computed via

d = arg max
c

[
En

[
y
]]

c

(7.2)

102

Algorithm 1 Training SNAPnet

Input: training set X; basis V = [v1, . . . ,vD]; total noise power Pnoise; mini-
batch size r; baseline training method BASE; noise variance update frequency Uf ;
Total number of epochs T

Initialize: noise variances Σ0 = Diag[σ1,0, . . . , σD,0].
Output: robust network fSN

θ,Σ, noise variances ΣT = Diag[σ2
1,T , . . . , σ

2
D,T].

1: for epoch t = 1 . . . T do

2: for mini-batch B = {x1, . . . ,xr} do θ ← BASE`∞

(
fSN
θ,Σt

(
{xi}ri=1

)
, θ

)
.

BASE() Training
3: end for
4: if t mod Uf = 0 then . SNAP Distribution Update once every Uf

epochs
5: for mini-batch B = {x1, . . . ,xr} do

6: {xadv
i }ri=1 ← PGD

(K)
`2

(
fSN
θ,Σt

(
{xi}ri=1

))
; ηi = xadv

i − xi ∀ i ∈

{1, . . . , r}
7: γj ← γj +

∑r
i=1

(
〈vj ,ηi〉

)2 ∀j ∈ {1, . . . , D} . Accumulate
projections; See Eq. (7.3)

8: end for
9: σ2

j,t+1 = Pnoise

√
γj∑D

k=1
√
γk
∀j ∈ {1, . . . , D} . Normalize accumulated

projections; See Eq. (7.3)
10: else
11: Σt+1 ← Σt

12: end if
13: end for

where [a]c denotes the c-th element of vector a. Note, the shaped noise

perturbs the input x with a noise source n = V Σn0 (Eq. (7.1)). The distri-

bution parameter Σ is learned in the presence of any standard AT method

[13, 22, 43] used for learning deep net parameters θ as described next.

7.2.2 Training SNAPnet

Algorithm 1 summarizes the procedure for training SNAPnet fSN
θ,Σ(x). In each

epoch, an arbitrary AT method BASE() (line 2) updates network parameters

θ with input perturbed by noise n. Here BASE() can be any established AT

framework [13, 22, 43, 44] employing `∞ perturbation.

The SNAP parameter Σ is updated once every Uf = 10 epochs via a SNAP

distribution update (lines 4-10). In this update, the per-dimension noise

variance σ2
j is updated proportional to the root mean squared projection of

103

the adversarial perturbations η on the basis V given a total noise constraint∑D
j=1 σ

2
j = Pnoise, where Pnoise denotes the total noise power. Formally,

σ2
j ∝

√
Ex∈X

(
〈η,vj〉2

)
s.t.

D∑
j=1

σ2
j = Pnoise (7.3)

where η is the `2 norm-bounded PGD adversarial perturbation for the given

input x ∈ X (line 6). Note that these `2 perturbations are employed only

for noise shaping and are distinct from the `∞ perturbations employed by

BASE() AT (line 2). Also, `∞ perturbations cannot be used here since their

projections are constant ∀j when V = ID×D, whereas employing `1 pertur-

bations leads to poor shaping due to high sparsity.

Thus, in SNAP, the average squared `2 norm of the noise vector n is

held constant at Pnoise while adapting the noise variances in the individual

dimensions so as to align the noise vectors with the adversarial perturbations

on average. Intuitively, the decision boundary is pushed aggressively in those

directions.

7.2.3 Remarks

Note that the SNAP distribution update is distinct from BASE() AT. Hence,

SNAP does not require any hyperparameter tuning in BASE(). For fairness

to baselines we keep all hyperparameters identical when introducing SNAP in

all our experiments. However, SNAP introduces a new hyperparameter Pnoise,

which permits to trade adversarial robustness A(U)
adv for natural accuracy Anat.

This trade-off is explored in Sec. 7.3.3.

The computational overhead of SNAP is small (∼ 10%) since the SNAP

Distribution Update occurs once in 10 epochs using just 20% of the training

data to update the noise standard deviations σj.

104

7.3 Experimental Results

7.3.1 Setup

Following experimental settings of prior work [22, 43, 107], we employ a

ResNet-18 network for CIFAR-10 experiments and both ResNet-50 and ResNet-

101 networks for ImageNet experiments. Accuracy on clean test data is

referred to with Anat and accuracy on adversarially perturbed test data is

referred to viaA(`∞)
adv , A(`2)

adv , andA(`1)
adv , for `∞, `2, and `1 norm bounded pertur-

bations, respectively. Accuracy against the union of all three perturbations

is denoted by A(U)
adv.

For a fair robustness comparison, our evaluation setup closely follows the

setup of [107] for CIFAR-10 data: (1) choose norm bounds ε = (0.031, 0.5, 12.0)

for (`∞, `2, `1) perturbations, respectively; (2) scale norm bounds for images

to lie between [0, 1]; (3) choose the PGD attack configuration to be 100 iter-

ations with 10 random restarts for all perturbation types;1 and (4) estimate

A(U)
adv as the fraction of test data that is simultaneously resistant to all three

perturbation models.

Following the guidelines of [14], we carefully design adaptive PGD attacks

that target the full defense – SN layer – since SNAPnet is end-to-end dif-

ferentiable. Specifically, we backpropagate to primary input x through the

SN layer (see Fig. 7.2). Thus, the final shaped noise distribution is exposed

to the adversary. We also account for the expectation En[·] in Eq. (7.2) by

explicitly averaging deep net logits over N0(= 8) noise samples before com-

puting the gradient, which eliminates any gradient obfuscation, and is known

to be the strongest attack against noise augmented models [195].

On CIFAR-10 data, we compare with the following seven key SOTA AT

frameworks: PGD [13], TRADES [22], FreeAdv [43], FastAdv [44], AVG [106],

MSD [107], PAT [194]. We also compare with two randomized smoothing

frameworks [196, 195]. Thanks to their GitHub code releases, we first suc-

cessfully reproduce their results with a ResNet-18 network in our environ-

ment. In the case of PAT [194], we evaluate and compare with their pre-

trained ResNet-50 model on CIFAR-10. We compare all training times on

a single NVIDIA P100 GPU. On ImageNet data, we primarily compare to

1Following [107], we also run all attacks on a subset of the first 1000 test examples with
10 random restarts for CIFAR-10 data.

105

Table 7.1: ResNet-18 CIFAR-10 results showing the impact of SNAP aug-
mentation of PGD [13] AT framework with `∞ (top) and `2 (bottom) per-
turbations where [G], [U], and [L], denote shaped Gaussian, Uniform, and
Laplace noise.

Method Anat
A(`∞)

adv

ε = 0.03

A(`2)
adv

ε = 0.5

A(`1)
adv

ε = 12
A(U)

adv

PGD AT with `∞ perturbations

PGD 84.6 48.8 62.3 15.0 15.0
+SNAP[G] 80.7 45.7 66.9 34.6 31.9
+SNAP[U] 85.1 42.7 66.7 28.6 26.6
+SNAP[L] 83.0 44.8 68.6 40.1 35.6

PGD AT with `2 perturbations

PGD 89.3 28.8 67.3 31.8 25.1
+SNAP[G] 83.0 35.0 65.8 39.9 30.2
+SNAP[U] 86.4 32.3 66.7 30.2 25.0
+SNAP[L] 84.8 33.4 66.1 42.5 30.8

FreeAdv [43]. We train ResNet-50 and its SNAPnet version with FreeAdv

on a Google Cloud server with four NVIDIA P100 GPUs to compare their

accuracy and training times. Our code and pretrained models are available

at https://github.com/adpatil2/SNAP.

7.3.2 Impact of Noise Distribution and Model of BASE() AT
Perturbations

In this subsection, we first study the impact of employing `∞ vs. `2 pertur-

bations in BASE AT() (see line 2 in Alg. 1) on A(U)
adv. For each choice, we

further experiment with three distributions for the SN layer in Fig. 7.2(b)

viz. Gaussian, Uniform, and Laplace. We do not consider `1 perturbations in

BASE AT() since Maini et al . [107] showed that employing `1 single-attack

AT achieves very low robustness to all attacks. We choose PGD [13] AT as

BASE AT() for this ablation study. For a fair comparison across the noise

distributions, we fix Pnoise = 160, enforcing all noise vectors to have the same

average `2 norm. For each distribution, the noise is shaped per the procedure

summarized in Alg. 1.

As observed in Table 7.1, `∞-PGD AT achieves much lower A(U)
adv than `2-

PGD AT, an observation also reported by Maini et al . [107]. With SNAP,

however, we find that there is an interaction between the perturbation model

106

Table 7.2: ResNet-18 CIFAR-10 results showing the impact of SNAP aug-
mentation of established `∞-AT frameworks. The computational overhead
of SNAP is limited to ∼ 10%.

Method Anat
A(`∞)

adv

ε = 0.03

A(`2)
adv

ε = 0.5

A(`1)
adv

ε = 12
A(U)

adv

High Complexity AT with `∞ perturbations

PGD 84.6 48.8 62.3 15.0 15.0
+SNAP 83.0 44.8 68.6 40.1 35.6

TRADES 82.1 50.2 59.6 19.8 19.7
+SNAP 80.9 45.2 66.9 46.6 41.2

Low Complexity AT with `∞ perturbations

FreeAdv 81.7 46.1 59 15.0 15.0
+SNAP 83.5 39.7 66.2 34.3 29.6

FastAdv 85.7 46.2 60.0 13.2 13.2
+SNAP 84.2 40.4 67.9 36.6 30.8

in PGD AT and the noise distribution in SNAP. For instance, SNAP[U] en-

hances A(U)
adv by 11% with `∞-PGD AT while not achieving any improvement

with `2-PGD AT. In fact, SNAP appears to be particularly suitable for `∞-

AT, since it always improves A(U)
adv by 11%-to-20.6% irrespective of the noise

distribution.

Finally, of the three noise distributions, we find the Laplace distribution to

be distinctly superior, achieving the highest A(U)
adv (35.6% and 30.8%) due to

a significant improvement in A(`1)
adv for both `∞ and `2 PGD AT, respectively.

The superiority of the Laplace distribution in achieving high A(`1)
adv stems

from its heavier tail compared to the Gaussian and Uniform distributions

with the same variance. Shaped Laplace noise generates the highest fraction

of extreme values in a given noise sample. Hence, it is more effective in

improving accuracy against `1-bounded attacks, which are the strongest when

perturbing few pixels by a large magnitude [107, 106]. We discuss this further

in the Sec. 7.5.3. Henceforth, unless otherwise mentioned, we choose Laplace

noise for SNAP and `∞ perturbations for BASE() AT as the default setting

since it achieves the highest A(U)
adv.

107

!!"#
(ℓ!)

!'!(

!!"#
(ℓ")

"')*+,

Ad
ve

rs
ar

ia
l A

cc
ur

ac
y (

%
)

Na
tu

ra
l A

cc
ur

ac
y (

%
)

!
!"
#(

%
)

PGD+SNAP

PGD+Iso[L]

!"$%
(') (%)

∼ $%

(a) (b)

Figure 7.3: ResNet-18 CIFAR-10 results: adversarial accuracy A(`1)
adv , A(`∞)

adv ,
and natural accuracy Anat vs. total noise power Pnoise for PGD+SNAP.

7.3.3 Impact of Pnoise

Next, we explore the impact of the SNAP hyperparameter Pnoise, which con-

strains the average squared `2 norm of the noise vector n. It enables to trade

between adversarial and natural accuracy.

Figure 7.3 shows that, as Pnoise increases, A(`1)
adv improves from 31% to 47%,

accompanied by a graceful (5%) drop in Anat and a small drop of 2% in

A(`∞)
adv that stabilizes to ≈ 45%. These results show: (1) SNAP preserves

the impact of `∞ perturbations which is not surprising since PGD AT [13]

explicitly includes those, and (2) Pnoise provides an explicit knob to control

the Anat vs. Aadv trade-off. Henceforth, we choose Pnoise values that incur

< 1.5% drop in Anat for all SNAP+AT experiments.

7.3.4 SNAP Augmented SOTA AT Frameworks

Table 7.2 shows the effectiveness of SNAP for four SOTA AT frameworks:

high complexity frameworks, such as PGD [13], TRADES [22], and low com-

plexity frameworks such as FreeAdv [43], FastAdv [44]. All are trained

against `∞ attacks with ε = 0.031. As expected, while they achieve high

A(`∞)
adv , their A(`2)

adv and A(`1)
adv are lower.

For high-complexity AT, SNAP enhances A(`2)
adv and A(`1)

adv by ∼ 6% and

∼ 25%, respectively, while incurring only a drop of ∼ 5% in A(`∞)
adv . Thus

overall, SNAP improves robustness (A(U)
adv) by ∼ 20% against the union of

108

the three perturbation models. Note that this robustness improvement comes

at only a ∼ 1% drop in Anat (see Table 7.2). For low-complexity ATs, SNAP

improvements in union robustness (A(U)
adv) are also significant (∼ 15%). Again,

presence of SNAP improves A(`2)
adv and A(`1)

adv . This time the drop in A(`∞)
adv is

∼ 7%. We believe this is due to the fact that these frameworks employ weaker

single-step attacks during training. Note that in the case of FreeAdv+SNAP,

we actually observe a ∼ 2% increase in Anat, a trend we also observe in the

ImageNet experiments described later.

7.3.5 Robustness vs. Training Complexity

Next we quantify adversarial robustness vs. training time trade-offs. Ta-

ble 7.3 shows that SNAP augmentation of single-attack AT frameworks

achieves the highest A(U)
adv, when training time is constrained to 12 hours

(sets B, C, D, and E).

For instance, TRADES+SNAP achieves a 4% higher A(U)
adv(= 41%) than

MSD-20 with 2 hours lower training time (Set B in Table 7.3). Similarly,

PGD+SNAP achieves a 2% higher A(U)
adv than MSD-10 while having a simi-

lar training time (Set C). Note that both PGD and TRADES here use 100

training epochs with standard step learning rate (LR) schedule, while MSD

frameworks employ a cyclic learning rate schedule to achieve superconver-

gence in 50 epochs.

In Set D, following Maini et al . [107], we employ a cyclic learning rate

schedule for PGD, TRADES, as well as for PGD+SNAP and TRADES+SNAP

to achieve convergence in 50 epochs. Improvements in A(U)
adv for PGD+SNAP

and TRADES+SNAP are similar to those in Sets B and C. Most notably,

PGD+SNAP with cyclic learning rate achieves ∼ 20% and 11.5% higher

A(U)
adv than MSD-5 and AVG-2, respectively, while having a similar training

time (∼ 3 hours). Set E augments the data from Table 7.2 with training

times. FastAdv+SNAP and FreeAdv+SNAP achieve a high A(U)
adv ∼ 30%,

while preserving the training efficiency of both FastAdv and FreeAdv. No-

tably, FastAdv+SNAP achieves 18% higher A(U)
adv than MSD-5, while being

∼ 2.7× more efficient to train.

109

Table 7.3: CIFAR-10 results for comparing adversarial accuracy A(U)
adv vs.

training time (on single NVIDIA P100 GPU) for different AT frameworks and
the improvements by introducing proposed SNAP technique. All frameworks
except PAT [194] (which employs ResNet-50) employ ResNet-18.

Method
LR schedule

Epochs Anat A(U)
adv

Total time
(minutes)

Set A: Total Time ≥ 12 Hrs

AVG 50 Step [106] cyclic 50 84.8 40.4 4217
AVG 20 Step [106] cyclic 50 85.6 40.4 1834
AVG 10 Step [106] cyclic 50 86.7 38.9 956

PAT [194] step 100 82.4 36.6 1364
MSD 50 Step [107] cyclic 50 81.7 47.0 1693
MSD 30 Step [107] cyclic 50 82.4 44.9 978

Set B: 8 Hrs < Total Time < 12 Hrs

AVG 5 Step [106] cyclic 50 87.8 33.7 489
MSD 20 Step [107] cyclic 50 83.0 37.3 690

TRADES [22] step 100 82.0 19.7 516
TRADES+SNAP step 100 80.9 41.2 566

Set C: 5 Hrs < Total Time < 8 Hrs

MSD 10 Step [107] cyclic 50 83.6 33.3 342
PGD [13] step 100 84.6 15.0 354

PGD+SNAP step 100 83.0 35.6 403

Set D: 2 Hrs < Total Time < 5 Hrs

AVG 2 Step [106] cyclic 50 88.4 22.0 232
MSD 5 Step [107] cyclic 50 84.0 12.6 185

PGD [13] cyclic 50 82.8 15.7 177
TRADES [22] cyclic 50 80.0 21.4 258

PGD+SNAP cyclic 50 82.3 33.5 199
TRADES+SNAP cyclic 50 78.8 40.8 280

Set E: Total Time < 2 Hrs

FreeAdv [43] step 200 81.7 15.0 66
FastAdv [44] cyclic 50 85.7 13.2 47

FreeAdv+SNAP step 200 83.5 29.6 88
FastAdv+SNAP cyclic 50 84.2 30.8 69

110

Table 7.4: ImageNet results: Iso-hyperparameter introduction of SNAP
yields ∼ 20% improvement in adversarial accuracy (A(U)

adv) with modest im-
pact on training time for ResNet-50 and ResNet-101.

