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Abstract

The core problem of condensed matter physics is the understanding of how diverse macroscopic

quantum phenomenon can emerge from a basic set of constituent particles and their interactions.

Fortunately, quantum mechanics provides a universal bridge between the microscopic electrons and

macroscopic quantum phenomenon via the ab initio Hamiltonian and Hilbert space. The eigenstates

and eigenenergies of the ab initio Hamiltonian exactly correspond to the excited states and energies

of a given material, and can be used to compute physical observables like conductivity, optical gaps,

and magnetization.

However, computing the eigenstates and eigenspectrum of the ab initio Hamiltonian through

brute force methods is generally computationally intractable, except in special cases of small

molecules like H2. Instead, approximate methods have been developed and used to great success in

accurately computing the eigenspectrum and eigenstates of the ab initio Hamiltonian, falling under

the categories of first principles methods and effective model Hamiltonians. While both first prin-

ciples methods and effective model Hamiltonians have been used to accurately compute properties

of real materials, significant avenues of research still remain. The biggest avenue for discovery is

first principles excited states methods, with accurate ground state techniques like quantum Monte

Carlo lacking a mature excited state counterpart. Accompanying this large avenue for change is

the constant need for adaptation and development of methods to keep up with the rapid rate of

novel materials discoveries. The construction of interacting effective Hamiltonians from ab initio

calculations is the predominant challenge in the effective model approach.

To this end, my thesis has been oriented around advancing the state of the art in first principles

excited state computation and effective models with lattice effects. First, I present my work on
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investigating a new trial wave function for use in quantum Monte Carlo (QMC). The new non-

orthogonal determinant wave function expands the possibilities of accurate QMC calculations, as

the quality of the trial wave function is a primarily limiting factor of accuracy in QMC calculations.

Next, I present my work on developing a stable statistical estimate for gradients used in QMC

wave function optimization. This efficient method is simple to integrate into existing QMC codes,

and improves the efficiency of QMC wave function optimization, an integral component of QMC

calculations. Following that, I present my work on creating a novel method for computing excited

states in QMC. The novel method addresses short comings of state-of-the-art QMC methods by

allowing for state specific optimization with high accuracy and computational efficiency. I conclude

by demonstrating my work building a tight-binding model for twisted bilayer graphene with lattice

interactions from density functional theory (DFT). The work provided a pipeline for developing

accurate DFT models with electron-lattice interaction, and demonstrated the importance of these

interactions in the quantitative and qualitative description of the flat bands in magic angle TBLG.

My work demonstrates the power of ab initio techniques in accurately computing excitations and

eigenstates of complex quantum systems, and provides a concrete stepping stone towards the ad-

vancement of accurate and efficient first principles methods and effective model Hamiltonians.
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Chapter 1

Introduction

1.1 The many-body problem of condensed matter physics

The core problem of condensed matter physics is the understanding of how diverse macroscopic

quantum phenomenon can emerge from a basic set of constituent particles and their interactions.

The particles are the electrons and nuclei which compose a particular material, and the interactions

are the bare Coulomb interaction between these charged particles. While all condensed matter

systems are composed of these same constituents, the variety of macroscopic properties of materials

is tremendous. For example, systems can be metallic or insulating, with additional qualifiers like

band metal, bad metal, strange metal, semimetal, band insulator, Mott insulator, and charge

transfer insulator providing more detailed descriptions of the properties of these materials. More

exotic magnetic, superconducting, and topological materials also exist, which too have additional

refinement based on the details of the system like antiferromagnets, ferromagnets, paramagnets,

conventional superconductors, unconventional superconductors and heavy fermion superconductors.

Fortunately, quantum mechanics provides a universal bridge between the microscopic electrons

and macroscopic quantum phenomenon via the ab initio Hamiltonian and Hilbert space [7]. The

non-relativistic ab initio Hamiltonian takes the following form for all systems

Ĥab = T̂ + V̂ = −1

2

N∑
i=1

∇2
i +

N∑
i<j=1

1

|~ri − ~rj |
+

Nion∑
I<J=1

ZIZJ

|~RI − ~RJ |
−

N∑
i=1

Nion∑
J=1

ZJ

|~ri − ~RJ |
(1.1)

where ~ri refer to the electron coordinates, ~RI the ionic coordinates, ZJ the ionic charge of ion

J , and N, Nion are the number of electrons and ions in the system. The fundamental constants
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h̄ = me = e = 4πε0 = 1 — reduced Planck’s constant, electron rest mass, elementary charge, and

electric constant — are set to unity, with Hartree (Ha) as the unit of energy. This Hamiltonian con-

tains explicitly the microscopic degrees of freedom for the electrons and ions and the 1/r Coulomb

interactions between them. The ab initio Hilbert space, H, consists of all anti-symmetric N par-

ticle wave functions. Solving the eigenvalue problem ĤabΨ = EΨ over H will yield many-body

eigenstates and spectra which can then be used to compute ground and excited state properties

system such as gaps, magnetic order, and electrical conductivity.

However, computing the eigenstates and eigenspectrum of Ĥab through brute force methods is

generally computationally intractable, except in special cases of small molecules like H2. This is best

understood by looking at the size of H, which is estimated to be 1042 [8] for accurate computation

of spectra for the copper-oxide molecule - one copper and one oxygen atom. The brute force

approach of exact diagonalization (ED), where the entire 1042 × 1042 matrix is constructed and

explicitly diagonalized, is a task beyond what any modern computer can accomplish. To make

matters worse, H scales exponentially with system size, so ED for solids is even more intractable

than the already incredulous task for the copper-oxide molecule. Approximate methods, however,

have been developed and used to great success in accurately computing the eigenspectrum and

eigenstates of Ĥab. Following is a discussion of two powerful classes of approximate methods: first

principles methods and model Hamiltonians.

1.2 First principles methods and model Hamiltonians

1.2.1 State-of-the art

First principles methods are a class of techniques which approximately solve for the eigenstates

of Eq 1.1, trading off accuracy for computational efficiency. Density functional theory (DFT) is

a commonly used first principles method which uses a mean-field approximation to simplify the

many-body Coulomb interactions in Eq 1.1. This approach is extremely efficient, being able to

compute ground state properties for simulations with tens of thousands of atoms [9, 10, 11, 12, 13],

but has poor accuracy when dealing with transition metal, magnetic, and superconducting systems
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[8, 14, 15]. Quantum Monte Carlo (QMC) is a more accurate, and more expensive, approach

than DFT which does not make a mean-field approximation, instead opting to work with explicit

many-body ansatzes for the ground and excited state wave functions. As such, QMC methods can

accurately describe the ground states of transition metal, magnetic, and superconducting systems

[16, 17, 18, 19, 20, 21] up to a few hundred atoms. Filling out the rest of the accuracy/cost spectrum

are a host of other first principles methods from the inexpensive Hartree-Fock, to the near exact but

computationally demanding full- and semi-stochastic heat-bath configuration interaction methods

(FCI, SHCI).

The effective model approach to the computational challenge of computing the eigenstates and

spectra of Eq 1.1 works by constructing a simpler effective Hamiltonian and Hilbert space that

replace Ĥab,H and can be more easily solved. A canonical example is the DFT band theory

approach, where the ab initio Hamiltonian is replaced by an effective non-interacting Hamiltonian

computed using DFT. This approach simplifies computation as the non-interacting model can be

diagonalized with a simple Fourier transformation and yields accurate results for simple metals,

semiconductors, and band insulating systems [22, 23, 24, 25]. Methods like the constrainted random

phase approximation (cRPA) can be used to introduce effective interactions in model Hamiltonians,

and have been successful in describing correlated systems [26, 27].

1.2.2 Research Avenues

First principles methods, while a mature field, are constantly evolving and developing. The biggest

avenue for discovery is first principles excited states methods. While methods like time-dependent

DFT [28, 29, 30, 31, 32] have been developed and applied extensively to molecules and solids, excited

state analogues for the more accurate QMC and SHCI methods are still under heavy development

[33, 34, 35] with application generally restricted to molecules. An exciting prospect is the devel-

opment of first principles excited states methods across the accuracy/cost spectrum which can be

used to accurately and efficiently compute the eigenstates and eigenenergies from small molecules

up to solids.

Accompanying this large avenue for change is the constant need for adaptation and development
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of methods to keep up with the rapid rate of novel materials discoveries. A good case study is the

application of DFT to newly discovered layered van Der Waals materials like h-BN and WS2.

DFT computation on layered materials using state-of-the-art functionals with no van Der Waals

corrections yield extremely inaccurate results, with 20 - 30% overestimation of ground state inter-

layer spacings and upwards of 90% underestimation of between-layer bonding energies [36]. The

inaccuracy of state-of-the-art functionals spurred on the development of various density funtionals

with non-local van Der Waals corrections, such as vDW-DF [37] and vDW-DF2 [38], which describe

the inter-layer spacing and bonding energies within 10% [36]. This pattern of material discovery

and method development yields a ubiquitous arena for discovery and advancement in first principles

techniques.

The primary research direction for effective models is the accurate computation of effective inter-

actions like electron-electron and electron-lattice interactions. Effective interactions are fundamen-

tal to understanding real materials as many systems cannot be described accurately without them.

Systems which require effective interactions to accurately describe include, but are not limited to,

magnetic systems, superconducting systems, and systems with metal-insulating or structural phase

transitions. The aforementioned cRPA method can be used to compute effective interactions, but

has the drawback of being a piecewise approach: the effective interactions are treated on a separate

footing to the effective hopping terms, and must be carefully stitched together. A newer method

named density matrix downfolding (DMD) [39] approaches effective model building statistically and

can treat effective interactions and hoppings on equal footing, but has had sparse application to

real systems. As such, two avenues of research are evident: first, the continued development of new

methods for computing effective interactions which overcome the systematic drawbacks of current

techniques like cRPA, and second, the usage of new techniques on relevant and novel materials to

demonstrate their capabilities in accurately computing effective interactions.
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1.3 Thesis outline

My thesis work pushes forward our ability to accurately compute ground and excited states as well

as effective model Hamiltonians with interactions from first principles calculations. In particular,

I have worked on improving the accuracy and efficiency of QMC ground and excited state calcu-

lations, and using DFT calculations to develop a tight-binding effective Hamiltonian with lattice

interactions.

In Chapters 2 and 3, I present a review of the density functional theory (DFT) and quantum

Monte Carlo (QMC) methods which I have used extensively in this thesis. For DFT, the formal

theory of Hohenberg and Kohn is presented, as well as the practical formulation of most DFT codes

via the Kohn-Sham equations. For QMC, the variational and diffusion Monte Carlo methods are

presented both formally and with the practical formulation present in most QMC codes, with a

discussion of necessary error estimation and extrapolation. A discussion of the pros and cons of

these methods in practical calculations are also discussed.

In Chapter 4, I present my work on investigating a new trial wave function for use in quantum

Monte Carlo [40]. It is well known that the accuracy of QMC calculations is dependent on the

accuracy of the trial wave function ansatz used to represent the many-body ground state. A long

standing challenge has been the development of a trial wave function ansatz which can accurately

describe orbital relaxation, particularly in transition metal systems [41]. In this work I investigate

the benefit of using a multi-determinant trial wave function without requiring the determinants

to be orthogonal, a move away from the traditional approach where orthogonal determinants are

used, as a compact ansatz for describing orbital relaxation. I implemented and benchmarked this

new trial wave function on the C2 molecule, and found significant improvement over the orthogonal

multi-determinant wave functions.

In Chapter 5, I present my work on developing a stable statistical estimate for gradients used

in QMC wave function optimization. A key step in QMC calculations is optimizing the parameters

in a trial wave function ansatz to drive it as close to the exact ground state as possible. The

current methods for optimization are very efficient unless orbital optimization is required, as in the
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recurring case of transition metal systems. When orbital optimization is needed, current methods for

optimization require computing a gradient which has an infinite statistical error, yielding inefficient

optimization. I present the new stable gradient formalization, and compare it to state of the art

stable estimation techniques, finding that the new estimation technique has smaller statistical errors

than the state of the art, while requiring less computational baggage. As such, it stands as a light-

weight statistical estimate which is easy to implement in modern QMC codes. Our method has

even motivated further investigation and development of regularized estimation, as seen in a recent

study by van Rhijn et al. [42].

In Chapter 6, I present my work on creating a novel method for computing excited states in

quantum Monte Carlo. While quantum Monte Carlo methods are mature for computing ground

states, systematic excited state methods are an active area of development. In this work, I present

a new method which extends the simple ground state optimization approach in QMC to an con-

strained optimization for excited states. Benchmarking on the benzene molecule shows that the new

method is highly efficient and accurate, with our excitation energies agreeing with those measured

in experiment to 0.2 eV across twelve excited states. The study provides a simple, accurate, and

efficient method for computing excited states in QMC.

In Chapter 7, I demonstrate my work building a tight-binding model for twisted bilayer graphene

with lattice interactions from density functional theory. I used DFT calculations for various dis-

torted geometries of bilayer graphene to build a local, environment dependent, hopping model for

bilayer graphene. The model predicts the hoppings in bilayer graphene more accurately than the

state of the art methods, and also yields band structures which match DFT better than the state

of the art. From this model we discerned that a previously stated claim - that geometry relax-

ation is required to describe band flattening in twisted bilayer graphene - was incorrect, and that

with our accurate tight binding model band flattening occurs with even rigid geometries. By using

first principles methods to inform the model, the model I fit more accurately describes the lattice

dependence of hoppings than the state of the art ansatzes in use.

In Chapter 8, I summarize the results of the thesis and provide an outlook on their impact on

the field and future avenues of work. A condensed version of the thesis is present in Table 1.1.
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Chapter Goal My Contribution Publication
4 Improvement of trial

wave function quality
for QMC calculations.

Non-orthogonal determi-
nant multi-Slater Jas-
trow wave functions.

S. Pathak and L. K. Wagner ,
J. Chem. Phys. (2018) [40]

5 Improvement of QMC
wave function optimiza-
tion efficiency and stabil-
ity.

A stable gradient regu-
larization technique for
wave function optimiza-
tion.

S. Pathak and L. K. Wagner,
AIP Adv. (2020) [43]

6 Construct an accurate,
efficient, QMC excited
state technique.

A novel penalty-based
excited state method for
QMC.

S. Pathak, B. Busemeyer, J.
N.B. Rodrigues, L. K. Wagner,
J. Chem. Phys. (2021) [44]

7 Construct an accurate
lattice dependent tight-
binding model for bilayer
graphene.

A lattice dependent tight
binding model for bilayer
graphene using DFT.

Manuscript complete

Table 1.1: Summary of Thesis. The ”Goal” column refers to general questions that motivated the
projects in this thesis. ”My Contribution” refer to the contributions I have made towards each goal
in this Thesis, and the corresponding publications in ”Publication.”
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Chapter 2

Density functional theory

2.1 Hohenberg-Kohn theorems

DFT is an ab initio method which solves Eq 1.1 efficiently by mapping the eigenvalue problem for a

many-body wavefunction to a functional minimization problem with respect to the simpler electron

density. This is accomplished by inverting the following relationship between external potential

vext(~r), ground state wave function Ψ0, and ground state density ρ0(~r)

N, vext(~r)→ Ĥab → Ψ0(~r1, ..., ~rN )→ ρ0(~r), E0. (2.1)

The definitions and justification for this relationship follow. We define the external potential vext

by rearranging Eq 1.1 into its canonical form used in DFT

Ĥab =
[
− 1

2

∑
i

∇2
i

]
+
[∑
i<j

1

|~ri − ~rj |
]

+
[∑
I<J

ZIZJ

|~RI − ~RJ |
−
∑
iJ

ZJ

|~ri − ~RJ |

]
= T̂ + V̂ee + V̂ext

where T̂ is the electron kinetic energy, V̂ee is the electron-electron Coulomb interaction, and V̂ext is

the ionic contribution to the Coulomb energy. Noting that V̂ext is a sum of identical terms for each

electron i, we rewrite the ab initio Hamiltonian as such

Ĥab = (T̂ + V̂ee) +

N∑
i=1

vext(~ri).
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Now from the form of T̂ + V̂ee, it is clear that these two terms only depend on the number of

electrons in the system N . As such, the entire Ĥab depends only on two quantities: N , the total

number of electrons in the system and vext(~r), the single-electron external potential. Going a step

further, any derived quantities from Ĥab, such as the ground state wave function Ψ0(~r1, ..., ~rN ), the

ground state energy E0 and ground state electron density ρ0

E0 = 〈Ψ0|Ĥab|Ψ0〉, ρ0 = N

∫
d~r2, ..., d~rNΨ∗0(~r, ~r2, ..., ~rN )Ψ0(~r, ~r2, ..., ~rN ),

also only depend on N and vext. Therefore, the relationship in Eq 2.1 follows.

