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‘In science, convictions have no rights of citizenship, as is said with good reason.
Only when they decide to descend to the modesty of a hypothesis, of a provisional
experimental point of view, of a regulative fiction, maybe they be granted admission
and even a certain value within the realm of knowledge - though always with the
restriction that they remain under police supervision, under the police of mistrust.
But does this not men, more precisely considered, that a conviction may obtain
admission to science only when it ceases to be a conviction? Would not the
discipline of the scientific spirit begin with this, no longer to permit oneself any
convictions? Probably that is how it is. But one must still ask whether it is not
the case that, in order that this discipline could begin, a conviction must have
been there already, and even such a commanding and unconditional one that it
sacrificed all other convictions for its own sake. It is clear that science too rests
on a faith; there is no science ’without presuppositions’. The question whether
truth is needed must not only have been affirmed in advance, but affirmed to the
extend that the principle, the faith, the conviction is expressed: ’nothing is needed
more than truth, and in relation to it everything else has only second-rate value’.
...
Consequently, ’will to truth’ does not mean ’I will not let myself be deceived’ but
- there is no choice - ’I will not deceive, not even myself’: and with this we are
on the ground of morality. For one should ask oneself carefully: ’Why don’t you
want to deceive?’ especially if it should appear - and it certainly does appear -
that life depends on appearance; I mean, on error, simulation, deception, self-
deception; and when life has, as a matter of fact, always shown itself to be on the
side of the most unscrupulous polytropoi. Such an intent charitably interpreted,
could perhaps be a quixotism, a little enthusiastic impudence; but it could also be
something worse, namely, a destructive principle, hostile to life. ’Will to truth’ -
that might be a concealed will to death.’

Friedrich Nietzsche
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Abstract
In this thesis, we examine various aspects of phase transitions and critical phe-
nomena of pure and disordered magnetic systems using a variety of numerical ap-
proaches. In particular, we employ the Metropolis and Wolff algorithms in order
to study the finite-size scaling of the interfacial adsorption of the two-dimensional
Blume-Capel model at both its first- and second-order transition regimes, as well
as at the vicinity of the tricritical point. What is more, we review the size depend-
ence of the interfacial adsorption under the presence of quenched bond random-
ness at the originally first-order transition regime and the relevant self-averaging
properties of the system. Following, we turn our focus on exact ground-state cal-
culations with the use of graph cut methods for the investigation of the critical
behaviour of the two-dimensional random-field Ising model. We illustrate the
effectiveness of the Boykov-Kolmogorov algorithm and implement it for carrying
out a thorough research on the breakup length scale problem of the square and
triangular lattice models. We address questions such as which law governs the
scaling of the breakup length of the random-field Ising model and whether this
law depends on the definition used for the ratio of ferromagnetic ground states
over the overall number of samples or on the lattice geometry. Finally, an altern-
ative robust approach based on the second-moment correlation length b of the
model as obtained from a recently developed fluctuation-dissipation formalism is
undertaken and provides a clear-cut resolution of the model’s scaling description.
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Introduction

In order to illustrate the theory of phase transitions, in statistical physics we
offer two main categories of physical systems: fluids and magnets. The study
of simplified models of such systems led to the concepts of universality, scaling
and renormalization, which are the basic foundations of the theory of critical
phenomena (Stanley, 1971; Yeomans, 1992; Goldenfeld, 1995; Cardy, 1996; New-
man and Barkema, 1999; Landau and Binder, 2000). Experimental checks of
the theory can be performed by various systems, some of which (Guggenheim,
1945; Heller and Benedek, 1962) constitute the modern era of critical phenomena
Stanley (1971).

In particular, regarding magnetic systems, there have been many attempts
by experimental physicists in order to reduce the defects of the models under
study. However, after Imry and Ma (1975), disordered materials have given rise
to new research paths during the last 45 years (Fisher, Grinstein et al., 1988;
Nattermann and Villain, 1988; Belanger and Nattermann, 1998). Disordered
magnets are particularly useful for the study of systems of quenched, as well as
homogeneous randomness.

Let us here highlight the difference between quenched and annealed disorder.
Starting with a system that is in thermal equilibrium with its environment, there
are two ways to cool the system and therefore observe how it changes. We can
either quench the system, that is, rapidly change the environment to its final
value, or we can anneal the system, namely slowly cool its environment down.
Therefore, the system will have the same state as the original one, but will be
subject to a different environment, or it will be in equilibrium with its environ-
ment at all times, respectively. In other words, thinking about a system with
quenched or annealed disorder, its disorder variables do not or do evolve in time,
respectively. A quenched average is therefore the average keeping the random
variables fixed, while an annealed average is an average which is also carried out
over all the possible values that the random variables can take. In the case of
quenched disorder, the thermal averaging comes before the disorder configuration
averaging. In this thesis, we exclusively study systems of quenched randomness.
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In general, random systems are studied through the scope of random field
as well as random bond (Belanger and Nattermann, 1998) systems, both for
theoretical and experimental cases. The main theoretical interest focuses on how
the behaviour of pure systems changes when they are subjected to disorder. Many
questions remain open to date, particularly regarding the difference of the nature
of phase transitions and the scaling properties of the disordered system, compared
to its pure equivalent. Such questions have been addressed theoretically with
the use of the renormalization group and mean-field theories. However, many
predictions have been proven inadequate, contrasting or even wrong.

For the above reason, the importance of computational statistical physics for
the study of such systems should be strongly emphasized. In this field, random
sampling, that is, Monte Carlo (MC) (Newman and Barkema, 1999; Landau and
Binder, 2000) simulations, have been the most predominant numerical methods
for studying phase transitions in the presence of quenched disorder. What is more,
appropriate techniques are required in order to expand the simulation results to
systems large enough to perform finite-size scaling (FSS) (Privman, 1990; Barber,
1983) and therefore extract accurate results. However, as far as it concerns the
numerical methods, the lack of consistency in the results, especially for large
system sizes, combined with the bulk of open questions yet to be approached,
has led to the development of alternative numerical techniques, namely, graph
cut methods at zero temperature (Hartmann and Rieger, 2004).

In this thesis, we take advantage of both numerical approaches, focusing
strongly on the latter and we study the critical behaviour of complex systems,
such as the Blume-Capel and the random-field Ising models. More precisely, in
Chap. 1, a brief theoretical background regarding phase transitions, disordered
systems, finite size scaling and the RFIM is included, while in Chap. 2, some
of the most popular Monte Carlo numerical techniques are listed, along with an
application of such methods for the Blume-Capel model. Chap. 3 focuses on
the methodology and implementation of applying graph cut methods for solving
the energy minimization problem for the RFIM, followed by Chap. 4, where the
main application of our research on graph cut methods is presented, that is, the
breakup length scale of the RFIM.
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Chapter 1

Theoretical Background

In this chapter, we introduce the necessary background theory of phase transitions
and finite size scaling, along with the concept of disordered systems and the
FSS for such systems. In particular, in Sec. 1.1, the fundamental elements
of the theory of phase transitions and critical phenomena are presented, while
in Sec. 1.2 the FSS method is described, together with examples. Sec. 1.3
includes the Harris criterion, as well as an illustration of the FSS method, this
time for disordered systems, followed by Sec. 1.4, where we finish our theoretical
background description by introducing the RFIM.

1.1 Phase transitions and critical phenomena

Let us consider a large piece of material and examine and write down its macro-
scopic properties (e.g. density, magnetisation, etc.). Next, let us split the piece
into two almost equal pieces and re-examine the macroscopic properties of the
new pieces, while keeping the external parameters of the experiment (e.g. pres-
sure - %, temperature - ) , etc.) constant. We observe that the macroscopic
properties of the two pieces remain the same as the ones of the original piece.
We shall observe the same case as we continue dividing the small pieces into two
smaller ones and so on.

In the long run, after many repetitions of the above process, we expect to
observe something different, given the fact that the material consists of atoms and
molecules whose characteristic properties differ significantly from the material’s
ones. The length scale at which the overall properties of the small pieces of the
material begin to be notably different from the ones of the original macroscopic
piece define a measure called the correlation length b of the material (Cardy,
1996). In other words, it is the length scale over which the fluctuations of the
microscopic degrees of freedom are important and therefore referring to the theory
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about the behavior of many-particle systems (central limit theorem) ceases to be a
reliable method. Since the value of the correlation length depends on the external
conditions of the experiment (such as temperature), its thermal dependence plays
an important role in the macroscopic behaviour of the system.

It is well established that the macroscopic behaviour of many systems is re-
markably different and as a matter of fact unexpectedly during the smooth vari-
ation of thermodynamic variables such as % and ) . The points at which these
abrupt changes take place are called critical points of the phase transition and
they indicate the phase transition from a state of matter to another.

Phase transitions commonly occur in two different ways. According to the
first case, the two (or more) states on both sides of the critical point coexist
exactly on it, however they remain distinct from each other due to their different
macroscopic properties. Nonetheless, hardly away from the critical point there is
a characteristic unique phase whose properties are continuously connected to one
of the co-existent phases at the critical point. In this case, the first derivatives of
the free energy exhibit a discontinuous behaviour as the critical point is crossed
from one phase to the other. Such transitions, where the correlation length is
finite, are called discontinuous or first-order phase transitions (Stanley, 1971;
Yeomans, 1992).

Now as far as it concerns the second basic category of phase transitions, which
is the one of exclusive interest in the scope of our research, things are quite differ-
ent. This is the case where the correlation length is infinite and we have continu-
ous or second-order phase transitions, with the system’s degrees of freedom being
correlated over all length scales. This causes the system to be in a unique critical
phase. During a second-order phase transition, the two (or more) phases on both
sides of the critical point should gradually coincide while approaching the critical
point. Therefore, the correlation length tends to infinity. In contrast, the differ-
ences among the thermodynamic quantities (e.g. energy density, magnetisation)
of the two (or more) phases converge continuously to zero.

The occurrence of many correlated degrees of freedom makes the understand-
ing of second-order phase transitions a particularly difficult process. However,
during the last 45 years and with the help of renormalization theory, the approach
of such concepts takes place through a different mindset which has undoubtedly
helped the recognition and comprehension of the complex methods involved in
critical phenomena of matter (Goldenfeld, 1995; Cardy, 1996).
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One of the most substantial conclusions of modern theory of critical phenom-
ena is that, despite the fact that systems corresponding to large correlation length
values seem to be quite complex, at the same time they conceal an extraordin-
ary simplicity, whose use makes the study of such systems easier to some extent.
One such case is the universality (Goldenfeld, 1995; Cardy, 1996), according to
which many properties of a system close to a critical point of a continuous phase
transition depend only on few features of the system and not on the microscopic
details of the interactions among the individual particles. Instead, they belong
to one of the few different universality classes existing, where each one of them is
governed by some common elements, such as the symmetries of the Hamiltonian
and of the ground state (GS), the spatial dimension �, etc.

Let us point out here that the concepts of universality and scaling were initially
highlighted through the numerical data analysis of simple models (Ising model)
during the 60’s. They were subsequently physically interpreted in the scope
of renormalization theory and of relative Kadanoff-type arguments (Goldenfeld,
1995).

At this point, the basic concepts of statistical physics and theory of critical
phenomena which are essential for the understanding of the current thesis are
discussed. The most important quantity in statistical physics is the partition
function Z, which describes the statistical properties of a system in thermody-
namic equilibrium. In general, the partition function is a function of temperature
and of other system parameters, such as volume in case of a gas or magnetic
field in case of a magnetic system. The basic thermodynamic quantities, such
as internal energy, free energy and entropy can be appropriately expressed with
terms and derivatives of the partition function. There are many ways to express
the partition function depending on the statistical ensemble under consideration.
For example, the canonical partition function refers to the canonical ensemble,
where the system exchanges energy with a heat bath, under fixed temperature,
volume and number of particles.

Let us now define the Hamiltonian of the most fundamental spin model of
Statistical Physics, that is the Ising model:

H = −�
∑
〈G,H〉

BGBH − ℎ
∑
G

BG , (1.1)

where BG = ±1 and � > 0 is the interaction constant. 〈G, H〉 represent the short-
range, nearest-neighbour interactions and ℎ is an external magnetic field. Now
let B (B = 1, 2, 3, ...) be the precise (micro)states of the system and �B be the total
energy of the system when in state B. Then, the partition function of the system
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can be written as:

Z ≡ Z (), ℎ) =
∑
B

4−V�B , (1.2)

where V ≡ 1
:�)

and :� is the Boltzmann constant. The free energy occurs as the
logarithm of the partition function:

F = −:�) lnZ. (1.3)

All macroscopic thermodynamic properties of the system are derived by appro-
priately differentiating Eq. (1.3).

Before proceeding to reproducing the basic thermodynamic quantities, let us
re-express the partition function through the system’s density of states, 6 (�),
which is the number of all possible states of the system corresponding to each
energy � . In this case, Eq. (1.2) writes:

Z =
∑
�

6 (�) 4−V� . (1.4)

The density of states does not depend on the temperature and therefore can be
used in order to construct normal distributions at each temperature. This fact
has allowed the development of a series of MC algorithms whose main goal is to
directly calculate a system’s density of states. Such algorithms will be described
in detail in Chap. 3.

We can now calculate the internal energy * of the system:

* = −m lnZ
mV

= 〈�〉 =
∑
� �6 (�) 4−V�∑
� 6 (�) 4−V�

. (1.5)

In general, the expectation value of the :th power of the system energy is:

〈� :〉 =
∑:
� �

:6 (�) 4−V�∑:
� 6 (�) 4−V�

. (1.6)

Therefore, the fluctuations of internal energy yield the specific heat �:

� =

(
m*

m)

)
ℎ

= :�V
2 ��〈�2〉 − 〈�〉2

�� . (1.7)

Appropriate differentiation of the free energy generates the magnetisation "
and the magnetic susceptibility j:

" =

(
mF
mℎ

)
)

(1.8)
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and

j =

(
m"

mℎ

)
)

= V−1 m
2

mℎ2 lnZ = V
��〈"2〉 − 〈"〉2

�� . (1.9)

Up to now, starting from the partition function, we have defined the basic
thermodynamic quantities which describe the macroscopic behaviour of a mag-
netic system. The special importance of the density of states of the system should
be highlighted, since if 6(�) is known, Eqs. (1.5) to (1.7) can be easily calculated.

Now let us focus on the point where a continuous phase transition takes place,
that is, the critical point. Normally, close to a critical point, the correlation
length and the rest of the thermodynamic parameters demonstrate power-law
dependencies on the parameters describing the distance from the critical point.
This distance is expressed through the reduced critical temperature C, where C =
)−)2
)2

. Such power laws are called scaling laws and the corresponding exponents are
called critical exponents. Critical exponents are simple, usually rational numbers
and in many cases they exclusively depend on the universality class to which they
belong (Stanley, 1971; Privman, 1990).

A critical exponent ` for a thermodynamic quantity A is defined as:

` = lim
C→0

lnA(C)
ln C , (1.10)

yielding the following expression for the dependence of the quantity A on the
critical exponent `:

A(C) ∝ C` . (1.11)

Eq. (1.11) is true only for the case where C → 0. In general, taking into account
correction terms as well, one can get A(C) = �C` (1 + 1C`1 + ...). In addition, given
that the approach to the critical point can be done in two ways, that is, from
below or from above, two critical exponents can be defined as ` and `′ for C → 0−

and C → 0+, respectively.

Now regarding magnetisation, its critical exponent V is given by:

" (C, ℎ = 0) ' (−C)V, C → 0−, (1.12)

while the critical exponents W and W′ of the magnetic susceptibility by:

j(C, ℎ = 0) '

(C)−W, C → 0−

(−C)−W′, C → 0+
. (1.13)
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As for the specific heat’s critical exponents U and U′, we have:

� (C, ℎ = 0) '

(C)−U, C → 0−

(−C)−U′, C → 0+
. (1.14)

Finally, the critical exponent X of the critical isotherm for small field variations
is defined as:

" (0, ℎ) ' ℎ 1
X sign ℎ, ℎ→ 0 (1.15)

and the critical exponents a and a′ for the correlation length write:

b (C, ℎ = 0) '

(C)−a, C → 0−

(−C)−a′, C → 0+
. (1.16)

Let us proceed to a universality example, namely, Widom’s scaling hypothesis,
according to which (Barber, 1983) the non-analytical part (singular, B) of the free
energy per particle ( 5B) of a magnetic system near its critical point is a homogen-
eous function with respect to the system parameters. This two-parameter scaling
theory can be expressed as follows (Stanley, 1971):

5B (_?C, _@h) = _ 5B (C, h) ⇒


_@" (_?C, _@h) = _" (C, h)

_2@j(_?C, _@h) = _j(C, h)

_2?� (_?C, _@h) = _� (C, h)

, (1.17)

where the equations regarding magnetisation, magnetic susceptibility and specific
heat occur after appropriate differentiation of the left-hand side of Eq. (1.17) and
h = ℎ−ℎ2

ℎ2
. There exist many different formulas for Eq. (1.17) (Stanley, 1971; Priv-

man, 1990; Barber, 1983), which uses the fundamental properties of homogeneous
functions of two variables (Stanley, 1971).

Now setting h = 0 and _ = (−C)−
1
? for the magnetisation equation in Eq. (1.17),

we get " (C, 0) = (−C)
1−@
? " (−1, 0), ) → 0− and therefore, Eq. (1.12) yields V = 1−@

?
.

In the same manner, setting C = 0 and _ = h−
1
@ , again for the magnetisation equa-

tion, we compare with Eq. (1.15) and get X = @

1−@ . Following similar techniques
for the susceptibility and specific heat equations, we obtain W = W′ = 2@−1

?
and

U = U′ = 2 − 1
?
, respectively. Therefore, an outcome of Widom’s scaling is that

the critical exponents are not independent but correlated to each other via two
numbers, ?, @ ∈ R:

U = U′ = 2 − 2V(X + 1) = 2 − 1
?

W = W′ = V(X − 1).
(1.18)
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Rushbrooke: U′ + 2V + W′ ≥ 2
Griffith: U′ + V(1 + X) ≥ 2
Fisher: a(2 − [) ≥ 2W

Josephson: �a′ ≥ 2 − U′, 3a ≥ 2 − U

Table 1.1: Scaling laws.

In Table 1.1 one can check the most known inequalities for the critical ex-
ponents (Stanley, 1971; Privman, 1990), which emerge from the renormalization
theory (Stanley, 1971). Via Widom’s scaling hypothesis, the equalities U′ = U,
W′ = W, a′ = a come out and consequently we shall consider the exponents equal
from now on.

Two more critical exponents are introduced in Fisher and Josephson inequalit-
ies, namely a and [. a determines the power law of the correlation length and [ the
critical behaviour of the connected correlation function Γ(A) = 〈B0BA〉 − 〈B0〉〈BA〉,
which calculates the correlation of the spin values fluctuations from their averages.

Far from the critical temperature, the spin values fluctuations from their av-
erage values are particularly small and decay exponentially and analogously to
distance. Therefore, the following behaviour for the connected correlation func-
tion is expected:

Γ(A) ≈ A−g4−
A
b , (1.19)

where exponent g plays no important role as well as the function behaves expo-
nentially, given that the dominant behaviour is the one to be determined by the
exponential function.

According to the fluctuation theorem, the isothermal susceptibility is the spa-
tial integral of the correlation function, that is j ∼ #

∫
33AA3−1Γ(A), which

emerges as a result of the behaviour described by Eq. (1.19) and hence converges
to a finite value. Nevertheless, we know that as we approach either from above or
below the critical temperature, the isothermal susceptibility per particle diverges
to infinity, as an outcome of the fluctuations of the order parameter. Close to the
critical point the order parameter converges to 0 and its fluctuations, although
expanding to big distances, are not particularly strong.

Mathematically speaking, the divergence of the isothermal susceptibility at
the critical point can be explained as follows: As the critical temperature is
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approached, the correlation length increases according to a power law:

b '

(C)−a, C → 0−

(−C)−a′, C → 0+
. (1.20)

Thus, as the correlation length increases, the behaviour of the correlation func-
tion given by Eq. (1.19) is not valid anymore. This implies that there is no
characteristic length for the problem and all the length scales participate to the
establishment of the behaviour. In this case, the correlation function is described
by a power law of the form:

Γ(A) ≈ 1
A3−2+[ . (1.21)

1.2 Finite size scaling

The number of particles (spin variables) # in a graph cut (or MC) simulation
is of the order of 102–107. However, a real system consists of # ∼ #real ∼ 1023

particles. Therefore, it is clear that one needs to come up with a technique that
calculates the properties of the real, large system, by studying the properties
of smaller, finite, computationally feasible systems. A suitable method for this
purpose is the finite-size scaling method (FSS) (Barber, 1983), where the values
of the critical exponents are figured out, based on the study of the change of the
thermodynamic quantities of a system as a function of the size lattice !.

Let us re-write Widom’s scaling hypothesis regarding the non-analytical part
of the free energy (Eq. (1.17)):

5B (C, h) = ;−� 5̃
(
;

1
a C, ;

V+W
a h

)
= ;−

2−U
a 5̃

(
;

1
a C, ;

V+W
a h

)
, (1.22)

where now the parameter _ is equal to the length of the Kadanoff unit cell,
i.e., _ = ;� , where ; is a length scale. The correlation between Eq. (1.17) and
Eq. (1.22) is obvious via Eq. (1.18), since _? = ;�? = ; �

2−U = ;
1
a and _@ = ;�@ = ;

V+W
a ,

respectively. The scaling function 5̃ is non-dimensional. The same holds for its
arguments, which are called scaling parameters (Barber, 1983) or scaling fields
(Goldenfeld, 1995).

As a result of the above, the simplest way to follow an FSS process is to
introduce the linear size of the lattice to Eq. (1.22) as one additional scaling
parameter:

5B (C, h, !−1) = ;−� 5̃
(
;

1
a C, ;Hhh, ;

!

)
, (1.23)
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where the dependence on the system size does no longer hold at ! → ∞, as
desired. As shown by Barber (1983), the most sensible choice of the length scale
is the one equal to the linear size of the system (; = !), due to the rounding of the
thermodynamic quantities. Then, the scaling of the free energy takes the form:

5B (C, h, !−1) = !−� 5̃
(
!

1
a C, !Hhh, 1

)
. (1.24)

At this point, Eq. (1.24) allows us to determine the !-dependence of all thermo-
dynamic quantities of the system. Assume that we are interested in the properties
of the system when the external magnetic field is zero. Then, one can write, for
example, for the magnetisation ", magnetic susceptibility j and specific heat �
the following formulas:

" = !−
V

a "̃ (GC), (1.25)

j = !
W

a j̃(GC), (1.26)

� = !
U
a �̃ (GC), (1.27)

where GC = !
1
a C is the temperature scaling parameter. The scaling functions "̃, j̃

and �̃ are almost independent of the linear size of the lattice, provided that we
omit the higher order corrections.

