
© Fall 2021 Madhav Khirwar

WAKE-SLEEP BAYESIAN PROGRAM SYNTHESIS APPLICATIONS
IN BIOINFORMATICS

BY

MADHAV KHIRWAR

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Bachelor of Science in Computer Engineering

in the Grainger College of the
University of Illinois Urbana-Champaign, Fall 2021

Urbana, Illinois

Adviser:

Professor Rohit Bhargava

ABSTRACT

Program synthesis is the process of learning mappings between sets of

inputs and outputs in a way that generalizes to new inputs. Contrary to deep

learning in the gradient descent sense, the goal of program induction isn’t to

’converge’ to a correct solution by performing gradient descent on millions

of parameters - rather it is to generate and search for discrete programs that

are expressed as combinations of a library of known ’concepts’ that will solve

the given problem.

The goal of my thesis is to explore the portability of program induction

onto the bioinformatics domain – specifically the problem of tumor grade

prediction. Programs enumerated to predict tumor grade from a data set of

colon cancer were up to 76% accurate when the library of primitives was lim-

ited to arithmetic, exponential and logarithmic operations. Further work will

involve building in models for solving differential equations (another success

was to induce Dreamcoder to discover the forward Euler method for solv-

ing PDEs), as well as building conceptual representations of n-dimensional

spatial data such as images.

Subject Keywords: Program synthesis; Bayesian wake-sleep Learning; Bioin-

formatics; Cancer

ii

To my family, for their love and support.

iii

ACKNOWLEDGMENTS

I would like to extend a special thanks to Professor Rohit Bhargava for

his guidance throughout the year and for encouraging me to explore novel

areas of AI research that I likely would have never otherwise come across

as a computer engineer. A thanks goes out to Kianoush Falahkheirkhah as

well for providing me with a solid foundation for this project as well as being

willing to guide me at all times and brainstorm solutions to every obstacle

that came along during this work.

Lastly, I would like to thank my parents, my sister, and my friends for

their steadfast support and for empowering me to seek knowledge.

iv

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . 1

CHAPTER 2 LITERATURE REVIEW 2
2.1 Deep Learning in Oncology 2

2.1.1 Successes of Deep Learning Approaches 2
2.1.2 Drawbacks of Deep Learning 3

2.2 Program Synthesis . 4
2.2.1 Definition . 4
2.2.2 Previous Work . 5

2.3 Wake-Sleep Program Synthesis and Dreamcoder 5
2.3.1 Description . 5
2.3.2 Motivation for Use in Bioinformatics 8

CHAPTER 3 EXPERIMENTAL METHODOLOGY AND RESULTS 9
3.1 Mathematical Modelling of Bio-chemical Systems 9

3.1.1 Differential Equations and Fick’s Second Law 9
3.1.2 Discovering Mathematical Models for known Bio-

chemical systems . 11
3.2 Discovering Models of Cancer 14

3.2.1 Discovering Known Models of Cancer 14
3.2.2 Synthesizing Unknown Hypotheses to Predict Tu-

mor Tolerance . 16

CHAPTER 4 CONCLUSION . 20

REFERENCES . 21

v

CHAPTER 1

INTRODUCTION

State-of-the-art artificially intelligent (AI) systems that have been success-

ful at accurately recognizing cancer and predicting its progression have relied

entirely on architectures of deep neural networks (DNNs) as noted by Tran

et al [1]. However, as noted in the same paper as well as by Rudin [2], a

major challenge with implementing deep learning (DL) into clinical practices

is the non-interpretable nature of these models’ results. While workarounds

to this problem have been proposed to quantify the influence each feature

has on the output such as Grad-CAM[3] and PG-CAM [4], inferring gener-

alizable logical rules from their results (even in visual form such as saliency

maps) is left up to domain experts’ own abilities to postulate hypotheses

that explain the saliency of sets of features. DL-based AI systems are not

inherently interpretable and need secondary ‘post-hoc’ models, which at best

can attempt to explain the output of a DNN with a probability distribution

for the saliency over the dimensions of the input.

