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ABSTRACT

With the introduction of deep learning, machine learning has dominated several
technology areas, giving birth to high-performance applications that can even
challenge human-level accuracy. However, the complexity of deep models is also
exploding as a by-product of the revolution of machine learning. Such enormous
model complexity has raised the new challenge of improving the efficiency in deep
models to reduce deployment expense, especially for systems with high through-
put demands or devices with limited power. The dissertation aims to improve the
efficiency of temporal-sensitive deep models in four different directions. First,
we develop a bandwidth extension mapping to avoid deploying multiple speech
recognition systems corresponding to wideband and narrowband signals. Sec-

ond, we apply a multi-modality approach to compensate for the performance of
an excitement scoring system, where the input video sequences are aggressively
down-sampled to reduce throughput. Third, we formulate the motion feature in
the feature space by directly inducing the temporal information from intermediate
layers of deep networks instead of relying on an additional optical flow stream. Fi-

nally, we model a spatiotemporal sampling network inspired by the human visual
perception mechanism to reduce input frames and regions adaptively.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Time is an intriguing concept that forwards the continuity of almost everything
humans can perceive in life. Although we cannot travel back through time, re-
experiencing past events is possible by inspecting recorded data. Thanks to the
advance of technology, temporal information has been stored and shared effort-
lessly and widely under multiple forms, e.g., sensor signals, audio, and videos.
Such sequential data has been increasingly attracting attention from several pieces
of research across multiple domains, such as computer vision, digital signal pro-
cessing, and machine learning. In addition, the popularity and availability of time-
series data have given rise to the studies of video surveillance, vehicle tracking,
action recognition, action detection, and speech recognition.

However, temporal information is also a factor that increases the complexity of
several deep learning models since traditional approaches usually treat different
time frames with equivalent inferencing processes, while it is evident that con-
secutive samples contain significant redundancy. Therefore, it is exceptionally
crucial to improve the efficiency in deep models that rely on temporal data.

The thesis introduces four different solutions to efficiency in time-related deep
neural networks, categorized as application and modeling approaches. Regarding
the application angle, we (1) propose a bandwidth extension mapping to reduce
from having two different acoustic models to only one and (2) develop an excite-
ment scoring framework with a low frame rate and use a multi-modality approach
to compensate for the performance. From the modeling perspective, we (3) intro-
duce a novel method to model the temporal information directly in feature space
to avoid relying on the additional data stream of optical flow, and (4) formulate an
adaptive spatiotemporal sampling model, inspired by the human visual perception,
to only select the frames and regions of interest instead of the whole video.
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1.2 Overview

In Chapter 2, we propose an application to improve efficiency of a fixed acoustic
model. For automatic speech recognition (ASR), wideband (WB) and narrowband
(NB) speech signals with different sampling rates typically use separate acoustic
models. Therefore mixed-bandwidth (MB) acoustic modeling has important prac-
tical values for ASR system deployment. In this chapter, we investigate MB deep
neural network acoustic modeling for ASR with large-scale training data (1,150
hours of WB data and 2,300 hours of NB data). Extensive experiments are con-
ducted on eight diverse WB and NB test sets to study the performance of MB
acoustic models by either upsampling or downsampling. In the meantime, we
also propose a CNN-based discriminatively trained bandwidth extension (BWE)
model with a VGG architecture to map the NB speech to WB speech. We show
that the proposed BWE can improve the ASR performance of NB speech against
the WB acoustic model. Furthermore, the MB acoustic model using WB speech
and bandwidth extended NB speech can further improve the ASR performance.
To deal with the large-scale training data, distributed training is carried out on
multiple GPUs using synchronous data parallelism.

In Chapter 3, we direct our focus on an application of action recognition: auto-
matically generating highlight videos to summarize exciting moments of a sport
match. The production of sports highlight packages summarizing a game’s most
exciting moments is an essential task for broadcast media. Yet, it requires labor-
intensive video editing. We propose a novel approach for auto-curating sports
highlights, and demonstrate it to create a first of a kind, real-world system for
the editorial aid of golf and tennis highlight reels. Our method fuses information
from the players’ reactions (action recognition such as high-fives and fist pumps),
players’ expressions (aggressive, tense, smiling and neutral), spectators (crowd
cheering), commentator (tone of the voice and word analysis) and game analyt-
ics to determine the most interesting moments of a game. We accurately identify
the start and end frames of key shot highlights with additional metadata, such as
the player’s name and the hole number, or analysts input allowing personalized
content summarization and retrieval. In addition, we introduce new techniques
for learning our classifiers with reduced manual training data annotation by ex-
ploiting the correlation of different modalities. Our work has been demonstrated
at a major golf tournament (the 2017 Masters) and two major international tennis
tournaments (the 2017 Wimbledon and US Open), successfully extracting high-
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lights through the course of the sporting events [1, 2, 3]. 54% of the clips selected
by our system overlapped with the official highlights reels for the 2017 Masters.
Furthermore, user studies showed that 90% of the non-overlapping ones where of
the same quality of the official clips for the 2017 Masters, while the automatic
selection of clips for highlights of the 2017 Wimbledon and US Open agreed with
human preferences 80% and 84.2% of the time, respectively.

In Chapter 4, we explore how to model temporal information more effectively,
in the context of fine-grained actions. Fine-grained action detection is an impor-
tant task with numerous applications in robotics and human-computer interaction.
Existing methods typically utilize a two-stage approach including extraction of lo-
cal spatiotemporal features followed by temporal modeling to capture long-term
dependencies. While most recent papers have focused on the latter (long-temporal
modeling), here, we focus on producing features capable of modeling fine-grained
motion more efficiently. We propose a novel locally-consistent deformable con-
volution, which utilizes the change in receptive fields and enforces a local co-
herency constraint to capture motion information effectively. Our model jointly
learns spatiotemporal features (instead of using independent spatial and tempo-
ral streams). The temporal component is learned from the feature space instead
of pixel space, e.g., optical flow. The produced features can be flexibly used in
conjunction with other long-temporal modeling networks, e.g., ST-CNN [4], Di-
latedTCN [5], and ED-TCN [5]. Overall, our proposed approach robustly outper-
forms the original long-temporal models on two fine-grained action datasets: 50
Salads [6] and GTEA [7], achieving F1 scores of 80.22% and 75.39% respectively.

In Chapter 5, we investigate adative sampling strategies in both spatial and tem-
poral domains. Adaptive sampling that exploits the spatiotemporal redundancy in
videos from scene cameras is an enabling technology for always-on action recog-
nition on wearable devices with limited compute and battery. The commonly used
fixed sampling strategy is not context-aware and may under-sample the audio-
visual content. This adversely impacts both computation efficiency and accuracy.
Inspired by concepts from the human visual perception mechanism, we introduce a
novel adaptive spatiotemporal sampling scheme for egocentric action recognition.
Our system pre-scans a global scene context at low-resolution and decides to skip
or request high-resolution features at salient regions for more compute-intensive
processing. The system is demonstrated on the dataset EPIC-KITCHENS and can
signigficantly speed up inference times with a tolerable loss of accuracy.
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CHAPTER 2

MIXED-BANDWIDTH FOR SPEECH
RECOGNITION

2.1 Introduction

1 Wideband (WB) and narrowband (NB) speech signals are two types of input sig-
nals that widely exist in speech-related applications. In automatic speech recog-
nition (ASR), acoustic models are usually separately trained for WB and NB
speech data given their distinct spectral characteristics under different sampling
rates. From the system deployment’s perspective, one acoustic model for both
WB and NB speech would be greatly preferred. In this paper, we investigate
mixed-bandwidth (MB) acoustic modeling using neural networks with deep ar-
chitectures.

The goal of MB acoustic modeling is to converge the WB and NB speech to one
bandwidth from which acoustic modeling is carried out. This could be accom-
plished either by downsampling or upsampling. In this paper we are interested
in seeking answers to the following questions: (1) To converge to one bandwidth,
which strategy is better, downsampling or upsampling? (2) For upsampling, how
does the bandwidth extension (BWE) help in terms of ASR performance? (3) How
does naive mixing compare to mixing with BWE?

Furthermore, we are interested in real-world cases where large amounts of WB
and NB training data are available and their amounts may be unbalanced. Specifi-
cally, we investigate MB deep convolutional neural network (CNN) acoustic mod-
els using 1,150 hours of WB speech and 2,300 hours of NB speech. We evaluate
the ASR performance of the acoustic models on a wide variety of WB and NB test
sets collected from diverse ASR scenarios.

We also propose a discriminatively trained BWE based on CNNs with a VGG
architecture to map the upsampled NB speech to WB speech. Different from most

1Chapter 2 has been published in The 20th Annual Conference of the International Speech
Communication Association (INTERSPEECH) 2019 [8], Copyright ISCA.
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of the BWE techniques in the literature where the BWE is typically treated as a
regression problem and the mapping is estimated under a reconstructive objec-
tive function (e.g., minimum mean squared error (MMSE)), the proposed BWE is
treated as a classification problem and the mapping is directly optimized towards a
given WB acoustic model under the cross-entropy (CE) objective function. There-
fore, the BWE mapping is more closely connected to the final ASR performance,
which is the ultimate goal of interest. We study the performance of the NB speech
mapped by the proposed BWE against the WB CNN model and also that after
mixing with WB and BWE-mapped NB speech.

Training deep CNN acoustic models using approximately 3,500 hours of speech
data is computationally demanding. We resort to parallel computing for stochas-
tic gradient descent (SGD) based network optimization with multiple GPUs. The
system design and engineering consideration will be addressed in the system im-
plementation.

The remainder of the paper is organized as follows. Sec. 2.2 will discuss the
related work on MB acoustic modeling and BWE. Sec. 2.3 gives the mathematical
formulation of proposed BWE. Sec. 2.4 is devoted to the system implementation
including the model architectures and parallel computing. Experimental results
are provided in Sec. 2.5 followed by a discussion and summary in Sec. 2.6.

2.2 Related Work

BWE has been an active research topic in communication and acoustics process-
ing. NB speech signals, such as telephony speech signals, suffer from degraded
quality and intelligibility due to the lack of high frequency spectral information
eliminated by the low-pass band limitation of communication channels. Over the
years, extensive research has been carried out on BWE to compensate this degra-
dation so as to improve the speech quality and intelligibility [9, 10, 11, 12, 13, 14].
BWE aims to estimate the missing high frequency spectral components and, there-
fore, effectively “extend” the bandwidth of the speech signals.

Specific to ASR, given that deep neural networks (DNNs) are universal approx-
imators [15, 16], DNN-based BWE approaches are well justified and have been
widely explored using various deep architectures [13, 14, 17]. In [18], the NB
data is used to leverage the training of WB acoustic models in a GMM-HMM
framework and the missing components in upsampled NB speech features are
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Figure 2.1: Illustration of the training of the BWE mapping. The mapping is
realized as a CNN with a VGG architecture. Its output is connected to the WB
CNN acoustic model after tensor manipulation. The WB CNN is fixed and the
BWE CNN is optimized under the CE criterion.

dealt with using the expectation-maximization (EM) algorithm [19] for the MB
GMM-HMM acoustic models. MB training in [20] follows a similar argument of
[18] as a missing feature problem but the problem is addressed in a DNN-HMM
framework where no explicit BWE is assumed. Acoustic models in both [18] and
[20] are trained on a small amount training data (< 100 hours). A joint MB train-
ing scheme is studied in [21] using 1,000 hours of WB data and 1,000 hours of
NB data where a fully connected (FC) feedforward DNN is used to capture the
BWE mapping from NB to WB speech with MMSE-based pretraining based on
parallel speech data. The MB models are trained with various upsampling and
downsampling scenarios.

In terms of the amount of training data (on the order of magnitude of 1,000
hours) and the variety of mixing strategies, the work reported in [21] is the most
related to the work presented in this paper where the major difference is the way
BWE is estimated and acoustic model architectures. In this paper we propose a
discriminatively trained BWE using CNNs that assume a VGG architecture [22].
In our pilot experiments, we find that CNN-based BWE outperforms FC feedfor-
ward DNN-based BWE and discriminatively trained BWE outperforms MMSE-
based BWE when all using logmel features. Furthermore, we use larger amounts
of MB training data with an unbalanced distribution and multiple diverse test sets
to avoid overtuning the system to specific test sets.
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2.3 Bandwidth Extension

Let X = {x1, · · · ,xn} denote a sequence of n NB features in certain feature do-
main, xi∈Rdx . We want to estimate a mapping function fθ with some parameter θ
to map the NB feature sequence X to a WB feature sequence Ŷ = {ŷ1, · · · , ŷn},
ŷi∈Rdy , where ŷi = fθ(xi). A loss function

L(li, ŷi) , L(li, fθ(xi)) (2.1)

is defined to measure the closeness of the mapped WB features ŷi and their labels
li. We want to optimize the parameter θ such that it minimizes the following
empirical risk:

θ∗ = argmin
θ

1

n

n∑
i=1

L(li, fθ(xi)). (2.2)

Depending on whether the problem is viewed as a regression or classification
problem, the labels li are chosen differently.

2.3.1 Loss Functions

In most cases, BWE is treated as a regression problem and the mapping function
is estimated under the MMSE criterion as follows [21, 17]

θ∗ = argmin
θ

1

n

n∑
i=1

‖yi − fθ(xi)‖2
2, (2.3)

where the labels li = yi, which is the ground truth WB counterpart of the NB
speech features. This requires parallel WB and NB data and is usually accom-
plished by downsampling the WB speech to create the feature pairs. The mapping
functions are learned in a reconstructive way to minimize the L2 distance between
the mapped NB features and their WB counterparts.

Since ASR is a classification problem by nature, it is desirable to have the
BWE mapping estimated with a matched objective. In this paper, we propose
another way of estimating the BWE mapping function. Suppose we have a WB
neural network acoustic model Φ which takes the WB speech features as input
and outputs the posterior probabilities pik with respect to context-dependent phone
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classes after the softmax layer for feature i and class k. We use the BWE mapping
function gθ to map the upsampled NB speech features to WB features which are
directly fed into the WB acoustic model Φ to generate posteriors pi = Φ(gθ(xi))

where Φ is fixed and gθ is subject to optimization. In this case, the mapping
function is fθ , Φ ◦ gθ.

The CE loss function is defined between the posterior probabilities pi and the
class labels li:

θ∗=argmin
θ

1

n

∑
i

L(li,Φ(gθ(xi)))=argmin
θ

1

n

∑
i,k

lik log
1

pik
. (2.4)

The labels li are generated by aligning the upsampled NB features against the WB
acoustic model. The training strategy is illustrated in Fig 2.1.

2.3.2 Mapping Functions

The mapping fθ is usually selected from a certain function family and its param-
eters θ are optimized against the loss function. There are a variety of families of
functions from which the mapping has been chosen for BWE, notably linear func-
tions, Gaussian mixture models (GMMs) and HMMs [10]. Most recently, DNNs
as universal approximators have been dominant to model the mapping. In this pa-
per, the mapping function involves a composite of two CNNs. One is used to map
the upsampled NB speech to WB which is subject to optimized and the other is an
existing WB acoustic model which is fixed.

2.4 System Implementation

We describe the detail of our system implementation in this section, starting with
the feature space of input signals, followed by the model architectures and parallel
computing technique for training.

2.4.1 Feature Space

The WB speech is sampled at 16KHz while the NB speech at 8KHz. The input
feature space consists of 40-dimensional logmel features after application of first

8



a global cepstral mean normalization (CMN) and then an utterance-based CMN.
There are three input feature maps to the CNNs, the static logmel features and their
delta and double delta, all with a temporal context of 11 frames. For upsampled
NB speech signals, they go through the WB Mel filter banks after upsampling in
the time domain, which gives rise to zeros in the outputs of the upper Mel filter
bins (the zero-padding effect).

