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Abstract
Purpose  Prognostic models play an important clinical role in the clinical management of neck pain disorders. No study has 
compared the performance of modern machine learning (ML) techniques, against more traditional regression techniques, 
when developing prognostic models in individuals with neck pain.
Methods  A total of 3001 participants suffering from neck pain were included into a clinical registry database. Three dichoto-
mous outcomes of a clinically meaningful improvement in neck pain, arm pain, and disability at 3 months follow-up were 
used. There were 26 predictors included, five numeric and 21 categorical. Seven modelling techniques were used (logistic 
regression, least absolute shrinkage and selection operator [LASSO], gradient boosting [Xgboost], K nearest neighbours 
[KNN], support vector machine [SVM], random forest [RF], and artificial neural networks [ANN]). The primary measure 
of model performance was the area under the receiver operator curve (AUC) of the validation set.
Results  The ML algorithm with the greatest AUC for predicting arm pain (AUC = 0.765), neck pain (AUC = 0.726), and 
disability (AUC = 0.703) was Xgboost. The improvement in classification AUC from stepwise logistic regression to the 
best performing machine learning algorithms was 0.081, 0.103, and 0.077 for predicting arm pain, neck pain, and disability, 
respectively.
Conclusion  The improvement in prediction performance between ML and logistic regression methods in the present study, 
could be due to the potential greater nonlinearity between baseline predictors and clinical outcome. The benefit of machine 
learning in prognostic modelling may be dependent on factors like sample size, variable type, and disease investigated.

Keywords  Neck pain · Statistics · Prognosis · Machine learning

Introduction

Neck pain (NP) is a highly prevalent condition that results 
in considerable pain and suffering. Between 1990 and 2017, 
it has been estimated that the point prevalence of NP per 
100 000 population was estimated to be 3551.1, and the 

years lived with disability from NP per 100 000 population 
were 352.0 [1]. The economic burden of NP is also con-
siderable. For example in the Netherlands, the total health 
care cost in 1996 for NP was estimated at €485million [2]. 
Considering the rising costs of health care, it is plausible that 
these estimates would be higher today.

The natural history of NP is typically favourable, although 
up to 50–85% will report pain 1–5 years from onset [3]. 
For those who go on to have persistent pain, the condition 
often becomes challenging to treat and costly [4]. Prognostic 
modelling research [5] has the capacity to optimize clinical 
decision-making, manage patient expectations, and prioritize 
clinical efforts to individuals most at risk of poor recovery. 
Therefore, the development of clinical prognostic models 
has been recommended as a key research priority [6].

Most prognostic modelling research in NP have used 
either logistic or linear regression as statistical methods for 
predicting key clinical outcomes, depending on whether the 
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outcomes are binary or continuous [7–9]. The advantages of 
these traditional statistical methods are that the ensuing clin-
ical models are interpretable and that many free and com-
mercial software is available to conduct such analyses. How-
ever, methods such as logistic and linear regression are at a 
disadvantage when the relationships between the outcome 
(or logit of outcome) and predictors are nonlinear, and when 
the number of candidate predictors is high relative to the 
sample size. Increasingly, however, machine learning (ML) 
is being employed for prognostic modelling [10, 11]. One 
of the biggest distinguishing factors between traditional sta-
tistics and ML is that the former emphasizes inference (i.e. 
infer the process of data generation), whereas ML empha-
sizes prediction. The advantage of ML is that there is a suite 
of algorithms ranging from those that can model highly non-
linear relationships, with the ensuing model being complex 
and essentially a “black-box” (e.g. support vector machine 
[SVM]), to those that simultaneously perform variable selec-
tion and produce clinically interpretable solutions (e.g. least 
absolute shrinkage and selection operator [LASSO]).

ML has been touted to offer superior predictive accuracy 
compared to traditional statistical methods. However, to 
date, there are no studies in NP to provide evidence of which 
modelling approach should be used for prognostic model-
ling. The primary aim of the present study is to compare 
the predictive performance of prognostic models developed 
using traditional logistic regression, and seven ML models. 
The primary hypothesis was that traditional stepwise logis-
tic regression would result in the lowest performance (i.e. 
smallest area under the Receiver Operating Characteristic 
[ROC] curve), compared to ML.

Methods

Design

This was a prospective, observational study where par-
ticipants were assessed at baseline upon recruitment and 
3 months follow-up.