As Rudin [2] notes, an alternative framework that outputs the fundamen-

tal connections between sets of features as opposed to the aforementioned

saliency maps would have to be inherently interpretable. Program synthe-

sis is one such framework because it is interpretable by construction. Since

programs are represented as logically connected concepts that are bound by

rules of the domain-specific language of the task, successful programs can

be readily interpreted by domain experts. Such information is useful for do-

main experts in bioinformatics, where knowing exactly how an AI system,

for instance, performed well at predicting tumor progression can allow for

potential unforeseen relationships between the tumor and its surrounding

microenvironment to come to light. Thus, the aim of this thesis is to ex-

plore the applicability of program synthesis to bioinformatics – specifically

the problem of predicting tumor tolerance given a set of primitive features.

1

CHAPTER 2

LITERATURE REVIEW

2.1 Deep Learning in Oncology

Deep Learning leverages multiple layers of (deep) neural networks to ex-

tract non-linear interpolated features from high-dimensional data [5]. While

covering all emergent DL methods that are applied to oncology is outside

the scope of this thesis, at a high level, layers of artificial neurons within

DNNs are connected sequentially (sometimes with recurrent or skipped con-

nections [6]). During supervised training, these networks forward-propagate

an input signal along with a ground truth signal, and upon quantifying the

incorrectness or ‘loss’ of the output in comparison to the ground truth, then

back-propagate the gradient of the loss signal through the network whilst

updating the scalar weights and biases of each neuron, thereby guaranteeing

convergence to a locally optimal solution via gradient descent.

2.1.1 Successes of Deep Learning Approaches

In oncology, Deep Learning systems that frame cancer prediction as a

tissue classification problem – be that in the form of sample-wise classification

or pixel-wise classification (semantic segmentation) – have had the highest

success in recent years [1]. State-of-the-art DNN architectures for cancer

prediction such as U-Net [7] have demonstrated up to 95% accuracy at pixel-

level classification [8] and have been applied to domains such as predicting

tumor gradation for prostrate [9, 10, 11], breast [12] and colon [13] cancers

with up to 85% accuracy, predicting cell composition of tissues from gene

expression information [14] with up to 90% accuracy, classifying molecular

subtypes of lung cancer [15] and modelling prognosis and survivability [16]

with up to 88% accuracy amongst others. Researchers at Seoul National

2

University Hospital and College of Medicine have proposed a novel system

called Deep Learning-based Automatic Detection and demonstrated that it

is able to analyse chest radiographs to detect abnormal growths and upon

being compared to 18 physicians’ detection abilities on the same set of images,

outperforms 17 of the 18 physicians [17].

2.1.2 Drawbacks of Deep Learning

Despite these successes, DL models have not seen wide adoption into clin-

ical environments because of their lack of explainability. As noted by Gulum

et al [18] as well as DARPA [19], there is an emergent inverse relationship

between the accuracy of models and their explainability.

Figure 2.1: Depiction of Interpretability-Accuracy trade-off [18].

This is a drawback because explainability of models is essential in practice

for a variety of reasons. There are legal and ethical concerns that arise from

medical advice or prognoses being output by a ‘black-box’ system, such as

the General Data Protection Regulation of the European Union that require

the use of patient data to be readily explainable [20]. Explainability is also

important to build a degree of trust between patients, doctors and clinicians

as noted by Holzinger et al [21].

While there have been attempts to explain the decisions made by DL-based

systems, these have been limited to highlighting interpolative relationships

3

between learned features as in GradCAM and PG-CAM [3, 4]. Even when

these relationships are represented as saliency maps, inferring causal rela-

tionships between features is left up to domain experts – often leading to

incorrect and misleading results [2]. This is because the secondary ‘post-hoc’

model that attempts to explain the outputs of a target ‘black-box’ model

by highlighted impactful features does so by finding areas of the input signal

that under deformation have the highest statistical correlation with deforma-

tion of the ground-truth signal. This approach can inherently only capture

correlative relationships (at best) and cannot capture causal relationships.

