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ABSTRACT

Unsteady two-dimensional problem of a thin liquid layer with prescribed time-dependent influx into
the layer, position of the influx section , and the thickness of the liquid at this section is studied by
methods of asymptotic analysis. The ratio of the rate of the liquid thickness variation at the influx
section to the influx velocity plays a role of a small parameter of the problem . The influx parameters
are such that the flow in the thin layer is inertia dominated, with gravity, surface tension and liquid
viscosity being approximately negligible. Such flows were studied with respect to several applications,
some of which are listed in the Introduction. One of the applications concerns with splashing during
droplet impact onto a rigid substrate and related kinematic discontinuity propagating along the
spray sheet, which is produced by the spreading droplet. This type of splashing was studied by
Yarin and Weiss (1995) within a quasi-one-dimensional approach averaging the flow velocity over
the layer thickness. We also start with the one-dimensional thin-layer approximation assuming the
influx flow is accelerated. Such influx conditions lead to unbounded growth of the thickness of the
liquid layer at a certain location and at a certain time instant within the one-dimensional approach.
The present study recovers for the first time the structure of the flow close to this singularity using
methods of asymptotic analysis. To this aim, the second-order outer solution, which is valid outside
the region of the unbounded flow, is derived. The second-order outer solution is used to find proper
stretched inner variables and the equations governing the inner flow at the leading order. It is shown
that the inner free-surface flow in the stretched variables is two-dimensional, potential, non-linear
and independent of any parameters of the original problem.

I. INTRODUCTION

The original motivation to study thin liquid layer flows with time-dependent influxes come
from the configuration depicted in Fig. 1. In this two-dimensional problem, an elastic plate impacts
obliquely onto a thin liquid layer. In the Cartesian coordinate system Oxy, the line y = 0 corresponds
to the rigid bottom, and the line y = h corresponds to the initial undisturbed position of the liquid
free surface. An elastic plate initially touches the liquid free surface at a single point, which is
taken as x = 0, y = h. Then the plate moves to the right and penetrates the liquid layer. The initial
velocities of the plate, initial inclination angle of the plate and the elastic characteristics of the plate
are given. The coupled problem of the plate deflection and the flow under the plate was studied in
the leading order by Khabakhpasheva and Korobkin (2020a). See also a review of existing results
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and approaches for the problem of oblique impact by rigid and elastic bodies on shallow water in
that paper. A thin layer approximation was used, which is valid for long plates impacting the liquid
layer at small angle and with a horizontal speed being much greater than vertical speed of the plate.
In this approximation, the flow under the plate does not depend on the flow in the wake behind the
plate. In the present study, we are concerned with the flow in the wake behind the plate. This flow
is investigated using the computed characteristics of the flow at the trailing edge of the plate or at
the section, where the free surface separates from the lower surface of the plate, after the coupled
problem for the region below the moving plate has been solved. It will be shown below that the flow
in the wake can also be described within the thin layer approximation, as the flow under the plate.
However, if the influx into the wake is accelerated, then this approximation predicts unbounded
thickness of the liquid layer at some locations behind the plate. The present study is focused on
such influx conditions and fine details of the flow at these special locations.

FIG. 1. Sketch of the flow in the wake behind a gliding elastic plate.

Flows in the wakes behind bodies impacting onto a liquid with high horizontal speeds are of
practical interest because of possible water aeration in the wakes. Air entrainment during impacts of
droplets onto a thin liquid layer, which is important for performance of some heat exchangers, was
studied experimentally by Cherdantsev et al. (2017) and Hann et al. (2018). It was observed that
the rate of the air entrainment during oblique droplet impacts is high and cannot be explained by
the air-cushion effect, see Hicks and Purvis (2010, 2011). Possible mechanisms of the air entrainment
by oblique droplet impact were modeled by Khabakhpasheva and Korobkin (2020a), who studied
oblique impact of an elastic plate onto a thin liquid layer. The plate deflections were comparable
with the thickness of the liquid layer. It was shown that air bubbles can be trapped in the liquid
layer because of the plate leading edge rotation towards the liquid and elastic deflection of the
plate, the jet formed at the leading edge of the wetted part of the plate, and the jets, which may
be formed on the surface of the wake behind the plate, see Fig. 1. Experiments by Cherdantsev et
al. (2017) showed that air bubbles are mainly entrained in the wake created behind an impacting
droplet. Two-dimensional steady flows generated by bodies gliding along a free surface were studied
by Semenov and Wu (2013) including the gravity effects. See also relevant studies and results by
Yoon and Semenov (2011) and Faltinsen and Semenov (2008). Martinez-Legazpi et al. (2015) studied
three-dimensional wake behind a high-speed vessel experimentally, numerically and theoretically, in
order to explain high level of water aeration in such wakes.

We shall investigate evolution of the wake for the configuration depicted in Fig. 1. Khabakhpasheva
and Korobkin (2020a) obtained that the speed of the flow at the entrance to the wake, x = L(t),
which is the trailing edge of the plate in Fig. 1, is zero initially, then becomes negative with increasing
magnitude which exceeds the horizontal speed of the plate, see Fig. 3(d) in that paper, where the
dimensionless speed of the flow at the inlet to the wake is shown by blue line. This implies that the
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liquid is injected into the wake from under the plate during the early stage of the oblique impact by
the elastic plate. Later the flow speed at the entrance to the wake becomes positive. The flow into the
wake is accelerated at the first stage and then decelerated. Within the thin layer inertia-dominated
approximation, such time variation of the injection speed leads to a gradient catastrophe, which is
an infinite gradient of the flow in the wake developed from a smooth input. Unbounded gradient of
the flow results in unbounded increase of the thickness of the liquid layer, which can be interpreted
as jetting from the surface of the liquid layer or splashing.

This mechanism of splashing was studied by Pegg et al. (2018) in the axisymmetric problem
of droplet impact onto an elastic plate of small radius, see Fig. 2(a), and by Khabakhpasheva
and Korobkin (2020b) in the problem of droplet impact onto a vibrating plate, see Fig. 2(b). The
elastic plate starts to vibrate after it is completely wetted and the impact pressures are not very
high in the problem studied by Pegg et al. (2018). These vibrations lead to oscillations of the
wetted area expansion and oscillations of the flow speed into the spray sheet. Parameters of the
problem were obtained such that the plate oscillations result in unbounded increase of the thickness
of the spray sheet, see Fig. 2(a), which was interpreted as splashing. The same mechanism of
splashing was discovered in the axisymmetric problem of droplet impact onto vibrating rigid plate,
see Khabakhpasheva and Korobkin (2016, 2020b). Variations of the amplitude and frequency of
the plate vibration allow us to control splashing making the splashing close to the periphery of the
wetted part of the plate, which may lead to entrapping the air in front of the advancing free surface
of the droplet, see Fig. 2(b). It was shown that only forced vibration of the plate causes splashing.
The gravity, surface tension and the liquid viscosity were neglected in both problems. Places and
times of splashing were calculated. However, it was not clear how the jetting from the surface of
the spray sheet develops, what are the jet thickness and its speed. Deeper analysis of the local flow
near the place of the splashing was required. This type of splashing can be also detected in free
liquid jets with oscillations of the flow speed at the entrance to the jet, see Fig. 2(c). The effect of
these kinematic waves, which are caused by pulsation of the entry jet speed, on jet break down was
studied by Meier et al. (1992). Note that Fig. 2(a-g) show only sketches of the processes but not
their dynamics.

Yarin and Weiss (1995) studied splashing during droplet impact onto a dry and rigid substrate,
see Fig. 2(d). They argued that "the splashing threshold corresponds to the onset of a velocity
discontinuity propagating over the liquid layer on the wall. This discontinuity shows several aspects
of a shock."A simplified quasi-one-dimensional approach with averaged velocity of the flow across the
layer thickness including the surfac by e tension effects and excluding gravity and viscous effects was
used. The unsteady one-dimensional equations of the flow were solved for a given initial distribution
of the flow velocity in the liquid layer. This initial distribution was represented by a finite hump,
see Fig. 18 in their paper, with "a sharp decrease"of the velocity at the ends of the hump. This
problem is similar theoretically to the problem of droplet splashing caused by a gradient catastrophe
of the flow in the layer, where input distributions are smooth. The model developed and studied
by Yarin and Weiss (1995) "predicts the existence of a new type of kinematic discontinuity wave,
namely a discontinuity in the velocity and film-thickness distributions. This discontinuity shows
many aspects of a shock wave, but also propagates in an incompressible liquid. The discontinuity
has a sink of mass at its front, which corresponds to the emergence of a thin liquid sheet parallel to
the discontinuity front and virtually normal to the film on the wall."