The inverse of Eq 2.1 is the backbone of DFT and was first proven by Hohenberg and Kohn [45]

through two theorems.

Theorem 1. The external potential vext(~r) is uniquely determined, up to an additive constant, by

the ground state electron density ρ0(~r).

Proof. We carry out a proof by contradiction. Assume that there are two Hamiltonians corre-

sponding to a system with N electrons, with different external potentials v and v′, v − v′ 6= const.

(and corresponding operators V̂ , V̂ ′) which have identical ground state densities ρ0(~r). Since the

Hamiltonians Ĥ, Ĥ ′ are not identical, the ground state wave functions must also be different, so

Ψ0 6= Ψ′0. By the variational principle of quantum mechanics

E0 = 〈Ψ0|Ĥ|Ψ0〉 < 〈Ψ′|Ĥ|Ψ′〉 = 〈Ψ′|Ĥ ′|Ψ′〉+ 〈Ψ′|Ĥ − Ĥ ′|Ψ′〉 = E′0 +

∫
d~rρ0(~r)(v(~r)− v′(~r)).

Inverting the primed and unprimed quantities and adding the resultant equation to the above,

we find the following final relationship E0 + E′0 < E0 + E′0, and our proof by contradiction is

complete.

It should be noted that this is a proof of uniqueness and not existence, meaning that for a given

arbitrary ρ it is not necessarily true that a corresponding v exists. However, if such a v were to

exist, that v would be unique and no other v′ (up to an added constant) could yield such a ρ. We

call the set of all ρ for which v exists ”v-representable.”
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Theorem 2. There is a density dependent energy functional for v-representable densities and the

exact ground state density is the global minimum of this functional.

Proof. Since v is a functional of ρ0, the ground state density, so is the ground state wave function

Ψ0 and any quantities that correspond to it, such as the energy. More explicitly, we see that

E0[ρ0] = 〈Ψ0[ρ0]|T̂ + V̂ee + V̂ |Ψ0[ρ0]〉 = FHK [ρ0] +

∫
d~rv[ρ0](~r)ρ0(~r)

where we have defined a universal functional FHK that does not depend on vext and can be used

for all different electronic systems. This is a subtle functional because if we compute FHK [ρ] for

an arbitrary v-representable density, we will actually be computing 〈Ψ0[ρ]|T̂ + V̂ee|Ψ0[ρ]〉, which is

the expectation value of the kinetic and electron-electron terms with ground state wave function

of the unique Hamiltonian which has ground state density ρ. We can generalize this functional by

allowing v to be a fixed potential which does not depend on the input density ρ, leading to the

Hohenberg-Kohn functional

Ev[ρ] = FHK [ρ] +

∫
d~rv(~r)ρ(~r), (2.2)

The Hohenberg-Kohn functional has a variational principle with respect to the density. Consider

a potential v and corresponding ground state density ρ0, as well as a second ground state density

ρ such that ρ 6= rho0. If we compute Ev[ρ], we will find that Ev[ρ] = 〈Ψ0[ρ]|T̂ + V̂ee + V̂ |Ψ0[ρ]〉.

Since we know that ρ 6= ρ0, then the corresponding Ψ0[ρ] 6= Ψ0[ρ0], and therefore by the standard

variational principle of quantum mechanics, Ev[ρ] ≥ Ev[ρ0].

The theorems of Hohenberg and Kohn allows us to recast the variational principle of standard

quantum mechanics, where the energy is variationally optimized with respect to a high dimensional

wave function that takes 3N inputs, to a simpler one where the energy is optimized with respect

to an electronic density which only takes 3 inputs. Further, they provide an explicit form for

the functional that one needs to optimize, the Hohenberg-Kohn functional in Eq 2.2 which has a

universal functional FHK that can be used for any system, and a simple system dependent term

which accounts for the external potential v. Unfortunately, while the form of Ev is provided, the
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form for the universal functional FHK is still unknown to this day, and the bulk of research in

density functional theory calculations has been the accurate and efficient approximation of this

functional.

2.2 Kohn-Sham equations

To address not knowing FHK , Kohn and Sham cleverly separated the terms in the FHK such

that the complex portions which account for electronic correlations and exchange were treated as

corrections to a simpler functional [46]. The separation they made was as follows

FHK [ρ] = Ts[ρ] +
1

2

∫
d~rd~r′

ρ(~r)ρ(~r′)

|~r − ~r′| + Exc[ρ] (2.3)

where Ts is the kinetic energy of a non-interacting electron gas with the given density, the second

term is the classical electrostatic energy, and the third term known as the ”exchange-correlation”

energy Exc = FHK − Ts − 1
2

∫
d~rd~r′ ρ(~r)ρ(~r

′)
|~r−~r′| is unknown and serves as a correction to two larger

terms. While this separation seems arbitrary, extensive benchmarking shows that indeed the bulk

of the electronic energy can be captured with just the first two terms and the exact exchange [47].

However, this does not mean that the interesting low-energy behavior is well described by just these

terms, as inaccurate treatement of the exchange correlation functional is one of the main reasons

DFT fails to describe strongly correlated systems well, as I discuss later.

With this separation in hand, one still must make a choice for an approximation to Exc before

any practical calculation can be done. The field of developing, testing, and benchmarking exchange-

correlation functionals is extensive, but for now I will introduce just two categories that are generally

used. The simplest form of Exc is the local density approximation (LDA) where Exc is defined as

a local integral of the density

ELDAxc =

∫
d~rεxc[n(~r)]n(~r).

This correlation functional yields reasonable results for solid state systems [45], but fails to describe

chemical properties like molecular binding energies accurately, with large errors up to 30kcal/mol
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[48, 49, 50]. To address this, the generalized gradient approximation (GGA) was developed where

Exc now includes the gradient of the density as well, allowing for more descriptive power

EGGAxc =

∫
d~rεxc[n(~r),∇n(~r)]n(~r).

The GGA functionals are efficient and address the shortcomings of LDA functionals, such as accu-

rately describing bond dissociations energies where the LDA functionals could not [49]. Even more

complex functionals do exist and are regularly used, such as Meta-GGA and hybrid functionals,

with the prior depending on the Kohn-Sham kinetic energy density, and the latter mixing in the

exact exchange operator with the GGA exchange correlation term.

The minimization procedure in DFT is simple and follows the same framework as the self-

consistent field theory (SCF). Beginning with the Kohn-Sham separated energy functional, we can

analytically minimize with respect to the density to get the Kohn-Sham equations

δEv
δρ(~r)

= 0→ (−1

2
∇2 + vext(~r) +

∫
d~r′

ρ(~r′)

|~r − ~r′| +
δExc[ρ]

δρ(~r)
)φ(~r) = εφ(~r). (2.4)

The solution to this problem is a single Slater determinant wave function composed of single particle

orbitals φ. The density ρ is the electronic density corresponding to this single Slater determinant.

The computation of the single particle orbitals can be done efficiently using the SCF technique where

an initial guess for the orbitals φ is decided, and the equation solved with the computed densities.

The solutions are then updated and the procedure repeated until the solutions have converged in

both energy ε and orbital φ. While nominally an N3 procedure in computational cost with respect

to the number of electrons, efficient approximations can yield linear scaling computational cost with

system size [9, 10, 11, 12, 13].

Practically, DFT is a highly efficient method which describes weakly correlated systems accu-

rately, but fails to describe strong correlations well. For example, recent DFT calculations have

exceeded 10,000 atoms [9, 10, 11, 12, 13] on calculations of large biological molecules and condensed

matter systems. On the other hand, DFT calculations still continue to fail when describing strongly
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correlated electronic systems. For example, in a recent study Williams et al. demonstrated quan-

titiatively the performance of DFT calculations when describing the total energies of transition

metal atoms and transition metal oxide molecules [8]. They found that across various DFT func-

tionals, the typical DFT calculation yielded anywhere between 50 - 90% of the exact correlation

energy across these transition metal systems. The study shows that DFT calculations on transi-

tion metal systems are generally inaccurate, but more importantly are very inconsistent, with huge

variations in accuracy across a set of similar materials. Compare this to a correlated method like

diffusion Monte Carlo, where the average accuracy was 90% of the total correlation energy with a

5% variation across materials, and the difference is night and day.
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Chapter 3

Quantum Monte Carlo

3.1 Variational Monte Carlo (VMC)

VMC is a numerical technique for approximating the ground state energy of a system which makes

use of the variational principle of quantum mechanics. Consider a given system with N particles

and ab initio Hamiltonian Ĥab. The variational principle states that for any given N particle (un-

normalized) trial wavefunction, ΨT (~r1, ..., ~rN ), an upper bound to the ground state energy can be

computed

〈ΨT |Ĥab|ΨT 〉
〈ΨT |ΨT 〉

≥ E0. (3.1)

As the approximate wave function ΨT gets closer to the exact ground state wave function Ψ0, the

upper bound becomes tighter and a better approximation to the ground state energy. Therefore, a

simple procedure for approximating the ground state energy of a system is to generate an accurate

trial wave functions and compute the energy expectation value. Unlike DFT, however, the variation

principle can work with explicitly correlated wave functions, leading to the high accuracy ceiling of

the method. The key premise of the VMC algorithm is the efficient computation of the expectation

values and trial wave functions necessary to make this theoretical framework a practically useful

tool.

To compute the energy expectation value in Eq 3.1 efficiently, VMC makes use of Monte Carlo

integration. The reason for this choice is the high dimensionality, 3N , of the expectation value

integral. If one were to compute this integral using Simpson’s rule for quadrature using M mesh

points, the error in the computed integral would scale as M−
4

3N , meaning that resolving errors
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for larger systems becomes exponentially more challenging [16]. Instead, one can take a statistical

approach by rewriting the integral in the following form

〈ΨT |Ĥab|ΨT 〉
〈ΨT |ΨT 〉

=

∫
d~R
|ΨT (~R)|2
〈ΨT |ΨT 〉

ĤabΨT

ΨT
(~R) ' 1

M

M∑
~Ri∼ρT ,i=1

ĤabΨT

ΨT
(~Ri), (3.2)

and statistically estimating the integral via the mean where ~R = (~r1, ..., ~rN ) and M samples ~Ri are

drawn from the 3N dimensional probability distribution ρT = |ΨT (~R)|2/〈ΨT |ΨT 〉. This estimate

has a statistical error which scales as 1/
√
M independent of the dimensionality N , allowing for an

efficient, scalable method for computing expectation values at the cost of a statistical error bar.

To compute an accurate trial wave function, one must begin with a parameterization of the

many-body trial wave function which can be used to approximate the true ground state. The

simplest form of the trial wave function, for fermionic systems, is the Slater determinant:

ΨS(~R) = A(φ1(~r1), ..., φN (~rN )) (3.3)

where A is the N -particle antisymmetrizing operator, and φi are single particle orbitals with spatial

and spin components, typically constructed from DFT or Hartree-Fock. This trial wave function

has a major flaw, however, which is that electrons of the opposite spin can have a high probability

of being arbitrarily close to each other, increasing the Coulomb repulsion energy between them

drastically, a feature which is disallowed for same spin electrons due to the explicit antisymmetry.

To address this, a Jastrow factor J is introduced [16, 51, 52], leading to the Slater-Jastrow wave

function

ΨSJ(~R) = eJ(~r1,...,~rN )ΨS(~r1, ..., ~rN ), J =

N∑
i=1

χ(~ri)−
1

2

N∑
i=1

N∑
j 6=i=1

u(~ri, ~rj). (3.4)

The repulsive u term in the Jastrow factor is to explicitly reduce the probability of electrons being

near each other and the χ term ensures the charge density distributions around nuclei is not too

disturbed by the introduction of u [16]. Other popular wave functions are basic extensions of the

Slater-Jastrow form and include the multi-Slater-Jastrow wavefunctions [53, 54, 55, 40, 43, 44]
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— where a multi-determinant wave function replaces the single slater determinant in Eq 3.4 —

and backflow wavefunctions [56, 57] — where the coordinates ~ri are transformed to the so called

quasiparticle coordinates.

Next, the parameters in the chosen trial wave function must be optimized. Typical parameters

optimized in VMC calculations are orbital parameters, the parameters that define φi from Eq 3.3,

the Jastrow parameters, the parameters that define χ, u in Eq 3.4, and determinant coefficients and

backflow parameters for the multi-Slater-Jastrow and backflow wavefunctions. Two broad classes of

methods exist for optimizing the parameters: energy minimization and variance minimization. The

energy minimization approach directly attempts to minimize the total energy expectation value of

the trial wave function with respect to the parameters, employing some form of gradient descent

using the energy gradients ∂E/∂pi with respect to the parameters pi computed using Monte Carlo

integration. Methods that use the energy minimization approach include stochastic reconfiguration

[58], Newton’s method and the linear method [59]. The other class of techniques are variance

minimization techniques, which attempt to minimize the variance of the energy expectation value

with respect to the parameters, and are generally much faster than energy minimization techniques

but suffer from numerical stability issues [60] and are less accurate than wave functions optimized

using energy minimization [61]. With the optimized wave function on hand, one can approximate

the ground state energy via Eq 3.2.

3.2 Diffusion Monte Carlo (DMC)

The ultimate goal of DMC is to efficiently compute the exact ground state energy via a mixed

estimation

〈Ψ0|Ĥab|ΨT 〉
〈Ψ0|ΨT 〉

= E0. (3.5)

Here ΨT is a trial wave function, typically taken from an optimized VMC calculation, Ψ0 is the

exact ground state wave function of Ĥab and E0 is the corresponding exact ground state energy.

This is a seemingly similar expectation value to Eq 3.1 used in VMC, with two key differences: Ψ0,

the exact ground state of Ĥab is involved, and the mixed estimate on the left exactly equals the
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ground state energy E0 independent of ΨT , rather than being an upper bound like in VMC. To

understand the statistical interpretation of the mixed estimator, we recast it following Eq 3.2

〈Ψ0|Ĥab|ΨT 〉
〈Ψ0|ΨT 〉

=

∫
d~R

ΨT (~R)Ψ0(~R)

〈ΨT |Ψ0〉
ĤabΨT (~R)

ΨT (~R)
' 1

M

M∑
~Ri∼ρDMC ,i=1

ĤabΨT

ΨT
(~Ri), (3.6)

where ρDMC ≡ ΨTΨ0

〈ΨT |Ψ0〉 . Now we understand a DMC computation as sampling M positions from

the mixed distribution ρDMC to estimate Eq 3.5 using the statistical form in Eq 3.6. Just like in

VMC, the resultant estimate of the integral has a statistical error which scales efficiently as 1/
√
M .

The only hangup in this process is access to ρDMC , as this distribution requires knowledge of the

exact ground state wave function Ψ0, which is generally unknown.

We use the method of projection to compute Ψ0, and subsequently ρDMC . Beginning with ΨT ,

we apply the following projection to get the exact ground state

|Ψ0〉 ∝ lim
τ→∞

e−Ĥabτ |ΨT 〉. (3.7)

This expression is exact, and will yield the exact ground state Ψ0 of the Hamiltonian Ĥab if the

trial wave function ΨT has a non-zero overlap with Ψ0. The proof follows

Proof. Begin by expanding ΨT into the exact eigenstates of Ĥab labelled Ψi and corresponding

eigenvalues Ei: |ΨT 〉 =
∑
i〈Ψi|ΨT 〉|Ψi〉. Apply the projection operator to this expansion

lim
τ→0

e−Hab |ΨT 〉 = lim
τ→0

e−E0τ
∑
i

e−(Ei−E0)τ 〈Ψi|ΨT 〉|Ψi〉 ∝ |Ψ0〉 if 〈Ψ0|ΨT 〉 6= 0

with the proportionality appearing as all terms other than Ψ0 in the summation are exponentially

supressed to zero as (Ei − E0) > 0∀ i > 0.

A small adjustment to the projection operation in Eq 3.7 provides a similar projective method

for computing ρDMC . We start by recasting Eq 3.7 to integral form

Ψ0(~R) ∝ lim
τ→∞

∫
d~R′g(~R← ~R′, τ)ΨT (~R′), g(~R← ~R′, τ) ≡ 〈~R|e−τĤab |~R′〉,
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where g is a Green function corresponding to the exponential projection oprator. Multiplying

the left and right hand sides by ΨT (~R) and inserting a unity factor of ΨT (~R′)/ΨT (~R′) inside the

integral, we get the following projection equation for ρDMC

ρDMC ∝ lim
τ→∞

∫
d~R′G(~R← ~R′, τ)|ΨT (~R′)|2, G(~R← ~R′, τ) ≡

[ ΨT (~R)

ΨT (~R′)
g(~R← ~R′, τ)

]
. (3.8)

As such, we compute ρDMC from the initial distribution |ΨT |2 by evolving it according to the Green

function G for a long time τ � 1.