A typical method for calculating the critical temperature )2 and the critical
exponent a of the correlation length, in the scope of the FSS theory, is based on
the estimation of the position of the peak of a thermodynamic derivative of the
free energy, such as the specific heat or the magnetic susceptibility. For a finite
lattice, the peak corresponds to the temperature where the scaling function, e.g.
�̃ (GC), is maximum, i.e.:

3�̃ (GC)
3GC

����
GC=G

∗
C

= 0. (1.28)

This temperature is called pseudo-critical )∗
!
and is defined via GC = G∗C to be

changing in accordance to the linear size of the lattice as:[
)∗
!
− )2
)2

]
!

1
a = G∗C =⇒ )∗! = )2 + 1!−

1
a , (1.29)

where 1 = )2G∗C . Eq. (1.29), as well as Eqs. (1.25) to (1.27) are precise only in the
case where the system size is very big and the temperature is close to the critical
temperature. In the case of small lattice sizes, one needs to include corrections,
typically of the form ∼ (1 + 2!−l + ...) (Ferrenberg and Landau, 1991; Aharony
and Fisher, 1983).
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Let us focus on the critical exponent a, whose calculating with FSS with the
use of numerical data is a costly process. For this reason, there are various altern-
ative ways for determining the exponent in the bibliography, such as functions
related to the order parameter ". In the scope of FSS, the probability density
function %! (") for the order parameter of a finite size system of linear size !
does not depend on each of the three variables !, b and ", but it is a generalised
homogeneous function of two of them (Binder, 1981a). Thus, one can define the
probability density function %! (") as (Binder, 1981a):

%! (") = !
V

a %̃

(
b

!
, "!

V

a

)
, b →∞, ! →∞, b

!
: finite, (1.30)

where %̃ is a scaling function, similar to Eqs. (1.25) to (1.27). From the above
equation, the value of the :th power of the order parameter is:

〈|" |:〉 = !
V

a

∫
3" |" |: %̃

(
b

!
, "!

V

a

)
∼ !−

:V

a

∫
3II: %̃

(
b

!
, I

)
= !

−:V
a 5̃:

(
b

!

)
,

(1.31)

where I = "!
V

a and 5̃: is a new scaling function.

We can now define, via Eq. (1.31), the fourth-order Binder’s cumulant (Binder,
1981a; Binder, 1981b):

*4 = 1 − 〈"
4〉

3〈"2〉2 , (1.32)

where the maximum value of its slope scales as:
3*4
3 

����
max
∼ ! 1

a , (1.33)

with  = 1
)
. Furthermore, independent estimations of the critical exponent a

are given by logarithmic derivatives of various orders of the order parameter
(Ferrenberg and Landau, 1991):

m ln 〈" :〉
m 

=
1
〈" :〉

m〈" :〉
m 

=
〈" :�〉
〈" :〉

− 〈�〉, (1.34)

whose maximum values scale, in accordance to Eq. (1.33), as:

m ln 〈" :〉
m 

����
max
∼ ! 1

a . (1.35)

In addition, alternative estimations of the critical exponents V and a are
provided by Ferrenberg and Landau (1991), via the scaling of the maximum
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values of the derivative of the absolute value of the order parameter
m〈|" |〉
m 

= 〈|" | �〉 − 〈|" |〉〈�〉, (1.36)

given by:
m〈|" |〉
m 

����
max
∼ !

1−V
a . (1.37)

Finally, the temperatures corresponding to the maximum values of the derivat-
ives given by Eq. (1.32), Eq. (1.34) and Eq. (1.36) define additional pseudo-critical
temperatures which follow the scaling expression seen in Eq. (1.29) and yield sup-
plementary estimations for the critical temperature and the critical exponent a.

The scaling of the quantities in Eqs. (1.25) to (1.27), the displacement of the
pseudo-critical temperatures [Eq. (1.29)] and the alternative methods for figuring
out the critical exponents a and V [Eq. (1.35) and Eq. (1.37)] make up a basic
tool for the study of random-field models and the determination of their critical
exponents in the next chapters.

1.3 Disordered systems and FSS

All of the above fundamental concepts of statistical physics are well established
for the case of the phase transitions in pure systems. However, the study of the
critical behaviour of disordered spin systems is a more recent and difficult research
field. These systems’ physical content is of great interest and it brings out new and
complex phenomena, many of which are directly related to experiments (Fisher,
Grinstein et al., 1988; Belanger and Nattermann, 1998).

The immense difficulty of answering the basic questions about the changes of
the critical behaviour of a pure system when disorder is introduced has led to the
development of new scientific pathways, which are not only related to statistical
physics but also to condensed matter physics, computer science, mathematics and
even biology (Belanger and Nattermann, 1998; Hartmann, 2004)

There are different disorder forms which can be introduced in magnetic spin
systems, such as random-field disorder, site and bond dilution and bond disorder.
For every case, the introduction of disorder induces a series of new phenomena,
many of which have not been studied yet or are not congruent with each other
(Rieger, 1998). A significant progress in the study of such systems has been
achieved with the use of the mean field theory (Belanger and Nattermann, 1998),
however the need for a more precise investigation of their properties has led to the
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development of complex numerical techniques, such as MC algorithms at finite
temperatures () > 0) and optimization algorithms at ) = 0.

The above methods have undoubtedly contributed to the understanding of
the behaviour of disordered systems and they constitute, to date, the largest part
of the research activity in the field of statistical physics of disordered systems.
Still, the numerical simulations both at ) > 0 and ) = 0 do face challenges due
to the complex form of the spectrum of the free energy of disordered systems,
where the case of consecutive local energy minima being separated by high energy
boundaries is quite common. This leads to exponentially increasing restoration
time in the MC () > 0) simulations and to the NP-hardness problem in the
optimization algorithms () = 0) (Hartmann, 2004; Rieger, 1998).

1.3.1 The Harris criterion

As previously mentioned, the formulation of reliable theoretical predictions for
random systems continues to be a challenge for the scientific community. The
most known and crucial theoretical prediction regarding the effect of disorder to
the critical behaviour of spin models is the Harris criterion (Harris, 1974), which
refers to the effect of the weak, uncorrelated randomness in systems whose pure
equivalents exhibit a second-order phase transition.

Let us consider a disorder in the interaction energy � of a system, which can
be regarded equivalently as a spatial variation to the transition temperature of
the system. Thus, we introduce a spatially varying, local, critical temperature
)2 (A) and we study its variation with regard to the overall critical temperature )2
of the disordered system in the region of some volume of the correlation length
+b = b

� , where b ∼ C−a:

X)2 (A) ≡ )2 (A) − )2 . (1.38)

The Harris criterion can therefore be proposed as follows: the pure fixed point
will remain intact from the introduction of disorder and the critical behaviour of
the system will not change, if the square root of the absolute value of the square
of the fluctuations X)2 (A) inside the volume +b is sufficiently small compared to
C ∼ b− 1

a , as C → 0. Alternatively, the introduction of disorder will affect the pure
fixed point, the system will move to a new universality class and its behaviour
will be determined by the new random fixed point.

An exceptional case laid aside the Harris criterion is the case where the critical
exponent of the specific heat is zero. This is the case for the 2� Ising model, about
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which there exist theoretical predictions that the effect of the weak, uncorrelated
randomness leads to the creation of logarithmic corrections to the behaviour of
the pure system. We shall examine the critical behaviour of the 2� Ising model
in the presence of random-field disorder in Chap. 4.

1.3.2 Finite size scaling in disordered systems

In general, the quantities of interest that are studied in the scope of finite size
scaling are the distributions %(/) of the quantities /@ that have occurred from
calculations over some collection of random realisations {1, ..., @, ..., &} of the
disorder. / ()) is any thermodynamic quantity, such as specific heat, magnetic
susceptibility etc. and its mean value over the many realisations is computed as:

〈/〉dis =
1
&

&∑
@=1

/@ ()). (1.39)

Following, the FSS is applied to its maximum:

〈/〉★dis = (〈/〉dis)
★. (1.40)

An alternative method of averaging and calculating the mean value is:

〈/★〉dis =
1
&

&∑
@=1

/★@ , (1.41)

where the averaging over the disorder takes place after the computation of the
maximum value of a thermodynamic quantity. This process is called averaging
over individual maxima and up to date, it is not clear whether its application
on FSS is equivalent to Eq. (1.40), at least for the case of averaging over a finite
number of realisations of the disorder.

Respectively to the mean values given by Eq. (1.40) and Eq. (1.41), one can
define the pseudo-critical temperatures )〈/〉★dis

and 〈)★
/
〉dis. These temperatures

are expected to scale according to the scaling law described by Eq. (1.29), where
)2 is now the critical temperature of the random system and a the respective
exponent of the correlation length.

In particular, it has been shown (Chayes et al., 1986) that the critical exponent
a satisfies the inequality given by Eq. (1.42). More specifically, a random system
of disorder parameter _, 0 ≤ _ ≤ 1 was considered, which goes under a second-
order phase transition at some value 0 < _2 ≤ 1. Given the assumption that this
transition is characterised by a change in the scaling behaviour of the probability
of a finite-volume event, it was concluded that this change can be used for the
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appropriate definition of a correlation length b 5 (_). It was hence shown that if
the finite-size scaling correlation length b 5 (_) diverges as b 5 (_) ∼ |_2 − _ |−a, as
_→ _2, then the exponent a satisfies:

a ≥ 2
�
. (1.42)

The proof of the above, given by Chayes et al. (1986) is general, that is, it
is only assumed that the system exhibits a second-order phase transition with a
divergent correlation length and the randomness is uncorrelated at large length
scales. It arises from a mathematical theorem that states that the derivative with
respect to the disorder parameter _ of the chosen finite-volume event is bounded
from above.

Eq. (1.42) has been validated for a series of classic and quantum disordered
systems (Chayes et al., 1986; Huse and Fisher, 1987; Fisher, 1995) and for the
systems under study in the current thesis. Still, the concept of the correlation
length b 5 is not trivial in random systems; it is in no case clear if it is equivalent,
critical-exponent-wise, to the intrinsic correlation length b. However, the general
arguments of the renormalization theory imply that most critical transitions are
characterised by a scaling behaviour of appropriately defined variables, such that
the equivalence of b 5 and of the intrinsic correlation length b is considered reliable
(Fisher, Grinstein et al., 1988).

1.4 The Random-Field Ising model

The RFIM is described by the Hamiltonian:

H = −�
∑
〈G,H〉

BGBH −
∑
G

ℎGBG ⇔

⇔ �total = �bond + �field,

(1.43)

where, as we already know, BG = ±1 and � is the nearest-neighbour interaction
constant, which, for the ferromagnetic model, is � > 0. In our study, we partic-
ularly set it to be � = 1. When referring to the simple Ising model, the external
field ℎ in Eq. (1.1) is equal to zero. For the RFIM, the disorder is introduced
via ℎG, which are independent random magnetic fields acting on each spin BG and
following some distribution %(ℎG).

Various random-field distributions %(ℎG) have been studied in the literature,
such as the Gaussian and the bimodal distributions (Belanger and Young, 1991;
Belanger and Nattermann, 1998; Rieger, 1995b) with more emphasis being given
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on the Gaussian distribution (Dotsenko, 2007). In the current thesis we consider
quenched random fields following the Gaussian distribution (` = 0, f2 = ℎ2),
where ℎ is the disorder strength.

The RFIM is one of the simplest and characteristic disordered systems (Imry
and Ma, 1975; Aharony, Imry et al., 1976; Young, 1977; Fishman and Aharony,
1979; Parisi, 1979; Cardy, 1984; Imbrie, 1984; Schwartz and Soffer, 1985; Gofman
et al., 1992; Esser et al., 1997; Barber and Belanger, 2001). Its study not only
allows the investigation of basic theories in Statistical Physics and of a series
of complex phenomena, but also is directly connected to a significant number
of experiments in condensed matter physics (Belanger and Young, 1991; Rieger,
1995a; Belanger and Nattermann, 1998; Belanger, King et al., 1983; Vink et al.,
2006). These facts have established it as one of the main platform models for the
study of collective behaviour under quenched disorder.

The most widely studied experimental realizations of the model are the diluted
antiferromagnets in a uniform external field (DAFF) (Fishman and Aharony,
1979; Cardy, 1985; Belanger and Nattermann, 1998). Further experimental real-
izations of the model are fluids in porous media (Gennes, 1984), colloid-polymer
mixtures (Vink et al., 2006; Annunziata and Pelissetto, 2012), mixed Jahn-Teller
systems (Graham et al., 1987), colossal magnetoresistance oxides (Dagotto, 2005;
Burgy et al., 2001), phase coexistence in the presence of quenched disorder (Cardy
and Jacobsen, 1997; Fernández et al., 2008b; Fernández et al., 2008a), mixed
crystals undergoing structural or ferroelectric transitions (Nattermann, 1990),
nonequilibrium phenomena such as the Barkhausen noise in magnetic hysteresis
(Sethna et al., 1992; Perković et al., 1999), the design of switchable magnetic
domains (Silevitch et al., 2010), etc (Fytas and Martín-Mayor, 2016).

In general, theoretical and numerical studies play the most crucial role in the
investigation of the critical behaviour of the RFIM. Theoretical methods include
mean field applications, renormalization-group (RG) theory and series expansions
of high and low temperatures (Dotsenko, 2007). As for the numerical techniques,
many attempts have been performed for the development of efficient numerical
methods for the study of the phase transition properties of the model (Rieger,
1995a). Apart from the typical MC techniques at finite temperature () > 0), the
zero-temperature fixed-point scenario (Nattermann and Villain, 1988) has led to
the switch of a significant proportion of the research activity to the study of the
model at zero temperature, via ground state finding approaches (Ford-Fulkerson,
Push-relabel algorithms) (Rieger, 1998). These techniques have yielded various
reliable results (Middleton and Fisher, 2002) for some of the features of the critical
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Figure 1.1: Schematic representation of the Imry and Ma argument
(Nattermann, 1997). Domain of reversed spins.

behaviour of the RFIM. We shall discuss these methods in more detail in the
following sections.

1.4.1 Lower critical dimension and phase diagram

It is well known that the pure Ising model has a ferromagnetically ordered phase
for spatial dimensions � > 1. The additional random field term [second term
of Eq. (1.43)] acts against this order and shifts the value of the lower critical
dimension (�l) to higher values. In the case where the strength of the random
field ℎ is much larger than the coupling constant �, the system is disordered at
low temperatures (Beretti, 1985). From now on we shall consider only the case
where ℎ � �.

Imry and Ma were the first to show that there are indeed no ferromagnetic-
ally ordered phases in the RFIM for � ≤ 2 (Imry and Ma, 1975). Namely, they
showed that the lower critical dimension of the model is �l = 2, below which
there is no phase transition. This initial prediction by Imry and Ma was thor-
oughly confirmed by Grinstein (1976), Grinstein and Ma (1983), Imbrie (1984)
and Bricmont and Lebowitz (1987), who proved, using powerful mathematical
arguments, the existence of a phase transition at � = 3, for ℎ ≤ ℎc, where ℎc is
the critical field (see, also, Fig. 1.2).

In short, the Imry and Ma argument goes as follows: Let us consider a region
of radius ' at zero temperature in the ferromagnetic phase and let us assume
that there exists excess random field energy in this domain. The percentage of
this energy is estimated according to the central limit theorem and for a region
of volume '3 it is of the order �ℎ ∼ ℎ'

�
2 . When flipping the spins inside this

area (see Fig. 1.1), the energy cost �� is proportional to the surface of the area,
that is �� ∼ �'�−1. Comparing �ℎ and �� , it is clear that for � > 2 and for
large ' the energy change is positive and therefore the system exhibits a stable
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Figure 1.2: A sketch of the phase diagram of the RFIM. The solid line
(phase boundary) separates the ferromagnetic (F) and paramagnetic (P)
phases. The black arrow shows the flow to the random fixed point (R) at ) = 0
and ℎ = ℎc, as marked by an asterisk.

state of ferromagnetic order. On the other hand, for � ≤ 2 and for large ' the
energy change is negative and hence the ferromagnetic state becomes unstable
with respect to domain formation (Nattermann, 1997). It is evident from the
above that the lower critical dimension of the RFIM is �l = 2.

As we saw, it emerges from the argument of Imry and Ma (Imry and Ma, 1975)
that there exists an ordered ferromagnetic phase for the RFIM at low temperature
and weak disorder for � > 2 (Villain, 1984; Bray and Moore, 1985a; Fisher, 1986;
Berker and McKay, 1986; Bricmont and Lebowitz, 1987). This fact has allowed a
qualitative sketching of the phase diagram of the RFIM, which has been used in
many studies of the model (Newman, Roberts et al., 1992; Machta et al., 2000;
Newman and Barkema, 1996; Itakura, 2001; Fytas and Malakis, 2008; Aharony,
1978). There also exist closed form quantitative expressions, emerging from mean-
field calculations (Aharony, 1978), however they are not precise approximations
(Fytas and Martín-Mayor, 2016).

A qualitative, schematic phase diagram and renormalization-group flow of the
RFIM is shown in Fig. 1.2. At low temperatures and weak disorder the system
is in a stable state of ferromagnetic order (F), while at high temperatures the
system is paramagnetic (P). The phase boundary crosses the randomness axis at
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the critical value of the disorder strength, ℎ = ℎc, away from which there is no
phase transition of the system.

1.4.2 Critical behaviour and universality aspects

Given the fact that the RFIM has an ordered phase in more than two space
dimensions, the question regarding the nature of the transition of the model from
a ferromagnetic to a paramagnetic phase naturally emerges. This question was
initially addressed with mean-field theory and in particular with the use of the
replica technique by Schneider and Pytte (1977) for the Gaussian distribution
of the random fields and later by Aharony (1978) for the bimodal distribution.
The results concluded a second-order phase transition for all the values of the
disorder strength, for the Gaussian distribution, while for the case of the bimodal
distribution, the existence of a first-order phase transition and of a tricritical
point (TCP) was predicted, if the disorder strength is larger than a critical value.

Later, Swift et al. (1996), via performing an exact determination of the ground
states at � = 4, found a discontinuous transition for the bimodal field distribution.
What is more, strong evidence of a first-order phase transition have been reported
for high values of the disorder strength by Hernández and Ceva (2008). Therefore,
despite the fact that the model is expected to have a continuous phase transition
for � > 2 and for the disorder strength following the Gaussian distribution, the
situation remains still not clear regarding the nature of the model’s transition
for the case of the bimodal distribution. In addition, fundamental issues such
as the existence or not of a universality class of the model (Sourlas, 1996), the
values of the critical exponents and their dependence on the distribution and on
the values of the disorder strength (Sourlas, 1996; Anglés d’ Auriac and Sourlas,
1997; Hartmann and Nowak, 1999), as well as the effect of complex phenomena
to the critical behaviour of the model, such as the lack of self-averaging (Dayan
et al., 1992; Parisi and Sourlas, 2002) have prevented a full and clear resolution
of the model’s critical behaviour.

At this point let us point out that it is well established that the upper critical
dimension of the RFIM is �u = 6 (Aharony, 1978). The calculations of critical ex-
ponents above this dimension are performed by mean-field theory techniques and
the critical exponents exhibit logarithmic corrections. No numerical simulations
had been performed in order to confirm that the upper critical dimension of the
RFIM is �u = 6 until very recently. Ahrens and Hartmann (2011), using graph
cut methods at zero temperature, calculated the critical exponents for � = 5, 6, 7
for the purpose of validating that �u = 6 and all exponents are mean-field for
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� ≥ 6, if corrections to scaling are taken into account. However, a concrete,
extensive study that will unveil the presence and role of logarithmic corrections
at the upper critical dimension is yet to be undertaken.

The above discussion implies that the physically relevant dimensions of the
RFIM are 3 ≤ � < 6. Fytas, Martín-Mayor, Picco et al. (2017b) carried out a
thorough investigation of the critical properties of the RFIM at these dimensions
and their results constitute the most recent establishment of the model’s critical
behaviour. A summary of the team’s findings (Fytas, Martín-Mayor, Picco et al.,
2016; Fytas and Martín-Mayor, 2013b; Fytas and Martín-Mayor, 2013a; Fytas,
Martín-Mayor, Picco et al., 2017a) can be found in the paper by Fytas, Martín-
Mayor, Picco et al. (2017b), together with new results for the critical exponents,
critical points and universal ratios of the RFIM at � = 3, 4, 5. The calculation of
these quantities, along with their numerical estimates for the critical exponents
U, V and W satisfying the Rushbrooke relation, constitute an unarguable claim of
universality and a verification of scaling relations, and provide a complete picture
of the model’s critical behavior for � < �u.

Another important finding of Fytas, Martín-Mayor, Picco et al. (2017b) is
related to the dimensional reduction property of the RFIM (Young, 1977), a con-
sequence of supersymmetry, as introduced in the seminal paper by Parisi and
Sourlas (Parisi and Sourlas, 1979). Dimensional reduction states that the critical
properties of the RFIM in � dimensions are expected to be the same as those of
the pure Ising ferromagnet at � − 2 dimensions. It is by now conclusively proved
that this prediction is not true in three dimensions because the 3� RFIM or-
ders (Bricmont and Kupiainen, 1987), while the 1� pure Ising ferromagnet does
not. The property does not hold at � = 4 either (Fytas, Martín-Mayor, Picco
et al., 2016). As for the 5� RFIM, they discovered that its critical exponents
are compatible to those of the pure 3� Ising ferromagnet up to relatively small
simulation errors and in agreement to the results obtained via functional renor-
malisation group by Tissier and Tarjus (2011), Tissier and Tarjus (2012) and
Tarjus et al. (2013), pointing to a possible restoration of dimensional reduction
at (or close to) � = 5. The first numerical evidence in favour of supersymmetry
at the � = 5 RFIM have been presented very recently by Fytas, Martín-Mayor,
Parisi et al. (2019).
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Chapter 2

Monte Carlo methods

In this chapter, we describe the Monte Carlo (MC) numerical techniques used
in the current thesis. More specifically, after a general introduction to the MC
simulations in Sec. 2.1, the importance sampling and in particular the Metro-
polis algorithm are outlined in Sec. 2.2, followed by a description of the Wolff
algorithm in Sec. 2.3. Subsequently, Sec. 2.4 includes an application of the MC
methods (especially, Metropolis and Wolff algorithms) for the study of the inter-
facial adsorption of the Blume-Capel model. Finally, in Sec. 2.5, the limitations
on MC methods are discussed.

2.1 Monte Carlo method description

It is well-known that for the most physical systems there are no accurate analyt-
ical solutions that predict their behaviour and characteristic properties. There-
fore, one has to turn to approximate methods, which can be either analytical
or computational. The continuous increment of the computational power since
the invention of the first computational machines has led to the development
of approximate numerical methods for the simulation of systems with complex
structures and interactions.

One such method, which uses probability and random numbers theories in
order to calculate the mean values of various quantities, is the MC method. The
whole idea is based on the fact that using random numbers, one can estimate all
the physical quantities of a system, such as the internal energy or the magnet-
isation. Statistical Physics provides the necessary tools for the calculation of the
mean values of physical quantities of our interest. In the scope of the canonical
ensemble, the mean thermal value of a quantity & is given by:

〈&〉 =
∑
8 &84

−V�8∑
8 4
−V�8

, (2.1)
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where �8 is the energy of the system when in micro-state 8 and &8 is the value of
the quantity in this micro-state. The probability of the micro-state is proportional
to the Boltzmann factor 4−V�8 .