2.2 Program Synthesis

Treating learning a new task as searching for a program that solves it rather

than the purely statistical approach that neural networks take is closer to

how AI was initially defined [22]. Purely statistical approaches lack some

of the advantages of program synthesis – one being the ability to general-

ize strongly by extrapolating concepts across tasks instead of interpolating

between features. This leads to program synthesis being much more sample-

efficient as well. Another advantage is that this approach is interpretable

by construction – there is no need for saliency maps or gradient-based local-

ization because the program subsumes the domain specific language of the

task which is specified by the human expert and the knowledge discovered by

the inductive programming system can be reused across tasks. Lastly, any

Turing-complete language represents solutions to all solvable computational

tasks.

2.2.1 Definition

Program synthesis can be seen as search in a class of programs, referred

to as the hypothesis space H. Programs are characterized by their atomic

building blocks, which are hard-coded primitive operations (also called back-

ground knowledge or B), and search over H for a successful program is

search over combinations (recursive or not) of these primitives that success-

fully solve all the given task examples, denoted by E. Formally, the core

inductive programming goal is to find programs p ∈ H such that B∧H ⊨ E.

4

2.2.2 Previous Work

The initial stages of program synthesis were rule-based and employed clas-

sical search techniques where the task is well specified with assertions and

boundary conditions on both input and output, and the program is derived

from a formalized grammar [23]. Since the process of specifying these bound-

ary conditions is often more resource intensive than simply writing the pro-

gram itself, modern approaches tend to focus on paradigms of program syn-

thesis where a system is provided with a set of examples with paired of

input/output data and a set of primitive (background) functions. Empha-

sis in research in the modern era has been in developing efficient pruning

methods for the search over hypothesis space. Thus, approaches such as

DeepCoder [24] have implemented neural networks to learn mappings from

input-output pairs to attributes using latent vector representation of these

pairs and used these neural networks to recognize patterns in the training

data and prioritize programs that take those patterns into account.

2.3 Wake-Sleep Program Synthesis and Dreamcoder

The combinatorically large nature of the hypothesis space as well as the

need for a hand-tuned domain specific language have been major roadblocks

in program synthesis proliferating across different domains of tasks, as induc-

ing useful programs based solely on pruning search only helps to a certain

extent.

2.3.1 Description

To more efficiently prune the search tree, Dreamcoder builds in the ability

to acquire domain expertise by learning a domain-specific language as well

as the ability to learn procedural skill – such that the more expertise the

system has at a set of tasks, the better ‘skilled’ it is at searching for solutions

to other similar tasks. Procedural skill is acquired similar to the Deepcoder

strategy, by training a neural network in the use of a learned domain-specific

language during program synthesis.

5

One of the ways in which this system is novel is that it uses a wake-sleep

paradigm to infer both programs as well as a prior probability distribution

over programs likely to solve tasks. The prior distribution is represented as a

concept library L which in turn is used as the background for neural-network

pruned search where the neural network predicts, conditioned on the task,

a posterior probability distribution over candidate programs. The search

occurs in three phases. The wake phase searches for solutions to a given set

of tasks X by evaluating potential programs on their ‘intuitive’ correctness

using a trained recognition model Q(p|x) that ranks candidate programs with

a probability of being useful P (p|x) for each task x ∈ X and attempts to

find successful programs px such that:

P [pL] ∝ P [x|p]P [p|L] (2.1)

is maximized.

The first sleeping phase is called abstraction, where the goal is to grow

the concept library by discovering abstractions that allow solutions to be

expressed more compactly than purely in terms of primitives (along the lines

of Occam’s razor) and prioritize programs that have the shortest lengths (are

shallower in the search).To best perform this compression, the description

lengths of both the library as well as the programs enumerated during waking

must be minimized. The library L is expanded such that:

P (L)Πp a refactored pxP [x|p]P [p|L] (2.2)

is maximized. This is achieved by refactoring commonly occurring branches

of program search that are functionally equivalent and assimilating them into

new primitives for the library.