Stumpf et al. (2021) studied drop impact onto a thin viscous film with focus on parameters of the
corona, see Fig. 2(e). The liquid in the viscous film and the liquid in the droplet did not mix during
the impact. This problem is similar to the problem studied by Yarin and Weiss (1995), however,
there are several new effects in the problem of droplet impact onto a viscous film. One of them is the
flow of the viscous film under the spreading droplet with the possibility that some liquid from the
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FIG. 2. Sketch of the spray sheet thickness at different time instants in the axisymmetric problem
of spherical droplet impact onto (a) a small elastic circular plate mounted into a rigid substrate,
and (b) a vibrating rigid plate. Here h(r, t) is the spray sheet thickness, r is the radial coordinate,
r = 0 at the point of the initial impact, z is the vertical coordinate, z = 0 on the vibrating plate.
(c) Kinematic waves caused by pulsation of the jet speed. Splashing by drop impact onto dry (d)
and wet (e) substrates. (f) Flat plate impact onto a thin liquid layer. (g) Collapse of a bubble near
a rigid wall with splashes. More details about the dynamics of the processes depicted in this figure

can be found in the papers cited in the text.
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viscous film enters the corona. It is expected that regimes of such impact and splashing depend on
relative velocity of the droplet spreading over the viscous film and the velocity of this viscous film,
which is caused by squeezing the viscous layer by the impacting droplet. Replacing the droplet with
a rigid plate and focusing on the flow in the thin inviscid layer outside the plate, see Fig. 2(f), one
arrives at the problem studied by Korobkin (1999). Initial speed of the outflow from under the plate
was non-zero with the thin liquid layer outside the plate being initially at rest. This discontinuity
resulted in formation of jets moving from the plate and inclined to the initial surface of the liquid
layer. The motion of the jet root and the jet thickness were calculated using the conservation laws
of mass and impulse. If the plate moves at a constant speed, the jets are inclined towards the plate
at the angle 45 degrees, which well corresponds to the angle measured in experiments with a heavy
box falling onto shallow water by Bukreev and Gusev (1996). Such inclined jets on the surface of
the liquid layer can trap air when the jets fall down due to gravity. The asymptotic model of sudden
plate impact onto shallow water by Korobkin (1999) was confirmed experimentally by Kang et al.
(2008).

Korobkin (1999) studied two-dimensional and three dimensional problems of impact by a flat
plate onto a thin liquid layer, as well as impacts by an elastic plate. However, the original motivation
of this paper came from the experiments and analysis of a bubble collapse near a rigid wall by Tong
et al. (1999). A sketch of the bubble collapse near a rigid wall is shown in Fig. 2(g). Note the splash
on the thin film between the collapsing bubble and the wall. It was argued that the pressure on the
wall under these splashes could be higher than the pressure at the centre of impact. In section 7 of
Korobkin (1999), it was shown that in the problem of rigid plate impact onto a thin liquid layer the
pressure always is maximum at the centre of the plate. However, for the plate penetrating the liquid
layer with deceleration, the pressure in the splash roots can be higher than at the plate centre.

In contrast to the problem studied by Korobkin (1999), in the present paper, we investigate the
flow of a thin liquid layer caused by a given smooth inflow of the liquid through a section, which
moves at a given speed, see Fig. 1. For example, in the problem of oblique impact by an elastic
plate onto a thin liquid layer of thickness h, we are given the x-coordinate, x = L(t), of the point
on the plate, position of which is described by equation y = yb(x, t), where the free surface of the
wake separates from the plate, the distance of this separation point, h − s(t), from the bottom
of the liquid layer, and the averaged horizontal velocity of the flow at the entrance to the wake,
u(L(t), t) = uL(t). Initially, L(0) = 0, uL(0) = 0 and s(0) = 0 at t = 0. We assume that the speed
of the separation point, L′(t), and the speed of the liquid inflow into the wake, uL(t) if uL(t) < 0,
are of order of U , and the vertical speed of the separation point, s′(t), is of order of V , where U and
V are initial horizontal and vertical velocities of the plate with V/U = ε being a small parameter of
the problem. In this paper, the speed scales U and V and other parameters of the flow in the wake
are such that the flow is governed by the liquid inertia with gravity and surface tension playing
secondary roles, and liquid viscosity being negligible. The leading-order solution of this problem
was studied by Shishmarev et al (2020) using the method of characteristics for smooth influx data
from the paper by Khabakhpasheva and Korobkin (2020a).

Other ranges of the inflow parameters will be investigated in Part 3 of this study. In particular,
the regime with the wake flow being governed at the leading order by liquid inertia and the
surface tension, as in the study by Yarin and Weiss (1995), will be described. Edwards et al
(2008) investigated unsteady impact of two thin liquid layers at a high Froude number Fr using
the methods of asymptotic analysis. In the paper by Edwards et al (2008), the singularity of the
solution at Fr =∞ was resolved assuming that the gravity effects provide a major contribution to
the dynamics of the flow near the singularity.

To obtain the conditions of inertia dominated flow in the wake, we introduce dimensionless
variables, identify parameters responsible for different effects, and construct a formal second-order
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asymptotic solution of the hydrodynamic problem with free surface in the wake as ε → 0. This
asymptotic solution is not uniformly valid for some inflow conditions at x = L(t). Such cases will
be identified and the leading order solutions localized in time and space near the singularities of
the outer solution will be obtained. These local solutions describe jetting in the wake, which may
lead potentially to entrapping air into the liquid layer behind a planning plate. Note that the flow
in the wake, which is of main concern in this paper, depends only on the smooth functions L(t),
uL(t) and s(t), and does not depend on both the details of the flow in x > L(t) and the body
motion. Therefore, the present analysis is valid also for any two-dimensional thin-layer flows with a
time-varying inflow speed and a time-varying position of the flow inlet.

The second-order terms in the solution in the wake as ε→ 0 provide small contributions to the
leading order solution everywhere in the wake except a small region, where the gradient catastrophe
occurs. The second-order solution is needed to find the dimensions of the region, where the second-
order terms of the solution are of the same order as the leading order terms and more detailed
analysis of the flow is required, as well as the inner coordinates in this region. It will be shown that
the inner coordinates are related to the original variables x, y and t by complicated relations, which
would be difficult to obtain using only physical reasoning. The flow in the wake at the leading order
as ε → 0 is one-dimensional, unsteady and nonlinear. The flow in the inner region at the leading
order in stretched variables is two-dimensional, potential, non-linear and unsteady with unknown in
advance free surface, but independent of any parameters of the original problem. The forcing comes
to this universal problem through matching conditions in the far field. Therefore, we will derive and
present this universal problem without any parameters in it, which governs jetting from the surface
of a thin liquid layer for smooth inflow conditions.

The general formulation of the problem will be presented and discussed in section II. The range
of the parameters of the problem, where the flow in the wake is inertia dominated at the leading
order as ε→ 0, will be obtained. The asymptotic analysis of the problem with the small parameter
ε will be performed in section III. The leading order solution and the first order corrections to it
as ε → 0 will be derived. This second order outer solution will be analysed in terms of its validity
when u′L(t) is negative, which implies that the inflow into the wake is accelerated. The conditions
of the gradient catastrophe will be obtained. The time and place, when and where this catastrophe
with unbounded growth of the wake surface elevation occurs, will be determined and the behaviour
of the outer second-order solution near the catastrophe conditions will be analysed in section IV.
The model governing the local flow at the leading order and describing the jetting from the wake
surface will be derived and studied in section V. The conclusions are drawn in section VI together
with short introductions of Part 2 and 3 of this study.