The estimation of Eq. (2.1) is a quite difficult procedure, given that not only
a system’s phase space may be large, but also an infinite number of states exist
at the thermodynamic limit. For this reason, one resorts to approximations and
calculates the sums in Eq. (2.1) in an appropriately defined subset of the system’s
states, hoping that this subset is representative of the overall behaviour of the
system.

Namely, let us consider " micro-states {`1, `2, ..., `"} of the system. Then,
the thermal average &" of the physical quantity & is:

&" =

∑"
8=1&`8 ?

−1
`8
4−V�`8∑"

8=1 ?
−1
`8 4
−V�`8

, (2.2)

where ?`8 is the choice probability of micro-state `8 and `8 is the value of the
thermodynamic quantity when in state &`8 . It is clear that the restriction of the
sums in the above subset of the micro-states leads to the introduction of statistical
errors. What is more, the bigger and the more representative the above subset is,
the more reliable the results of Eq. (2.2) are. When " →∞, then there holds:

lim
"→∞

&" = 〈&〉. (2.3)

In a Monte Carlo simulation, the basic subject under question is the choice of
a representative subset of micro-states of the system’s phase space. The answer
to this question is given with the help of Markov processes, which are stochastic
processes that generate random micro-states. A first-order Markov process yields
a random micro-state, where its probability depends only on the micro-state
attained in the previous event. First-order Markov processes are the ones which
are extensively used in the MC techniques of Statistical Physics.

Given a state 8, the probability of moving to the next state 9 is the transition
probability %8→ 9 . In a Markov process, all transition probabilities satisfy two
conditions. Firstly, they do not change with time and secondly, they only depend
on the properties of the initial micro-state 8 and final micro-state 9 . In addition,
the transition probabilities satisfy the following equation:∑

9

%8→ 9 = 1, (2.4)

due to the fact that in a Markov process, given the initial micro-state 8, the final
micro-state 9 has to be produced.
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In a MC procedure, the role of a Markov process is to generate a sequence of
micro-states of the system that occur according to a stationary distribution, after
a certain equilibration time. Two more conditions need to be satisfied in order
for this to be achieved: ergodicity and detailed balance (Newman and Barkema,
1999).

The first condition, namely, the ergodicity, expresses the requirement that
starting from any possible micro-state of the system, a Markov process will even-
tually generate all the possible micro-states of the phase space. Without doubt,
in macroscopic systems, the time scales needed for producing all the possible
micro-states of the system are very large and lead to ergodicity breaking of the
thermodynamic equilibrium state (Newman and Barkema, 1999). Disordered sys-
tems, in particular the ones with glassy disorder, exhibit ergodicity breaking of
their phase space and it is common for the systems to be trapped for long time
to non representative subsets of the phase space. Therefore, the Markov process
fails to evolve. Moreover, the computational time as well as the errors in the
configuration of the mean values of the physical quantities increase.

The second condition, i.e. the detailed balance, ensures that the Markov
process finally approaches the stationary distribution and is mathematically de-
scribed by:

%8→ 9

% 9→8
=
? 9

?8
. (2.5)

At this point one may wonder which is the most appropriate Markov process
and the corresponding transition probabilities that lead as fast as possible to
equilibrium. The answer is provided by the acceptance ratio, which is based on
the idea that if 8 = 9 in Eq. (2.5), then 1 = 1. This identity implies that the
detailed balance is always satisfied for %8→8 and does not depend on its value.
This in turn indicates that one is flexible in the choice of values for the rest
transition probabilities, 8 ≠ 9 . Hence, we can adjust the value of any %8→ 9 , while
Eq. (2.4) is satisfied, by appropriately selecting the value of %8→8 ∈ [0, 1]. This
would obviously induce the corresponding adjustment of %( 9 → 8), in order to
satisfy Eq. (2.5).

From the above discussion, it is evident that the ability to change the transition
probabilities %8→8 provides us with the facility to select the values of %8→ 9 . In turn,
this fact allows the re-formulation of the expression for the transition probabilities
%8→ 9 as follows:

%8→ 9 = (8→ 9 �8→ 9 . (2.6)
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(8→ 9 is the selection probability and corresponds to the probability that the al-
gorithm yields a new micro-state 9 , given that the system is in a micro-state 8
and �8→ 9 ∈ [0, 1] is the acceptance ratio that corresponds to the probability of
accepting the transition of the system from the state 8 to the state 9 , produced
by the algorithm. Via Eq. (2.6), Eq. (2.5) now writes:

%8→ 9

% 9→8
=
(8→ 9 �8→ 9

( 9→8� 9→8
, (2.7)

where �8→ 9
� 9→8
∈ [0,∞) and hence the selection probabilities (8→ 9 and ( 9→8 can be

assigned to any value we desire.

2.2 The Metropolis algorithm

The simplest way to carry out a Monte Carlo sampling is the random choice of
micro-states of the system’s phase space with the same probability. It appears
that this simple sampling is correct at the limit " → ∞. However, since the
sampling takes place on a finite number of micro-states of the system and since
there is no way to predict which are the appropriate states for each temperature, it
is obvious that the simple sampling shall fail to correctly determine the properties
of the system.

In contrast to simple sampling, the importance sampling ensures that for every
temperature ) , the biggest proportion of the chosen micro-states belongs to the
area of the maximum of the energy distribution.

Let us consider a system in thermodynamic equilibrium with its environment
at some temperature ) . Then, according to the importance sampling, the choice
probability of a micro-state `8 of the system with energy �`8 is:

?`8 =
4−V�`8

Z , (2.8)

where Z is the partition function. Now via Eq. (2.8), Eq. (2.2) writes:

&" =
1
"

"∑
8=1

&`8 , (2.9)

where &" is the thermal average. In other words, in importance sampling, the
Boltzmann distribution is the equilibrium distribution. Thus, Eq. (2.5) leads to:

%8→ 9

% 9→8
=
? 9

?8
= 4−V(� 9−�8) . (2.10)
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The Metropolis algorithm (Metropolis et al., 1953) was the first importance
sampling algorithm to be developed and its idea is based on the MC simulations
and importance sampling discussed above. As we shall see, it guarantees that
both ergodicity and detailed balance are satisfied.

Let us initially examine the choice probabilities (8→ 9 for the Metropolis al-
gorithm. In general, the choice probabilities must be selected in a way that
ergodicity is satisfied. It is clear that this can be achieved in many ways. For
example, given an initial micro-state 8, one can generate a number of nomin-
ated micro-states 9 , by flipping several subsets of the spins of the system under
study. However, according to the classic theory of Statistical Physics, the relative
variance of an extended thermodynamic quantity with # degrees of freedom is
∼
√
#. This indicates that systems in thermodynamic equilibrium are most of

the time at states whose energies are quite similar to each other. Therefore, the
simplest way is to flip a simple spin each time, ensuring that the energy does not
significantly change, compared to the initial energy and that there is no waste of
computational time. An algorithm that carries out this procedure is said to have
single spin-flip dynamics.

It is obvious that all algorithms that include single spin-flip dynamics are
ergodic, since in a finite size lattice the system can go from any micro-state to
any other micro-state via consecutive spin-flips. Metropolis algorithm falls into
this category and the choice probabilities (8→ 9 for any of the possible states 9 are
picked to be equal to each other. In other words, in a system of # spin variables,
given an initial micro-state 8, there exist # different micro-states 9 and hence #
choice probabilities (8→ 9 , where (8→ 9 =

1
#
≠ 0 and their sum equals to 1.

Based on this choice probability, the detailed balance condition given by
Eq. (2.10) can now be written as:

%8→ 9

% 9→8
=
(8→ 9

( 9→8

�8→ 9

� 9→8
=

1
#

1
#

�8→ 9

� 9→8
= 4−V(� 9−�8) , (2.11)

which yields the expression for the acceptance ratio �8→ 9 used in the Metropolis
algorithm:

�8→ 9 ≡

4−V(� 9−�8) , � 9 − �8 > 0

1, otherwise
. (2.12)

This implies that if during the random walk a state with energy less or equal
to the initial one is chosen, then the step is acceptable. On the contrary, if the
energy of the state chosen is larger than the energy of the initial state, then the
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step is acceptable according to the probability given by Eq. (2.12). Let us point
out here that every algorithm that uses acceptance ratios like the one described
by Eq. (2.12) can be considered to be of Metropolis type.

The success of the Metropolis algorithm in the study of simple models in Stat-
istical Physics has resulted in its establishment as the fundamental tool for per-
forming MC simulations. However, the difficulties that arose from implementing
the Metropolis algorithm in the study of the Ising model have provoked the devel-
opment of new, more efficient algorithms (Newman and Barkema, 1999). These
problems are related to the increase of the critical fluctuations and of the corres-
ponding correlation times, as ) → )2 (see, also, Sec. 2.5). This phenomenon is
known as critical slowing down and it is described via the dynamic exponent I ,
where

g ∼ bI (2.13)

at the critical point and g is the correlation time.

It is well-known that as the critical temperature is approached, the system
tends to formulate same-spin clusters that induce large fluctuations on the values
of the fundamental thermodynamic quantities, such as energy and magnetisation,
when flipped. Such fluctuations, combined with large correlation times, lead
to the increase of statistical errors close to the phase transition. Despite the
fluctuations being an innate physical feature of each model, the correlation times
do depend on the algorithm used (Newman and Barkema, 1999). Therefore, in
an attempt to reduce the exponent I, various new and more complex cluster
spin-flipping algorithms were developed during the 80’s. The most important
are the Wolff (Wolff, 1989) and the Swendsen-Wang (Swendsen and Wang, 1987)
algorithms.

2.3 The Wolff algorithm

As discussed in Sec. 2.2, as we approach the critical temperature of the Ising
model, single spin-flip algorithms, such as the Metropolis algorithm, exhibit large
correlation times that contribute to the growth of statistical errors. Conversely,
cluster spin-flipping algorithms, such as the Wolff algorithm, seem to weaken
significantly the error effect.
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2.3.1 The dynamic exponent I

Before proceeding to the description of the Wolff algorithm, let us focus our
attention in some more detail on the role of the dynamic exponent I appearing
in Eq. (2.13). As mentioned in Sec. 2.2, the critical slowing down is measured
via I, which takes different values for each different MC algorithm. According to
Eq. (2.13), a small or large value of I indicates a small or large correlation time
g, respectively, while I = 0 implies that there is no critical slowing down at all.

Note that Eq. (2.13) indicates that close to a phase transition, the correlation
time increases as the correlation length b diverges. Nonetheless, in a finite-size
system, the correlation length, which denotes the typical size of the spin clusters
formulated during the equilibration of an Ising model, does not ever really diverge.
In a system of lattice size !, the largest value a spin cluster can attain is !� ,
where � is the dimension of the system. Thus, close to a phase transition where
b > !, Eq. (2.13) writes:

g ∼ !I . (2.14)

Given the fact that we know the critical temperature )2 of a system, such as
the case of the 2� Ising model, we can use Eq. (2.14) to exactly calculate the
dynamic exponent I, by performing a FSS-type technique, namely, performing
simulations at ) = )2 for different system sizes ! and plotting g as a function of
! on logarithmic scales. The slope of the occurring plot will then be the value of
I.

Many MC estimations of the dynamic exponent I have been carried out, spe-
cifically for the case of the Metropolis algorithm. The most accurate so far has
been performed by Nightingale and Blöte (1996) and reads I = 2.1665 ± 0.0012.

The above value for I, which is quite high compared to other MC algorithms for
the 2� Ising model, implies that the Metropolis algorithm is not the most efficient
algorithm for studying the behaviour of the Ising model close to its critical point.
Therefore, in Sub. 2.3.2 we introduce the Wolff algorithm, which despite being
more complex, has a significantly lower dynamic exponent.

2.3.2 Wolff algorithm description

As we saw in Sub. 2.3.1, the dynamic exponent I for the Metropolis simulation
of the 2� Ising model is fairly high compared to other MC algorithms. This is
mainly due to the fact that inside the critical area the correlation length diverges
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and critical fluctuations emerge. Then, large same-spin clusters are formulated,
namely, large same-spin domains.

In order for the Metropolis algorithm to flip a whole spin domain, a spin-
by-spin flip has to be performed. This is a quite difficult and time-consuming
process, since the ferromagnetic interactions between nearest neighbours lower
the choice probability of each spin flip. In other words, a spin with 4 same-spin
neighbours has low chances to be flipped, since such a move would have a high
energy cost. Despite the chances of flipping a spin at the edge of the domain,
where the same-spin neighbours are less than 4 and hence the energy cost is lower,
are higher, it is a very slow process that gets slower and slower as we approach
the phase transition where the domains become larger.

An algorithm capable of tackling the above problem was suggested by Wolff
(1989), where instead of single spin-flips, cluster spin-flips are performed. The
clusters which are flipped consist of spins of the same orientation. Such cluster
spin-flipping algorithms have become the most predominant among the MC al-
gorithms and in the case of the Ising model, they almost completely eliminate
the critical slowing down phenomenon.

Let us examine how the clusters to be flipped are determined. Starting from
any random spin in the lattice, the algorithm checks whether any of its neighbours
is of the same spin. If it is, it is added to the same cluster with the initial spin.
Now the same check is repeated for the new spin until an entire cluster of spins
is built up, that is, until there exist no more same-spin neighbours. However, we
do not want the cluster that is about to be flipped to include all of the lattice
spins with the same orientation as the initial one.

The number of the spins that the algorithm will flip depends on the temperat-
ure. For example, in the Ising model, at high temperatures, the spins form very
small clusters, namely, they are strongly uncorrelated, while when moving close
and below the critical temperature )2, the spin clusters are becoming larger. In
order to mimic this physical behaviour, Wolff algorithm chooses whether or not
to add the (same-oriented) neighbouring spins to the same cluster as the initial
spin, according to some probability %add which increases as the temperature de-
creases. When no more neighbouring spins of the same orientation satisfy the
probability %add, the growth of the cluster stops and the cluster is flipped. The
flip is performed with some acceptance ratio that depends on the energy cost of
the flip.

In order to define the acceptance ratio, let us consider two micro-states of the
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Metropolis: I = 2.1665 ± 0.0012
Wolff: I = 0.25 ± 0.02

Table 2.1: Best estimations of the dynamic exponents I for the Metropolis
and Wolff algorithms.

system, namely, 8 and 9 , which are distinct from each other by a single same-spin
cluster flip. Then, the acceptance ratio is given by:

�8→ 9

� 9→8
= [42V� (1 − %add)]=−<, (2.15)

where < and = are the bonds between neighbouring spins at the edges of the
cluster which need to be broken in order for the cluster to be flipped during a
forward or a backward move, respectively.

At this point we should also mention the ergodicity of the algorithm, by no-
ticing that for every move, there is a finite chance for a spin to be chosen from
a cluster which is afterwards flipped. Repeating moves in a similar matter will
apparently get us from a state to another in finite time. This, together with
the detailed balance condition, implies that the algorithm will yield consecutive
states that will appear with their correct Boltzmann probabilities (Newman and
Barkema, 1999).

Let us finally examine how Wolff algorithm’s dynamic exponent I compares
to the dynamic exponent calculated by Nightingale and Blöte for the Metropolis
algorithm. The best estimation for the exponent I for the Wolff algorithm was
given by Coddington and Ballie (1992) and it writes I = 0.25 ± 0.02. As we
can clearly observe in Table 2.1, the dynamic exponent of the Wolff algorithm
is significantly lower that the one calculated for the Metropolis algorithm, fact
that implies that the Wolff algorithm is undoubtedly better that the Metropolis
algorithm for studying systems close to their phase transitions.

2.4 An application of MC methods: Interfacial
adsorption of the Blume-Capel model

In this section, we present an application of the Monte Carlo numerical methods
and in particular, of the Metropolis and Wolff algorithms outlined in Sec. 2.2
and Sec. 2.3, respectively. For this purpose, we investigate the scaling of the
interfacial adsorption of the 2� Blume-Capel (BC) model using MC simulations.
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More specifically, we study the FSS behavior of the interfacial adsorption of the
pure model at both its first- and second-order transition regimes, as well as at
the vicinity of the tricritical point. Our analysis benefits from the currently
existing quite accurate estimates of the relevant (tri)critical-point locations. In
all studied cases, the numerical results verify to a level of high accuracy the
expected scenarios derived from analytic free-energy scaling arguments.

We also investigate the size dependence of the interfacial adsorption under
the presence of quenched bond randomness at the originally first-order transition
regime (disorder-induced continuous transition) and the relevant self-averaging
properties of the system. For this ex-first-order regime, where strong transient ef-
fects are shown to be present, our findings support the scenario of a non-divergent
scaling, similar to that found in the original second-order transition regime of the
pure model.

The above work, which is thoroughly discussed in this section was published
by Fytas, Mainou, Theodorakis et al. (2019) and the rest of the current section
is largely a reproduction of the aforementioned publication.

Let us start by pointing out that critical interfacial phenomena have been
studied extensively over the last decades, both experimentally and theoretically
(Abraham, D. B., 1986; Dietrich, S., 1988; Bonn et al., 2009; Ralston et al.,
2008). A well-known example is wetting, where the macroscopically thick phase,
for example, the fluid, is formed between the substrate and the other phase, say,
the gas. Liquid and gas are separated by the interface.

An interesting complication arises when one considers the possibility of more
than two phases. A third phase may be formed at the interface between the two
other phases. An experimental realization is the two-component fluid system in
equilibrium with its vapor phase (Dietrich, S., 1988; Moldover and Cahn, 1980).

Both of the above scenarios may be mimicked in statistical physics in a simpli-
fied fashion, by either the two-state Ising model in wetting - with the state “+1”
representing, say, the fluid, and “−1” the gas - or for the case of a third phase via
multi-state spin models, simply by fixing distinct boundary states at the opposite
sides of the system. In this latter case, the formation of the third phase with an
excess of the non-boundary states has been called as interfacial adsorption (Selke
and Pesch, 1982; Selke and Huse, 1983; Fisher, 1984).

Throughout the years, various aspects of the interfacial adsorption have been
investigated via MC methods and density renormalization group calculations on
the basis of specific multi-state spin models, namely Potts and BC models (Selke
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and Pesch, 1982; Selke and Huse, 1983; Selke and Yeomans, 1983; Selke, Huse
and Kroll, 1984; Yamagata, 1991; Yamagata and Kasono, 1992; Carlon et al.,
1999; Albano and Binder, 2012; Fytas and Selke, 2013; Trobo and Albano, 2014;
Albano and Binder, 2014).

Additional scaling and analytic arguments have been presented (Selke and
Huse, 1983; Selke, Huse and Kroll, 1984; Carlon et al., 1999; Bricmont and Le-
bowitz, 1987; Messager et al., 1991; Cardy, 2000), though not all of them have
been confirmed numerically, due to the restricted system sizes studied and, in
some cases, the uncertainty in the location of (tri)critical points. However, not-
able results in the field include the determination of critical exponents and scaling
properties of the temperature and lattice size dependencies, as well as the clari-
fication of the fundamental role of the type of the bulk transition, with isotropic
scaling holding at continuous and tricritical bulk transitions and anisotropic scal-
ing at bulk transitions of first-order type.

More recently, a formulation of the field theory of phase separation by Delfino
and colleagues has provided new insight into the problem (Delfino and Viti, 2012;
Delfino and Squarcini, 2013; Delfino and Squarcini, 2014a; Delfino and Squarcini,
2014b; Delfino and Squarcini, 2015; Delfino, 2016; Delfino and Squarcini, 2016;
Delfino, Selke et al., 2018) and what is more, the role of randomness has been
scrutinized on the basis of the disordered Potts model (Monthus and Garel, 2008;
Brener, 2010; Fytas, Malakis et al., 2015; Fytas, Theodorakis et al., 2017).

Clearly the Potts model offers the unique advantage that if one considers the
system at its self-dual point, then, the phase-transition temperatures between
the ordered ferromagnetic phase and the high-temperature disordered phase are
known exactly from self-duality for arbitrary values of the internal states @ and
particular implementations of the randomness distribution (Kinzel and Domany,
1981).

On the other hand, for the Blume-Capel model, one relies upon the existing
estimates for the locations of (tri)critical and transition points and this may be a
source of systematic error when uncovering the scaling behavior of the interfacial
adsorption, as has already been underlined in the literature (Selke, Huse and
Kroll, 1984).

However, quite recently, important progress has been reported with respect to
an accurate reproduction of the phase diagram of the model for a wide range of
its critical parameters (Silva et al., 2006; Malakis, Berker, Hadjiagapiou et al.,
2009; Malakis, Berker, Hadjiagapiou et al., 2010; Kwak et al., 2015; Zierenberg
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Figure 2.1: Phase diagram of the square-lattice zero-field Blume-Capel
model in the Δ - ) plane. The phase boundary separates the ferromagnetic (F)
phase from the paramagnetic (P) phase. The solid line indicates continuous
phase transitions and the dotted line marks first-order phase transitions. The
two lines merge at the tricritical point (Δt, )t), as highlighted by the black
diamond. The data shown are selected estimates from previous numerical
studies.

et al., 2017; Fytas, Zierenberg et al., 2018), thus motivating the current study. In
particular, in the present thesis we investigate the FSS behavior of the interfacial
adsorption of the 2� square-lattice BC model, at both the continuous and first-
order transition regimes of its phase diagram, as well as at the vicinity of the
tricritical point. Furthermore, we study the effect of quenched bond randomness
on the interfacial adsorption at the disorder-induced continuous transition.

Our discussion below follows the seminal works by Selke and collaborators
(Selke and Yeomans, 1983; Selke, Huse and Kroll, 1984), where the first MC
results for the pure BC model have been presented, corroborated by analytical
scaling arguments, which we will also outline for the benefit of the reader in cases
where direct comparison with the numerical data is possible.

In a nutshell, the main objectives of the current work are as follows: For the
pure case, previous numerical findings (Selke and Yeomans, 1983; Selke, Huse
and Kroll, 1984) based on less extensive simulations are scrutinized, confirmed
and refined to a high-level of numerical accuracy, especially for the areas around
the tricritical point and the first-order transition line in the Δ − ) plane (as will
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be explicitly elaborated in the discussion of Fig. 2.2 and Fig. 2.3 below). Com-
pletely new results are presented for the random case, an aspect that has not
been previously considered in the relevant literature, where an intriguing cros-
sover behaviour, with a finite interfacial adsorption, at the randomness-induced
continuous transition is observed and explained.

We consider the Blume-Capel model (Blume, 1966; Capel, 1966) defined by
the Hamiltonian:

H = −�
∑
〈GH〉

BGBH + Δ
∑
G

B2G . (2.16)

The spin variable BG takes on the values −1, 0, or +1, 〈8 9〉 indicates summation
over nearest neighbors and � > 0 is the ferromagnetic exchange interaction. The
parameter Δ denotes the crystal-field coupling and controls the density of vacan-
cies (BG = 0). For Δ → −∞ vacancies are suppressed and the model becomes
equivalent to the Ising model.