The second sleep phase is called dreaming, and it is during this phase that

the neural network that is the recognition model for selecting useful pro-

grams is trained. The training data for the neural network takes the form

of (program, task) pairs and is drawn from two sources: one being the set

of programs and tasks seen during the waking (program synthesis) phase

and the other being ‘fantasies’ – programs from the library. The neural

network’s posterior probability distribution Q(p|x) is trained to be approxi-

mately equivalent to P [p|x, L] such that a task x is drawn either from replays

6

or fantasies.

Figure 2.2: A diagram of the wake-sleep algorithm, Ellis et al [25].

High-level pseudocode for the algorithm is as follows:

7

Figure 2.3: High level algorithm of Dreamcoder as described by Ellis et al
[25]

2.3.2 Motivation for Use in Bioinformatics

One of the main applications of wake-sleep program synthesis described in

this thesis is related to cancer. In the past various versions of program synthe-

sis have been applied to discovering rules governing cancer progression (as by

Nassif et al [26] and Bevilacqua et al [27]), as well as in areas such as DNA se-

quencing [28]. However, these approaches have had highly tailored and high-

level primitives encoded before program synthesis and refactoring/breaking

symmetries between programs in the library is not emphasized, and as a re-

sult the breadth of the search explodes exponentially. Using a system that

bootstraps program synthesis from a well-refactored and expressive library

of concepts and a neural network trained to prioritize useful-seeming pro-

grams greatly reduces the breadth of the search, recognizing and refactoring

often-used primitives into a new program greatly reduces the depth of the

search.

8

CHAPTER 3

EXPERIMENTAL METHODOLOGY AND
RESULTS

This section outlines the application of wake-sleep program synthesis to

two sets of tasks in the bioinformatics domain. By demonstrating the ability

of and challenges faced by a modified version of Dreamcoder for each task

a baseline is established for each of these tasks, this thesis proposes wake-

sleep program synthesis as a strong candidate for future work in hypothesis

discovery in bioinformatics.

3.1 Mathematical Modelling of Bio-chemical Systems

This subsection describes discovery of known biochemical models. The

datasets are constructed with input/output tuples for each equation and in

order to simulate the noise inherent in experimentally procured biochemical

data, the output of each equation is randomly jittered by 10%. The parame-

ters of the most successful searches for each of these equations are tabulated

next to them.

3.1.1 Differential Equations and Fick’s Second Law

Fick’s Law for diffusion describes how diffusion causes the concentration

to change with respect to time. This partial differential equation underpins

models in fields such as neurons, biopolymers, diffusion across a membrane

amongst others. Fick’s second law is:

∂φ

∂t
= D

∂2φ

∂x2
(x, t) (3.1)

Where φ is the concentration function, t is time and x is position. Since

the default Dreamcoder system is unable to solve differential equations, this

9

feature had to be added. The first step was to make Dreamcoder solve an

ordinary differential equation, for which the dataset was constructed using

the Forward Euler method for approximating ODEs and was set as the target

program for the system to discover. Since the ODE was in one dimension,

the problem was formulated as a list processing problem where the ODE in

question was of the form dy
dx

= f(x) and the dataset was constructed with

the following formula and initial conditions:

yn+1 = yn + f(yn, xn)(xn+1 − xn), y0 a random constant (3.2)

The following table describes the primitives (background programs) that

made up the initial library of the program synthesis, the number of wake/sleep

cycles it took for the correct program to be induced for each basic algebraic

function:

Table 3.1: Discovery of Euler’s method for Ordinary Differential Equations

Primitives +,−,×, car(Lisp), map(Lisp), index(Lisp)
Wake/Sleep Cycles 1
Datatypes real number list, real number → real number list