Setting

Forty-seven health care centres were selected by the Spanish 
Back Pain Research Network to be invited to participate in 
this study, based on their past involvement in research on 
neck and low back pain. The centres were located across 11 
out of the 17 Administrative regions in the country (Anda-
lucía, Aragón, Asturias, Baleares, Castilla-León, Cataluña, 
Extremadura, Galicia, Madrid, Murcia, Vascongadas). Fif-
teen centres belonged to the Spanish National Health Ser-
vice (SNHS), six to not-for-profit institutions working for 
the SNHS, and 26 were private. They included eight primary 

care centres, 18 physical therapy practices, and 21 specialty 
Services (five in rheumatology, six in rehabilitation, four in 
neuroreflexotherapy (NRT), and six in orthopaedic surgery). 
Since this study did not require any changes to standard clin-
ical practice, according to the Spanish law it was not subject 
to approval by an Institutional Review Board. All procedures 
followed were in accordance with the ethical standards of the 
Helsinki Declaration of 1975, as revised in 1983.

Participants

Participant recruitment spanned the period of March 2014 
to February 2017. Participants were included in the study if 
they suffered from NP, with or without arm pain, that was 
unrelated to trauma or systemic disease were seeking care 
for NP in a participating unit, and were proficient in Span-
ish. Participants were excluded if they had any central nerv-
ous system disorders (treated or untreated), other causes of 
referred or radicular arm pain (e.g. peripheral nerve damage) 
and not having signed the informed consent.

Sample size

In order to analyse the association of up to 40 variables, the 
sample had to include at least 400 subjects who would not 
experience improvement [12], following the 1:10 (1 vari-
able per 10 events) rule of thumb. Approximately 80–85% 
of patients with spinal pain, experience a clinically rel-
evant improvement in pain, referred pain and disability, 
at 3 months, while losses to follow-up at that period range 
between 5 and 10% [13, 14]. Therefore, the sample size was 
established at 2934 subjects. There were no concerns about 
the sample size being too large, due to the observational 
nature of the study.

Predictor and outcome variables

The 3 months follow-up period was undertaken, because (a) 
This study sought to analyse the outcome of a single episode 
of neck pain rather than relapses, (b) This timeframe implies 
that all patients who are symptomatic at follow-up, would 
be chronic; and (c) Existing studies have shown that losses 
to follow-up remain minimal for periods of up to 3 months 
[13], rise at 6 months [15], and become increasingly signifi-
cant thereafter [16].

The registry gathered data from patients and clinicians. 
Data requested from participants at the first assessment, 
were: sex, age, duration of the current pain episode (days), 
the time elapsed since the first episode (years), and employ-
ment status (Table 1). On both assessments, patients were 
asked to report the intensity of their neck and arm pain, 
and neck-related disability. To this end, they completed two 
separate 10 cm visual analogue scales (VAS) for NP and arm 
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pain (AP) (0 = no pain and 10 = worst imaginable pain), and 
a validated Spanish version of the Neck Disability Index 
(NDI-, 0 = no disability and 100 = worst possible disability) 
[17] (Table 1). Data requested from recruiting clinicians 
were: diagnostic procedures prescribed for the current epi-
sode, patients’ radiological findings on imaging procedures 
performed for the current or previous episodes, as reported 
by radiologists, clinical diagnosis, and treatments undergone 
by the patient throughout the study, and NRT intervention 
(Table 1).

Three outcomes were analysed in this study, NP inten-
sity, AP intensity, and NDI, all at the 3rd month follow-up. 

Reductions in VAS or NDI scores between the baseline 
and follow-up assessments were considered to reflect 
improvement only if they were greater than the minimal 
clinically important change (MCIC). The MCIC for pain 
and disability has been established as 30% of their base-
line scores, with a minimum value of 1.5 for VAS and 7 
NDI points for neck pain-related disability [17]. Details 
of the predictors and outcomes used can be found in the 
supplementary material.