II. FORMULATION OF THE PROBLEM

In general, a two-dimensional flow of incompressible liquid in the wake, x < L(t), 0 < y < η(x, t),
is governed by the Navier-Stokes equations,

∂u

∂x
+
∂v

∂y
= 0,

Du

Dt
= −1

ρ

∂p

∂x
+ ν∇2u,

Dv

Dt
= −1

ρ

∂p

∂y
+ ν∇2v, (1)

where the equation y = η(x, t) describes the elevation of the liquid free surfaces, u(x, y, t) and
v(x, y, t) are the horizontal and vertical components of the flow velocity correspondingly, ρ is the
liquid density, ν is the kinematic viscosity of the liquid, and p(x, y, t) is the hydrodynamic pressure.
The total pressure is equal to p(x, y, t) plus the hydrostatic pressure ρg(h − y), where g is the
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gravitational acceleration and h is the equilibrium thickness of the liquid. The flow vorticity,

ω(x, y, t) =
∂v

∂x
− ∂u

∂y
, (2)

satisfies the equation
Dω

Dt
= ν∇2ω. (3)

In (1) and (3), D/Dt = ∂/∂t+u∂/∂x+v∂/∂y is the material derivative, and ∇2 = ∂2/∂x2+∂2/∂y2

is the Laplacian.
Equations (1) and (3) are to be solved subject to the kinematic,

∂η

∂t
+
∂η

∂x
u = v(x, η(x, t), t), (4)

and dynamic,
~τ · P~n = 0, ~n · P~n = γæ, (5)

boundary conditions on the liquid free surface, y = η(x, t), x < L(t). Here P (x, y, t) is the stress
tensor,

P = −(p+ ρg(h− y))

(
1 0
0 1

)
+ 2ρν

 ∂u
∂x

1
2

(
∂u
∂y + ∂v

∂x

)
1
2

(
∂u
∂y + ∂v

∂x

)
∂v
∂y

 , (6)

~n and ~τ are the normal and tangent unit vectors to the free surface,

~n = (−ηx, 1)/R, ~τ = (1, ηx)/R, R =
√

1 + η2x, (7)

æ(x, t) is the curvature of the free surface, æ = ηxx/R
3, and γ is the coefficient of surface tension.

The dynamic conditions (5) imply that there are no both normal and tangential stresses on the free
surface of the liquid.

On the bottom,
u = v = 0 (y = 0, x < L(t)). (8)

At the entrance to the wake, x = L(t), the following conditions are imposed

η(L(t), t) = h− s(t), ω(L(t), y, t) = 0,

∫ h−s(t)

0
u(L(t), y, t)dy = uL(t)(h− s(t)), (9)

where 0 < y < h− s(t). The functions uL(t), s(t) and L(t) are prescribed in the present study. Note
that imposing the vorticity at the entrance to the wake as zero is an approximation, which follows
from minor role of the liquid viscosity under the plate, see Khabakhpasheva and Korobkin (2020a).
Note that the flux into the wake is prescribed in (9) but not the velocity distribution at the entrance
to the wake. Conditions (9) are correct within the second order thin layer approximation employed
in the present study. Higher order approximations and other ranges of the flow parameters would
require more refined inflow conditions including, in particular, the vertical component of the flow
velocity at the entrance to the wake. The initial conditions for the problem (1)-(8) are

u(x, y, 0) = 0, v(x, y, 0) = 0, p(x, y, 0) = 0, η(x, 0) = h, ω(x, y, 0) = 0 (x < 0). (10)

The flow in the wake decays as x→ −∞.
The formulated problem is investigated in dimensionless variables. The thickness of the liquid

layer h is taken as the scale of the vertical coordinate y and the free-surface elevation η. The scale
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U of the influx speed uL(t) is taken as the scale of the horizontal velocity of the flow in the liquid
layer. The scale V of the time variation of the wake thickness at the inlet, s′(t), is taken as the scale
of the vertical velocity of the flow in the liquid layer. The ratio ε = V/U is a dimensionless small
parameter of the problem. The scale of the horizontal coordinate x is selected as hε−1 to keep the
continuity equation non-trivial in the dimensionless variables when ε→ 0. Dimensionless variables
are denoted with tilde and are introduced by the following relations,

u = Uũ(x̃, ỹ, t̃), v = V ṽ(x̃, ỹ, t̃), x = hε−1x̃, y = hỹ, η = hη̃(x̃, t̃), t =
ht̃

V
, (11)

uL(t) = UũL(t̃), L(t) = hε−1L̃(t̃), s(t) = hs̃(t̃), ω =
U

h
ω̃(x̃, ỹ, t̃), p = ρV 2p̃(x̃, ỹ, t̃).

The material derivative in the dimensionless variables and the dimensionless vorticity read

D

Dt
=
V

h

D̃

D̃t
,

D̃

D̃t
=

∂

∂t̃
+ ũ

∂

∂x̃
+ ṽ

∂

∂ỹ
, ω̃(x̃, ỹ, t̃) = −∂ũ

∂ỹ
+ ε2

∂ṽ

∂x̃
. (12)

Equations (1) and (3) in the dimensionless variables have the forms

D̃ũ

D̃t̃
= −ε2 ∂p̃

∂x̃
+

1

Re

(
∂2ũ

∂ỹ2
+ ε2

∂2ũ

∂x̃2

)
,

D̃ṽ

D̃t̃
= −∂p̃

∂ỹ
+

1

Re

(
∂2ṽ

∂ỹ2
+ ε2

∂2ṽ

∂x̃2

)
, (13)

∂ũ

∂x̃
+
∂ṽ

∂ỹ
= 0,

D̃ω̃

D̃t̃
=

1

Re

(
∂2ω̃

∂ỹ2
+ ε2

∂2ω̃

∂x̃2

)
, (14)

where Re = hV /ν is the Reynolds number and 0 < ỹ < η̃(x̃, t̃), x̃ < L̃(t̃). The boundary conditions
(4) and (5) on the free surface, ỹ = η̃(x̃, t̃), where x̃ < L̃(t̃), take the forms

∂η̃

∂t̃
+
∂η̃

∂x̃
ũ = ṽ, ω̃ = 2ε2

(
∂ṽ

∂x̃
− 2

R̃2
−

∂ũ

∂x̃

∂η̃

∂x̃

)
, (15)

p̃ =
1

Fr2
(η̃ − 1)− 1

WeR̃3
+

∂2η̃

∂x̃2
− 2

Re

∂ũ

∂x̃

R̃2
+

R̃2
−
, (16)

where Fr = V/
√
gh is the Froude number,We = ρhU2/γ is the Weber number, R̃+ =

√
1 + (ε∂η̃/∂x̃)2,

and R̃− =
√

1− (ε∂η̃/∂x̃)2, see Appendix A for more details. The boundary conditions (8) on the
bottom, at the entrance to the wake (9) and the initial conditions (10) keep their forms in the
dimensionless variables with adding tilde for all variables and replacing h by 1.

The formulated boundary value problem (8)-(10), (13)-(16) is investigated using methods of
asymptotic analysis assuming that ε � 1, ε2Re � 1, ε2We � 1 and εFr � 1. For example,
Khabakhpasheva and Korobkin (2020a) performed calculations for an aluminium plate of length
10 cm and thickness 2 mm impacting on the water layer with depth 2 cm. The edges of the plate
were free of stresses and shear forces. The rigid and elastic motions of the plate were calculated
as part of the solution. The initial inclination angle of the plate was 3◦, 6◦ and 10◦. The vertical
initial speed of the plate was 5 m/s in all calculations. The initial horizontal velocity of the plate
was 5, 15 and 25 m/s. The calculated vertical velocity of the plate near its trailing edge reduces
shortly after the impact to zero, see Fig. 3(b) in Khabakhpasheva and Korobkin (2020a). Then the
trailing edge of the plate starts exiting from the liquid layer. For those calculations, V = 5 m/s,
U = 25 m/s, h = 0.02 m, γ = 72.53 · 10−3 N/m, ν = 10−6 m2/s, g = 9.81 m/s2, and ρ = 1000

8



kg/m3, which give ε = 0.2, Fr = 11.3, We = 1.7 · 105, and Re = 105. Therefore, our assumptions
that the gravity, surface tension and the liquid viscosity can be neglected at the leading order in
the main part of the wake are approximately valid for these conditions of the flow in the wake. Note
that ε in the calculations mentioned above is not very small. However, we can think about other
impact conditions, for which the assumption ε� 1 is well justified. For example, in the experiments
with droplet impacts onto a thin liquid layer by Cherdantsev et all.(2017), the horizontal speed of
the droplets was estimated as 30 m/s and their vertical speed at the impact with the liquid layer as
1 m/s, which gives ε = 1/30. Other regimes of the thin layer flows will be studied in Part 3. Note
that we arrive at the model studied by Yarin and Weiss (1995) if We = O(1).