DMC relies on a stochastic representation to efficiently compute the projection Eq 3.8. I will

begin by discussing the DMC procedure for bosonic solutions to Eq 1.1, and then generalize to the

fermionic problem that ultimately needs to be solved. First, the distribution |ΨT |2 is represented

as a sum of Dirac delta functions centered on points sampled from the normalized distribution

ρT = |ΨT |2/〈ΨT |ΨT 〉, referred to as walkers

|ΨT |2 ∼
∑
~Ri∼ρT

δ(~R− ~Ri).

This representation is passed into the projection operation Eq 3.8 to get the following expression

ρDMC(~R) ∼
∑
~Ri∼ρT

G(~R← ~R′, τ). (3.9)

Following the framework of stochastic processes [62], we understand the projection operation in

three steps: M walkers are sampled from |ΨT |2, they are moved forwards using the transition

probability Green functionG for a large value of τ , and the finalM walkers represent the distribution

ρDMC .

The Green function G, however, has no analytical form for the Hamiltonian Eq 1.1, and must

be treated approximately. This is due to the presence of g in the definition of G. We begin by

introducing the Trotter-Suzuki decomposition which allows for a simpler sequential form of g at the

18



cost of a cubic time step error that depends on τ :

g(~R← ~R′, τ) = 〈~R|e−τĤab |~R′〉 ' 〈~R|e−τV̂ /2e−τT̂ e−τV̂ /2|~R′〉+O(τ3) (3.10)

where T̂ , V̂ are the electron kinetic energy and total potential energy operators from Eq 1.1. The

approximate decomposed form in Eq 3.10 has an analytical expression for small values of τ , with

an additional τ3 error [16].

〈~R|e−τV̂ /2e−τT̂ e−τV̂ /2|~R′〉 ' (2πτ)
−3N

2 e

[
− (~R−~R′)2

2τ

]
e[−τ V (~R)+V (~R′)

2 ] +O(τ3) ≡ g̃(~R← ~Ri, τ) +O(τ3).

(3.11)

The pre-factor and first exponential term represent a diffusion process with a corresponding time

scale proportional to τ . The second exponential term is a reweighting factor which depends on

the change in potential energy before and after moves [16, 17], or a birth/death process in modern

codes. As such, the moves dictated by g̃ correspond to a weighted diffusion process for the initial

distribution of walkers which eventually converges on ρDMC .

To ensure that the error in the approximations Eq 3.11 are manageable, we break up the Green

function g into n � 1 sequential projections, leading to the final form of the projection operator

used in DMC codes

g(~Rn ← ~R0, τ) =

n−1∏
i=0

g(~Ri+1 ← ~Ri, τ/n) '
n−1∏
i=0

g̃(~Ri+1 ← ~Ri, τ/n) +O((
τ

n
)3)

By extension, we also have an approximate form for G and can carry out the stochastic process in

Eq 3.9

G(~Rn ← ~R0, τ) =

n−1∏
i=0

G(~Ri+1 ← ~Ri, τ/n) '
n−1∏
i=0

ΨT (~Ri+1)

ΨT (~Ri)
g̃(~Ri+1 ← ~Ri, τ/n) +O((

τ

n
)3) (3.12)

The remaining cubic time step error can be removed by an extrapolation procedure where the same

calculation is done with sequentially smaller τ [63]. The final walker positions after undergoing the

stochastic process defined by Eq 3.9 using the approximate form Eq 3.12 can be used in the mixed
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estimator Eq 3.5 to compute E0.

Unfortunately, generalization of this simple DMC implementation for fermionic wave functions

leads to a fermion sign problem. The main issue is that during the projection steps, ρDMC can

take negative sign and does not represent a true probability distribution. A simple generalization,

where the walkers also carry the sign of the distribution and the sign is included in averaging for

expectation values, while formally exact, leads to an exponential noise to signal ratio [16, 53] in

the statistical estimate for E0. This occurs as we are computing an average with highly oscillatory

samples which flip between negative and positive signs in a very high dimensional integration space

[64].

A simple fix to the sign problem is the fixed-node approximation which clamps the wave function

nodes during the projection operation to those of the initial trial wave function. This method

involves altering the projecting Hamiltonian Ĥab to include an infinite potential barrier at the

nodes of ΨT , namely where ΨT = 0. This altered projection ensures that walkers always stay

within pockets of wave function with the same sign, effectively making the fixed-node procedure a

collection of bosonic projections in each nodal pocket of the fermionic wave function. The tradeoff

is that fixed-node DMC (FN-DMC) is not exact, and will only return the exact fermionic ground

state energy if ΨT has the same nodal surface as the exact ground state Ψ0. If ΨT does not have the

same nodal surface as Ψ0, the FN-DMC energy will be higher than the exact ground state energy,

providing a variational principle in FN-DMC depending on the nodal surface of the trial wave

function. Reducing the fixed-node error is an open area of research currently and is usually carried

out with sophisticated tehcniques like release-node DMC [65] or through systematic improvement

of the trial wave function quality [66].

A typical workflow that I use for a complete FN-DMC calculations is below, including the

resolution of the various systematic errors listed above.

1. Carry out a reference DFT or multi-reference SCF calculations

2. Optimize a sequence of trial wave functions of increasing complexity using VMC and the

reference SCF calculations, ΨT,1, ...,ΨT,k
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3. For each trial wavefunction

(a) Compute FN-DMC energies using a sequence of decreasing τ < 0.1Ha−1

(b) Carry out time-step extrapolation to get extrapolated FN-DMC energies

4. Deduce the fixed-node error from the FN-DMC results

5. Carry out release-node DMC if the fixed-node error is significant

Practically, VMC and FN-DMC are efficient methods which can describe strongly correlated

systems accurately from small systems like molecules to moderately large solids. For example,

while highly computationally efficient methods like DFT can simulate 10,000 atom systems [9, 10,

11, 12, 13], they fail to describe strong correlation effects like magnetism and strongly correlated

transition metal systems accurately [47, 48]. The other end of the spectrum are highly expensive

methods like semi-stochastic heat-bath configuration interaction [67] which are the state of the art

methods for accuracy even for strongly correlated systems, but are prohibitively expensive on large

systems like solids [8]. QMC methods like VMC and FN-DMC address these concerns, and perform

extremely well in describing magnetic states [18, 21], transition metal systems [8, 17], and even

more exotic systems like unconventional superconductors [19, 20], on simulations up to about 500

atoms [68]. The efficiency of QMC comes from their polynomial scaling with the VMC algorithm

scaling as N3 and FN-DMC, in its simplest form, scaling as N7 [16]. QMC methods are thus well

equipped primarily for calculations on large systems that require strong electronic correlation to

describe accurately.
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Chapter 4

Non-orthogonal determinant trial
wave functions in quantum Monte
Carlo
This chapter is based off of my published work titled ”Non-orthogonal determinants in multi-Slater-

Jastrow trial wave functions for fixed-node diffusion Monte Carlo” [40].

4.1 Introduction

A major theoretical challenge in the FN-DMC computation of ground state properties of many-

body quantum systems is the accuracy of the trial wave function nodal surface. As discussed in

the previous chapter on QMC, the quality of the trial wave function appears in the fixed-node

variational principle present in FN-DMC. Reiterating this principle, if the nodes of the trial wave

function matches those of the exact ground state, the FN-DMC calculation will yield the exact

ground state energy. For a trial wave function where the nodes deviate from those of the ground

state, the FN-DMC energy will over estimate the ground state energy, and the error is called the

fixed-node error arising from the fixed-node variational principle. As such, the accuracy of the

FN-DMC calculation is determined by the nodal surface of the VMC trial wave function fed in to

the calculation.

Constructing trial wave functions for FN-DMC that accurately reproduce the ground state nodal

structure is extremely challenging due to the high dimensionality of the many-body Hilbert space.

Compact parameterizations of many-body states can be used to generate trial wave functions that

accurately, but still approximately, reproduce the ground state nodal structure. A common choice

of the trial wave function for ab initio FN-DMC calculations is the multi-Slater-Jastrow (MSJ)

form. [69] Since the nodal structure is solely determined by the multi-Slater part of a MSJ trial
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wave function, improved nodal surfaces can be achieved by optimizing the single particle orbitals

within the multiple Slater determinants.

There have been a number of ways of improving the trial wave function for QMC in the litera-

ture. Among these, Wagner and Mitas [41] show that the accuracy of calculations for ground state

energies and dipole moments of transition metal monoxides in FN-DMC can be increased by using

single particle orbitals from a DFT calculation with the B3LYP functional over those from a ROHF

calculation. The orbitals from the DFT calculation can be thought of as relaxed, or optimized,

versions of the ROHF orbitals. Toulouse and Umrigar describe an efficient parameterization for

orbital optimization using orbital rotations[70, 71, 72] and demonstrate the increased accuracy of

DMC calculations for the ground state energy of a C2 molecule when using an MSJ trial wave func-

tion with optimized orbitals. Both of these approaches to optimization maintain the orthogonality

of determinants in the multi-Slater expansion.

On the other hand, results from multi-configuration calculations on some test atoms and molecules

indicate that full-CI calculation accuracy can be achieved using wave functions with fewer optimized

non-orthogonal determinants than if the determinants are kept orthogonal. [73, 74, 75] Optimized

non-orthogonal Slater determinant expansions without a Jastrow have been used to accurately

calculate bonding properties of molecules in valence bond theory [76], ground state correlations

of small molecules using Hartree-Fock with symmetry-projected wave functions [77, 78, 79], and

correlation energies on the 1-d Hubbard model using resonanting Hartree-Fock with spin-projected

wave functions. [80, 81] However, so far non-orthogonal determinants with a Jastrow have not been

extensively explored as trial wave functions for FN-DMC calculations.

In this paper, we investigate MSJ trial wave functions with non-orthogonal determinants for

FN-DMC calculations, in which identical orbitals in different determinants are optimized indepen-

dently. We conduct FN-DMC calculations for the ground state energy of a C2 molecule on the

first-principles Hamiltonian with electronic core potentials (ECPs) using three kinds of trial wave

functions: MSJ states, MSJ states with optimized orthogonal determinants (MSJ+O), and MSJ

states with optimized non-orthogonal determinants (MSJ+NO). We used the QWalk[82] package

for the QMC calculations, in which we implemented orthogonal and non-orthogonal optimization
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Table 4.1: Wave function ansatzes and their corresponding variational parameters.
Name Form Parameters

MSJ ψ = eJ(~α)
∑
I CI |DI({φ})〉 ~α, ~C

MSJ+O ψ = eJ(~α)eΘ(~θ)
∑
I CI |DI({φ})〉 ~α, ~C, ~θ

MSJ+NO ψ = eJ(~α)
∑
I e

Θ( ~θI)CI |DI({φ})〉 ~α, ~C, {~θI}

for this project. We find that the MSJ+NO trial wave function yields improvements to the ground

state FN-DMC energies and single particle properties in addition to the improvements from using

the MSJ+O trial wave function.

4.2 Methods

As for all calculations referred to in this thesis, we will be solving the ab-initio Hamiltonian Eq 1.1.

Electronic core potentials (ECPs) from Burkatski et al [83, 84] were used to eliminate the core

electrons. We considered three different wave function ansatzes, also called trial wave functions,

summarized in Table 4.1.

The simplest trial wave functions used are of MSJ form with optimized Jastrow and determinant

coefficients:

ψMSJ(~α, ~C) = eJ(~α)
∑
I

CI |DI({φ})〉. (4.1)

Here eJ represents the Jastrow factor which depends on Jastrow parameters α followed by a multi-

Slater determinant expansion with coefficients C composed of single particle orbitals φ, in this case

from a restricted open Hartree-Fock calculation. We constructed fifteen different MSJ states by

attaching three-body Jastrow factors given in Wagner and Mitas [82] to distinct multi-Slater states

calculated in PySCF. [85] These determinant expansions were constructed using a complete active

space method with four active electrons per carbon atom and an active space Ncas of 6,8, and 10.

Determinants were selected with coefficient weights |CI | greater than 0.05, 0.025, 0.0175, 0.01, and

0.0075, after which we saw little improvement in the total energy. This procedure generated 15

starting MSJ states, whose energies are reported in Fig 4.1 as MSJ.
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The MSJ+O trial wave functions build upon the MSJ trial wave functions by including orthogo-

nal orbital rotations, the simplest form of orbital relaxation we will consider. To each of the fifteen

MSJ states we now additionally apply an orbital rotation operator following Toulouse et al [72],

ψMSJ+O(~α, ~C, ~θ) = eJ(~α)eΘ(~θ)
∑
I

CI |DI({φ})〉. (4.2)

The rotation operator eΘ(~θ) acts on occupied orbitals as a rotation in orbital space

φi →
∑
j

[eΘ(~θ)]ijφj (4.3)

where the set {φj} is composed of select single particle orbitals that have the same symmetry as

the occupied orbital φi. We included in the set {φj} all occupied orbitals with the same symmetry

as orbital φi and the lowest energy unoccupied orbital with the same symmetry. The rotation

operator acts on different spin channels independently, therefore the optimized state may be spin

contaminated: it may not be an eigenstate of the total S2 operator. Since the rotation operator

acts identically on each determinant in a given spin channel, the determinants will remain orthog-

onal after optimization, so we refer to such a state as an MSJ state with optimized orthogonal

determinants (MSJ+O state).

The MSJ+NO trial wave functions build upon the MSJ+O trial wave functions, allowing for

non-orthogonal orbital rotations. We relax the orthogonality of determinants by moving the orbital

rotation operator within the sum, such that

ψMSJ+NO(~α, ~C, {~θI}) = eJ(~α)
∑
I

eΘ( ~θI)CI |DI({φ})〉. (4.4)

Unlike the MSJ+O case, MSJ+NO ansatz allows orbitals in different determinants to be optimized

independently, potentially allowing for a more compact wave function.

For each trial wave function, we optimized the parameters listed in Table 4.1 using the linear

method described in Toulouse et al.[70] Filippi et al describe an efficient method for calculating,
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in quantum Monte Carlo, the parameter derivatives required for the optimization. [86] These

optimized trial wave functions were then used in FN-DMC calculations. We performed FN-DMC

using T-moves[87] with a timestep of τ = 0.01. This choice of time step leads to a time step error

of approximately 1mHa, which is an order of magnitude smaller than the differences in FN-DMC

energies we are concerned with.

Alongside energies, we also calculated VMC and FN-DMC single particle densities. In FN-

DMC there is a systematic mixed-estimator error that affects the calculation of all quantities which

do not commute with H, such as the charge density. In order to account for the first order of

this mixed-estimator bias we extrapolate the FN-DMC single particle densities using the formula

ρextrap = 2ρFN−DMC − ρVMC . [69] This bias does not appear in VMC.

4.3 Results

Fig. 4.1 shows the variational Monte Carlo (VMC) and FN-DMC energies for the multiple trial

wave functions described earlier. The VMC energies were calculated after the optimization of the

variational parameters in the trial wave functions. The method for calculation and Ncas are shown

in the subtitles. The average improvement in variational energy when using optimized orthogonal

determinants is 〈EMSJ−EMSJ+O〉 =0.32 eV with a standard deviation of 0.08 eV, where the average

〈〉 is over states at all Ncas, Ndet. The FN-DMC average improvement is smaller, at 0.14 eV, with

a standard deviation of 0.03 eV. The significant improvement in FN-DMC energy resulting from

orthogonally optimizing determinants in trial wave functions indicates the importance of orbital

relaxation for accurate QMC calculations.

MSJ+NO trial wave functions provide additional improvements to the ground state energies.

The average improvement in VMC energy is 〈EMSJ+O−EMSJ+NO〉 = 0.031eV (standard deviation

0.022 eV) and 0.032 eV (standard deviation 0.019 eV) for the FN-DMC energy. We believe the

large standard deviation may arise from two main sources. First, different trial functions will have

different changes in energy due to the non-orthogonal orbital rotation. For example, closer to a

complete multi-determinant expansion of the ground state, (Ndet, Ncas→∞), the decrease in energy
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Figure 4.1: Optimized VMC energies and FN-DMC energies for trial wave functions with dif-
fering active space sizes (Ncas) and number of determinants (Ndet). All energies are presented
relative to the optimized VMC energy of the MSJ state with Ncas=6, Ndet=10; ∆E = E −
EVMC
MSJ [Ncas=6,Ndet=10]. For each choice of Ncas, Ndet there are three trial functions, MSJ, MSJ+O

and MSJ+NO with sequentially lower VMC/FN-DMC energies.
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Figure 4.2: The left column shows cylindrically averaged (
∫
dφ ρ(s, φ, z) 2πs) FN-DMC charge den-

sities for various optimized trial wave functions, with all multi-Slater trial functions built with
Ncas=10, Ndet=43. Here s is the radial coordinate, z is the z coordinate, and the cylindrical av-
eraging was done over the azimuthal angle φ. The right column shows differences in the charge
densities in the left column.
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due to non-orthogonal orbital optimization will approach zero. On the other hand, some finite multi-

determinant expansion will have a non-zero decrease in energy due to this optimization. Second,

since we are now allowing for independent rotation parameters for each determinant, the variational

space becomes Ndet times more complex than the space for orthogonal orbital optimization. A more

complex variational space means that the linear optimization may more frequently get caught in

local minima. This effect does not appear in our calculations given the nearly monotonic decrease

in VMC and FN-DMC energies as we increase Ndet and Ncas.