Table 1   Descriptors of predictors and outcomes used

*Variables are outcomes

Variable name Type of variable Range Variable label Value labels

Improvem_NECKpain* Factor 0–1 Improvement of neck pain at 3 months 0 "NO"; 1 "YES"
Improvem_ARMpain* Factor 0–1 Improvement of arm pain at 3 months 0 "NO"; 1 "YES"
Improvem_DISAB* Factor 0–1 Improvement of disability at 3 months 0 "NO"; 1 "YES"
Sex Factor 0–1 Sex 0 "MALE"; 1 "FEMALE"
Age Numeric 16.59–93.47 Age at baseline (years)
Employ_status Factor 0–2 Employment status 0 "Not applicable"; 1 "Not working"; 2 

"Working"
Durat_pain_epis_days Numeric 1–13,140 Duration of the pain episode (days)
Time_first_episod_cat Factor 0–3 Time since first episode (years) 0 " < 1"; 1 "1–5"; 2 "5–10"; 3 " > 10"
Chronicity Factor 0–1 Duration of the pain episode categorized 

(days)
0 "Acute (< 90 d)"; 1 "Chronic (> = 90d)"

VAS_neckpain_0 Numeric 0–10 Baseline intensity of neck pain (VAS)
VAS_armpain_0 Numeric 0–10 Baseline intensity of arm pain (VAS)
Disability_0 Numeric 0–100 Baseline disability (Neck disability 

index)
Diagn_RX Factor 0–1 Diagnostic procedure: X-ray 0 "NO"; 1 "YES"
Diagn_MRI Factor 0–1 Diagnostic procedure: MRI 0 "NO"; 1 "YES"
Disc_degenerat Factor 0–1 Imaging findings: disc degeneration 0 "NO"; 1 "YES"
Facet_joint_deg Factor 0–1 Imaging findings: facet joint degenera-

tion
0 "NO"; 1 "YES"

scoliosis Factor 0–1 Imaging findings: scoliosis 0 "NO"; 1 "YES"
Spinal_stenosis Factor 0–1 Imaging findings: spinal stenosis 0 "NO"; 1 "YES"
Disc_protrusion Factor 0–1 Imaging findings: disc protrusion 0 "NO"; 1 "YES"
Disc_herniation Factor 0–1 Imaging findings: disc herniation 0 "NO"; 1 "YES"
Clinic_diagn Factor 0–2 Clinical diagnosis 0 "Disc protrusion/herniation"; 1 "Spinal 

stenosis"; 2 "Nonspecific syndrome"
Pharm_treat_analg Factor 0–1 Pharmacological treatment: analgesics 0 "NO"; 1 "YES"
Pharm_treat_NSAIDS Factor 0–1 Pharmacological treatment: NSAIDs 0 "NO"; 1 "YES"
Pharm_treat_steroids Factor 0–1 Pharmacological treatment: steroids 0 "NO"; 1 "YES"
Pharm_treat_musc_relax Factor 0–1 Pharmacological treat_muscment: mus-

cle relaxants
0 "NO"; 1 "YES"

Pharm_treat_opioids Factor 0–1 Pharmacological treatment: opioids 0 "NO"; 1 "YES"
Pharm_treat_other Factor 0–1 Pharmacological treatment: other treat-

ments
0 "NO"; 1 "YES"

Non_pharma_treat Factor 0–1 Non pharmacological treatments 0 "NO"; 1 "Physical therapy/Rehabilita-
tion"

NRT Factor 0–1 Neuro-reflexotherapy 0 "NO"; 1 "YES"
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Pre‑processing and missing data handling

There were 26 predictors included in the study, five numeric 
and 21 categorical. Exploratory data analysis using the VIM 
package [18] was used to generate matrices and plots of 
missing data, to identify patterns of missing-ness. From 
the complete data (n = 3001), we split the data into a train-
ing set (80%, n = 2402) for model development, and test-
ing set (20%, n = 599) for external validation of prediction 
performance.

Multiple Imputation by Chained Equations method [19] 
was performed given that we did not detect systematic 
patterns of missing data. Imputation of the complete data 
(n = 3001) will result in information from the testing set to 
be leaked into the training set, resulting in potentially an 
over-optimistic model. Multiple imputations on the training 
set were performed on all predictor and outcome variables 
with missing values, with the ensuing imputation model 
used to impute the missing data in the testing set.

A total of 21 models were created using seven algorithms 
and three outcomes. The following common processing 
steps were undertaken for all models. First, all continuous 
predictors were scaled (demeaned and divided by its stand-
ard deviation [SD]). Second, all categorical variables were 
transformed into integers using one-hot encoding.

ML algorithms

The codes used for the present study are included in the 
lead author’s public repository (https://​berna​rd-​liew.​github.​
io/​spani​sh_​data/​index.​html). A simplified graphical illustra-
tion of the algorithms can be found in the supplementary 
material.