The assumptions ε� 1, ε2Re� 1, ε2We� 1 and εFr � 1 imply that viscosity, surface tension
and gravity give contributions to the terms in the formulated problem which are higher than O(ε2).
Neglecting terms of order higher than O(ε2), we conclude that the flow vorticity is zero, and the flow
in the wake is non-linear and potential with unknown in advance shape of the free surface within
this approximation. The condition (15) describes the vorticity generation in the viscous boundary
layer on the free surface. This condition can be approximately dropped together with the condition
of no-slip on the bottom because they affect the flow only near the boundary of the wake but not
in the main part of it.

We arrive at the wake problem for potential flow of inviscid liquid without gravity and surface
tension. Dropping tilde and all terms of order higher than ε2, we obtain the following equations,

Du

Dt
= −ε2 ∂p

∂x
,

Dv

Dt
= −∂p

∂y
,

∂u

∂x
+
∂v

∂y
= 0,

∂u

∂y
= ε2

∂v

∂x
, (0 < y < η(x, t), x < L(t)), (17)

∂η

∂t
+
∂η

∂x
u = v, p = 0 (y = η(x, t), x < L(t)), (18)

v = 0 (y = 0, x < L(t)), (19)

η(L(t), t) = 1− s(t),
∫ 1−s(t)

0
u(L(t), y, t)dy = uL(t)(1− s(t)), (20)

u(x, y, 0) = v(x, y, 0) = p(x, y, 0) = 0, η(x, 0) = 1. (21)

In the problem (17) - (21), uL(t), s(t) and L(t) are given functions of time.
The solution of the problem (17) - (21) as ε→ 0 is sought in the form

u(x, y, t) = u0(x, t) + ε2u1(x, y, t) +O(ε4),

v(x, y, t) = v0(x, y, t) + ε2v1(x, y, t) +O(ε4), (22)

p(x, y, t) = p0(x, y, t) + ε2p1(x, y, t) +O(ε4),

η(x, t) = η0(x, t) + ε2η1(x, t) +O(ε4).

Substituting the asymptotic expansions (22) in equations (17)-(21), we obtain in the leading order,

u0t + u0u0x = 0, v0y = −u0x (x < L(t)), u0(L(t), t) = uL(t), v0(x, 0, t) = 0, (23)

η0t + η0xu0 + η0u0x = 0 (x < L(t)), η0(L(t), t) = 1− s(t), (24)

p0y = −2yu20x(x, t), p0(x, η0(x, t), t) = 0. (25)

Equations (17) -(21) in the second order provide

u1t + u0u1x + u1u0x + v0u1y = −p0x,
∫ 1−s(t)

0
u1(L(t), y, t)dy = 0, (26)
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v1y = −u1x, v1(x, 0, t) = 0, (27)

η1t + (u0η1)x = −η0xu1(x, η0(x, t), t) + v1(x, η0(x, t), t), η1(L(t), t) = 0. (28)

−p1y = v1t + u0v1x + u1v0x + v0v1y + v1v0y, p1(x, η0(x, t), t) = −p0y(x, η0, t)η1(x, t), (29)

u1y = v0x, (30)

where x < L(t) and 0 < y < η0(x, t). In equations (23)-(30) and below , lower indexes x, y and t
correspond to partial derivatives with respect to x, y and t. For example, u0t = ∂u0/∂t, η0x = ∂η0/∂x
and p0y = ∂p0/∂y. We shall determine the leading order approximations of the unknown functions
solving (23)-(25), investigate conditions of applicability of this solution, and determine the second
order terms of the solution solving (26)-(30).

III. LEADING-ORDER FLOW IN THE WAKE

Equation (23) implies that a liquid particle entering the wake at time τ through section x = L(τ)
moves at constant velocity uL(τ). By time t, t > τ , this particle travels the distance x = L(τ) +
uL(τ)(t− τ). This gives the solution of (23) in parametric form,

x = x(τ, t) = L(τ) + uL(τ)(t− τ) (t > τ), (31)

u0(x, t) = u0(x(τ, t), t) = uL(τ). (32)

The leading order horizontal velocity u0(x, t) in the wake is always bounded for bounded inflow
velocity uL(t). However, the leading order vertical velocity, v0(x, y, t) = −yu0x(x, t), in the wake
can be unbounded. By differentiating (32) with respect to τ , we find

u0x(x, t) =
u′L(τ)

xτ (τ, t)
, (33)

where the derivative xτ (τ, t) is obtained from (31),

xτ (τ, t) = L′(τ)− uL(τ) + u′L(τ)(t− τ).

A prime stands for the derivative with respect to τ . Here u′L(τ) is the acceleration of the flow at x =
L(τ), uL(τ) is positive for the flow from left to right, see Fig. 1. The function uR(τ) = L′(τ)−uL(τ)
is the velocity of the flow into the wake with respect to the moving entrance, x = L(τ). The relative
velocity uR(τ) is positive if the liquid enters the wake through x = L(τ). We assume in the present
study that uR(t) is positive for t > 0. Then

xτ (x, t) = uR(τ) + u′L(τ)(t− τ), (34)

where t − τ ≥ 0 and uR(τ) ≥ 0. The derivative (34) can be zero and, therefore, the derivative u0x
in (33) and the vertical velocity v0(x, t) = −yu0x(x, t) are unbounded at t = τ − uR(τ)/u′L(τ) if
u′L(τ) < 0. We assume that this inequality is satisfied at some interval of time.

For given functions L(t) and uL(t), we define t = tc(τ) = τ − uR(τ)/u′L(τ) and denote the
minimum positive value of this function as t∗. The value of τ , at which this minimum is achieved,
is denoted by τ∗. We have t∗ = tc(τ∗). The value x(τ∗, t∗) is denoted by x∗. We conclude that the
vertical velocity in the wake becomes unbounded for the first time at t = t∗ at the distance x∗ from
the origin. This is possible only if the flow into the wake is accelerated. Note that the leading order
pressure (25) is also unbounded at x = x∗ and t = t∗.
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The thickness of the liquid layer is governed by equation (24). We obtain, see Shishmarev Conf
series (2020),

η0(x, t) =
Q(τ)

xτ (τ, t)
, (35)

where Q(τ) = [1 − s(τ)]uR(τ) is the flux of the flow into the wake. Substituting (33) and (35) in
(25), we obtain the leading-order pressure in the wake,

p0(x, y, t) =
(u′L(τ)

xτ

)2{(Q(τ)

xτ

)2
− y2

}
(0 < y < η0(x, t), x < L(t)). (36)

Note that the leading-order pressure grows as O(x−4τ (τ, t)) when τ → τ∗, t → t∗ and, as a result,
xτ (τ, t)→ 0.