2.4.2 Models

Acoustic models CNN acoustic models are used for WB baseline, NB baseline
and MB models, which have the same configuration. There are two convolutional
layers and each convolutional layer is followed by a max-pooling layer. The first
convolutional layer uses 5×5 kernels with a stride is 1×1 and padding 2×2. The
second convolutional layer uses the same kernel, stride and padding sizes as those
of the first convolutional layer. Both max-pooling layers use a kernel of 2×2 and
stride of 2× 2. On top of the convolutional and pooling layers are three FC layers
with 1,024 hidden units. All activation functions are ReLU except the last FC
layer which uses sigmoid. The output softmax layer has 9,300 output units. We
investigate two model capacities in the experiments, one with 128 and 256 feature
maps for the two respective convolutional layers and the other 256 and 512 feature
maps.
BWE Models The BWE mapping network is also a CNN. The design of the
network follows the VGG architecture that uses small convolutional kernels, small
stride and small pooling kernels but, in the meantime, uses increased depth of
the convolutional layers and reduced max-pooling layers. Specifically, we use
four convolutional layers, two max-pooling layers and three FC layers. Every
two convolutional layers are followed by one max-pooling layer. The first two
convolutional layers use 3×3 kernels with a stride 1×1 and padding 1×1. The
second two convolutional layers again use 3×3 kernels with a stride 1×1 and
padding 1×1. The two max-pooling layers use 2×2 kernels with a stride 1×1. The
three FC layers have 1,024 hidden units. All activation functions are ReLU except
the last FC layer which uses tanh. We also investigate two model capacities, one
with 64 feature maps for the two convolutional layers and 128 feature maps for the
next two convolutional layers, and the other 128 and 256 features maps. They are
indicated when reporting the results.
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2.4.3 Parallel Computing

The networks are optimized under the CE criterion using the SGD algorithm.
Learning rate starts as 0.01 for 10 epochs and is annealed by half every epoch for
the next 10. We apply synchronous data parallelism on multi-GPUs (eight Nvidia
v100s), within the same server, to accelerate training. To minimize parameters/-
gradients copy, we remap each trainable layer’s gradient buffer to one consecutive
region upfront. For each iteration, after each learner finishes backward propaga-
tion, we use NCCL[23] to sum all learners’ gradients, via an Allreduce call, back
to each learners’ gradients region, before weights update. By doing this, 8-GPU
training achieves almost 8x speedup. In our experiments, each GPU receives a
mini-batch of size 512, bringing the total batch size per iteration to 4,096. An-
other benefit of using multi-GPU is each learner effectively pre-load training data
for others, which reduces I/O time to negligible.

2.5 Experimental Results

There are 1,150 hours of WB training data which consists of 420 hours of Broad-
cast News data, 450 hours of internal dictation data, 100 hours of meeting data,
140 hours of hospitality (travel and hotel reservation) data and 40 hours of ac-
cented data. There are 2,300 hours of NB training data which consists of 2,000
hours of Switchboard data and 300 hours of IBM call center data. In practice, we
often find that the amounts of available WB and NB training data are unbalanced.
In our case, the amounts of NB data is larger than that of the WB data.

We choose 4 WB test sets and 4 NB test sets for our experiments whose descrip-
tion and statistics are given in Table 2.1. The decoding vocabulary comprises of
250K words and the language model (LM) is a 4-gram LM with modified Kneser-
Ney Smoothing consisting of 200M n-grams. The LM training data is selected
from a broad variety of sources. The word error rates (WERs) of various models
on the 8 test sets are shown in Table 2.2.
Baselines The WERs of WB and NB CNN baselines are shown in the first two
rows in Table 2.2. The numbers of feature maps in the convolutional layers are in-
dicated in the parentheses (e.g., [128, 256] vs. [256, 512]). The underlined WERs
indicate a change of sampling rate of the test data in order to be decoded by the
acoustic model. For instance, the NB test sets are upsampled to decode against the
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Table 2.1: WB and NB datasets used for evaluation.

Description Hours

WB

WS1 Dev04f test set from Broadcast News 2.21
WS2 Commercial services help desk 0.34
WS3 Hospitality domain 1 1.21
WS4 Hospitality domain 2 0.81

NB

NS1 Hub5-2000 test set from Switchboard 2.10
NS2 Technical support 4.09
NS3 Commercial services help desk 3.01
NS4 Multi-domain command and control 12.78

WB CNN and vice versa. Obviously, without any compensation, mismatched test
data and acoustic model give rise to significant degradation of the performance.
(17.2% → 23.6% for WB test sets and 17.8% → 25.0% for NB test sets on av-
erage.) We also carry out an experiment (third row) where only the WB training
data is downsampled to train a CNN acoustic model which is used to decode the
NB test sets. This model also gives a 25% average WER which is significantly
worse than the matched training with NB data only. The performance gap may be
due to the mismatched data but also to the mismatched domains.
Naive Mixing The second block of Table 2.2 presents the performance of MB
models trained using the naive mixing strategy where WB data and upsampled NB
data are mixed for the training of a CNN acoustic model. The CNN model with
[128,256] feature maps obtains about the same average WER as the NB CNN
baseline (17.8%) but slightly worse average WER than the WB CNN baseline
(17.6%). Since the amount of training data increases after mixing, it is reasonable
to increase the capacity of the MB model. With doubled feature maps in the
convolutional layers ([256,512]) the MB CNN has a lower average WER (17.4%)
on the NB test sets and only 0.3% absolute worse on the WB test sets. On the
other hand, however, if the MB model is trained using NB data and downsampled
WB data, its performance is far inferior on both WB and NB test sets. Therefore,
from the table we can tell that upsampling the NB data and then mixing with the
WB data appears to be a better strategy for MB modeling.
BWE The third block of Table 2.2 presents the performance of the proposed
BWE approach. The VGG architecture of the BWE network is discriminatively
trained with respect the WB CNN baseline model. With 64 feature maps in the
first two convolutional layers and 128 feature maps in the second two convolu-
tional layers, the BWE can significantly improve the average WER from 25.0%
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to 18.9%. If increase the network capacity with doubled feature maps, the aver-
age WER can be further improved to 18.6%. The last row of this block shows
the performance of BWE trained in a denoising manner (denoted nBWE) where
zero-mean Gaussian noise with variance of 0.01 is added to the input upsampled
NB logmel features. It indicates that the denoising BWE can improve the gen-
eralization of the mapping and gives better performance under the same model
capacity (18.9%→ 18.7%). Note that the BWE achieves improvement across all
the four NB test sets against the WB CNN model compared to simple upsampling.
In some test sets, BWE also yields better performance than the NB baseline. In
the following experiments, we will stick to the BWE CNN configuration with the
[64, 128] feature maps.
Mixing with BWE The fourth block of Table 2.2 shows the performance of the
mixing strategy of using WB data and BWE-mapped upsampled NB data from
which the MB CNN models are trained. As shown by the table, the MB models
further improve the WERs from the BWE alone. Using larger model capacity
helps. Overall, it is slightly better than the naive mixing strategy when the model
capacity is [128, 256] on the NB test sets. Denoising BWE helps the NB test sets
but hurts the WB test sets.
Fine-tune The last block of Table 2.2 shows the WERs after fine-tuning the
mixing with BWE. In the fine-tuning, the output of the BWE CNN is connected
to the input of the MB CNN which is fixed. The BWE CNN is fine-tuned with a
smaller learning rate for 6 epochs. After that, another MB CNN is trained using
the fine-tuned BWE with a smaller learning rate (1/10 of the original learning
rate) for another 6 epochs. The improvement given by this finetuning, as can be
observed from the table, is only marginal.

2.6 Conclusion

As can be observed from the breakdown performance in Table 2.2, consistent
improvements of one technique across all test sets are rarely observed. The con-
clusion drawn from one particular test set by one technique may not generalize to
other test sets, although the average WERs can give us a good idea on the overall
performance of certain technique. That is the reason we believe it is important
to evaluate the BWE and mixed strategies extensively on diverse test sets from
various domains and conditions.
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In ASR applications, it is desirable to use one unified acoustic model for both
WB and NB speech data. The experimental results in Sec. 2.5 show that it is pos-
sible to train a MB model with an appropriate strategy. Upsampling the NB data
appears to be more helpful than downsampling the WB data. In addition, naive
mixing with appropriately increased model capacity, due to increased training data
after mixing, can give competitive ASR performance compared to separate WB
and NB models individually. In our investigated case, the best MB model yields
lower average WER than the NB baseline and only slight degradation over the WB
baseline. Although naive mixing assumes no explicit BWE, one would expect the
DNNs will implicitly learn the mapping from the zero-padded upper frequency
bins of NB speech to WB speech.

In our pilot experiments, MMSE-based BWE turned out not to be very help-
ful. Given the space constraint, we did not report its performance. Compared to
the MMSE-based BWE, the proposed discriminatively trained BWE that directly
connects its training with the output of the WB acoustic model can yield decent
gains. On top of that, the mixing with WB and BWE-mapped NB data can further
improve the performance. With the same model capacity ([128, 256]), this mixing
strategy slightly outperforms the naive mixing. However, increasing the capacity
does not give the same amount of gains observed in the naive mixing. The pro-
posed BWE approach can work with various existing DNN-based acoustic models
for discriminative training. In principle the CNN-based BWE can connect to a
wide variety of existing models with different architectures after appropriate ten-
sor manipulation. We sense that the BWE performance can be further improved
with better techniques and hopefully mixing with BWE can lead to better ASR
performance too.

In summary, we have investigated in this paper the MB acoustic modeling for
ASR with large-scale WB and NB training data. A CNN-based discriminatively
trained BWE approach is proposed and studied for its effectiveness. Various mix-
ing strategies through upsampling, downsampling and BWE are evaluated on di-
verse test sets.
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CHAPTER 3

AUTOMATIC CURATION OF SPORTS
HIGHLIGHTS

3.1 Introduction

1 The tremendous growth of video data has resulted in a significant demand for
tools that can accelerate and simplify the production of sports highlight packages
for more effective browsing, searching, and content summarization. In a major
professional golf tournament such as the Masters, for example–with 90 golfers
playing multiple rounds over four days–video from every tee, every hole, and
multiple camera angles can quickly add up to hundreds of hours of footage. Wim-
bledon, the oldest tennis tournament, hosts around 250 singles matches alone over
the course of 13 days, producing several hundreds of hours of video. Yet, most
of the process for producing highlight reels in those tournaments is still manual,
labor-intensive, and not scalable.

In this paper, we present a novel approach for auto-curating sports highlights,
showcasing its application for golf (the 2017 Masters) and tennis (the 2017 Wim-
bledon and US Open). Our approach combines information from the player, spec-

tators, and the commentator to determine a game’s most exciting moments. We
measure the excitement level of video segments based on the following main mul-
timodal markers:

• Player reaction: visual action recognition of player’s celebration (such as
high fives or fist pumps) and facial expression recognition;

• Spectators: audio measurement of crowd cheers;

• Commentator: excitement measure based on the commentator’s tone of
the voice, as well as exciting words or expressions used, such as “beautiful
shot.”

1Chapter 3 has been published in IEEE Transactions on Multimedia 2018 [24], Copyright
IEEE.
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Figure 3.1: The H5 system dashboard for auto-curation of sports highlights.
Highlights are identified in near real-time (shown in the right panel) with an
associated excitement level score. The user can click on the icons in the right
panel to play the associated video in the center, along with the scores for different
excitement measures.

For golf, these indicators are used along with the detection of TV graphics
(e.g., lower third banners) and shot-boundary detection to accurately identify the
start and end frames of key shot highlights with an overall excitement score. For
tennis, the start and end points for an exemplar highlight shot can be accurately
determined based on input from court-side statisticians and analysts who actively
annotate tennis matches in real time. Video segments are then added to an in-
teractive dashboard for quick review and retrieval by a video editor or broadcast
producer, speeding up the process by which those highlights can then be shared
with fans eager to see the latest action. Fig. 3.1 shows the interface of our system,
called High-Five (Highlights From Intelligent Video Engine), H5 in short. The
first prototype of IBM H5 [25, 26] was deployed at the 2017 Masters golf tour-
nament, extracting highlights live from multiple video streams over the course of
four days. Based on its success, H5 was further adapted to tennis content and
employed during the 2017 Wimbledon and US Open tennis tournaments. This
adapted H5 prototype introduced the use of player expression: expression on the
face of the tennis player (i.e., aggressive, tense, smiling, neutral) to improve the
player’s reaction marker. Since tennis commentary tends to be less colorful and
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excited in tone, the tennis H5 prototype did not employ commentator based mark-
ers. The system was successfully employed as the official highlights provider for
the Wimbledon and US Open tennis tournaments in 2017.

Besides incorporating multimodal (audio, visual, text) and multi-source (crowd
audio, commentator speech, player body, player face, overlaid text, speech text) in-
formation for highlights detection, we also exploit how one modality can guide the
learning of another modality, with the goal of reducing the cost of manual training
data annotation. In particular, we show that we can use TV graphics and OCR as
a proxy to build rich feature representations for golf player recognition from unla-

beled videos, without requiring costly training data annotation. Our audio-based
classifiers also rely on feature representations learned from unlabeled video [27],
and are used to constrain the training data collection of other modalities (e.g., we
use the crowd cheer detector to select training data for player reaction recognition).

Personalized highlight extraction and retrieval is another unique feature of our
system. In golf, by leveraging TV graphics and OCR, our method automatically
gathers information about the golf player’s name and the hole number. This meta-
data is matched with relevant highlight segments, enabling searches like “show
me all highlights of player X at hole Y during the tournament” (where X and
Y are arguments of the query) and personalized highlights generation based on
a viewer’s favorite players. For tennis, information about players is extracted by
meta-data provided by analysts and court-side statisticians, thus allowing the same
type of personalization when combined with the analyzed video.

The key contributions of our work are listed below:

• We present a first-of-kind system for automatically extracting sport high-
lights by fusing multimodal excitement measures from the player, specta-
tors, and commentator. By either automatically extracting metadata via TV
graphics and OCR or obtaining it from court-side statisticians, we allow
personalized highlight retrieval or alerts based on player name, hole or field
number, location, and time.

• We introduce novel techniques for learning our multimodal classifiers with-
out requiring costly manual training data annotation. In particular, we build
rich feature representations for player recognition without manually anno-
tated training examples.

• We provide an extensive evaluation of our work, showing the importance
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of each component in our multimodal approach through ablation studies.
We compare our results with professionally curated golf highlights. We
also provide an extensive user study comparing highlights automatically
produced of our H5 system to human preferences by employing Amazon
Mechanical Turk, for both golf and tennis.

Our system was successfully demonstrated and deployed at major international
golf and tennis tournaments in 2017, extracting highlights from multiple live chan-
nels during the course of the tournaments [1, 2, 3].

3.2 Related Work

Video Summarization. There is a long history of research [28, 29, 30], which
aims at producing short videos or keyframes that summarize the main content of
long full-length videos, by looking at eliminating redundancy either at signal level
(feature dimensionality reduction [31]) or in semantic content [30]. Our work also
aims at summarizing video content, but instead of optimizing for representative-
ness and diversity, as traditional video summarization methods do, our goal is to
find highlights or exciting moments in the videos. A few recent methods address
the problem of highlight detection in consumer videos [32, 33, 34]. Instead our
focus is on sports videos, which offer more structure and objective metrics than
unconstrained consumer videos.

Automatic Trailer Generation. Another sub-area of video summarization in-
volving multimodal video analysis that goes beyond content recognition, and fo-
cuses instead on affective responses evoked by the video, is movie trailer gen-
eration [35, 36, 37]. Evangelopoulos et al. [36] model and combine audio, vi-
sual and textual saliency to select the most relevant scenes in a movie. In this
space, works focus on detecting content with the highest emotional impact based
on movie genre. For instance, in horror movies scenes evoking feelings of sus-
pense or fear are important [38]. In sports, on the other hand, only positive emo-
tions connected to excitement are relevant. Furthermore, differently from this line
of research, the focus of our work is on identifying and measuring subjects reac-
tions (players, crowd, and commentator) directly in the video stream, rather than
inferring reactions which are supposed to be evoked by inspected content which
is deemed as “impressive” [35].
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Sports Highlights Generation. Several methods have been proposed to auto-
matically extract highlights from sports videos based on audio and visual cues.
Example approaches include the analysis of replays [39, 40, 41], crowd cheering
[42, 43], motion features [44], and closed captioning [45]. More recently, Bet-
tadapura et al. [46] used contextual cues from the environment to understand the
excitement levels within a basketball game. Tang and Boring [47] proposed to
automatically produce highlights by analyzing social media services such as twit-
ter. Decroos et al. [48] developed a method for forecasting sports highlights to
achieve more effective coverage of multiple games happening at the same time.
Our proposed approach offers a unique combination of excitement measures ex-
tracted from live video streams to produce highlights, including information from
the spectators, the commentator, and the player reaction. As such, our system
incorporates and combines most of the information employed by previous works
(audio, visual, text). It could also be easily extended to integrate other sources of
attention or excitement, such as social media feeds or production cues (replays,
closed captions, etc.). In addition, we enable personalized highlight generation or
retrieval based on a viewer‘s favorite players.

Self-Supervised Learning. Recently there has been significant interest in learn-
ing deep neural network classifiers without requiring a large amount of manually
annotated training examples. Self-supervised learning approaches rely on auxil-
iary tasks for feature learning, leveraging sources of supervision that are usually
available “for free” and in large quantities to regularize deep models. Examples of
auxiliary tasks include the prediction of ego-motion [49, 50], location and weather
[51], spatial context [52, 53], image colorization [54], and temporal coherency
[55]. Aytar et al. [27] explored the natural synchronization between vision and
sound to learn an acoustic representation from unlabeled video. We leverage this
work to build audio models for crowd cheering and commentator excitement us-
ing few training examples, and use those classifiers to constrain the training data
collection for player reaction recognition. More interestingly, we exploit the de-
tection of TV graphics as a free supervisory signal to learn feature representations
for player recognition from unlabeled video.