1.	 Stepwise logistic regression
	   The simplest algorithm is the stepwise logistic regres-

sion model. Starting from a model with all predictors 
included, a stepwise selection procedure was used to 
remove variables based on the Akaike information cri-
terion (AIC). As some removed variables might improve 
the model once other predictors are removed, the proce-
dure also allows to add back already removed variables. 
The procedure proceeds in a greedy fashion and stops 
if neither adding nor removing variables yields to an 
improvement in the AIC.

2.	 LASSO regression
	   The LASSO regression constitutes a penalized linear 

model that aims to create the best performing parsimo-
nious model [20, 21]. It does so by adding a penalty 
equal to the absolute value of the magnitude of coeffi-
cients. Larger penalties result in coefficient values closer 
to zero, and some coefficients can become zero and be 
removed from the model.

3.	 K nearest neighbours (KNN)
	   KNN [22] is a distance-based method, whereby the 

class of the outcome is taken to be the class of the Kth 
closest training data, based on a predefined distance met-
ric and value K.

4.	 Gradient boosting machines (GBM)
	   GBM [23] and one of its variants gradient tree boost-

ing (GTB) is an ensemble procedure that iteratively fits 
very simple statistical models to the data. GTB uses 
classification trees as simple statistical models to model 
the data. Iteratively, GTB evaluates how well the cur-
rent model performs, and adds another tree to the errors 
made previously, and updates the model by adding the 
regression tree to the ensemble. We use Xgboost [24], 
one of the most popular implementations of GTB which 
allows for fast computation.

5.	 SVM
	   The SVM is an algorithm based on the idea of find-

ing an optimal separating hyperplane between multiple 
classes. The optimal hyperplane is typically found by (1) 
Finding the optimal curvature of the hyperplane, and (2) 
Maximizing the separating distance between the nearest 
data points from each class [25].

6.	 Random forest (RF)
	   Similar to GBT, a Random Forest (RF) [26] is an 

ensemble technique that combines several classifica-
tion trees to form a prediction by a majority vote of the 
single tree. Each constituent tree is fitted onto a random 
subsample of the data set, using a random sub-selection 
of the available predictors.

7.	 Artificial neural networks (ANN)
	   Inspired by neurons of the human brain [27], ANN is 

a nonlinear aggregate extension of simpler regression 
methods. The network transforms all the input infor-
mation from the predictors, in both a linear nonlinear 
fashion and passes the result to the next layer. This is 
repeated until an output layer is reached which forms 
the prediction of the network [28].

Model tuning and validation

All ML algorithms, apart from stepwise logistic regression, 
have one or more parameters whose value was used to control 
the learning process to optimize the predictive accuracy of the 
model. The hyperparameters that were tuned for each model 
can be found in Table 2. Hyperparameter tuning was combined 
with model validation using a nested cross-validation (CV) 
approach. For model validation, we split the data into 80% for 
model training and 20% for testing, whilst for hyperparam-
eter tuning, we used a threefold CV. As a tuning strategy to 
choose the optimal hyperparameter values to optimize the area 
under the receiver operator curve (AUC), we used a random 
search with a budget of 2000 trials per algorithm. This means 

https://bernard-liew.github.io/spanish_data/index.html
https://bernard-liew.github.io/spanish_data/index.html
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a random selection of 2000 hyperparameter combinations was 
taken and the performance evaluated using the threefold CV.

The primary measure of model performance was the AUC 
of the validation set. AUC ranges from 0 to 1, with a value of 
1 being when the model can perfectly distinguish between all 
the improvements and no improvements correctly, 0.5 when 
the model cannot distinguish the classes, and 0 being when 
the model is perfectly incorrect in its discrimination. The sec-
ondary measures of performance were classification accuracy, 
precision, sensitivity, specificity, and the F1 score. Accuracy 
reflects the ratio between the number of correct predictions 
made by the model to the total number of predictions made—
this ranges from 0 (no correct prediction) to 1 (perfect predic-
tion). Precision reflects the ratio of participants predicted to 
improve relative to those predicted to have improved. Sensitiv-
ity reflects the proportion of participants who were predicted 
to improve relative to those that have improved. Specificity 
reflects the proportion of participants who were predicted to 
not have improved relative to those that did not improve. F1 is 
the weighted harmonic mean of precision and recall, reaching 
its optimal value at 1 and its worst value at 0.

Results

The descriptive characteristics of participants can be found 
in Table 3. The optimal hyperparameters for each ML algo-
rithm, for each outcome, can be found in Table 2.