Training Anat
A(`∞)

adv

ε = 2/255

A(`2)
adv

ε = 2.0

A(`1)
adv

ε = 72.0
A(U)

adv

Total time
(minutes)

ResNet-50
FreeAdv [43] 61.7 47.8 19.9 14.8 12.6 3590

FreeAdv+SNAP 66.8 46.1 37.8 37.4 32.4 3756

ResNet-101
FreeAdv [43] 65.4 51.8 22.8 18.8 16.1 5678

FreeAdv+SNAP 69.7 50.3 41.1 40.2 35.4 5904

7.3.6 ImageNet Results

Thanks to SNAP’s low computational overhead combined with FreeAdv’s fast

training time, we are for the first time able to report adversarial accuracy

of ResNet-50 and ResNet-101 against the union of (`∞, `2, `1) attacks on

ImageNet.

We closely follow the evaluation setup of Shafahi et al . [43]. Specifically,

we use a 100-step PGD attack, one of the strongest adversaries considered

by Shafahi et al . [43], and evaluate on the entire test set. We first reproduce

FreeAdv [43] results using the same hyperparameters and then introduce

SNAP.

In order to clearly demonstrate the contrast between robustness to different

perturbation models, we evaluate with ε = (2/255, 2.0, 72.0) for (`∞, `2, `1)

attacks, respectively.2 As shown in Table 7.4, FreeAdv achieves a high

A(`∞)
adv = 47.8% with ResNet-50, but a lower A(`2)

adv = 20% and A(`1)
adv = 15%,

and consequently, a low A(U)
adv of 12.6% against the union of the perturbations.

In contrast, FreeAdv+SNAP improves A(`2)
adv and A(`1)

adv by 17% and 22%, re-

spectively, accompanied by a 5% improvement in Anat and a small 2% loss in

A(`∞)
adv . This results in an overall robustness improvement of 20% against the

union of the perturbation models, setting a first benchmark for ResNet-50

on ImageNet. Upon increasing the network to ResNet-101, both natural and

adversarial accuracies improve by ≈ 4% for FreeAdv, a trend also observed

by Shafahi et al . [43]. SNAP further improves FreeAdv’s results for Anat and

A(U)
adv by 4.3% and 19.3%.

2Note that `2 and `1 norms of PGD perturbation with `∞ norm of 2/255 can be as
large as ∼ 3.0 and ∼ 1100 for images of size 224× 224× 3.

111

Table 7.5: ResNet-18 SVHN results showing the impact of SNAP augmenta-
tion of `∞-PGD [13] AT frameworks. Adding SNAP improves A(U)

adv by ∼ 30%

while having only a small impact on Anat and A(`∞)
adv .

Method Anat
A(`∞)

adv

ε = 0.03

A(`2)
adv

ε = 0.5

A(`1)
adv

ε = 8
A(U)

adv

PGD 89.9 45.3 34.9 4.8 4.8
PGD+SNAP 89.3 44.0 67.4 48.3 36.3

Table 7.6: ResNet-18 CIFAR-10 results showing a comparison between
MNG [197] and PGD+SNAP (from Table 7.2). All MNG numbers are ex-
actly as reported in their paper. We reevaluate PGD+SNAP with our PGD
attacks using the new ε values used by [197]. PGD+SNAP achieves 3%, 2%,

4.5% higher Anat, A(`∞)
adv , A(`1)

adv , respectively, while being at least ∼ 40% faster
in terms of epoch time. †: Note that MNG time is measured on NVIDIA
GeForce RTX 2080Ti (by [197]), while PGD+SNAP is measured on NVIDIA
Tesla P100. An RTX 2080Ti has 20% more CUDA cores than a Tesla P100.

Method Anat
A(`∞)

adv

ε = 0.03

A(`2)
adv

ε = 0.31

A(`1)
adv

ε = 8

Time per Epoch
(seconds)

MNG [197] 79.8 43.9 75.8 53.8 354†

PGD+SNAP 83.1 45.9 74.1 58.3 240

7.3.7 SVHN Results

Table 7.5 shows PGD and PGD+SNAP results on SVHN data. We train

both PGD and PGD+SNAP models for 100 epochs using a piece-wise LR

schedule. We start with an initial LR of 0.01 and decay it once at the 95th

epoch.

In Table 7.5, we observe a trend that is similar to our observations for

CIFAR-10 and ImageNet results. In particular, for SVHN, SNAP turns out

to be even more effective, with ∼ 30% improvement in A(U)
adv while almost

preserving both Anat and A(`∞)
adv .

7.3.8 Comparison with Madaan et al . [197]

The meta-noise generator (MNG) [197] employs a multi-layer deep net to

generate noise samples during AT. Importantly, MNG still employs multiple

attacks during training, but samples only one of the attacks randomly at a

time to reduce the training cost.

112

Table 7.7: ResNet-18 CIFAR-10 results showing SNAP’s impact on the pre-
diction complexity, where N0 denotes the number of noise samples employed
to estimate E[·] in Eq. (7.2). We find that for mere accuracy estimation, even
a single forward pass (N0 = 1) suffices. ±xx denotes the standard deviation
over 10 independent test runs.

Method Anat (%)

TRADES 81.7
TRADES+SNAP
N0 = 1 80.1±0.22

N0 = 2 80.3±0.14

N0 = 4 80.7±0.12

N0 = 8 80.9±0.10

N0 = 16 80.9±0.08

However, they have yet to release their code or pretrained models even

though their work was posted on arXiv a year ago. Absence of public codes

from Madaan et al . [197] makes it difficult to clearly compare with their work,

especially in terms of training time. Nonetheless, in this section, our goal is

to ensure that the comparison is fair. Table 7.6 reports natural and adver-

sarial accuracy of MNG against (`∞, `2, `1) attacks as reported by Madaan et

al . [197]. We find that PGD+SNAP achieves 3%, 2%, 4.5% higher Anat,

A(`∞)
adv , and A(`1)

adv , respectively. Note that Madaan et al . [197] evaluate A(`∞)
adv

and A(`2)
adv against PGD-50 attacks, whereas here we employ PGD-100 attacks

and, following their protocol, evaluate on the entire CIFAR-10 dataset with

a single restart. Furthermore, epoch time for PGD+SNAP is 1.4× smaller

than that of MNG [197] even though MNG time was measured on a more

recent NVIDIA RTX 2080Ti, which has 20% more CUDA cores than the

Tesla P100 GPU that we used for PGD+SNAP.

Importantly, a key advantage of SNAP is its scalability. We are able to

report robust ResNet-50 and ResNet-101 networks on ImageNet (Table 7.4),

whereas Madaan et al . [197] report results only up to 64×64 TinyImageNet.

7.3.9 Impact of SNAP on Prediction Complexity

While SNAP augmentation has a modest impact on the training time (Ta-

ble 7.3), here we check whether it could potentially increase the model predic-

tion complexity due to the need to estimate the expectation E[·] in Eq. (7.2).

113

As expected, by increasing N0, the deviation of the Anat estimate reduces

(see Table 7.7). However, we find that for accuracy estimation, a single

forward pass (N0 = 1) suffices. Specifically, an Anat estimate with N0 = 1

is within 1% of the Anat estimate with N0 = 16. Furthermore, even with

N0 = 1, the standard deviation of Anat is as low as ∼ 0.2%. Thus, the

impact of SNAP on prediction complexity can be very small.

7.4 Robustness Stress Tests

We conduct robustness stress tests to confirm that the benefits of SNAP are

sustained for a range of attack norm-bounds, larger number of attack steps,

and even for “gradient-free” attacks. For these experiments, we consider

networks trained using TRADES and TRADES+SNAP (rows in Table 7.2),

since they achieve the highest A(U)
adv among the four SOTA AT frameworks.

7.4.1 Sweeping Norm-bounds and Number of Attack Steps

We sweep the number of PGD attack steps (K) and norm-bounds (ε) for

all three perturbations (`∞, `2, `1) to confirm that the robustness gains from

SNAP are achieved for a wider range of attack norm bounds, and are sus-

tained even after increasing attack steps.

Figure 7.4(a)-(c) validates the Table 7.2 conclusion that TRADES+SNAP

achieves large gains (∼ 20%) in A(`1)
adv and A(`2)

adv with a small (∼ 4%) drop in

A(`∞)
adv . Furthermore, this conclusion holds for a large range of ε values for all

three perturbations. Additionally, the gain in A(`2)
adv due to SNAP at ε = 1.2

is greater than the one reported in Table 7.2 for ε = 0.5.

Now we increase the attack steps K to 500 and observe the impact on

adversarial accuracy against (`∞, `2, `1) perturbations in Fig. 7.4(d,e,f), re-

spectively. In all cases, we observe hardly any change of the adversarial

accuracy beyond K = 100. Hence, we have chosen K = 100 for all our

experiments.

Recall we employ 10 random restarts as recommended by [107] for all our

adversarial accuracy evaluations on CIFAR-10 data.

114

!
!"
#

(ℓ
!)

(%
)

!
!"
#

(ℓ
"
) (%

)

!
!"
#

(ℓ
#)

(%
)

norm bound " norm bound " norm bound "
(a)

TRADES+SNAP

TRADES

TRADES+SNAP

TRADES

TRADES+SNAP

TRADES

!
!"
#

(ℓ
!)

(%
)

!
!"
#

(ℓ
"
) (%

)

!
!"
#

(ℓ
#)

(%
)

TRADES+SNAP

TRADES

TRADES+SNAP

TRADES

TRADES+SNAP

TRADES

(b) (c)

attack steps # attack steps # attack steps #
(d) (e) (f)

Figure 7.4: ResNet-18 CIFAR-10 results: Adversarial accuracy vs. norm
bound ε for: (a) `∞, (b) `2, (c) `1 PGD-100 attack. Adversarial accuracy
vs. attack steps K for (d) `∞ (ε = 0.031), (e) `2 (ε = 0.5), (f) `1 (ε = 12)
PGD-100 attacks.

7.4.2 Evaluating Robustness Against New Attacks

We evaluate adversarial accuracy against the recent DDN [31], Boundary [32],

and Square [33] attacks. The DDN attack was shown to be one of the

SOTA gradient-based attacks, while boundary attack is one of the strongest

“gradient-free” attacks. Of all the attacks considered in [107], PGD turns

out to be the strongest for `∞ and `1 perturbations. Hence, in this section,

we evaluate against `2 norm-bounded DDN, boundary, and Square attacks.

Following [107], we use the FoolBox [198] implementation of the boundary

attack, which uses 25 trials per iteration. For the DDN attack, we use 100

attack steps with appropriate logit averaging for N0 = 8 noise samples before

computing the gradient in each step (similar to our PGD attack implementa-

tions). As mentioned in the Sec. 7.3.1, it eliminates any gradient obfuscation

due to the presence of noise.

Table 7.8 shows that SNAP improves adversarial accuracy against the

DDN attack by ∼ 6%. This is similar to improvements seen against `2-PGD

attack in Table 7.2. Similarly, TRADES+SNAP achieves 3.5% (4.5%) higher

adversarial accuracy than TRADES against the Boundary [32] (Square [33])

115

Table 7.8: ResNet-18 CIFAR-10 results showing natural accuracy (%) and
adversarial accuracy (%) against `2 norm bounded DDN attack [31], bound-
ary attack [32], and Square [33] for TRADES and TRADES+SNAP networks
from Table 7.2.

TRADES TRADES+SNAP
Natural Accuracy 82.1 80.9
DDN [31] (ε = 0.5) 59.7 65.8

Boundary [32] (ε = 0.5) 63.5 67.0
Square [33] (ε = 0.5) 68.2 72.7

! !
∈#

",
$ $%

&'
_)
*
+

"
++

after TRADES+SNAP

! = #!"#_%&
! = $!"#_%&

! = %!"#_%&

!'()

0.1)'()

Index * of singular vectors +*!"#_%&

130-D

Figure 7.5: Normalized mean squared projections of three perturbation types
on the singular vector basis Pκ of `2 perturbations of ResNet18 on CIFAR-10
after TRADES+SNAP training (κ ≡ rob sn). The singular vectors pκi com-
prising Pκ = {pκ1 , . . . ,pκD} are ordered in descending order of their singular
values.

attack.

7.5 Additional Investigations

7.5.1 Subspace Analysis of Adversarial Perturbations for
TRADES+SNAP Model

In this section, we carry out a subspace analysis of adversarial perturbations

(similar to Sec. 6.3 in Chapter 6) for TRADES+SNAP. We confirm that our

hypothesis in Sec. 6.3 holds even after SNAP augmentation of TRADES.

Following the same experimental setup and the notation from Sec. 6.3, we

compute perturbations αi, βi, and γi for each xi ∈ X for ResNet-18 trained

using TRADES+SNAP, i.e., κ ≡ rob sn. We compute the singular vector

116

Table 7.9: ResNet-18 CIFAR-10 results showing the impact of noise shaping
basis V for `∞-PGD [13] AT framework with SNAP. In this table, SNAP[G],
SNAP[U], and SNAP[L] denote shaped noise augmentations with Gaussian,
Uniform, and Laplace noise distributions, respectively, and Uimg refers to the
singular vector basis of the training images.

Method Anat
A(`∞)

adv

ε = 0.03

A(`2)
adv

ε = 0.5

A(`1)
adv

ε = 12
A(U)

adv

PGD 84.6 48.8 62.3 15.0 15.0

Noise shaping basis V = ID×D

+SNAP[G] 80.7 45.7 66.9 34.6 31.9
+SNAP[U] 85.1 42.7 66.7 28.6 26.6
+SNAP[L] 83.0 44.8 68.6 40.1 35.6

Noise shaping basis V = Uimg

+SNAP[G] 81.7 48.9 67.5 29.8 28.7
+SNAP[U] 82.0 46.6 67.8 27.8 25.7
+SNAP[L] 81.7 46.8 65.9 28.5 27.4

basis Pκ for the set of `2 bounded perturbations ∆κ = {βκ1 , . . . ,βκ|X|}. Fig-

ure 7.5 plots the normalized mean squared projections of the three types of

perturbation vectors on the singular vector basis Pκ of a TRADES+SNAP

trained ResNet-18. We find that the projections generally follow the same

trend as those for a TRADES-trained network which are shown in Fig. 6.4(b).

However, we also notice that after SNAP augmentation, the three perturba-

tion types get squeezed into an even smaller 130-dimensional subspace, i.e.,

projections are < 10% of the maximum projection value for all dimensions

beyond the first 130 dimensions.

7.5.2 Impact of Noise Shaping in the Image Basis

Recall that, for all experiments till now, we chose the noise shaping basis

V = ID×D, i.e., the noise was shaped and added in the standard basis in RD,

where ID×D denotes the identity matrix (see Eq. (7.1) and Algorithm 1).

In this section, we explore the shaped noise augmentation in the image

basis, i.e., singular vector basis of the training set images. Specifically, we

choose V = Uimg = [u1, . . . ,uD], where Uimg denotes the singular vector

basis of the images in the training set. Thus, the sampled noise vector n0

(see Eq. (7.1)) is scaled by direction-wise standard deviation matrix Σ and

117

rotated by Uimg before being added to the input image x.

The rationale for choosing V = Uimg is as follows: Recent works [190, 43,

199] have demonstrated the generative behavior of adversarial perturbations

of networks trained with single-attack AT, i.e., adversarial perturbations

of robust networks exhibit semantics similar to the input images. Thus,

the perturbation basis of the robust networks trained with single-attack AT

seems to be aligned with the image basis (see Chapter 6).

We repeat the experiments in Table 7.1 while keeping all the settings iden-

tical except for choosing V = Uimg instead of V = ID×D. Table 7.9 shows the

results. The first three rows correspond to V = ID×D and are reproduced

from Table 7.1. Note that, in order to preserve Anat > 81%, we need to re-

duce Pnoise = 60 when V = Uimg, since the noise is now pixel-wise correlated.

In Table 7.9, we notice that A(`1)
adv is significantly reduced when V = Uimg as

compared to the case V = ID×D. More interestingly, all three types of noise

distributions result in similar values for A(`1)
adv when V = Uimg. We discuss

this phenomenon in the next section, i.e., Sec. 7.5.3.