19



Figure 3.2: Our approach consists of applying multimodal (video, audio, text)
marker detectors to measure the excitement levels of the player, spectators, and
commentator in video segment proposals. The start/end frames of key shot
highlights are accurately identified based on these markers, along with the
detection of TV graphics (when available as in golf) and visual shot boundaries,
or information from court-side statisticians. The output highlight segments are
associated with an overall excitement score, as well as additional metadata about
the video segment such as the player name, hole number and shot information in
golf, or match point information in tennis.

3.3 Technical Approach

Our framework is illustrated in Fig. 3.2. Given an input video feed, we extract in
parallel multimodal markers of potential interest: player action of celebration and
facial expression (detected by visual classifiers), crowd cheer (with an audio clas-
sifier), commentator excitement (detected by a combination of an audio classifier
and a salient keywords extractor applied after a speech-to-text component), and
game analyst input information when available (text based metadata). The start
and end of a potential highlight clip are determined via analyst input when it is
available. In the absence of such input, the start of a highlight is determined by
identifying graphic content overlaid to the video feed signifying the start of a shot.
Similarly, the end of a highlight segment is identified with visual shot boundary
detection, applied in a window of few seconds after the occurrence of the last
excitement marker. Additionally, by applying an OCR engine to the graphic, we
can recognize the name of the player involved as well as additional metadata such
as the hole number, nature of the shot, etc. Finally we compute a combined ex-
citement score for the segment proposal based on a combination of the individual
markers. In the following we describe each component in detail.
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3.3.1 Audio-based Markers Detection

Crowd Cheer Detection

Crowd cheering is perhaps the most veritable form of approval of a player’s shot
within the context of any sport. Another important audio marker is excitement in
the commentators’ tone while describing a shot. Together, those two audio mark-
ers play a key role in determining the position and excitement level of a potential
highlight clip. We leverage SoundNet [27] to construct audio-based classifiers
for crowd-cheering and commentator tone excitement. SoundNet uses a deep 1D
convolutional neural network architecture to learn representations of many envi-
ronmental sounds of objects and scenes, however not including crowd cheering or
clapping, nor excitement tone in a person’s voice. Therefore a domain adaption
step is needed for our purposes. Instead of fine-tuning two SoundNet models, one
for each specific task, we chose to employ the same SoundNet deep features as
basis to train a linear SVM model for each of the two markers. We opted for this
solution to limit the amount of annotation effort, while still building efficient and
effective models. At this scale, the literature is not conclusive on whether fine-
tuning a deep network is better than learning another model (such as SVM) on top
of deep features [56]. Following [27], we extract features from the conv-5 layer
in SoundNet to represent six-second audio segments. The dimensionality of the
feature is 17,152. We then learn linear SVM models atop the deep features.

We adopt an iterative refinement bootstrapping methodology to construct our
audio based classifiers. We learn an initial classifier with relatively few audio
snippets (28 positives and 57 negatives in the first round of training) and then
perform a few rounds of bootstrapping on a distinct set. This procedure is repeated
to improve the accuracy at each iteration. Cheer samples from 2016 Masters replay
videos as well as examples of cheer obtained from YouTube were used as positive
training data. For negative examples, we used audio tracks containing regular
speech, music, and other kinds of non-cheer sounds found in Masters replays. In
total our final training set consisted of 156 positive and 193 negative samples (6
seconds each). The leave-one-out cross validation accuracy on the training set was
99.4%.
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Figure 3.3: Commentator excitement score computation based on (i) audio tone
analysis and (ii) speech to text analysis.

Commentator Excitement Detection

We propose a novel commentator excitement measure based on a combination of
voice tone and speech-to-text-analysis.

Tone-based: We employ the same deep Soundnet audio features to model ex-
citement in commentators’ tone. As above, we employ a linear SVM classifier
for modeling. For negative examples, we use audio tracks containing regular
speech, music, regular cheer (without commentator excitement) and other sound
clips without an excited commentator. In total, the training set for audio based
commentator excitement consisted of 131 positive and 217 negative samples. The
leave-one-out cross validation accuracy on the training set was 81.3%.

Text-based: Besides the how (i.e., the tone), the excitement level of a com-
mentator can also be gauged from the what, that is, the expressions used. We
created a dictionary of 60 expressions (words and phrases) indicative of excite-
ment (e.g., “great shot,” “fantastic”) and assign to each of them excitement scores
ranging from 0 and 1. We use a speech to text service2 to obtain a transcript of
commentators’ speech and create an excitement score as an aggregate of scores
of individual expressions in it. Finally, we average the tone-based and text-based
scores to obtain the overall level of excitement of the commentator, as exemplified
in Fig. 3.3.

2https://www.ibm.com/watson/developercloud/speech-to-text.html
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3.3.2 Visual Marker Detection

Player Reaction

Understanding the reaction of a player is another important cue to determine an
interesting moment of a game. To the best of our knowledge, measuring excite-
ment with a player celebratory action recognition model for highlight extraction
has not been explored in previous work. We adopt two strategies to reduce the
cost of training data collection and annotation for action recognition. First, we
use our audio-based classifiers at a low threshold to select a subset of video seg-
ments for annotation, as in most cases the player celebration is accompanied by
crowd cheer and/or commentator excitement. Second, inspired by [57], we use
still images which are much easier to annotate and allow training with less com-
putational resources compared to video-based classifiers. Fig. 3.4 shows examples
of images used to train our model. At test time, the classifier is applied at every
frame and the scores aggregated for the highlight segment. Classifiers to detect
player’s celebration are based upon the VGG-16 and the ResNet-50 architectures
pretrained on ImageNet. Since ImageNet does not contain categories describing
a person celebrating, a fine-tuning procedure for our specific domain is needed.
We collect positive training examples from 2016 Masters, Wimbledon, and US
Open videos, and also from the web. Negative examples are randomly sampled
from the aforementioned videos. Similarly to the audio models, multiple rounds
of bootstrapping were used to train the model. Details of the training procedure
are described in the Sec. 3.5.1.

Facial Expression

Facial expression carries valuable information that can augment or correct pre-
dictions from the player reaction models. For example, a tennis player might be
raising his arm to collect a ball instead of celebrating a point, thus confusing
the player reaction model. In this case, detecting a neutral facial expression can
help rejecting a false positive instance. Training data to build a facial expression
classifier was collected by extracting faces from the action celebration training
images, using a SSD detector [58]. Examples with occlusion, rear-angle, or par-
tial visibility were ignored. The extracted faces were then categorized into four
types of expression: aggressive, tense, smiling, and neutral, as shown in Fig. 3.5.
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Figure 3.4: Examples used to train the player action recognition model.

Figure 3.5: Examples of faces used to train the facial expression model.

The first three are associated with celebration, whereas the last one is considered
as non-celebratory. The facial expression classifier was trained by fine-tuning a
VGG-face [59] model on a manually labeled dataset of tennis players faces.

TV Graphics, OCR, and Shot-boundaries

In professional golf tournament broadcasts, a golf swing is generally preceded by
a TV graphics with the name of the player just about to hit the golf ball and other
information about the shot. The detection of such markers is straightforward, as
they appear in specific locations of the image, and have distinct colors. We check
for such colors in the vicinity of pre-defined image locations (which are fixed
across all broadcasting channels) to determine the TV graphics bounding box.
One could use a more general approach by training a TV graphics detector (for
example via Faster-RCNN [60] or SSD [58]), however this was beyond the scope
of this work. We apply OCR (using the Tesseract engine [61]) within the detected

24



region to extract metadata such as the name of the player and the hole number.
This information is associated with the detected highlights, allowing personalized
queries and highlight generation based on a viewer’s favorite players. We then use
standard shot-boundary detection based on color histograms as a visual marker to
determine the end of a highlight clip.

3.3.3 Game Analytics

In tennis not every point, for how exciting it may be, has equal relevance within a
game. For example match points and set points are more valuable than others, and
business rules require them to be included in official highlights packages. During
the tournaments, we received live information about the points from statisticians
positioned on the side of the court, and compiled it into a single analytics score in
the following manner, which was devised following expert advice concerning the
significance and difficulty of each item:

• -0.1 for a point won due to unforced error or rally count smaller than 3

• +0.1 for a point won due to positive play, volley winner, smash winner,
match point, break point, or rally count greater than 5

• +0.20 for a point won due to forced error, player movement detected, or rally
count greater than 10

• +0.25 for a game winning point

where positive play means a point won thanks to a player’s active effort, not an
opponent’s mistake. Player movement signifies that one player moved 25 meters
more than the opponent. The sum of values for any given point was then normal-
ized in the range 0 to 1.

3.3.4 Excitement Scores Fusion

For for any given potential highlight clip x, we perform late fusion of the excite-
ment scores En(x) produced by each of the N marker classifiers. Specifically, we
aggregate (via the max operation) positive scores for each of the markers within
the inspected time-window (usually of 15-20 seconds). Each individual score is
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Figure 3.6: Highlight clip start and end frames selection pipeline for the golf
video streams.

then registered in the range between 0 and 1 via sigmoid normalization, and the
final fusion is computed as a weighted linear sum:

F (x) =
N∑
n=1

wnEn(x), (3.1)

where n refers to cheer, commentator, player action, and game analytics (when
available). The weights wn for each component are learned via cross-validation
on data from the previous year’s tournaments. Crowd cheer, commentator excite-
ment (combining audio and text), player reaction and game analytics components
weights were set to 0.61, 0.26, 0.13, and 0 respectively for Masters. For Wim-
bledon and US Open they were learned as 0.6, 0, 0.1, and 0.3 respectively. In
Sec. 3.5.2 we compare the benefit of learning the weights versus a Naive-Fusion
approach employing equal weighting across components.

3.3.5 Highlight Detection

A highlight is identified as a play or shot that receives a high overall score from the
fusion score combining the multimodal markers ones. Besides measuring marker
response, it is also important to determine the start and end positions of a high-
light. This step is handled differently for the two use cases of golf and tennis, since
the inputs to the system were different. We will go through them individually.
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Golf: in this case, the input to the system are the live video streams of the
2017 Masters. Fig. 3.6 illustrates then how we incorporate multimodal markers
to identify segments as potential highlights and assign excitement scores to them.
The system starts by generating segment proposals based on the crowd cheering
marker. Specifically, crowd cheering detection is performed on a continuous seg-
ment of the stream and positive scores are tapped to point to potentially important
cheers in audio. Adjacent 6 second segments with positive scores are merged to
mark the end of a bout of contiguous crowd cheer. Each distinct cheer marker
is then evaluated as a potential candidate for a highlight using presence of a TV
graphics marker containing a player name and hole number within a preset dura-
tion threshold (set at 80 seconds). The beginning of the highlight is set as five
seconds before the appearance of TV graphics marker. In order to determine the
end of the clip we perform shot boundary detection in a five-second video seg-
ment starting from the end of the cheer marker. If a shot boundary is detected,
the end of the segment is set at the shot change point. Segments thus obtained
constitute valid highlight segment proposals for the system.

Tennis: As opposed to the golf Masters, Wimbledon and US Open tennis
matches are actively annotated by analysts in a live fashion. As a consequence,
the start and end times of each play can be accurately determined based on such
provided information. Therefore the multimodal marker classification system re-
ceives video clips filtered using analyst information as potential highlight candi-
dates and ranks them.

TV graphics detection, shot boundary detection and OCR could be applied to
tennis in the same way as they were applied to golf. As our system is motivated by
application to real world production needs, we did not investigate the clip detection
and cut approach to the tennis videos, since the clips and the player information
were already provided to us during the tennis tournaments. However, we believe
it would apply seamlessly, as the TV Graphics are easily identifiable and OCR
could be employed to identify player names and keep track of the points. The
only needed addition would be that of a player serving detection marker, since
the start of a tennis point clip corresponds to one player serving. That would
require training a specific classifier, which could be done similarly to the player
celebratory reaction one.

For both golf and tennis use cases, highlight clips are displayed in the system
dashboard as shown in Fig. 3.1 labeled with individual marker scores (normalized
between 0 and 1) as well as a combined excitement score that is computed as a
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linear combination of the multimodal marker scores.

3.4 Self-Supervised Player Recognition

Automatic player detection and recognition can be a very powerful tool for gen-
erating personalized highlights when graphics are not available, as well as to per-
form analysis outside of the event broadcast itself. It could for example enable to
estimate the presence of a player in social media posts by recognizing his face.
The task is however quite challenging. First, there is a large variations in pose,
illumination, resolution, occlusion (hats, sunglasses) and facial expressions, even
for the same player, as visible in Fig. 3.11. Second, inter-player differences are
limited, as many players wear extremely similar outfits, in particular hats in golf,
which occlude or obscure part of their face. Finally, a robust face recognition
model requires large quantities of labeled data in order to achieve high levels of
accuracy, which is often difficult to obtain and labor intensive to annotate. We
propose to alleviate such limitations by exploiting the information provided by
other modalities of the video content, specifically the overlaid graphics contain-
ing the players name. This allows us to generate a large set of training examples
for each player, which can be used to train a face recognition classifier, or learn
powerful face descriptors. In the following we describe the approach employed
specifically for the golf tournament data, but it could be easily adapted to other
sports.

We start by detecting faces within a temporal window after a graphic with a
player name is found, using a Faster-RCNN detector [60]. The assumption is that
in the segment after the name of a player is displayed, his face will be visible
multiple times in the video feed. Not all detected faces in that time window are
going to represent the player of interest. We therefore perform outliers removal,
using geometrical and clustering constraints. We assume the distribution of all
detected faces to be bi-modal, with the largest cluster containing faces of the player
of interest. Faces that are too small are discarded, and faces in a central position
of the frame are given preference. Each face region is expanded by 40% and
rescaled to 224x224 pixels. Furthermore, only a maximum of one face per frame
can belong to a given player. Given all the face candidates for a given player,
we perform two-class k-means clustering on top of fc7 features extracted from a
VGG Face network [59], and keep only the faces belonging to the largest cluster
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while respecting the geometric constraints to be the representative examples of
the player’s face. This process, working without supervision, allows us to collect
a large quantity of training images for each player. We can then train a player face
recognition model, which in our case consists of a VGG Face Network fine-tuned
by adding a softmax layer with one dimension per player. Fig. 3.11(b) shows an
example subset of training faces automatically collected for Sergio Garcia from
the 2016 Masters broadcast. The system was able to collect hundreds of images
with a large variety of pose and expressions for the same player. Bordered in red
are highlighted two noisy examples. While the purity of the training clusters is not
perfect, as we will show in the experiments of Sec. 3.5.3 it still allowed to learn
a robust classifier with no explicit supervision. This confirms recent results in
deep learning modeling, which has been proven to being robust to noise if a large
quantity of training data is provided, as demonstrated in recent results for example
by Veit et al. on OpenImages [62] or recently achieved top ImageNet performance
using noisy data from image tags by Mahajan et al. [63].

3.5 Experiments

We evaluated our system in three real world championships, namely the 2017 Mas-
ters, 2017 Wimbledon, and 2017 US Open tournaments. For the 2017 Masters,
we analyzed in near real-time the content of four channels broadcasting simultane-
ously over the course of four consecutive days, for a total of 124 hours of content3.
Our system produced 741 highlights over all channels and days. The system ran
on a Redhat Linux box with two K40 GPUs. We extracted frames directly from
the video stream at a rate of 1fps and audio in six seconds segments encoded as
16bit PCM at rate 22,050 kHz. The cheer detector and commentator excitement
ran in real time (one second to process one second of content), action detection
took 0.05secs per frame, graphics detection with OCR took 0.02secs per frame.
Speech-to-text was the only component slower than real time, processing six sec-
onds of content in eight seconds, since we had to upload every audio chunk to
an API service. The 2017 Wimbledon and US Open system ran on two Ubuntu
nodes with four K80 GPUs each, providing a total of 16 stream services to pro-
cess candidate highlight clips during the tournaments. Videos were chunked in

3Video replays are publicly available at http://www.masters.com/en_US/watch/
index.html

29



Table 3.1: Details of the test sets used to evaluate the player celebration action
recognition models.

Event # clips # frames # positives # negatives
2017 Masters - 1,064 59 1,005
2017 Wimbledon 540 4,777 78 4,699
2017 US Open 510 8,963 52 8,911

10 seconds clips and analyzed in less than 2.5 seconds through our service APIs.
Frames and audio extracted from each video were distributed to components for
crowd cheering detection, action recognition, expression recognition, and overall
aggregation.

In the following we report experiments conducted after the events to quanti-
tatively evaluate the performance of H5, both in terms of overall quality of the
produced highlights as well as efficacy of its individual components. All train-
ing was performed on content from the 2016 Masters, Wimbledon and US Open
tournament videos and from images downloaded from the web, while testing was
done on video data from the 2017 tournaments.

3.5.1 Individual Markers

Player Celebration Marker

The player celebration classifier for the 2017 Masters was trained with 574 pos-
itive examples and 563 negative examples. The positive examples were sampled
from 2016 Masters replay videos and also from the web. The negative examples
were randomly sampled from the 2016 Masters videos. We used the VGG-16
model [64], pre-trained on ImageNet as our base model. The Caffe [65] deep
learning library was used to fine-tune the model to our data with stochastic gra-
dient descent, learning rate 0.001, momentum 0.9, and weight decay 0.0005. We
performed three rounds of hard negative mining on 2016 Masters videos, obtain-
ing 2,906 positive examples and 6,744 negative ones.