Further, the MSJ+NO trial wave functions can achieve similar FN-DMC energies with fewer

determinants when compared with MSJ+O trial wave functions. For example, the FN-DMC energy

when using an MSJ+NO trial wave function with 24 determinants is lower than when using an

MSJ+O trial wave function with 55 determinants with active space size Ncas=8. The introduction

of optimized non-orthogonal determinants can therefore increase the compactness of QMC trial

wave functions without sacrificing accuracy.

To understand the effect of the improved trial functions, we compared the one particle density

for each wave function type. The first column of plots in Fig 4.2 shows the cylindrically averaged

charge densities calculated in FN-DMC with mixed-estimator extrapolation for a Slater-Jastrow

and MSJ, MSJ+O and MSJ+NO trial functions with Ncas=10, Ndet=43. The second column in

Fig 4.2 presents differences in these charge densities. The white semicircles represent the C atoms.

Going from from the SJ to MSJ trial function, the extrapolated charge density increases between

the two carbon atoms. This increase in bonding character makes sense since the ground state of

C2 is multi-reference in character. [88] Orbital optimization continues this trend; however, the

subsequent increase in charge density in the bonding region is an order of magnitude smaller than

the increase between SJ and MSJ. This result is reasonable, since introducing correlation into trial

wave functions allows for electrons to avoid each other while still occupying the bonding region. The

extrapolated spin densities exhibit spin contamination for the MSJ, MSJ+O and MSJ+NO trial

functions, but the magnitude of the spin contamination is O(10−4) Bohr−2, an order of magnitude

smaller than the charge redistribution.
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4.4 Conclusion

We find that using MSJ+NO trial wave functions yield improvements to the ground state FN-DMC

energy and single particle properties of a C2 molecule in addition to the improvements from using

MSJ+O trial wave functions. For example, the FN-DMC energy calculated using an MSJ+NO

trial function with only 24 determinants is lower than the FN-DMC energy using an MSJ+O trial

function with 55 determinants. Compared to an average decrease in the FN-DMC energy of 0.14 eV

(standard deviation 0.03 eV) when using MSJ+O trial wave functions, using MSJ+NO trial wave

functions provide an additional average reduction of 0.032 eV (standard deviation 0.019 eV). Using

trial wave functions with either orthogonally or non-orthogonally optimized determinants increases

the bonding character of the FN-DMC charge density when compared to the density using a bare

MSJ trial wave function. Our results indicate that using non-orthogonal determinants in multi-

Slater expansions may lead to more compact multi-Slater-Jastrow trial wave functions for small

molecules and can help reduce the fixed-node error in FN-DMC by improving the ground state

nodal surface.
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Chapter 5

A light-weight regularization for
wavefunction parameter gradients
in quantum Monte Carlo
This chapter is based on my published work titled ”A light weight regularization for wave function

parameter gradients in quantum Monte Carlo” [43].

5.1 Introduction

The optimization of the trial wavefunction parameters is an integral task in accurate VMC calcula-

tions. In energy optimization techniques, the parameters ~p in a wavefunction Ψ(~R, ~p) are optimized

to minimize the energy expectation value E(~p) ≡ 〈Ψ(~p)|Ĥ|Ψ(~p)〉/〈Ψ(~p)|Ψ(~p)〉. This is accom-

plished through iterative approaches where a stochastic estimate of the gradient ∂E(~p)/∂p is used

in updating the parameter p at each iteration [89, 90, 70, 91, 71, 72].

The simplest estimator for ∂E/∂p, Eqn 5.1, comes from the derivative of the energy expectation

value. This estimator is unbiased and has a zero-variance principle for any wave function parameter

p if Ψ(~R, ~p) is an eigenstate of Ĥ. However, the variance of this estimator diverges when Ψ is not

an exact eigenstate and p is a parameter which affects the nodes of the wave function, as occurs in

the case of orbital or determinant coefficients[1, 4].

Previous to this work, the infinite variance has been removed in several ways. One method

is to sample from distributions other than the trial wave function squared.[1, 2, 3] Alternatively,

one can modify the estimator using an auxillary wave function.[92, 93, 94] However, both of these

approaches require a choice of guiding or auxillary functions to implement the algorithm.

In this paper, we derive and test a simple regularized estimator for ∂E/∂p which has finite

variance and can be efficiently extrapolated to zero bias. Instead of guiding wave functions, the
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divergent variance is removed by regularizing the näıve estimator within a distance ε of the nodes of

Ψ(~p, ~R). We show that the bias scales as ε3 and the variance scales as 1/ε. For realistic systems, we

test that the predicted scaling is seen in a real calculation, show that extrapolation to zero bias is

straightforward and requires no extra computation, and conduct an energy optimization calculation

on a multi-Slater-Jastrow trial wave function.

5.2 Regularized estimator

The näıve estimator for ∂E/∂p evaluated on a wave function Ψ(~R, ~p) is the random variable θ̂(~R, ~p)

θ̂(~R, ~p) ≡ 2 Re

((
EL(~R)−

〈
EL(~R)

〉)∂pΨ(~R, ~p)

Ψ(~R, ~p)

)
, (5.1)

where EL = (ĤΨ)/Ψ is the local energy with Hamiltonian operator Ĥ and the brackets 〈 〉 denote a

quantum mechanical expectation value over Ψ. This estimator has zero bias for any wave function

Ψ and parameter p over the distribution |Ψ|2, but can acquire a divergent variance. The divergent

contribution to the variance arises from the evaluation of the integral

∫ ∣∣∣∣EL ∂pΨΨ

∣∣∣∣2 |Ψ|2dR. (5.2)

when Ψ is not an eigenstate of Ĥ and the parameter p affects the nodes of Ψ, such as orbital or

determinantal coefficients. In this case, to lowest order in distance |~R− ~N | from a nodal point ~N of

Ψ, ĤΨ and ∂pΨ ' const and Ψ ' ∇Ψ( ~N) · (~R− ~N), leading to the integrand in Eqn 5.2 behaving

as 1/|~R − ~N |2 near the node. Since the integration domain includes the nodal surface of Ψ, the

1/|~R− ~N |2 behavior of the integrand as |~R− ~N | → 0 leads to a divergent integral.

We obtain a finite variance estimator for ∂E/∂p by regularizing the näıve estimator of Eqn 5.1

by a function fε:

θ̂ε(~R, ~p) ≡ 2 Re

((
EL(~R)−

〈
EL(~R)

〉)∂pΨ(~R, ~p)

Ψ(~R, ~p)

)
fε(~R), (5.3)
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where

fε(~R) =


7|~xε |6 − 20|~xε |4 + 9|~xε |2 |~xε | < 1

1 |~xε | ≥ 1

~x ≡ Ψ(~R, ~p)∗∇Ψ(~R, ~p)

|∇Ψ(~R, ~p)|2
.

(5.4)

The quantity |~x| is the normal distance between ~R and nearest nodal point of Ψ, ε is a parameter

which defines how far away from the node the regularization should be carried out, and ∇ is the

many-body gradient. Details on the construction of fε can be found in the Appendix.

In evaluating the variance of Eqn 5.3, the divergent integral Eqn 5.2 is replaced by a regularized

integral

∫ ∣∣∣∣EL ∂pΨΨ

∣∣∣∣2 |Ψ|2f2
ε dR. (5.5)

Unlike the integrand of Eqn 5.2, the regularized integrand does not diverge near the nodes of Ψ. This

is seen by Taylor expanding the integrand to lowest non-vanishing order in |~R − ~N |. Substituting

the limiting relationships for ĤΨ, ∂pΨ and Ψ from above and noting

~x '
[
∇Ψ( ~N)∗ · (~R− ~N)

] ∇Ψ( ~N)

|∇Ψ( ~N)|2
(5.6)

as |~R− ~N | → 0, we find the limiting behavior of the regularized integrand near the nodes of Ψ:

lim
|~R− ~N |→0

∣∣∣∣EL ∂pΨΨ

∣∣∣∣2 f2
ε |Ψ|2 ∝

|∇Ψ( ~N) · (~R− ~N)|2

|∇Ψ( ~N)|4ε4
→ 0. (5.7)

The regularized estimator thus removes the divergent contribution to the variance present in Eqn 5.2

and results in a finite variance estimation of ∂E/∂p for any ε > 0.

To lowest order in ε, the variance of Eqn 5.3 decreases as 1/ε. This can be seen by carrying

out the integral Eqn 5.5 as ε→ 0. Since the regularization is only present for |~x/ε| < 1, the lowest
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order scaling with ε appears in the integration domain |~x/ε| < 1. Within this domain, the limit

ε→ 0 is equivalent to |~R− ~N | → 0, and the limiting integrand of Eqn 5.7 can be used. Making the

change of variables ~R→ (l, ~N) where l is the normal coordinate to the nodal surface and ~N is the

coordinate of the nodal surface, Eqn 5.5 to lowest order in ε is

∝
∫
dN

1

|∇Ψ( ~N)|2
∫ ε

−ε
dl
l2

ε4
∝ 1

ε
. (5.8)

The suppressed variance of the estimate comes at a cost, in the form of cubic bias O(ε3) to

lowest order in ε. The bias of the regularized estimator is

∫
|~x/ε|<1

(ĤΨ)(∂pΨ)(fε − 1)dR. (5.9)

Following the analysis of the previous paragraph, we evaluate the bias to lowest non-vanishing order

in ε by Taylor expanding the integrand in powers of |~R− ~N | and calculating the bias at each order

in the expansion. The constant term in the Taylor expansion does not contribute to the bias by

parity of the integrand. Further, the choice of coefficients for fε in Eqn 5.4 ensures the first order

term vanishes, as proven in the appendix. The lowest non-vanishing contribution to the bias is due

to term in the Taylor expansion ∝ l2, yielding an integral which scales as ε3.

A zero-bias estimation of ∂E/∂p using the reguralized estimator Eqn 5.3 can be carried out

using VMC in four steps

1. Conduct a standard VMC calculation to collect M configurations {~Ri}Mi=1 from |Ψ|2.

2. Evaluate |~xi| from Eqn 5.4 for each configuration.

3. Calculate the average of the estimator Eqn 5.3 over the collected configurations for a sequence

of ε→ 0.

4. Fit a function aε3 + b to the estimates; the intercept b is the zero bias, finite variance estimate

for ∂E/∂p.

This procedure can be carried out very efficiently as only a single set of VMC configurations must
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be drawn for the entire extrapolation, resulting in an inexpensive, finite-variance, zero bias estimate

of ∂E/∂p.

5.3 Application to LiH, CuO molecules

We verify the predicted mathematical behavior of θ̂ε by computing ∂E/∂p for a determinantal

coefficient of an unoptimized multi-Slater Jastrow (MSJ) wave function for the LiH molecule:

Ψ(~c, ~α) = eJ(~α)
∑
i

ci|Di〉. (5.10)

The determinants |Di〉 and coefficients ci were taken from a full configuration interaction (CI)

expansion over the Li 1s, 2s, 2p and H 1s orbitals. The orbitals were constructed from a restricted

open-shell Hartree Fock (ROHF) calculation using a correlation consistent quadruple-zeta valence

basis set[95]. A 2-body Jastrow factor J(~α) of the form in[82] was used with ~α = 0 except for

electron-electron cusp conditions. The ROHF and CI calculations were done using the PySCF

package[96] and all QMC calculations were carried out using pyqmc[97].

We begin by verifying that the regularized integral in Eqn 5.5 has finite value across a node

for ε > 0. To do so, we evaluate the regularized integrand for various ε along a path which passes

through a node ~N ,

~R(x) = ~N + l∇Ψ( ~N)/|∇Ψ( ~N)|, (5.11)

with l ∈ [−0.1, 0.1] Bohr. The results are shown in the lower plot of Figure 5.1. For all values of ε,

the value of the integrand is pushed to zero at the node, removing the divergence in the integral.

The sharp increase in the integrand near l = 0 as ε decreases is indicative of the increase in the

value of the integral, and hence estimator variance, as ε → 0. Shown in the upper plot is the first

term in Eqn 5.3 across the node, exhibiting no divergences.

By integrating across the normal coordinate l, the predicted O(1/ε), O(ε3) scalings of the vari-

ance and bias are shown Figure 5.2. The integration for both the bias and variance are carried out

for the path in Figure 5.1 from l = −0.1 to 0.1 Bohr and normalized by a factor
∫
|Ψ|2dR along
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Ψ fε and logarithm (EL
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2, plotted against the normal coordinate l from a
node of Ψ. Curve colors correspond to different values of ε ranging from 10−1 to 10−8 Bohr.
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the orange curves indicate best fits to the functions aε3 and b + c/ε for the bias and variance,
respectively.
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the extrapolated estimation.
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minantal parameters over the last twenty iterations of the energy optimization calculation on the
CuO molecule. Dashed lines are constructed by linear regression to the power-law tails of the
distributions. The fit tail exponents are reported in the table.
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Figure 5.5: Results from optimization of a 104 determinant multi-Slater-Jastrow wave function for
the CuO molecule using three different estimators: the näıve estimator Eqn 5.1, regularized estima-
tor Eqn 5.3, and reweighted estimator[1, 2, 3] using Umrigar’s guiding wave function[4]. Each curve
is an average over five independent calculations. Panel (a) shows the energy versus iteration curve,
while panels (b)–(d) present the maximum absolute value component of the estimated gradient
vector ∂E/∂~pdet over determinantal coefficients. The table shows the average energy over the last
20 iterations of the optimization for the three different estimators.
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that path. The predicted cubic bias is observed for six decades in ε while the O(1/ε) decrease in

variance stands for four decades. The increase in the variance after ε = 10−2 Bohr occurs due to the

breakdown of the assumption Ψ(~R) ' ∇Ψ( ~N) · (~R − ~N), resulting in a linear increase in variance

with ε. This change is not mirrored in the bias since the sub-leading order scaling with ε appears

when the assumptions of ĤΨ and ∂pΨ ' const break down.

Next, we carry out the four step, zero-bias, finite variance extrapolation for ∂E/∂p proposed in

the previous section, shown in Figure 5.3. First, a standard VMC calculation with 200,000 steps

and 2,000 configurations per step was carried out. Then, ∂E/∂p was estimated using Eqn 5.3 for ε

between 1.2× 10−1 Bohr and 10−5 Bohr using the VMC configurations, shown in the data points.

Since the same configurations were used for each evaluation, the estimates have a strong statistical

correlation and the predicted ε3 bias is clearly present, shown by the orange fit curve. The intercept

of the fit curve is shown by the red star and is the zero-bias estimate of ∂E/∂p. The variance can

be deduced by the error bar of the blue data points, in this case 0.025 mHa. Since the bias is zero

within statistical errors for small values of ε, most practical calculations can be carried out for a

fixed value of ε between 10−5 and 10−2 Bohr without extrapolation.

We conclude by comparing the effectiveness of the regularized estimator to the commonly used

reweighting technique[1, 2, 3] in the optimization of a 104 determinant multi-Slater-Jastrow trial

wave function for the CuO molecule. The trial wave function takes the form Eqn 5.10, with a

2-body Jastrow factor as in Ref [82]. Orbitals were constructed from a ROHF calculation using

the Trail-Needs triple-zeta basis and electronic core potentials[98]. The determinants were selected

by taking the 104 highest weighted determinants from a 920,205 determinant semi-stochastic heat-

bath configuration interaction (SHCI) calculation [99] over an active space of four core and thirteen

active orbitals. The ROHF and SHCI calculations were done using the PySCF[96] and Arrow

packages[99, 100, 101].

The optimization was performed using the stochastic reconfiguration method (SR)[102] for VMC

energy minimization. The time step was determined at each iteration by a line search along the

update direction using correlated sampling, referred to as a stabilization by Toulouse and Umrigar

[70]. To accelerate convergence, the parameters were optimized in batches. In the first 50 iterations

41



only the 102 largest determinant coefficients from the SHCI calculation were updated, the next 50

iterations included the top 103 determinants, and the last 20 iterations included all 104 determi-

nants. The energy optimization was carried out in pyqmc[97]. This identical procedure was carried

out for all gradient estimators.