The phase diagram of the BC model in the crystal-field - temperature plane
consists of a boundary that separates the ferromagnetic from the paramagnetic
phase (see Fig. 2.1). The ferromagnetic phase is characterized by an ordered
alignment of ±1 spins. The paramagnetic phase, on the other hand, can be either
a completely disordered arrangement at high temperature or a ±1-spin gas in a
0-spin dominated environment for low temperatures and high crystal fields. At
high temperatures and low crystal fields, the ferromagnetic-paramagnetic trans-
ition is a continuous phase transition in the Ising universality class, whereas at
low temperatures and high crystal fields the transition is of first-order character
(Blume, 1966; Capel, 1966).

The model is thus a classical and paradigmatic example of a system with
a tricritical point (Δt, )t) (Lawrie and Sarbach, 1984), where the two segments
of the phase boundary meet. At zero temperature, it is clear that ferromagnetic
order must prevail if its energy I�

2 per spin exceeds that of the penalty Δ for having
all spins in the ±1 state. Note that I is the coordination number and I = 4 in the
present case (see, also, Subsec. 3.1.1). Hence the point (Δ0 =

I�
2 , ) = 0) is on the

phase boundary (Capel, 1966).

For zero crystal-field Δ, the transition temperature )0 is not exactly known,
but well studied for a number of lattice geometries. A most recent reproduction
of the phase diagram of the model can be found in Zierenberg et al., 2017 and is
also given here in Fig. 2.1, where a summary of results is presented from various
works in the literature. We set � = 1 and :B = 1, to fix the temperature scale. A
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recent accurate estimation of the location of the tricritical point has been given
by Kwak et al. (2015): (Δt, )t) = [1.9660(1), 0.6080(1)].

In order to study the interfacial adsorption, denoted hereafter as , and fol-
lowing the work of Selke and collaborators (Selke and Yeomans, 1983; Selke, Huse
and Kroll, 1984) we shall employ special boundary conditions, distinguishing the
cases [1 : 1] and [1 : −1] that will favor the formation of an interface within the
system. For the case [1 : 1], the spin variable is set at all boundary sites equal
to 1, while for the case [1 : −1] the variable is set equal to 1 at one half of the
boundary sites and to −1 at the opposite half of the boundary sites.

Typical equilibrium configurations have verified that under these special bound-
ary conditions an excess of the non-boundary states, B8 = 0, is generated at the
interface (see for instance Fig. 1 in Selke and Yeomans, 1983). This phenomenon
is described quantitatively by the net adsorption per unit length of the interface,
that is defined with the help of the following mathematical expression (Selke and
Yeomans, 1983):

, =
1
!

∑
G

[
〈X0,BG 〉[1:−1] − 〈X0,BG 〉[1:1]

]
, (2.17)

where the angular brackets denote thermal averages and ! is the linear dimension
of the square lattice.

The critical behavior of , is characterized by the critical exponents G and l
via Selke, Huse and Kroll (1984):

,! ∼ !G () = )c), (2.18)

and

,Cc ∼ C−lc (! = ∞), (2.19)

where Cc = )c−)
)c

is the reduced critical temperature for the standard case of a
critical point. Although the above Eqs. (2.18) and (2.19) are expressed for the
usual case of continuous transitions, they can be similarly generalized for the
case of a tricritical point, where Ct = )t−)

)t
, or for a first-order phase transition,

C∗ = )∗−)
)∗ , where )∗ denotes now the corresponding transition temperature.

In this thesis we have studied the interfacial properties of the system at three
values of the crystal-field coupling Δ, including both the first- and second-order
lines of the transition, but also the tricritical point of the phase diagram shown
in Fig. 2.1. We have considered the values Δ = 1 (second-order regime), Δ = Δt =

1.966 (tricritical point) and Δ = 1.975 (first-order regime). The corresponding
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transition temperatures for the cases Δ = 1 and Δ = 1.975 have been estimated to
be )c = 1.398 and )∗ = 0.574, respectively (Malakis, Berker, Hadjiagapiou et al.,
2010), whereas for the case of the tricritical point we have used the most recent
estimate )t = 0.608 (Kwak et al., 2015).

Additionally, for the case Δ = 1.975 of the originally first-order transition
regime, we have also considered the disordered version of the Hamiltonian (2.16)
by selecting ferromagnetic couplings � → �8 9 between nearest-neighbor sites 8 and
9 , to be either �1, with probability ?, or �2 with probability 1 − ?. In the case
�1 > �2, one has either strong or weak bonds. Then, the ratio A = �2

�1
defines the

disorder strength, where �1+�2
2 = 1. Clearly, the value A = 1 corresponds to the

pure model. For the needs of the present work we fixed the ratio A = 0.6, for
which the critical temperature of the disorder-induced continuous transition has
been estimated to be )c = 0.626 (Malakis, Berker, Hadjiagapiou et al., 2010).

Our numerical protocol consists of canonical MC simulations, employing a
combination of a Wolff single-cluster update (Wolff, 1989) of the ±1 spins and
a single-spin flip Metropolis update that enables the necessary updates of the
vacancies B8 = 0 (Blöte et al., 1995; Hasenbusch, 2010; Malakis, Berker, Fytas
et al., 2012).

We adapted the relative frequencies of using the two updates to optimize the
performance and discarded the initial part of each time series to ensure equilib-
ration. Using this approach, we simulated for both versions of the model and
for all values of Δ system sizes in the range ! = 8 − 96, which, as will be shown
below, is enough for a safe estimation of the asymptotic behavior, in accordance
with the expected scaling arguments.

For the pure model, we performed several independent runs to increase stat-
istical accuracy, whereas for the disordered system an extensive averaging over
the disorder [. . .] has been undertaken, varying from 5 × 103 realizations for the
smaller system sizes down to 1 × 103 for the larger sizes studied. For the dis-
ordered case, error bars were computed from the sample-to-sample fluctuations
which in all cases were found to be larger than the statistical errors of the single
disorder realizations.

For the various cases of phase transitions in the BC model along the Δ - ) plane,
some very useful analytic and scaling arguments for the interfacial adsorption
have been presented in the early work of Selke, Huse and Kroll (1984). In what
follows, we shall only provide the main results of this discussion that are also
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relevant for comparison with our numerical data; for more details we refer the
reader to Selke, Huse and Kroll (1984).

The main point in this description is the reformulation of the interfacial ad-
sorption , with the help of the interface tension f. According to Selke, Huse
and Kroll, 1984, using that 〈X0,BG 〉 = 1 − 〈B2G〉, the interface adsorption may be
written in the form , = 1

!

∑
G

[
〈B2G〉[1:1] − 〈B2G〉[1:−1]

]
. Denoting the total free en-

ergy for [1 : 1] boundary conditions by �[1:1] (similarly, �[1:−1] for [1 : −1]), ,
can then be expressed in terms of the interface tension, f = 1

!
(�[1:1] − �[1:−1]), as

, =
V−1mf
mΔ

, where V = 1
:B)

.

The presentation of our FSS analysis starts with the most interesting cases re-
ferring to the vicinity of the tricritical point and the first-order transition regime.
As already mentioned above, the location of the tricritical point of the BC model
is known today with very good accuracy (Kwak et al., 2015), thus removing one
source of error inherent in previous simulation works (Selke and Yeomans, 1983;
Selke, Huse and Kroll, 1984). According to the scaling arguments of Selke, Huse
and Kroll (1984), the exponents appearing in Eqs. (2.18) and (2.19) take on the
values G = 4

5 and l = 4
9 , respectively, for the case of the tricritical point.

In Fig. 2.2 we present our numerical data and the relevant scaling analysis for
the interfacial adsorption,! (main panel) and,Ct (inset) at Δ = Δt = 1.966. Fits
of the form (2.18) and (2.19) shown by the solid lines in the main panel and the
corresponding inset respectively, provide us with the estimates G = 0.802(3) and
l = 0.4441(5), both fully consistent with the expected values G = 4

5 and l = 4
9 .

We should point out here that the numerical estimation of the exponent G for
the tricritical point has been reported as a quite difficult task in the literature,
due to the imprecise knowledge of the tricritical coordinates (see Fig. 7 in Selke
and Yeomans, 1983 where ΔC ≈ 1.92(2)) and the presence of strong finite-size
effects for small system sizes (see Fig. 3 in Selke, Huse and Kroll, 1984) where
for the actual value of ΔC = 1.966 an effective exponent of the order of ∼ 0.65
is obtained. Both of these adversities have been satisfied in the present thesis,
leading to a clear verification of the scaling arguments presented by Selke, Huse
and Kroll (1984).

As is well known, at the critical (and tricritical) points, the singularities in
the interfacial adsorption are induced by bulk critical fluctuations. On the other
hand, at first-order phase transitions there are no bulk critical fluctuations and
the divergence of , arises from an interface delocalization transition (Lipowsky
et al., 1983).
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Figure 2.2: Finite size scaling of the interfacial adsorption ,! (main panel)
and ,Ct (inset) at the tricritical point.

In the latter case and for lattices of square shapes a linear divergence of the
form ,! ∼ ! is expected, i.e., G = 1 (Selke, Huse and Kroll, 1984). Additionally,
the critical exponent l appearing in Eq. (2.19) is expected to take the value 1

3 ,
as was originally found in the case of interface unbinding (Abraham and Smith,
1982) and further generalized for first-order phase transitions in 2� (Fisher, 1984;
Selke and Yeomans, 1983; Selke, Huse and Kroll, 1984; Lipowsky et al., 1983).

For the case of the BC model, the prediction l = 1
3 has been numerically

confirmed (Selke and Yeomans, 1983; Selke, Huse and Kroll, 1984), though the
numerical data for ,! did not allow for an accurate estimation of the exponent
G. In particular, in Selke and Yeomans, 1983 a value of G = 0.7 ± 0.05 has been
found that was subsequently explained as an apparent exponent due to strong
metastability effects (Selke, Huse and Kroll, 1984).

To fill in the gap with the scaling analysis of,! at the first-order transition re-
gime of the BC model, we present in Fig. 2.3 our numerical data for the interfacial
adsorption obtained at Δ = 1.975. The fitting results using the Eqs. (2.18) and
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(2.19) as in Fig. 2.3, give G = 1.00(2) and l = 0.337(6), in excellent agreement
with the theoretical expectations G = 1 and l = 1

3 .
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Figure 2.3: Finite size scaling of the interfacial adsorption ,! (main panel)
and ,C∗ (inset) at the first-order transition regime.

For the spin-1
2 Ising model it is known that f ∼ Cc for Cc → 0+ at the critical

point. Given that the BC model for Δ < Δt belongs to the same universality class,
we also expect a similar statement to hold, where now Cc may be the distance
from the critical curve. Since Δ is a non-ordering field (Riedel, 1972), as was also
concluded by Selke, Huse and Kroll (1984), , ∼ mf

mCc
∼ const.

We present in Fig. 2.4 the FSS behavior of the interfacial adsorption ,! for
Δ = 1. Indeed, a simple power-law fit of the form ,! = ,∞ + 1!G gives a negative
exponent G = −1.42(9) and a finite value of ,∞, thus a non-divergent behavior,
in agreement with the above arguments. Similar results have been presented by
Selke and Yeomans (1983) for a few values of Δ in the second-order transition
regime but for smaller system sizes and are overall in contrast to the Potts case,
where a clear diverging behavior has been observed in many relevant works (Selke
and Pesch, 1982; Selke and Huse, 1983; Fytas, Theodorakis et al., 2017; Fytas,
Theodorakis et al., 2017). This may be due to the different geometric nature of



2.4. Interfacial adsorption of the Blume-Capel model 41

0 2 0 4 0 6 0 8 0 1 0 00 . 5 0
0 . 5 1
0 . 5 2
0 . 5 3
0 . 5 4
0 . 5 5
0 . 5 6
0 . 5 7

 

 

W L

L

∆  =  1
x  =  - 1 . 4 2 ( 9 )

Figure 2.4: Finite size scaling of the interfacial adsorption ,! at the
second-order transition regime.

the interfacial adsorption among the two models, which in the present BC model
occurs in a layer-like fashion as expected on the basis of single spin-flip energy
considerations (see Fig. 1 in Selke and Yeomans, 1983), whereas in Potts models
a droplet-like adsorption of non-boundary states takes place due to the energetic
equivalence of all states (Selke and Pesch, 1982).

The last part of this section is dedicated to the study of the interfacial adsorp-
tion under the presence of quenched bond randomness at the originally first-order
phase transition regime of the phase diagram and particularly at the crystal-field
value Δ = 1.975.

Simulations have been performed for a single value of the disorder strength,
namely A = 0.6, at the estimated by Malakis, Berker, Hadjiagapiou et al. (2010)
critical temperature )c = 0.626. The numerical data for the disorder-averaged
[,]! are shown in the main panel of Fig. 2.5, where a very strong saturation is
observed and should be compared to the diverging behavior of the correspond-
ing pure system (see Fig. 2.2). This result is in agreement with the theoretical
expectations discussed above for a non-divergent behavior of , in the case of
continuous transitions for the present model.
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Figure 2.5: Finite size scaling of the disorder-averaged interfacial adsorption
[,]! of the random-bond Blume-Capel model at the disorder-induced
continuous transition. The inset illustrates the relevant self-averaging
properties in terms of the relative-variance ratio '[,]! as a function of the
inverse system size.

In the inset of Fig. 2.5 we present the self-averaging properties of the system
using the relative-variance ratio '[,]! =

+[, ]!
[,]2

!

, where +[,]! = [,2]! − [,]2!. The
limiting value of this ratio is characteristic of the self-averaging properties of the
system (Wiseman and Domany, 1998b; Wiseman and Domany, 1998a). The solid
line in the inset illustrates a simple polynomial fit over the larger system sizes,
indicating the restoration of self-averaging at the thermodynamic limit, given
that '[,]! → 0 as ! → ∞. Similar results have been presented for the case of
various random-bond Potts models in 2� (Fytas, Theodorakis et al., 2017).

Finally, it is worth noting that the FSS behavior of both [,]! and '[,]! is
affected by strong transient effects with a crossover length-scale !∗ ≈ 32, where
a turnaround in the behavior sets off. This is consistent with previous observa-
tions on the scaling behavior of the correlation length and other thermodynamic
observables of the system for the same range of parameters (Fytas, Zierenberg
et al., 2018). Indeed, in Fytas, Zierenberg et al., 2018 it has been explicitly shown
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that ! ≈ 32 is the apparent size where the first-order characteristic signatures of
the transition disappear. Of course, we expect that the value of !∗ depends on
the disorder strength A as well as on the strength of the first-order transition and
it would be interesting to investigate the shift of this crossover length-scale as a
function of Δ and A. However this is a task that goes beyond the scope of the
present work.

To conclude, we have investigated the scaling aspects of the interfacial ad-
sorption of the 2� BC model using a combined MC scheme. We presented a
detailed analysis of the FSS behavior of the interfacial adsorption of the pure
model at both its first- and second-order transition regimes, as well as at the area
of the tricritical point, taking advantage of the current high-accuracy estimates
of (tri)critical-point locations.

A dedicated part of our work regarding the scaling of the interfacial adsorption
under the presence of quenched bond randomness at the originally first-order
transition regime (disorder-induced continuous transition) revealed the scenario
of a non-divergent scaling, similar to that found in the original second-order
transition regime of the pure model. Overall, our results and analysis nicely
verified the predicted from analytic arguments scaling scenarios of Selke, Huse
and Kroll (1984), overcoming the numerical difficulties highlighted in that seminal
work.

2.5 Limitations on MC methods

In this final section of Chap. 2, we summarize the most crucial challenges arising
from the use of MC techniques for the simulation of complex systems and in
particular of the Ising model. The limitations discussed below have played a
crucial role to the development of not only different algorithms of MC type (see,
for example, Sec. 2.2, Sec. 2.3) , but also of alternative methods coming from
different research fields for the study of such systems, as we shall see in Chap. 3.

2.5.1 Critical fluctuations

As we briefly mentioned in Sec. 2.2, MC-type algorithms and especially the
Metropolis algorithm have been proven to be efficient for the study of simple
models in Statistical Physics. However, when focusing on the critical behaviour
of more complex systems, such as the Ising model, one needs to recall that inside
the critical region, large clusters of same-orientation spins are formulated. The
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flip of a single large cluster thus leads to large fluctuations in " and � , namely,
critical fluctuations (Newman and Barkema, 1999).

One can easily conclude that as we approach the critical temperature, since the
size of the clusters diverges, the same shall hold for the critical fluctuations. This
implies that " and � also diverge. In turn, Eq. (1.7) and Eq. (1.9) indicate that
� and j will also diverge as ) → )2. The divergence of these thermodynamic
quantities close to a phase transition are of particular interest and they often
constitute the main or even sole point of focus when performing MC simulations.
Nonetheless, this divergence is one of the leading factors that contribute to the
inefficiency of MC methods inside the critical region.

Despite the fact that the systems one simulates are of finite size and hence
the clusters’ size and the thermodynamic quantities do not actually diverge, they
can become very large and therefore lead to significant statistical errors. One can
tackle this problem by increasing the number of measurements of a thermody-
namic quantity, in order to reduce the error bars. However, more measurements
require more time and the correlation time g, which is already very large when
approaching the critical temperature, does not allow a large number of measure-
ments to take place. As an overall, the co-existence of large critical fluctuations
and of large correlation time close to )2 does not leave scope for an efficient way
to reduce the statistical errors of the measured quantities.

With the critical fluctuations emerging as an intrinsic property of the sys-
tem, any MC algorithm which accurately performs importance sampling via
the Boltzmann distribution will also yield critical fluctuations (Newman and
Barkema, 1999). Simply put, critical fluctuations are inevitable and cannot be
avoided regardless of any MC-type algorithm we may choose to use for studying
the critical behaviour of a complex system.

2.5.2 Trapping at local minima and critical slowing down

In addition to the difficulties occurring due to the nature of the system, the large
correlation time inside the critical region arises as a property of the MC algorithm
we use. The growth of the correlation time as we approach the phase transition is
called critical slowing down (Hohenberg and Halperin, 1977; Zinn-Justin, 2005)
and it depends on the structure of each algorithm.

Let us examine how the critical slowing down occurs. Recall that our goal is to
calculate the mean values of thermodynamic quantities such as the energy � and
the magnetisation <, given by Eq. (2.1), for systems in the canonical ensemble.
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Figure 2.6: The free-energy landscape of a complex system. It contains
many local minima, which define metastable states with exponentially long
escape times.

The probability of each micro-state 8 is proportional to the Boltzmann factor
4−V�8 . Given an initial random state 8, we employ a Markov process that generates
a sequence of micro-states of the system that occur according to a stationary
distribution, which is the physical distribution describing the equilibrium state
of the system.

Reaching the stationary distribution close to a phase transition is particularly
difficult, since the thermalisation times of the most typical MC algorithms grow
as !I, where ! is the linear size of the system and I ≈ 2. In cases of rugged free-
energy landscapes (see, for example, Fig. 2.6) the phenomenon of critical slowing
down becomes even more prevalent, with the thermalisation times growing expo-
nentially with the free-energy barriers.

A fundamental example of multiple local minima is the case of the Random-
field Ising model (RFIM), where a free-energy barrier exists between the ordered
and the disordered states of the system, with only one of these configurations
defining a stable phase (Mosquera, 2011). Now the barriers grow as !I , where
� is the spatial dimension of the system and I < � − 1. Thus, the existence of
critical slowing down is evident, with ;>6g ∼ !I and given the fact that the RFIM
is a disordered system, a large number of realisations of the disorder should be
considered in order to obtain reliable results.

As we have already mentioned above, the growth of the correlation time g
inside the critical area alternates according to the algorithm in use. Therefore,
despite the fact that we cannot avoid the critical fluctuations, the same does not
hold for the effect of critical slowing down, since one may figure out appropriate
algorithms that reduce or even eliminate this effect. In Chap. 3 we shall discuss
such algorithms which are not of MC type and emerge from a research field that
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at first glance seems to be irrelevant to the study of the critical behaviour of
complex systems.
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Chapter 3

Graph cut methods

In this chapter, we turn to the main focus of our research, which is the study of
the critical behaviour of the RFIM with quenched disorder, by using graph cut
methods at zero temperature. For this purpose, we start in Sec. 3.1 by focusing on
the theoretical graph cut background which is necessary for the initial step of the
implementation of the methods, namely, mapping the RFIM to a network. After
the illustration of the mapping in Sec. 3.1, we proceed to describing some min-
imum cut-maximum flow algorithms and in particular, the Boykov-Kolmogorov
algorithm in Sec. 3.2.

3.1 Mapping the RFIM to a network

When studying phase transitions in the presence of quenched disorder, the pre-
dominant methods used for working out the ground states of the Hamiltonians
have been approximate techniques, such as MC simulations and simulated an-
nealing. However, due to the limitations of these methods, combined with the
fact that a crossing of the phase boundary at ) > 0, ) < +∞ leads to the same
critical behaviour as a crossing at ) = 0 by varying ℎ does, the study of disordered
systems via calculating ground states with the use of network theory is gaining
an increasing popularity. This has led to the extensive employment of such op-
timization techniques by various recent works (see Sec. 3.2). As a result, in this
section, we focus on the main goal of this thesis, which is to take advantage of the
idea of applying graph cut theory in order to address such energy minimization
problems (Greig et al., 1989).

The idea of applying graph cut theory for the study of the GS properties of
the RFIM stems from results triggered by the max-flow min-cut theorem (Ford
and Fulkerson, 1956; Ford and Fulkerson, 1957), which plays a particularly im-
portant role in computer science and in network flows and optimization theories.
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According to the theorem, the maximum flow from the source to the sink of any
network is equal to the capacity of the minimum cut separating the source from
the sink.

Hammer (1965) suggested a method for determining the minimum cut and
hence the maximum flow through a network, by applying the idea of pseudo-
Boolean programming (Hammer et al., 1968). It was shown by Hammer et
al. (1968) that given a pseudo-Boolean function � (G1, ..., G=) : !=2 → R, where
!2 is the Boolean algebra with the elements 0 and 1, determining all points
(G1, ..., G=) ∈ !=2 is equivalent to minimizing the function �. Motivated by this,
Hammer represented any cut separating the source and the sink of a network by
using a binary vector and illustrated how the determination of the minimum cut
through the network allows the derivation of the minimum cut’s capacity, or, in
other words, of the network’s maximum flow. It was also shown that the converse
procedure also holds.

The above results motivated Picard and Ratliff, who introduced the idea of
treating energy minimization problems of a class of systems, including the RFIM,
as minimum cut problems on a network (Picard and Ratliff, 1975), by mapping
the system under consideration into a network and calculating its maximum flow.
The value of the maximum flow is then equal to the ground-state energy of the
system. The orientations of the spins in the ground state can be easily constructed
from the flow values the network takes. Apart from the RFIM, examples of
other systems whose ground-state calculation can be mapped to maximum-flow
problems in networks are interfaces in random elastic media (Seppäla and Alava,
2000; Seppäla, Alava and Duxbury, 2001) and fracture surfaces in random fuse
networks (Seppäla, Raisanen et al., 2000).