IV. SECOND-ORDER TERMS OF THE SOLUTION IN THE WAKE

For a function f(x, y, t) of x, y and t, it is convenient to introduce a new function f̄(τ, y, t) =
f(x(τ, t), y, t), where x(τ, t) is given by (31). Derivatives of f(x, y, t) and f̄(τ, y, t) are related by

∂f

∂x
=

1

xτ (τ, t)

∂f̄

∂τ
,

∂f

∂t
+ u0(x, t)

∂f

∂x
=
∂f

∂t
,

∂f

∂y
=
∂f̄

∂y
. (37)

By using (25), (30) and (33)-(36), equation (26), can be written as

∂ū1
∂t

+ u0xū1 = −3
u′La4(τ)

x5τ
+ 4

u′LQ
2µ

x6τ
− y2

µu′L
x4τ

, (38)

where t > τ , a4(τ) = [u′L(Q2)′ − 2u′′LQ
2]/3, and µ(τ) = u′L(u′R − u′L) − u′′LuR. The right-hand side

in (38) depends on time t only through the derivative xτ (τ, t). Note that

u′Lxττ = µ(τ) + u′′Lxτ (τ, t). (39)

To find the general solution to the differential equation (38), we notice that[
∂

∂t
+

u′L(τ)

xτ (τ, t)

]
1

xnτ (τ, t)
=

(1− n)u′L(τ)

xn+1
τ (τ, t)

, (40)

which gives

ū1(τ, y, t) =
a4(τ)

x4τ
− Q2µ

x5τ
+ y2

µ

2x3τ
+
C1(τ)

xτ
. (41)

The last term in (41) is the general solution of the homogeneous equation (38), see (40). The function
C1(τ) is determined using the condition at x = L(t), see (26), C1(τ) = (5µQ2 − 6a4uR)/(6u4R).

Equations (27), (37) and (41) provide the second-order vertical velocity of the flow in the wake,

v̄1(τ, y, t) = y
(
− 5Q2µ2

u′L

1

x7τ
−
[23

3
µQ2u

′′
L

u′L
− 14

3
µQQ′ −Q2µ′

] 1

x6τ
−
[
a′4 − 4a4

u′′L
u′L

] 1

x5τ
+

C1µ

u′L

1

x3τ
−
[
C ′1 −

C1u
′′
L

u′L

] 1

x2τ

)
+ y3

( µ2
2u′L

1

x5τ
−
[1

6
µ′ −

µu′′L
2u′L

] 1

x4τ

)
. (42)
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Using (37) one can present equation (28) for the second-order free-surface elevation as

∂η̄1
∂t

+ u0xη̄1 = −η0xū1(τ, η0, t) + v̄1(τ, η0, t), (43)

where
η0x =

Qµ

u′L

1

x3τ
+
(
Q′ −Q

u′′L
u′L

) 1

x2τ
, (44)

see (35) and (37). Substituting (41), (42) and (44) in the right-hand side of (43) one finds by algebra

−η0xū1(τ, η0, t) + v̄1(τ, η0, t) = −5Q3µ2

u′L

1

x8τ
+

5

6
Q2
[
Qµ′ + 7Q′µ− 10Qµ

u′′L
u′L

] 1

x7τ
+

[
5a4Q

u′′L
u′L
− (Qa4)

′
] 1

x6τ
+

2µQC1

u′L

1

x4τ
+
[
2QC1

u′′L
u′L
− (QC1)

′
] 1

x3τ
=

8∑
n=3

Dn(τ)

xnτ (τ, t)
. (45)

The differential equation (43) with the right-hand side (45) is solved using (40) in the same way as
the equation (38) has been solved. The resulting formula reads

η̄1(τ, t) = −
8∑

n=3

Dn(τ)

u′L(τ)(n− 2)xn−1τ (τ, t)
+

C2(τ)

xτ (τ, t)
, (46)

where the coefficientsDn(τ) are introduced in (45), and C2(τ) is to be determined using the condition
η̄1(τ, τ) = 0, see (28).

The second-order terms of the flow velocity components (41), (42) and the free-surface elevation
(46) are finite everywhere in the wake except of the position x = x∗ and time t = t∗, where and
when the derivative xτ (τ, t) is zero. The second-order terms are singular at x = x∗ and t = t∗
and their orders of singularity are higher than those of the corresponding leading order terms. For
example, the leading order elevation of the free surface, η0(τ, t) = Q(τ)/xτ (τ, t), see (35), increases
as O(x−1τ ) when xτ → 0, but the second-order elevation η1(τ, t) increases as O(x−7τ ). Therefore, the
obtained second-order solutions in the wake are not valid near x = x∗ and t = t∗, where an inner
solution should be derived, in order to obtain the uniformly valid asymptotic solution of the original
problem as ε → 0. To formulate the inner problem, we need to determine the scales of the inner
variables and unknown functions in terms of ε. We assume that the scales of the inner variables are
the same as the scales of the original outer variables where x → x∗ and t → t∗, which guarantee
that the leading order terms and the second-order terms in the asymptotic expansions (22) are of
the same order as ε→ 0. Note that the second order hydrodynamic pressure p1(x, y, t) also can be
obtained analytically solving the problem (29). However, the function p1(x, y, t) will be not required
to formulate the inner problem describing local flow near the singularity of the outer solution.

V. SINGULARITY OF THE OUTER SOLUTION

The leading-order solution obtained in section III becomes unbounded if uR(τ) > 0 and u′L(τ) <
0 for some values of the parameter τ . For such values of τ , the vertical flow velocity, v̄0(τ, y, t) =
−yu′L(τ)/xτ (τ, t), the free-surface elevation (35) and the hydrodynamic pressure (36) are singular
at t = tc(τ), where xτ (τ, tc(τ)) = 0. This singularity occurs for the first time then, when tc(τ) is
minimum. If tc(τ) is minimum at τ∗, then t′c(τ∗) = 0, t′′c (τ∗) > 0 and xτ (τ∗, t∗) = 0.
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Differentiating equality xτ (τ, tc(τ)) = 0 with respect to τ , setting τ = τ∗, and using that
t′c(τ∗) = 0, we find xττ (τ∗, t∗) = 0. Differentiating xτ (τ, tc(τ)) = 0 second time with respect
to τ , setting τ = τ∗, and using inequalities xτt(τ∗, t∗) = u′L(τ∗) < 0 and t′c(τ∗) > 0, we obtain
xτττ (τ∗, t∗) > 0. Note that ∂nx/∂tn = 0 for n ≥ 2. Using the obtained values of the derivatives at
τ = τ∗ and t = t∗, one can approximate the function x(τ, t) and the derivative xτ (τ, t) near τ = τ∗
and t = t∗ by their Taylor series,

x(τ, t) = x∗ + u∗L(t− t∗) + u∗Lτ (t− t∗)(τ − τ∗) +
1

2
u∗Lττ (t− t∗)(τ − τ∗)2+

+
1

6
x∗τττ (τ − τ∗)3 +O(|τ − τ∗|4) +O(|τ − τ∗|3(t− t∗)),

xτ (τ, t) = u∗Lτ (t−t∗)+
1

2
x∗τττ (τ−τ∗)2+u∗Lττ (τ−τ∗)(t−t∗)+O(|τ−τ∗|3)+O(|τ−τ∗|2(t−t∗)), (47)

where the superscript ∗ means that the corresponding function is calculated at t = t∗ and τ = τ∗.
For example x∗τττ = xτττ (τ∗, t∗). Note that t < t∗ in this section.

Applying the method of dominant balance to equations (47) where t→ t∗ and τ → τ∗, we find
that it is convenient to introduce local variables τ̃ , t̃, x̃ and ỹ by

τ = τ∗ + στ̃ , t = t∗ + σ2t̃, x = x∗ + u∗L(t− t∗) + σ3x̃, y = σ−2ỹ, (48)

where σ is small, σ � 1, τ̃ = O(1), t̃ = O(1) and t̃ < 0. The new small parameter σ can be
dependent of the small parameter ε of the original formulation, see section II. Then the asymptotic
formulae (47) provide

x̃ = τ̃

[
u∗Lτ t̃+

1

6
x∗τττ τ̃

2

]
+O(σ), xτ (τ, t) = σ2

[
u∗Lτ t̃+

1

2
x∗τττ τ̃

2

]
+O(σ3). (49)

Here u∗Lτ < 0, t̃ < 0 and x∗τττ > 0. Therefore, the expressions in the square brackets in (49) are
positive. This implies, in particular, that the part of the wake on the right from the singularity
x = x∗ corresponds to τ > τ∗, and the part on the left from singularity corresponds to τ < τ∗. In
order to minimise the number of parameters in the local description of the flow near the singularity,
the stretched variables denoted by hats are introduced by

τ̃ = (−t̃)1/2Aτ̂, t̃ = Ct̂, x̃ = C3/2Bx̂, ỹ = Dŷ, (50)

where the coefficients A and B in (50) are given by A = (6|u∗Lτ |/x∗τττ )1/2, B = A|u∗Lτ | and the
coefficients C and D will be selected later. Introducing X = x̂(−t̂)−3/2, one can write the first
equation in (49) as

X = τ̂(1 + τ̂2), (51)

in the leading order. Correspondingly, the second equation in (49) reads

xτ (τ, t) = σ2(−t̃)|u∗Lτ |(1 + 3τ̂2) +O(σ3) (52)

in the new stretched variables (50). Note that equation (51) does not depend on any parameters of
the problem, thanks to the selected values of the coefficients A and B.