Table 7.9 shows that the orientation of a noise vector is as important as its

distribution. The simpler choice of V = ID×D turns out to be more effective.

7.5.3 Understanding the effectiveness of SNAP[L] for `∞ AT

In this subsection, we conduct additional studies to further understand the

following two observations in SNAP: (i) shaped Laplace noise is particularly

effective (Table 7.1), and (ii) rotating noise vectors (V = Uimg) reduces their

effectiveness (Table 7.9). We study the properties of the noise vector n for

different noise distributions.

We conjecture that the Laplace distribution is most effective because of

its heavier tail compared to Gaussian and Uniform distributions of the same

variance. A long-tailed distribution will generate more large magnitude el-

ements in a vector drawn from it and hence is more effective in emulating

a strong `1-norm bounded perturbation. Furthermore, the standard (un-

rotated) basis preserves this unique attribute of samples drawn from such

distributions.

This conjecture is validated by Fig. 7.6(a) which shows that noise samples

drawn from the Laplace distribution in the standard basis have the highest

118

SNAP[U]
SNAP[G]
SNAP[L]

Fraction of noise vector dimensions
with magnitude > 0.5

(a)

! = #!×!

Fraction of noise vector dimensions
with magnitude > 0.4

(b)

no
. o

f s
am

pl
es

! = $#$% SNAP[U]
SNAP[G]
SNAP[L]

no
. o

f s
am

pl
es

Figure 7.6: ResNet18 CIFAR-10 results: histograms of the fraction of noise
vector dimensions with magnitude (a) > 0.5 when V = ID×D, and (b) > 0.4
when V = Uimg. Histograms are plotted for 5000 random noise samples n.
The three shaped noise distributions are from the corresponding networks in
Table 7.9.

average number of dimensions with large (> 0.5) magnitudes, followed by

Gaussian and Uniform distributions. This correlates well with the results

in Table 7.1 and Table 7.9 (first three rows), in that A(`1)
adv is the highest for

Laplace followed by those for Gaussian and Uniform. Additionally, the use of

V = Uimg dissolves this distinction between the three distributions as shown

in Fig. 7.6(b) which explains the similar (and lower) A(`1)
adv values for all three

distributions in Table 7.9.

Thus, we confirm that the type of noise plays an important role in robusti-

fying single-attack `∞ AT frameworks to the union of multiple perturbation

models. Specifically, the noise vectors with higher fraction of noise dimen-

sions with larger magnitudes are better at complementing `∞ AT frameworks.

7.5.4 Evaluating Common Corruptions and Functional Attack

In this section, we check if there are any other downsides of SNAP when

it improves robustness against the union of (`∞, `2, `1) perturbations. In

particular, we check if SNAP improvements are achieved at the cost of a

drop in accuracy against common corruptions [10] or functional adversarial

attacks [200].

We use corrupted images provided by [10] to estimate accuracy in the

presence of common corruptions (Acc). We average the accuracy numbers

across different corruption strengths and types. Also, we use the ReColorAdv

119

Table 7.10: ResNet-18 CIFAR-10 results showing natural accuracy Anat, ad-
versarial accuracy A(U)

adv against the union of (`∞, `2, `1) perturbations, accu-
racyAcc in the presence of common corruptions [10], and adversarial accuracy

A(f)
adv against a functional adversarial attack ReColorAdv [200]. All accuracy

numbers are in %. In this table, ID×D denotes D-dimensional identity ma-
trix, while Uimg denotes singular vector basis of the training images. We find

that SNAP augmentations of `∞-PGD significantly (≈ 20%) improve A(U)
adv

while preserving both Acc and A(f)
adv.

Method Anat A(U)
adv

Acc
A(f)

adv

ReColorAdv

Vanilla 94.5 0.0 72.0 0.9

`∞-PGD 84.6 15.0 75.6 53.5

Noise shaping basis V = ID×D

+SNAP[G] 80.7 31.9 72.8 55.1
+SNAP[U] 85.1 26.6 75.0 46.9
+SNAP[L] 83.0 35.6 75.3 51.3

Noise shaping basis V = Uimg

+SNAP[G] 81.7 28.7 73.6 54.5
+SNAP[U] 82.0 25.7 73.1 54.0
+SNAP[L] 81.7 27.4 73.4 55.3

setup of [194] to estimate accuracy against functional adversarial attacks

(A(f)
adv). We also make it adaptive to our defense framework via appropriate

noise averaging (similar to our adaptive PGD attacks [195]) to eliminate

any gradient obfuscations. As observed in Table 7.10, SNAP augmentations

of PGD AT generally preserve both Acc and A(f)
adv. In particular, 20.6%

improvement in A(U)
adv via PGD+SNAP[L] (with V = ID×D) is accompanied

with the same Acc and only a 2.2% lower A(f)
adv (= 51.3%) compared to PGD

AT. In contrast, vanilla training achieves an A(f)
adv of only 0.9%. Even with

V = Uimg, PGD+SNAP[L] achieves a 1.8% higher A(f)
adv along with a 12.4%

improvement in A(U)
adv. Note that all A(U)

adv numbers are idential to the ones

reported in Sec. 7.5.2.

We conclude that SNAP augmentation of PGD AT improves A(U)
adv by up to

20% while preserving its robustness against common corruptions and func-

tional adversarial attacks. Thus, SNAP expands the capabilities of `∞ AT

frameworks without any significant downside. However, further work is re-

quired to improve robustness to a larger class adversarial attacks, such as

rotation [201], texture [202], etc., simultaneously.

120

7.6 Relationship between SNAP and Randomized

Smoothing

In this section, we discuss a relationship between SNAP and Randomized

Smoothing (RS) [196, 195], another popular noise augmentation approach

that employs isotropic Gaussian noise in order to obtain certification bounds

on adversarial robustness. Specifically, we show that SNAP[G] is closely re-

lated to RS, i.e., SNAP[G] can be viewed as RS with shaped Gaussian noise.

In Sec. 7.6.1, we first extend the generalize the bound derived in [196] (for

isotropic Gaussian noise) and use it to justify our noise shaping approach in

Eq. (7.3). We further provide geometric intuition (in Sec. 7.6.2) demonstrat-

ing the why shaped noise inherently leads to improved robustness compared

to isotropic noise for Gaussian distribution. At the end, in Sec. 7.6.3, we

demonstrate that the noise shaping in SNAP enables significantly better

Anat vs. A(U)
adv trade-off compared due to RS.

7.6.1 Theoretical Justification for Noise Shaping

We define a smoothed classifier [196] as follows:

Definition 7.1. Given a classifier f : RD → Y , for a given input x, a

smoothed classifier g is defined as:

g(x) = arg max
c∈Y

Pr{f(x+ n) = c}

where n ∼ N (0, Cσ), Cσ ∈ RD×D denotes the covariance matrix, and Y
denotes the set of discrete class labels.

Notice that SNAPnet decision rule (see Eq. (7.2)) is same as smoothed clas-

sifier above when (i) SNAP employs Gaussian distributed noise (SNAP[G]),

and (ii) Cσ = Diag[σ1, . . . , σD], where dimensionwise noise standard devi-

ation are shaped according to Eq. (7.3). In [196], a certification bound

for a smoothed classifier was obtained for the isotropic case, i.e., when

Cσ = σ2ID×D. Here, we first generalize this bound for the anisotropic case

where Cσ is an arbitrary covariance matrix as stated in Theorem 7.1. We then

employ Theorem 7.1 to obtain a theoretical justification for noise shaping (as

per Eq. (7.3)) with Gaussian noise distribution.

121

Theorem 7.1. Let f : RD → Y be an arbitrary function either deterministic

or random, n ∼ N (0, Cσ) with a covariance matrix Cσ ∈ RD×D, and g(x) =

arg maxc Pr(f(x+ n) = c). For a specific x ∈ RD, if ∃ cA ∈ Y and ρA, ρB ∈
[0, 1] such that:

Pr{f(x+ n) = cA} ≥ ρA ≥ ρB ≥ max
c 6=cA

Pr{f(x+ n) = c} (7.4)

then, for any ξ ∈ RD, we obtain g(x+ ξ) = cA if

√
ξTC−1

σ ξ <
Φ−1(ρA)−Φ−1(ρB)

2
(7.5)

where Φ denotes the cumulative density function of a standard 1-D Gaussian

distribution N (0, 1).

Proof. The detailed proof provided in Appendix C follows the sequence of

arguments provided in [196] for the isotropic case.

Since Theorem 7.1 holds for an arbitrary Gaussian distribution n ∼ N (0, Cσ),

we treat Cσ as a design variable and ask the following question: what is a

good choice for Cσ in order to enhance robustness under a fixed total power

Pnoise constraint? Equation (7.5) provides a hint. It suggests that an ideal

choice for Cσ is one that minimizes the LHS of Eq. (7.5) when ξ = η, i.e., ξ

is an adversarial perturbation, e.g ., a PGD adversarial perturbation. More

formally, we would like to choose Cσ as a solution to the following constrained

optimization problem:

C∗σ = arg min
Cσ

Ex∈X
[
ηTC−1

σ η
]

s.t. Tr[Cσ] = Pnoise (7.6)

where Tr[Cσ] denotes the trace of matrix Cσ, and η being the PGD adver-

sarial perturbation is a function of the input x ∈ X.

Without loss of generality, we decompose Cσ = UΣUT using an arbitrary

orthonormal basis U = [u1, . . . ,uD] of RD, where Σ = Diag[σ2
1, . . . , σ

2
D].

Note: Pnoise =
∑D

j=1 σ
2
j = Tr[Σ]. Employing this decomposition for Cσ, we

express the objective function in Eq. (7.6) as:

Ex∈X
[
ηTC−1

σ η
]

= Ex∈X
[
ηTUΣ−1UTη

]
=

D∑
j=1

Ex∈X
(
〈η,uj〉2

)
σ2
j

(7.7)

122

For a specific orthonormal basis U , the optimal ΣU = Diag[σ2
u1
, . . . , σ2

uD
]

can be obtained as follows:

σ2
uj
∝
√
Ex∈X

(
〈η,uj〉2

)
∀ j ∈ {1, . . . , D} s.t.

D∑
j=1

σ2
uj

= Pnoise (7.8)

which is indeed the exact noise variance allocation rule in SNAP (see lines

6-10 in Alg. 1 and Eq. (7.3)). Note that this rule suggests assigning variance

in proportion to the root mean-squared projections of η in the directions

uj. While the optimality of this rule is derived here only for Gaussian noise

distribution, we find that this noise shaping rule also works well with other

(Laplace, Uniform) distributions (as demonstrated in Sec. 7.3). In Sec. 7.6.2,

we provide a geometric intuition for the role of such noise shaping in achieving

higher robustness.

7.6.2 Geometric Intuition: Spherical vs. Shaped Gaussian
Noise

In this section, we provide a geometric intuition (see Fig. 7.7) to demonstrate

the effectiveness of noise shaping. For simplicity, we consider Gaussian noise

augmented two-dimensional binary linear classifier for this analysis. We show

that the classifier with SNAP[G] forces the decision boundary to be farther

away from the input in order to achieve the same decision confidence com-

pared to any other shape for augmented Gaussian noise.

Consider three binary (classes cA and cB) linear classifiers fα : R2 →
{cA, cB} in Fig. 7.7, where α ∈ {wht,wrst, sn} identifies the noise distribution

type under a fixed power constraint Pnoise(σ
2
1(α) + σ2

2(α)) defined as follows (η̂

is a unit vector in the dominant adversarial perturbation direction, and η̂⊥

is its orthogonal direction):

1. α = wht (Fig. 7.7(a)): The classifier is augmented with white Gaussian

noise n(wht) such that Pnoise = 2σ2 and σ2
1(wht) = σ2

2(wht) = σ2.

2. α = wrst (Fig. 7.7(b)): The classifier is augmented with shaped noise

n(wrst) such that the noise variance σ2
1(wrst) (σ2

2(wrst)) along η̂ (η̂⊥) is

decreased (increased) and Pnoise = σ2
1(wrst) + σ2

2(wrst) = 2σ2. Note that

this variance allocation is the opposite (worst) to the one in Eq. (7.3).

123

!

white noise (wht)
(spherical)

worst-case ellipsoidal (wrst) SNAP[G] (sn)
(optimal ellipsoidal)

!"

"
!" # !"

"

!! #("#$) !! # "&'$

"

!! #('()

$!(#$%&)
$((#$%&) $((%))

$!(%))
$! #*& $(#*&

(a) (b) (c)

Figure 7.7: Geometric intuition regarding the impact of noise shaping on the
robustness of binary linear classifiers fα (α ∈ {wht,wrst, sn}) augmented
with noise n(α) of a fixed power Pnoise = (σ2

1(α) + σ2
2(α)) when subject to the

adversarial perturbation η = εη̂ where η̂ is the unit vector in direction of
the dominant adversarial perturbation for input x: (a) white noise (α =
wht) with σ1(wht) = σ2(wht), (b) worst-case ellipsoidal noise (α = wrst) with
σ1(wrst) < σ2(wrst), and (c) SNAP[G] (α = sn) where σ1(sn) > σ2(sn). Since the
confidence Pr{fα(x + n(α)) = cA} = ρA(α) = ρA,∀α ∈ {wht,wrst, sn} and
σ1(sn) > σ1(wht) > σ1(wrst), it can be shown that the distance r from x to the
decision boundary satisfies r(sn) > r(wht) > r(wrst). Furthermore, it can also
be shown that the confidence ρ̂A(α) in the presence of an adversarial input
x+ εη̂ satisfies ρ̂A(sn) > ρ̂A(wht) > ρ̂A(wrst) as can be intuited from the striped
red area.

3. α = en (Fig. 7.7(c)): The classifier is augmented with shaped (Gaus-

sian) noise n(sn) such that the noise variance σ2
1(sn) (σ2

2(sn)) along η̂ (η̂⊥)

is increased (decreased) and Pnoise = σ2
1(sn) + σ2

2(sn) = 2σ2. Note that

this variance allocation is the one prescribed SNAP in Eq. (7.3).

If (x, cA) is an (input, class label) pair and all three classifiers fα achieve

the same confidence level ρA in classifying x correctly, i.e.,

Pr{fα(x+ n(α)) = cA} = ρA ∀ α ∈ {wht,wrst, sn} (7.9)

then ρA corresponds to the mass of the probability density function of nα

on the side of the decision boundary corresponding to the class label cA as

indicated in grey in Fig. 7.7. Therefore, the distance r(α) of x to the decision

boundary of fα is given by r(α) = σ1(α)Φ
−1(ρA) where σ2

1(α) is the variance

of noise in the direction of η̂. Since σ1(en) > σ1(wht) > σ1(wrst), therefore

rsn > rwht > rwrst, i.e., SNAP[G] pushes the decision region further away

124

as compared to any other shaped noise augmentation, including white noise.

Additionally, it can be shown that the confidence ρ̂A(α) in the presence of an

adversarial input x+ εη̂ is given by:

ρ̂A(α) = Pr{fα(x+ εη + n(α)) = cA} = Φ

(
Φ−1(ρA)− ε

σ1(α)

)
(7.10)

and since σ1(sn) > σ1(wht) > σ1(wrst) it follows that ρ̂A(sn) > ρ̂A(wht) > ρ̂A(wrst).

The striped red area in Fig. 7.7 provides a geometric intuition underlying this

result. This shows that SNAP[G] provides the highest confidence for the ad-

versarially perturbed input x+εη̂ as compared to any other shaped Gaussian

noise augmentation including white noise. Recall that all three classifiers fα

classify clean input x with equal confidence of ρA. Thus, the reduction in

the classifier’s confidence (ρA − ρ̂A(α)) due to adversarial perturbation εη̂ is

the minimum for the SNAP[G] classifier, compared to a classifier with any

other Gaussian noise augmentation. This indicates the superior robustness

of SNAP[G].

7.6.3 Quantitative Comparison

In this subsection, we compare with two SOTA RS frameworks, namely,

RandSmooth [196], and SmoothAdv [195]. They employ isotropic Gaussian

noise. In Fig. 7.8(a), we find that PGD+SNAP[L] achieves a better Anat vs.

A(U)
adv trade-off compared to both RandSmooth [196], and SmoothAdv [195].

Specifically, note that SmoothAdv [195] can also be viewed as isotropic Gaus-

sian augmentation of `2-PGD AT. Importantly, PGD+SNAP[L] achieves a

12% higher A(U)
adv for the same Anat. This demonstrates the efficacy of shaped

noise in SNAP, which enhances the robustness to the union of (`∞, `2, `1)

perturbations.

In order to further quantify importance of noise shaping, we also compare

`∞-PGD+SNAP[L] with `∞-PGD+Iso[L], a stronger baseline alternative con-

sisting of isotropic Laplace noise augmentation, i.e., without any noise shap-

ing. Specifically, in Iso[L], the noise standard deviation is identical in each

direction, i.e., Σ = Diag

[√
Pnoise

D
, . . . ,

√
Pnoise

D

]
. Note that such distributions

have recently been explored for RS [203].