Facial Expression Marker

In a similar fashion, player celebration classifiers for the 2017 Wimbledon and
US Open were trained using samples from 2016 tournament video frames as well
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Table 3.2: Details of the test sets used to evaluate performance of the facial
expression recognition models.

Event # samples #aggressive # tense # smiling # neutral
2017 Masters 1,285 45 222 346 672
2017 Wimbledon 472 18 56 38 360
2017 US Open 1,129 25 171 44 889

Table 3.3: Details of the test set used to evaluate performance of the crowd
cheering recognition models.

Event # samples # positives # negatives
2017 Masters 405 69 336
2017 Wimbledon 1,073 915 158
2017 US Open 1,564 627 937

as examples from the web including multiple rounds of bootstrapping. The final
training set for Wimbledon consisted of 13,263 positive and 33,372 negatives sam-
ples, augmented by random cropping and horizontal flipping. Since the US Open
setting is quite different from Wimbledon’s, we trained new celebration classifiers
using a training set consisting of 11,330 positive and 12,516 negative samples.
The examples from the web were reused from the Wimbledon training, while new
video frames were annotated specifically for the US Open. We explored two deep
architectures, VGG-16 and ResNet-50 pre-trained on Masters data, and found the
ResNet model to work best.

We evaluated the player celebration models on a set of clips randomly selected
from each of the tournaments and manually labeled. Table 3.1 reports the details
of each test set. The imbalance of positive and negative examples reflects the
actual distribution of data, since occurrences of a player celebrating are relatively
rare within a match. Classification accuracies on the 2017 Masters, Wimbledon,
and US Open data were 98.4%, 98.12% and 99.33% respectively. Compared to
VGG-16, the ResNet-50 models performed better on the 2017 Wimbledon (AUC
= 0.91 versus 0.87 for VGG) while they were equivalent for the US Open (both
AUC = 0.94). Because of the superior performance of ResNet, we used those
models in the fusion phase. In Fig. 3.7a we show the ROC curves of the best
models for the all three inspected tournaments. We can observe that recognizing
players celebrating was easier in golf than in tennis. In fact, despite a significantly
smaller training dataset, the model performs better. This is mostly due to false
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Table 3.4: Details of the test set used to evaluate performance of the
commentator tone recognition models.

Event # samples # positives # negatives
2017 Masters 240 46 194
2017 Wimbledon 437 85 352
2017 US Open 423 111 312

positives occurring in tennis when players serve, catch a ball in their hand, or pass
a towel over their head. The high false positives rate from the the player reaction
models was one of the main motivations to introduce a facial expression module.

The facial expression marker was tested on faces extracted from the 2017 Wim-
bledon and US Open test set videos. While it was not employed during the tourna-
ment, we also evaluated this marker on the 2017 Masters data after the event. As
shown in the Table 3.2, the expressions on the players faces were at first manually
labeled into four categories, which we found to be most representative of the ap-
pearance of the players from the 2016 tournaments. During the 2017 Wimbledon
however, we found that aggressive, tense and smiling all correlated with players’
celebrations. We therefore combined those facial expressions with a linear fusion
to generate an overall “excited” score, which was compared against the neutral
score representing a lack of celebration. Fig. 3.7b illustrates the ROC curves of
the facial expression marker using this binary categorization. The Figure shows
that the modules performed reliably enough for both tennis tournaments, with the
2017 Wimbledon’s performance being better (AUC of 0.81 for the 2017 Wim-
bledon versus 0.75 for the 2017 US Open). Recognition accuracies are 82.42%
and 82.23%, respectively. The results for golf were worse, with AUC of 0.71 and
accuracy of 78.57%. While the performance is not by itself perfect, it resulted in
being acceptable since facial expressions were used to refine the results given by
the celebration action model.

Crowd Cheering Marker

Cheer samples from 2016 Masters and Wimbledon replay videos as well as YouTube
were used to train the audio cheer classifier using a linear SVM on top of deep
features. For negative examples, we used audio tracks containing regular speech,
music, and other non-cheer sounds found in Masters and Wimbledon replays. In
total the training set consisted of 453 positive and 454 negative samples (6 sec-
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Table 3.5: OCR performance in terms of words and characters recognition.

Element Total Number Precision Recall
Words 7,663 0.9916 0.9893
Characters 29,016 0.9846 0.9840

onds each). We manually annotated random sets of six-seconds audio clips from
the 2017 Masters, Wimbledon and US Open tournaments videos to evaluate the
performance of the model. Table 3.3 reports detailed numbers of test sets and
Fig. 3.7c performance of the audio cheer model. The resulting ROC curves are
approximately similar, with AUC of 0.9, 0.94 and 0.93 for the 2017 Masters, Wim-
bledon, and US Open, respectively.

Commentator Tone Marker

In a fashion similar to crowd cheering, we created a training set for the commen-
tator tone excitement marker using 2016 Masters videos and several rounds of
bootstrapping. In total, the training set consisted of 131 positive and 217 negative
samples. The model was employed only for the golf Masters tournament, as the
tennis data we were provided as input did not contain any useful commentary. We
evaluated the commentator tone model on randomly sampled audio snippets from
the 2017 Masters tournament, and from Youtube videos of past Wimbledon and
US Open matches, as summarized in Table 3.4. Each audio clip was sent to AMT
for evaluation by 5 different workers, who had to label it as No speech (0), Softly

spoken(1), Average Excitement(2), Loud Excitement(3). Any clip with an average
score of at least 2 was considered as exciting, while the others were considered
non-exciting. Fig. 3.7d shows the ROC curves of the model, with an AUC = 0.72,
0.83 and 0.82 for Masters, Wimbledon and US Open, respectively. While the per-
formance of this model is not as good as the cheer classifier, it was reliable enough
to be employed in the live system during the Master tournament.

Text OCR Marker

In order to evaluate the text detection and OCR performance, we randomly se-
lected 625 frames from the four channels during the first day of the 2017 Masters
tournament. For each of the frames, we manually transcribed the ground truth text
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(c) 2017 US Open

Figure 3.8: nDCG computed at different ranks for the individual components as
well as the Fusion.

and compared it to the outcome of the OCR engine. From the results in Table 3.5
we observe that the system was able to recognize the overlaid text very accurately.
Overall, only in 7 frames the name of the player was not properly recognized,
while the most common mistake (happened 60 times) was the confusion of the
letter T with the letter I in the ordinal numbers indicating the hole (for example,
15TH HOLE misspelled as 15YH HOLE). Precision and Recall are computed as

Precision =
Ncor

Ngt

, Recallc =
Ncor

Nr

, (3.2)

Ncor = Ngt − ED (sg, sr) , (3.3)

where Ncor is the number of correctly recognized characters, that is, the number
Ngt of ground truth characters minus the edit distance ED (sg, sr) between the
ground truth text sg and the text output from the system sr.

3.5.2 Highlights Detection

Evaluating the quality of sports highlights is a challenging task, since a clearly de-
fined ground truth does not exist. Similarly to previous works [46], we approached
this problem by comparing the clips automatically generated by our system to two
human based references. The first is a human evaluation and ranking of the clips
that we produced. The second is the collection of highlights professionally pro-
duced by the official Masters curators and published on their Twitter channel.
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Table 3.6: Distribution of clips and workers used to evaluate clips rankings for
each tournament.

Tournament # Clips Workers/Clip Total # Workers % Fan Workers
2017 Masters 120 3 3 33%
2017 Wimbledon 540 5 33 58%
2017 US Open 510 5 21 59%

Human Evaluation of Highlights Ranking

In order to determine the quality of the rankings produced by our system, we con-
ducted user studies on Amazon Mechanical Turk. Workers were asked to evaluate
the excitement level of several clips randomly sampled from the ones generated
and scored by the H5 framework. We asked each participant to assign a score to
every clip in a scale from 0 to 5, with 0 meaning a clip without any interesting
content and 5 being the most exciting shots. We then averaged the scores of the
users for each clip. Table 3.6 summarizes the number of clips and workers em-
ployed for each tournament. We also asked each worker if they were fans of the
given sport, and on average we found half of them being fans.

Specifically for the 2017 Masters, a score of 1 had the unique meaning of a
highlight that is associated with the wrong player, that is, a system mistake. The
resulting scores determined that 92.68% of the clips produced by our system were
legitimate highlights (scores 2 and above), while 7.32% were mistakes.

We then compared the rankings of the clips according to the scores of each
individual component, as well as their fusion, to the ranking obtained through the
users votes. The performance of each ranking was computed at different depth
k with the normalized discounted cumulative gain (nDCG) metric, which is a
standard retrieval measure computed as follows

nDCG(k) =
1

Z

k∑
i=1

2reli − 1

log2(i+ 1)
, (3.4)

where reli is the relevance score assigned by the users to clip i and Z is a nor-
malization factor ensuring that the perfect ranking produces a nDCG score of 1.
In Fig. 3.8 we present the nDCG at different ranks. Fusion was obtained as a
weighted sum of the normalized scores from each component. We tested two dif-
ferent fusion configurations: a Naive-Fusion using equal weights, and the Fusion
with weights optimized through cross-validation on a separate training set (which
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was used by the system during the tournaments), as described in Sec. 3.3.4. In all
cases the system’s Fusion outperforms the Naive one, confirming the benefit of
assigning different weights to different individual components. For both the 2017
Wimbledon and US Open tournaments, the Refined Action obtained by adjust-
ing the player celebration score with the facial expression component (increase
if facial expression is “excited,” decrease if the expression is neutral) correlated
better than the base Action one, confirming the benefit of introducing the facial
expression marker. In general, H5 produced rankings which correlated more with
human preferences for Golf than for Tennis. For the 2017 Masters (a) we notice
that all components but the Commentator Excitement correctly identify the most
exciting clip (at rank 1). After that only the Action component assigns the highest
scores to the following top 5 clips. When considering 10 top clips or more, the
benefit of combining multiple modalities becomes apparent, as the Fusion nDCG
curve remains constantly higher than each individual marker. Differently from the
2017 Masters, for the 2017 Wimbledon and US Open the Fusion does not out-
perform individual components. However it remains fundamental for the system
to generalize, as it is interesting to notice how for different tournaments, different
components correlated most with human rankings. For Wimbledon (b) Cheer was
the best indicator for human excitement, whereas for US Open (c) the game ana-
lytics mattered the most. In both cases the Fusion closely follows the performance
of the best individual marker.

Tennis A/B Testing

Besides the ranking of clips for Tennis, we also wanted to determine whether
the selection made by the system about which clips should go into the compiled
highlights and which should be instead discarded followed human preferences.
Thus we evaluated the clip selection process through another Amazon Mechanical
Turk experiment. In this case for each tournament we randomly selected 500 pairs
of clips. In each pair both clips belonged to the same game: one clip which had
been selected to be part of the highlights, and one clip which had been discarded.
We then presented each pair to the workers and asked them to pick which clip
in the pair was more exciting and/or interesting. We also asked the workers to
motivate their choice among multiple options and to provide some demographic
information. Each pair was voted on by 15 workers, and a total of 234 unique users
participated in the study. From the results reported in Fig. 3.9 (a) and (b) we can
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Figure 3.10: A/B Tests users demographics information

observe how for both tournaments the majority of voters picked the clips which
were selected by the system to be part of the highlights of a game (blue curves)
overwhelmingly over the non highlight worthy ones (red curves). Naturally the
fraction of clips on which a larger number of users agrees decreases as we move
from 8 (the majority of voters) to to 15 (all the voters), a trend clearly visible in the
growth of the grey curves representing an indecision. The distribution of reasons
for the choices is highly skewed toward how exiting a clip was, as users paid less
attentions to clip clarity (tends to be very similar, as clips belong to the same
game), players scoring or significance of a point withing a game. The detailed
breakdown is presented in Fig. 3.9 (c) and (d). From the demographic information
collected in Fig. 3.10 we can observe a quite even distribution in gender, with a
prevalence of young people (18 to 29 years old) who mostly did not know the
players in the clips they voted on. This is consistent with the reason the point

was scored by the player I like better being the least used in Fig. 3.9 (c) and (d).
Finally, it seems that the majority of workers were not tennis fans, having watched
less than five games in the past year.
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Table 3.7: Highlights detection performance. Comparison between the top k
(k = 120, 500) retrieved clips from H5 and the official 2017 Master’s Twitter
highlights.

Depth 120 500
Precision 0.54 0.35
Recall 0.4 0.9
Matching Highlights Preference 0.57 -
Non-Matching Highlights Preference 0.33 -
Equivalent 0.10 -

Comparison with the Official 2017 Masters Highlights

The previous experiments confirmed the quality of the identified highlights as
perceived by potential users of the system. We then compared H5 generated clips
with highlights professionally created for the 2017 Masters, Masters Moments,
available at their official Twitter page4. There are a total of 116 highlight videos
from the final day at the 2017 Masters. Each one covers a player’s approach to a
certain hole (e.g., Daniel Berger, 13th hole) and usually contains multiple shots
taken to complete a particular hole. In contrast each H5 highlight video is about a
specific shot at a particular hole for a given player. In order to match the two sets
of videos, we considered just the player names and hole numbers and ignored the
shot numbers. After eliminating Masters Moments outside of the four channels
we covered live during the tournament and for which there is no matching player
graphics marker, we obtained 90 Masters Moments.

In Table 3.7, we report Precision and Recall of matching clips over the top 120
highlights produced by the H5 Fusion system. We observe that approximately
half of the clips overlap with Masters Moments. This leaves us with three sets of
videos: one shared among the two sets (a gold standard of sorts), one unique to
Masters Moments and one unique to H5. We observed that by lowering thresholds
on our markers detectors, we can incorporate 90% of the Masters Moments by
producing more clips. Our system is therefore potentially capable of producing
almost all of the professionally produced content. We also wanted to investigate
the quality of the clips which were discovered by the H5 system beyond what the
official Master’s channel produced. Generation of highlights is a subjective task
and may not comprehensively cover every player and every shot at the Masters.
At the same time, some of the shots included in the official highlights may not

4https://twitter.com/mastersmoments
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necessarily be great ones but strategically important in some ways.
While our previous experiment was aimed at understanding the coverage of

our system vis-a-vis the official 2017 Masters highlights, we wondered if a golf
aficionado would find the remaining videos still interesting (though not part of
official highlights). We therefore aimed an experiment at quantitatively compar-
ing (a) H5 highlight clips that matched Masters Moments and (b) H5 highlight
clips that did not match Masters Moments videos. In order to do so we selected
the 40 most highly ranked (by H5) videos from lists (a) and (b) respectively and
performed a user study using three human participants familiar with golf. Partic-
ipants were shown pairs of videos with roughly equivalent H5 scores/ranks (one
from list (a) and the other from list (b) above) and were asked to label the more
interesting video between the two, or report that they were equivalent. Majority
voting was used among the users votes to determine the video pick from each pair.
From the results reported in Table 3.7 we observe that while the preference of the
users lies slightly more for videos in set (a), in almost half of the cases the high-
lights uniquely and originally produced by the H5 system were deemed equally
if not more interesting. This reflects that the system was able to discover content
that users find interesting and goes beyond what was officially produced. It is also
interesting to notice that our system is agnostic with respect to the actual score
action of a given play, that is, a highlight is detected even when the ball does not
end up in the hole, but the shot is recognized as valuable by the crowd and/or
commentator and players through their reactions to it.

3.5.3 Self-Supervised Player Face Recognition

In order to test our self-supervised player recognition model we randomly selected
a set of 10 players who participated to both the 2016 and the 2017 Masters tour-
naments (shown in Fig. 3.11 (a)). In Table 3.8 we report the statistics of the
number of training images that the system was able to automatically obtain in a
self-supervised manner. For each player we obtain on average 280 images. Data
augmentation in the form of random cropping and scaling was performed to uni-
form the distribution of examples across players. Since there is no supervision
in the training data collection process, some noise in bound to arise. We manu-
ally inspected the purity of each training cluster (where one cluster is the set of
images representing one player) and found it to be 94.26% on average. Note that
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Figure 3.11: Self-supervised player face learning. (a) Examples of the 10 players
used in the experiments. (b) Subset of the images automatically selected as
training set (2016 Masters) for Sergio Garcia (note the diversity of pose,
expression, occlusion, illumination, resolution). (c) Examples of test faces (the
2017 Masters) correctly recognized through self-supervised learning. (d)
Examples of False Negatives (in orange) and False Positives (in red).

despite evaluating its presence, we did not correct for the training noise, since our
method is fully self-supervised. The face recognition model was fine-tuned from
a VGG-face network with learning rate = 0.001, γ = 0.1, momentum = 0.9 and
weight decay = 0.0005. The net converged after approximately 4K iterations with
batch size 32. We evaluated the performance of the model on a set of images
randomly sampled from Day 4 of the 2017 Masters and manually annotated with
the identity of the 10 investigated players. Applying the classifier directly to the
images achieved 66.47% accuracy (note that random guess is 10% in this case
since we have 10 classes). We further clustered temporally close frames based on
fc7 features and assigned to all faces in a cluster the identity which received the
highest number of predictions within the cluster. This process raised the perfor-
mance to 81.12%. Fig. 3.11 (c) shows examples of correctly labeled test images
of Sergio Garcia. Note the large variety of pose, illumination, occlusion and facial
expressions. In row (d) we also show some examples of false negatives (bordered
in orange) and false positives (in red). The net result of our framework is thus a
self-supervised data-collection procedure which allows to gather large quantities
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Table 3.8: The 2017 Masters Player face classification performance.