Since increasing the number of primitives increases the combinatorial space,

program synthesis with more primitives require more wake/sleep cycles to

find a successful program. Then, the next step was to discover the forward

Euler method for partial differential equations, with Fick’s second Law in

one spatial dimension as the target equation (3.1). To leverage parallelism,

the set of tasks included the forward Euler method discovery task for ordi-

nary differential equations. The dataset was constructed with the following

formula and initial conditions:

φn+1
i = φn

i + α
∆t

∆x2
(φn

i+1 − 2φn
i + φn

i−1), φ
0
0 a random constant (3.3)

10

Table 3.2: Discovery of Euler’s method for Partial Differential Equations
and Fick’s second law

Primitives +,−,×, 1, 0,Euler’s Method for ODEs
Wake/Sleep Cycles 2
Datatypes real number, real number → real number

The following graph shows the progression of search for the forward Euler

formula for a Fick’s second law. The search for the forward Euler method for

solving PDEs was parallelized with the search for the forward Euler’s method

for solving ODEs, and thus the ODE formula is discovered in the first cycle

which leads to the PDE formula being discovered in the following cycle:

Figure 3.1: Graph showing the progress of the program synthesis with each
wake/sleep cycle.

3.1.2 Discovering Mathematical Models for known
Biochemical systems

To illustrate the portability of wake-sleep program synthesis as a paradigm

for hypothesis discovery in biochemical datasets, this subsection details the

program discovery process for known biochemical laws, as presented in [29].

The following subsection describes some equations as well as the process of

their discovery:

11

Equation 1: Model for Red Blood Cell Production:

Rn+1 = Rn(1− f) + γfRn−1 (3.4)

Where γ is a reproduction constant, Rn is the number of red blood cells at

a given time n, and f the number of cells produced at once.

Table 3.3: Discovery of Model for RBC production

Primitives 1, 0,+,−,×, car(Lisp), map(Lisp), index(Lisp)
Wake/Sleep Cycles 1
Datatypes real number list, real number → real number list

Equation 2: Hardy-Weinberg Equations relating frequency of 2 alleles in

a population:

p2 + 2pq + q2 = 1

p+ q = 1

Where p and q are the frequencies of genotype AA and aa in a population

respectively and pq is the frequency of Aa in that population.

Table 3.4: Discovery of Hardy-Weinberg Equations

Primitives +,−,×, 1, 0, power, real coefficient
Wake/Sleep Cycles 2
Datatypes real number ∈ [0, 1] , real number ∈ [0, 1]

→ real number ∈ [0, 1]

As can be seen in the following figure, in synthesizing a program that

arrives at a correct solution to these two equations with constraints, the first

program to be discovered is the relationship between p and q, following which

the quadratic form equation is discovered as well.

12

Figure 3.2: This graph shows the progression of search for the
Hardy-Weinberg equations that describe an equilibrium.

Equation 3: Two-state model of protein folding kinetics, as described by

Zwanzig [30]:

kfPU(t)− kuPF =
dPN

dt
(t)

PN + PU = 1

Where PN is the fraction of the protein in its native state and PU is the

fraction of the protein in its unfolded state, and kf is the folding rate and

ku is the unfolding rate. Since this is an ordinary differential equation and a

modified version of Dreamcoder is able to discover the form of Euler’s method

for an ODE, parallelizing search between the given equation and 3.2 along

with the constraints of PN and PU allowed search for a correct solution to

share a common library, with the latter equation effectively bootstrapping

the former.

Table 3.5: Discovery of Model for protein folding kinetics

Primitives +,−,×, car(Lisp), map(Lisp), index(Lisp)
Wake/Sleep Cycles 1
Datatypes real number list, real number → real number list

13

The following graph shows the progression of search for the two-state model

of protein kinetics. Between wake/sleep cycles 7 and 8 the model came across

a test case that did not fit its hypothesis, and generalized its hypothesis in

order to fit all cases:

Figure 3.3: This graph shows the progression of search for a mathematical
model to describe protein folding kinetics

3.2 Discovering Models of Cancer

This section discusses applications of wake/sleep program synthesis in dis-

covering hypotheses that model cancer. In order to discover hypotheses that

can describe tumor progression, the search was augmented by including prim-

itives that are known to be key predictors in cancer progression to maximize

the probability that the search would be biased in the direction of programs

that are similar to known formula in the domain, because this approach re-

sulted in the discovery of the most accurate hypotheses with 76.5%, 69.6%

and 65.6% respectively.