Figure 7.8(b) plots the Anat vs. A(U)
adv trade-off for PGD+SNAP (red

125

(b)

!
!"
#(

%
)

PGD+SNAP[L]

PGD+Iso[L] ∼ #%

!"$%
(') (%)

!
!"
#(

%
)

!"$%
(') (%)

PGD+SNAP[L]

SmoothAdv
[Salman et al., 2019]

RandSmooth
[Cohen et al., 2019]

12%

Desired

Desired

(a)

Comparison with Random Smoothing (RS) Comparison with Isotropic Laplace Noise

Figure 7.8: ResNet-18 CIFAR-10 results: (a) Anat vs. A(U)
adv for

RandSmooth [196], SmoothAdv [195], and PGD+SNAP[L]; (b)Anat vs. A(U)
adv

for PGD+SNAP[L] and PGD+Iso[L], where Iso[L] denotes a baseline SNAP
alternative employing isotropic Laplace noise augmentation, i.e., without
noise shaping. PGD+SNAP[L] achieves better Anat vs. A(U)

adv trade-off due
to noise shaping.

curve) and PGD+Iso[L] (black curve) by sweeping Pnoise. We find that

PGD+SNAP[L] achieves a better Anat vs. A(U)
adv trade-off compared to PGD+

Iso[L] by making more efficient use of noise power via noise shaping. Specif-

ically, for A(U)
adv ≈ 38, PGD+SNAP[L] achieves a ∼ 4% higher Anat.

7.7 Related Works

We categorize works on adversarial robustness of DNNs into following three

categories:

Low-complexity Adversarial Training: The high computational needs

of AT frameworks has spurred significant efforts in reducing their complex-

ity [47, 43, 44, 46]. FreeAdv [43] updates weights while accumulating mul-

tiple attack iterations. FastAdv [44] employs appropriate use of single-step

attacks, while Zheng et al . [46] leverage inter-epoch similarity between ad-

versarial perturbations. However, these fast AT methods seek robustness

against a single perturbation type, e.g ., `∞ norm-bounded perturbations. In

contrast, SNAP expands the capabilities of these AT frameworks by enhanc-

ing robustness to the union of three perturbation types (`∞, `2, `1), while

preserving their efficiency.

Robustness against Union of Perturbation Models: The focus on the

126

robustness against the union of multiple perturbation types is relatively new.

Kang et al . [204] studied transferability between different perturbation types,

while Jordan et al . [205] considered combination attacks with low perceptual

distortion. Stutz et al . [206] proposed a modification in AT to detect images

with different models of perturbations via confidence thresholding, but they

do not attempt to classify perturbed images correctly. For accurate classifi-

cation in the presence of different perturbation models, Tramer et al . [106]

studied empirical and theoretical trade-offs involved in including multiple

perturbation types simultaneously during training. Maini et al . [107] further

built upon this work to propose the multi steepest descent (MSD) AT frame-

work which chooses one among the three perturbation models (`∞, `2, `1) in

each attack iteration during training, achieving SOTA adversarial accuracy

on CIFAR-10 against the union of the (`∞, `2, `1) perturbation models, albeit

at a high (10×) training time. In contrast, SNAP provides high robustness

against the union of (`∞, `2, `1) perturbation models using established single-

attack `∞ AT frameworks. This enables to showcase the benefits of our

approach on large-scale datasets such as ImageNet.

Recently, Laidlaw et al . [194] developed a novel AT framework (PAT) with

low perceptual distortion attacks to demonstrate impressive generalization

to unseen attacks. In contrast, we focus on extending the capabilities of

widely popular `∞-AT frameworks to providing robustness against the union

of (`∞, `2, `1) perturbations, while preserving their training efficiency.

Noise Augmentation: Multiple recent works have investigated the role of

randomization in enhancing adversarial robustness [99, 207, 208, 209] with

theoretical guarantees. Another prominent line of work in this category is

randomized smoothing [196, 195, 210, 203], where random noise is used as

a tool to compute certification bounds. Rusak et al . [211] also explored the

role of noise augmentation for improving the robustness against common-

corruptions [10]. In contrast, in SNAP, noise augmentation is used as a

means to enable widely popular `∞-AT frameworks to efficiently achieve high

robustness against the union of multiple norm-bounded perturbations. As is

the characteristic of AT works, our results are primarily empirical in nature.

Hence, we follow recent guidelines [14, 107] to evaluate the accuracy against

the strongest possible adversaries. We do explicitly compare `∞-AT+SNAP

with randomized smoothing approaches in the Sec. 7.6.3.

127

7.8 Discussion

In this chapter, we demonstrate how shaped noise can be introduced in deep

nets to enhance their adversarial robustness vs. cost trade-off. Specifically,

we propose SNAP as an augmentation that generalizes the effectiveness of `∞-

AT to the union of (`∞, `2, `1) perturbations. SNAP’s strength is its simplic-

ity and efficiency. Consequently, this work sets a first benchmark for ResNet-

50 and ResNet-101 networks which are resilient to the union of (`∞, `2, `1)

perturbations on ImageNet. Note that norm-bounded perturbations include

a large class of attacks, e.g ., gradient-based [13, 31, 106, 107, 30, 11], decision-

based [32] and black-box [33] attacks.

More work is needed to extend the proposed SNAP technique to attacks

beyond norm-bounded additive perturbations, e.g ., functional [200, 212], ro-

tation [201], texture [202], etc. It is important to note that SNAP is meant

to be an efficient technique for improving `∞-AT, and not a new defense.

Indeed defending against a large variety of attacks simultaneously remains

an open problem, with encouraging results from recent efforts [107, 194].

Another limitation of our approach is that its benefits are demonstrated

empirically. It is an inevitable consequence of a lack of any theoretical guar-

antees for underlying AT frameworks. An interesting direction of future

work is to explore whether any theoretical guarantees can be derived for

anisotropic shaped noise distributions in SNAP by building upon the recent

developments in randomized smoothing [195, 203]. This could be a poten-

tial avenue for bridging the gap between certification bounds and empirical

adversarial accuracy.

128

CHAPTER 8

CONCLUSION AND FUTURE WORK

The robustness and cost challenges of deep nets discussed in Chapter 1 are

well-recognized today. In response, a large number of works have indepen-

dently focused on either the accuracy vs. robustness trade-off, or the accu-

racy vs. cost trade-off. However, as we discussed in Chapter 1, these two

trade-offs start getting interwoven as one strives to push the limits of either

robustness or cost. Hence, there is a need to explicitly focus on the robust-

ness vs. cost trade-off. However it remains little explored today. In this

dissertation, we attempt to fill this gap by developing techniques to improve

the robustness vs. cost trade-off in the presence of both hardware noise and

data noise.

8.1 Summary of Contributions

In this dissertation, we studied and improved the robustness vs. cost trade-

off in diverse problem settings, ranging from the error-resilient beyond-CMOS

spintronic implementations to the efficient training of robust deep nets. Specif-

ically, we showed that both data noise and hardware noise can be shaped to

improve robustness vs. cost trade-off. For example, in spintronic hardware

implementations, we showed that the device-level trade-off between switching

error rate, energy, and delay can be exploited to shape the error distribu-

tion at the system-level. We achieved 1000× higher tolerance to the device

error rate and 3× smaller energy per decision via proposed efficient statis-

tical error compensation. Furthermore, we also demonstrated an improve-

ment in the robustness vs. cost trade-off via a synergistic combination of

a novel spin-based analog circuit design and system-level classifier ensemble

techniques. The resulting spin channel networks achieve up to 10× higher

energy-efficiency compared to CMOS digital implementations.

129

At the other end of the design stack, we proposed a shaped noise augmen-

tation technique to achieve high adversarial robustness for deep nets, while

maintaining their training cost comparable to the standard vanilla train-

ing. Here we demonstrated that the noise can be used as a feature and

its effectiveness can be enhanced by shaping its distribution. We achieved

the best adversarial robustness vs. training cost trade-off compared to the

nine state-of-the-art (SOTA) related works. Specifically, we achieved 4×
smaller training time while maintaining the same robustness compared to

the SOTA approach published just last year. Furthermore, We analyzed

SNR of in-memory computing (IMC) employing resistive crossbar memory

arrays. We identified SNR optimal array and sensing circuit configurations

by understanding their impact on quantization vs. clipping noise trade-off.

We considered both voltage and current driven crossbars, and provided de-

sign guidelines based on our analysis.

8.2 Future Prospects

Based on our work in this dissertation, we identify following four directions

for promising future work:

Theoretical Guarantees on Robustness Enhancements via Noise

Shaping: The enhancements in the robustness vs. cost trade-offs via noise

shaping (see e.g . Chapter 2 and Chapter 7) demonstrated in this dissertation,

while significant, are primarily empirical in nature. We believe one can derive

theoretical guarantees for such robustness improvements via noise shaping.

For example, in Sec. 7.6, we already discussed the relation between our pro-

posed noise shaping techniques and randomized smoothing (RS), a promis-

ing approach for providing theoretical guarantees on adversarial robustness

of deep nets [196]. We also provide the analysis for binary linear classifier

showing the efficacy of the shaped noise in achieving better robustness than

the isotropic noise. While the early work on RS focused on isotropic Gaussian

noise [196, 195, 213, 210], more recently a larger variety of noise distributions

and randomization techniques are explored [203, 214, 215, 216, 217]. These

extensions can be leveraged to derive theoretical guarantees on robustness

in the presence of noise shaping. This can be one of the promising ways

to bridge the gap between empirical robust accuracy and certified robust

130

accuracy.

Noise Shaping and Error Compensation for In-Memory Com-

puting (IMC): We discussed in Chapter 4 and Chapter 5 how computation

SNR in resistive crossbar based in-memory computing implementations suf-

fers due to the increased vulnerability to conductance and input DAC varia-

tions. We further observed that this challenge is particularly exacerbated in

MRAM due to its lower conductance values. Since the root cause of all these

variations is the fundamental device-level unreliability, we believe one needs

to employ system-level noise shaping and error compensation techniques to

improve the SNR. For resistive crossbar based IMCs, such schemes would in-

evitably involve some sort of on-chip chip-specific adaptive mechanism. For

example, recent work [21] proposed adaptive write mechanism to compensate

the write-time conductance variations in RRAM-based IMC. Similarly, even

Joshi et al . [8] employ on-chip adaptive activation normalization to compen-

sate for the resistance drifts in PCM devices. While these are encouraging

initial works, we believe there is a much broader scope to employ error com-

pensation techniques [4, 5, 7] for in-memory computing architectures.

Exploiting Hardware Noise for Enhancing Adversarial Robust-

ness: In this dissertation, while we consider the impact of both hardware

and data noise, we do so in the separate problem setups. In addition to

our findings in Chapter 7, recent theoretical work [207, 209] has underscored

the importance of randomness in enhancing adversarial robustness of deep

nets. As discussed in Chapters 2–5, emerging logic and memory devices (e.g .

spintronic, RRAM, and others) are inherently unreliable. So, an interesting

avenue to explore is whether their hardware noise can be exploited to enhance

adversarial robustness of deep nets. An ideal place to start this exploration is

the deep net inference implementations employing IMC architectures, where

its analog computation provides an additional source of hardware noise. In-

deed, the recent work by Cherupally et al . [218] exploring the impact of

IMC noise on adversarial robustness is a good first step. However, they only

evaluate against weaker black-box attacks. Hence, much more work and a

rigorous evaluation against the strongest white-box attacks needs to occur

in order to develop techniques for exploiting hardware noise for adversarial

robustness.

131

Finally, we would like to note that in all our contributions improving the

robustness vs. cost trade-off in this dissertation, we did incur small drop

in the accuracy. It seemed inevitable since any enhancement in the adver-

sarial robustness that sustained the scrutiny of the strongest attacks was

always accompanied with a drop in the natural accuracy (recall, e.g . AT

works [22, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54]). In the research

community, the working hypothesis has been that such robustness may in-

herently be at the odds with the accuracy [55]. Furthermore, the robustness

and efficiency of ML systems are still nowhere near human capabilities de-

spite the plethora of works have been focusing on improving them in the

past few years. For instance, a human brain performs incredibly complex

inference tasks accurately, efficiently (consuming ∼ tens of Watts of power),

and is largely robust to visual irregularities/corruptions such as fog, abnor-

mal positions, irregular patches, and others. Thus, achieving human-level

accuracy, robustness, and efficiency in the inference tasks remains to be a

widely open problem even today. The recent efforts have been encouraging.

For instance, demonstrated efficacy of adversarial training in learning robust

features [190, 78, 219], possibility of recovering the accuracy drop in AT via

large unlabeled data [220], and initial attempts at thinking about accuracy,

robustness, and efficiency simultaneously [193, 221]. However, much more

work needs to occur in this direction.

132

APPENDIX A

DERIVATION OF EQ. (5.4)

We apply the Kirchhoff’s current law at the ith SL in Fig. 5.2 to obtain:

ISL,i =
N∑
j=1

(Vj −RsISL,i)

Ri,j

(A.1)

where the bitcell resistance Ri,j = 1
Gi,j

. After substituting the value of Ri,j

and rearranging the terms, we get,

ISL,i =
N∑
j=1

VjGi,j −RsISL,i

[
N∑
j=1

Gi,j

]
(A.2)

Substituting
[∑N

j=1Gi,j

]
= 1

Rarr,i
, we get,

ISL,i =
N∑
j=1

VjGi,j −
Rs

Rarr,i

ISL,i (A.3)

[
Rarr,i +Rs

Rarr,i

]
ISL,i =

N∑
j=1

VjGi,j (A.4)

ISL,i =

[
Rarr,i

Rarr,i +Rs

] N∑
j=1

VjGi,j (A.5)

Now we introduce the VDAC constraint, V2k−1 = −V2k k ∈ {1, . . . , N
2
},

discussed in Sec. 5.3 to obtain

ISL,i =

[
Rarr,i

Rarr,i +Rs

] N
2∑

k=1

V2k∆Gi,2k (A.6)

133

where ∆Gi,2k = Gi,2k−1 − Gi,2k. Note that in the absence of any variations

or noise, ISL,i = Isig,i (see Eq. (5.1)). Thus, we get,

Isig,i =

[
Rarr,i

Rarr,i +Rs

] N
2∑

k=1

V2k∆Gi,2k (A.7)

which is same as the Eq. (5.4).

134

APPENDIX B

DERIVATION OF EQ. (5.12)

Figure B.1 shows current driven 2×N crossbar. Based on charge conservation

principle, we know that,

ISL,1 + ISL,2 =
N∑
i=1

Ii (B.1)

Let IBC,i,j denote the current though a bitcell in ith row and jth column. By

applying Kirchhoff’s voltage law at the jth BL in Fig. B.1, we get,

ISL,1Rs + IBC,1,jR1,j = ISL,2Rs + IBC,2,jR2,j (B.2)

Note that from Kirchhoff’s current law at the jth BL, we have IBC,2,j =

Ij − IBC,1,j. Substituting, we get,

ISL,1Rs + IBC,1,jR1,j = ISL,2Rs + (Ij − IBC,1,j)R2,j (B.3)

!!

…

…

DAC
1

DAC
2

DAC
3

DAC
4

DAC
"

…

…

…

!!

!!

!!

…

BL

SL… …
"##"#$ "#%

#&',$

$

#&',#

#&',)

#&',)*$

(b)

#$ ## #% #+ #,

%

!!
…

…
!!

BL

SL

"##"#$ "#%

#&',$

#&',#

#$ ## #% #+ #,

Figure B.1: Current driven 2×N crossbar.