Number of Players 10
Number of Training Images 2,806
Training Clusters Purity 94.26%
Number of Test Images 1,181
Random Guess 10.00%
Classifier Alone Accuracy 66.47%
Classifier + Clustering Accuracy 81.12%

of training data without need for any annotation, which can be used to learn robust
feature representations and face recognition models.

3.5.4 Discussion

Ablation study results. The combination of multimodal excitement measures is
crucial to determine the most exciting moments of a game. Though crowd cheer is
an important marker, it alone cannot differentiate a hole-in-one or the final shot of
a golf tournament from other equally loud events. In addition, we noticed several
edge cases where non-exciting video segments had loud cheering from other holes.
Our system correctly attenuates the highlight scores in such cases, due to the lack
of player celebration and commentator excitement. In tennis, we observed how the
player celebration marker can produce false positives associated with raising one’s
hands for purposes other than celebrating (for example cleaning one’s sweat from
the forehead). Our system copes with it by analyzing the player’s facial expression
in conjunction with his or her actions.

Comparison to the state of the art and extensions. Many state of the art ap-
proaches for sports and video analytics are actually complementary to ours. We
believe that other sources of excitement measures, such as as replays [39, 40],
crowd facial expressions or information from social media feeds [47] could be
easily integrated within our framework to further improve it. The live feed na-
ture of the video streams we analyzed during the tournaments, which are the input
of our system, made it impossible to rely on production cues such as replays for
our purposes at the time. Similarly we did not have access to social media feeds
during the events. Integrating such complimentary cues could be a good direc-
tion for future work. Also, end-to-end approaches to video description or action
recognition (to further capture the plasticity of a move, for example) could be em-
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ployed within our framework, although currently the lack of large-scale annotated
training data hinders the development of such approaches. Finally, most existing
works utilize one or a subset of the components we employ within our framework.
For example Baijal et al. [42] and Xiong et al. [44] use audio events (such as
crowd cheering) only, Zhang et al. [31] employ closed captions analysis, which
can be equated to the commentator text analysis we perform on the output of the
speech to text module. As such, the extensive ablation study we performed with
the evaluation of the contribution of each individual component in our framework
and their combination, as reported in Sec. 3.5.2, can be considered as a proxy for
comparison with many existing state of the art methods.

Other uses of self-supervised learning. The same approach used for self-
supervised player recognition could also be applied for the detection of other
items, for example golf setup (player ready to hit the golf ball), tennis player serv-
ing or handshake at the end of a game, using TV graphics or other modalities
metadata as a proxy to obtain positive examples without manual supervision. This
would generalize our approach to detect the start of an event without relying on
TV graphics, and also help fix a few failure cases of consecutive shots for which
a single TV graphics is present.

Extension to other sports. While we have demonstrated our approach for golf
and tennis, we believe our proposed techniques for modeling the excitement lev-
els of the players, commentator, and spectators are general and can be extended
to other sports as well since most of our markers are sport agnostic. However, it
should be noted that both tennis and golf are relatively quiet sports, where exciting
events are rare. A sport like basketball or soccer has the crowds chanting all the
time and it would be challenging to directly employ a completely sport-agnostic
system like ours out-of-the-box, without any adaptation. In those instances, spe-
cialized knowledge of the sport in question can definitely add value to the high-
light selection process. An integration of sport-specific action detection markers
(i.e., a basketball dunk, or a soccer goal) might be helpful for the system to work.
On the other hand, the system might be directly applicable to similar “quiet” sports
such as cricket.
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3.6 Conclusion

We presented a novel approach for automatically extracting highlights from sports
videos based on multimodal sport-independent excitement measures, including
audio analysis from the spectators and the commentator, and visual analysis of the
players. Based on that, we developed a first-of-a-kind system for auto-curation of
golf and tennis highlight packages, which was demonstrated in three major golf
and tennis tournaments in 2017. We also exploited the correlation of different
modalities to learn models with reduced cost in training data annotation. As next
steps, we plan to generalize our approach to other sports such as soccer and pro-
duce more complex storytelling video summaries of the games, while including
additional indicators of play importance such as social media feeds or game spe-
cific events detection.
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CHAPTER 4

LEARNING MOTION IN FEATURE SPACE

4.1 Introduction

1 Action detection, a.k.a action segmentation, addresses the task of classifying
every frame of a given video, containing multiple action segments, as one out of
a fixed number of defined categories, including a category for unknown actions.
This is contrary to the simpler task of action recognition, wherein a given video
is pre-segmented and guaranteed to be one of the provided action classes [67].

Fine-grained actions are a special class of actions which can only be differen-
tiated by subtle differences in motion patterns. Such actions are characterized by
high inter-class similarity [68, 69], i.e., it is difficult, even for humans, to distin-
guish two different actions just from observing individual frames. Unlike generic
action detection, which can largely rely on “what” is in a video frame to perform
detection, fine-grained action detection requires additional reason about “how”
the objects move across several video frames. In this work, we consider the fine-
grained action detection setting.

The pipeline of fine-grained action detection generally consists of two steps: (1)
spatiotemporal feature extraction and (2) long-temporal modeling. The first step
models spatial and short-term temporal information by looking at a few consecu-
tive frames. Traditional approaches tackle this problem by decoupling spatial and
temporal information in different feature extractors and then combining the two
streams with a fusion module. Optical flow is commonly used for such short-term
temporal modeling [70, 71, 72, 69, 73]. However, optical flow is usually compu-
tationally expensive and may suffer from noise introduced by data compression
[5, 4]. Other approaches use Improved Dense Trajectory (IDT) or Motion His-
tory Image (MHI) as an alternative to optical flow [74, 4, 75]. Recently, there

1Chapter 4 has been published in The IEEE International Conference on Computer Vision
(ICCV) 2019 [66], Copyright IEEE.
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(a) frame at time t-1. (b) frame at time t.

(c) no motion vectors found on the
background region.

(d) motion vectors found on the moving
region.

(e) the person at time t-1 (blue) and t
(green).

(f) visualization of motion in feature
space.

Figure 4.1: Visualization of difference of adaptive receptive fields for action
cutting lettuce in 50 Salads dataset: (a) and (b) are two consecutive frames; (c)
and (d) are motion vectors at background and moving regions (green dots
indicate activation locations and red arrows indicate motion vectors); (e) is the
manually defined mask of the person at time t− 1 and t; and (f) is the energy of
motion field in feature space, computed by aggregating motion vectors in all
deformable convolution layers.
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have been efforts to model motion in video using variants of 3D convolutions
[76, 77, 78]. In such cases, motion modeling is somewhat limited by receptive
fields of standard convolutional filters [79, 80, 81].

The second step models long-term dependency of extracted spatiotemporal fea-
tures over the whole video, e.g., bi-directional LSTM [69], spatial-temporal CNN
(ST-CNN) with segmentation models [4], temporal convolutional networks (TCN)
[5], and temporal deformable residual networks (TDRN) [82]. Recent works that
focused on modeling long-term dependency have usually relied on existing fea-
tures [5, 4, 82]. In this work, we create efficient short-term spatiotemporal fea-
tures which are very effective in modeling fine-grained motion.

Instead of modeling temporal information with optical flow, we learn temporal
information in the feature space. This is accomplished by utilizing our proposed
locally-consistent deformable convolution (LCDC), which is an extension of the
standard deformable convolution [83]. At a high-level, we model motion by eval-
uating the local movements in adaptive receptive fields over time (as illustrated in
Fig. 4.1). Adaptive receptive fields can focus on important parts [83] in a frame,
thus using them helps focus on movements of interesting regions. On the other
hand, traditional optical flow tracks all possible motion, some of which may not
be necessary. Furthermore, we enforce a local coherency constraint over the adap-
tive receptive fields to achieve temporal consistency.

To demonstrate the effectiveness of our approach, we evaluate on two standard
fine-grained action detection datasets: 50 Salads [6] and Georgia Tech Egocen-
tric Activities (GTEA) [7]. We also show that our features, without any optical
flow guidance, are robust and outperform features from original networks. Addi-
tionally, we perform quantitative evaluation of the learned motion using ablation
studies to demonstrate the power of our model in capturing temporal information.

Our main contributions are: (1) Modeling motion in feature space using changes
in adaptive receptive fields over time, instead of relying on pixel space as in tra-
ditional optical flow based methods. To the best of our knowledge, we are the
first to extract temporal information from receptive fields. (2) Introducing local

coherency constraint to enforce consistency in motion. The constraint reduces
redundant model parameters, making motion modeling more robust. (3) Con-

structing a backbone single-stream network to jointly learn spatiotemporal fea-

tures. This backbone network is flexible and can be used in consonance with
other long-temporal models. Furthermore, we prove that the network is capable
of representing temporal information with a behavior equivalent to optical flow.
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(4) Significant reduction of model complexity is achieved without sacrificing per-
formance by using local coherency constraint. This reduction is proportional to
the number of deformable convolution layers. Our single-stream approach is com-
putationally more efficient than traditional two-stream networks, as they require
expensive optical flow and multi-stream inference.

4.2 Related work

An extensive body of literature exists for features, temporal modeling, and network
architectures within the context of action detection. In this section, we will review
the most recent and relevant papers related to our approach.
Spatio-temporal features. Spatio-temporal features are crucial in the field of
video analysis. Usually, the features consist of spatial cues (extracted from RGB
frames) and temporal cues over a short period of time. Optical flow [84] is often
used to model temporal information. However, it was found to suffer from noise
due to video compression and insufficient to capture small motion [5, 4]. It is
also generally computationally expensive. Other solutions to model temporal in-
formation include Motion History Image (MHI) [74], leveraging the difference of
multiple consecutive frames, and Improved Dense Trajectory (IDT) [75], combin-
ing HOG [85], HOF [75], and Motion Boundary Histograms (MBH) descriptors
[86].

To combine spatial and (short) temporal components, Lea et al. [4] stacked an
RGB frame with MHI as input to a VGG-like network to produce features (which
they refereed to as SpatialCNN features). Simonyan and Zisserman [72] proposed
a two-stream network, combining scores from separate appearance (RGB) and
motion streams (stacked optical flows). The original approach was improved by
more advanced fusion in [70, 71]. A different school of thought models motion
using variants of 3D convolutions including C3D proposed in [78]. Inflated 3D
(I3D) network, leveraging 3D convolutions within a two-stream setup was pro-
posed in [76]. To cope with egocentric motion captured by head-mounted cam-
eras, Singh et al. introduced a third stream (EgoStream) in [73], capturing the
relation of hands, head, and eyes motion. [69] further used four streams (two ap-
pearance and two motion streams) in Multi-Stream Network (MSN). Each domain
(spatial and temporal) has a global view (whole frame) and a local view (cropped
by motion tracker).
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Long-temporal modeling. While spatiotemporal features are usually extracted
over short periods of time, some form of long-temporal modeling is performed to
capture long-term dependencies within the entirety of a video containing an ac-
tion sequence. In [5] Spatio-temporal CNN (ST-CNN) was introduced to combine
SpatialCNN features using a 1D convolution that spans over a long period of time.
Singh et al. learned the long-term dependency from MSN features (four-stream)
using bi-directional LSTMs [69]. More recently, [5] proposed two Temporal Con-
volution Networks (TCN): DilatedTCN and Encoder-Decoder TCN (ED-TCN).
These networks fused SpatialCNN features and captured long-temporal patterns
by convolving them in the time-domain. A Temporal Deformable Residual Net-
works (TDRN) was proposed in [82] to model long-temporal information by ap-
plying a deformable convolution in the time domain. The TCN model was also fur-
ther improved with multi stage mechanism in Multi-Stage TCN (MS-TCN) [87].
Network architectures. Pre-trained architectures for image classification, such
as VGG, Inception, ResNet [88, 89, 90] are the most important determinants of
the performance of the main down-stream vision tasks. Many papers have focused
on improving the recognition accuracy by innovating on the network architecture.
In standard convolutions, the convolutional response always comes from a local
region. Dilated convolutions have been introduced to overcome this problem by
changing the shape of receptive fields with some dilation patterns [79, 80, 81]. In
2017, Dai et al. [83] introduced deformable convolutional networks with adaptive
receptive fields. The method is more flexible since the receptive fields depend
on input and can approximate an arbitrary object’s shape. We leverage on the ad-
vances of [83], specifically the adaptive receptive fields from the model to capture
motion in the feature space. We further add a local coherency constraint on recep-
tive fields in order to ensure that the motion fields are consistent. This constraint
also plays a major role in reducing model complexity.

4.3 Locally-Consistent Deformable Convolution
Networks

Our architecture builds upon deformable convolutional networks with an under-
lying ResNet CNN. While a deformable convolutional network has been shown
to succeed in the task of object detection and semantic segmentation, it is not
directly designed for fine-grained action detection. However, we observe that de-
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Figure 4.2: Network architecture of the proposed LCDC across multiple frames
v(t). Appearance information comes from the last layer while motion information
is extracted directly from deformation ∆̇ in the feature space instead of from a
separate optical flow stream. Weights are shared across frames over time.

formable convolution layers have a byproduct, the adaptive receptive field, which
can capture motion very naturally.

At a high level, an adaptive receptive field in a deformable convolution layer
can be viewed as an aggregation of important pixels, as the network has the flex-
ibility to change where each convolution samples from. In a way, the adaptive
receptive fields are performing some form of key-points detection. Therefore, our
hypothesis is that, if the key-points are consistent across frames, we can model
motion by taking the difference in the adaptive receptive fields across time. As a
deformable convolution can be trained end-to-end, our network can learn to model
motion at hidden layers of the network. Combining this with spatial features leads
to a powerful spatiotemporal feature.

We illustrate the intuition of our method in Fig. 4.1. The motion here is com-
puted using difference in adaptive receptive fields on multiple feature spaces in-
stead of pixel space as in optical flow. Two consecutive frames of action cutting

lettuce from 50 Salads dataset are shown in Fig. 4.1a and Fig. 4.1b. Fig. 4.1e
shows masks of the person to illustrate how the action takes place. We also show
the motion vectors corresponding to different regions in Fig. 4.1c and Fig. 4.1d.
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Standard convolution Dilated convolution Deformable convolution

Receptive field 
at time t-1

Receptive field 
at time t

Difference of  
receptive 

fields 
through time 

Deformable convolution Consistent Deformable convolution 

Figure 4.3: Illustration of temporal information modeled by the difference of
receptive fields at a single location in 2D. Only deformable convolution can
capture temporal information (shown with red arrows). Related to Eq. 4.2 and
Eq. 4.3, n is red square, n+k are green dots, ∆̈n,k are black arrows, n+k+∆̈n,k are
blue dots, and r̈ are red arrows.

Red arrows are used to describe the motion and green dots are used to show the
corresponding activation units. We suppress motion vectors with low values for
the sake of visualization. In Fig. 4.1c, the activation unit lies on a background
region (cut ingredients inside the bowl) and so there is no motion recorded as the
difference between two adaptive receptive fields of background region over time
is minimal. However, we can find motion in Fig. 4.1d (the field of red arrows)
because the activation unit lies on a moving region, i.e., the arm region. The
motion field at all activation units is seen in Fig. 4.1f, where the field’s energy
corresponds to the length of motion vectors at each location. The motion field is
excited around the moving region (the arm) while suppressed in the background.
Therefore, this highly suggests that the motion information we extract can be used
as an alternative solution to optical flow. A schematic of the proposed network
architecture is shown in Fig. 4.2.
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4.3.1 Deformable convolution

We first briefly review the deformable convolution layers, before going into a
concrete description of the construction of the network architecture. Let x be the
input signal such that x ∈ RN . The standard convolution is defined as:

y[n] =
∑
k

w[−k]x [n+ k] , (4.1)

where w ∈ RK is the convolutional kernel, n and k are the signal and kernel
indices (n and k can be treated as multidimensional indices). The deformable
convolution proposed in [83] is thus defined as:

y[n] =
∑
k

w[−k]x
(
n+ k + ∆̈n,k

)
, (4.2)

where ∆̈ ∈ RN×K represents the deformation offsets of deformable convolution.
These offsets are learned from another convolution with x i.e., ∆̈n,k = (hk∗x)[n],
where h is a different kernel. Note that we use parentheses (·) instead of brackets
[·] for x in Eq. 4.2 because the index n + k + ∆̈n,k requires interpolation as ∆̈ is
fractional.