We shall determine the behaviour of the solution (25) close to x = x∗ and t = t∗ as the
small parameter σ tends to zero. This limit is equivalent to t→ t∗, τ → τ∗, where xτ (τ, t)→ 0. The
functions u1(x, y, t), v1(x, y, t) and η1(x, t) are given by (41), (42), (45) and (46). They are presented
by the sums of terms proportional to negative integer powers of xτ (τ, t) with coefficients dependent
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on τ and y. The asymptotic behaviours of these functions as t → t∗ and τ → τ∗ are provided by
terms with highest powers of x−nτ (τ, t). One should be careful with this asymptotic analysis because
some coefficients of the highest powers could be zero as τ → τ∗. Note that some coefficients in (41),
(42), (45) and (46) contain µ(τ) as a factor, where µ(τ)→ 0 as τ → τ∗.

Indeed, equation (39), which defines the function µ(τ), yields

µ(τ) = u′L(τ)xττ (τ, t)− u′′L(τ)xτ (τ, t).

The asymptotic formula for xτ (τ, t) as τ → τ∗ and t → t∗ is given by (47). The corresponding
formula for xττ (τ, t) is obtained by differentiating the asymptotic formula for xτ (τ, t) with respect
to τ ,

xττ (τ, t) = x∗τττ (τ − τ∗) + u∗Lττ (t− t∗) + ...

Note that equations (48) provide that xτ (τ, t) = O(σ2) and xττ (τ, t) = O(σ) as σ → 0. Therefore,

µ(τ) = u′L(τ∗)xτττ (τ∗, t∗)(τ − τ∗) +O(|τ − τ∗|2),

and then

µ(τ)

xτ (τ, t)
=

−|u∗Lτ |x∗τττστ̃ +O(σ2)

σ2(−t̃)|u∗Lτ |(1 + 3τ̂2) +O(σ3)
∼ − 1

σ

√
6|u∗Lτ |x∗τττ (−t̃)−

1
2

τ̂

1 + 3τ̂2
(53)

as τ → τ∗ and t→ t∗.
Note that the vertical coordinate y is from zero on the bottom of the liquid layer to η(x, t) on

the liquid free surface, where η(x, t) is of the order of η0(x, t)) as ε→ 0 and η0(τ, t) = Q(τ)/xτ (τ, t),
see (35). Using (52), we find

η0(τ, t) ∼
Q∗

|u∗Lτ |(1 + 3τ̂2)

1

(−t̃)σ2
(54)

as σ → 0. Equation (54) explains the scale of the vertical coordinate in (48) near the point of the
singularity. Correspondingly, the leading-order vertical velocity, v0(x, y, t) = −yu0x(x, t), behaves
as

v0(x, y, t) ∼
D

σ4
ŷ

(−t̃)(1 + 3τ̂2)
, (55)

where σ → 0 and t̃, τ̂ , ŷ are of order O(1). The asymptotic formula (55) for the leading order vertical
velocity of the flow in the wake and the formula (42) written for σ → 0 provide the second-order
vertical velocity, see (22), in the local stretched variables,

v̄(τ, y, t) ∼ D

σ4C

ŷ

(−t̂)(1 + 3τ̂2)

{
1 + (56)

ε2

σ10
· x
∗
τττQ

∗2

6|u∗Lτ |5C5
·
[ 6

(−t̂)5
27τ̂2 − 1

(1 + 3τ̂2)6
+

ŷ2

(−t̂)3
1− 15τ̂2

(1 + 3τ̂2)4
·
(DC|u∗Lτ |

Q∗

)2]}
It is convenient to select the constants D and C such that

x∗τττQ
∗2

|u∗Lτ |5C5
= 6,

DC|u∗Lτ |
Q∗

= 1,

which gives
C = (Q∗2x∗τττ/6)1/5/|u∗Lτ |, D = (6Q∗3/x∗τττ )1/5. (57)
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The formula (56) indicates that the second-order term of the vertical velocity is of the same order
as the leading order term near the singularity point if the small parameter σ, which describes the
dimension of the local region around this point, is related to the small parameter of the problem ε
by the relation σ = ε1/5. The asymptotic formula (56) with such C, D and σ reads

v̄(τ, y, t) ∼ Usc
σ4

ŷ

(−t̂)(1 + 3τ̂2)

{
1 +

6

(−t̂)5
27τ̂2 − 1

(1 + 3τ̂2)6
+

ŷ2

(−t̂)3
1− 15τ̂2

(1 + 3τ̂2)4

}
, (58)

where Usc = D/C. It can be shown that D/C =
√
C|u∗Lτ |A.

The local asymptotics of the vertical velocity (58) is written in the moving coordinate system, see
(48), with the size of the inner region in the x-direction being of the order of ε3/5 in the dimensionless
variables. The time scale of the development of jetting is of the order of ε2/5 .

In the moving coordinate system (48), the leading order term of the horizontal velocity (32) is
approximated as

u0(x, t) = uL(τ) = u∗L + u∗Lτ (τ − τ∗) +O(|τ − τ∗|2) = u∗L − σ(
√
C|u∗Lτ |A)

√
−t̂τ̂ +O(σ2) =

u∗L − σUsc
√
−t̂τ̂ +O(σ2). (59)

The asymptotic formula (59) for the leading order horizontal velocity of the flow in the wake and
the formula (41) written for σ → 0 provide the second-order horizontal velocity, see (22), in the
local stretched variables,

u(x, y, t) ∼ u∗L − σUsc
√
−t̂τ̂

{
1− 6

(−t̂)5(1 + 3τ̂2)5
+

3ŷ2

(−t̂)3(1 + 3τ̂2)3

}
, (60)

where relation σ = ε1/5 and the formulae (57) were used. The vertical velocity (58) is an even
function of τ̂ and the horizontal velocity (60) is an odd function of τ̂ . This implies that locally and
in the leading order the flow near the singular point is symmetric with respect to x̂ = 0.

The leading order shape of the free surface near the singular point is given by (54). The
asymptotic formula for the second-order contribution to the free-surface elevation (46) in the local
stretched variables as σ → 0 provides the outer second-order elevation as

η(x, t) ∼ 1

σ2
D

(−t̂)(1 + 3τ̂2)

{
1 +

27τ̂2 − 1

(−t̂)5(1 + 3τ̂2)6

}
. (61)

This formula predicts that the second-order elevation is an even function of x̂, which tends to +∞
as t̂→ 0−, where |τ̂ | > (27)−

1
2 and to −∞, where |τ̂ | < (27)−

1
2 .

The performed asymptotic analysis and the obtained asymptotic formulae (58), (60) and (61)
show that the leading order terms and and the second order terms of the vertical and horizontal
velocities, as well as of the free-surface elevation, are of the same order near the singular point if
σ = O(ε1/5). This means that the size of the inner region close to the singular point in x-direction
is O(ε3/5). Inner variables should be introduced in the inner region. Then the asymptotic analysis
should be performed in the inner region leading to the inner solution describing jet formation on
the surface of the wake. The inner solution should be matched with the so-called inner limit of the
outer solution , which is represented by equations (58), (60) and (61). It is reasonable to select the
variables x̂, ŷ, t̂, which were defined in this section, as the inner variables.