The ML algorithm with the greatest AUC for predicting 
arm pain (AUC = 0.765), neck pain (AUC = 0.726), and dis-
ability (AUC = 0.703) was Xgboost (Fig. 1). Stepwise logis-
tic regression resulted in the lowest AUC for predicting arm 
pain (AUC 0.684), neck pain (AUC = 0.623), whilst KNN was 
the poorest performing model for disability (AUC = 0.583) 
(Fig. 1). The improvement in classification AUC from step-
wise logistic regression to the best performing ML algorithms 
was 0.081, 0.103, and 0.077 for predicting arm pain, neck pain, 
and disability, respectively.

For accuracy, stepwise logistic regression was the best 
performing algorithm for predicting arm pain (ACC = 0.737), 
RF for predicting neck pain (ACC = 0.777), and Xgboost for 
predicting disability (ACC = 0.657) (Fig. 1). Stepwise regres-
sion was the most sensitive algorithm for predicting arm pain 
(Sens = 0.489), Lasso and KNN were equally sensitive for 
predicting neck pain (Sens = 0.345), and Xgboost and ANN 
were equally sensitive for predicting disability (Sens = 0.609) 
(Fig. 1). RF was the most specific algorithm for predict-
ing neck pain (Spec = 0.958) and disability (Spec = 0.729), 
whilst SVM was the most specific for predicting arm pain 
(Spec = 0.955) (Fig. 1).

Table 2   Hyperparameters value for final model building

Models Hyper-parameters Hyper-parameters definition Neck pain model Arm pain model Disability Model

Knn k Number of neighbours considered 10.00 10.00 10.00
Xgb Eta Step size shrinkage used in update to prevents overfitting 0.16 0.08 0.13
Xgb Max_depth Maximum depth of a tree 7.42 4.47 1.00
Xgb Nrounds Maximum number of iterations 128.07 433.62 440.59
Xgb Colsample_bytree Subsample ratio of columns when constructing each tree 0.81 0.76 0.74
Xgb Colsample_bylevel Subsample ratio of columns for each level 0.55 0.79 0.65
Xgb Subsample Subsample ratio of the training instances 0.69 0.63 0.91
Xgb Gamma Minimum loss reduction required to make a further 

partition on a leaf node of the tree
 − 1.18  − 1.31 0.15

Xgb Lambda L2 regularization term on weights  − 4.27 3.88  − 2.60
Xgb Alpha L1 regularization term on weights 3.13 3.62  − 1.32
Lasso s L1 regularization penalty 0.00 0.00 0.00
RF Mtry Number of variables randomly sampled as candidates 14.00 13.00 11.00
RF Sample.fraction Fraction of observations used 0.96 0.66 0.52
RF Min.node.size Value of minimal node size used 13.00 19.00 20.00
NNet Size Number of units in the hidden layer 3.00 1.00 1.00
NNet Decay Parameter for weight decay 0.50 0.50 0.10
Svm Cost Cost of constraints violation 9.02 3.70 1.52
Svm Gamma Inverse of the radius of influence of samples selected by 

the model as support vectors
0.00 0.00 0.00
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Discussion

ML is increasingly being employed for prognostic model-
ling in pain research [10, 11], and also in other healthcare 
fields [29]. We hypothesized that ML would be superior to 
traditional stepwise logistic regression in predicting recov-
ery status for individuals with neck pain. Our hypothesis 
was partially supported in that stepwise logistic regression 
was the poorest performing algorithm for predicting arm 
pain and neck pain, but KNN was the poorest performing 
algorithm for disability. Differences in the AUC between 

Table 3   Descriptive characteristics of cohort (n = 3001). For categori-
cal variables, values represent count (% frequency)