Additionally, the finite variance estimators were applied to the SR overlap matrix to ensure

the estimation of the matrix had finite variance. The SR overlap matrix has elements Sij =

〈∂pi(Ψ/
√
〈Ψ|Ψ〉)|∂pj (Ψ/

√
〈Ψ|Ψ〉)〉 where ∂pi is the gradient of the wave function with respect to

parameter pi. These matrix elements exhibit an identical divergence in the variance present in

Eqn 5.2 with the replacement of EL with ∂piΨ/Ψ. To remove this divergent variance in optimization

calculations using the regularized estimator, Sij was estimated using the finite variance estimator

with ε = 10−2 ((∂piΨ(~R, ~p)

Ψ(~R, ~p)
−
〈
∂piΨ(~R, ~p)

Ψ(~R, ~p)

〉)∂pjΨ(~R, ~p)

Ψ(~R, ~p)

)
fε(~R). (5.12)

In optimization calculations using the reweighted estimator, finite variance estimation of Sij was

carried out using Umrigar’s guiding wave function [4] with ε = 10−2. Only in the optimization

calculations using the näıve estimator did the estimation of Sij have infinite variance.

Figure 5.5 shows the results of the energy optimization using the näıve estimator Eqn 5.1, the

regularized estimator Eqn 5.3 with ε = 10−2, and the reweighted estimator using Umrigar’s guiding

wave function[4] with ε = 10−2. Each optimization step was performed with 16,000 walkers and 100

Monte Carlo steps. Each curve is an average over five independent optimization calculations. Panel

(a) shows the energy versus iteration, and the table below shows the average and standard deviation

of the energy over the last 20 iterations. The final energies for the three different estimators are

equal within error bars, indicating that the choice of gradient estimator does not affect the final

energy of the optimized wave function. We attribute this similar long-timestep performance due to

the line minimization step, which stabilizes occasional large fluctuations in the estimation of the

gradient. However, as one can verify from close inspection of the energy graph, some optimization

steps are wasted due to fluctuations in the näıve estimator.

Now we turn to the gradient. At each step of the optimization, the full gradient vector ∂E/∂~p
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was estimated using 16,000 walkers and 100 Monte Carlo steps for both Jastrow and determinantal

coefficients. Since the infinite variance is limited to parameters which can change the nodal sur-

face of Ψ(~R, ~p), we restrict our analysis to ∂E/∂~pdet which only includes gradients with respect to

determinantal coefficients. To visualize fluctuations in the gradient estimation, we plot the maxi-

mum absolute value component of ∂E/∂~pdet estimated at each iteration in Figure 5.5(b)–(d). The

regularized and reweighted estimator have smaller fluctuations in the gradient maximum than the

bare estimation. However, small spikes remain in both the regularized and reweighted estimator,

indicating that the distribution of gradients may have heavy tails.

In Figure 5.4 we present histograms of the absolute value of the components of ∂E/∂~pdet es-

timated during the last twenty iterations of optimization. Each distribution is constructed from

5×20×10,000 gradient estimates, corresponding to the number of independent optimization calcula-

tions, iterations per calculation, and gradient components evaluated per iteration. The distributions

for all three techniques have power-law tails, reflective of the many small spikes seen in Figure 5.5.

The näıve estimator has an infinite variance tail with a slope of −1.65(5) > −2. The regularized

and reweighted estimators both have finite variance tails with exponent < −2. The regularized

estimator provides a lower variance estimation than the reweighted estimator as evidenced by the

tail exponents −2.41(6) and −2.16(5).

Although the reweighted and regularized estimates provide finite-variance estimates for ∂E/∂p,

the convergence of the distribution of sample means to a normal distribution is much slower than

the convergence for E. Compare this to the local energy EL = HΨ
Ψ , where the distribution of

sample means are Gaussian with just 103 configurations[103]. Therefore, even after regularization

or reweighting, there are non-Gaussian fluctuations in the mean of ∂E/∂p for typical numbers of

samples, as seen in Fig 5.5. Even when the gradients are regularized, it is thus advantageous to use

adaptive updates, such as a line search, to control the effects of these fluctuations.

43



5.4 Conclusion

In this work, we derived and tested a simple regularized estimator for ∂E/∂p which has finite

variance and can be extrapolated to zero bias. The divergent variance present in the näıve estimator

is suppressed via multiplication by a polynomial function within a distance ε of the nodes of Ψ(~p, ~R).

The regularized estimator has a finite variance by incurring a cubic bias which can be efficiently

extrapolated to zero bias. We demonstrate this by carrying out a finite variance, zero-bias estimate

of ∂E/∂p for a determinantal coefficient in a trial wave function for the LiH molecule. Additionally,

we carried out energy optimization calculations on the CuO molecule for a multi-Slater-Jastrow wave

function using the bare, regularized, and commonly used reweighted estimators[1, 2, 3]. We found

that the regularized and reweighted estimators lead to finite-variance, heavy-tailed distributions

of ∂E/∂p with the regularized estimator having a more negative power-law exponent than the

reweighted estimator for the same cutoff value.

The regularized estimator is a simple alternative to known finite-variance estimation techniques

for ∂E/∂p. These popular techniques require guiding[1, 2, 3] or auxiliary wave functions[92, 93, 94]

in order to estimate ∂E/∂p for the trial wave function Ψ(~R, ~p). The regularized estimator does

not require these additional wave functions, leading to a simple algorithm for the finite variance,

zero-bias, estimation of ∂E/∂p using only Ψ(~R, ~p).
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Chapter 6

A novel penalty method for
excited states in quantum Monte
Carlo
This chapter is based off my published work titled ”Excited states in variation Monte Carlo using

a penalty method” [44].

6.1 Introduction

An important task in condensed matter physics is the accurate ab initio computation of excited

states, particularly using the moderately scaling and accurate QMC techniques. Generally, this

is accomplished through extensions of VMC and DMC from just ground state to excited state

calculation. In the earliest case, Bernu and Ceperley proposed an algorithm based on diffusion

Monte Carlo,[104] which has not been applied to many practical cases, since it has a sign problem

which leads to exponential scaling in the system size. Blunt et al.[105] proposed an algorithm using

full configuration interaction, which is also exponentially scaling.

On the low-scaling side, Filippi and coworkers[106, 107, 108] implemented a method similar

to state averaged CASSCF in VMC, and demonstrated the technique on impressively large wave

function expansions. However, state averaging is not optimal when the optimal ground and ex-

cited orbitals are very different,[109] as often occurs in strongly correlated systems. Neuscamman

and coworkers[110, 111, 112, 113] have proposed a low-scaling method that instead uses alternate

objective functions to optimize excited states. While this technique does not suffer from the state

averaging problem, it so far has only been applied to very few excited states, and can experience

difficulties converging to the correct state.[114]

In this manuscript, we implement and demonstrate a simple penalty method based on orthog-
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onalizing to lower energy states to compute excited states using variational Monte Carlo. Similar

techniques are commonly used in density matrix renormalization group calculations,[115] but to

our knowledge have not been applied in the variational Monte Carlo context. This technique ob-

tains excited states one by one by enforcing orthogonality to lower energy states, and can optimize

general wave function parameters, including orbital parameters as shown here. The scaling of the

technique is O(NexN
M
e ) + cO(N2

exN
M
e ), where Ne is the number of electrons, Nex is the number of

excited states computed, c is a small constant, and M is dependent on the wave function, 3 for a

Slater-Jastrow wave function. The orthogonalization based technique allows for access to multiple

excited states, and does not require state averaging. The technique is implemented in the pyqmc

package, available online.[97] The method is applied to benzene with a ∼10,000 parameter wave

function, showing high accuracy compared to experiment and coupled cluster calculations on 12

excited states. The state-specific orbital optimization made possible by the new technique provides

an efficient and stable technique for accurate excited states using QMC.

6.2 Penalty-based optimization using variational Monte

Carlo

The method solves for each energy eigenstate one at a time, by following the procedure outlined

here:

1. First, the stochastic reconfiguration method[116] is used to find the VMC approximation to

the ground state, |Ψ0〉.

2. The first excited state |Ψ1〉 is found by optimizing the objective function Eqn 6.7 with ~S∗ = [0]

and λ set larger than the expected E1 −E0. The algorithm is not very sensitive to the value

of λ, so we typically use λ of order 1 Hartree, substantially higher than excitation energies in

the systems considered here.

3. The second excited state is found by optimizing the objective function Eqn 6.7 with ~S∗ = [0, 0]

and anchor states |Ψ0〉 and |Ψ1〉.
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4. Further excited states are found in the same way, by orthogonalizing to the ones found in the

previous steps.

6.2.1 Objective function

As diagrammed in Fig 6.1, it is straightforward to show that if |Φ0〉 is the ground state of the

Hamiltonian, then so long as λ > E1 − E0 the function

arg min
Ψ

(E[Ψ] + λN2
ΨN

2
Φ0
| 〈Ψ|Φ0〉 |2) (6.1)

is equal to the first excited state |Φ1〉, where E[Ψ] is the expectation value of the energy and

NΨ = 1/
√
|〈Ψ|Ψ〉|.

For completeness, we show this here. Consider the objective functional

O[Ψ] = E[Ψ] +N2
ΨN

2
Φ0
λi|〈Ψ|Φ0〉|2 (6.2)

Then the functional derivative of each term is given by

δN2
ΨN

2
Φ0
| 〈Ψ|Φ0〉 |2
δΨ∗

= N2
Ψ(N2

Φ0
〈Φ0|Ψ〉|Φ0〉

−N2
ΨN

2
Φ0
| 〈Ψ|Φ0〉 |2|Ψ〉) (6.3)

and

δE[Ψ]

δΨ∗
= N2

Ψ(H − E[Ψ])|Ψ〉. (6.4)

We have highlighted the unpaired kets in blue for clarity. Combining the two, and setting δO
δΨ∗ to

zero, we obtain

(H − E[Ψ]− λN2
ΨN

2
Φ0
| 〈Ψ|Φ0〉 |2)|Ψ〉

+λN2
Φ0
〈Φ0|Ψ〉|Φ0〉 = 0 (6.5)
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The H − E[Ψ] term ensures that this equation can only be satisfied by an an energy eigenstate

|Φi〉. For i 6= 0, |Ψ〉 = |Φi〉 is a solution because 〈Φi|Φ0〉 = 0. |Φ0〉 is a solution since 〈Φ0|Φ0〉 = 1,

which allows the λ terms to cancel. The value of the functional O[Φi] = Ei + λδi0. Therefore, if

λ > E1 − E0, the global minimum is at |Φ1〉. Because of the structure demonstrated in Fig 6.1,

there are no local minima in the complete Hilbert space. Similarly, the N ’th excited state is given

by

|ΦN 〉 = arg min
Ψ

(
E[Ψ] +

N−1∑
i

λiN
2
ΨN

2
Φ0
| 〈Ψ|Φi〉 |2

)
. (6.6)

as long as λi > Ei − E0.

We write the algorithm in terms of anchor states |Ψi〉, where i = 0, . . . , N − 1. These states are

fixed during the optimization, and only the parameters of a single wave function |Ψ〉 are optimized.

While ideally the anchor states are energy eigenstates, in general they will be best approximations

to them. We also find it useful to consider the objective function

O[Ψ] = E[Ψ] +
∑
i

λi|~Si − ~Si
∗|2, (6.7)

where

Si =
〈Ψ|Ψi〉√

〈Ψ|Ψ〉 〈Ψi|Ψi〉
, (6.8)

and ~S∗ is a set of target overlaps. For example, to obtain the N ’th excited state one would use

N − 1 anchor states each set to the best approximation to the N − 1 lowest energy eigenstates and

set ~S∗ equal to a zero vector of N − 1 length.

6.2.2 Computation of the objective function and its derivatives using

variational Monte Carlo

In this section, we will explain how to evaluate the quantities needed using standard variational

Monte Carlo techniques.[117] In this implementation, we sample a different distribution for each

anchor state:

ρi(R) = |Ψi(R)|2 + |Ψ(R)|2. (6.9)
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Table 6.1: Implementation of the penalty-based optimization for excited states.

1. Choose target overlaps ~S∗

2. Initialize ~p0

3. for i in range(nsteps) do

(a) Compute Ni, ~S, ∇pN0, ∇p~S, E, ∇pE
(b) if abs(N0-0.5) > threshold, normalize ΨN

(c) Objective function is O = E + ~λ · (~S − ~S∗)2

(d) Construct gradient ∇pO = ∇pE +∇p(~λ · (~S − ~S∗)2)

(e) ∇pN ← R−1∇pN
(f) ∇pO ← R−1∇pO
(g) ∇pO ← ∇pO − (∇pO)·(∇pN)

|∇pN |2 ∇pN
(h) ~p(τ)← ~pi−1 − τ∇pO
(i) ~pi ← arg minp(O(~p(τ)), τ)

Then the unnormalized overlap is estimated in Monte Carlo

〈Ψj |Ψk〉i '
〈

Ψ∗j (R)Ψk(R)

ρi(R)

〉
R∼ρi

, (6.10)

where R is the many-electron coordinate and R ∼ ρi means that R is sampled from the normalized

distribution ρi(R)∫
ρi(R)

. Here the subscript i indicates that the overlap was estimated using ρi.

The relative normalization of the wave function |Ψ〉 is thus

Ni = 〈Ψ|Ψ〉i , (6.11)

which is evaluated the same way as Eqn 6.10. For a parameter p of |Ψ〉,

∂pNi = 2Re

〈
∂pΨ

∗(R)Ψ(R)

ρi(R)

〉
R∼ρi

(6.12)
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The overlap is given by

Si =
〈Ψ|Ψi〉i
Ai

, (6.13)

where Ai =
√
〈Ψ|Ψ〉i 〈Ψi|Ψi〉i. The derivative of the unnormalized overlap is

〈∂pΨ|Ψi〉 =

〈
∂pΨ

∗(R)Ψi(R)

ρi(R)

〉
R∼ρi

. (6.14)

The derivative of the normalized overlap is computed using the above components as follows

∂pSi =
〈∂pΨ|Ψi〉i

Ai
− 1

2

〈Ψ|Ψi〉i
Ai

∂pNi
Ni

. (6.15)

Thus, all derivatives can be computed using only the wave function parameter derivatives.

We also regularize all derivatives using the stochastic reconfiguration[116] step to compute

Rpq = 〈∂pΨ|∂qΨ〉 , (6.16)

for parameter indices p and q.

6.2.3 Practical details

The algorithm is outlined in Table 6.1. We provide comments on steps that have some nontrivial

considerations. In step 2, the parameters are initialized. We typically initialize the parameters using

an approximate excited state, typically either from an orbital promotion in a single determinant,

or from a small quantum chemistry calculation. We have checked that it is possible to optimize

starting from the ground state, but such a strategy is unnecessarily expensive, in particular because

the objective function of Eqn 6.7 is a saddle point at the ground state.

In step 3(a), all the quantities in Sec 6.2.2 are computed. A Monte Carlo sampling of ρi is

done for each anchor wave function. The algorithm thus scales mildly with the number of anchor

wave functions. The energy and its derivatives are averaged among all samples, so the most costly

component of the calculation does not increase much with the number of anchor wave functions.
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It is important for the normalization of the wave functions to be similar; otherwise the density

in Eqn 6.9 is unbalanced. One could adjust weights in Eqn 6.9, but we find it more convenient to

normalize all wave functions. We ensure that all anchor states have the same normalization, and

use the first anchor state as a reference. Before performing an optimization move, we first check

whether N0 is too far from 1
2 . The threshold is typically about 0.1. If it is too far, the parameters

are rescaled to normalize the wave function and VMC is repeated with the renormalized wave

function parameters. This is performed in step 3(b) in Table 6.1.

In steps 3(e) and 3(f), we regularize the gradients of the normalization and the objective

function. It is necessary to regularize both prior to the projection that will come in the next step.

To prevent moves that change the normalization, we project out the derivative of the normal-

ization from the objective function. Otherwise, the moves diverge from the equal normalization

manifold, and it becomes difficult to evaluate the overlaps accurately. This is performed in step

3(g) in Table 6.1.1

We find that line minimization, performed in step 3(i) in Table 6.1, improves the performance of

the algorithm significantly. We use correlated sampling to compute the objective function for various

values of τ , and fit to a quadratic. We also reject moves that change the relative normalization by

more than 0.3.

6.3 Demonstration of excited state optimization using

VMC

To demonstrate the technique, we apply it to two cases; H2 at varying bond lengths to check for

correctness versus an exact solution, and the excited states of benzene to demonstrate that it is

capable of optimizing about 10,000 parameters on a system with 30 electrons in the calculation.