4.3.2 Modeling temporal information with adaptive receptive
fields

We define the adaptive receptive field of a deformable convolution at time t as
F̈(t) ∈ RN×K where F̈

(t)
n,k = n + k + ∆̈

(t)
n,k. To extract motion information from

adaptive receptive fields, we take the difference of the receptive fields through
time, which we denote as:

r̈(t) = F̈(t) − F̈(t−1) = ∆̈(t) − ∆̈(t−1). (4.3)

It can be seen that the locations n+k are canceled, going from t−1 to t in Eq. 4.3,
leaving only the difference of deformation offsets. Given T input feature maps
with spatial dimension H×W , we can construct T different ∆̈(t)|T−1

t=0 , resulting in
T − 1 motion fields r̈(t)|T−2

t=0 with the same spatial dimension. Therefore, we can
model different motion at different positions n and time t.

Fig. 4.3 further illustrates the meaning of r̈(t) in 2D for different types of con-
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Figure 4.4: A more detailed view of our network architecture with the fusion
module. Appearance information comes from output of the last layer while
motion information comes from aggregating ṙ from multiple layers. Outputs of
the final fc layer can be flexibly used as the features for any long-temporal
modeling networks.

volutions. Red square shows the current activation location, green dots show the
standard receptive fields, and blue dots show the receptive fields after adding de-
formation offsets. In the last row, red arrows show the changes of receptive field
from time t− 1 (faded blue dots) to time t (solid blue dots). Readers should note
that there are no red arrows for standard convolution and dilated convolution be-
cause the offsets are either zero or identical. Red arrows only appear in deformable
convolution, which motivates modeling of temporal information.

4.3.3 Locally-consistent deformable convolution

Directly modeling motion using r̈ is not very effective because there is no guaran-
tee of local consistency in receptive fields in the original deformable convolution
formulation. This is because ∆̈n,k is defined on both location (n) and kernel (k)
indices, which essentially corresponds to x[m], where m = n+k. However, there
are multiple ways to decompose m, i.e., m = n + k = (n− l) + (k + l), for any
l. Therefore, one single x[m] is deformed by multiple ∆̈n−l,k+l, with different l.
This produces inconsistency when we model r̈(t) in Eq. 4.3, as there can be mul-
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tiple motion vectors corresponding to the same location. While local consistency
could be learned as a side-effect of the training process, it is still not explicitly
formulated in the original deformable convolution formulation.

In order to enforce consistency, we propose a locally-consistent deformable con-
volution (LCDC):

y[n] =
∑
k

w[−k]x
(
n+ k + ∆̇n+k

)
, (4.4)

for ∆̇ ∈ RN . LCDC is a special case of deformable convolution where

∆̈n,k = ∆̇n+k, ∀n, k. (4.5)

We name this as local coherency constraint. The interpretation of LCDC is that
instead of deforming the receptive field as in Eq. 4.2, we can deform the input
signal instead. Specifically, LCDC in Eq. 4.4 can be rewritten as:

y[n] =
∑
k

w[−k]x̃[n+ k] = (x̃ ∗w)[n], (4.6)

where
x̃[n] = (D∆̇{x})[n] = x

(
n+ ∆̇n

)
(4.7)

is a deformed version of x and ∗ is the standard convolution (D∆̇{·} is defined as
the deforming operation by offset ∆̇).

Both ∆̈ and ∆̇ are learned via a convolution layer. Recall that ∆̈n,k = (hk ∗
x)[n], where x ∈ RN and ∆̈ ∈ RN×K . ∆̇ is constructed similarly, i.e.,

∆̇n = (Φ ∗ x)[n], (4.8)

where ∆̇ ∈ RN . Since ∆̈ and ∆̇ share the same spatial dimension N and they
can be applied for different time frames, ∆̇ can also model motion at different
positions and times.

Furthermore, ∆̇ only needs a kernel Φ, while ∆̈ requires multiple hk. There-
fore, LCDC is more memory-efficient as we can reduce memory cost K times.
Implementation-wise, given input feature map x ∈ RH×W×C , then

∆̈ ∈ R(H×W )×(G×Kh×Kw×2),
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whereG is the number of deformable groups,Kh andKw are the height and width
of kernels, and 2 indicates that offsets are 2D vectors. However, the dimensionality
of LCDC offsets ∆̇ is only RH×W×2. We also drop the number of deformable
groups G since we want to model one single type of motion between two time
frames. Therefore, the reduction in this case isG×Kh×Kw times. The parameter
reduction is proportional to the number of deformable convolution layers that are
used.

We now show that LCDC can effectively model both appearance and motion
information in a single network, as the difference ṙ(t) = ∆̇(t) − ∆̇(t−1) has a
behavior equivalent to motion information produced by optical flow.

Proposition 1. Suppose that two inputs x(t−1) and x(t) are related through a mo-

tion field, i.e.,

x(t)(s) = x(t−1) (s− o(s)) , (4.9)

where o(s) is the motion at location s ∈ R2, and x(t) is assumed to be locally

varying. Then the corresponding LCDC outputs with w 6= 0:

y(t) = (D∆̇(t){x(t)}) ∗w,

y(t−1) = (D∆̇(t−1){x(t−1)}) ∗w

are consistent, i.e., y(t−1) = y(t), if and only if ∀n,

ṙ(t)
n = ∆̇(t)

n − ∆̇(t−1)
n = o

(
n+ ∆̇(t)

n

)
. (4.10)

Notice that in pixel space, x are input images and o(s) is the optical flow at s. In

latent space, x are intermediate feature maps and o(s) is the motion of feature.

Proof. With the connection of LCDC to standard convolution, under the assump-
tion that w 6= 0, we have:

y(t) = y(t−1)

⇔ D∆̇(t){x(t)} = D∆̇(t−1){x(t−1)}

⇔ x(t)
(
n+ ∆̇(t)

n

)
= x(t−1)

(
n+ ∆̇(t−1)

n

)
,∀n.

Substituting the LHS in the motion relation in Eq. 4.9, we obtain the following
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equivalent conditions ∀n:

x(t−1)
(
n+ ∆̇(t)

n − o(n+ ∆̇(t)
n )
)

= x(t−1)
(
n+ ∆̇(t−1)

n

)
⇔ ∆̇(t)

n − o(n+ ∆̇(t)
n ) = ∆̇(t−1)

n

⇔ o
(
n+ ∆̇(t)

n

)
= ∆̇(t)

n − ∆̇(t−1)
n = ṙ(t)

n .

(since x(t) is locally varying).

The above result shows that by enforcing consistent output and sharing weights
w across frames, the learned deformed map ∆̇

(t)
n encodes motion information, as

in Eq. 4.10. Hence, we can effectively model both appearance and motion infor-
mation in a single network with LCDC, instead of using two different streams.

4.3.4 Spatiotemporal features

To create the spatiotemporal feature, we further concatenate across channel di-
mensions the learned motion information ṙ(t) from multiple layers with appear-
ance features (output of the last layer y

(t)
L ). We illustrate this process in Fig. 4.4.

To model the fusion mechanism, we used two 3D convolutions followed by two fc
layers. Each 3D convolution unit was followed by batch normalization, ReLU ac-
tivation, and 3D max pooling to gradually reduce temporal dimension (while the
spatial dimension is retained). Outputs of the final fc layer can be flexibly used
as the features for any long-temporal modeling networks, such as ST-CNN [4],
Dilated-TCN [5], or ED-TCN [5].

4.4 Experiments

4.4.1 Implementation details

We implemented our approach using ResNet50 with deformable convolutions as
backbone (at layers conv5a, conv5b, and conv5c as in [83]). Local coherency
constraints were added on all existing deformable convolutions layers. For the
fusion module, we used a spatial kernel with size 3 and stride 1; and temporal
kernel with size 4 and stride 2. We also used pooling with size 2 and stride 2 in
3D max pooling. Temporal dimension was collapsed by averaging. The network
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ended with two fully connected layers. Standard cross-entropy loss with weight
regularization was used to optimize the model. After training, LCDC features
(last fc layer) were extracted and incorporated into long-temporal models. All
data cross-validation splits followed the settings of [5]. Frames were resized to
224x224 and augmented using random cropping and mean removal. Each video
snippet contained 16 frames after sampling. For training, we downsampled to 6fps
on 50 Salads and 15 fps on GTEA, because of different motion speeds, to make
sure one video snippet contained enough information to describe motion. For
testing, features were downsampled with the same frame rates as other papers for
comparison. We used the common Momentum optimizer [91] (with momentum of
0.9) and followed the standard procedure of hyper-parameter search. Each training
routine consisted of 30 epochs; learning rate was initialized as 10−4 and decayed
every 10 epochs with a decaying rate of 0.96.

4.4.2 Datasets

We evaluate our approach on two standard datasets, namely, 50 Salads dataset and
GTEA dataset.
50 Salads Dataset [6]: This dataset contains 50 salad making videos from mul-
tiple sensors. We only used RGB videos in our work. Each video lasts from 5-10
minutes, containing multiple action instances. We report results for mid (17 action
classes) and eval granularity level (9 action classes) to be consistent with results
reported in [5, 4, 82].
Georgia Tech Egocentric Activities (GTEA) [7]: This dataset contains 28 videos
of 7 action classes, performed by 4 subjects. The camera in this dataset is head-
mounted, thus introducing more motion instability. Each video is about 1 minute
long and has around 19 different actions on average.

4.4.3 Baselines

We compare LCDC with several baselines including (1) methods which do not
involve long-temporal modeling where comparison is at spatiotemporal feature
level (SpatialCNN) and (2) methods with long-temporal modeling (ST-CNN, Di-
latedTCN, and ED-TCN).
SpatialCNN [4]: a VGG-like model that learns both spatial and short-term tem-
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poral information by stacking an RGB frame with the corresponding MHI (the
difference between frames over a short period of time). MHI is used for both 50
Salads and GTEA datasets instead of optical flow as optical flow was observed to
suffer from small motion and data compression noise [5, 4]. SpatialCNN features
are also used as inputs for ST-CNN, DilatedTCN, ED-TCN, and TDRN.
ST-CNN [4], DilatedTCN [5], and ED-TCN [5]: are long-temporal modeling
frameworks. Long-term dependency was modeled using a 1D convolution layer
in ST-CNN, stacked dilated convolutions in DilatedTCN, and an encoder-decoder
with pooling and up-sampling in ED-TCN. All three frameworks were originally
proposed with SpatialCNN features as their input. We incorporated LCDC fea-
tures into these long-temporal models and compared with the original results.

We obtained the publicly available implementations of ST-CNN, DilatedTCN,
and ED-TCN from [92]. On incorporating LCDC features into these models, we
observed that training from scratch can become sensitive to random initialization.
This is likely because these long-temporal models have a low complexity (i.e.,
only a few layers) and the input features are not augmented. We ran each long-
temporal model (with LCDC features) five times and report means and standard
deviations over multiple metrics. For completeness, we have also included origi-
nal results from TDRN (where the input was SpatialCNN features as well) [82].
However, TDRN’s implementation was not publicly available so we were unable
to incorporate LCDC with TDRN.

4.4.4 Results

We benchmark our approach using three standard metrics reported in [5, 82]:
frame-wise accuracy, segmental edit score, and F1 score with overlapping of 10%
(F1@10). Since edit and F1 scores penalize over-segmentation, accuracy metric is
more suitable to evaluate the quality of short-term spatiotemporal features (Spa-
tialCNN and LCDC). All mentioned metrics are sufficient to assess the perfor-
mance of long-temporal models (ST-CNN, DilatedTCN, ED-TCN, and TDRN).
We have also specified inputs for spatial and short-term temporal components, as
well as the long-temporal model in each setup (Table 4.1 and Table 4.2).

Table 4.1 shows the results on 50 Salads dataset on both granularity levels.
Overall performance of LCDC setups, with long-temporal models, outperform
their counterparts. We highlight our LCDC + ED-TCN setups as they provided
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Figure 4.5: Comparison of segmentation results across different methods on two
test videos (one each for 50 Salads and GTEA dataset). SVM, ST-CNN,
DilatedTCN, and ED-TCN are original results with SpatialCNN features. LCDC
features are used in conjunction with ED-TCN long-temporal model in the last
row. Framewise accuracy is reported for each setup.
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ST-CNN

Dilated-TCN

ED-TCN

LCDC+
ED-TCN

Groundtruth
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88.8
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50 salads

(a) 50 Salads dataset (mid-level).
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(b) GTEA dataset.
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the most significant improvement over other baselines. Compared to the origi-
nal ED-TCN, which used SpatialCNN features, our approach increases by 5.75%,
7.14%, 7.42% on mid-level and 3.72%, 2.36%, 5.5% on eval-level, in terms of
F1@10, edit score, and accuracy. Table 4.2 shows the results on GTEA dataset
and is organized in a fashion similar to Table 4.1. We achieve the best perfor-
mance when incorporating LCDC features with ED-TCN framework out of the
three baselines. LCDC + ED-TCN also outperforms the original SpatialCNN +
ED-TCN on both reported metrics: improving by 3.19% and 1.34%, in terms of
F1@10 and accuracy.

We further show segmentation results of test videos from 50 Salads (on mid-
level granularity) (Fig. 4.5a) and GTEA datasets (Fig. 4.5b). In the figures, the
first row is the ground-truth segmentation. The next four rows are results from dif-
ferent long-temporal models using SpatialCNN features: SVM, ST-CNN, Dilat-
edTCN, and ED-TCN. All of these segmentation results are directly retrieved from
the provided features in [5], without any further training. The last row shows the
segmentation results of our LCDC + ED-TCN. Each row also comes with its re-
spective accuracy on the right. On 50 Salads dataset, Fig. 4.5a shows that LCDC +
ED-TCN achieves a 4.8% improvement over original ED-TCN. On GTEA dataset,
Fig. 4.5b shows a strong improvement of LCDC over ED-TCN, being 9.2% in
terms of accuracy. We also achieve a higher accuracy on the temporal boundaries,
i.e., the beginning and the end of an action instance is close to that of ground-truth.

4.4.5 Ablation study

We performed an ablation study (Table 4.3) on Split 1 and mid-level granularity
of 50 Salads dataset to compare LCDC with SpatialCNN and a two-stream frame-
work. For each setup (each row in the table), we show the inputs for spatial and
short-term temporal components, its fusion scheme, frame-wise accuracy, the to-
tal number of parameters of the model, and the number of parameters related to
deformable convolutions (wherever applicable). Since this experiment focuses on
comparing short-term features, accuracy metric is more suitable. We also report
whether a component requires single or multiple frames as input.

We evaluate on the following setups:

1. SpatialCNN: The features from [4] described in Sec. 4.4.3. Its inputs are
stacked RGB frame and MHI.
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2. NaiveAppear: Frame-wise class prediction using ResNet50 (no temporal
information involved in this setup).

3. NaiveTempAppear: Appearance stream from conventional two-stream frame-
works uses a single frame input and VGG backbone. Therefore, comparing
LCDC with the above is not straight-forward. We created an appearance
stream with multiple input frames and ResNet50 backbone for better com-
parison with LCDC. Temporal component was modeled by averaging fea-
ture frames (before feeding to two fc layers with ReLU). This model is the
same as NaiveAppear, except that we have multiple frames per video snip-
pet.

4. OptFlowMotion: Motion stream that models temporal component using
VGG-16 (with stacked dense optical flows as input). This is similar to the
motion component of conventional two-stream networks.

5. TwoStreamNet: The two-stream framework obtained by averaging scores
from NaiveTempAppear and OptFlowMotion. We follow the fusion scheme
used in conventional two-stream network [72].

6. DC: Receptive fields of deformable convolution network (with backbone
ResNet50) are used to model motion, but without local coherency con-
straint.

7. LCDC: The proposed LCDC model which additionally enforces local co-
herency constraint on receptive fields.

Compared to SpatialCNN, NaiveAppear has a higher accuracy because the Spa-

tialCNN features are extracted using VGG-like model while NaiveAppear uses
ResNet50. The accuracy is further improved by 3.07% by averaging multiple
feature frames in NaiveTempAppear. Notice that the number of parameters of
NaiveAppear and NaiveTempAppear are the same because the only difference is
the number of frames being used as input (averaging requires no parameters).
Accuracy from OptFlowMotion is lower than other models because the motion
in 50Salads is hard to capture using optical flow. This is consistent with the
observation in [5, 4] that optical flow is inefficient for the dataset. Combining
OptFlowMotion with NaiveTempAppear in TwoStreamNet slightly improves the
performance. However, the number of parameters is significantly increased be-
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cause of complexity of OptFlowMotion. This prevented us from having a larger
batch size or training the two streams together.