3.1.1 Graph theory

In this subsection, we briefly summarize a few elements of graph theory which are
necessary for its implementation on ground state problems in the current thesis.
The general fundamental concepts of graph and network theory are not outlined
in the thesis, as they are considered to be commonly known.

Let us hence note that a graph is called dense when the total number of its
edges is close to the maximal number of edges. The opposite, a graph with much
less edges than the maximum possible, is called a sparse graph.

A random graph is characterized by two numbers, namely the number of nodes
# and the coordination number I, which is the average number of edges incident
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to each node, i.e. the graph’s average degree (Gros, 2009). Then, for a sparse
graph, the maximum number of edges (or links) #; is given by:

#; =
# · I

2 , (3.1)

while for a dense graph the above equation reads:

#; =
# (# − 1)

2 . (3.2)

One way to define a graph’s density is by calculating the total number of edges
over the total number of nodes (Lawler, 1976), that is:

3 =
#;

#
. (3.3)

Eqs. 3.1 and 3.2 lead to

3 =
I

2 (3.4)

and

3 =
# − 1

2 , (3.5)

for the density of a sparse and of a dense graph, respectively.

Eq. 3.1 implies that for a sparse graph, the number of links for each node does
not depend on the total amount of nodes, since the density is constant, while Eq.
3.2 implies that this does not hold for the case of a dense graph, since the density
increases analogously to the number of nodes.

We shall look back to the above information when necessary, but for the mo-
ment let us carry on with the mapping of the RFIM to a network, which is
described in the next subsection.

3.1.2 Mapping

Let G = (+, �) be a directed, weighted graph consisting of + nodes and a set
� of edges, each connecting two nodes. Let the number of nodes be = + 2. We
enumerate the nodes as + = {0, 1, . . . , =, = + 1} and we define 0→ source (B ∈ +)
and = + 1 → sink (C ∈ +). The remaining nodes, namely, the inner vertices, will
be associated to the lattice points of the RFIM. We can now define a network
N = (�, 2, B, C), where 2 : + × + → R+0 are the capacities of the edges (8, 9) ∈ � ,
with 28 9 ≡ 2(8, 9) = 0 for (8, 9) ∉ � .

We separate the network with an (B, C)-cut ((, (), that is a cut separating the
source B from the sink C. The cut has the properties of a node partition:
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Figure 3.1: A cut (red dashed line) separating the source B = 0 from the sink
C = 6. The cut crosses through the edges (1, 2), (1, 3), (3, 4) and (4, 5).
However, the capacity of the cut equals to � ((, () = 212 + 213 + 245.

• ( ∪ ( = + ,

• ( ∩ ( = ∅,

• B ∈ (,

• C ∈ (.

The capacity � ((, () of the cut is defined as the sum of the capacities of the
contributing edges, i.e. the edges that cross the cut from ( to ( :

� ((, () =
∑

8∈(, 9∈(

28 9 . (3.6)

For example, in Fig. 3.1, the edges contributing to the cut ((, () are the ones
going from the left to the right of the cut, namely (1, 2), (1, 3) and (4, 5).

The central idea to represent the Hamiltonian 1.43 by a network is to represent
a (B, C)-cut by a binary vector - = {G0, G1, . . . , G=, G=+1} (Hammer, 1965), where:

G8 =


1, 8 ∈ (

0, 8 ∈ (
. (3.7)

Thus an edge (8, 9) goes from left to right of the cut if and only if G8 = 1 and
G 9 = 0. By definition, since G0 corresponds to the source and G=+1 corresponds to
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the sink of the network, we have G0 = 1 and G=+1 = 0. Therefore, we end up with
the following formula for the capacity of any cut represented by Eq. 3.7:

� (-) =
=+1∑
8= 9=0

G8 (1 − G 9 )28 9 = −
=+1∑
8= 9=0

28 9G8G 9 +
=+1∑
8=0

(
=+1∑
9=0
28 9

)
G8 . (3.8)

Note the structural similarity to Eq. 1.43. This implies that the energy of every
configuration of the system will be equal to the capacity of the corresponding
cut. As discussed by Picard and Ratliff, 1975; Picard and Ratliff, 1973, finding
a binary vector - = {G0, G1, . . . , G=, G=+1}, such that a quadratic function � (-) is
minimized, is equivalent to finding a minimum cut in �’s corresponding network.
In our case, we are looking for the configuration of the system that corresponds
to the GS energy, that is the minimum cut - of the network, which minimizes
H(-).

Let us now illustrate that every spin configuration of the system corresponds
to a cut in the network. This is easy to verify, simply by noticing that for B8 = ±1,
G8 may be expressed as B8+1

2 . By plugging this in Eq. 3.7, we obtain:

B8 =


1, 8 ∈ (

−1, 8 ∈ (
. (3.9)

In other words, for any cut in the network, when a node belongs to the source
set, then its corresponding spin will be looking up and when a node belongs
to the sink set, its corresponding spin will be looking down. Looking for the
minimum among all cuts that minimizes H(-) is equivalent to looking for the
spin configuration that minimizes H(B8), i.e. the ground state of the system.

We are now only left with choosing the capacities of the network for completing
the correspondence between Eqs. 1.43 and 3.8. The capacities of the edges
connecting the inner nodes with each other and with the source and the sink,
respectively, can be derived by comparing Eqs. 1.43 and 3.8. After some trivial
algebra, we obtain for the inner edges:

28 9 ≡


0, 8 ≥ 9

4�8 9 , 4;B4
, (3.10)

where 8, 9 ∈ 1, ..., = and 288 = 0, ∀8 ∈ 1, ..., =.

Here we need to point out that by definition, network flow problems are de-
scribed with the constraint that, excluding edges connecting the source with the
sink, only non-negative capacities are allowed for the edges of a network. This
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is because when we try to find the maximum flow through the network, we start
from the source and edge by edge, we push the flow and add it to the flow value
until we reach the sink, through a specific path. If negative values are included,
then the problem becomes NP hard, and hence we cannot do simulations for
reasonably big systems. Only for non-negative capacities there exist simulations
that can be performed in polynomial time (Hartmann and Rieger, 2004). Hence,
here we choose that the positive capacities will be the ones for edges (8, 9) going
from left to right, that is, for 8 < 9 .

As for the edges connected to the source or the sink, comparison of Eqs. 1.43
and 3.8 leads, respectively, to:

208 ≡


0, F8 > 0

−F8, else
(3.11)

and

28,=+1 ≡

F8, F8 > 0

0, 4;B4
, (3.12)

where

F8 ≡ −2ℎ8 −
1
2
∑
9

(28 9 − 2 98). (3.13)

Eqs. 3.11 - 3.13 reassure that the source and sink capacities of the network are
also non-negative.

Finally, regarding the capacity of the edge connecting the source and the sink
of the network (offset capacity), we have:

20,=+1 ≡ −
1
4
∑
8< 9

(28 9 + 2 98) −
1
2
∑
8

(208 + 28,=+1). (3.14)

The above capacity is always negative and hence it is initially ignored when
calculating the maximum flow through the network (as seen in Fig. 3.1). However,
since it is crossed by any cut separating the source from the sink, it needs to be
taken into account in our calculations in order to obtain the correct capacity of a
cut in the network and hence the correct energy value of the equivalent system.

One may note that the values of the inner capacities are not dependent on
the values of the local magnetic fields. In fact, the distribution and the disorder
strength (i.e. the distribution’s standard deviation) of the random field of a RFIM
only affect the source, sink and offset capacities of its corresponding network.

Now that the correspondence between Eqs. 1.43 and 3.8 is complete, recall
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that we are interested in ground states, i.e. in working out the minimum ofH(B8).
Therefore, we are interested in the minimum cut of the network, that is the cut
- which separates the source from the sink having the smallest capacity. This
cut will then minimize H(-). As mentioned above, according to the max-flow
min-cut theorem, looking for the set of edges that disconnects the network in such
a way that the total capacity of these edges is the smallest possible, is equivalent
to working out the maximum flow of the network.

For this purpose, we need to employ an appropriate maximum flow algorithm.
In Sec. 3.2 we shall mention some of the most known algorithms of such type and
we shall describe the algorithm of our choice, that is, the Boykov-Kolmogorov
algorithm, for calculating the maximum flow in a network. But before that, let
us examine the effectiveness of the mapping described in this subsection for two
simple examples given by Hartmann and Rieger (2004).

3.1.3 A 2 × 2 RFIM without magnetic field

In this subsection, as a test case we consider a system of 4 spins, setting � = 1
and the local field magnitudes to ℎ1 = 0, ℎ2 = −2ℎ, ℎ3 = 2ℎ, and ℎ4 = 0. For
this specific example, we choose ℎ = 0. We construct an equivalent network of 6
nodes; 4 inner nodes (one for each spin), and additionally a source 0 and a sink
5.

We proceed to working out the maximum flow of this network by hand, ac-
cording to the method described in Subsec. 3.1.2. The capacities of the inner
edges are derived from Eq. 3.10:

212 = 213 = 224 = 234 = 4,
28 9 = 0 for all rest inner capacities.

(3.15)

In order to figure out the capacities of the edges connecting the inner vertices
to the source or the sink, we calculate the values F8 according to Eq. 3.13 and
obtain:

F1 = −4,
F2 = 4ℎ,
F3 = −4ℎ,
F4 = 4.

(3.16)
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Figure 3.2: The network obtained for the local field magnitudes
ℎ1 = ℎ2 = ℎ3 = ℎ4 = 0. Note that 2 distinct minimum cuts, i.e. 2 different
ground-state energy configurations can be achieved.

Hence, for ℎ = 0, the above equation yields:

F1 = −4,
F2 = 0,
F3 = 0,
F4 = 4

(3.17)

and plugging Eq. 3.17 into Eqs. 3.11 and 3.12 leads to the following values for
the source and sink capacities:

201 = 4, 202 = 203 = 204 = 0,
215 = 225 = 235 = 0, 245 = 4.

(3.18)

Now, what is left to do is calculate the capacity of the edge connecting the source
with the sink of the above network. Plugging Eqs. 3.15 and 3.18 into Eq. 3.14
gives 205 = −8 for the offset capacity. The network corresponding to the small
4-spin random-field system for ℎ = 0 is shown in Fig. 3.2.

The network allows two distinct minimum cuts, which both have capacity
� ((, () = 4+205 = −4. Hence, the maximum flow, i.e. the GS energy of the above
system is 5max = −4. The existence of more that one minimum cuts implies the
degeneracy of our system, i.e. the existence of more than one spin configurations



3.1. Mapping the RFIM to a network 55

yielding the GS energy. In fact, we can precisely determine these configurations.

Cut A separates the source from all rest nodes which, according to Eq. 3.9,
implies that B8 = −1 ∀8 ∈ {1, 2, 3, 4}, i.e. cut A yields the GS configuration where
all spins are pointing down. Cut B indicates that nodes 0 − 4 belong to the
source set ( and node 5 is in the sink set (. Hence, according to Eq. 3.9, cut B
corresponds to the GS configuration where B8 = 1 ∀8 ∈ {1, 2, 3, 4}, i.e. all spins
are pointing up.

The above results regarding the system’s ground-state energy and behaviour
are expected, since a zero field acting on the spins implies the existence of fer-
romagnetic spin configurations at zero temperature. Indeed, both ground states
corresponding to both minimum cuts are ferromagnetically ordered. Since we
don’t have a magnetic field, the total energy of the system is equal to its bond
energy. Note that for this example we don’t have any periodic boundary condi-
tions for the lattice sites, that means, we have only 4 bonds between 4 nodes.
Since sign B8 = sign B 9 ∀8, 9 ∈ {1, 2, 3, 4}, each bond contributes an amount of
−�B8B 9 = −1(1) = −1. Hence, according to Eq. 1.43, the total GS energy is
�total = �bond = −4, which is the maximum flow we derived for the above net-
work.

3.1.4 A 2 × 2 RFIM with magnetic field

In this subsection, we examine the behaviour of the previous system for the case
where ℎ = 1. Again we work out the ground state of this example analytically,
following the technique described in Subsec. 3.1.2. Recall that the inner capacities
of a network corresponding to a RFIM remain invariant under any changes to the
random field. Therefore, the capacities for the inner edges of the corresponding
network are again given by Eq. 3.15.

As for the source and sink capacities, Eq. 3.16 for ℎ = 1 reads:

F1 = −4,
F2 = 4,
F3 = −4,
F4 = 4,

(3.19)

which leads to the following values:

201 = 4, 202 = 0, 203 = 4, 204 = 0,
215 = 0, 225 = 4, 235 = 0, 245 = 4.

(3.20)
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Figure 3.3: The network obtained for the local field magnitudes ℎ1 = 0,
ℎ2 = −2, ℎ3 = 2, and ℎ4 = 0. Note that a total of 6 distinct minimum cuts, i.e.
of 6 different ground-state energy configurations can be achieved.

Finally, plugging Eqs. 3.15 and 3.20 into Eq. 3.14 gives 205 = −12 for the offset
capacity. The network corresponding to the 4-spin random-field system for the
case ℎ = 1 is shown in Fig. 3.3.

In this case six distinct minimum cuts are allowed, which all have capacity
� ((, () = 8 + 205 = −4. Hence, the maximum flow, i.e. the GS energy of the
above system is 5max = −4 for all the six different spin configurations. Again, by
advising Eq. 3.9, we can determine accurately each one of them.

Cuts A-B correspond to the ordered ground states of our system, namely, the
states where all spins point up or all spins point down. Cut A implies that spin
2 has the same direction and spin 3 has the opposite direction from their local
magnetic fields, while cut B implies the opposite for spins 2 and 3. Cuts C-F
correspond to the disordered ground states of the system, where spins 2 and 3
are oriented in parallel to their local magnetic fields and spins 1 and 4 are ran-
domly oriented in all four different possible combinations. The spin configurations
corresponding to the six minimum cuts are presented in Fig. 3.4.

Let us finally validate that the above results regarding the system’s ground-
state energy and behaviour are expected. For each of the six different ground
states corresponding to the six different minimum cuts, we calculate the total



3.1. Mapping the RFIM to a network 57

Figure 3.4: Spin configurations of the 6 distinct ground states of the RFIM
for ℎ = 1, corresponding to the 6 distinct minimum cuts of the system’s
equivalent network.

energy given by Eq. (1.43) and obtain the following results:

• cut A:

H = −1
(
(−1) (−1) + (−1) (−1) + (−1) (−1) + (−1) (−1)

)
−
(
0(−1) − 2(−1) + 2(−1) + 0(−1)

)
= −4.

(3.21)

• cut B:

H = −1
(
(1) (1) + (1) (1) + (1) (1) + (1) (1)

)
−
(
0(1) − 2(1) + 2(1) + 0(1)

)
= −4.

(3.22)

• cut C:

H = −1
(
(1) (−1) + (−1) (−1) + (−1) (1) + (1) (1)

)
−
(
0(1) − 2(−1) + 2(1) + 0(−1)

)
= −4.

(3.23)

• cut D:

H = −1
(
(−1) (−1) + (−1) (−1) + (−1) (1) + (1) (−1)

)
−
(
0(−1) − 2(−1) + 2(1) + 0(−1)

)
= −4.

(3.24)
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• cut E:

H = −1
(
(1) (−1) + (−1) (1) + (1) (1) + (1) (1)

)
−
(
0(1) − 2(−1) + 2(1) + 0(1)

)
= −4.

(3.25)

• cut F:

H = −1
(
(−1) (−1) + (−1) (1) + (1) (1) + (1) (−1)

)
−
(
0(−1) − 2(−1) + 2(1) + 0(1)

)
= −4.

(3.26)

Hence, for each case the total GS energy is �total = −4, which is the capacity we
derived for all the minimum cuts of the above network.

We have therefore validated analytically the effectiveness of the mapping de-
scribed in Subsec. 3.1.2 and we are now ready to proceed with its numerical
implementation. In Sec. 3.2 we outline some of the most known algorithms for
calculating the maximum flow through a network and then carry on with the
description of the algorithm of our choice for the current thesis, namely, the
Boykov-Kolmogorov algorithm.

3.2 Maximum flow algorithms: The Boykov -
Kolmogorov algorithm

To summarize our discussion so far, recall that the RMIF has a fixed point at ) = 0
(Villain, 1984; Bray and Moore, 1985b; Fisher and Huse, 1986) and therefore its
critical behaviour is the same everywhere along the phase boundary. This implies
that we can determine its behaviour by staying at zero temperature and crossing
the phase boundary at the critical field point, allowing us to figure out exactly
the ground states of the system.

The above is carried out through the mapping of the ground state to the
maximum flow optimization problem described in Subsec. 3.1.2 (Anglés d’Auriac
et al., 1985; Cormen et al., 1990; Papadimitriou, 1994) and subsequently with the
use of maximum flow algorithms (Ogielski, 1986; Anglés d’Auriac, 1986; Sourlas,
1998; Hartmann and Usadel, 1995; Hartmann and Nowak, 1999; Anglés d’ Auriac
and Sourlas, 1997; Swift et al., 1997; Bastea and Duxbury, 1998; Hartmann
and Young, 2001; Duxbury and Meinke, 2001; Middleton, 2001; Middleton and
Fisher, 2002; Dukovski and Machta, 2003; Wu and Machta, 2005; Fytas and
Martín-Mayor, 2013b; Alava et al., 2001; Seppäla and Alava, 2001; Shrivastav,
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Krishnamoorthy et al., 2011; Ahrens and Hartmann, 2011; Stevenson and Weigel,
2011).

3.2.1 Minimum cut - maximum flow algorithms

The application of maximum flow algorithms is nowadays well established for the
study of the RFIM (Alava et al., 2001). In this subsection we therefore look at
the most popular minimum cut - maximum flow algorithms, which, as we shall
see, are roughly divided into two main categories.

Let us start with the historically first algorithm for calculating the maximum
flow through a network, which was developed by Ford and Fulkerson (1956). The
Ford-Fulkerson algorithm’s input is a graph, along with a source B and a sink
C. The graph is any representation of a weighted, directed, residual graph where
vertices are connected by edges of specified weights. Each vertex, except B and C,
can receive and send an equal amount of flow through it, while B can only send
and C can only receive flow.

The steps of this greedy algorithm can be summarized as follows:

1. Start with an empty network, that is, initialize the flow along every edge
to zero.

2. Use a breadth-first search (BFS) to find an augmenting path from the source
to the sink, that is, beginning at the source, iteratively visit neighbouring
nodes that have not been visited before. An augmenting path is a path that
can take some flow the entire way from B to C.

While there is an augmenting path from the source to the sink, add the
capacity of this path to the flow. Let 2% indicate the maximum flow that
can go through this path. In order to find the capacity of this path, we
need to look at all edges of the path and subtract their current flow, 58 9
from their capacity, 28 9 . Since the smallest value of 28 9 − 58 9 is a bottleneck
for the path, we set 2% equal to this value.

3. Augment the flow along the path by 2%.

4. Repeat the process from step 2 until no augmenting paths are found.

5. The maximum flow has been attained.

The time complexity of the Ford-Fulkerson algorithm has no polynomial bound
and is equal to O(< |� |), where = is the number of edges of the network and
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|� | is the cost of a minimum cut, which is the value of the maximum flow. A
variant of the algorithm was developed by Edmonds and Karp (1972), which
does have a polynomial time complexity equal to O(=<2), where < is the number
of nodes. Other algorithms falling into the augmenting-path-style category are
Dinic’s algorithm (Dinic, 1970) with time complexity O(=2<), as well as the BK
algorithm which we shall outline in more detail in Subsec. 3.2.2.

Now let us turn to the second category of minimum cut - maximum flow al-
gorithms, namely, algorithms of push-relabel style. One of the most efficient
network flow algorithms used to solve the RFIM is the general push-relabel al-
gorithm developed by Goldberg and Tarjan (1988), with a computational time
complexity of O(=2<). Proofs and theorems regarding the algorithm have been
provided by Cormen et al. (1990) and Papadimitriou (1994). Two efficient imple-
mentations of the push-relabel method for the maximum flow problem, namely
the H_PRF and Q_PRF techniques have been proposed by Cherkassky and
Goldberg (1997), with computational time complexities of O(=2√<) and O(=3),
respectively.

Like Ford-Fulkerson, push-relabel algorithm’s input is also a residual graph,
along with a source B and a sink C. However, instead of examining the entire
residual network to find an augmenting path, push-relabel algorithms work on
one node at a time. One can consult the above references for further information
regarding the steps of the general push-relabel algorithm. Here we choose to focus
on a modification proposed by Middleton et al. (Middleton, 2001; Middleton
and Fisher, 2002; Middleton, 2002), which removes the source and sink nodes,
reducing memory usage and clarifying the physical connection. As we shall see
later, this algorithm is one of the algorithms used for the discussion in Chap. 4.

One can refer to the appropriate bibliography (Middleton, 2001; Middleton
and Fisher, 2002; Middleton, 2002) for the details of the algorithm, however a
brief summary of the algorithm’s steps is given below (Fytas and Martín-Mayor,
2016):

1. Assign an excess G8 to each lattice site 8.
Initially set residual capacities A8 9 between neighbouring sites to �.

2. Assign to each node a height D8 via a global update step:

• Each site in the set T = { 9 | G 9 < 0} of negative excess sites takes a
height value of D8 = 0.
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• Sites with G8 ≥ 0 have D8 set to the length of the shortest path, via
edges with positive capacity, from 8 to T .

3. If G8 > 0, A8 9 > 0 and D 9 = D8 − 1, a push operation moves excess from a site
8 to a lower height neighbour 9 .

4. When G8 > 0 and no further push is possible, the site is relabelled, with
D8 → 1 + min{ 9 |A8 9>0}D 9 . This is a single push-relabel step and the number
of such steps is the measure of the algorithmic time.

5. Repeat steps 2 − 4 until no more pushes or relabels are possible.

6. A final global update determines the ground state:
Sites which are path connected by bonds with A8 9 > 0 to T have B8 = −1.
Sites which are disconnected from T have B8 = 1.

The lattice sites 8 are considered with the use of a first-in-first-out (FIFO)
queue (Middleton, 2002), where a push-relabel step for a site 8 takes place at the
front of a list. All active sites (8 itself and/or neighbouring sites), if any, after
the push-relabel step, are added to the end of the list. Finally, note that the
computational efficiency of the algorithm described above has been increased via
the use of periodic global updates every !3 relabels (Middleton and Fisher, 2002;
Middleton, 2002), where ! is the lattice size.

3.2.2 BK algorithm description

In this subsection, we draw our attention to the Boykov-Kolmogorov min-cut/max-
flow algorithm (Boykov and Kolmogorov, 2004), which is being used as a black-
box in the current thesis for calculating the maximum flow of appropriate net-
works in order to study the critical behaviour of the RFIM. The algorithm was
developed in order to improve the empirical performance of standard augmenting
path algorithms on graphs in vision.