1Since we are using multi-Slater-Jastrow wave functions in this work, it was more convenient to control the
normalization of the wave function in this way. Another option, not tried here, is to parameterize the wave function
in a norm-conserving manner, which could increase the efficiency of the algorithm. On the other hand, for emerging
wave functions, it may be more convenient to allow the normalization to vary.
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6.3.1 Application to H2

For application to H2, the trial wave function was a simple complete active space (CASCI) wave

function with 2 electrons and 2 orbitals taken from restricted Hartree-Fock. We take the lowest

three excited states from this calculation, labeled ΨCASCI,i, where i runs from 0 to 2. This wave

function was modified using a 2-body Jastrow as parameterized in previous work[118] to obtain

ΨCASCI-J,0 = ΨCASCI,0e
U0 (6.17)

We then optimized the determinant, orbital, and Jastrow parameters using a modified version of

stochastic reconfiguration implemented in pyqmc to obtain ΨCASCI-J,0.

We then considered two Jastrow-based approximations to the excited states. The first, which

we denote “Fixed,” is commonly used in the literature. It is given by

ΨFixed CASCI-J, i = ΨCASCI,ie
U0 . (6.18)

In this fixed wave function, no parameters are optimized at all; that is, the Jastrow is the same

as the ground state and the determinant and orbital coefficients are kept fixed. The second, we

denote “Optimized,” begins with Eqn 6.18, and uses the penalty method to optimize determinant,

orbital, and Jastrow parameters while ensuring orthogonality to lower states. In the Supplementary

Information, a Snakemake workflow[119] is provided that performs the calculations shown here in

pyqmc and pyscf.[120] We use a λ of 2 Hartrees for these calculations, which were converged.

For reference values, we used full configuration interaction (Full CI) to compute exact energies

in a finite basis. We found that at the triple ζ level, the energies were fairly well converged. This

is slightly earlier than most materials, due to the fact that H2 is very simple.

In Fig 6.2, we demonstrate the targeting capability of this technique. Each point is a wave

function generated in the Dunning cc-pvdz[5] basis as described above, with S∗ set to various

points on the Bloch sphere connecting the first 3 excited states. As expected, the superpositions of

low energy wave functions fall on a plane as sketched in Fig 6.1, a critical check that the calculation
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is creating the desired wave functions.

Comparisons between the CASCI, QMC, and full CI results are presented in Fig 6.3. With a

rather compact wave function, the optimized CASCI-J wave function obtains close agreement with

the exact calculation, while optimizing significantly from the starting fixed CASCI-J wave function.

In the case of the first excited state, simply adding a Jastrow factor to an existing CASCI wave

function does not improve the energies at all; optimization is required to obtain accurate results.

6.3.2 Application to benzene excited states

As a demonstration on a larger system, we computed the full π space spectrum of benzene using our

excited state optimization method. This set of thirteen states contains rich physical structure, with

two different spin channels, single and double electron excitations, and states with ionic bonding in

contrast to the covalently bonded ground state.[121] Some of these states, such as the 1E1u state,

have been considered strongly correlated by previous authors.[121] As such, these excitations are

a standard benchmark set for excited state methods and have been used to validate and compare

electronic structure techniques for some time.[122, 123]

To represent the wave functions, we used a multi-Slater-Jastrow wave function parametrization

of the form

|Ψ(~α,~c, ~β)〉 = eJ(~α)
∑
i

ci|Di(~β)〉. (6.19)

The Jastrow factor J(~α) is a 2-body Jastrow[118] factor. The determinants |Di〉 in the multi-Slater

expansion were selected from a minimal CASCI calculation over the six π electrons and six π orbitals

in benzene. The single particle orbitals used in the CASCI were computed using density functional

theory (DFT) with the B3LYP functional, BFD triple-ζ basis, and BFD pseudo-potential.[124]

The CASCI and DFT calculations were carried out using pyscf.[120] The parameters in the wave

function are: 108 Jastrow parameters ~α, 400 determinant coefficients ~c, and 9,288 orbital parameters

~β.

We used the parameterization of Eqn 6.19 to compute the benzene spectra using three different

methods, with increasing cost. The first method, denoted fixed, is a standard QMC excited state
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Table 6.2: Comparison of theoretically computed excitation energies to experimental values. All
values are in eV. Maximum indicates the transition of maximum intensity. The adiabatic and ZPVE
corrections are estimated using TDDFT with the PBE functional and 6-31g basis.

Spectroscopy[122, 125, 126, 127, 128] Corrections Vertical excitation

State Maximum E00 Adiabatic ZPVE Experiment DMC ~α,~c, ~β CC3[123] CASPT2[121] TDDFT-PBE0[129]
1B2u 4.90 4.72 -0.19 -0.18 5.09 5.15(3) 5.08 4.7 5.39
1B1u 6.20 6.03 -0.19 -0.33 6.55 6.62(4) 6.54 6.1 6.05
1E1u 6.94 6.87 -0.24 -0.32 7.43 7.72(4) 7.13 7.06 7.21
1E1u 6.94 6.87 -0.24 -0.32 7.43 7.63(3) 7.13 7.06 7.21
1E2g 7.80(20) 7.81 -0.21 -0.45 8.47 8.38(3) 8.41 7.77 7.52
1E2g 7.80(20) 7.81 -0.21 -0.45 8.47 8.34(3) 8.41 7.77 7.52
3B1u 3.94 3.65 -0.55 -0.19 4.39 4.15(3) 4.15 3.94 3.82
3E1u 4.76 4.63 4.89(3) 4.86 4.5 4.7
3E1u 4.76 4.63 4.96(4) 4.86 4.5 4.7
3B2u 5.60 5.58 6.08(4) 5.88 5.44 5.05
3E2g 7.49(25) 7.49(25) 7.74(4) 7.51 7.03 7.18
3E2g 7.49(25) 7.49(25) 7.60(4) 7.51 7.03 7.18

technique, where the coefficients ~α,~c are first optimized on the ground state CASCI root with frozen

orbital coefficients ~β, then the optimized Jastrow is multiplied with higher energy CASCI roots,

and finally these trial wave functions are used in VMC to compute excited state energies. This

method does not allow for state-specific optimization of any of the parameters ~α,~c, or ~β.

To understand the effects of orbital optimization in this system, we consider two parameter

sets using the penalty technique. In the first, we fix the orbital parameters ~β to the DFT ground

state orbital coefficients, but allow the other parameters ~α,~c to be optimized; we denote the wave

functions as VMC ~α,~c. Finally, we optimize all coefficients in Eqn 6.19, denoting those wave

functions ~α,~c, ~β. All QMC calculations were carried out in pyqmc.[97]

The results of our excited state computations at the VMC level are shown in Fig 6.4a. We

see a consistent 0.2 eV decrease in total energy across all twelve excited states going from the

fixed parameter QMC method to the ~α,~c method using our new optimization technique. We find

that optimizing ~α,~c, ~β yields up to a 0.5 eV reduction in total energy relative to the fixed technique

across nearly all of the excited states, a gain of around 0.3 eV due to orbital optimization. However,

the differences between the excited states and the ground state are very similar between the frozen

and optimized orbital calculations, which demonstrates the extent to which standard excited state

techniques depend heavily on error cancellation.

We computed the time-step extrapolated DMC energies for the computed excited state wave

functions, which are shown in Fig 6.4b. The additional benefit of optimizing the orbitals in DMC is
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Figure 6.1: The lower bound of E[Ψ] as a function of overlap with the first two eigenstates. The
vertices are the first three eigenstates.

seen primarily for just three states, states 1, 6, and 11, with reductions in energy of 0.14(3), 0.18(3),

0.22(3) eV respectively. The latter two of these states are the 1B1u,
1E1u states which have strong

ionic bonding character among the π orbitals, unlike the ground state which has covalent bonding

character.[121] This difference in bonding character is captured by the orbital optimization, leading

to larger reductions in total energy in these states, while the other states have no reduction in total

energy. The fact that only some excited states benefit from orbital optimization in DMC means

that the energy differences are affected; ultimately they are improved.

Before comparing to experiment, we note that most theoretical results report the vertical ex-

citation energy, which omits nuclear relaxation and vibrational effects. The transition from the

ground vibrational level of the ground state to the ground vibrational level of the excited state is

called the 0-0 excitation energy (E00), and is not necessarily the maximum intensity. The vertical
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Figure 6.2: Targeted overlaps for H2 in the space of the lowest three eigenstates. The yellow points
are wave functions, using the penalty method to set S∗. The x and y coordinates are the measured
overlaps after optimization, and the energy E[Ψ] is the expectation value of the wave function after
optimization.
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Figure 6.4: Benzene excited states computed using (a) VMC and (b) time-step extrapolated DMC
for the full π-space spectrum. Different colors refer to increased parameter sets. ~α are the Jastrow
coefficients, ~c are determinant coefficients, and ~β are orbital coefficients, as denoted in Eqn 6.19
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Figure 6.5: Relative cost Ti/T0 of computing excited states in VMC for the two different parame-
terizations considered on the benzene molecule, where Ti is the CPU time required to perform the
calculation of excited state i. T0 for the ground state were 1.25 and 23.00 hours on a single 40
processor node for the ~α,~c and ~α,~c, ~β parameterizations respectively.
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excitation energy can be related to the 0-0 excitation energy as follows:

E00(0→ j) = Ej( ~X0)− E0( ~X0) (vertical)

+ Ej( ~Xj)− Ej( ~X0) (adiabatic)

+
h̄

2

∑
i

(ωj,i − ω0,i). (ZPVE), (6.20)

where Ej is the Born-Oppenheimer energy of state j, Xj are the set of nuclear coordinates at

the minimum energy of state j, and ωj,i is the frequency of vibrational mode i for electronic

state j. The first line is the fixed nuclei vertical excitation energy, the quantity which is directly

computed in our work and the cited theoretical calculations, where the total energy of the jth

excited state is computed at the ground state equilibrium nuclear positions ~X0. The second line is

the adiabatic correction, which accounts for shifting of the nuclear positions in the jth excited state

to the configuration ~Xj . The last line is the zero-point vibrational energy (ZPVE) correction, and

accounts for changes in the vibrational degrees of freedom between the ground and excited state.

The experimental vertical excitation is obtained by subtracting the adiabatic and ZPVE energies

from the 0-0 excitation energies.

In Table 6.2, we compare the vertical excitation energy computed from experiment, the fully

optimized DMC results in this work, and literature results of large-basis coupled cluster (CC3)[123],

complete active space perturbation theory(CASPT2)[121], and time dependent density functional

theory using the PBE0 functional (TDDFT-PBE0)[129]. We also report computed ZPVE and

0-0 corrections using TDDFT with a 6-31g basis and PBE functional for the singlet states; we

encountered difficulties converging the triplet states in TDDFT. We believe the TDDFT estimates

to be reasonable given the agreement with computed and measured values in literature: -0.15 eV

[127] and -0.17 eV [130] adiabatic and ZPVE corrections for the 1B2u state, -0.56 eV [131] and

-0.17 eV [132] for the 3B1u state. For the available vertical excitations, the DMC and CC3 results

both are within 0.2 eV of the experimental values, while the CASPT2 and TDDFT method have

larger differences. The corrections due to adiabatic and ZPVE effects are large enough that this

conclusion might be reversed without these effects included.
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Table 6.3: Agreement between theoretical vertical excitation energies. Optimizing more parameters
using the penalty method improves the agreement between CC3 and DMC, as seen in the mean
and standard deviation of the difference between the excitation energies.

Method Parameters ∆Ej = Ej(m)− Ej(CC3)
mean (eV) RMS (eV)

CASPT2 -0.38 0.42
TTDFT-PBE0 -0.33 0.50
VMC None 0.34 0.46
VMC ~α,~c 0.12 0.35

VMC ~α,~c, ~β 0.19 0.35
DMC None 0.24 0.35
DMC ~α,~c 0.18 0.31

DMC ~α,~c, ~β 0.15 0.24

In Table 6.3, we list the mean and standard deviation of the difference between CC3 and other

methods. CC3 has been found to be very accurate for electronic excitations, including correlated

doubles-like excitations for benzene.[121, 133] The consistency between accurate, explicitly cor-

related methods like CC3 and our new QMC technique, which make different approximations,

is encouraging, as is the fact that the QMC results approach the CC3 results as the number of

optimized parameters is increased.

The cost of each excited state calculation is roughly a factor of 2-3 higher than the ground

state calculation, as shown in Fig 6.5. As a point of reference, the ground state optimization took

1.25 hours on a 40 core processor for the fixed orbital optimization and 23 hours on a modern 40

core processor for the orbital optimized calculation. One should keep in mind that as is typical in

Monte Carlo, this cost is highly dependent on the desired uncertainty in the result. We chose very

converged parameters, which results in a relatively high computational cost. The total relative cost

over the ground state for all 13 states is a factor of 25 for the ~α,~c calculation and 30 for ~α,~c, ~β.

Importantly, the relative cost does not increase rapidly with the state, since as mentioned in the

introduction the overlaps are not very expensive to evaluate.
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6.4 Conclusion

We have presented a scalable algorithm to compute approximate excited states of many-body

systems using variational Monte Carlo. Our method is somewhat less complicated to implement

than the linear method of Filippi[106, 107, 108], since the derivatives of the local energy are not

required. Further, our technique is capable of optimizing complex parameters like orbital coefficients

in a state-specific manner, and likely would be able to optimize parameters from wave functions such

as backflow[134, 135] and neural network forms,[136, 137, 138, 139] as well as pairing functions[140],

since the complexity is not much higher than normal wave function optimization. In comparison to

the method of Neuscamman [110, 111, 112, 113], this technique does not require a tuned parameter

ω. One positive aspect of this is that the penalty technique can access several distinct but degenerate

excited states separately. Degenerate ground states would also be detected by the penalty technique.

The penalty technique is capable of optimizing wave functions with any overlap with a refer-

ence state. This capability may be useful in some circumstances, particularly for strongly corre-

lated systems and magnetic systems, in which energy eigenstates may not be easily representable

by simple wave functions, but non-orthogonal basis states can be used to make relevant exper-

imental predictions.[141] Such wave functions are also appropriate for usage in density matrix

downfolding.[39]

The study on the benzene molecule revealed a few interesting physical insights. First, orbital

optimization improves the nodal surface for excited states, particularly those with significant ionic

character as compared to the ground state. Secondly, the classical association of the vertical

excitation with the maximum intensity in spectroscopy leads to errors up to 0.4 eV in the excitation

energies of benzene. A fully quantum treatment of the Franck-Condon principle, as shown here,

brings the experimental estimates in closer alignment with coupled cluster and quantum Monte

Carlo results.
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Chapter 7

Tight binding model with lattice
interactions for twisted bilayer
graphene

7.1 Introduction

An exciting new task in condensed matter physics is understanding the microscopic mechanisms

leading to a diverse set of electronic states in twisted bilayer graphene (TBLG). TBLG is a van

der Waals structure that consists of two sheets of single layer graphene laid on top of each other

and twisted with a relative twist angle θ. Below θ ∼ 4◦, the twist results in a large scale Moiré

superlattice structure in TBLG. Within the Moiré regime, TBLG hosts putatively correlated su-

perconducting and insulating phases [142, 143, 144, 145, 146] and anomalous Hall effects [147, 148]

for certain ”magic” values of θ, the first of which is near 1.05◦. It is believed that these correlated

phases emerge near the magic twist angles through the interplay of electronic and structural degrees

of freedom.

Electronically, the unusual properties of TBLG are suggested to arise from band flattening at

the Fermi level. The current understanding is that with sufficiently flat bands, even weak effective

interactions can dominate the low-energy behavior, leading to the observed correlated states in

TBLG near magic twist angles. The bulk of evidence for band flattening in TBLG is found in

theoretical calculations [149, 150, 151, 152, 153, 154] where bands near the Fermi level are shown to

flatten to a few meV bandwidth near magic twist angles. Experimentally, a recent combination of

low-energy electron microscopy and angle-resolved photoemission spectroscopy measurements [155]

also observe flat bands at charge neutrality with bandwidths of 30 ± 15 meV at θ = 1.3◦.

Accompanying the changes in electronic structure near the magic twist angles are structural

relaxations. In TBLG, structural relaxations enhance the size of low-energy AB regions and con-
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strict those of AA regions and are paired with out-of-plane buckling, bringing together AB re-

gions and pushing apart AA regions. This structural relaxation has been observed experimentally

through scanning tunneling microscopy measurements on TBLG[156] and in theoretical calculations

[149, 157, 158, 159, 160, 161, 162]. Perhaps most importantly, using simple tight binding models —

such as the one of Moon and Koshino (MK)[163] — it has been proposed[149] that lattice relaxation

is required to isolate the flat bands from the rest of the bands in the system.

Thus it appears that the structural and electronic degrees of freedom are tightly coupled in

this system. However, it is unclear if more accurate treatments of the electronic and structural

degrees of freedom would result in the same conclusions. While some density functional theory

(DFT) calculations have been performed at the magic angle scale,[150, 158] these calculations are

very computationally demanding and it is not feasible to perform many calculations to disentangle

electronic and structural degrees of freedom.