Variable Total

Neck pain improvement
No 757 (27.4)
Yes 2006 (72.6)
Arm pain improvement
No 568 (29.28)
Yes 1372 (70.72)
Disability improvement
No 600 (49.79)
Yes 605 (50.21)
Sex
Male 726 (24.59)
Female 2227 (75.41)
Age (years)
Mean (SD) 50.29 (15.86)
Employment
Not applicable 1199 (45.68)
Not working 197 (7.5)
Working 1229 (46.82)
Pain duration (days)
Mean(SD) 493.4 (989.43)
Time since first episode (years)
 < 1 648 (22.49)
1–5 984 (34.15)
5–10 677 (23.5)
 > 10 572 (19.85)
Chronicity
Acute 971 (32.36)
Chronic 2030 (67.64)
Baseline neck pain
Mean(SD) 6.56 (2.25)
Baseline arm pain
Mean(SD) 4.47 (3.38)
Baseline disability
Mean(SD) 30.84 (22.41)
X-ray diagnosis
No 2302 (76.71)
Yes 699 (23.29)
MRI diagnosis
No 2399 (79.94)
Yes 602 (20.06)
Imaging findings of disc degeneration
No 1666 (55.51)
Yes 1335 (44.49)
Imaging findings of facet degeneration
No 2771 (92.34)
Yes 230 (7.66)
Imaging findings of scoliosis
No 2866 (95.5)
Yes 135 (4.5)

Table 3   (continued)

Variable Total

Imaging findings of spinal stenosis
No 2938 (97.9)
Yes 63 (2.1)
Imaging findings of disc protrusion
No 2731 (91)
Yes 270 (9)
Imaging findings of disc herniation
No 2483 (82.74)
Yes 518 (17.26)
Clinical diagnosis
Disc protrusion/herniation 665 (22.16)
Spinal stenosis 63 (2.1)
Non-specific 2273 (75.74)
Pharmacological: analgesics
No 1042 (34.72)
Yes 1959 (65.28)
Pharmacological: NSAIDS
No 1175 (39.15)
Yes 1826 (60.85)
Pharmacological: steroids
No 2811 (93.67)
Yes 190 (6.33)
Pharmacological: muscle relaxants
No 2265 (75.47)
Yes 736 (24.53)
Pharmacological: opioids
No 2949 (98.27)
Yes 52 (1.73)
Pharmacological: other
No 2328 (77.57)
Yes 673 (22.43)
Non-pharmacological treatment
No 2587 (86.2)
Yes 414 (13.8)
Neruo-reflexotherapy
No 421 (14.03)
Yes 2580 (85.97)
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stepwise logistic regression and the best performing algo-
rithms were between 0.07 and 0.10.

Our findings contrast with another study that similarly 
compared different ML algorithms and logistic regres-
sion for predicting mortality and unfavourable outcomes 
in individuals with traumatic brain injury [29]. A previ-
ous study reported that the difference in predictive perfor-
mance (AUC) between the best performing ML algorithm 
and logistic regression was 0.01 [29]. In addition, a sys-
tematic review reported that logistic regression performed 
similarly to most ML algorithms for prognosis in a hetero-
geneous set of clinical conditions [30]. Gravesteijn et al. 
[29] pooled data from 15 studies including a total of 11 
022 participants, whilst the systematic review included 
studies with a median sample size of 1250 (range 72 to > 3 
million) [30]. To our knowledge, no studies to date have 
performed any subgroup analyses to understand if the per-
formance differences between methods could be attributed 
to variations in sample size.

An often-cited advantage of ML over logistic regres-
sion is that it can model complex, nonlinear relationships 
between the predictors and outcome [29]. The complexity 
between the predictors and outcome in previous studies [29, 
30] may be too low for ML to have a meaningful benefit 
over logistic regression. A previous study in cervical radicu-
lopathy found nonlinear relationships between baseline self-
reported predictors and 12 months clinical outcomes of neck 
and arm pain and disability [31]. The nonlinear relationship 
between baseline and outcomes may not be surprising given 
that previous studies reported different nonlinear rates of 
recovery in disability with different baseline neck disabil-
ity scores in individuals with whiplash-associated disorders 
(WAD) [32]. The potential greater nonlinearity between 
baseline predictors and clinical outcome in the present study 

could contribute to the better performance of ML compared 
to stepwise logistic regression.

ML may further benefit prognostic models when func-
tional predictors are included. The most common predictors 
used in prognostic modelling in neck pain are self-reported 
pain and psychological variables [7–9]. These variables are 
discrete, meaning that each observation takes on a single 
value. Functional variables are typically temporal and/or 
spatial variables, where each observation for each variable 
can take on multiple values [33]. The most common exam-
ple of functional variables would be kinematic and muscle 
activation data, which are temporal variables [34, 35]. Less 
common functional variables are cortical activation patterns 
and radiological images [36, 37]. Given that functional vari-
ables lie on a higher-dimensional space, we anticipate that 
their relationship with clinical outcomes would be more 
complex, less linear, as compared to discrete variables.