The BK algorithm’s input is again a weighted, directed, residual graph, to-
gether with a source B and a sink C, where the reverse weighted edges connecting
the nodes can be used. The algorithm consists a variation of standard augment-
ing path algorithms. It involves the construction of two non-overlapping search
trees, namely a source-tree and a sink-tree (see Fig. 3.5), which treat the ter-
minals symmetrically and outperform an earlier version of the algorithm where a
single tree rooted at the source was used (Boykov and Kolmogorov, 2001). What
is more, instead of the usual process of building new augmenting paths at each
new iteration, the above trees are reused throughout the algorithm.
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Figure 3.5: End of the growth stage: A path (yellow line) from B to C is
found (Boykov and Kolmogorov, 2004).

The nodes in both search trees are labelled by using the graph colouring tech-
nique, according to which tree they belong to. In addition, they are assigned a
status flag, A or P, according to whether they are active or passive, respectively.
In the beginning of the algorithm only the source and the sink are coloured (red
and blue, respectively) and have active status. The algorithm loops over the three
following stages:

• Growth stage: During this stage, starting from the source B and the sink
C, if a neighbour of an active node is connected to it via an edge of positive
capacity, it becomes active as well and it now belongs to the search tree of
the current active node (( or ) tree, respectively).
If there are no more such neighbours, the current active vertex becomes
passive and the next active node is examined.
The search trees ( and ) grow until there are no more active nodes left or
until they touch. In the latter case a path from the source to the sink is
found (see Fig. 3.5).

• Augmentation stage: The path that was found in the growth stage is
augmented: The residual capacities of the edges and reverse edges belong-
ing to the growth-stage path are updated, by subtracting from them, or by
adding to them, respectively, the bottleneck capacity of the path.
Note that each node belonging to a search tree has a non-saturated connec-
tion to a terminal. Therefore, since during the augmentation stage at least
one saturated edge is created, the built up search trees can be broken into
forests.

• Adoption stage: The structures of search trees ( and ) are restored, i.e.
the orphans created during the augmentation stage acquire new parents: If

This item has been removed due to 3rd Party Copyright. The unabridged 
version of the thesis can be found in the Lanchester Library, Coventry 

University. 
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a neighbouring node of a current orphan has a non-saturated connection
to the same terminal as the one the orphan had, then it becomes its new
parent and this forest is included again in the search tree.
If there are no such neighbours, the current orphan becomes a free vertex
(black nodes in Fig. 3.5) and its children become orphans.
If there are no more orphans, the adoption stage terminates.

The algorithm terminates when the search trees cannot grow any further,
i.e. the flow has attained its maximum value. The worst case complexity of
the BK algorithm is O(<=2 |� |). As we shall see in Subsec. 3.2.5, despite the
fact that theoretically speaking this is worse than the time complexities of other
standard minimum cut-maximum flow algorithms (see Subsec. 3.2.1), the BK
algorithm is significantly faster when applied to real-size experiments (Boykov
and Kolmogorov, 2004).

3.2.3 Implementation of the BK algorithm for simple ex-
amples

In order to derive numerical results for the ground state behaviour of the RFIM,
we modify and implement the 3.01 Version software for computing the min-
imum cut/maximum flow in a graph, constructed and provided by Boykov and
Kolmogorov (2004) according to their algorithm, which was described in Subec.
3.2.2.

We use a C/C++ environment for implementing the software, which consists
of two main source code files, namely maxflow.cpp and graph.cpp. Both compil-
ation units include the header files instances.inc and graph.h, which in turn
include the header files graph.h and block.h, respectively. Following the ex-
ample and instructions given in README.TXT, we create a third compilation file
in order to write our main program, which includes the header file graph.h. We
name this file main.cpp and each time we modify it, depending on the system
under study. After writing our main program, we compile all .cpp files and hence,
indirectly, all the files of the software, by using the following command:

g++ -w *.cpp

Appropriate modifications will be done to the above command, according to our
needs for linking the necessary libraries.

Let us first validate that the above technique indeed works for the simple
example found in the README.TXT file given by Boykov and Kolmogorov (2004).
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Figure 3.6: The example network presented by Boykov and Kolmogorov
(2004), which allows a unique minimum cut, represented by the red dashed
line. The cut crosses the edges (B, 0) and (B, 1), implying that both inner nodes
belong to the sink set. Disregarding the offset edge, the cut’s capacity is
� ((, () = 2B0 + 2B1 = 3.

We create the appropriate main.cpp file, which includes the code given in README.
TXT, for the graph given in Fig. 3.6. The code for this elementary example is
included in Appx. Sec. A.1.

Note that the algorithm allocates a number to each inner node, starting from
0, without taking into account the source and the sink for the estimated number
of total nodes. We therefore use a similar way for numbering the graph’s nodes
from now on, as seen in Fig. 3.6.

The main program in main.cpp starts by assigning to the graph constructor
created in graph.cpp a new name, that is, GraphType and by declaring the types
of the inner capacities, the source/sink capacities and the flow:

typedef Graph<int,int,int> GraphType;

Following, the graph constructor is called, after being pointed to the variable g.
Its arguments give the maximum number of inner nodes and edges that can be
added to the graph:

GraphType *g = new GraphType(2, 6);

Afterwards, the graph generation begins by adding nodes to the graph:
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g -> add_node();

The above command adds by default one node to the graph and hence it is called
as many times as the total number of nodes. Recall, as illustrated in Fig. 3.6,
that the algorithm allocates an identity to every inner node, starting from 0 up
to # − 1, where # is the total number of nodes. This is performed by the above
command, whose first call returns 0, second call returns 1, and final call returns
# − 1.

Now that the graph’s nodes have been generated and have acquired a unique
identity, the graph’s edges are added, along with their capacities:

g -> add_tweights( 0, 2, 6 );
g -> add_tweights( 1, 1, 5 );
g -> add_edge( 0, 1, 4, 3 );

The first two lines refer to source and sink edges. Function add_tweights adds
one source and one sink edge to every node and allocates their corresponding
capacities. It has three arguments, namely the node’s identity, the capacity of
the edge connecting it to the source and the capacity of the edge connecting it
to the sink. In the third line, function add_edge adds a bidirectional inner edge
between two nodes 8 and 9 , with its corresponding capacity and reverse capacity.
It has four arguments, that is the identity of node 8, the identity of node 9 , the
capacity of the inner edge from 8 to 9 and the capacity of the inner edge from j
to i.

Once the graph’s construction is complete, its maximum flow is calculated by
calling the maxflow() function:

int flow = g -> maxflow();

Function maxflow() has two arguments. The first one is a boolean value, which
is true or false according to whether any trees in the graph are reused or not,
respectively, from a previous computation of the maximum flow. This value is
set by the program’s developers to be false by default. The second argument
is a pointer variable including a list of any changed nodes in the graph. By
default, this list is empty. Therefore, when no changes are performed to the
graph, maxflow() can be called without arguments for calculating its maximum
flow.

After the maximum flow is calculated, the algorithm also determines the node
configuration of the minimum cut, by calling the what_segment() function, which
has two arguments. The first argument refers to the node’s identity, while the
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second one refers to which graph segment does the node belong to. The second
argument is by default set to return the source set and can be skipped when
calling what_segment(). This implies that in the case where more than one
minimum cuts exist, where nodes may occur to belong to the source set for a
specific cut and to the sink set for another cut, then calling what_segment()
for all nodes will let us obtain the minimum cut configuration with the biggest
number of nodes belonging to the source set possible.

printf("Minimum cut configuration:\n");
if (g->what_segment(0) == GraphType::SOURCE)

printf("node0 is in the SOURCE set\n");
else

printf("node0 is in the SINK set\n");

if (g->what_segment(1) == GraphType::SOURCE)
printf("node1 is in the SOURCE set\n");

else
printf("node1 is in the SINK set\n");

Finally, the built graph is deleted:

delete g;

We compile all .cpp files and running a.out yields:

Flow = 3
Minimum cut configuration:
node0 is in the SINK set
node1 is in the SINK set

which are the results we were expecting for the graph given in Fig. 3.6. Recall
that the algorithm does not take into account the offset edge capacity.

Let us now proceed with implementing the algorithm for various graph cases
representing RFIMs. We start with the two examples presented in Subsecs. 3.1.3
and 3.1.4, where we already know what results to expect, and we solve them
numerically. Then we shall proceed to more complicated examples.

• BK implementation for example given in Subsec. 3.1.3. The content
of the relevant main.cpp file is given in Appx. Sec. A.2.

We now change the estimated number of nodes and inner edges, according
to our needs. For any node in the graph, when there exists only one edge
connecting it to the source or to the sink of the network, we set the sink or
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the source capacity argument of add_tweights function to 0, respectively,
implying that the corresponding edge does not exist. Finally, we add the
capacity of the offset edge to the flow value obtained by calling maxflow()
and get the following output:

Flow = -4
Minimum cut configuration:
node 0 is in the SOURCE set
node 1 is in the SOURCE set
node 2 is in the SOURCE set
node 3 is in the SOURCE set

We indeed obtain the expected result for the GS energy, that is � = −4. As
discussed earlier, among all the minimum cuts, the algorithm is by default
set to return the one with the most nodes belonging to the source set.
Therefore, between the two minimum cuts shown in Fig. 3.2, cut B is
generated.

• BK implementation for example given in Subsec. 3.1.4. The content
of the relevant main.cpp file is given in Appx. Sec. A.3.

We obtain exactly the same output as in the above example, implying that
we have calculated the correct GS energy, � = −4 and that among the six
minimum cuts shown in Fig. 3.3, the algorithm generates cut F.

Implementation of the BK algorithm for both simple examples yielded the
correct results for the GS energy of the small RFIMs. What is more, it allowed
us to obtain the exact node configuration of one of the minimum cuts of each
network. This motivates us to proceed to our next goal, which is to modify further
this code in order to work out the maximum flow of a network corresponding
to a 2� ! × ! RFIM with continuous random-field distribution and the spin
configuration of its ground state, for any given lattice size !, either square or
triangle.

3.2.4 Implementation of the BK algorithm for a 2� ! × !
RFIM with Gaussian random-field distribution

In this subsection, we shall attempt to generalize the procedure illustrated in
Subsec. 3.2.3 for a 2� RFIM with Gaussian random-field distribution, for any
! × ! lattice size, where the lattice has a square or a triangle geometry. What
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is more, we shall calculate several thermodynamic quantities of our interest and
determine the spin configuration of the system’s ground state.

Square lattice

We start with the square lattice and focus on a single realization of the quenched
disorder. Recall that we have a lattice with # = ! × ! spins, which implies that
we have 2# possible spin configurations. The random field follows the Gaussian
distribution, which is continuous. This means that for one specific realization of
the quenched disorder, only 1 out of 2# spin configurations yields the GS energy
of the system.

For this specific spin configuration, we can calculate the magnetization per lat-
tice site, <, as well as the second and fourth magnetic moments per lattice site,
<2 and <4, respectively, the field energy per lattice site, �field_N, the bond energy
per lattice site, �bond_N and the total energy per lattice site, �total_N. Calcu-
lation of the Binder cumulant and of expectation values of any thermodynamic
quantities makes no sense for one single ground state.

For one realization of the quenched disorder, we need # random numbers which
are picked randomly from the random-field’s distribution. Each one represents
the value of the local magnetic field, ℎ8, acting on one site 8 of the lattice. Recall
that the standard deviation of the distribution is the disorder strength ℎ.

We now attempt our first generalization of the BK algorithm for working out
the ground state of a single disorder realization of a 2� ! × ! square RFIM,
where ℎ8, 8 = 0, ..., # − 1 occur from a standard normal distribution, that is, a
Gaussian with 0 mean and unitary standard deviation. The latter implies that
for this specific example, the disorder strength will be ℎ = 1.

Let us start with the local magnetic fields. We need to generate # Gaussian
random numbers and allocate one to each lattice site. For this purpose, one
needs to look at the GSL libraries in order to pick an appropriate random num-
ber generator (RNG) for the local random-field values. We choose the Mersenne
Twister generator (Matsumoto and Nishimura, 1998). The libraries need to be
included in the code, by including the header file gsl/gsl_randist.h and also
called properly when compiling the program, by modifying the compiling com-
mand accordingly:

g++ -w *.cpp -lgsl -lgslcblas -lm
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The -lm flag is used to also link the math library and for this code, which is
presented in Appx. Sec. A.4, it is necessary for using the pow() function.

We use the function gsl_ran_gaussian in order to call the random number
generator. The function returns a Gaussian random variate, with fixed mean
equal to 0. We can choose the standard deviation, i.e. the disorder strength ℎ as
desired, by modifying accordingly the function’s second argument when calling
it. For our example, ℎ will be equal to 1. As for its first argument, it is the const
pointer to which the random numbers are allocated by the random number gen-
erator. Once the random numbers are generated, they are dynamically allocated
to h, which is the array of the random fields ℎ8. We prefer dynamic allocation to
static, since we want to avoid segmentation faults occurring at big lattice sizes.

We now proceed to the graph generation. We start by changing the types of
the inner capacities, the source/sink capacities and the flow from int to double,
since we now want to allow these variables to take any real value:

typedef Graph<double,double,double> GraphType;

Next, one needs to take into account the fact that our graph is not dense. A
dense graph would imply that each spin interacts with every other spin in the
lattice. This would mean, for the square 2� case, # − 1 instead of 4 neighbours.
Therefore, the graph we are generating here is a sparse graph with coordination
number I = 4 (see Subsec. 3.1.1). The sparse graph’s total number of inner edges
can be easily calculated by Eq. 3.1, where # is the total number of inner nodes,
i.e. the total number of spins. As for the maximum number of edges connecting
each node with the source and the sink, we have # +# = 2#. Finally, one should
also include the offset edge. We therefore change the estimated number of nodes
and edges accordingly:

GraphType *g = new GraphType(N+2, 2*N+N*z/2+1);

The above fact implies that the usual methods for representing a graph, that
is, with an adjacency matrix or an adjacency list, would not be the wisest choice
for our case. This is because the corresponding adjacency matrix would be half-
empty (or, more precisely, with half of its elements equal to 0) and hence our code
would be computationally costful for no reason. As a result, we shall represent
our graph in a different way. Thus, we choose to represent every inner node with
a number, namely, from 0 to # − 1, as mentioned in Subsec. 3.2.3. As one may
also notice in Fig. 3.8, every node has four neighbours, corresponding to four
numbers. In our code, we name the neighbours up, down, left and right and
define them according to Fig. 3.7 and to the code given below:
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Figure 3.7: Square lattice: Expressions for a single node’s four nearest
neighbours (I = 4).

for(int node=0; node<N; node++) {
int right = node + 1;
int left = node - 1;
int up = node + L;
int down = node - L;

}

One needs to take into consideration the fact that in the 2� case, our lattice
wraps around creating a donut shape and hence the appropriate boundary con-
ditions should be included when defining the neighbours. By looking at Fig. 3.8,
we can easily see that the rules followed in Fig. 3.7 do not apply for the borders
of the lattice. For example, the right neighbour of 2 should be 0 and not 3, the
right neighbour of 5 should be 3 and not 6 etc. This implies that any right
neighbour generated according to Fig. 3.7, which is a multiple of !, should be
reduced by ! in order to obtain the correct number identity. Following the same
mindset for the rest of the lattice borders, we redefine the neighbours for the four
border cases with four if conditions:

for(int node=0; node<N; node++) {
if (right % L == 0){right -= L;}
if (node % L == 0){left +=L;}
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if (up > (N-1)){up -=N;}
if (down < 0){down +=N;}

}
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Figure 3.8: Illustration of the node representation (blue nodes) and inner
edge and capacity building of a graph corresponding to a square 3 × 3 RFIM
with periodic boundary conditions for � = 1. White nodes denote the
neighbours of the vertices at the borders of the lattice. Black and blue edges
correspond to add_edge for the right and down directions, respectively.
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Figure 3.9: Example of all possible edges of a square RFIM for ! = 3. We
will add the inner, source, sink and offset edges and their corresponding
capacities.
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out (8 → 9) in ( 9 → 8)
�A = 4� �A = 0
�3 = 4� �3 = 0
�; = 0 �; = 4�
�D? = 0 �D? = 4�

Table 3.1: Capacities of the edges moving from node 8 to its neighbours 9
(out) and from the neighbours to the node (in). For our case, � = 1.

node(8)

8 > 9

up

8 < 9

right

8 < 9

down

8 > 9

left
�D?�D?

�A

�A�;

�;

�3 �3

Figure 3.10: A single node’s out and in inner capacities.

We are now left with the task of building the edges and plugging in the capacit-
ies, in order to complete our graph generation. Let us look at Fig. 3.9 and start
with the inner edges, whose capacities are given by Eq. (3.10), where �8 9 = 1.
Hence, in our code we can define for each neighbour 9 of a single node 8 (see
Fig. 3.10) the capacities of the edges going from the node to its neighbours and
the capacities of the edges going from the neighbours to the node, according to
Table 3.1.

Thus, for the inner capacities, we have:

Crightout=4*J;
Crightin=0;
Cleftout=0;
Cleftin=4*J;
Cdownout=4*J;
Cdownin=0;
Cupout=0;
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Cupin=4*J;

As for the lattice borders, the capacities read:

if (right % L == 0 ){
Crightout=0;
Crightin=4*J;

}
if (node % L == 0){

Cleftout=4*J;
Cleftin=0;

}
if (up < 0){
Cupout=4*J;
Cupin=0;
}
if (down > (N-1)){
Cdownout=0;
Cdownin=4*J;
}

Finally, when building the edges and allocating their capacities, we choose the
positive capacities to be the ones linking each site to its right and to its down
neighbour:

g -> add_edge(node, right, Crightout, Crightin);
g -> add_edge(node, down, Cdownout, Cdownin);

Now as far as it concerns the network’s terminals, we need to work out the
weight F8 in order to define the capacities of the edges connecting them to the
inner nodes. According to Eq. (3.13):

F8 ≡ −2ℎ8 −
1
2
∑
9

(28 9 − 2 98)

≡ −2 ∗ ℎ[node] − 1
2

(
�A + �3 + �; + �D? − �A − �3 − �; − �D?

)
.

(3.27)

Hence, we have:

w=-2*h[node] - (Crightout+Cleftout+Cdownout+Cupout-Crightin
-Cleftin-Cdownin-Cupin)/2;

Now the source and sink capacities sC and tC are calculated according to Eqs.
3.11 and 3.12 and then they are added to the graph:
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if(w > 0) {
sC=0;
tC=w;

}
else {

sC=-w;
tC=0;

}

g -> add_tweights(node, sC, tC );

The final step for plugging in the capacities is to define the offset edge with
capacity oC, that is the one defined by Eq. (3.14). Note that after some manip-
ulations and according to the code’s notation (see Appx. Sec. A.4), Eq. (3.14)
may read:

20,=+1 ≡ −
1
4 (4 · #;) −

1
2 : = −#; −

1
2 :, (3.28)

where

: =

8<#∑
8=0

(
B� [node] + C� [node]

)
(3.29)

and #; is the total number of the lattice’s edges (see Subsec. 3.1.1). Therefore,
the code writes:

for(int node=0; node<N; node++) {
k += sC+tC;
}
double oC=-N*z/2-k/2;

Once all capacities are defined and the network is constructed, its minimum
cut is figured out by calling the maxflow() function, which separates the network
into the source set ( and the sink set ( and determines the spin configuration of
the ground state according to Eq. (3.9):

spin[node] =


1, node ∈ (

−1, node ∈ (
. (3.30)

As for the correct value of the maximum flow, which is equal to the GS energy of
the system, recall that the offset edge capacity oC should be taken into account:

flow += oC;
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By implementing the BK algorithm with the code given in Appx. Sec. A.4,
we have calculated the unique GS energy of the 2� ! × ! square RFIM with
Gaussian random-field distribution, for various choices of !. We have figured
out precisely its corresponding spin configuration, for one specific realization of
the quenched disorder, where � = 1 and the disorder strength is ℎ = 1. What
is more, we have determined various thermodynamic quantities of our interest.
Our results are presented in Table 3.2 and in Fig. 3.11. We have used python in
order to plot the spin configurations of the ground states and the relevant code
is included in Appx. Sec. B.1.

L=16 L=32 L=64

L=128 L=256 L=512

L=1024 L=2048 L=4096

Figure 3.11: Spin configurations of ! × ! grids, for various square lattice
sizes, for � = 1 and disorder strength ℎ = 1. The seed for the random number
generator is the same ∀!. White and black points represent B8 = 1 and B8 = −1,
respectively. We can observe disordered ground states for lattice sizes ! ≥ 64.
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! �total_N �field_N �bond_N < Computational time
4 -2.13421 -0.13421 -2 1 0.00s
8 -2.07318 -0.0731845 -2 1 0.00s
16 -2.06862 -0.0686185 -2 -1 0.00s
32 -2.02403 -0.0240342 -2 -1 0.00s
64 -2.01583 -0.115439 -1.90039 -0.558594 0.01s
128 -2.01471 -0.0708667 -1.94385 -0.735474 0.05s
256 -2.0182 -0.107866 -1.91034 -0.0134583 0.13s
512 -2.01873 -0.111794 -1.90691 -0.0520706 0.49s
1024 -2.01862 -0.103278 -1.91534 -0.0487671 1.95s
2048 -2.01832 -0.104013 -1.91431 -0.0342841 8.15s
4096 -2.01825 -0.104776 -1.91348 -0.0058893 35.76s

Table 3.2: Table for many different square lattice sizes !, for ℎ = 1. The first
signs of disorder appear at ! = 64, as seen by the bond energy not being −2
and the absolute value of the magnetization not being 1. Same seed is used for
all cases of !.

Triangular lattice

Let us now turn our attention to the triangular 2� RFIM, where the random
field follows again the Gaussian distribution. Our aim is the same as the one
regarding the square RFIM, that is, work out the GS energy and spin configura-
tion for a given realization of the disorder and estimate the expectation values of
thermodynamic quantities of our interest. Here, one more time, we have a lattice
of # = ! × ! spins and hence 2# possible spin configurations.

The procedure we follow for implementing the BK algorithm in order to achieve
the above goal is similar to the one we applied for the square lattice. Therefore,
we are only going to focus on the differences between the two geometries. The
code for a single realization of the disorder for the triangular 2� ! × ! RFIM is
given in Appx. Sec. A.5.

The differences occurring in the implementation of the BK code between the
two lattice geometries are related to the number of neighbours a single node has.
Thus, let us start with the coordination number I, which is I = 6 for the triangular
case. This does not affect our code, since the only change that needs to be made
is the allocation of this value to the variable z. Considering that now every node
has six neighbours, as one can see in Fig. 3.13, the two extra neighbours upright
and downleft of a single node are defined in the code according to Fig. 3.12:

for(int node=0; node<N; node++) {
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node

node−!

up

node+1

right

node+!

down

node−1

left

up+1

upright

down−1

downleft

Figure 3.12: Triangular lattice: Expressions for a single node’s six nearest
neighbours (I = 6).

int upright = up + 1;
int downleft = down - 1;

}

As for the weighted edges (see Fig. 3.14), we start again with the inner ones,
with capacities given again by Eq. (3.10), for �8 9 = 1. This time, the capacities for
the two extra neighbours should be taken into consideration (see Fig. 3.15 and
Table 3.3). Therefore, we have the following extra definitions in the code:

Cuprightout=0;
Cuprightin=4*J;
Cdownleftout=4*J;
Cdownleftin=0;

What is more, the following lines must be modified in order to take into account
the changes that occur at the lattice borders:

if (right % L == 0 ){
right -= L;
upright=right-L;
if (up < 0){

upright+=N;
}
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Figure 3.13: Node representation and inner edge and capacity building of a
graph corresponding to a triangular 3 × 3 RFIM with periodic boundary
conditions for � = 1. Black, blue and dark green edges correspond to add_edge
for the right, down and upright directions, respectively.