3.2.1 Discovering Known Models of Cancer

Following the results described in section 3.1, the wake/sleep algorithm is

applied to the task of discovering known mathematical models that govern

14

tumor growth as a sanity check as well as to establish a baseline of hypothesis

synthesizing ability in oncology. The following tables describe two of these

equations and the search process for them:

Equation 1:

dV

dt
(t) = VN(kp − kl)

where VN = V0 × e
(kp−kt)

∆t

Here, V0 is the tumor volume at time 0, kl and kp are constants governing

the rates of cell loss and cell production respectively.

Table 3.6: Discovery of Model for tumor growth progression

Primitives 1, 0,+,−,×, power, car(Lisp), map(Lisp), index(Lisp)
Wake/Sleep Cycles 1
Datatypes real number list, real number → real number list

Here the system is again able to use the high-level primitive provided by the

forward Euler method for ODEs and is thus able to find a suitable program

within the first wake/sleep cycle as seen in the following graph:

Figure 3.4: This graph shows the progression of search for the ODE that
describes tumor growth in terms of its volume.

15

Equation 2:

p = 1− (1− (1− (1− µ)d)k)Nm (3.5)

Where p is the probability of cancer, d is the number of cell divisions, Nm

is the number of stem cells, k is the number of critical rate-limiting pathway

driver mutations and µ is the mutation rate as described by Calabrese and

Shibata [31].

Table 3.7: Discovery of model describing probability of cancer

Primitives +,−,×, 1, 0, power
Wake/Sleep Cycles 2
Datatypes real number ∼ 10−6 , real number ∼ 10−6,

real number ∼ 10−6, real number ∈ [0, 1]
→ real number ∈ [0, 1]

Figure 3.5: This graph shows the progression of search for the
aforementioned probabilistic model of cancer.

3.2.2 Synthesizing Unknown Hypotheses to Predict Tumor
Tolerance

The main dataset that was utilized for this thesis was a set of 269 images

from HD-IR spectroscopic imaging data provided by Professor Rohit Bhar-

gava’s Laboratory at the Beckman Institute at the University of Illinios at

Urbana Champaign. The images were segmented into 10 colon histological

16

components (HCs) as described by Tiwari et al [32]. For each HC, the au-

thors used 2 features: dHC which was defined as the distance between tumor

cells and a non-tumor HC, and NHC which was defined as the density of an

HC in a predetermined radius R=600 microns. From the authors’ tests, these

features were only statistically significant with reactive stroma (RS) HC.

The following diagram from Tiwari et al. illustrates the features as they

are measured on the hematoxylin and eosin (H&E) image:

Figure 3.6: From figure 3A of Tiwari et al. [32]

17

These two features, namely dRS and NRS were selected as primitives for

program discovery from these images. These features were obtained from

segmented image that was part of the dataset by selecting 50 separate data-

points for each image by selecting 50 random tumor pixels from the segmen-

tation map, and using Euclidean distance measurement to the nearest RS

pixel to obtain dRS and dividing the number of RS pixels by the number of

total pixels in a radius R=600 microns to obtain NRS. The following figure

displays an example of H&E image of a tumor microenvironment along with

a segmented image of the same.

Figure 3.7: (left) H&E image of a tumor microenvironment. (right)
Corresponding segmentation map from which features were obtained.