135

Rearranging the terms, we get,

IBC,1,j =

[
ISL,2 − ISL,1

]
Rs

R1,j +R2,j

+
R2,jIj

R1,j +R2,j

(B.4)

Substituting Ri,j = 1
Gi,j

in the second term, we get,

IBC,1,j =

[
ISL,2 − ISL,1

]
Rs

R1,j +R2,j

+
G1,jIj

G1,j +G2,j

(B.5)

Now, we apply Kirchhoff’s current law at the 1st SL to obtain

ISL,1 =
N∑
j=1

IBC,1,j (B.6)

We substitute the expression for IBC,1,j from Eq. (B.5) and rearrange the

terms to obtain

ISL,1 = Rs

[
ISL,2 − ISL,1

][N∑
j=1

1

R1,j +R2,j

]
+

N∑
j=1

G1,jIj
G1,j +G2,j

(B.7)

Let

1

Rarr

,

[
N∑
j=1

1

R1,j +R2,j

]
(B.8)

Substituting and rearranging the terms, we get,

ISL,1

[
1 +

Rs

Rarr

]
=

Rs

Rarr

ISL,2 +
N∑
j=1

G1,jIj
G1,j +G2,j

(B.9)

Now we have two equations, namely Eq. (B.1) and Eq. (B.9), to solve for

the two unknowns ISL,1 and ISL,2. Substituting ISL,2 =

(∑N
j=1 Ij

)
− ISL,1 in

Eq. (B.9) and rearranging the terms, we get,

ISL,1

[
1 +

2Rs

Rarr

]
=

Rs

Rarr

[N∑
j=1

Ij

]
+

N∑
j=1

G1,jIj
G1,j +G2,j

(B.10)

136

Further rearranging the terms, we get,

ISL,1 =
Rs

Rarr + 2Rs

[N∑
j=1

Ij

]
+

Rarr

Rarr + 2Rs

[
N∑
j=1

G1,jIj
G1,j +G2,j

]
(B.11)

Similarly,

ISL,2 =
Rs

Rarr + 2Rs

[N∑
j=1

Ij

]
+

Rarr

Rarr + 2Rs

[
N∑
j=1

G2,jIj
G1,j +G2,j

]
(B.12)

We know that in the absence of any variations or noise ISL,i = Isig,i, giving

us the Eq. (5.12).

137

APPENDIX C

PROOF OF THEOREM 7.1

In this appendix, we prove Theorem 7.1. As noted earlier, this theorem

is a general version of the certification bound proved in [196] for isotropic

Gaussian noise. Hence, the proof here broadly follows a similar outline as

that of [196]. The main distinction is due to the relaxation of isotropy of the

distribution. We provide the complete proof for the sake of completeness.

C.1 Preliminary Lemmas

We begin by restating the following Neyman-Pearson lemma:

Lemma C.1 (Neyman-Pearson [222, 196]). Let x and y be random vari-

ables in RD with densities µx and µy. Let h : RD → {0, 1} be a random or

deterministic function. Then:

1. If S =

{
z ∈ RD :

µy(z)
µx(z) ≤ t

}
for some t > 0 and P(h(x) = 1) ≥ P(x ∈ S),

then P(h(y) = 1) ≥ P(y ∈ S).

2. If S =

{
z ∈ RD :

µy(z)
µx(z) ≥ t

}
for some t > 0 and P(h(x) = 1) ≤ P(x ∈ S),

then P(h(y) = 1) ≤ P(y ∈ S).

Proof. See [196].

Now, we prove the following theorem for non-isotropic Gaussian distribu-

tions with different means, as a special case of the above lemma.

Lemma C.2 (Neyman-Pearson lemma for Gaussians with different

means). Let x ∼ N (x, Cσ) and y ∼ N (x + ξ, Cσ), where Cσ ∈ RD×D

denotes the covariance matrix. Let h : RD → {0, 1} be any deterministic or

random function. Then:

138

1. If S =

{
z ∈ RD : ξTCσz ≤ β

}
for some β and P(h(x) = 1) ≥ P(x ∈ S),

then P(h(y) = 1) ≥ P(y ∈ S).

2. If S =

{
z ∈ RD : ξTCσz ≥ β

}
for some β and P(h(x) = 1) ≤ P(x ∈ S),

then P(h(y) = 1) ≤ P(y ∈ S).

Proof. This lemma is a straightforward application of Lemma C.1 when µx

and µy are Gaussians with different means. Specifically, the ratio of densities
µy(z)

µx(z)
reduces to a linear equation ξTCσz for any given z when the densities

are Gaussians with different means.

It can be shown as follows:

µy(z)

µx(z)
=

exp

{
−1

2

[
z − (x+ ξ)

]
C−1
σ

[
z − (x+ ξ)

]}
exp

{
−1

2

[
z − x

]
C−1
σ

[
z − x

]} (C.1)

= exp

[
ξTC−1

σ z + zTC−1
σ ξ

2
−
(
ξTC−1

σ x+ xTC−1
σ ξ

2
+
ξTC−1

σ ξ

2

)]
(C.2)

Note that ξTC−1
σ z = (ξTC−1

σ z)T = zTC−1
σ ξ, since ξTC−1

σ z is a scalar quan-

tity and C−1
σ is a symmetric matrix. Hence, substituting, we obtain

µy(z)

µx(z)
= exp

[
ξTC−1

σ z − ξTC−1
σ x−

ξTC−1
σ ξ

2

]
(C.3)

For any given t > 0, we can choose β = ln t+ ξTC−1
σ x+ ξTC−1

σ ξ
2

, such that

µy(z)

µx(z)
≤ t⇔ ξTC−1

σ z ≤ β (C.4)

µy(z)

µx(z)
≥ t⇔ ξTC−1

σ z ≥ β (C.5)

which concludes the proof.

C.2 Theorem Proof

Now, we restate the Theorem 7.1 and provide its proof.

139

Theorem 7.1. Let f : RD → Y be an arbitrary function either deterministic

or random, n ∼ N (0, Cσ) with a covariance matrix Cσ ∈ RD×D, and g(x) =

arg maxc Pr(f(x+ n) = c). For a specific x ∈ Rd, if ∃ cA ∈ Y and ρA, ρB ∈
[0, 1] such that:

Pr{f(x+ n) = cA} ≥ ρA ≥ ρB ≥ max
c 6=cA

Pr{f(x+ n) = c} (C.6)

then, for any ξ ∈ Rd, we obtain g(x+ ξ) = cA if

√
ξTC−1

σ ξ <
Φ−1(ρA)−Φ−1(ρB)

2
(C.7)

where Φ denotes the cumulative density function of a standard 1-D Gaussian

distribution N (0, 1).

Proof. From the definition of g(x), we know that g(x+ ξ) = cA, iff

Pr[f(x+ ξ + n) = cA] > max
c6=cA

Pr(f(x+ ξ + n) = c) (C.8)

Thus, we need to show that Pr[f(x+ξ+n) = cA] > Pr(f(x+ξ+n) = c) for

every class c 6= cA. Without loss of generality, let us carry out the analysis

for one such class cB.

We start by defining the following two simplifying notations:

xnat = x+ n (C.9)

xper = x+ ξ + n (C.10)

Note that xnat and xper are random vectors due to randomness of n, whereas

x and ξ are deterministic vectors.

Using this notation and from Eq. (7.4), we know that

Pr[f(xnat)] ≥ ρA and Pr[f(xnat)] ≤ ρB (C.11)

Our goal is to show that

Pr[f(xper) = cA] > Pr[f(xper = cB)] (C.12)

140

We proceed by constructing the following two half-spaces:

A :=

{
z : ξTC−1

σ (z − x) ≤
[√
ξTC−1

σ ξ
]
Φ−1(ρA)

}
(C.13)

B :=

{
z : ξTC−1

σ (z − x) ≥
[√
ξTC−1

σ ξ
]
Φ−1(1− ρB)

}
(C.14)

Sec. C.2 shows that Pr[xnat ∈ A] = ρA. Therefore, using Eq. (C.11) we

know that Pr[f(xnat = cA)] ≥ Pr[xnat ∈ A]. Hence, we can apply Lemma C.2

with h(z) := 1[f(z) = cA] to conclude:

Pr[f(xper = cA)] ≥ Pr[xper ∈ A] (C.15)

Similarly, Sec. C.2 shows that Pr[xnat ∈ B] = ρB. Therefore, using

Eq. (C.11) we know that Pr[f(xnat = cB)] ≤ Pr[xnat ∈ B]. Hence, we

can apply Lemma C.2 with h(z) := 1[f(z) = cB] to conclude:

Pr[f(xper = cB)] ≤ Pr[xper ∈ B] (C.16)

Now, to prove Eq. (C.12), we need to show that Pr[xper ∈ A] > Pr[xper ∈
B], since that would complete the following chain of inequalities:

Pr[f(xper = cA)] ≥ Pr[xper ∈ A] > Pr[xper ∈ B] ≥ Pr[f(xper = cB)] (C.17)

We can compute the following:

Pr[xper ∈ A] = Φ

(
Φ−1(ρA)−

√
ξTC−1

σ ξ

)
(C.18)

Pr[xper ∈ B] = Φ

(
Φ−1(ρB) +

√
ξTC−1

σ ξ

)
(C.19)

Finally, algebra shows that Pr[xper ∈ A] > Pr[xper ∈ B] iff:

√
ξTC−1

σ ξ <
Φ−1(ρA)−Φ−1(ρB)

2
(C.20)

which concludes the proof.

141

Deferred Algebra

First, we compute Pr[xnat ∈ A] below:

Pr[xnat ∈ A] = Pr

{
ξTC−1

σ (n) ≤
[√
ξTC−1

σ ξ
]
Φ−1(ρA)

}
= Pr

{
ξTC−1

σ N (0, Cσ) ≤
[√
ξTC−1

σ ξ
]
Φ−1(ρA)

}
= Pr

{
ξTN (0, C−1

σ Cσ(C−1
σ)T) ≤

[√
ξTC−1

σ ξ
]
Φ−1(ρA)

}
= Pr

{
N (0, ξTC−1

σ ξ) ≤
[√
ξTC−1

σ ξ
]
Φ−1(ρA)

}
= Pr

{[√
ξTC−1

σ ξ
]
N (0, 1) ≤

[√
ξTC−1

σ ξ
]
Φ−1(ρA)

}
= Pr

{
N (0, 1) ≤ Φ−1(ρA)

}
= Φ

(
Φ−1(ρA)

)
= ρA

Similarly, now we compute Pr[xnat ∈ B]:

Pr[xnat ∈ B] = Pr

{
ξTC−1

σ (n) ≥
[√
ξTC−1

σ ξ
]
Φ−1(1− ρB)

}
= Pr

{
ξTC−1

σ N (0, Cσ) ≥
[√
ξTC−1

σ ξ
]
Φ−1(1− ρB)

}
= Pr

{
ξTN (0, C−1

σ Cσ(C−1
σ)T) ≥

[√
ξTC−1

σ ξ
]
Φ−1(1− ρB)

}
= Pr

{
N (0, ξTC−1

σ ξ) ≥
[√
ξTC−1

σ ξ
]
Φ−1(1− ρB)

}
= Pr

{[√
ξTC−1

σ ξ
]
N (0, 1) ≥

[√
ξTC−1

σ ξ
]
Φ−1(1− ρB)

}
= Pr

{
N (0, 1) ≥ Φ−1(1− ρB)

}
= 1−Φ

(
Φ−1(1− ρB)

)
= ρB

142

Now, we compute Pr[xper ∈ A]:

Pr[xnat ∈ A] = Pr

{
ξTC−1

σ (n + ξ) ≤
[√
ξTC−1

σ ξ
]
Φ−1(ρA)

}
= Pr

{
ξTC−1

σ N (0, Cσ) ≤
[√
ξTC−1

σ ξ
]
Φ−1(ρA)− ξTC−1

σ ξ

}
= Pr

{
N (0, ξTC−1

σ ξ) ≤
[√
ξTC−1

σ ξ
]
Φ−1(ρA)− ξTC−1

σ ξ

}
= Pr

{[√
ξTC−1

σ ξ
]
N (0, 1) ≤

[√
ξTC−1

σ ξ
](

Φ−1(ρA)−
√
ξTC−1

σ ξ

)}
= Pr

{
N (0, 1) ≤ Φ−1(ρA)−

√
ξTC−1

σ ξ

}
= Φ

(
Φ−1(ρA)−

√
ξTC−1

σ ξ

)
Finally, we compute Pr[xper ∈ B]:

Pr[xper ∈ B] = Pr

{
ξTC−1

σ (n + ξ) ≥
[√
ξTC−1

σ ξ
]
Φ−1(1− ρB)

}
= Pr

{
ξTC−1

σ N (0, Cσ) ≥
[√
ξTC−1

σ ξ
]
Φ−1(1− ρB)− ξTC−1

σ ξ

}
= Pr

{
N (0, ξTC−1

σ ξ) ≥
[√
ξTC−1

σ ξ
]
Φ−1(1− ρB)− ξTC−1

σ ξ

}
= Pr

{[√
ξTC−1

σ ξ
]
N (0, 1) ≥

[√
ξTC−1

σ ξ
]
Φ−1(1− ρB)− ξTC−1

σ ξ

}
= Pr

{
N (0, 1) ≥ Φ−1(1− ρB)−

√
ξTC−1

σ ξ

}
= Pr

{
N (0, 1) ≤ Φ−1(ρB) +

√
ξTC−1

σ ξ

}
= Φ

(
Φ−1(ρB) +

√
ξTC−1

σ ξ

)

143

REFERENCES

[1] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4,
inception-resnet and the impact of residual connections on learning,”
in Thirty-First AAAI Conference on Artificial Intelligence, 2017.

[2] M. Meeker, “Kleiner Perkins internet trends, 2017,” Available at:
http://www.kpcb.com/internet-trends, 2017.

[3] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang,
A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton et al., “Mastering the
game of Go without human knowledge,” Nature, vol. 550, no. 7676, pp.
354–359, 2017.

[4] A. D. Patil, S. Manipatruni, D. E. Nikonov, I. A. Young, and N. R.
Shanbhag, “Error-resilient spintronics via the Shannon-inspired model
of computation,” IEEE Journal on Exploratory Solid-State Computa-
tional Devices and Circuits, vol. 5, no. 1, pp. 10–18, 2019.

[5] N. R. Shanbhag, N. Verma, Y. Kim, A. D. Patil, and L. R. Varsh-
ney, “Shannon-inspired statistical computing for the nanoscale era,” in
Proceedings of the IEEE, vol. 107, no. 1. IEEE, 2019, pp. 90–107.

[6] J. Choi, A. D. Patil, R. A. Rutenbar, and N. R. Shanbhag, “Analysis of
error resiliency of belief propagation in computer vision,” in 2016 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2016, pp. 1060–1064.

[7] R. Abdallah, N. R. Shanbhag et al., “An energy-efficient ECG proces-
sor in 45 nm CMOS using statistical error compensation,” Solid-State
Circuits, IEEE Journal of, vol. 48, no. 11, pp. 2882–2893, 2013.

[8] V. Joshi, M. Le Gallo, S. Haefeli, I. Boybat, S. R. Nandakumar,
C. Piveteau, M. Dazzi, B. Rajendran, A. Sebastian, and E. Eleftheriou,
“Accurate deep neural network inference using computational phase-
change memory,” Nature Communications, vol. 11, no. 1, pp. 1–13,
2020.

144

[9] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfel-
low, and R. Fergus, “Intriguing properties of neural networks,” arXiv
preprint arXiv:1312.6199, 2013.

[10] D. Hendrycks and T. Dietterich, “Benchmarking neural network ro-
bustness to common corruptions and perturbations,” in International
Conference on Learning Representations, 2018.

[11] S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “Deepfool: A sim-
ple and accurate method to fool deep neural networks,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2016.

[12] N. Carlini and D. Wagner, “Towards evaluating the robustness of neu-
ral networks,” in 2017 IEEE Symposium on Security and Privacy (SP),
2017.

[13] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards
deep learning models resistant to adversarial attacks,” International
Conference on Learning Representations (ICLR), 2018.

[14] F. Tramer, N. Carlini, W. Brendel, and A. Madry, “On adaptive attacks
to adversarial example defenses,” arXiv preprint arXiv:2002.08347,
2020.

[15] Y. Long, X. She, and S. Mukhopadhyay, “Design of reliable DNN ac-
celerator with un-reliable ReRAM,” in 2019 Design, Automation &
Test in Europe Conference & Exhibition (DATE). IEEE, 2019, pp.
1769–1774.

[16] B. Zhang, L.-Y. Chen, and N. Verma, “Stochastic data-driven hardware
resilience to efficiently train inference models for stochastic hardware
implementations,” in ICASSP 2019-2019 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP). IEEE,
2019, pp. 1388–1392.

[17] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for im-
age recognition,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2016, pp. 770–778.

[18] M. Horowitz, “1.1 computing’s energy problem (and what we can do
about it),” in 2014 IEEE International Solid-State Circuits Conference
Digest of Technical Papers (ISSCC). IEEE, 2014, pp. 10–14.

[19] N. Pinckney, L. Shifren, B. Cline, S. Sinha, S. Jeloka, R. G. Dreslinski,
T. Mudge, D. Sylvester, and D. Blaauw, “Near-threshold computing
in FinFET technologies: Opportunities for improved voltage scalabil-
ity,” in 2016 53nd ACM/EDAC/IEEE Design Automation Conference
(DAC). IEEE, 2016, pp. 1–6.

145

[20] R. G. Dreslinski, M. Wieckowski, D. Blaauw, D. Sylvester, and
T. Mudge, “Near-threshold computing: Reclaiming Moore’s law
through energy efficient integrated circuits,” in Proceedings of the
IEEE, vol. 98, no. 2. IEEE, 2010, pp. 253–266.