In this chatper, I present a highly accurate local environment tight-binding (LETB) model for

TBLG, fit to DFT calculations of 72 structural configurations of bilayer graphene. The LETB

model is shown to reproduce DFT for structural configurations relevant to TBLG much more

accurately than simple TB models such as the MK model. In the LETB model, both isolated flat

bands and fragile topology[164, 165, 166, 167, 168, 169, 170] are observed both with and without

lattice relaxation, in contrast to the simpler MK model, in which lattice relaxation is required for

isolated flat bands with fragile topology. A Python package that generates LETB models for any

configuration is made available.

7.2 Training data for twisted bilayer graphene model

7.2.1 Atomic configurations

Our goal is to develop a TB model for TBLG that correctly accounts for the variations in structure

encountered at small twist angles. Our approach is to use deformed, untwisted, primitive cell bilayer

graphene configurations. We use two deformation strategies in order to capture the variations in

stacking pattern as well as in-plane and out-of-plane relaxations seen in small twist angle TBLG.
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The first are in-plane and out-of-plane shifts, strains and shears,and the second are random atomic

variations. Details of the deformation strategies follow.

We begin by introducing notation for the deformed atomic configurations. There are four atoms

in our configurations with positions denoted by the vectors ~a1,~b1,~a2,~b2, where a, b refer to the two

distinct atoms in a given graphene layer, and 1, 2 are layer indices. The real space lattice vectors for

the primitive cell are denoted by ~L1, ~L2. These six vectors fully describe the atomic configurations.

The shifted, strained, and sheared configurations are best understood through the deformation

equation 

~a1

~b1

~a2

~b2

~L1

~L1


=

(


0 0 0

0 a0 0

0 0 c0

0 a0 c0
√

3a0 0 0

−
√

3
2 a0

3
2a0 0


+



0 0 0

0 0 0

0 s ∆

0 s ∆

0 0 0

0 0 0



)
·


1 + εxx εxy

εxy 1 + εyy

0 0

 . (7.1)

The first matrix on the right hand side denotes our reference configuration: the equilibrium AA

configuration with a0 = 2.683 Bohr, c0 = 6.646 Bohr. The second matrix applies between layer

shifts through the parameter s and inter-layer spacing variations through ∆. In our dataset, s takes

three values - 0, a, 3a/2 - which correspond to the AA, AB and SP bilayer configurations, and ∆

takes three values - 0 Bohr, -0.149 Bohr, -0.126 Bohr - corresponding to the AA, AB, and SP layer

spacings. The third matrix applies in-plane shears via εxy and in-plane strains in the x- and y-

directions via εxx, εyy. All three parameters independently take three values, -0.01, 0, and 0.01,

corresponding to 1% atomic position variations in-plane. The five parameters, s,∆, εxx, εxy, εyy

can be varied together, leading to a large space of strained, sheared, and shifted configurations of

bilayer graphene.

For the random configurations, the parameters s,∆, εxx, εxy, εyy are chosen at random from a

uniform distribution between the corresponding ranges described in the previous paragraph. Once

this new deformed configuration is constructed, we add an additional 6×3 random matrix R to the

configuration to allow for arbitrary inter-atomic displacements not available in Eq 7.1. To ensure
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that the random displacements incurred by R are not too large, we require that the Frobenius

norm ||R||F = 0.01a0, corresponding to random variations that move the atomic configurations by

a percent of the equilibrium atomic spacing.

We also employ twisted configurations in our dataset, but these are used only for model vali-

dation. Two twisted configurations are used, one at 9.4 degree twist, and the second at 4.4 degree

twist. More details of the density functional calculations and validation procedure are presented in

section III C.

7.2.2 Density functional theory (DFT) band structures

For each of the deformed geometries in our training data set, we computed the total SCF energies

and band structure using Van der Waals DFT. We used the BEEF-VDW Van der Waals functional

[171], a polarized triple-zeta all electron basis constructed for solid-state DFT calculations [172],

and a 36 x 36 x 1 k-point grid. All DFT calculations were carried out using the PySCF package

[173, 174].

To demonstrate the accuracy of the DFT calculations, we present a comparison of the DFT

band structure to angle resolved photoemission spectroscopy (ARPES) measurements [6] in Fig 7.1

for the eqilibrium AB configuration. Near the Fermi level we find excellent agreement between

DFT and ARPES, with DFT being within 0.1 eV of the experimentally measured excitations. The

errors between DFT and ARPES increase away from K, but do not deviate more than 10% from

the experimental measurements.

7.2.3 Wannierization of DFT band structure

From each DFT calculation we isolate the four π bands and Wannierize them to extract tight

binding (TB) parameters. The disentanglement scheme of Souza, Marzari, and Vanderbilt [175]

is used to isolate the four π bands from bands with C 1s, 2s, 2px, 2py orbital character. The

Maximally Localized Wannierization procedure [176, 177, 178] is then used to generate Maximally

Localized Wannier Orbitals (MLWO), and the isolated π bands are projected onto the MLWOs to
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Figure 7.1: Comparison of DFT and ARPES band structures for AB bilayer graphene near the
Fermi level. The band path goes in a line from the Γ to K point in the first Brillouin zone. ARPES
measurements are digitized from Figure 3d of Joucken et al. [6]

get TB parameters. All Wannierization calculations are carried out using the Wannier90 [179] and

pyWannier90 packages [174].

A comparison of the Wannierized band structure to DFT is shown in Fig 7.2. The figure shows

the energy relative to the Fermi level for the DFT and Wannierized bands for the AB configuration.

The Wannierized bands fall exactly on top the DFT bands, demonstrating the accuracy of both

the disentanglement and MLWO schemes.

7.3 Local environment TB model (LETB)

We propose a local environment dependent TB parameterization which explicitly accounts for the

nuclear configuration in the vicinity of atoms involved in hopping. The general form of the LETB

is

HLETB =
∑
ijσ

tLETBij (~Ri, ~Rj , {~Rij})c†iσcjσ + h.c. (7.2)
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Figure 7.2: Comparison of DFT and Wannierized band structures using the MLWO scheme near
the Fermi level for AB bilayer graphene. Only the π bands near the Fermi level are Wannierized.

Here i, j are atomic indices for the pair of atoms with a hopping value of tLETBij , σ is the spin index,

c†iσ is the creation operator for a localized orbital on site i of pz character with spin σ, ~Ri, is the

location of atom i, and {~Rij} is a set of nuclear positions within the local environment of atoms

i, j. The definition of the local environment of two atoms i, j and functional dependence of tij on

the local environment coordinates are made explicit in sections III A and III B.

The LETB can be contrasted with the MK model [163]:

HMK =
∑
ijσ

tMK
ij (~Ri − ~Rj)c

†
iσcjσ + h.c.

tMK
ij (~d) = V 0

ppπe
(− |

~d|−a0
δ )

[
1− (

~d · ẑ
|~d|

)2
]

V 0
ppσe

(− |
~d|−d0
δ )(

~d · ẑ
|~d|

)2

(7.3)

where the constants take values V 0
ppπ = −2.7eV, V 0

ppσ = 0.48 eV, a0 = 2.683 Bohr, d0 = 6.331

Bohr, δ = 0.246a0. Conceptually, this model bridges two exponentials: the Vppπ exponential which

corresponds to intra-layer hoppings and the Vppσ term corresponding to inter-layer hoppings. Unlike
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Figure 7.3: Plot of intralayer hoppings in our sampled configurations as a function of the in-plane
distance dxy. A clear separation of nearest neighbors is present, allowing for separate models to be
fit for each term.

the LETB, the hoppings depend only on the pairwise displacement vector between hopping centers.

Nonetheless, the MK paramaterization is a staple in the field of TBLG band structure calculations,

and we use it as a point of comparison for model accuracy.

7.3.1 Intra-layer hopping

We begin by fitting the intra-layer hoppings, hoppings for atoms i, j within a single graphene

sheet. In this work we only consider intra-layer hoppings up to third nearest neighbor, and fit

separate models for the first, second, and third nearest neighbor hoppings. These choices were

made after looking at the distance dependence of the intra-layer hoppings computed in DFT over

the configurations in our training data set, as shown in Fig 7.3. Hoppings beyond the third nearest

neighbor takes values on the order 0.01 eV, 10 times smaller than the third nearest neighbor, and

are thus ignored. Further, a clear separation in distance is seen between the first, second, and third

nearest neighbors, justifying our separate treatment of these three terms.

Each model is taken to be linear in a set of geometric descriptors which account for the variations
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Intra-layer Hopping Models
1-NN -9.68(4) + 2.52(1)a
2-NN 1.55(1) + 0.022(2)b - 0.66(1)h1 - 0.20(1)h2

3-NN -1.23(1) + 0.04(1)c - 0.12(1)h + 0.23(1)l

Fang [157] Inter-layer Hopping Model
i λi (meV) ξi xi κi
0 239(2) 2.12(2) 1.871(4)
3 -40(1) 3.8(4) 0.52(4)
6 -5.9(7) 6.0(8) 1.52(1) 1.73(2)

Table 7.1: Table of cross validated fit parameters for the different terms in LETB. Cross validated
errors are presented in parentheses.

in local nuclear environment. The linearity of the models follows from the fact that variations in

hopping and distance seen in Fig 7.3 are within 1% of the equilibrium value for each hopping.

The full set of descriptors in consideration for each model is presented in Fig 7.4. For the nearest

neighbor hopping, the only descriptor is the pairwise distance between the two atoms. For the

second and third nearest neighbor, we consider geometric descriptors which extend to a farther

local environment and describe the triangular and hexagonal regions around the hopping centers,

respectively. It should be noted that all descriptors here are distances computed after projection

in the x− y plane.

Descriptor selection for the second and third nearest neighbor models is carried out using the

LASSO [180, 181] procedure. The LASSO method uses an altered cost function which adds an L1

penalty to the standard least squares regression function. The L1 penalty assigns zero coefficient

to any descriptors which do not improve model quality. Therefore, the LASSO method is used as

a systematic technique for descriptor selection when fitting linear models for the LETB.

After descriptor selection is carried out, the linear models are fit using cross validated (CV)

ordinary least squares regression. The CV technique partitions the training data into n = 5, in

this case, portions and sequentially fits on four portions and is tested on the remaining portion.

This technique allows us to simultaneously regress the linear model, determine whether our models

are overfit, and also compute statistical error bars for the fit parameters. A summary of the final

regressed models with CV parameters and error bars is presented in Table 7.1.

The simplest is the nearest neighbor model fit which is linear in the distance a between the
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Figure 7.4: Schematic diagram listing all possible descriptors used to fit linear models for intralayer
hopping. The red atoms denote the atomic pairs between - from left to right - nearest, next nearest,
and third nearest neighbor atoms.
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Figure 7.5: Plot of predicted versus computed DFT intralayer nearest neighbor hoppings. LETB
refers to this work, and MK is using the MK parameterization. The black line indicates perfect
agreement with the computed DFT values.

atoms. A comparison of the predicted LETB and MK hoppings to the computed DFT hoppings

are shown in Fig 7.5. We find excellent agreement to the DFT data with our fit yielding an R2

of 0.98. The MK parameterization, while following a similar trend to the LETB, consistently

underestimates the magnitude of the hoppings by 10%.

The second nearest neighbor model is more involved, and is best described by h1, h2, with b

yielding minor corrections. Again, a comparison of the model and DFT parameters can be seen in

Fig 7.6. We find excellent agreement of the LETB with the DFT data yielding an R2 of 0.92. The

MK parameterization, however, completely fails to describe the variations seen in the DFT data.

This is because the MK functional form does not account for the h1, h2 descriptors, which are the

most important for the second nearest hopping. Instead, it relies on the descriptor b only, which is

a very poor descriptor for the second nearest neighbor hopping.

The third nearest neighbor model in Fig 7.7 is the most complex, involving the size of the entire

hexagonal environment around the hopping centers. The selected regressors for the LETB are

h = (H1 +H2 +H3 +H4)/4, l = (a+ b+ d+ e)/4 and c, with an excellent fit quality of R2 = 0.96.

72



0.21 0.22 0.23 0.24
tDFT (eV)

0.22

0.24

0.26

0.28

t p
re

d (
eV

)

LETB
-1 * Moon

Figure 7.6: Plot of predicted versus computed DFT intralayer next nearest neighbor hoppings.
LETB refers to this work, and MK is using the MK parameterization. Note that we present the
MK hopping with a sign flip, as the model does not predict negative values. The black line indicates
perfect agreement with the computed DFT values.

Similar to the first nearest neighbor, the MK parameterization consistently underestimates the

hopping magnitude for the third nearest neighbor hopping. However, in this case the quantitative

error is much larger, with a nearly 50% error between the MK and DFT values.
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Figure 7.7: Plot of predicted versus computed DFT intralayer third nearest neighbor hoppings.
LETB refers to this work, and MK is using the MK parameterization. The black line indicates
perfect agreement with the computed DFT values.

7.3.2 Inter-layer hoppings

For the inter-layer hoppings, hopping for atoms i, j within separate layers, we use the parameteri-

zation proposed by Fang et al. [182]. The Fang model takes the following form

tFangij ({~Rij}) = tFang(~Ri − ~Rj , θu,ij , θd,ij)

tFang(~r, θu, θd) = V0(rxy/a)+

V3(rxy/a)(cos(3θu) + cos(3θd))+

V6(rxy/a)(cos(6θu) + cos(6θd))+

V0(r) = λ0e
−ξ0r2 cos(κ0r)

V3(r) = λ3r
2e−ξ3(r−x3)2

V6(r) = λ6e
−ξ6(r−x6)2 sin(κ6r)

. (7.4)
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Here the angles θu,ij , θd,ij account for the local environment effects between two atoms i, j. The

first angle θu indicates the orientation of the nearest neighbor triangle of the upper sheet atom

relative to the displacement vector ~Ri− ~Rj , and θd the orientation of the same triangle of the lower

sheet atom. The constant a = a0/
√

3 = 1.549 Bohr, and all other constants in the expression are

regression parameters.

While Fang et al. did fit the regression parameters in Eq 7.4, we do not use those parameters and

instead fit the parameterization to our training data. We use a non-linear least squares algorithm

to fit the parameters. As with the intra-layer parameters, we use a 5-fold CV to simultaneously fit

parameters and assess the error bars for the parameters. The summary of the fit parameters and

their CV error bars are presented in Table 7.1.

The results of the inter-layer fitting are shown in Figs 7.8, 7.9. Looking at the MK param-

eterization first, we find that the model performs well in two extreme regions - d < 7 Bohr and

d > 10 Bohr - but fails to describe most of the variation in the region in between, near 8 Bohr.

The Fang parameterization ameliorates this issue and is able to describe the variation in the DFT

data consistently across all bond lengths. Our results indicate that local environmental effects are

required to describe inter-layer hoppings in intermediate bond lengths near 8 Bohr.

7.3.3 Model validation

As a final check of model validity, in Figure 7.10 we compare the DFT band structures for TBLG

at 9.4 and 4.4 degree twists against the band structures computed using LETB. We find excellent

agreement between the DFT and LETB at all k points and at both twists for the four π bands near

the Fermi surface. As such, the use of primitive cell bilayer configurations for training paired with

a local TB approximation generalizes well to twisted bilayer.
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Figure 7.8: Plot of the predicted interlayer hoppings using the MK model, compared to DFT, as
a function of atomic pairwise distance. The upper figure shows the hoppings, and the bottom the
residual.
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Figure 7.9: Plot of the predicted interlayer hoppings using the Fang model, compared to DFT, as
a function of atomic pairwise distance. The upper figure shows the hoppings, and the bottom the
residual.
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Figure 7.10: Comparison of LETB and MK band structure versus computed DFT band structures
for 9.4 and 4.4 degree twist angles. Energy is relative to the Fermi level, and the standard K →
Γ→M → K ′ path through the Moire supercell is shown.
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7.4 Effects of accurate TB model on the electronic

structure of TBLG

To study the effects of the LETB on our understanding of TBLG, we computed band structures

for various small twist angles using LETB and the MK model with rigid and fully relaxed twisted

geometries. We consider twist angles of 2, 1.47, 1.16, 1.08, 1.05 and 0.99 degrees. Rigid geometries

consist of two sheets of unrelaxed graphene sheets twisted relative to each other with a commen-

surate twist angle. The fully relaxed geometries begin with the rigid geometries, and the atomic

positions are determined using fully atomistic nonequillibrium molecular dynamics (MD) simula-

tions. Comparison of computed band structures follow.