The dataset was posed as a program synthesis problem by making tuples

(dRS, NRS) of the features as input, as well as True or False as output,

depending on if the tumor was well or poorly tolerated respectively. The goal

of the program synthesis was to discover a hypothesis that was able to model

tumor tolerance based on the two features provided to it. Over multiple runs

with different sets of primitives (systematically cycling through algebraic,

Boolean, and advanced primitives such as Euler’s formula for ODEs) as well

as running different searches in parallel, the following table describes the runs

with the top 3 best accuracies (defined as number of correct predictions on

a test set withheld during training divided by total size of test set):

These results are over a baseline of 50% by randomly selecting True/False.

Interestingly, despite being provided with a set of advanced primitives such

as the ability to model ordinary differential equations, the highest accuracies

were achieved by programs that were completely algebraic, with thresholding

18

Table 3.8: Discovery of model describing probability of cancer

Primitives Wake/Sleep Cycles Hypotheses Accuracy
+,−,×,÷, power,≥ 10 d2RSNRS ≥ 0 76.57%
1, 0,−1,+,−,×,≥ 5 dRSNRS ≥ 1 69.64%
real numbers
∈ [−1, 10],+,×,≥ 4 dRS ≥ 12NRS 65.67%

on certain real numbers or single-variable algebraic expressions. Of note is

the necessary inclusion of a primitive that given a real number or set of real

numbers, will output a Boolean. This was necessary as the problem is framed

as a classification problem, since framing it as anything else (regression, for

instance) would have made the search space much larger by virtue of the

output space being the set of all real numbers rather than simply True/False,

and done so without providing any relevant information.

19

CHAPTER 4

CONCLUSION

In this thesis, we introduced wake/sleep Bayesian program synthesis as

a state-of-the-art general purpose program synthesis framework and demon-

strated its ability to discover a wide range of mathematical and logical models

in the bioinformatics domain without having to perform changes to the fun-

damental algorithm between changing domains. We demonstrated the ability

of Dreamcoder to synthesise the Euler method for ordinary differential equa-

tions by extending Dreamcoder’s list processing functionality, which opens

the possibility for more complex and expressive models to be discovered. We

also ported the system onto a tumor classification problem, and the results

achieved are indicative of a degree of success – wake/sleep program synthe-

sis will certainly not solve cancer but can help uncover correlations between

features as well as use a set of limited features to induce a program that

maximizes predictive power by discovering an ‘interaction feature’.

Future work to enhance portability onto the bioinformatics domain will

involve wake-sleep program synthesis on linear algebra primitives as well as on

multi-dimensional tuples. This is because given an input image, the ability to

perform matrix operations and capture locality from images will likely allow

for spatial and geometric relations in images to be implicitly conceptualized,

and by leveraging the feature extraction power of Convolutional Neural Nets

and then using those as primitives for program synthesis we may be able

to discover more expressive hypotheses that describe tumor tolerance with

higher accuracy and give novel insight into fundamental processes in the

tumor microenvironment.

20

REFERENCES

[1] K. Tran et al., “Deep learning in cancer diagnosis prognosis and treat-
ment selection,” Genome Medicine, 2021.

[2] C. Rudin, “Stop explaining black box machine learning models for high
stakes decisions and use interpretable models instead,” Nature Machine
Intelligence, 2019.

[3] S. Lee et al., “Robust Tumor Localization with Pyramid Grad-CAM,”
CORR, 2018.

[4] R. Selvaraju et al., “Grad-CAM: Visual Explanations from Deep Net-
works via Gradient-based Localization,” 2016.

[5] Y. LeCun et al., “Deep learning,” Nature, 2015.

[6] K. He et al., “Deep Residual Learning for Image Recognition,” Computer
Vision Foundation, 2016.

[7] O. Ronneberger et al., “U-Net: Convolutional Networks for Biomed-
ical Image Segmentation,” Medical Image Computing and Computer-
Assisted Intervention (MICCAI), 2015.

[8] G. Jimenez and D. Racoceanu, “Deep Learning for Semantic Segmenta-
tion vs Classification in Computational Pathology: Application to Mi-
tosis Analysis in Breast Cancer Grading,” Frontiers in Bioengineering
and Biotechnology, 2019.