The lack of consideration of functional variables, such 
as kinematic data is surprising given that neck pain pri-
marily affects movement [38], clinicians always assess 
movement, and neck pain severity scales with movement 
impairments [38]. In a cross-sectional study, seven elec-
tromyography functional predictors achieved an AUC of 
0.90 when classifying individuals with and without low 
back pain [35]. Whilst the study was limited by a cross-
sectional design [35], the result was much better than other 
cross-sectional low back pain studies which used only self-
reported variables and achieved an AUC of 0.71 [39, 40]. 
Predictors in current prognostic models of neck pain have 
only included discrete variables, but not functional vari-
ables, and this we believe occurs due to several reasons. 
First, self-reported and psychological data are logistically 
easiest to collect. However, the growing availability and 
reduced cost of technologies, such as that of wearable 

Fig. 1   Performance metrics 
of seven machine learning 
algorithms in the prediction of 
the outcomes of arm pain, neck 
pain, and disability. Abbre-
viations. AUC​: area under the 
receiver operating characteristic 
curve; ACC​: accuracy; Precs: 
precision; F1: F1 score; Sens: 
sensitivity; Specs: specificity; 
Knn: K nearest neighbour; 
Lasso: least absolute shrinkage 
and selection operator; Xgb: 
extreme gradient boosting; RF: 
random forest; Svm: support 
vector machine; ANN: artificial 
neural networks
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sensors, make objective functional data collection increas-
ingly feasible. Second, traditionally taught statistics like 
logistic/linear regression can only incorporate discrete 
variables, and unfamiliarity of alternative ML methods 
may preclude the latter’s use. Third, more complex ML 
methods that can model functional variables are typically 
not available on popular commercial statistical software 
(e.g. Statistical Package for the Social Sciences [SPSS]), 
again precluding its more widespread use.

A limitation in the present study was that our models 
were not calibrated. Calibration refers to the agreement 
between the distribution of the observed outcomes and 
predictions, with a well calibrated model resulting in high 
agreement. Most ML algorithms, unlike logistic regres-
sion, are not designed to optimize the agreement between 
the two distributions. Rather, most ML algorithms nec-
essarily manipulate the agreement, to maximize both 
the accuracy and consistency of predictions. However, 
because our primary performance measure was the AUC 
(a measure of discrimination that is not affected by mis-
calibration), and that our ML models were optimized for 
the AUC, the lack of calibration will not influence our pri-
mary findings. The same cannot be said for our secondary 
performance measures, which relies on a well calibrated 
model. Hence, interpretation of our secondary perfor-
mance measures should be done with caution. Another 
limitation was that we did not statistically compare the 
predictive performance between algorithms. Comparing 
the performance of different algorithms is challenging, 
because unless a very large dataset is involved, typical 
validation procedures (e.g. bootstrapping, k-fold valida-
tion) will create correlated subsamples, thereby violating 
the independence assumption in many statistical inference 
tests. Although there are statistical tests for comparing dif-
ferent algorithms based on a single test dataset [41], these 
tests rely on a well-calibrated model to produce realistic 
class probability values. Hence, we adopted a qualitative 
comparison in the present study, but this should be verified 
in a separate validation study. Lastly, the relative impor-
tance of each predictor and its relationship with the out-
come was not reported. Understanding the predictor-out-
come relationships is a focus of prognostic factor research 
[5], where this study focused on prognostic modelling 
research. Indeed, a disadvantage of many ML algorithms 
is that it does not intrinsically calculate the predictor-out-
come relationships. However, there is a growing number 
of “post-hoc” statistical methods that can quantify the rela-
tive importance and relationship between each predictor 
and outcome [42]. Whether an improvement in the AUC 
between 0.07 and 0.10 is considered a clinically important 
improvement in model performance is unknown as such 
thresholds have not been reported in the literature.

Conclusion

Differences in the AUC between stepwise logistic regression 
and the best performing algorithms were between 0.07 and 
0.10. The improvement in prediction performance between 
ML and logistic regression methods in the present study, and 
not in prior studies, could be due to the potential greater non-
linearity between baseline predictors and clinical outcome in 
the former. Given the increasing availability of technologies 
within the clinics to monitor objective functional variables, 
ML may play a more prominent role in prognostic model-
ling. However, we still advocate for caution in the optimism 
of applying ML in prognostic modelling, and its benefit is 
likely dependent on factors like sample size, variable type, 
disease investigated, to name a few.
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