7.4.1 Isolated flat bands

In Fig 7.11 we present the bandwidths at the Γ point of the flat bands for the LETB and MK model

with rigid and relaxed geometries. Both models for both geometries yield flat bands with bandwidth

below 600 meV for twist angles below 1.2 degrees. With both geometries, the MK parameterization

achieves its first inflection point at 1.08 degree twist, whereas the LETB continues the downward

trend through 0.99 degree twist. It is unclear where the first inflection point for the LETB should

be, but it necessarily occurs below 0.99 degrees for both geometries. Defining the first magic twist

angle as the first inflection point of the bandwidth with respect to twist, the LETB yields a first

magic twist angle at least 10% smaller than the MK parameterization.

In Fig 7.12 we present the band gaps at the Γ point between the flat and dispersive bands

for the LETB and MK model with rigid and relaxed geometries. Unlike the bandwidths, the band

gaps exhibit qualitative differences between the different models and geometries. Beginning with

the rigid geometry, we note that the LETB has a finite band gap for all twist angles. The MK

parameterization, however, yields zero band gap for twists of 0.99, 1.05 and 1.08 degrees, coinciding

with the first inflection point observed in Fig 7.11. With the relaxed MD geometries, both LETB

and MK follow qualitatively similar trends, with band gaps nearly 10 times the rigid amount across

all twist angles.
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The computed band widths and gaps indicate that geometry relaxation is not required for ener-

getically isolated flat bands in TBLG for small twist angles. Restricted to the MK parameterization,

one may conclude that geometry relaxation is necessary to maintain isolated flat bands, consistent

with the analysis of Nam and Koshino. Our results when using the more accurate LETB model -

isolated flat bands below 1.08 degrees twist without geometric relaxation - instead demonstrate that

geometric relaxation is not required to qualitatively describe flat band physics. Rather, geometric

relaxation serves a quantitative role, enhancing the LETB band gap by nearly a factor of ten and

reducing the LETB bandwidth by a factor of two.

7.4.2 Fragile topology

In Figure 7.13 we present orbital densities at twists of 2 and 1.05 degrees to demonstrate electron

density localization in flat bands. Shown are the orbital densities of the lowest energy of the four

flat bands at different high-symmetry k-points Γ,M,K with fully relaxed MD geometries using the

LETB. We see a common localization pattern across the two twists - near the Γ point the density

localizes in the AB coordinated region and away from the Γ point the density localizes in the

AA coordinate region - with the magnitude of localization increasing as the twist decreases. This

pattern of density localization has been observed in extended tight binding models with relaxed

geometries [183].

The shared localization pattern of AB near Γ and AA elsewhere only deviates when using a

rigid geometry with the MK parameterization as demonstrated in Fig 7.14. In this figure we show

a twist angle of 1.05 degrees. The LETB results on the right column follow the localization pattern

of AB near Γ and AA elsewhere, while the MK parameterization does not, yielding AA localization

near Γ as well. The AA localization near Γ is also shared for twists of 0.99 and 1.08 degrees when

using the MK parameterization and rigid geometries. It should be noted that the appearance of

AA localization near Γ in the MK model with a rigid geometry coincides with the closing of the

band gap observed in Fig 7.12.

The computed orbitals indicate that geometry relaxation is not required for fragile topology

of the isolated flat bands. Here we use fragile topology characterized by the inability to create
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Figure 7.11: Computed flat band bandwidths for small twist angles near the magic twist angle using
LETB and MK model parameterizations. The bandwidth is computed as the difference between
the flat bands below and above the Fermi level at the Γ point. We also consider two different sets
of lattice geometries: rigid twisted geometry and a fully relaxed, molecular dynamics geometry.
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Figure 7.12: Computed band gap between flat and dispersive bands for small twist angles near
the magic twist angle using LETB and MK model parameterizations. The bandwidth is computed
as the difference between the flat bands above the Fermi level and the dispersive bands above the
Fermi level at the Γ point. We also consider two different sets of lattice geometries: rigid twisted
geometry and a fully relaxed, molecular dynamics geometry.
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Figure 7.13: Orbital density for the fully relaxed molecular dynamics geometries and LETB hopping
model of the lowest energy flat band at Γ,M,K points. Densities are shown for the 2 (left) and
1.05 (right) degree twists to demonstrate the orbital localization as the twist angle gets smaller.

symmetric, exponentially localized Wannier orbitals with only the flat bands in TBLG [166, 167].

Restricted to the MK parameterization, one may conclude that geometric relaxation is necessary

to ensure a fragile topology of the flat bands, as rigid geometric twists can yield AA character

orbitals across the first Brillouin zone and hence localized Wannier orbitals. Our results with the

more accurate LETB paint a different picture, namely that AB character at Γ is ensured even with

rigid geometries, preventing the localization of Wannier orbitals. As such, we have demonstrated

that accurate TB model like LETB can maintain a fragile topology in TBLG without geometric

relaxation.
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Figure 7.14: Orbital density for the rigid geometries of the lowest energy flat band at Γ,M,K points
compared between the MK (left) and LETB (right) parameterizations. We can see clearly that the
densities differ in orbital character near this twist angle between the two electronic models.
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7.5 Conclusion

We developed a local environment dependent tight binding (LETB) model using DFT and a simple

Wannierization procedure, and demonstrated its superior accuracy to the state of the art MK

parameterization. Our model achieves high accuracy as it explicitly includes the effect of the

local environment around the hopping centers on the hopping value between them. This exceeds

the ability of the MK parameterization which only takes into account the displacement vector

between the hopping centers. As such, our model yields a significantly better fit to TB parameters

computed in DFT and agrees with DFT computed TBLG band structures better than the MK

parameterization.

Our model reveals important understanding of the twisted bilayer system, namely that isolated

flat bands and fragile topology do not require geometric relaxation. We demonstrated that while

the MK parameterization requires geometric relaxation to maintain energetic isolation of the flat

and dispersive bands, the LETB yields flat isolated bands with both rigid and relaxed geometries.

For the LETB, the geometry relaxation only quantitatively affects the band structure, increasing

the magnitude of the band gap and decreasing band width. Further, we showed that the MK

parameterization does not maintain the fragile topology of the flat bands with rigid geometries,

whereas the LETB does. Combined, our results indicate that an accurate TB model can recover

many effects that a less accurate model would attribute to geometric relaxation.
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Chapter 8

Conclusion

Ab initio techniques are a powerful class of methods which can directly assess the relationships

between microscopic particles and macroscopic phenomenon. In this work, I have focused on two

different classes of ab initio techniques: first principles methods and effective models. First princi-

ples methods approximately solve for the eigenstates of 1.1, trading off accuracy for computational

efficiency, and include methods like DFT, QMC, and SHCI. The effective model approach works by

constructing a simpler effective Hamiltonian and Hilbert space that replace Ĥab,H and can be more

easily solved. My thesis work has been focused on improving the state-of-the-art in first principles

methods and effective models.

In my first project, presented in Chapter 4, I investigated a new trial wave function for use in

QMC through my work on non-orthogonal determinant multi-Slater Jastrow wave functions [40].

This new wave function parameterization was motivated by the need for refined orbital relaxation

in QMC ground state calculations for strongly correlated systems like transition metal materials.

We found on calculations for the C2 molecule that the non-orthogonal parameterization yielded sig-

nificant decreases in energy compared to the state-of-the-art orthogonal parameterization. Recent

QMC calculations on antiferromagnetic FeO set out to extend our simple demonstration by com-

puting the benefit of orbital optimization for strongly correlated systems, with orbital optimization

yielding the most accurate wave functions for VMC when compared to standard Slater-Jastrow

or backflow parameterizations [184]. My work therefore stands as a contribution to the catalogue

of QMC research demonstrating the importance of orbital optimization in accurate ground state

calculations of strongly correlated systems.

In Chapter 5, I showed my development and testing of a regularized estimator for wave function
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parameter gradients [43]. This work was necessitated by an infinite variance problem in VMC

orbital optimization, where the gradient of the total energy with respect to orbital parameters has a

divergent statistical variance. My solution was a simple regularization procedure which provides an

efficient method for stable optimization of ground state wave functions in QMC which can be quickly

integrated into any QMC code. This project has had an immediate and concrete impact, with a

recent project augmenting my regularization technique motivated by ”space warp” transformations

[42] with great success. The space warp estimator yields qualitatively similar behavior to the

regularized estimator I developed, and potentially has a lower variance. The development of the

”space warp” estimator demonstrates the flexibility and simplicity of the regularization technique

— it is a method which can be easily improved, implemented, and tested.

My work on developing a penalized estimator for excited states in QMC, as shown in Chapter

6, stands as a significant improvement to the state of the art [44]. The new method addresses many

of the shortcomings of current use QMC excited state techniques while maintaining computational

efficiency and accuracy as shown by my computation of the excitation spectrum of benzene. A recent

review article places the penalized estimator alongside the variance optimization of Neuscamman

[185] and Filippi’s state-averaged optimization [33] as the bleeding edge techniques for excited

state calculation in QMC. These three methods form a suite of techniques that, together, have

demonstrated the capabilities of QMC in accurately computing excited states from small molecules

like benzene to solids like LiH.

And lastly, in Chapter 7 I illustrated my development of a tight binding model for TBLG with

lattice interactions. This tight binding model went beyond the state-of-the-art as it was fit to ab

initio data directly, using DFT band structures for various bilayer nuclear configurations as training

data. The resultant tight binding model was shown to quantitatively describe the tight binding

parameter variations with lattice configuration more accurately than the state-of-the art Moon and

Koshino model [163]. Further, by computing band structures for TBLG from the fit tight binding

model, I was able to demonstrate that lattice relaxation is neither a requirement for isolated band

flattening nor the fragile topology of the isolated flat bands, in contrast to earlier calculations with

innacurate tight binding models arguing the necessity for lattice relaxation.
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The frontier of first principles methods and effective models is no doubt the accurate compu-

tation of properties of strongly correlated solids, and I believe my thesis work stands as a useful

contribution to this goal. Accurate ground and excited state computation for strongly correlated

materials will give us amazing insights into the emergent behaviors of exotic materials — unconven-

tional superconductors, spin glasses, and topological materials, to name a few. Future researchers

who want to accurately compute ground and excited state properties in QMC may use the wave

functions, estimators, and excited state techniques I have developed, or adapt and improve upon

them as seen fit. The development of accurate effective models with electron-electron, electron-

lattice, and even electron-spin models will give us high level understanding of the effective atomic-

or field-level descriptions which can be used to study exotic systems as well. Researchers who want

to accurately model materials can take training data and a framework of modelling from my study

on TBLG, adding in important pieces like effective electron-electron interactions. Whatever the

future may hold, I hope that my work on accurate and efficient computation of ground and excited

states from first principles, as well as models with electron-lattice interactions, will contribute to

the progression of the field towards these exciting achievements.
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[6] Frédéric Joucken, Eberth A. Quezada-López, Jose Avila, Chaoyu Chen, John L. Davenport,
Hechin Chen, Kenji Watanabe, Takashi Taniguchi, Maria Carmen Asensio, and Jairo Velasco.
Nanospot angle-resolved photoemission study of bernal-stacked bilayer graphene on hexag-
onal boron nitride: Band structure and local variation of lattice alignment. Phys. Rev. B,
99:161406, Apr 2019.

[7] Richard M. Martin. Theoretical Background. In Electronic Structure, pages 52–71. Cambridge
University Press, 2004.

[8] Kiel T. Williams, Yuan Yao, Jia Li, Li Chen, Hao Shi, Mario Motta, Chunyao Niu, Ushnish
Ray, Sheng Guo, Robert J. Anderson, Junhao Li, Lan Nguyen Tran, Chia-Nan Yeh, Bastien
Mussard, Sandeep Sharma, Fabien Bruneval, Mark van Schilfgaarde, George H. Booth, Garnet
Kin-Lic Chan, Shiwei Zhang, Emanuel Gull, Dominika Zgid, Andrew Millis, Cyrus J. Umrigar,
and Lucas K. Wagner. Direct comparison of many-body methods for realistic electronic
hamiltonians. Phys. Rev. X, 10:011041, Feb 2020.

[9] Jolyon Aarons, Misbah Sarwar, David Thompsett, and Chris-Kriton Skylaris. Perspective:
Methods for large-scale density functional calculations on metallic systems. The Journal of
Chemical Physics, 145(22):220901, 2016.

89



[10] Chris-Kriton Skylaris, Peter D. Haynes, Arash A. Mostofi, and Mike C. Payne. Introducing
onetep: Linear-scaling density functional simulations on parallel computers. The Journal of
Chemical Physics, 122(8):084119, 2005.

[11] Lin Li, Ask H. Larsen, Nichols A. Romero, Vitali A. Morozov, Christian Glinsvad, Frank
Abild-Pedersen, Jeff Greeley, Karsten W. Jacobsen, and Jens K. Nørskov. Investigation of
catalytic finite-size-effects of platinum metal clusters. The Journal of Physical Chemistry
Letters, 4(1):222–226, 2013. PMID: 26291235.
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improving the efficiency of quantum monte carlo calculations. Phys. Rev. E, 83:066706, Jun
2011.

92



[52] Julien Toulouse, Roland Assaraf, and Cyrus J. Umrigar. Chapter fifteen - introduction to
the variational and diffusion monte carlo methods. In Philip E. Hoggan and Telhat Ozdogan,
editors, Electron Correlation in Molecules – ab initio Beyond Gaussian Quantum Chemistry,
volume 73 of Advances in Quantum Chemistry, pages 285–314. Academic Press, 2016.

[53] Andrea Zen, Ye Luo, Guglielmo Mazzola, Leonardo Guidoni, and Sandro Sorella. Ab initio
molecular dynamics simulation of liquid water by quantum monte carlo. The Journal of
Chemical Physics, 142(14):144111, 2015.

[54] Paul M. Zimmerman, Julien Toulouse, Zhiyong Zhang, Charles B. Musgrave, and C. J. Um-
rigar. Excited states of methylene from quantum monte carlo. The Journal of Chemical
Physics, 131(12):124103, 2009.

[55] R. M. Grimes, B. L. Hammond, P. J. Reynolds, and W. A. Lester. Quantum monte carlo
approach to electronically excited molecules. The Journal of Chemical Physics, 85(8):4749–
4750, 1986.

[56] Miguel A. Morales, Jeremy McMinis, Bryan K. Clark, Jeongnim Kim, and Gustavo E. Scuse-
ria. Multideterminant wave functions in quantum monte carlo. Journal of Chemical Theory
and Computation, 8(7):2181–2188, 2012. PMID: 26588949.

[57] Claudio Genovese, Tomonori Shirakawa, Kousuke Nakano, and Sandro Sorella. General cor-
related geminal ansatz for electronic structure calculations: Exploiting pfaffians in place of
determinants. Journal of Chemical Theory and Computation, 16(10):6114–6131, 2020. PMID:
32804497.

[58] Eric Neuscamman, C. J. Umrigar, and Garnet Kin-Lic Chan. Optimizing large parameter
sets in variational quantum monte carlo. Phys. Rev. B, 85:045103, Jan 2012.

[59] Julien Toulouse and C. J. Umrigar. Full optimization of jastrow–slater wave functions with
application to the first-row atoms and homonuclear diatomic molecules. The Journal of
Chemical Physics, 128(17):174101, 2008.

[60] Alice Cuzzocrea, Anthony Scemama, Wim J. Briels, Saverio Moroni, and Claudia Filippi.
Variational principles in quantum monte carlo: The troubled story of variance minimization.
Journal of Chemical Theory and Computation, 16(7):4203–4212, 2020. PMID: 32419451.

[61] C. J. Umrigar. Observations on variational and projector Monte Carlo methods. Journal of
Chemical Physics, 143(16):0–16, 2015.

[62] H.M. Taylor and S. Karlin. An Introduction to Stochastic Modeling. Academic Press, 1981.

[63] Andrea Zen, Sandro Sorella, Michael J. Gillan, Angelos Michaelides, and Dario Alfè. Boosting
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[131] B. Hajgató, D. Szieberth, P. Geerlings, F. De Proft, and M. S. Deleuze. A benchmark
theoretical study of the electronic ground state and of the singlet-triplet split of benzene and
linear acenes. The Journal of Chemical Physics, 131(22):224321, 2009.

[132] Koichi Ohno and Risako Takahashi. Excited-state vibrations of benzene and polycyclic aro-
matic hydrocarbons: simple force field models based on molecular orbital characteristics of
hexagonal carbon networks. Chemical Physics Letters, 356(3):409 – 422, 2002.

98



[133] Pierre-François Loos, Martial Boggio-Pasqua, Anthony Scemama, Michel Caffarel, and Denis
Jacquemin. Reference Energies for Double Excitations. Journal of Chemical Theory and
Computation, 15(3):1939–1956, March 2019.

[134] Yongkyung Kwon, D. M. Ceperley, and Richard M. Martin. Effects of three-body and backflow
correlations in the two-dimensional electron gas. Physical Review B, 48(16):12037, October
1993.
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