Crightout=0;
Crightin=4*J;

}
if (node % L == 0){ //left border

left +=L;
downleft=left+L;
if (down > (N-1)){ //special case for down left corner

downleft-=N;
}
Cleftout=4*J;
Cleftin=0;

}
if (up < 0){

up +=N;
upright=up+1;
if (right % L == 0 ){ //special case for top right corner

upright-=L;
}
Cupout=4*J;
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s

0 1 2

3 4 5

6 7 8

t

Figure 3.14: Example of all possible edges of a triangular RFIM for ! = 3.
Like the square case, the inner, source, sink and offset edges and their
corresponding capacities will be added with the use of the graph constructor.

Cupin=0;
Cuprightout=4*J;
Cuprightin=0;

}
if (down > (N-1)){ //down border

down -=N;
downleft = down -1;
if (node % L == 0){ //special case for down left corner

downleft+=L;
}
Cdownout=0;
Cdownin=4*J;
Cdownleftout=0;
Cdownleftin=4*J;

}

We now choose between the two extra neighbours the upright to be the ones
which are linked to each site with edges of positive capacities and we add the
additional weighted edges to the graph:

g -> add_edge(node, upright, Cuprightout, Cuprightin);

After building the inner edges, we have to modify the weight F8 so that we
can define the terminal capacities. Hence, Eq. (3.27) now becomes:

F8 ≡ −2 ∗ ℎ[node] − 1
2 (�A + �3 + �3; + �; + �D? + �D?A − �A − �3 − �3; − �; − �D? − �D?A)

(3.31)
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out (8 → 9) in ( 9 → 8)
�A = 4� �A = 0
�3 = 4� �3 = 0
�3; = 4� �3; = 0
�; = 0 �; = 4�
�D? = 0 �D? = 4�
�D?A = 0 �D?A = 4�

Table 3.3: In and out capacities for the triangular case, for � = 1.

node(8)

8 > 9

up

8 < 9

right

8 < 9

down

8 > 9

left

8 > 9

upright

8 < 9

downleft

�D?�D?

�A

�A�;

�;

�3 �3

�D?A

�D?A

�3;

�3;

Figure 3.15: A single node’s out and in inner capacities for the triangular
lattice.

! �total_N �field_N �bond_N < Computational time
4 -3.13421 -0.13421 -3 1 0.00s
8 -3.07318 -0.0731845 -3 1 0.00s
16 -3.06862 -0.0686185 -3 -1 0.00s
32 -3.02403 -0.0240342 -3 -1 0.00s
64 -3.01416 -0.0141627 -3 -1 0.01s
128 -3.01113 -0.0111254 -3 -1 0.04s
256 -3.00139 -0.00138895 -3 -1 0.22s
512 -3.00088 -0.000877803 -3 1 1.34s
1024 -3.00062 -0.00061612 -3 -1 10.96s
2048 -3.0004 -0.00352145 -2.99688 -0.802304 119.12s
4096 -3.00051 -0.00613277 -2.99438 0.0484595 565.79s

Table 3.4: Table for many different triangular lattice sizes !, for ℎ = 1. Here
we can note that disorder appears for first time at ! = 2048. Same seed is used
for all cases of !.
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L=128,h=1 L=256,h=1 L=512,h=1

L=1024,h=1 L=2048,h=1 L=4096,h=1

Figure 3.16: Spin configurations of ! × ! grids, for different triangular
lattice sizes, for � = 1 and disorder strength ℎ = 1. The seed for the RNG is the
same ∀!. Disorder is detected for lattice sizes ! ≥ 2048.

and therefore the source, sink and offset capacities, sC, tC and oC are added to
the graph in a similar way to the square lattice case. The remaining steps of
the code for figuring out the maximum flow of the network and hence the spin
configuration of the ground state and the thermodynamic quantities, remain the
same, apart from the calculation of the bond energy, �bond, where the two extra
neighbours of a single node should be taken into account.

We are now ready to proceed to the implementation of the BK algorithm, this
time for the triangular lattice geometry (see Appx. Sec. A.5). The results of
the GS spin configurations for � = 1 and ℎ = 1 are presented in Fig. 3.16. The
python code for plotting the triangular lattice configurations is given in Appx.
Sec. B.2. Note that for the same disorder strength, we don’t observe disordered
states for the same lattice sizes as with the square case. In fact, disorder starts
at larger lattice sizes, for ! ≥ 2048. This is an expected behaviour, since the two
extra bonds between the nearest neighbours in the case of the triangular lattice
contribute to the resistance of breaking the GS order. The rest of our results
regarding the GS energy and other thermodynamic quantities are included in
Table 3.4.
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Algorithm Method style Time complexity
General push-relabel (Goldberg and Tarjan, 1988) push-relabel O(=2<)

H_PRF (Cherkassky and Goldberg, 1997) push-relabel O(=2√<)
Q_PRF (Cherkassky and Goldberg, 1997) push-relabel O(=3)
Ford-Fulkerson (Ford and Fulkerson, 1956) augmenting path O(< |� |)
Edmonds-Karp (Edmonds and Karp, 1972) augmenting path O(=<2)

Dinic (Dinic, 1970) augmenting path O(=2<)
BK (Boykov and Kolmogorov, 2004) augmenting path O(=2< |� |)

Table 3.5: Theoretical worst case running time complexities of minimum
cut-maximum flow algorithms. = = #nodes, < = #edges, |� | = cost of a
minimum cut.

3.2.5 Computational time complexity of BK

Following the successful implementation of our code in order to figure out several
GS properties of the 2� RFIM, we now carry on with investigating the com-
putational time complexity of our code. Let us start by looking at Table 3.5,
which includes a summary of the theoretical time complexities of the minimum
cut-maximum flow algorithms discussed in Subsec. 3.2.1. It has been shown
that H_PRF and Q_PRF outrun many other minimum cut-maximum flow al-
gorithms in real-size experiments (Cherkassky and Goldberg, 1997). However,
experimental tests in 2� for up to ! = 511 indicate that BK is faster than these
two algorithms (Boykov and Kolmogorov, 2004).

For the purpose of validating the above argument, we shall generate multiple
realizations of the quenched disorder for some specific disorder strength ℎ and
work out the computational time of the BK code for each one of them. After-
wards, the calculation of the mean value of those computational times will give
us an estimate of the average computational time needed for working out the GS
spin configuration and the corresponding thermodynamic quantities for a specific
disorder strength. Consequently, we shall compare our results to the ones we
obtain by implementing the Q_PRF-style algorithm described in Subsec. 3.2.1
(Fytas and Martín-Mayor, 2016) for determining exactly the same critical prop-
erties of the square RFIM, for the same realizations and for the same disorder
strength.

The implementation of the BK code for creating multiple realizations of the
quenched disorder can be carried out in two different ways, that is, by either
building the graph from scratch for every single disorder sample or building the
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graph once and reallocating the graph’s edges’ capacities for every disorder real-
ization. We expect that the latter constitutes an optimized version of the code,
since the graph needs to be constructed outside of the loop for the many samples
of the disorder. The two methods can be summarized as follows:

• Rebuilding the graph. Steps ∀ realization:

1. Generate the graph.

2. Allocate inner, source and sink capacities.

3. Define the offset capacity and hence calculate the correct maximum
flow.

4. Determine the spin configuration of the GS and therefore work out
�field, �bond, �total, <.

5. Delete graph.

6. Go back to step one for the next realization.

• Building the graph once. First, the graph is generated and all capacities
(inner and terminal) are initially set to zero. Then, the maximum flow
function, maxflow() is called. Afterwards, we have the steps ∀ realization:

1. Reallocate inner, source and sink capacities.
Here, one may recall that the graph’s inner edge capacities remain
invariant under any changes of the random fields ℎ8. However, for every
different realization of the disorder, maxflow() needs to be called in
order to determine the spin configuration of the ground state. Calling
it causes the graph’s capacities to change and this is why all graph’s
edges’ capacities need to be reallocated.

2. Call maxflow() and hence determine the spin configuration of the GS,
�field, �bond, �total and <.

3. Go back to step one for the next realization.
Note that the offset capacity is not defined here, therefore calling the
maxflow() function does not yield the correct result for the maximum
flow, which is nevertheless equal to �total. However, the function still
needs to be called for determining the GS spin configuration.
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each sample. Each job was run solely on a cluster node with 8 CPUs. The
7.1.0 gcc version was used.

After we are done with all the steps for either of the above cases and for
several lattice sizes of up to ! = 4096, we sum all our results from the different
realizations of the disorder strength for each thermodynamic quantity and divide
them by the total amount of different samples in order to obtain the disorder
averages. We also calculate the fourth order cumulant of the order parameter,
given by Eq. (1.32).

The codes for working out the GS properties of the square RFIM for many
realizations of the quenched disorder for a given disorder strength ℎ are presented
in Appx. Secs. A.6 and A.7, for the cases of rebuilding the graph and building the
graph just one time, respectively. The code for building the graph only once was
developed with the help of instructions and functions (set_rcap(), set_trcap())
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found in the graph.h file of the software provided by the developers (Boykov and
Kolmogorov, 2004).

Our results regarding the computational time of the BK and Q_PRF-style
algorithms are presented in Fig. 3.17. As we have suspected, the method of
building the graph just once outruns the method of building the graph for every
realization of the disorder and therefore it shall be preferred for our simulations
from now on, as an optimized version of our code. It is clear however, that
both versions of the BK algorithm are significantly faster than the Q_PRF-
style algorithm, a fact that verifies the claim of Boykov and Kolmogorov (2004),
namely, that BK outruns many of the most efficient minimum cut-maximum flow
algorithms for lattice sizes of experimental interest.

Finally, one may notice that the difference between the two versions of our
code implementation is relatively small, regarding the computational time. This
is because the biggest portion of the computational time is used when calling
the maxflow() function, i.e. for the actual calculation of the maximum flow
rather than for setting up the graph structure. In fact, this can be confirmed by
employing the clock() function for a test run of our code. For example, running
the code for the 2� square RFIM for ℎ = 1, ! = 4096 for a single realization of
the disorder takes roughly 33.7 seconds, with around 30 of them being spent for
working out the maximum flow of the network and only 3.7 needed for building
the graph and setting up the rest of the problem.
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Chapter 4

Breakup Length in 2D

4.1 Background and methodology

The final chapter of the current thesis is devoted to the breakup length scale,
ℓB(ℎ) (Binder, 1983; Bray and Moore, 1985a; Seppäla, Petäjä et al., 1998; Kumar
et al., 2018) of the 2-dimensional RFIM; we study above what length scale does
the system break its ferromagnetic ordering, at ) = 0.

Recall that a crossing of the phase boundary of the RFIM at ) > 0, ) < +∞
leads to the same critical behaviour as a crossing at ) = 0 by varying ℎ does.
Hence, by conducting the above study we are able to understand better the
system’s behaviour when it changes from ferromagnetic (FM) to paramagnetic
(PM), by using this alternative method. As we shall shortly discuss, previous
results regarding the breakup length scale are not consistent and there is no
concrete study of the breakup length scale for big lattice sizes. We therefore
attempt to clarify once and for all the RFIM’s behaviour in terms of the breakup
length scale and answer the open questions regarding the problem.

4.1.1 Previous results

Results so far suggest an exponential scaling of the breakup length ℓB(ℎ) and they
all refer to square lattices. Let us start with the analytical approach performed
by Binder (1983), who attempted, in 2 and 3 dimensions and at 0 temperature,
a detailed understanding of the width F(!, ℎ) of the interface between states
of positive and negative magnetization of the RFIM, which is formed due to
boundary conditions.

For the 2-dimensional case, Binder started by considering a large but finite
Ising square ! × ! lattice and applied fixed-spin boundary conditions such that
the GS for ℎ = 0 has one interface of length !, separating the regions of spins
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up and spins down, which is perfectly flat for ℎ = 0 and ) = 0. In turn, he
performed various uniform displacements of the interface by different distances F
and examined how the interfacial excess energy varied. He concluded that there
exists a length scale ℓB for which the total interfacial energy becomes negative:

ℓB ∝ 4�(
�
ℎ
)2 , (4.1)

a fact that implies that ℓB is the minimum length scale at which the system can
be spontaneously broken into domains (Binder, 1983).

Following Binder’s work, Bray and Moore (1985a) used RG techniques in order
to calculate the contribution to the wall energy from the roughening of the domain
wall induced by the random field. They ended up with a similar exponential law,
suggesting that the contribution to the wall energy is analogous to −! ℎ2

�
ln!.

The first numerical evaluation of the breakup length scale was performed by
Seppäla, Petäjä et al. (1998). Their calculations were based on the definition
of the ratio A of the number of the ferromagnetic ground states over the overall
number of realizations of the disorder which were under consideration:

A =
#FMGS

#samples
= 0.5. (4.2)

They investigated the breakup length scale of the 2� RFIM for both the Gaus-
sian and the bimodal distributions and for lattice sizes up to ! = 1000 via exact
combinatorial optimization techniques and in particular, with the use of an ef-
ficient push-relabel preflow-type algorithm (Goldberg and Tarjan, 1988). Their
approach led to the same scaling law as the one derived by Binder, given from
Eq. (4.1) for � = 1, for both distributions of the random fields.

Another numerical approach to the problem, this time with the use of graph cut
methods described by Boykov, Veksler et al. (2001), was conducted by Kumar et
al. (2018), this time for the 2� random-field Potts model (RFPM). Square lattices
of size up to ! = 512 were considered and, following the work of Seppäla, Petäjä
et al. (1998), the definition given by Eq. (4.2) was employed. Their calculations
led to the following exponential law regarding the breakup length scale:

ℓB ∝ 4
�
ℎ . (4.3)

The above result is not consistent with the scaling law derived by Binder (1983)
and Seppäla, Petäjä et al. (1998) regarding the RFIM, but it is in agreement with
the outcome of the numerical simulations of the RFIM performed by Shrivastav,
Banerjee et al. (2014).
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4.1.2 Our approach

In order to address the breakup length scale problem, we employ graph cut meth-
ods at ) = 0 and in particular, we make use of the BK algorithm for our simula-
tions. We consider the Gaussian distribution for the random fields ℎ8 and various
lattice sizes of up to ! = 2048.

More specifically, ∀! ∈ {8, 16, 32, 64, 128, 256, 512, 1024, 2048} we look at 105

samples (realizations of the quenched disorder) and we figure out the GS of each
one of them. We are therefore able to calculate the ratio:

A =
#FMGS

105 , (4.4)

for different disorder strengths ℎ. Afterwards, we perform Jackknife analysis
(Young, 2012) to estimate the breakup field ℎB(!), i.e. for what disorder strength
does A satisfy our definition of choice for the ratio A. Hence, we can examine how
the breakup length scales.

A more detailed description of how we conduct the study follows. However,
before that, let us point out the four main points of focus of our research:

1. Which law governs the scaling of the breakup length ℓB(ℎ)?

2. Does this law depend on the definition used for the ratio?
−→ Examine the case where A = 0.01.

3. Does this law depend on the lattice geometry? (Hayden et al., 2019)
−→ Examine the case where the lattice is non-bipartite, e.g. the triangular
lattice.

4. What about the scaling of the correlation length b?

Let us now focus on the first point above and illustrate our method in more
detail. In order to select the appropriate disorder strength values for which we
shall perform our large-scale simulations, we start with fewer samples, namely,
104 realizations of the disorder. We focus on the square lattice case. We use
the optimized version of the BK algorithm to figure out the ground states of
our samples and then calculate the ratio A = #FMGS

104 , for various disorder strength
values. Thus, we can produce a plot of our results, as seen in Fig. 4.1. The code
for calculating the ratio A is given in Appx. Sec. A.8.

It is clear from Fig. 4.1 that for all lattice sizes, as the disorder strength
values increase, there holds that A → 0, which implies that the disorder is more
prevalent. Now as ! increases, we notice a similar behaviour for A and what is
more, the curves are getting steeper. The latter fact denotes that bigger lattice
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sizes exhibit a more localized breakup field, i.e. disorder is susceptible to very
small variations of the disorder strength. Finally, one may notice that the widths
between the curves are getting smaller as ! grows. This is an expected behaviour
for the ratio A as we approach the asymptotic limit, analogous to the one observed
with the pseudo-critical temperatures.
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Figure 4.1: Plots of the ratios A = FM GS
ALL GS as functions of the disorder strength

ℎ, for various system sizes !. For this plot, #ALL GS = 104.

Now let us illustrate how Fig. 4.1 allows us to pick the appropriate ℎ points
for our large scale simulations (#ALL GS = 105) and Jackknife analysis. From
our results for the various disorder strength values, we choose an interval around
ℎB(!) that corresponds to an interval for the ratios A ∈ (0.4, 0.6). Inside this
interval, we rerun the code with a small step for ℎ, in order to obtain more points
and perform a first fit. We choose polynomial fits of 2nd and 3rd degrees and
we therefore obtain a first, rough estimation for ℎB(!), by calculating the mean
value of ℎB(!), ℎ∗B(!) derived from the first (2nd degree) and second (3rd degree)
fit, ℎ∗B(!)2 and ℎ∗B(!)3, respectively:

ℎ∗B(!) =
ℎ∗B(!)2 + ℎ

∗
B(!)3

2 . (4.5)
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! ℎ∗B(!)2 ℎ∗B(!)3 ℎ∗B(!)

8 1.5775 1.57828 1.57789
16 1.2398 1.24128 1.24054
32 1.0417 1.04268 1.04219
64 0.907259 0.906194 0.9067265
128 0.80687 0.805343 0.8061065
256 0.72630 0.726406 0.726353
512 0.6627 0.662553 0.6626265
1024 0.61036 0.577719 0.5940395
2048 0.566308 0.566285 0.566295

Table 4.1: A first estimation of the breakup field ℎB(!), as the mean ℎ∗B(!)
of the results of two different fits performed inside the disorder strength
interval corresponding to ratio values belonging to (0.4, 0.6).

The results of the fits are presented in Table 4.1. The above results constitute
only a rough estimation of the breakup field and they can only be used as a
guiding point in order to pick the appropriate ℎ values for the productive runs.
This can be done by choosing 5 values at and around the breakup field ℎ∗B(!)
and performing simulations for 105 samples at these disorder strength points. We
ensure that our productive runs will offer results with high statistics, not only
by increasing the number of samples, but also by feeding our random number
generator with different seeds for every realization of the disorder. What is more,
as can be seen in the discussion following in Subsec. 4.2, we shall not use a simple
fit, but a Jackknife analysis of the results.

At this moment let us point out that the process described above for the
estimation of the breakup field using the definition A = 0.5 for the ratio is the
same when one chooses to concentrate on the second or third focal spots of our
research, namely, the A = 0.01 definition and/or the triangular lattice geometry,
respectively.

Before proceeding to the description of our different approach using the cor-
relation length b (fourth focus point of our study), let us outline the Jackknife
analysis we use for our results. Up till now, as we have discussed, for each lattice
size ! we examine each one of 104 ground states and decide whether it is ordered
or disordered. Thus, we calculate the ratio of the ordered states over the overall
samples. Doing so for different disorder strengths allows us to obtain the plots
for the various square lattice sizes presented in Fig. 4.1.

Now as far as it concerns the productive runs, we take into consideration
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105 realizations of the quenched disorder and 5 disorder strength points for each
lattice size. However, for each size !, instead of the above procedure, we separate
the samples into 100 bins, where each bin contains 1000 ground states. For each
of the 5 disorder strength values, we calculate again the ratio A, excluding one of
the 100 bins and therefore produce a new plot. We repeat this process 100 times
(once for each bin) and therefore obtain 100 plots ∀!. The code for this first step
of the analysis of our results is provided in Appx. Sec. C.1.

Afterwards, for each of the 100 above plots, we estimate the breakup field
ℎB(!) with a linear fit, that is, by solving the below equation:

A = 0ℎB8 (!) + 1 (4.6)

100 times and therefore obtain 100 estimations of the breakup field, one for each
bin 8 ∈ 0, 1, ..., 99. The code for performing the 100 simultaneous fits is given in
Appx. Sec. C.2 and the code that uses the parameter values 0, 1 yielded from
each fit in order to calculate the breakup field for each bin is given in Appx. Sec.
C.3. Thus, we are ready to carry out our Jackknife analysis to these 100 values
derived from solving Eq. (4.6) 100 times.

For the above purpose, we need a code that performs the following steps:

• Reads the data file including the 100 solutions to the linear fits:

ℎB8 (!) = G8, (4.7)

where 8 = 1, ..., # and # = 100 bins.

• Calculates the overall Jackknife estimate, which is their mean (Young,
2012):

` =
1
#

#∑
8=1

G8 =
1

100

100∑
8=1

ℎB8 (!), (4.8)

which is the final estimation of the breakup field ℎB(!).

• Works out the variance:

B2 =
1
#

#∑
8=1
(G8)2 − `2 =

1
100

100∑
8=1

(
ℎB8 (!)

)2 − `2, (4.9)

which yields the error (f) bar for the final estimation of the breakup field,
via the equation:

f = B
√
# − 1 = B

√
99. (4.10)
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The code for the Jackknife analysis of the 100 values of the breakup field is
provided in Appx. Sec. C.4.

At this point we proceed with the description of an alternative approach in
the study of the zero-temperature RFIM. In particular for the first time in the
literature we scrutinize the scaling behaviour of the correlation length of the
model using the methods developed by Fytas and Martín-Mayor (2016).

On the technical side, for this part of our study we made use of the push-relabel
algorithm (Goldberg and Tarjan, 1988; Papadimitriou, 1994). As we mentioned
and briefly described in Subsec. 3.2.1, our implementation involves a modifica-
tion proposed by Middleton and collaborators (Middleton, 2001; Middleton and
Fisher, 2002).

Let us now focus on the physical problem of the actual computation of the
correlation length. Let us consider an instance of the random fields {ℎG}. In the
following, thermal mean values are denoted as 〈· · · 〉, while the subsequent average
over samples is indicated by an over-line. As it is well-known and already men-
tioned previously a crucial feature of the RFIM is that we have to deal with two
different correlation functions, namely the connected and disconnected propagat-
ors.

The disconnected propagator is straightforward to compute both in real, � (dis)
GH

and Fourier space, j(dis)
:

:

�
(dis)
GH = 〈BGBH〉 , j

(dis)
:

= !� 〈|<: |2〉: , (4.11)

where

<: =
1
!�

∑
G

ei: ·GBG . (4.12)

In particular, special notations are standard for vanishing wavevector: <:=(0,0) =

< (i.e. the order-parameter density) and j
(dis)
:=(0,0) = j(dis) (i.e. the disconnected

susceptibility).