Both of our DC and LCDC frameworks, which model temporal components as
difference of receptive fields, outperform the two-stream approach TwoStreamNet

with significantly lower model complexities. DC, which directly uses adaptive
receptive fields from the original deformable convolution, increases the accuracy
to 72.25%. LCDC further improves accuracy to 73.77% and with even fewer
parameters. This complexity reduction is because LCDC uses fewer parameters
for deformation offsets. It means the extra parameters of DC are not necessary to
model spatiotemporal features, and thus can be removed. Moreover, if we consider
only the parameters related to deformable convolutions, DC would require 36x
more parameters than LCDC. The reduction of 36x matches our derivation in
Sec. 4.3.3, where Kh=Kw=3 and G=4. The number of reduced parameters is
proportional to the number of deformable convolution layers.

4.5 Conclusion

We introduced locally-consistent deformable convolution (LCDC) and created a
single-stream network that can jointly learn spatiotemporal features by exploiting
motion in adaptive receptive fields. The framework is significantly more com-
pact and can produce robust spatiotemporal features without using conventional
motion extraction methods, e.g., optical flow. LCDC features, when incorpo-
rated into several long-temporal networks, outperformed their original implemen-
tations. For future work, we plan to unify long-temporal modeling directly into
the framework.
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CHAPTER 5

ADAPTIVE SPATIOTEMPORAL
SAMPLING

5.1 Introduction

Our visual world is highly predictive, making it highly inefficient to process
each individual piece of data with the same amount of effort. To cope with
it, human perceptual system subconsciously pre-scans the scene to determine
important events before actual processing. This mechanism is known as pre-

attentive processing [93, 94, 95]. The pre-capturing images, although appear
to be less clear, help construct a more complete scene perception [96, 97]. Fur-
thermore, the human brain also focuses on certain regions within our foveal visual
field [96, 98, 99, 100]. These two behaviors are strikingly similar to the objective
of our temporal and spatial sampling, respectively.

Sampling has also been one of the most studied problems in various areas of
video analysis, such as action recognition and video summarization [101, 102,
103, 104, 105, 30], due to the redundancy between consecutive frames. With
the increase in model complexity, it gets progressively expensive to process a
single frame. This is even more crucial for resource-limited devices such as
AR/VR headsets, like Google Glasses, HoloLens, Occulus VR headsets, Vuzix,
etc. [106, 107, 108, 109]. However, picking a fixed sampling routine does not
guarantee the performance as important information may be under-sampled. Tem-
porally, it is evident that the number of frames required to represent a video vary,
depending on the action categories [110]. Therefore, an adaptive sampling rate
is preferred as over-sampling results in more computational cost while under-
sampling can make performance suffer. Similarly, spatial sampling is also nec-
essary in general computer vision tasks, which is applicable on individual frames
of a video sequence. It is preferred to have an adaptive sampling scheme as having
a fixed one also leads to similar problems as in time domain.

Motivated by the mechanism of human visual perception, we propose a novel
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Figure 5.1: Our proposed system has two major components, being temporal and
spatial sampling. Based on some pre-scanned features, the temporal sampler
decides whether to process the frame fully (top block), or skip to a frame and
propagate past information (bottom block). The spatial sampler in turns select
RoIs from high-res input to augment the features with low-res inputs. We also
include features from other modalities when a frame is not skipped.

adaptive spatiotemporal sampling framework to imitate the human vision. Fig. 5.1
shows an overview of the entire system, with two main components that are built
upon the self-attention mechanism: (1) spatial sampler uses the observed attention
to sample regions of interest and (2) temporal sampler hallucinates attention in the
next frame to model future expectation.

The spatial sampler is motivated by human foveal vision. The idea is to only
focus on specific regions rather than the whole scene to save computation. It can
be seen that lower input sizes significantly reduce the computational complexity.
However, it also compromises the performance. To overcome this, we use input
at two different resolutions: low-res whole image with size of 112 and high-res
image crops with size of 64. The low-res images are processed as a whole for pre-
scanning process of temporal sampler and global feature extraction. For the high-
res input, we retrieve regions corresponding to the most “important” locations
based on the extracted attention and use them to augment the low-res image for
the visual recognition task. In our system, we use the low-res image of size 112
and top-k regions of size 64. Fig. 5.2 analyzes the computational complexity in
GFLOPS with respect to the spatial dimension of RGB images. We highlight
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Figure 5.2: Complexity of SAN19 with different input dimensions. The
horizontal axis shows the side N of an input with dimension 3×N ×N . We
highlight the values where N = 224, 112, 64, corresponding to our choices for
the size of high-res, low-res, and cropped high-res images.

the GFLOPS with size 224 (high-res baseline), compared with size 112 (low-res
input) and size 64 (cropped high-res regions).

The temporal sampler follows the concept of pre-attentive processing such that
it extracts attention by briefly pre-scanning a low-res input and decides whether to
further process the frame if something interesting happens. Since it is possible to
predict what would happen in the future [111, 112], we consider an event “interest-
ing” if it is drastically different from what is expected. The idea of using another
network for pre-scanning has been discussed in other work [103, 113], however
in our proposed approach, we split a backbone network into two halves and use
the first one to pre-scan instead of introducing an additional one. Fig. 5.3 shows
a complexity analysis on the same model in Fig. 5.2 with low-res input image.
Furthermore, we observe that two consecutive frames produce similar attention
at some certain intermediate layers, making it possible to pre-scan by forwarding
up to such layers. To model future expectation, we hallucinate future attention
and compare it with the observed one. When the hallucination matches the actual
attention, there is no unexpected event and the model simply uses the previous
classification results. Otherwise, the remaining processing routine is carried out
to compute new classification.

We demonstrate the effectiveness of our system on the egocentric action recog-
nition task on the large-scale EPIC-KITCHENS 2018 dataset [114]. Our system
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Figure 5.3: Accumulated complexity up to different layers of SAN19, where
input size is fixed as 3x112x112, corresponding to the low-res images in Fig. 5.2.
The horizontal axis shows the layer names of the model while the vertical axis
indicates the accumulated FLOPS up to that layer.

significantly reduces computational complexity compared to the baseline coun-
terpart, with a tolerable loss of accuracy. We also provide qualitative results to
reason the sampling results.

Contribution: (1) We present a novel adaptive spatiotemporal sampling scheme
for action recognition. It is built upon a temporal sampler that pre-scans the low-
res input to decide whether to skip processing by comparing the observed and
hallucinated attention and a spatial sampler that selects small high-res RoIs in-
duced by the attention map in pre-scanning process. (2) We showcase the system
on first-person videos where our model significantly reduces the computational
power with a small loss of accuracy.

5.2 Related Work

Action recognition. With the blooming of deep learning and computer vision, the
task of action recognition has evolved from the traditional two-stream networks
[115] to more advanced models, e.g., C3D, I3D, ResNet3D, R(2+1)D, TBN, and
LSTA [78, 76, 116, 117, 118, 119]. Such standard techniques often demand ex-
pensive computation, leading to the challenge of high power consumption [120],
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which is crucial for ego-centric action recognition using always-on wearable de-
vices, such as AR/VR glasses. Our adaptive spatiotemporal sampling scheme is
designed to address this problem.
Adaptive inference and sampling. Techniques to reduce the complexity of deep
networks can be divided into three sub-categories: ignoring layers in deep mod-
els, removing input regions, and skipping frames. [121] introduces a stochastic
method to drop layers during the training phase. SkipNet [122] and BlockDrop
[123] later propose to use reinforcement learning to dynamically drop layers for
both training and validation. In spatial domain, RS-Net [124] can decide which
resolution to switch to by sharing parameters among different image scales. Patch-
Drop [125], on the other hand, removes unimportant regions of input images via
reinforcement learning. For applications in the area of general video analysis,
it is more desirable to rely on time sampling. It has been shown that temporal
redundancy results in wasted computation, as some videos only require a single
frame to represent [110]. There have been attempts to process videos at multiple
frame rates as different actions can happen at different paces [126, 127]. Recently,
SC-Sampler [103] and ARNet [113] tackle temporal sampling by using additional
simple networks for pre-scanning the features. Our proposed approach addresses
all of these areas: using a sub-collection of layers to pre-scan and then sample the
inputs, by exploiting self-attention to spatially and temporally determine impor-
tant information.
Self-attention. In computer vision, gradient-based methods are usually used to
generate saliency maps, which can determine the regions where a trained model
considers “relevant” to the output [128, 129, 130, 131]. More recently, self-
attention is introduced in natural language processing community as a way to di-
rect the focus of deep nets [132]. Since the attention allows a model to focus more
on important regions, such self-attention mechanism has been attracting great in-
terest from the computer vision community [133, 134, 135]. Our approach uses
such attention as a driving mechanism to find the important regions and frames,
allowing spatiotemporal sampling adaptively.

5.3 Approach

Consider a video dataset D = {(vn,yn)}Nn=1, where vn is a video sequence and
yn is the corresponding groundtruth label. We assume that the video sequences
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Figure 5.4: Cumulative global attention addresses the sliding effects. The top
row is local attention associated with some neighboring footprints. The bottom
row shows the global attention aggregated from the local attentions. The sliding
effect in this example is similar to how to window kernel moves in convolution
(with stride of 1).

have the same length of T frames, i.e., vn = [x
(1)
n ,x

(2)
n , . . . ,x

(T )
n ], where each

frame is x
(t)
n ∈ R3×H×W ,∀t ∈ {1, .., T}. Suppose that we have a video classifier

F (vn) = ŷn, with some complexityOF . The goal is to construct another classifier
F̃ with less complexity while retaining the accuracy. We address this by introduc-
ing the temporal sampler T and spatial sampler S , i.e., ŷn = F̃ (xn; T ,S), such
that OF̃ < OF . At a high level, the spatial sampler chooses the top-k regions
based on the most activated areas in the attention map. The temporal sampler de-
cides whether to skip frames, whose attentions are similar to the model’s future
prediction.

5.3.1 Cumulative global attention

Our cumulative global attention is built upon the pairwise attention formulation
of Zhao et al. [133]. This pairwise attention is written as

zi =
∑
j∈R(i)

α(φ(xi), φ(xj))� β(φ(xj)), (5.1)
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where i, j ∈ R2 are the spatial indices, φ(x) is the input feature map of a layer,
and z is the output. The compatibility function α(φ(xi), φ(xj)) is locally defined
over the footprint R(i) before combining with the projection β(φ(xj)). We then
denote the local attention at i as

ai = [α(φ(xi), φ(xj))] , ∀j ∈ R(i). (5.2)

Learning to generate such attentions is difficult because we also need to model
the underlying relationship of neighboring footprints. However, it is simpler to
generate a global attention map where the footprints are already encoded. Thus,
we use the cumulative global attention, defined as

A =
∑
i

ai ⊗ 1{R(i)}, (5.3)

where 1{R(i)} is the indicator function that removes locations outside of footprint
R(i) and ⊗ is the multiplication of ai with the corresponding footprint. Notice
that ai has the same spatial dimension as R(i), while A has the same spatial
dimension as the input feature map φ(x).

We know that each local attention ai is defined with respect to the footprint
Ri, as shown in Eq. 5.2. The locations of neighboring footprints here are similar
result in overlapping regions similar to the concept of moving the kernel window
in convolution. Such overlapping causes the sliding effect, which is observed
in neighboring ai in Fig. 5.5. Therefore, we can construct a global view of the
attention by aggregating the local attention similarly to convolution to remove
such sliding effect, as seen in Fig. 5.4. This method creates duplication over the
overlapping regions, i.e.,

A∗ = A�M, (5.4)

where A is the cumulative global attention defined in Eq. 5.3, A∗ is the clean
global attention without overlapping, andM is the mask counting such duplica-
tion. However, we see that the counter maskM is a constant defined by the size
of A and a. Therefore, using A instead of A∗ does not affect the quality of our
hallucinator.

Fig. 5.5 shows an example of the cumulative global attention (Fig. 5.5b), ag-
gregated from the local attentions across multiple footprints (Fig. 5.5c), given the
same input (Fig. 5.5a). We see that the neighboring ai have some sliding effect
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(a) Input image (b) Local attentions ai from different footprintRi (c) Cumulative
global attention
A

Figure 5.5: Local attention and cumulative global attention from the same input
image and at the same layer. Hotter color indicates more salient regions. We
average across the channel dimension for visualization.

because of how we move the footprints, similar to convolution. Such effect is al-
ready encoded in A, making it easier to learn. Specifically, the activation of A

reflects the “important regions” in the input images, being the hands and the bowl
(top-left corner). It motivates to use such global attention maps to find ROIs in
our spatial sampler. For simplicity, unless stated otherwise we use “attention” to
denote the cumulative global attention in the remaining sections.

5.3.2 Spatial sampler

The goal of the spatial sampler is to provide both global and local views of the
input image, where the global view has the low-res view of the image and the
local view has original high-res image crops. Formally, given input x ∈ R3×H×W ,
we define the corresponding low and high-res inputs xl ∈ R3×H

d
×W
d and xh,k ∈
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Figure 5.6: Spatial sampler uses attention from low-res image to sample the
top-k regions from the (original) high-res input. xl gives a global view, while
xh,k provides local views at important regions of the original image x. The
global average pooling at the end removes spatial dimension of the features,
which are combined and fed to the GRU classifier.

R3×H′×W ′ as

xl[:, i] = x[:, d ∗ i], (5.5)

xh,k = S(x; A, k) = x[:, tk : bk, lk : rk], (5.6)

where i ∈ R2 is the 2D spatial index, d ∈ R is the down-sampling factor, and S
is the spatial sampler that computes the top-left (tk, lk) and bottom-right (bk, rk)

corners of the bounding box corresponding to the top k-th region. Those regions
are constrained to have the same size, i.e., H ′ = bk− tk and W ′ = rk− lk. Giving
attention A, we find all connected regions and pick the k regions with highest
summation. We then linearly project those regions back to pixel space, based on
the scaling of spatial dimension between the input image x and the attention A.

Fig. 5.6 shows the details of the spatial sampler. We extract the attention from
the low-res image xl and use it to sample the top-k regions in the original image
x. This results in xh,k with lower spatial dimension, while retaining the original
resolution of x. As we use the same backbone network to process images of
different resolution, we add a global average pooling layer at the end of the feature
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Figure 5.7: Detail of the spatial sampler. The first row is the input RGB frames
and the second row is the corresponding attention maps. The third row shows the
masks of the top-3 regions, where each color denotes a different region. The
bottom row illustrates the sampled regions, corresponding to centroids of each
mask.

extractor to remove the spatial dimension. The features are then concatenated and
fed to the classifier. We constraint the scaling factor d and the bounding box size
H ′,W ′ such that the complexity of using xl and xh,k’s is less than that of x. Here,
we choose d = 2 andH ′ = W ′ = 64, based on our complexity analysis in Fig. 5.2.

Giving an attention from a input image, the sampler suppresses the low values
to retrieve the regions with high saliency. However, this could result in multiple
fragmented regions. To avoid this, we apply non-maximum supression (NMS)
to clean up the candidate regions. We then select the top-k regions based on
the its score, defined as sum of all pixels inside the region. Such score scales
according to both the values and the size of a region. The results of this procedure
is illustrated in the third row of Fig. 5.7. The centroids of such regions (in attention
plane) are projected by scaling to find the corresponding centroids in image plane.
The sampler then find the bounding boxes surrounding such centroids to generate
the regions of interest, as shown in the bottom row of Fig. 5.7. Furthermore, to
maintain consistent trajectories of the bounding boxes across frames, we reorder
them by using Dijkstra’s algorithm. Specifically, we find the box in frame t + 1

that is the closest to the query box in frame t, where the distance between two
arbitrary boxes is defined as L2 distance of the respective corners plus their size
difference.

In Fig. 5.8, we illustrate some example results of our spatial sampler, extract-
ing the top three regions in a few frames of a video sequence. The colors here
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Figure 5.8: Sampled regions from the top-3 spatial sampler. From top to bottom:
(1) input frames, (2) attention, and (3) bounding boxes in pixel space. Red, green,
and blue colors denote the top 1, 2, and 3 accordingly.

denote the order of the bounding boxes, based on the most activated regions in
the attention. It is observed that the sampled regions are not varying rapidly when
the activation are similar. This usually happens when the actions are occurring
slowly, suggesting that we can predict future attentions in such cases.

5.3.3 Hallucinator

Our hallucinator H is grounded on the notation of temporal consistency, i.e., the
attentions of consecutive frames A(t) and A(t+1) are similar if the action is slow
enough. Intuitively, the attention can reflect the important regions of input images
and is not expected to change drastically between consecutive frames. We use H
to predict future attention, from which the model can decide to skip future frames
if the prediction matches the observed pre-scanned features. The hallucinator H
is written as

Ã(t+1) = H(A(t)) s.t. Ã(t+1) ≈ A(t+1), (5.7)

where Ã(t+1) is the hallucination (predicted future attention). To quantify the sim-
ilarity between Ã(t+1) and A(t+1), we use the structural similarity index measure
(SSIM) [136] as this metrics can compare the structure of input tensors. We train
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Figure 5.9: Attention and corresponding hallucination of a video sequence. From
top to bottom: (1) input frames, (2) attention, and (3) hallucination. Negative
SSIM scores between the attention and hallucination are included at the bottom
(0 means most different and -1 means most similar). Activated regions of the
attentions and hallucinations match the movements of the hands across frames,
showing the temporal consistency property.

the hallucinator by minimizing our belief loss:

Lb = − 1

T − 1

T∑
t=2

SSIM(H(A(t−1)),A(t)), (5.8)

where the function SSIM() computes the structural similarity between the hallu-
cination H(A(t−1)) and the attention A(t). We minimize the negative SSIM score
since the default SSIM ranges from 0 to 1. Higher SSIM indicates more similarity.
We build the hallucinator as a convolutional LSTM [137] with encoder-decoder
layers and apply teacher forcing technique [138] for the training routine.