VI. EQUATIONS DESCRIBING THE INNER SOLUTION
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The asymptotic behaviour of the outer solution near the singular point, which was derived in
Section 5, suggests that the inner variables and unknown functions are convenient to be introduced
as

x = x∗ + u∗L(t− t∗) + σ3Dx̂, y = σ−2Dŷ, t = t∗ + σ2Ct̂, u = u∗L + σUscû(x̂, ŷ, t̂, σ),

v = σ−4Uscv̂(x̂, ŷ, t̂, σ), η = σ−2Dη̂(x̂, t̂, σ), p = σ−8U2
scp̂(x̂, ŷ, t̂, σ), (62)

where σ = ε1/5, and the constants D, C and Usc are defined in section V. Substituting (62) in the
original equations of flow (17) and the boundary condition (18) and (19), we obtain

D̂û

D̂t̂
= −∂p̂

∂x̂
,

D̂v̂

D̂t̂
= −∂p̂

∂ŷ
,

∂û

∂x̂
+
∂v̂

∂ŷ
= 0,

∂û

∂ŷ
− ∂v̂

∂x̂
= 0 (0 < ŷ < η̂(x̂, t̂), |x̂| <∞), (63)

∂η̂

∂t̂
+ û

∂η̂

∂t̂
= v̂, p̂ = 0 (ŷ = η̂(x̂, t̂), |x̂| <∞), v̂ = 0 (ŷ = 0, |x̂| <∞), (64)

where D̂

D̂t̂
= ∂

∂t̂
+ û ∂

∂x̂ + v̂ ∂
∂ŷ is the material derivative written in the inner variables x̂, ŷ and t̂. The

equations (63) imply that the inner flow is two-dimensional, non-linear, unsteady and irrotational.
The hydrodynamic problem (63) and (64) with unknown in advance free surface ŷ = η̂(x̂, t̂) is to be
solved subject to the following conditions as |x̂| → ∞ and t̂→ −∞:

û(x̂, ŷ, t̂) ∼ −
√
−t̂τ̂

{
1− 6

(−t̂)5(1 + 3τ̂2)5
+

3ŷ2

(−t̂)3(1 + 3τ̂2)3

}
, (65)

v̂(x̂, ŷ, t̂) ∼ ŷ

(−t̂)(1 + 3τ̂2)

{
1 +

6

(−t̂)5
27τ̂2 − 1

(1 + 3τ̂2)6
+

ŷ2

(−t̂)3
1− 15τ̂2

(1 + 3τ̂2)4

}
, (66)

η̂(x̂, t̂) ∼ 1

(−t̂)(1 + 3τ̂2)

{
1 +

27τ̂2 − 1

(−t̂)5(1 + 3τ̂2)6

}
, (67)

p̂(x̂, ŷ, t̂) ∼ 1− ŷ2t̂2(1 + 3τ̂2)2

t̂4(1 + 3τ̂2)4
, (68)

where τ̂ is the solution of the equation

x̂

(−t̂)3/2
= τ̂(1 + τ̂2), (69)

see (56), (60), (61) and (62). Note that there are no parameters in the equations of motion (63),
the boundary conditions (64) and the far-field conditions (65) – (68). Therefore, the inner problem
written in the stretched variables is universal. Application of this problem to a particular situation
requires only corresponding stretching of the independent variables and the unknown functions. The
problem (63) – (69) will be investigated numerically in Part 2 of this study.

Below we drop hats and denote the right-hand sides in (65)-(68) by u∞(x, y, t), v∞(x, y, t),
η∞(x, t) and p∞(x, y, t) correspondingly. One can show by direct calculations that u∞(x, y, t) and
v∞(x, y, t) satisfy the continuity equation in (63) exactly. The equation of zero vorticity is satisfied
only approximately as t→ −∞,

∂u∞
∂y
− ∂v∞

∂x
=

12y

(−t)
15
2 (1 + 3τ2)7

[
6

81τ2 − 8

(1 + 3τ2)2
+ 5τy3(1− 6τ2)

]
, (70)
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where the right-hand side is small compared with each term on the left-hand side of this equation.
For example, ∂u∞/∂y = −6τy(−t)−

5
2 (1 + 3τ2)3. Higher-order terms in the conditions (65)-(68)

can be obtained using the approach by Iafrati and Korobkin (2004), section IIB, Korobkin and
Iafrati (2005), Section 5, and Korobkin, Khabakhpasheva Rodriguez-Rodriguez, J. (2017). Such
asymptotic formulae are used to reduce the computational domains of non-linear potential flows
with free surfaces.

The equations (63), boundary (64) and far-field (65)-(68) conditions predict that the flow is
symmetric with respect to x = 0. Therefore, only the region x > 0 can be considered with the
condition u(0, y, t) = 0 on the line of symmetry. The inner problem (63)-(68) can be formulated
for a velocity potential Φ(x, y, t) as it is depicted in Fig. 3. The free-surface shape η∞(x, t), the
horizontal velocity of the flow u∞(x, 0, t) and the pressure p∞(x, 0, t) on the bottom of the liquid
layer, y = 0, predicted by the far-field conditions (67), (65) and (68), are shown in Fig. 4(a-c) at
different time instants and only for x > 0. It is seen how the vertical jet starts to build up. Note
that u∞(x, y, t) ∼ −x1/3 and η∞(x, t) ∼ [(−t)+ρx2/3]−1 as t→ −∞, x→ +∞. Fig. 4 demonstrates
that the elevation of the free surface in the inner region increases and becomes more localized in
time. The pressure at the bottom of the liquid layer in the inner region sharply increases as well
and also localizes in the let root. On the other hand, the horizontal speed of the flow in the jet root,
see Fig.4(c), increases at a certain distance from the jet root and remains zero at the jet centre.

The dimensional scale of both the horizontal and vertical velocity components in the inner region
is Uε

1
5D/C, where D and C are defined by (57). It is obtained by combining (11) and (62). The

corresponding dimensional scales of the free-surface elevation and the hydrodynamic pressure in the
inner region are hε−

2
5D and ρU2ε

2
5 (D/C)2.

FIG. 3. Formulation of the inner problem (63)-(68) in terms of the velocity potential Φ(x, y, t).
Asymptotic behaviours of this potential and the free-surface shape as t→ −∞ are described by

Φ∞(x, y, t), which is obtained from (65) and (66), and η∞(x, t).

VII. CONCLUSION

The two-dimensional unsteady flow in a thin wake behind a plate obliquely impacting on a liquid
layer was investigated by asymptotic methods. A small parameter of the problem ε is the ratio of the
vertical and horizontal velocities of the flow at the entrance to the wake. Inertia dominated regime
of the flow in the wake was studied. It was shown that gravity, surface tension and viscosity of the
liquid can be neglected if the inflow velocity is relatively high. In the conditions of calculations done
by Khabakhpasheva and Korobkin (2020a) for oblique impact by an elastic plate onto a thin liquid
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FIG. 4. The shape of the free surface η∞(x, t) (a), the pressure p∞(x, 0, t) (b) and the horizontal
velocity u∞(x, 0, t) (c) along the bottom, y = 0, at different time instants t = 8 (black line), t = 5

(blue line), t = 3 (green line), t = 2 (red line) in dimensionless variables.
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layer, the Weber and Reynolds numbers were of order 105 and the Froude number was of order of
10. Other regimes of the flows in a thin wake will be investigate in Part 3 of this work.

It was shown that acceleration of the flow into the wave leads to a gradient catastrophe, the
time and place of which is predicted by the leading order solution. The thin layer approximation
predicts unbounded growth of the wake thickness at the place of the catastrophe. The second-order
outer solution of the original problem was obtained and its asymptotic behaviour when and where
the catastrophe is approached was analysed. This analysis helped us to find the scales of the inner
variables in terms of the small parameter ε and formulate the inner problem at the leading order.
Appropriate moving coordinates were introduced for the inner problem. It was shown that the inner
flow is two-dimensional, unsteady and potential. It is symmetric with respect to the origin of the
inner coordinate system. The conditions of matching between the outer and inner solutions were
obtained. These conditions provide the far-field conditions for the inner problem. The formulated
inner problem will be solved numerically in Part 2 of this study. Preliminary results showed that
the free-surface elevation and the hydrodynamic pressure increase at the centre of the inner flow
and are getting localised near the jet root with time.