[21] S. K. Gonugondla, A. D. Patil, and N. R. Shanbhag, “SWIPE: En-
hancing robustness of ReRAM crossbars for in-memory computing,” in
Proceedings of the 39th International Conference on Computer-Aided
Design, 2020, pp. 1–9.

[22] H. Zhang, Y. Yu, J. Jiao, E. Xing, L. El Ghaoui, and M. Jordan,
“Theoretically principled trade-off between robustness and accuracy,”
in International Conference on Machine Learning (ICML), 2019.

[23] M. A. Alcorn, Q. Li, Z. Gong, C. Wang, L. Mai, W.-S. Ku, and
A. Nguyen, “Strike (with) a pose: Neural networks are easily fooled
by strange poses of familiar objects,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2019, pp.
4845–4854.

[24] L. Engstrom, B. Tran, D. Tsipras, L. Schmidt, and A. Madry, “Explor-
ing the landscape of spatial robustness,” in International Conference
on Machine Learning. PMLR, 2019, pp. 1802–1811.

[25] N. Carlini and D. Wagner, “Audio adversarial examples: Targeted at-
tacks on speech-to-text,” in 2018 IEEE Security and Privacy Work-
shops (SPW). IEEE, 2018, pp. 1–7.

[26] J. Ebrahimi, A. Rao, D. Lowd, and D. Dou, “Hotflip: White-
box adversarial examples for text classification,” arXiv preprint
arXiv:1712.06751, 2017.

[27] S. Huang, N. Papernot, I. Goodfellow, Y. Duan, and P. Abbeel, “Adver-
sarial attacks on neural network policies,” in International Conference
on Learning Representations (ICLR), 2017.

[28] A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial machine learn-
ing at scale,” arXiv preprint arXiv:1611.01236, 2016.

[29] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and
A. Swami, “The limitations of deep learning in adversarial settings,” in
2016 IEEE European Symposium on Security and Privacy (EuroS&P).
IEEE, 2016.

[30] P.-Y. Chen, Y. Sharma, H. Zhang, J. Yi, and C.-J. Hsieh, “EAD:
Elastic-net attacks to deep neural networks via adversarial examples,”
in Thirty-second AAAI Conference on Artificial Intelligence, 2018.

146

[31] J. Rony, L. G. Hafemann, L. S. Oliveira, I. B. Ayed, R. Sabourin, and
E. Granger, “Decoupling direction and norm for efficient gradient-based
l2 adversarial attacks and defenses,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2019, pp.
4322–4330.

[32] W. Brendel, J. Rauber, and M. Bethge, “Decision-based adversarial
attacks: Reliable attacks against black-box machine learning models,”
in International Conference on Learning Representations, 2018.

[33] M. Andriushchenko, F. Croce, N. Flammarion, and M. Hein, “Square
attack: A query-efficient black-box adversarial attack via random
search,” in European Conference on Computer Vision. Springer, 2020,
pp. 484–501.

[34] F. Croce and M. Hein, “Reliable evaluation of adversarial robustness
with an ensemble of diverse parameter-free attacks,” in International
Conference on Machine Learning. PMLR, 2020, pp. 2206–2216.

[35] C. Guo, M. Rana, M. Cisse, and L. van der Maaten, “Countering adver-
sarial images using input transformations,” International Conference
on Learning Representations (ICLR), 2018.

[36] G. S. Dhillon, K. Azizzadenesheli, Z. C. Lipton, J. D. Bernstein, J. Kos-
saifi, A. Khanna, and A. Anandkumar, “Stochastic activation pruning
for robust adversarial defense,” in International Conference on Learn-
ing Representations (ICLR), 2018.

[37] Y. Song, T. Kim, S. Nowozin, S. Ermon, and N. Kushman, “PixelDe-
fend: Leveraging generative models to understand and defend against
adversarial examples,” in International Conference on Learning Rep-
resentations (ICLR), 2018.

[38] C. Xie, J. Wang, Z. Zhang, Z. Ren, and A. Yuille, “Mitigating adver-
sarial effects through randomization,” in International Conference on
Learning Representations (ICLR), 2018.

[39] S. Sen, B. Ravindran, and A. Raghunathan, “EMPIR: Ensembles of
mixed precision deep networks for increased robustness against adver-
sarial attacks,” arXiv preprint arXiv:2004.10162, 2020.

[40] T. Pang, K. Xu, C. Du, N. Chen, and J. Zhu, “Improving adversarial
robustness via promoting ensemble diversity,” in International Confer-
ence on Machine Learning (ICLR), 2019.

[41] Y. Yang, G. Zhang, D. Katabi, and Z. Xu, “ME-Net: Towards effec-
tive adversarial robustness with matrix estimation,” in International
Conference on Machine Learning. PMLR, 2019, pp. 7025–7034.

147

[42] A. Athalye, N. Carlini, and D. Wagner, “Obfuscated gradients give
a false sense of security: Circumventing defenses to adversarial exam-
ples,” in International Conference on Machine Learning (ICML), 2018.

[43] A. Shafahi, M. Najibi, A. Ghiasi, Z. Xu, J. Dickerson, C. Studer, L. S.
Davis, G. Taylor, and T. Goldstein, “Adversarial training for free!”
arXiv preprint arXiv:1904.12843, 2019.

[44] E. Wong, L. Rice, and J. Z. Kolter, “Fast is better than free: Revisiting
adversarial training,” in International Conference on Machine Learning
(ICLR), 2020.

[45] C. Xie and A. Yuille, “Intriguing properties of adversarial training at
scale,” in International Conference on Learning Representations, 2020.

[46] H. Zheng, Z. Zhang, J. Gu, H. Lee, and A. Prakash, “Efficient adver-
sarial training with transferable adversarial examples,” in Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, 2020, pp. 1181–1190.

[47] D. Zhang, T. Zhang, Y. Lu, Z. Zhu, and B. Dong, “You only propagate
once: Accelerating adversarial training via maximal principle,” arXiv
preprint arXiv:1905.00877, 2019.

[48] Y.-Y. Yang, C. Rashtchian, H. Zhang, R. Salakhutdinov, and
K. Chaudhuri, “A closer look at accuracy vs. robustness,” Advances
in Neural Information Processing Systems, vol. 33, 2020.

[49] S.-A. Rebuffi, S. Gowal, D. A. Calian, F. Stimberg, O. Wiles, and
T. Mann, “Fixing data augmentation to improve adversarial robust-
ness,” arXiv preprint arXiv:2103.01946, 2021.

[50] S. Gowal, C. Qin, J. Uesato, T. Mann, and P. Kohli, “Uncovering the
limits of adversarial training against norm-bounded adversarial exam-
ples,” arXiv preprint arXiv:2010.03593, 2020.

[51] B. Vivek and R. V. Babu, “Single-step adversarial training with
dropout scheduling,” in 2020 IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR). IEEE, 2020, pp. 947–956.

[52] J. Zhang, X. Xu, B. Han, G. Niu, L. Cui, M. Sugiyama, and M. Kankan-
halli, “Attacks which do not kill training make adversarial learning
stronger,” in International Conference on Machine Learning. PMLR,
2020, pp. 11 278–11 287.

[53] S. Gui, H. Wang, C. Yu, H. Yang, Z. Wang, and J. Liu, “Model com-
pression with adversarial robustness: A unified optimization frame-
work,” arXiv preprint arXiv:1902.03538, 2019.

148

[54] M. Guo, Y. Yang, R. Xu, Z. Liu, and D. Lin, “When NAS meets ro-
bustness: In search of robust architectures against adversarial attacks,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2020, pp. 631–640.

[55] D. Tsipras, S. Santurkar, L. Engstrom, A. Turner, and A. Madry, “Ro-
bustness may be at odds with accuracy,” in International Conference
on Learning Representations (ICLR), 2019.

[56] D. Stutz, M. Hein, and B. Schiele, “Disentangling adversarial robust-
ness and generalization,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2019, pp. 6976–6987.

[57] J. von Neumann, “Probabilistic logics and the synthesis of reliable
organisms from unreliable components,” Automata Studies, vol. 34,
pp. 43–98, 1956.

[58] B. Hajek and T. Weller, “On the maximum tolerable noise for reliable
computation by formulas,” IEEE Transactions on Information Theory,
vol. 37, no. 2, pp. 388–391, 1991.

[59] N. Pippenger, “Reliable computation by formulas in the presence of
noise,” IEEE Transactions on Information Theory, vol. 34, no. 2, pp.
194–197, 1988.

[60] W. S. Evans and L. J. Schulman, “On the maximum tolerable noise of k-
input gates for reliable computation by formulas,” IEEE Transactions
on Information Theory, vol. 49, no. 11, pp. 3094–3098, 2003.

[61] R. A. Abdallah and N. R. Shanbhag, “Robust and energy-efficient
DSP systems via output probability processing,” in Computer Design
(ICCD), 2010 IEEE International Conference on. IEEE, 2010, pp.
38–44.

[62] E. P. Kim, J. Choi, N. R. Shanbhag, and R. A. Rutenbar, “Error re-
silient and energy efficient MRF message-passing-based stereo match-
ing,” IEEE Transactions on Very Large Scale Integration (VLSI) Sys-
tems, vol. 24, no. 3, pp. 897–908, 2015.

[63] S. Zhang and N. R. Shanbhag, “Embedded algorithmic noise-tolerance
for signal processing and machine learning systems via data path de-
composition,” IEEE Transactions on Signal Processing, vol. 64, no. 13,
pp. 3338–3350, 2016.

[64] Z. Wang, R. E. Schapire, and N. Verma, “Error adaptive classifier
boosting (EACB): Leveraging data-driven training towards hardware
resilience for signal inference,” IEEE Transactions on Circuits and Sys-
tems I: Regular Papers, vol. 62, no. 4, pp. 1136–1145, 2015.

149

[65] S. K. Gonugondla, M. Kang, and N. Shanbhag, “A 42pJ/decision 3.12
TOPS/W robust in-memory machine learning classifier with on-chip
training,” in 2018 IEEE International Solid-State Circuits Conference-
(ISSCC). IEEE, 2018, pp. 490–492.

[66] Z. He, J. Lin, R. Ewetz, J.-S. Yuan, and D. Fan, “Noise injection
adaption: End-to-end ReRAM crossbar non-ideal effect adaption for
neural network mapping,” in Proceedings of the 56th Annual Design
Automation Conference 2019, 2019, pp. 1–6.

[67] S. Bianco, R. Cadene, L. Celona, and P. Napoletano, “Benchmark
analysis of representative deep neural network architectures,” IEEE
Access, vol. 6, pp. 64 270–64 277, 2018.

[68] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:
A large-scale hierarchical image database,” in 2009 IEEE Conference
on Computer Vision and Pattern Recognition. IEEE, 2009, pp. 248–
255.

[69] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, 2017, pp. 4700–
4708.

[70] F. Chollet, “Xception: Deep learning with depthwise separable convo-
lutions,” in Proceedings of the IEEE conference on Computer Vision
and Pattern Recognition, 2017, pp. 1251–1258.

[71] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated residual
transformations for deep neural networks,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2017, pp.
1492–1500.

[72] G. Huang, S. Liu, L. Van der Maaten, and K. Q. Weinberger, “Con-
densenet: An efficient densenet using learned group convolutions,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2018, pp. 2752–2761.

[73] X. Zhang, X. Zhou, M. Lin, and J. Sun, “ShuffleNet: An extremely ef-
ficient convolutional neural network for mobile devices,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2018, pp. 6848–6856.

[74] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mo-
bilenetv2: Inverted residuals and linear bottlenecks,” in Proceedings
of the IEEE conference on Computer Vision and Pattern Recognition,
2018, pp. 4510–4520.

150

[75] M. Tan and Q. Le, “EfficientNet: Rethinking model scaling for con-
volutional neural networks,” in International Conference on Machine
Learning. PMLR, 2019, pp. 6105–6114.

[76] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: A simple way to prevent neural networks from over-
fitting,” The Journal of Machine Learning Research, vol. 15, no. 1, pp.
1929–1958, 2014.

[77] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift,” in International
Conference on Machine Learning. PMLR, 2015, pp. 448–456.

[78] C. Xie, M. Tan, B. Gong, J. Wang, A. L. Yuille, and Q. V. Le, “Ad-
versarial examples improve image recognition,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2020, pp. 819–828.

[79] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and
connections for efficient neural network,” Advances in Neural Informa-
tion Processing Systems, vol. 28, 2015.

[80] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, and C. Zhang, “Learning
efficient convolutional networks through network slimming,” in Pro-
ceedings of the IEEE International Conference on Computer Vision,
2017, pp. 2736–2744.

[81] J.-H. Luo, J. Wu, and W. Lin, “Thinet: A filter level pruning method
for deep neural network compression,” in Proceedings of the IEEE In-
ternational Conference on Computer Vision, 2017, pp. 5058–5066.

[82] X. Dong, S. Chen, and S. J. Pan, “Learning to prune deep neu-
ral networks via layer-wise optimal brain surgeon,” arXiv preprint
arXiv:1705.07565, 2017.

[83] Z. Liu, M. Sun, T. Zhou, G. Huang, and T. Darrell, “Rethinking the
value of network pruning,” arXiv preprint arXiv:1810.05270, 2018.

[84] T.-J. Yang, Y.-H. Chen, and V. Sze, “Designing energy-efficient convo-
lutional neural networks using energy-aware pruning,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2017, pp. 5687–5695.

[85] V. Sehwag, S. Wang, P. Mittal, and S. Jana, “Hydra: Pruning ad-
versarially robust neural networks,” arXiv preprint arXiv:2002.10509,
2020.

151

[86] D. Zhang, J. Yang, D. Ye, and G. Hua, “LQ-nets: Learned quantization
for highly accurate and compact deep neural networks,” in Proceedings
of the European Conference on Computer Vision (ECCV), 2018, pp.
365–382.

[87] S. Zhu, L. H. Duong, and W. Liu, “XOR-Net: An efficient computa-
tion pipeline for binary neural network inference on edge devices,” in
2020 IEEE 26th International Conference on Parallel and Distributed
Systems (ICPADS). IEEE, 2020, pp. 124–131.

[88] K. Wang, Z. Liu, Y. Lin, J. Lin, and S. Han, “HAQ: Hardware-aware
automated quantization with mixed precision,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2019, pp. 8612–8620.

[89] J. Choi, S. Venkataramani, V. Srinivasan, K. Gopalakrishnan, Z. Wang,
and P. Chuang, “Accurate and efficient 2-bit quantized neural net-
works.” in MLSys, 2019.

[90] G. Bender, P.-J. Kindermans, B. Zoph, V. Vasudevan, and Q. Le, “Un-
derstanding and simplifying one-shot architecture search,” in Interna-
tional Conference on Machine Learning. PMLR, 2018, pp. 550–559.

[91] B. Wu, X. Dai, P. Zhang, Y. Wang, F. Sun, Y. Wu, Y. Tian, P. Vajda,
Y. Jia, and K. Keutzer, “FBnet: Hardware-aware efficient convnet de-
sign via differentiable neural architecture search,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2019, pp. 10 734–10 742.

[92] H. Liu, K. Simonyan, and Y. Yang, “DARTS: Differentiable architec-
ture search,” in International Conference on Learning Representations,
2018.

[93] Y. Yang, S. You, H. Li, F. Wang, C. Qian, and Z. Lin, “Towards im-
proving the consistency, efficiency, and flexibility of differentiable neu-
ral architecture search,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2021, pp. 6667–6676.

[94] B. Moons, P. Noorzad, A. Skliar, G. Mariani, D. Mehta, C. Lott, and
T. Blankevoort, “Distilling optimal neural networks: Rapid search in
diverse spaces,” arXiv preprint arXiv:2012.08859, 2020.

[95] A. Wan, X. Dai, P. Zhang, Z. He, Y. Tian, S. Xie, B. Wu, M. Yu, T. Xu,
K. Chen et al., “Fbnetv2: Differentiable neural architecture search
for spatial and channel dimensions,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2020, pp.
12 965–12 974.

152

[96] J. Lin, W.-M. Chen, Y. Lin, J. Cohn, C. Gan, and S. Han, “MCUnet:
Tiny deep learning on IoT devices,” arXiv preprint arXiv:2007.10319,
2020.

[97] D. E. Nikonov and I. A. Young, “Overview of beyond-CMOS devices
and a uniform methodology for their benchmarking,” Proceedings of
the IEEE, vol. 101, no. 12, pp. 2498–2533, 2013.

[98] D. Nikonov and I. Young, “Benchmarking of beyond-CMOS ex-
ploratory devices for logic integrated circuits,” Exploratory Solid-State
Computational Devices and Circuits, IEEE Journal on, 2015.