[9] H. Ryu et al., “Automated Gleason Scoring and Tumor Quantification in
Prostate Core Needle Biopsy Images Using Deep Neural Networks and
Its Comparison with Pathologist-Based Assessment,” Cancers, 2019.

[10] G. Nir et al., “Comparison of Artificial Intelligence Techniques to Evalu-
ate Performance of a Classifier for Automatic Grading of Prostate Can-
cer From Digitized Histopathologic Images,” JAMA Netw Open, 2019.

[11] P. Strom et al., “Artificial intelligence for diagnosis and grading of
prostate cancer in biopsies: a population-based diagnostic study,”
Lancet Oncology, 2020.

21

[12] B. Ehteshami et al., “Using deep convolutional neural networks to iden-
tify and classify tumor-associated stroma in diagnostic breast biopsies,”
Modern Pathology, 2018.

[13] T. Vuoung et al., “Multi-task deep learning for colon cancer grading,”
ICEIC Barcelona, 2020.

[14] K. Menden et al., “Deep learning–based cell composition analysis from
tissue expression profiles,” Science Advances, 2020.

[15] K. Yu et al., “Classifying non-small cell lung cancer types and tran-
scriptomic subtypes using convolutional neural networks,” Journal of
the American Medical Informatics Association, 2020.

[16] B. Jing et al., “A deep survival analysis method based on ranking,”
2019.

[17] J. Nam et al., “Development and Validation of Deep Learning-based
Automatic Detection Algorithm for Malignant Pulmonary Nodules on
Chest Radiographs,” Radiology, 2019.

[18] M. Gulum et al., “A Review of Explainable Deep Learning Cancer De-
tection Models in Medical Imaging,” Applied Sciences, 2021.

[19] Defense Advanced Research Projects Agency, “Broad agency announce-
ment explainable artificial intelligence,” DARPA-BAA-16-53, 2016.

[20] E. Hoofnagle et al., The European Union general data protection regu-
lation: What it is and what it means. Information Communications
Technology Law, 2019.

[21] A. Holzinger et al., “Causability and explainability of artificial intel-
ligence in medicine,” Wiley Interdiscip Rev Data Min Knowl Discov,
2019.

[22] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach,
3rd ed. Wiley, 2010.

[23] Z. Manna and R. Waldinger, “A deductive approach to program syn-
thesis,” ACM Transactions on Programming Languages and Systems,
1980.

[24] M. Balog et al., “Deepcoder: Learning to write pro-
grams,” CoRR, vol. abs/1611.01989, 2016. [Online]. Available:
http://arxiv.org/abs/1611.01989

22

[25] K. Ellis et al., “Dreamcoder: Bootstrapping inductive pro-
gram synthesis with wake-sleep library learning,” Association
for Computing Machinery, p. 835–850, 2021. [Online]. Available:
https://doi.org/10.1145/3453483.3454080

[26] H. Nassif et al., “Uncovering Age-Specific Invasive and DCIS Breast
Cancer Rules Using Inductive Logic Programming,” IHI’10 - Proceed-
ings of the 1st ACM International Health Informatics Symposium, pp.
76–82, 11 2010.

[27] V. Bevilacqua et al., “Identification of tumor evolution patterns by
means of inductive logic programming,” Genomics Proteomics Bioin-
formatics, 2008.

[28] J. Fisher and S. Woodhouse, “Program synthesis meets deep learning
for decoding regulatory network,” Current Opinion in Systems Biology,
2017.

[29] C. Kuttler, “Mathematical models in biology,” 2009.

[30] R. Zwanzig, “Simple model of protein folding kinetics,” Proceedings of
the National Academy of Sciences of the United States of America, 1995.

[31] P. Calabrese and D. Shibata, “A simple algebraic cancer equation: cal-
culating how cancers may arise with normal mutation rates,” The Amer-
ican Journal of Pathology, 2010.

[32] S. Tiwari et al., “INFrared-based Organizational Measurements of tu-
mor and its Microenvironment to predict patient survival,” Science Ad-
vances, 2021.

23