It was shown that the performed analysis can be applied to many practical problems, where
influx into a thin liquid layer is accelerated with time. The present problem is two-dimensional. It
would be interesting but very challenging to study the corresponding three-dimensional problem,
where inflow into a thin liquid layer occurs through a time-dependent boundary with the normal and
tangential inflow velocities being prescribed as functions of time and the position along the boundary.
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APPENDIX A: BOUNDARY CONDITIONS ON THE FREE SURFACE OF THE
LIQUID LAYER IN THE DIMENSIONLESS VARIABLES

The dynamic boundary conditions on the free surface, y = η(x, t), are given by (5), where the
stress tensor P is given by (6), the normal unit vector ~n and the tangent unit vector ~τ to the free
surface are given by (7), and the curvature of the free surface is æ = ηxx/R

3. We calculate

P~n = −
(
p+ ρg(h− η)

)
~n+

2ρν

R

(
− ηxux +

1

2
(uy + vx), −1

2
(uy + vx)ηx + vy

)
(A.1)

and then
~τ · P~n =

2ρν

R2

(
(vy − ux)ηx +

1

2
(uy + vx)(1− η2x)

)
= 0. (A.2)

In (A.2), 2ρν/R2 6= 0, uy = vx − ω from (2) and vy = −ux from the continuity equation in (1).
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Using these equalities, the boundary condition (A.2) provides

ω = 2vx − 4
ηxux

1− η2x
, (A.3)

where
vx =

∂v

∂x
=
V ε

h

∂ṽ

∂x̃
,

∂η

∂x
= ε

∂η̃

∂x̃
, ux =

∂u

∂x
=
Uε

h

∂ũ

∂x̃
, ω =

U

h
ω̃, (A.4)

dimensionless variables are denoted by tilde, see (11) for the corresponding scales. Substituting
(A.4) in (A.3) yields the second condition in (15).

Multiplying (A.1) by ~n, we obtain the second condition in (5) in the form

−p− ρg(h− η) +
2ρν

R2

(
η2xux −

1

2
(uy + vx)ηx −

1

2
(uy + vx)ηx + vy

)
= γ

ηxx
R3

. (A.5)

By using vy = −ux, uy = vx − ω and (A.3), (A.4), we simplify the expression in the brackets in
(A.5), which is related to the liquid viscosity, as

η2xux − (uy + vx)ηx + vy = ux(η2x − 1)− (2vx − ω)ηx = −ux(1− η2x)− 4
η2xux

1− η2x
=

= − ux
1− η2x

(
(1− η2x)2 + 4η2x

)
= −ux

(1 + η2x)2

1− η2x
= −Uε

h

∂ũ

∂x̃

R̃4
+

R̃2
−

(A.6)

in the dimensionless variables (11). Condition (A.5) in the dimensionless variables with account for
(A.6) reads

−ρV 2p̃− ρgh(1− η̃)− 2
ρν

h

Uε

R̃2
+

∂ũ

∂x̃

R̃4
+

R̃2
−

=
γε2

h

η̃x̃x̃

R̃3
+

. (A.7)

Dividing both sides of (A.7) by ρV 2, we obtain

p̃(x̃, η̃(x̃, t̃), t̃) =
gh

V 2
(η̃ − 1)− γε2

hρV 2

1

R̃3
+

∂2η̃

∂x̃2
− 2

νεU

hV 2

∂ũ

∂x̃

R̃2
+

R̃2
−
, (A.8)

where ε = V/U , gh/V 2 = 1/Fr2, γε2/(ρhV 2) = γ/(ρhU2) = 1/We, νεU/(hV 2) = νV/(hV 2) =
ν/(hV ) = 1/Re. The Froude number Fr, the Weber number We, and the Reynolds number Re are
introduced in section II. The condition (A.8) yields the condition (16).

The first condition in (15) is the kinematic boundary condition (4) written in the dimensionless
variables (11).

APPENDIX B: EQUATION (23)-(30)

Substituting asymptotic expansions (22) in equations (17) and collecting terms of the same order
in ε as ε→ 0, we obtain

∂u0
∂t

+ u0
∂u0
∂x

+ v0
∂u0
∂y

+ ε2
[
∂u1
∂t

+ u1
∂u0
∂x

+ u0
∂u1
∂x

+ v1
∂u0
∂y

+ v0
∂u1
∂y

+
∂p0
∂x

]
= O(ε4), (B.1)

∂v0
∂t

+ u0
∂v0
∂x

+ v0
∂v0
∂y

+
∂p0
∂y

+ ε2
[
∂v1
∂t

+ u1
∂v0
∂x

+ u0
∂v1
∂x

+ v1
∂v0
∂y

+ v0
∂v1
∂y

+
∂p1
∂y

]
= O(ε4), (B.2)
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∂u0
∂x

+
∂v0
∂y

+ ε2
[
∂u1
∂x

+
∂v1
∂y

]
= O(ε4), (B.3)

∂u0
∂y

+ ε2
[
∂u1
∂y
− ∂v0
∂x

]
= O(ε4). (B.4)

Equation (B.4) in the leading order as ε→ 0 provides ∂u0/∂y = 0. This equality together with the
leading order equation (B.1) gives the first equation in (23), u0t + u0u0x = 0. The second equation
in (23) is the leading order of (B.3), v0y = −u0x. The leading order equation (B.2) provides now
the following equation for the leading order hydrodynamic pressure in the wake,

−p0y = v0t + u0v0x − v0u0x. (B.5)

The terms of order O(ε2) in (B.1)-(B.4) provide the following equations for the first-order terms in
(22):

u1t + u0u1x + u1u0x + v0u1y = −p0x, (B.6)

which is equation (26), where we used that u0y = 0,

−p1y = v1t + u0v1x + u1v0x + v0v1y + v1v0y, (B.7)

which is equation (29),
v1y = −u1x, (B.8)

which is equation (27), and
u1y = v0x, (B.9)

which is equation (30).
Taylor series for functions on the free surface, for example,

v(x, η(x, t), t) = v(x, η0(x, t), t) + vy(x, η0(x, t), t)
(
η(x, t)− η0(x, t)

)
+O

[
(η − η0)2

]
,

and the asymptotic expansions (22) are used to derive the kinematic and dynamic boundary
conditions (18) on the free surface. We obtain

v(x, η(x, t), t) = v0(x, η0, t) + ε2
[
v1(x, η0, t) + η1v0y(x, η0, t)

]
+O(ε4), (B.10)

u(x, η(x, t), t) = u0(x, t) +O(ε2), (B.11)

p(x, η(x, t), t) = p0(x, η0, t) + ε2
[
p1(x, η0, t) + η1p0y(x, η0, t)

]
+O(ε4). (B.12)

Substituting (22), (B.10)-(B12) in the kinematic condition (18) and collecting terms of the same
order as ε→ 0, we find

η0t + η0xu0 + η0u0x + ε2
[
η1t + η1xu0 + η1u0x − v0yη1 − v1

]
= O(ε4). (B.13)

Correspondingly, the dynamic boundary condition, p = 0 on y = η(x, t), in (18) yields

p0 + ε2
[
p1 + p0yη1] = O(ε4), (B.14)

which gives the boundary conditions in (25) and (29). The functions in (B.13) and (B.14) are
calculated at y = η0(x, t).

The boundary conditions on the bottom of the liquid layer (19) gives the boundary conditions
v0(x, 0, t) = 0 in (23) and v1(x, 0, t) = 0 in (27). Substituting expansions (22) in the conditions at
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x = L(t), we obtain the condition u0(L(t), t) = uL(t) in (23) because u0(x, t) is independent of y,
and the conditions in (24), (26) and (28).

The equation v0y = −u0x in (23) and the condition v0(x, 0, t) = 0 give v0(x, y, t) = −yu0x(x, t).
Substituting this equation in (B.13) we obtain the equation (24) in the leading order and equation
(28) for η1(x, t) in the first order as ε→ 0.

Finally substituting v0 = −yu0x in (B.5), we calculate

−p0y = −yu0xt − yu0u0xx + yu20x = −y(u0t + u0u0x)x + yu20x + yu20x = 2yu20x, (B.15)

where we used equation u0t + u0u0x = 0 from (23). Equation (B.15) provides equation (25).
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