[99] Z. He, A. S. Rakin, and D. Fan, “Parametric noise injection: Trainable
randomness to improve deep neural network robustness against adver-
sarial attack,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2019.

[100] L. Schmidt, S. Santurkar, D. Tsipras, K. Talwar, and A. Madry, “Ad-
versarially robust generalization requires more data,” in Advances in
Neural Information Processing Systems (NeurIPS), 2018.

[101] S. Yu, X. Guan, and H.-S. P. Wong, “On the stochastic nature of resis-
tive switching in metal oxide RRAM: Physical modeling, Monte Carlo
simulation, and experimental characterization,” in 2011 International
Electron Devices Meeting. IEEE, 2011, pp. 3–17.

[102] W. H. Butler, T. Mewes, C. K. Mewes, P. Visscher, W. H. Rippard,
S. E. Russek, and R. Heindl, “Switching distributions for perpendic-
ular spin-torque devices within the macrospin approximation,” IEEE
Transactions on Magnetics, vol. 48, no. 12, pp. 4684–4700, 2012.

[103] S. Manipatruni, D. E. Nikonov, and I. A. Young, “Material targets for
scaling all-spin logic,” Physical Review Applied, vol. 5, no. 1, 2016.

[104] C. Xie and A. Yuille, “Intriguing properties of adversarial training at
scale,” in International Conference on Learning Representations, 2019.

[105] Y. Carmon, A. Raghunathan, L. Schmidt, P. Liang, and J. C. Duchi,
“Unlabeled data improves adversarial robustness,” in Proceedings of
the 33rd International Conference on Neural Information Processing
Systems, 2019, pp. 11 192–11 203.

[106] F. Tramèr and D. Boneh, “Adversarial training and robustness for
multiple perturbations,” in Advances in Neural Information Processing
Systems, 2019, pp. 5858–5868.

[107] P. Maini, E. Wong, and J. Z. Kolter, “Adversarial robustness against
the union of multiple perturbation models,” in International Confer-
ence on Machine Learning (ICML), 2020.

153

[108] M. Kang, S. K. Gonugondla, A. Patil, and N. R. Shanbhag, “A multi-
functional in-memory inference processor using a standard 6T SRAM
array,” IEEE Journal of Solid-State Circuits, vol. 53, no. 2, pp. 642–
655, 2018.

[109] B. Behin-Aein, D. Datta, S. Salahuddin, and S. Datta, “Proposal for
an all-spin logic device with built-in memory,” Nature Nanotechnology,
vol. 5, no. 4, pp. 266–270, 2010.

[110] S. Manipatruni, D. E. Nikonov, R. Ramesh, H. Li, and I. A. Young,
“Spin-orbit logic with magnetoelectric nodes: A scalable charge medi-
ated nonvolatile spintronic logic,” arXiv:1512.05428, 2015.

[111] M. G. Mankalale, Z. Liang, Z. Zhao, C. H. Kim, J.-P. Wang, and
S. S. Sapatnekar, “CoMET: Composite-input magnetoelectric-based
logic technology,” IEEE Journal on Exploratory Solid-State Compu-
tational Devices and Circuits, vol. 3, pp. 27–36, 2017.

[112] C. Grezes, H. Lee, A. Lee, S. Wang, F. Ebrahimi, X. Li, K. Wong,
J. A. Katine, B. Ocker, J. Langer et al., “Write error rate and read dis-
turbance in electric-field-controlled magnetic random-access memory,”
IEEE Magnetics Letters, vol. 8, pp. 1–5, 2017.

[113] Y. Xie, B. Behin-Aein, and A. Ghosh, “Numerical fokker-planck sim-
ulation of stochastic write error in spin torque switching with ther-
mal noise,” in Device Research Conference (DRC), 2016 74th Annual.
IEEE, 2016, pp. 1–2.

[114] A. F. Vincent, N. Locatelli, J.-O. Klein, W. S. Zhao, S. Galdin-
Retailleau, and D. Querlioz, “Analytical macrospin modeling of the
stochastic switching time of spin-transfer torque devices,” IEEE Trans-
actions on Electron Devices, vol. 62, no. 1, pp. 164–170, 2015.

[115] C. E. Shannon, “A mathematical theory of communication,” ACM
SIGMOBILE Mobile Computing and Communications Review, vol. 5,
no. 1, pp. 3–55, 2001.

[116] Z. Pajouhi, S. Venkataramani, K. Yogendra, A. Raghunathan, and
K. Roy, “Exploring spin-transfer-torque devices for logic applications,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 34, no. 9, pp. 1441–1454, 2015.

[117] V. Calayir, D. E. Nikonov, S. Manipatruni, and I. A. Young, “Static
and clocked spintronic circuit design and simulation with performance
analysis relative to CMOS,” IEEE Transactions on Circuits and Sys-
tems I: Regular Papers, vol. 61, no. 2, pp. 393–406, 2014.

154

[118] Z. Pajouhi, S. Venkataramani, K. Yogendra, A. Raghunathan, and
K. Roy, “Exploring spin-transfer-torque devices for logic applications,”
Computer-Aided Design of Integrated Circuits and Systems, IEEE
Transactions on, vol. 34, no. 9, pp. 1441 – 1454, 2014.

[119] C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learn-
ing, vol. 20, no. 3, pp. 273–297, 1995.

[120] N. R. Shanbhag, R. A. Abdallah, R. Kumar, and D. L. Jones, “Stochas-
tic computation,” in Proceedings of the 47th Design Automation Con-
ference. ACM, 2010, pp. 859–864.

[121] R. Hegde and N. R. Shanbhag, “Soft digital signal processing,” Very
Large Scale Integration (VLSI) Systems, IEEE Transactions on, vol. 9,
no. 6, pp. 813–823, 2001.

[122] S. K. Gonugondla, B. Shim, and N. R. Shanbhag, “Perfect error
compensation via algorithmic error cancellation,” in 2016 IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2016, pp. 966–970.

[123] B. Shim, “Error-tolerant digital signal processing,” Ph.D. dissertation,
University of Illinois at Urbana-Champaign, 2005.

[124] G. V. Varatkar and N. R. Shanbhag, “Error-resilient motion estima-
tion architecture,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 16, no. 10, pp. 1399–1412, 2008.

[125] L. Wang and N. R. Shanbhag, “Low-power filtering via adaptive error-
cancellation,” IEEE Transactions on Signal Processing, vol. 51, no. 2,
pp. 575–583, 2003.

[126] A. H. Shoeb, “Application of machine learning to epileptic seizure onset
detection and treatment,” Ph.D. dissertation, Massachusetts Institute
of Technology, 2009.

[127] A. L. Goldberger, L. A. Amaral, L. Glass, J. M. Hausdorff, P. C. Ivanov,
R. G. Mark, J. E. Mietus, G. B. Moody, C.-K. Peng, and H. E. Stanley,
“Physiobank, physiotoolkit, and physionet: components of a new re-
search resource for complex physiologic signals,” Circulation, vol. 101,
no. 23, pp. e215–e220, 2000.

[128] E. P. Kim and N. R. Shanbhag, “Soft N-modular redundancy,” IEEE
Transactions on Computers, vol. 61, no. 3, pp. 323–336, 2012.

[129] E. P. Kim, D. J. Baker, S. Narayanan, D. L. Jones, and N. R. Shanbhag,
“Low power and error resilient pn code acquisition filter via statis-
tical error compensation,” in Custom Integrated Circuits Conference
(CICC), 2011 IEEE. IEEE, 2011, pp. 1–4.

155

[130] S. Ganguly, K. Y. Camsari, and S. Datta, “Evaluating spintronic
devices using the modular approach,” IEEE Journal on Exploratory
Solid-State Computational Devices and Circuits, vol. 2, pp. 51–60, 2016.

[131] Y. Freund, R. E. Schapire et al., “Experiments with a new boosting
algorithm,” 1996.

[132] J. Kim, A. Paul, P. Crowell, S. J. Koester, S. S. Sapatnekar, J.-P.
Wang, C. H. Kim et al., “Spin-based computing: Device concepts, cur-
rent status, and a case study on a high-performance microprocessor,”
Proceedings of the IEEE, vol. 103, no. 1, pp. 106–130, 2015.

[133] P. Bonhomme, S. Manipatruni, R. M. Iraei, S. Rakheja, S.-C. Chang,
D. E. Nikonov, I. A. Young, and A. Naeemi, “Circuit simulation of
magnetization dynamics and spin transport,” IEEE Transactions on
Electron Devices, vol. 61, no. 5, pp. 1553–1560, 2014.

[134] R. E. Schapire, “Explaining AdaBoost,” in Empirical inference.
Springer, 2013, pp. 37–52.

[135] C. Pan and A. Naeemi, “A proposal for energy-efficient cellular neural
network based on spintronic devices,” IEEE Transactions on Nanotech-
nology, vol. 15, no. 5, pp. 820–827, 2016.

[136] S. Sinha, G. Yeric, V. Chandra, B. Cline, and Y. Cao, “Exploring
sub-20nm FinFET design with predictive technology models,” in Pro-
ceedings of the 49th Annual Design Automation Conference. ACM,
2012.

[137] D. Hisamoto, W.-C. Lee, J. Kedzierski, H. Takeuchi, K. Asano, C. Kuo,
E. Anderson, T.-J. King, J. Bokor, and C. Hu, “FinFET — A self-
aligned double-gate MOSFET scalable to 20 nm,” IEEE Transactions
on Electron Devices, vol. 47, no. 12, pp. 2320–2325, 2000.

[138] K. Y. Camsari, R. Faria, B. M. Sutton, and S. Datta, “Stochastic p-
bits for invertible logic,” Physical Review X, vol. 7, no. 3, p. 031014,
2017.

[139] C.-C. Chang and C.-J. Lin, “Libsvm: A library for support vector
machines,” ACM Transactions on Intelligent Systems and Technology
(TIST), vol. 2, no. 3, p. 27, 2011.

[140] M. Lichman, “UCI machine learning repository,” 2013. [Online].
Available: http://archive.ics.uci.edu/ml

[141] W. H. Wolberg and O. L. Mangasarian, “Multisurface method of pat-
tern separation for medical diagnosis applied to breast cytology,” in
Proceedings of the National Academy of Sciences, 1990.

156

[142] B. Heisele, T. Poggio, and M. Pontil, “Face detection in still gray im-
ages,” Center for Biological and Computational Learning, MIT, Tech.
Rep., 2000.

[143] R. Venkatesan, S. Venkataramani, X. Fong, K. Roy, and A. Raghu-
nathan, “Spintastic: Spin-based stochastic logic for energy-efficient
computing,” in Design, Automation & Test in Europe Conference &
Exhibition (DATE), 2015. IEEE, 2015, pp. 1575–1578.

[144] A. Sengupta, M. Parsa, B. Han, and K. Roy, “Probabilistic deep spiking
neural systems enabled by magnetic tunnel junction,” IEEE Transac-
tions on Electron Devices, vol. 63, no. 7, pp. 2963–2970, 2016.

[145] M. Sharad, D. Fan, K. Aitken, and K. Roy, “Energy-efficient non-
boolean computing with spin neurons and resistive memory,” IEEE
Tran. on Nanotechnology, 2014.

[146] M. Sharad, C. Augustine, G. Panagopoulos, and K. Roy, “Spin-based
neuron model with domain-wall magnets as synapse,” IEEE Transac-
tions on Nanotechnology, vol. 11, no. 4, pp. 843–853, 2012.

[147] S. G. Ramasubramanian, R. Venkatesan, M. Sharad, K. Roy, and
A. Raghunathan, “SPINDLE: SPINtronic Deep Learning Engine for
large-scale neuromorphic computing,” in Proceedings of the 2014 In-
ternational Symposium on Low Power Electronics and Design. ACM,
2014.

[148] A. Sengupta, Y. Shim, and K. Roy, “Proposal for an all-spin artificial
neural network: Emulating neural and synaptic functionalities through
domain wall motion in ferromagnets,” Bio. Cir. and Sys., IEEE Tran.
on, 2016.

[149] S. Parkin and S.-H. Yang, “Memory on the racetrack,” Nature Nan-
otechnology, vol. 10, no. 3, pp. 195–198, 2015.

[150] Z. Sun, X. Bi, A. K. Jones, and H. Li, “Design exploration of racetrack
lower-level caches,” in Low Power Electronics and Design (ISLPED),
2014 IEEE/ACM International Symposium on. IEEE, 2014.

[151] J. Chung, J. Park, and S. Ghosh, “Domain wall memory based con-
volutional neural networks for bit-width extendability and energy-
efficiency,” in Proceedings of the 2016 International Symposium on Low
Power Electronics and Design. ACM, 2016, pp. 332–337.

[152] Y. Wang, H. Yu, L. Ni, G.-B. Huang, M. Yan, C. Weng, W. Yang,
and J. Zhao, “An energy-efficient nonvolatile in-memory computing
architecture for extreme learning machine by domain-wall nanowire
devices,” IEEE Transactions on Nanotechnology, vol. 14, no. 6, pp.
998–1012, 2015.

157

[153] Q. Dong, K. Yang, L. Fick, D. Fick, D. Blaauw, and D. Sylvester,
“Low-power and compact analog-to-digital converter using spintronic
racetrack memory devices,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 25, no. 3, pp. 907–918, 2017.

[154] W.-S. Khwa, J.-J. Chen, J.-F. Li, X. Si, E.-Y. Yang, X. Sun,
R. Liu, P.-Y. Chen, Q. Li, S. Yu et al., “A 65nm 4Kb algorithm-
dependent computing-in-memory SRAM unit-macro with 2.3 ns and
55.8 TOPS/W fully parallel product-sum operation for binary DNN
edge processors,” in IEEE International Solid-State Circuits Confer-
ence (ISSCC), 2018, pp. 496–498.

[155] A. Biswas and A. P. Chandrakasan, “Conv-RAM: An energy-efficient
SRAM with embedded convolution computation for low-power CNN-
based machine learning applications,” in IEEE International Solid-
State Circuits Conference (ISSCC), 2018, pp. 488–490.

[156] X. Si, J.-J. Chen, Y.-N. Tu, W.-H. Huang, J.-H. Wang, Y.-C.
Chiu, W.-C. Wei, S.-Y. Wu, X. Sun, R. Liu et al., “A twin-8T
SRAM computation-in-memory macro for multiple-bit CNN-based ma-
chine learning,” in IEEE International Solid-State Circuits Conference
(ISSCC). IEEE, 2019, pp. 396–398.

[157] H. Valavi, P. J. Ramadge, E. Nestler, and N. Verma, “A mixed-signal
binarized convolutional-neural-network accelerator integrating dense
weight storage and multiplication for reduced data movement,” in 2018
IEEE Symposium on VLSI Circuits. IEEE, 2018, pp. 141–142.

[158] Z. Jiang, S. Yin, M. Seok, and J.-s. Seo, “XNOR-SRAM: In-memory
computing SRAM macro for binary/ternary deep neural networks,” in
2018 IEEE Symposium on VLSI Technology. IEEE, 2018, pp. 173–174.

[159] H. Jia, Y. Tang, H. Valavi, J. Zhang, and N. Verma, “A micropro-
cessor implemented in 65nm CMOS with configurable and bit-scalable
accelerator for programmable in-memory computing,” arXiv preprint
arXiv:1811.04047, 2018.

[160] R. Guo, Y. Liu, S. Zheng, S.-Y. Wu, P. Ouyang, W.-S. Khwa, X. Chen,
J.-J. Chen, X. Li, L. Liu, M.-F. Chang, S. Wei, and S. Yin, “A
5.1pJ/neuron 127.3us/inference RNN-based speech recognition proces-
sor using 16 computing-in-memory SRAM macros in 65nm CMOS,” in
2019 IEEE Symposium on VLSI Circuits. IEEE, 2019, pp. 120–121.

[161] J. Kim, J. Koo, T. Kim, Y. Kim, H. Kim, S. Yoo, and J.-J. Kim, “Area-
efficient and variation-tolerant in-memory BNN computing using 6T
SRAM array,” in 2019 IEEE Symposium on VLSI Circuits. IEEE,
2019, pp. 118–119.

158

[162] X. Si, Y.-N. Tu, W.-H. Huang, J.-W. Su, P.-J. Lu, J.-H. Wang, T.-W.
Liu, S.-Y. Wu, R. Liu, Y.-C. Chou, Z. Zhang, S.-H. Sie, W.-C. Wei,
Y.-C. Lo, T.-H. Wen, T.-H. Hsu, Y.-K. Chen, W. Shih, C.-C. Lo, R.-S.
Liu, C.-C. Hsieh, K.-T. Tang, N.-C. Lien, W.-C. Shih, Y. He, Q. Li, and
M.-F. Chang, “A 28nm 64Kb 6T SRAM computing-in-memory macro
with 8b MAC operation for AI edge chips,” in IEEE International
Solid-State Circuits Conference (ISSCC), 2020, pp. 246–247.