Fig. 5.9 shows an example of the hallucination from a video sequence, where
the first row is the input video sequence, the second row is the attention extracted
from a layer, and the last row is the hallucination, generated by our hallucinator.
There is a missing hallucination at the first frame because we are generating future
attention. It is observed that the most activated regions of the attention here are
located around the two hands. As the hands move in time, these regions also move
with a similar manner, in both the attention and hallucination. It suggests that
our hallucinator can predict where the important regions would be in the future.
We also provide the negative SSIM scores at the bottom to compare the structural
similarity between the attention and hallucination. Note that our objective here
is not to generate a perfect hallucination, but only to use it as a guideline for the
temporal sampler.
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Figure 5.10: Temporal sampler with inputs at t− 1 and t. Attention from the
model’s first half at time t, hallucination computed at time t− 1, and their SSIM
score are fed to a GRU to compute the sampling vector r(t), deciding how many
frames to skip (including the second half of the current frame). Model weights
are shared across frames.

5.3.4 Temporal sampler

Given a video sequence v = [x(1), . . . ,x(T )], the objective of the temporal sampler
is to adaptively select a subset of “important” frames that can still represent v.
A frame x(t) is considered as unimportant if we can reasonably predict its the
attention. From Sec. 5.3.1, we know that the attention and hallucination can be
retrieved at any arbitrary layer from a model ofL layers. Suppose that the attention
is extracted at layer λ < L, it is wasteful to compute the last L − λ layers if the
temporal sampler decides to skip this frame. In other words, we can forward a
frame up to layer λ and choose to run the rest of the model adaptively.

Formally, consider the feature extractor of a deep network of L layers as a com-
posite function, we can split it into two halves:

φL1 (x) = φLλ ◦ φλ1(x), (5.9)

where l is the layer where we want to split. We call φλ1 and φLλ the first and second
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half, respectively. φλ1 is used for pre-scanning while φLλ can also be augmented
with information from other modalities for the classification task later. The tem-
poral sampler T determines the sampling routine by computing a sampling vector
r = [r(1), . . . , r(T )], i.e., T (v) = [x(t) × r(t)]Tt=1, with

r(t) ∈ {0, 1}M+1 s.t.
M∑
m=0

r(t)[m] = 1,∀t, (5.10)

whereM is the maximum number of frames to skip. Fig. 5.10 shows the details of
the temporal sampler. At time t, the attention A(t) is extracted using the first half
of the feature extractor φλ1 . It is flattened and concatenated with the hallucination
and the corresponding SSIM score, and then fed to a GRU. The output features
are fed to a Gumbel Softmax layer [139] to produce differentiable sampling vector
r(t).

Let m∗ = argmaxm r(t)[m], indicating how many frames we can skip ahead,
there are two possible scenarios: m∗ = 0 and m∗ ∈ [1,M ]. In the first case,
we do not skip anything and continue to run the remaining part of the network,
thus the complexity is that of the full pipeline Ofull. In the second case, we only
pre-scan the current frame, which has already been done, and skip computation
on the next m∗ − 1 frames. The classification results and memory from recurrent
models are propagated accordingly. The complexity for thesem∗ frames isOpre =

Oφλ1 +OH +OT . Note that Ofull = Opre +Orest, where Orest is the complexity
of running the rest of the pipeline, including spatial sampler, other modalities, and
classifier. Under such policy, we train the temporal sampler by minimizing the
efficiency loss Le, which is recursively defined as

(Le, t)←

(Le +Ofull, t+ 1), m∗ = 0

(Le +Opre, t+m∗), otherwise
. (5.11)

Without any constraints, it is possible that no frame would be fed to the second half
of the pipeline, i.e., argmaxm r(t)[m] 6= 0,∀t. To avoid such scenario, we include
a warm-up step, where the full pipeline is run at the first frame. It also helps
initialize memory for recurrent models and ensures that we have classification
result for at least one frame. This, however, is not necessary for Le since we are
only adding a constant.
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5.4 Experiments

We evaluate our system on the large-scale video dataset EPIC-KITCHENS 2018
[114], following the training and validation splits of [118]. This is an egocentric
dataset with 55 hours of full-HD, 60fps videos, where the actions are recorded
in the kitchen environments. Each video sequence is associated with a verb (125
classes) and a noun (331 classes) label. The label of an action is thus defined as
a pair of the corresponding verb and noun labels, e.g., [cut, squash] and [open,
container].

We use two modalities of inputs in all of our experiments, namely RGB and
Spectrogram, corresponding to the vision and audio domains. Although the opti-
cal flow is provided as a part of the dataset, we avoid using it because such source
of data is computationally expensive in real-life scenarios. We treat RGB inputs
as the guiding modality of the system because our hallucinator and samplers rely
on the attention from vision data. The spectrogram inputs act as the additional
source of information and are only used when a frame is not skipped by the tem-
poral sampler.

We benchmark our system with top-1 and top-5 accuracy, corresponding to
the three domains: action, verb, and noun. To assess the system’s efficiency, we
further report the models’ FLOPS per frame, which is proportional to inference
time and power consumption. Since the model complexity is time-variant for the
experiments with temporal sampler, we instead provide the accumulated FLOPS
over the whole validation set and the average FLOPS per frame, which is the mean
complexity with respect to skipped, pre-scanned, and non-skipped frames.

5.4.1 Implementation details

Our system uses SAN19 with pairwise self-attention (equivalent to ResNet50
[133]) as the backbone network to extract features. The Spectrogram (256x256)
is constructed from the audio channels using the same processing procedure as in
[118]. We choose to extract attention at layer3-0 of the backbone network because
it shows good trade-off between complexity and performance in our experiments.
This gives us the attention feature map with the dimensionality of 32x7x7. Please
refer to the supplement for additional analysis of picking layer 3-0 over others for
the attention extraction.

The hallucinator is a conv LSTM with 1 layer and 32 hidden dimensions. It is
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equipped with a encoder and a decoder, each is a 2D conv layer with kernel of
size 3x3 and 32 channels. The action classifier used with our spatial and temporal
sampler is a three-head GRU, corresponding to the global features (low-res RGB
and Spectrogram), local features (cropped high-res RGB and Spectrogram), and
their concatenation to the master GRU head. The goal of the multi-head architec-
ture is to ensure the network extract prominent features from the cropped regions
rather than relying solely on the low-res image. Each head of the GRU classifier
and our GRU temporal sampler share the same architecture of 2 layers and 1024
hidden dimension.

The whole system is trained in multiple phases. We first train the two feature
extraction modules with FC classifier, corresponding to the low-res and high-res
inputs. We sample three frames per video sequence and train the models with the
standard cross-entropy loss for 100 epochs, using SGD with momentum of 0.9
[91], with decaying at epochs 30, 60, and 90. The weights of feature extraction
modules are frozen and used for other models. The hallucinator is then trained
using the belief loss Lb in Eq. 5.8 with teacher forcing routine [138]. For the
spatial sampler with three-head classifier, the predictions on all heads are averaged
and the model is trained using the lossLclass =

∑3
h=1 θhLh, whereLh is the cross-

entropy loss of a head and θh is the corresponding scaling. The temporal sampler
is jointly trained with the pretrained three-head classifier and the spatial sampler,
using the total loss Lclass + θeLe, where Le is the efficiency loss described in
Eq. 5.11 with the corresponding scaling θe. In the experiments, we sample ten
frames per video and train the models for 50 epochs using Adam optimizer [140],
with decaying at epoch 20 and 40.

5.4.2 Qualitative results

We demonstrate our qualitative results in Fig. 5.11 to show the outputs of both
spatial and temporal samplers. The frames are uniformly sampled from the val-
idation videos. We use “red” and “green’ color to highlight whether we run the
full inference or simply pre-scan a certain frame. The remaining frames are the
skipped ones without any computation. The spatial sampler only runs on non-
skipped frames to enrich data, therefore the cropped regions are only available
on “red” frames. Our spatial sampler here is set up to retrieve the top three re-
gions based on the attention, however some frames are shown to produce only two
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sampled areas because of overlapping.
Overall, the temporal sampler can adaptively sample the frames. The number

of “red” frames is significantly fewer than the original video length and can com-
pactly describe the complete action. In Fig. 5.11a, the action cutting squash is a
simple example since it can be easily represented using a single frame. We see
that aside from the warming up first frame, the temporal sampler here only pre-
scans three frames and skip the rest of them. The action of putting down a squash
in Fig. 5.11b is another interesting example, where the first and last frame are se-
lected, corresponding to when the actor is holding the squash in hand and placing
it on the chopping board. These two sampled frames concisely represent the ac-
tion putting down is reality. A similar example is illustrated in Fig. 5.11c, where
the actor is putting down a chopping board. Fig. 5.11d depicts a more challenging
video sequence of opening a container, as the background is not informative and
the container are not opened until the final frame. This results in more pre-scanned
frames and they appear to be closer than in other sequences.

5.4.3 Quantitative results

Table 5.1 shows quantitative results of the spatial sampler. The first two rows are
TBN and SAN19-baseline with FC classifier, both use high-res RGB (224x224)
and Spectrogram (256x256). Since TBN relies Inception backbone, its model
complexity is not directly comparable with our experiments, with use SAN19
backbone. However, our baseline model provides comparable accuracy. Since
the main objective of the paper is to increase efficiency of a given model, we
focus on comparing performance and complexity with the baseline SAN19.

The rest of Table 5.1 shows our results of the spatial sampler with GRU clas-
sifier, using the low-res RGB (112x112), cropped high-res RGB (64x64), and the
same Spectrogram inputs. We denote Sk as our spatial sampler with top-k RoIs,
where S0 means no spatial sampling involved. It can be seen that by simply de-
creasing the image resolution, S0 can reduce the complexity by 2.84 GFLOPS
with a small loss of 2.96% in accuracy. By adding the sampled regions from the
spatial sampler S1, S2, and S3, the accuracy is improved in general. We achieve
the best performance with S2 across our spatial sampling experiments. This gets
close to the performance of the baseline, with 1.41% accuracy different but still
can save 2.16 GFLOPS of computation. Furthermore, the efficiency trade-off of
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S2 is lower, showing that the model with spatial sampler is more efficient in terms
of average GFLOPS per accuracy.

Table 5.2 shows our ablation experiment to verify the contribution of the multi-
head classifier (Sec. 5.4.1) and bounding boxes processing (Sec. 5.3.2) on the
performance of all three spatial samplers S1, S2, and S3. Note that S0 means
no spatial sampling, so these two techniques are not applicable. The experiment
shows that multi-head classifiers can consistently improve the performance in all
models with a negligible increase of complexity (around 0.05 GFLOPS on aver-
age), as each different head of the classifier is only a small GRU. The bounding
boxes processing, consisting of non-maximum suppression and reordering of the
boxes over time, further increases the accuracy on S1 and S2. It should be noticed
that only NMS is applicable on S1 since there is only one bounding box at each
frame, making reordering obsolete. On S3, applying such processing techniques
does not enhance the performance. Giving that the bounding boxes correspond to
the most salient regions in attention maps, we believe the locations of less salient
regions are not as consistent across frames as the more salient ones. Therefore,
having too many bounding boxes can make it more difficult to reorder them, thus
results in lower accuracy, as seen in the last two rows of Table 5.2. We conjecture
that using more sophisticated tracking techniques may help with the reordering;
however, it is outside the scope of this work and will be investigated more in
future work. We use both multi-head classifier and bounding boxes processing
techniques for consistent comparison across experiments since they provide the
best accuracy overall.

Table 5.3 shows our results with both spatial and temporal samplers. For better
comparison, we include the results of S0 from Table 5.1 with its accumulated
TFLOPS over the whole validation set. Notice that the number of skipped and
pre-scanned frames are both zero for S0 because there is no temporal sampling
in this case. We also observe no skipping frames in T1 because this model only
allows either pre-scanning or running the full pipeline. Each block in the table
shows the results for a different temporal sampler TM , where M determines the
sampling range, i.e., the maximum number of frames to skip.

In general, the temporal samplers significantly reduce the average GFLOPS
compared to S0, which is also scalable in terms of total TFLOPS. As the sampling
range gets wider from T1 to T4, we can save more complexity while the accuracy
gets more compromised. Furthermore, the speeding up factor is proportional to
the sampling range M . We achieve the best accuracy with S3, T1, 0.5% lower than
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S0 with 1.77x speed-up. On the other hand, S0, T4 has the highest speed-up of
4.01x but loses 5.71% of accuracy. However, this model also provides the lowest
trade-off factor between accuracy and speed-up. We see that the effect of using
spatial sampler to compensate for the loss of accuracy is the most significant for
T1, where more RoIs consistently result in higher top-1 accuracy. More RoIs also
improves the speed-up factor of T1, compared against the corresponding spatial
sampler counterparts. More interestingly, we observe that the percentage of pre-
scanning frames has a low variance of 0.14% regardless of the sampling range,
while the amount of skipping frames increases when the such range raises. This
behavior suggests that our temporal sampler knows how to compare the attention
of frame t with the hallucination from frame t − 1, thus knows which frames
only need to be pre-scanned. However, it is more challenging for the sampler to
predict how many frames ahead to skip. We believe this happens because our
hallucination is only predicted for only one future frame and will explore multi-
frame hallucination in future work.

5.5 Conclusion

We introduce an attention-based spatiotemporal sampling scheme to adaptively
and contextually sample video sequences for efficient action recognition. Spatial
sampler provides a global view at a low-res and local salient views at high-res.
Temporal sampler pre-scans using the first few layers of a deep network and de-
cides the sampling strategy by comparing the current attention with the generated
hallucination from the past. Our system significantly reduces the complexity of a
given deep model with a tolerable loss in accuracy. Future exploration includes
exploiting different approaches for reordering bounding boxes in spatial sampler
and multi-frame hallucination for temporal sampler.
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CHAPTER 6

CONCLUSION

The thesis introduces four methods to improve the efficiency in deep networks that
use temporal information from different angles. We first study the application of
mixed bandwidth for speech recognition. We then switch to the computer vision
domain via the task of auto-curation for sports highlights. After that, we look
at the problem from a more abstract level by modeling motion in feature space.
Finally, we propose an adaptive spatiotemporal sampling technique by imitating
the human’s visual perception mechanism.

The first project looks at an application for 1D temporal information, i.e., speech
recognition. Giving audio signals in WB and NB, it is more efficient to have a
single ASR model that can decode both bandwidths instead of deploying separate
models for different bandwidths. We train our BWE model discriminatively, as
the groundtruth mapping between bandwidths is unavailable. In our investigated
case, the best mixed-band model yields lower average WER than the NB baseline
and only slight degradation over the WB baseline.

The second project switches the domain of applications to video sequences. The
main objective here is to quantify the excitement level of video snippets to produce
highlight videos from the most exciting fragments. Since the abundant amount of
data makes it inefficient to process every single frame, we decide to recognize
the celebrating action at an extremely low frame rate of 1fps and compensate for
the performance by combining with other modalities, i.e., the crowd cheering and
facial expression. We demonstrate the system to create highlight videos at a golf
tournament and two tennis tournaments.

The third project focuses on modeling by formulating motion in feature space.
The traditional approach of using optical flow in pixel space often requires an
additional stream of inference. Our method enhances the efficiency of spatiotem-
poral feature extraction models by inducing the temporal feature directly from the
feature space, thus eliminating having a second network for motion information.
We evaluate our approach using fine-grained action detection problems, where
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time is more sensitive than spatial information. Our experiments show that the
proposed spatiotemporal features outperform the standard optical flow approach.

The final project aims to model a spatiotemporal sampling scheme for video
sequences. Since consecutive frames contain similar information, it is efficient
to select only essential frames and regions to process instead of inferencing every
single frame. Our approach is inspired by the concepts of pre-attentive processing
and foveal vision from the human visual mechanism. Specifically, we only pro-
cess unexpected events, which are different from the future prediction, and focus
more on the regions with high saliency. From our experiments, the system can
significantly reduce the complexity with a slight loss of performance.

This work shows great potential for learning efficient temporal information in
deep neural networks. Going from 1D to 2D signals and from application to mod-
eling approaches, we see that clever use of time sequences allows a reduction in
model complexity. For future work, we target to exploit the availability of static
features in an environment, such as the sound, locations, and other physical at-
tributes of landmark objects. Such information carries valuable prior knowledge
that helps to narrow the search space for deep neural networks.
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