[163] J. Yue, Z. Yuan, X. Feng, Y. He, Z. Zhang, X. Si, R. Liu, M.-F.
Chang, X. Li, H. Yang, and Y. Liu, “A 65nm computing-in-memory-
based CNN processor with 2.9-to-35.8TOPS/W system energy effi-
ciency using dynamic-sparsity performance-scaling architecture and
energy-efficient inter/intra-macro data reuse,” in IEEE International
Solid-State Circuits Conference (ISSCC), 2020, pp. 234–235.

[164] Q. Dong, M. E. Sinangil, B. Erbagci, D. Sun, W.-S. Khwa, H.-J. Liao,
Y. Wang, and J. Chang, “A 351 TOPS/W and 372.4 GOPS compute-
in-memory SRAM macro in 7nm FinFET CMOS for machine learning
applications,” in IEEE International Solid-State Circuits Conference
(ISSCC), 2020, pp. 242–243.

[165] J.-W. Su, X. Si, Y.-C. Chou, T.-W. Chang, W.-H. Huang, Y.-N. Tu,
R. Liu, T.-W. Lu, Pei-Jungand Liu, J.-H. Wang, Z. Zhang, H. Jiang,
S. Huang, C.-C. Lo, R.-S. Liu, C.-C. Hsieh, K.-T. Tang, S.-S. Sheu, S.-
H. Li, H.-Y. Lee, S.-C. Chang, S. Yu, and M.-F. Chang, “A 28nm 64Kb
inference-training two-way transpose multibit 6T SRAM compute-in-
memory macro for AI edge chips,” in IEEE International Solid-State
Circuits Conference (ISSCC), 2020, pp. 240–241.

[166] F. M. Bayat, M. Prezioso, B. Chakrabarti, H. Nili, I. Kataeva, and
D. Strukov, “Implementation of multilayer perceptron network with
highly uniform passive memristive crossbar circuits,” Nature Commu-
nications, vol. 9, no. 1, pp. 1–7, 2018.

[167] I. Boybat, M. Le Gallo, S. Nandakumar, T. Moraitis, T. Parnell,
T. Tuma, B. Rajendran, Y. Leblebici, A. Sebastian, and E. Elefthe-
riou, “Neuromorphic computing with multi-memristive synapses,” Na-
ture Communications, vol. 9, no. 1, pp. 1–12, 2018.

[168] C.-X. Xue, W.-H. Chen, J.-S. Liu, J.-F. Li, W.-Y. Lin, W.-E. Lin,
J.-H. Wang, W.-C. Wei, T.-W. Chang, T.-C. Chang et al., “A 1Mb
multibit ReRAM computing-in-memory macro with 14.6 ns parallel
MAC computing time for CNN based AI edge processors,” in IEEE
International Solid-State Circuits Conference (ISSCC). IEEE, 2019,
pp. 388–390.

159

[169] M. Le Gallo, A. Sebastian, R. Mathis, M. Manica, H. Giefers, T. Tuma,
C. Bekas, A. Curioni, and E. Eleftheriou, “Mixed-precision in-memory
computing,” Nature Electronics, vol. 1, no. 4, pp. 246–253, 2018.

[170] Q. Liu, B. Gao, P. Yao, D. Wu, J. Chen, Y. Pang, W. Zhang, Y. Liao,
C.-X. Xue, W.-H. Chen et al., “A fully integrated analog ReRAM based
78.4 TOPS/W compute-in-memory chip with fully parallel mac com-
puting,” in 2020 IEEE International Solid-State Circuits Conference-
(ISSCC). IEEE, 2020, pp. 500–502.

[171] C.-X. Xue, T.-Y. Huang, J.-S. Liu, T.-W. Chang, H.-Y. Kao, J.-H.
Wang, T.-W. Liu, S.-Y. Wei, S.-P. Huang, W.-C. Wei, Y.-R. Chen, T.-
H. Hsu, Y.-K. Chen, Y.-C. Lo, T.-H. Wen, C.-C. Lo, R.-S. Liu, C.-C.
Hsieh, K.-T. Tang, and M.-F. Chang, “A 22nm 2Mb ReRAM compute-
in-memory macro with 121-28TOPS/W for multibit MAC computing
for tiny AI edge devices,” in IEEE International Solid-State Circuits
Conference (ISSCC), 2020, pp. 244–245.

[172] C.-X. Xue, Y.-C. Chiu, T.-W. Liu, T.-Y. Huang, J.-S. Liu, T.-W.
Chang, H.-Y. Kao, J.-H. Wang, S.-Y. Wei, C.-Y. Lee et al., “A CMOS-
integrated compute-in-memory macro based on resistive random-access
memory for AI edge devices,” Nature Electronics, vol. 4, no. 1, pp. 81–
90, 2021.

[173] V. Naik, K. Lee, K. Yamane, R. Chao, J. Kwon, N. Thiyagarajah,
N. Chung, S. Jang, B. Behin-Aein, J. Lim et al., “Manufacturable
22nm FD-SOI embedded MRAM technology for industrial-grade MCU
and IOT applications,” in 2019 IEEE International Electron Devices
Meeting (IEDM). IEEE, 2019, pp. 2–3.

[174] Y. Long, T. Na, and S. Mukhopadhyay, “ReRAM-based processing-in-
memory architecture for recurrent neural network acceleration,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, no. 99,
pp. 1–14, 2018.

[175] C. Sakr, Y. Kim, and N. Shanbhag, “Analytical guarantees on numeri-
cal precision of deep neural networks,” in International Conference on
Machine Learning, 2017, pp. 3007–3016.

[176] B. Moons, K. Goetschalckx, N. Van Berckelae, and M. Verhelst, “Min-
imum energy quantized neural networks,” in Asilomar Conference on
Signals, Systems and Computer, 2017.

[177] M. F. Snoeij, A. J. Theuwissen, K. A. Makinwa, and J. H. Huijsing,
“Multiple-ramp column-parallel ADC architectures for CMOS image
sensors,” IEEE Journal of Solid-State Circuits, vol. 42, no. 12, pp.
2968–2977, 2007.

160

[178] S. H. Kang and S.-O. Jung, “Embedded STT-MRAM: Device and de-
sign,” in More than Moore Technologies for Next Generation Computer
Design. Springer, 2015, pp. 73–99.

[179] S. K. Gonugondla, M. Kang, and N. R. Shanbhag, “A variation-
tolerant in-memory machine learning classifier via on-chip training,”
IEEE Journal of Solid-State Circuits, no. 99, pp. 1–11, 2018.

[180] J. Zhang, Z. Wang, and N. Verma, “In-memory computation of a
machine-learning classifier in a standard 6T SRAM array.” J. Solid-
State Circuits, vol. 52, no. 4, pp. 915–924, 2017.

[181] Q. Dong, Z. Wang, J. Lim, Y. Zhang, Y.-C. Shih, Y.-D. Chih, J. Chang,
D. Blaauw, and D. Sylvester, “A 1Mb 28nm STT-MRAM with 2.8 ns
read access time at 1.2 V VDD using single-cap offset-cancelled sense
amplifier and in-situ self-write-termination,” in IEEE International
Solid-State Circuits Conference-(ISSCC). IEEE, 2018, pp. 480–482.

[182] J. Kim, K. Ryu, S. H. Kang, and S.-O. Jung, “A novel sensing cir-
cuit for deep submicron spin transfer torque mram (stt-mram),” IEEE
Transactions on very large scale integration (VLSI) systems, vol. 20,
no. 1, pp. 181–186, 2012.

[183] Q.-K. Trinh, S. Ruocco, and M. Alioto, “Dynamic reference voltage
sensing scheme for read margin improvement in STT-MRAMs,” IEEE
Transactions on Circuits and Systems I: Regular Papers, vol. 65, no. 4,
pp. 1269–1278, 2018.

[184] L. Bagheriye, S. Toofan, R. Saeidi, and F. Moradi, “A novel sensing
circuit with large sensing margin for embedded spin-transfer torque
MRAMs,” in Circuits and Systems (ISCAS), 2018 IEEE International
Symposium on. IEEE, 2018, pp. 1–5.

[185] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou, “DoReFa-Net:
training low bitwidth convolutional neural networks with low bitwidth
gradients,” arXiv preprint arXiv:1606.06160, 2016.

[186] T. Na, S. H. Kang, and S.-O. Jung, “STT-MRAM sensing: A review,”
IEEE Transactions on Circuits and Systems II: Express Briefs, 2020.

[187] S.-M. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, P. Frossard, and S. Soatto,
“Robustness of classifiers to universal perturbations: A geometric per-
spective,” in International Conference on Learning Representations
(ICLR), 2019.

[188] S. Jetley, N. Lord, and P. Torr, “With friends like these, who needs
adversaries?” in Advances in Neural Information Processing Systems
(NeurIPS), 2018.

161

[189] S.-M. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and P. Frossard, “Univer-
sal adversarial perturbations,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2017.

[190] A. Ilyas, S. Santurkar, D. Tsipras, L. Engstrom, B. Tran, and A. Madry,
“Adversarial examples are not bugs, they are features,” arXiv preprint
arXiv:1905.02175, 2019.

[191] S. M. M. Dezfooli, A. Fawzi, O. Fawzi, P. Frossard, and S. Soatto,
“Robustness of classifiers to universal perturbations: A geometric per-
spective,” in International Conference on Learning Representations
(ICLR), 2018.

[192] S.-M. Moosavi-Dezfooli, A. Fawzi, J. Uesato, and P. Frossard, “Ro-
bustness via curvature regularization, and vice versa,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2019.

[193] T.-K. Hu, T. Chen, H. Wang, and Z. Wang, “Triple wins: Boosting
accuracy, robustness and efficiency together by enabling input-adaptive
inference,” in International Conference on Learning Representations
(ICLR), 2020.

[194] C. Laidlaw, S. Singla, and S. Feizi, “Perceptual adversarial robustness:
Defense against unseen threat models,” in International Conference on
Learning Representations (ICLR), 2018.

[195] H. Salman, J. Li, I. Razenshteyn, P. Zhang, H. Zhang, S. Bubeck,
and G. Yang, “Provably robust deep learning via adversarially trained
smoothed classifiers,” in Advances in Neural Information Processing
Systems, 2019, pp. 11 289–11 300.

[196] J. Cohen, E. Rosenfeld, and Z. Kolter, “Certified adversarial robustness
via randomized smoothing,” in International Conference on Machine
Learning (ICML), 2019.

[197] D. Madaan, J. Shin, and S. J. Hwang, “Learning to generate
noise for robustness against multiple perturbations,” arXiv preprint
arXiv:2006.12135, 2020.

[198] J. Rauber, R. Zimmermann, M. Bethge, and W. Brendel, “Foolbox
native: Fast adversarial attacks to benchmark the robustness of
machine learning models in PyTorch, TensorFlow, and JAX,” Journal
of Open Source Software, vol. 5, no. 53, p. 2607, 2020. [Online].
Available: https://doi.org/10.21105/joss.02607

162

[199] S. Santurkar, A. Ilyas, D. Tsipras, L. Engstrom, B. Tran, and A. Madry,
“Image synthesis with a single (robust) classifier,” in Advances in Neu-
ral Information Processing Systems, 2019, pp. 1262–1273.

[200] C. Laidlaw and S. Feizi, “Functional adversarial attacks,” Advances in
Neural Information Processing Systems, 2019.

[201] L. Engstrom, B. Tran, D. Tsipras, L. Schmidt, and A. Madry, “Explor-
ing the landscape of spatial robustness,” in International Conference
on Machine Learning. PMLR, 2019, pp. 1802–1811.

[202] A. Bhattad, M. J. Chong, K. Liang, B. Li, and D. A. Forsyth,
“Unrestricted adversarial examples via semantic manipulation,” arXiv
preprint arXiv:1904.06347, 2019.

[203] G. Yang, T. Duan, E. Hu, H. Salman, I. Razenshteyn, and J. Li, “Ran-
domized smoothing of all shapes and sizes,” in International Conference
on Machine Learning (ICML), 2020.

[204] D. Kang, Y. Sun, T. Brown, D. Hendrycks, and J. Steinhardt, “Transfer
of adversarial robustness between perturbation types,” arXiv preprint
arXiv:1905.01034, 2019.

[205] M. Jordan, N. Manoj, S. Goel, and A. G. Dimakis, “Quantify-
ing perceptual distortion of adversarial examples,” arXiv preprint
arXiv:1902.08265, 2019.

[206] D. Stutz, M. Hein, and B. Schiele, “Confidence-calibrated adversarial
training: Generalizing to unseen attacks,” in International Conference
on Machine Learning. PMLR, 2020, pp. 9155–9166.

[207] R. Pinot, L. Meunier, A. Araujo, H. Kashima, F. Yger, C. Gouy-Pailler,
and J. Atif, “Theoretical evidence for adversarial robustness through
randomization: The case of the exponential family,” in Advances in
Neural Information Processing Systems, 2019.

[208] J. Gilmer, N. Ford, N. Carlini, and E. Cubuk, “Adversarial examples
are a natural consequence of test error in noise,” in International Con-
ference on Machine Learning, 2019, pp. 2280–2289.

[209] R. Pinot, R. Ettedgui, G. Rizk, Y. Chevaleyre, and J. Atif, “Random-
ization matters. how to defend against strong adversarial attacks,” in
International Conference on Machine Learning (ICML), 2020.

[210] B. Li, C. Chen, W. Wang, and L. C. Duke, “Certified adversarial ro-
bustness with addition Gaussian noise,” Neural Information Processing
Systems (NeurIPS), 2019.

163

[211] E. Rusak, L. Schott, R. S. Zimmermann, J. Bitterwolf, O. Bringmann,
M. Bethge, and W. Brendel, “A simple way to make neural networks
robust against diverse image corruptions,” in European Conference on
Computer Vision. Springer, 2020, pp. 53–69.

[212] C. Xiao, J.-Y. Zhu, B. Li, W. He, M. Liu, and D. Song, “Spatially trans-
formed adversarial examples,” in International Conference on Learning
Representations, 2018.

[213] M. Lecuyer, V. Atlidakis, R. Geambasu, D. Hsu, and S. Jana, “Certi-
fied robustness to adversarial examples with differential privacy,” arXiv
preprint arXiv:1802.03471, 2018.

[214] A. Levine and S. Feizi, “Robustness certificates for sparse adversarial
attacks by randomized ablation,” in Proceedings of the AAAI Confer-
ence on Artificial Intelligence, vol. 34, no. 04, 2020, pp. 4585–4593.

[215] J. Jia, X. Cao, B. Wang, and N. Z. Gong, “Certified robustness for top-k
predictions against adversarial perturbations via randomized smooth-
ing,” arXiv preprint arXiv:1912.09899, 2019.

[216] G.-H. Lee, Y. Yuan, S. Chang, and T. S. Jaakkola, “Tight certificates
of adversarial robustness for randomly smoothed classifiers,” arXiv
preprint arXiv:1906.04948, 2019.

[217] J. Jia, B. Wang, X. Cao, H. Liu, and N. Z. Gong, “Almost tight L0-
norm certified robustness of top-k predictions against adversarial per-
turbations,” arXiv preprint arXiv:2011.07633, 2020.

[218] S. K. Cherupally, A. Rakin, S. Yin, M. Seok, D. Fan, and J.-s. Seo,
“Leveraging variability and aggressive quantization of in-memory com-
puting for robustness improvement of deep neural network hardware
against adversarial input and weight attacks,” in Proceedings of the
Annual Design Automation Conference, 2021.

[219] X. Chen, C. Xie, M. Tan, L. Zhang, C.-J. Hsieh, and B. Gong, “Robust
and accurate object detection via adversarial learning,” in Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, 2021, pp. 16 622–16 631.

[220] A. Raghunathan, S. M. Xie, F. Yang, J. Duchi, and P. Liang, “Under-
standing and mitigating the tradeoff between robustness and accuracy,”
in International Conference on Machine Learning. PMLR, 2020, pp.
7909–7919.

[221] H. N. Wang, T. Chen, S. Gui, T. Hu, J. Liu, and Z. Wang, “Once-for-all
adversarial training: In-situ tradeoff between robustness and accuracy
for free,” Advances in Neural Information Processing Systems, vol. 33,
pp. 7449–7461, 2020.

164

[222] J. Neyman and E. S. Pearson, “On the problem of the most efficient
tests of statistical hypotheses,” Philosophical Transactions of the Royal
Society of London. Series A, Containing Papers of a Mathematical or
Physical Character, vol. 231, no. 694-706, pp. 289–337, 1933.

165