On the other hand, we have the connected propagator:

�GH =
m〈BG〉
mℎH

. (4.13)

At finite temperature, one could compute �GH from the Fluctuation-Dissipation
theorem:

�GH =
1
)
〈BGBH〉 − 〈BG〉〈(H〉 . (4.14)
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Square lattice
First law Second law
A = 0.5 A = 0.01 A = 0.5 A = 0.01
01 11 j2 21 31 j2 02 12 j2 22 12 j2

0.188992 0.328021 626.003 0.194177 0.150389 144.008 0.566961 −1.23428 4945.31 0.525496 −1.39076 1655
Triangular lattice
@1 A1 j2 @2 A2 j2

0.110506 0.210464 55.5393 0.189357 −0.365636 2354.85

Table 4.2: Parameter and fit quality values for the linear fits performed to
the data obtained for the breakup length scale behaviour of the 2� RFIM.
Two different lattice geometries, that is, square and triangular, two different
definitions for the ratios, i.e., A = 0.5 and A = 0.01 and two different laws,
namely 1

ℎ
and 1

ℎ2 are investigated.

However, we work directly at ) = 0. Therefore, Eq. (4.14) is clearly unsuitable for
us and to overcome this barrier we made use of fluctuation-dissipation formulas
of Fytas and Martín-Mayor (2016) (see also Schwartz and Soffer, 1985).

Now, the connected propagator in Fourier space is:

j: =
1
!�

∑
G,H

ei: ·(G−H) �GH + �HG

2 . (4.15)

Again, the case of vanishing wavevector deserves a special naming: j:=(0,0) = j

is the connected susceptibility.

From both propagators, we computed the connected, b (con) and disconnected,
b (dis), second-moment correlation lengths (Amit and Martín-Mayor, 2005; Cooper
et al., 1982) for both square and triangular lattice geometries via

b# =
1

2 sin(c/!)

√√
j#

j
#
:min

− 1 , (4.16)

where the superscript # stands both for the connected or the disconnected case
and as usual :min = (2c/!, 0).

4.2 Results

In this final section of the current thesis, we present the results of our work
regarding the breakup length scale problem of the 2� RFIM. Recall that we
take into consideration 105 realizations of the disorder and lattice sizes of up to
! = 2048 for our simulations and analysis.

We initially turn our attention to the law that governs the breakup length ℓB(ℎ)
for the two different definitions of the ratio A (see Eq. (4.4)), namely A = 0.5 and
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Figure 4.2: Examine if the break-up length scales according to the
exponential law ℓ� ∝ 4�

1
ℎ (up) or the exponential law ℓ� ∝ 4�(

1
ℎ
)2 (down). The

results are obtained ∀! ∈ {8, 16, 32, 64, 128, 256, 512, 1024, 2048}, from
Jackknife analysis on 105 samples. The first 4 points are excluded when
performing the linear fits.
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Figure 4.3: Plots of ratios A = FM GS
ALL GS as functions of the disorder strength ℎ,

for square and triangular lattice geometries (solid and dashed lines,
respectively). Lines of same colour indicate same lattice size, !.
#ALL GS = 104.

A = 0.01. We examine the square lattice first. As we saw in Subsec. 4.1.2, we
choose 5 disorder strength values for every lattice size ! for our productive runs
and Jackknife analysis. In Fig. 4.2 we present our results for the two different ratio
definitions and we perform a comparison between the two different exponential
laws (see Eq. (4.1) and Eq. (4.3)).

For the above purpose we perform linear fits to our results, as can be seen
in Fig. 4.2, with the values of the fit parameters and of j2 being provided in
Table 4.2. It is obvious from Fig. 4.2 but also from the quality of the fits as seen
in Table 4.2 that our results are in favour of the exponential law given by Eq. (4.3),
for both ratio definitions, although no definite conclusion may be drawn. It is
also implied that the use of a different definition for the ratio, namely, A = 0.01
does not affect the length scale behaviour of the RFIM. Finally, Fig. 4.2 indicates
the presence of FSS corrections and therefore a more delicate analysis for the
determination of the critical behaviour of the RFIM is needed. Thus, we shall
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shortly apply our approach regarding the correlation length b, as described in
Subsec. 4.1.2.
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Figure 4.4: Examine if the break-up length scales according to the
exponential law ℓ� ∝ 4�

1
ℎ (up) or the exponential law ℓ� ∝ 4�(

1
ℎ
)2 (down). The

results refer to the triangular lattice and they are derived from Jackknife
analysis on 105 samples, ∀! ∈ {8, 16, 32, 64, 128, 256, 512, 1024, 2048}. The first
4 points are not taken into account for the fits.

Now let us turn our focus on the triangular lattice geometry. We implement
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the BK algorithm for the triangular RFIM for the first time. As seen in Subsec.
4.1.2, we take into consideration 104 samples for our initial estimation of the
length scale behaviour of the triangular RFIM. In Fig. 4.3 we plot the ratios as
presented in Fig. 4.1, along with our new results regarding the triangular lattice.
It is clear that the breakup length follows a similar behaviour for both lattice
geometries. One may also observe that higher disorder strengths are required for
the triangular case in order to break the ferromagnetic ordering. This is expected,
since the extra bonds between the neighbours make the ferromagnetic ordering
more resistant to the external magnetic field.

Let us now proceed to the productive runs and examine if the above indications
are correct. In Fig. 4.4 we perform linear fits to the results we derive from the
productive runs performed for 105 samples. The fit parameters and j2 values
are presented in Table 4.2. Similarly to the square lattice case, the results for
the triangular RFIM are in agreement to the exponential law given by Eq. (4.3).
This fact implies that a change to the lattice geometry did not affect the length
scale behaviour of the RFIM. Note that the alternative definition for the ratio,
namely, A = 0.01 is not used this time, since we have already concluded that it
plays no role in the system’s behaviour.

We now proceed to our alternative approach that involves the scaling of the
correlation length b computed form ground-state simulations and the fluctuation-
dissipation formalism of Fytas and Martín-Mayor (2016). This is the first com-
putation of b in the 2D random-field problem in the literature and as will be
seen below clears out the current ambiguous situation with respect to the scaling
behavior. Again we simulated square and triangular lattices with linear sizes in
the range from !min = 128 to !max = 2048 and periodic boundary conditions. For
each set of {!, ℎ} we average over 105 samples outperforming previous relevant
studies. For comparison: !max = 1000 and 5 × 103 samples in Seppäla, Petäjä
et al. (1998).

An illustrative overview of our results is given in Fig. 4.5. In particular,
in panel (a) we show the disconnected correlation length b extracted from the
fluctuation-dissipation formalism for lattices of sizes ! = 128 up to ! = 2048 as
a function of ℎ compared to the breakup length ℓ1 defined from the value of ℎ
where A = 0.5. In panels (b) and (c) we present the compatibility of the scaling of
b and ℓ1 with the functional form 4

−�
ℎ and 4

−�
ℎ2 , respectively. It is clear that the

numerical data favour the scaling law b ∼ 4
−�
ℎ2 in panel (c), as it is also manifes-

ted by the fitting quality documented by the j2/d.o.f. criterion. Similar results
and conclusions have been drawn also for the case of the connected correlation
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Figure 4.5: Correlation length b and breakup length ℓ1 of the 2� RFIM
from exact GS calculations. (a) Disconnected correlation length b extracted
from the fluctuation-dissipation formalism for lattices of sizes ! = 128 up to
! = 2048 as a function of ℎ compared to the breakup length ℓ1 defined from
the value of ℎ where A = 0.5. (b) Compatibility of the scaling of b and ℓ1 with
the functional form 4

−�
ℎ . (c) Compatibility of the scaling of b and ℓ1 with the

functional form 4
−�
ℎ2 .
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length and for the triangular lattice as well (Fytas, Mainou and Weigel, 2021). A
summary of effective exponents G for fits of the form b ∼ 4 −�ℎG varying the cutoff
value of the random field ℎmax used in the fits is given in Fig. 4.6 for both lat-
tice geometries and correlation lengths which again agrees nicely with the results
presented in Fig. 4.5.

−5

−4

−3

−2

−1

0

1

2

3

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

e
�
e
c
ti
v
e
e
x
p
o
n
e
n
t

hmax

square disconnected
square connected

triangular disconnected
triangular connected

Figure 4.6: A summary of effective exponents G for fits of the form b ∼ 4 −�ℎG
varying the cutoff value of the random field ℎmax used in the fits for both
lattice geometries and the two types of correlation lengths.

As an overall, our results indicate that while the breakup length scales ac-
cording to the exponential law given by Eq. (4.3), the same does not hold for
the correlation length b, which clearly scales according to the exponential law
b ∼ 4

−�
ℎ2 . Nonetheless, we observe that for both cases, a change to the lattice

geometry of the RFIM does not affect its critical behaviour.
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Conclusions

To summarize, the present thesis deals with several aspects of phase transitions
and critical phenomena of pure and disordered magnetic systems. This is an area
of active research in condensed matter physics with numerous applications that
goes well beyond physics itself.

In the first part of the thesis, Chap. 1, we introduced several basic concepts
of the theoretical background of statistical physics. In the scope of understand-
ing some of the open problems in the theory of critical phenomena of pure and
disordered systems, two models were studied: the two-dimensional Blume-Capel
and random-field Ising models.

In Chap. 2, the standard computational methods in the research of complex
systems were presented, namely Monte Carlo techniques such as the Metropolis
and the Wolff algorithms, along with their limitations. An application of these
methods was illustrated in the study of the interfacial adsorption of the Blume-
Capel model. In particular, we studied the finite-size scaling behavior of the inter-
facial adsorption of the pure model at both its first- and second-order transition
regimes, as well as at the vicinity of the tricritical point. Our analysis benefited
from the currently existing quite accurate estimates of the relevant (tri)critical-
point locations. In all studied cases, the numerical results verified to a level of
high accuracy the expected scenarios derived from analytic free-energy scaling
arguments. We also investigated the size dependence of the interfacial adsorp-
tion under the presence of quenched bond randomness at the originally first-order
transition regime (disorder-induced continuous transition) and the relevant self-
averaging properties of the system. For this ex-first-order regime, where strong
transient effects are shown to be present, our findings support the scenario of a
non-divergent scaling, similar to that found in the original second-order transition
regime of the pure model.

Urged by the mentioned limitations on the above most popular Monte Carlo
numerical techniques and by the fact that a crossing of the phase boundary of the
random-field Ising model at positive, finite temperature leads to the same crit-
ical behaviour as crossing at zero temperature and varying the disorder strength



102 Conclusions

ℎ does, in Chap. 3, the graph cut methods used for the study of the critical
behaviour of the RFIM were described and an appropriate algorithm in order
to implement such methods was introduced, that is, the Boykov-Kolmogorov al-
gorithm. The effectiveness of the algorithm was demonstrated through several
examples and an optimization of the code was developed. It was therefore shown
that the algorithm outruns many of the most popular minimum cut-maximum
flow algorithms when implemented for linear lattice sizes up to ! = 4096.

Finally, in Chap. 4, the breakup length scale problem of the random-field Ising
model was introduced, which constitutes the main application of our research on
graph cut methods. Previous results regarding above what length scale does the
random-field Ising model break its ferromagnetic ordering are inconsistent and
an attempt to answer this question once and for all was made. Implementing the
optimized version of the Boykov-Kolmogorov algorithm for different definitions
of the ratio A = #FMGS

#samples and for square and triangular lattices, questions such
as which law governs the scaling of the breakup length of the random-field Ising
model and whether this law depends on the definition used for the ratio or on
the lattice geometry were addressed. An interesting result of our analysis is that
the widely used break-up length scale of the system appears to be afflicted by
very strong scaling corrections and hence constitutes a rather less useful quantity.
On the other hand, an alternative approach that involves the scaling analysis of
the second-moment correlation length b of the model, as obtained from a recently
developed fluctuation-dissipation formalism, allowed us to present compelling nu-
merical evidence for both lattice geometries that without doubt support the form
b ∼ 4

�

ℎ2 . This result is in line with early theoretical work but at variance with
some more recent numerical and analytical results.
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Appendix A

BK Codes

Appx. A includes the content of the main.cpp files created for working out the
maximum flow of various graph examples, using the software given by Boykov
and Kolmogorov (2004).

A.1 Code for the example in the 3.01 version of
the BK software

#include <stdio.h>
#include "graph.h"

int main()
{
typedef Graph<int,int,int> GraphType;
GraphType *g = new GraphType(2, 6);

g -> add_node();
g -> add_node();

g -> add_tweights(0, 2, 6);
g -> add_tweights(1, 1, 5);
g -> add_edge(0, 1, 4, 3);

int flow = g -> maxflow();
printf("Flow = %d\n", flow);

printf("Minimum cut configuration:\n");
if (g->what_segment(0) == GraphType::SOURCE)
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printf("node0 is in the SOURCE set\n");
else
printf("node0 is in the SINK set\n");
if (g->what_segment(1) == GraphType::SOURCE)
printf("node1 is in the SOURCE set\n");
else
printf("node1 is in the SINK set\n");

delete g;

return 0;
}

A.2 Code for a 2 × 2 RFIM without magnetic
field

#include <stdio.h>
#include "graph.h"

int main()
{
typedef Graph<int,int,int> GraphType;

GraphType *g = new GraphType(4, 10);

g -> add_node();
g -> add_node();

g -> add_node();
g -> add_node();

g -> add_tweights(0, 4, 0);
g -> add_tweights(3, 0, 4);

g -> add_edge(0, 1, 4, 0);
g -> add_edge(0, 2, 4, 0);
g -> add_edge(1, 3, 4, 0);
g -> add_edge(2, 3, 4, 0);
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int flow = g -> maxflow();
int oC = -8;
flow += oC;

printf("Flow = %d\n", flow);

printf("Minimum cut configuration:\n");

for(int i=0; i<4; i++) {
if (g->what_segment(i) == GraphType::SOURCE)

printf("node %d is in the SOURCE set\n", i);
else

printf("node %d is in the SINK set\n", i);
}

delete g;

return 0;
}

A.3 Code for a 2 × 2 RFIM with magnetic field

#include <stdio.h>
#include "graph.h"

int main()
{
typedef Graph<int,int,int> GraphType;
GraphType *g = new GraphType(4, 10);

g -> add_node();
g -> add_node();

g -> add_node();
g -> add_node();

g -> add_tweights(0, 4, 0);
g -> add_tweights(1, 0, 4);

g -> add_tweights(2, 4, 0);
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g -> add_tweights(3, 0, 4);

g -> add_edge(0, 1, 4, 0);
g -> add_edge(0, 2, 4, 0);
g -> add_edge(1, 3, 4, 0);
g -> add_edge(2, 3, 4, 0);

int flow = g -> maxflow();
int oC = -12;
flow += oC;

printf("Flow = %d\n", flow);

printf("Minimum cut configuration:\n");
for(int i=0; i<4; i++) {

if (g->what_segment(i) == GraphType::SOURCE)
printf("node %d is in the SOURCE set\n", i);

else
printf("node %d is in the SINK set\n", i);

}

delete g;

return 0;
}

A.4 Code for one realization of the quenched
disorder, for a square !×! RFIM with Gaus-
sian random-field distribution, where ! = 4
and ℎ = 1

#include <stdio.h>
#include "graph.h"
#include <gsl/gsl_randist.h>
#include <math.h>
#define L 4
#define N (L*L)
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#define z 4
#define J 1
#define D 2

using namespace std;

static gsl_rng *rng;

void Init_RNG(int seed) {
rng=gsl_rng_alloc(gsl_rng_mt19937);
gsl_rng_set(rng, seed);

}

int main(int argc, char *argv[]){

int seed=12345;
Init_RNG(seed);

double *h;
h = (double *)malloc(sizeof(double)*N);
if (h == NULL) {

printf("Memory not allocated\n");
exit(0);

}
else {

printf("Memory successfully allocated for the random fields\n");
}

int node_RF;

for(int i=0; i<L; i++) {
for(int j=0;j<L;j++) {

node_RF=j+L*i;
double r=gsl_ran_gaussian(rng, 1);
h[node_RF]=r;
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}
}

typedef Graph<double,double,double> GraphType;

GraphType *g = new GraphType(N+2, 2*N+N*z/2+1);
for(int i=0; i<N; i++) g -> add_node();

double w=0,k=0;
double sC=0,tC=0;
double Crightout=0,Crightin=0,Cleftout=0,Cleftin=0;
double Cdownout=0,Cdownin=0,Cupout=0,Cupin=0;

for(int node=0; node<N; node++) {

int right = node + 1;
int left = node - 1;
int up = node - L;
int down = node + L;

Crightout=4*J;
Crightin=0;
Cleftout=0;
Cleftin=4*J;
Cdownout=4*J;
Cdownin=0;
Cupout=0;
Cupin=4*J;

if (right % L == 0 ){
right -= L;
Crightout=0;
Crightin=4*J;

}
if (node % L == 0){

left +=L;
Cleftout=4*J;
Cleftin=0;
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}
if (up < 0){

up +=N;
Cupout=4*J;
Cupin=0;

}
if (down > (N-1)){

down -=N;
Cdownout=0;
Cdownin=4*J;

}

w=-2*h[node] - (Crightout+Cleftout+Cdownout+Cupout-Crightin
-Cleftin-Cdownin-Cupin)/2;

if(w > 0) {
sC=0;
tC=w;
}

else {
sC=-w;
tC=0;
}

k += sC+tC;

g -> add_tweights(node, sC, tC );
g -> add_edge(node, right, Crightout, Crightin);
g -> add_edge(node, down, Cdownout, Cdownin);

}

double oC=-N*z/2-k/2;

double flow = g -> maxflow();
flow += oC;

double Efield=0;
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int Ebond=0;
double Etotal=0;
double mag = 0;

double *spin;
spin = (double *)malloc(sizeof(double)*N);
if (spin == NULL) {

printf("Memory not allocated\n");
exit(0);

}
else {

printf("Memory successfully allocated for the spins\n");
}

printf("Spin configuration:\n");
for(int node=0; node<N; node++) {

if (g->what_segment(node) == GraphType::SOURCE){
spin[node]=1;
printf("node %d is in the SOURCE set and
the corresponding spin is %g\n", node, spin[node]);

}
else{

spin[node]=-1;
printf("node %d is in the SINK set and
the corresponding spin is %g\n", node, spin[node]);

}

Efield = Efield -h[node] * spin[node];
}

for(int node=0; node<N; node++) {
int right = node + 1;
int down = node + L;

if (right % L == 0 ) right -= L;
if (down > (N-1)) down -=N;
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Ebond = Ebond -J* (spin[node]*spin[right] + spin[node]*spin[down]);

Etotal=Ebond+Efield;

mag = mag + spin[node];
}

free(h);
free(spin);

printf("Total flow = %g\n", flow);
double flow_spin = flow/N;
printf("Total flow per spin = %g\n", flow_spin);

printf("Field energy = %g\n", Efield);
double Efield_spin = Efield/N;
printf("Field energy per spin = %g\n", Efield_spin);

printf("Bond energy = %g\n", Ebond);
double Ebond_spin = (double) Ebond/N;
printf("Bond energy per spin = %g\n", Ebond_spin);

printf("Total energy = %g\n", Etotal);
double Etotal_spin = Etotal/N;
printf("Total energy per spin = %g\n", Etotal_spin);

printf("Magnetization = %d\n", mag);
double mag_spin = mag/pow(L,D);
printf("Magnetization per spin = %g\n", mag_spin);

delete g; //delete the graph
return 0;

}
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A.5 Code for one realization of the quenched
disorder, for a triangular ! × ! RFIM with
Gaussian random-field distribution, where
! = 4 and ℎ = 1

#include <stdio.h>
#include "graph.h"
#include <gsl/gsl_randist.h>
#include <math.h>
#define L 4
#define N (L*L)
#define z 6
#define J 1
#define D 2

using namespace std;

static gsl_rng *rng;

void Init_RNG(int seed) {
rng=gsl_rng_alloc(gsl_rng_mt19937);
gsl_rng_set(rng, seed);

}

int main(int argc, char *argv[]){

int seed=12345;
Init_RNG(seed);

double *h;
h = (double *)malloc(sizeof(double)*N);
if (h == NULL) {

printf("Memory not allocated\n");
exit(0);

}
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else {
printf("Memory successfully allocated for the random fields\n");

}

int node_RF;

for(int i=0; i<L; i++) {
for(int j=0;j<L;j++) {

node_RF=j+L*i;
double r=gsl_ran_gaussian(rng, 1);
h[node_RF]=r;

}
}

typedef Graph<double,double,double> GraphType;
GraphType *g = new GraphType(N+2, 2*N+N*z/2+1);
for(int i=0; i<N; i++) g -> add_node();

double w=0,k=0;
double sC=0,tC=0;
double Crightout=0,Crightin=0,Cleftout=0,Cleftin=0,Cdownout=0;
double Cdownin=0,Cupout=0,Cupin=0,Cuprightout=0,Cuprightin=0;
double Cdownleftout=0,Cdownleftin=0;

for(int node=0; node<N; node++) {

int right = node + 1;
int left = node - 1;
int up = node - L;
int down = node + L;
int upright = up +1;
int downleft = down -1;

Crightout=4*J;
Crightin=0;
Cleftout=0;
Cleftin=4*J;
Cdownout=4*J;
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Cdownin=0;
Cupout=0;
Cupin=4*J;
Cuprightout=0;
Cuprightin=4*J;
Cdownleftout=4*J;
Cdownleftin=0;

if (right % L == 0 ){
right -= L;
upright=right-L;
if (up < 0){

upright+=N;
}
Crightout=0;
Crightin=4*J;

}
if (node % L == 0){

left +=L;
downleft=left+L;
if (down > (N-1)){

downleft-=N;
}
Cleftout=4*J;
Cleftin=0;

}
if (up < 0){

up +=N;
upright=up+1;
if (right % L == 0 ){

upright-=L;
}
Cupout=4*J;
Cupin=0;
Cuprightout=4*J;
Cuprightin=0;

}
if (down > (N-1)){
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down -=N;
downleft = down -1;
if (node % L == 0){

downleft+=L;
}
Cdownout=0;
Cdownin=4*J;
Cdownleftout=0;
Cdownleftin=4*J;

}

w=-2*h[node] - (Crightout+Cleftout+Cdownout+Cupout+Cuprightout
+Cdownleftout-Crightin-Cleftin-Cdownin-Cupin-Cuprightin
-Cdownleftin)/2;

if(w > 0) {
sC=0;
tC=w;
}

else {
sC=-w;
tC=0;
}

k += sC+tC;

g -> add_tweights(node, sC, tC );

g -> add_edge(node, right, Crightout, Crightin);
g -> add_edge(node, down, Cdownout, Cdownin);
g -> add_edge(node, upright, Cuprightout, Cuprightin);

}

double oC=-N*z/2-k/2;

double flow = g -> maxflow();
flow += oC;
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double Efield=0;
double Ebond=0;
double mag = 0;
double Etotal = 0;

double *spin;
spin = (double *)malloc(sizeof(double)*N);
if (spin == NULL) {

printf("Memory not allocated\n");
exit(0);

}
else {

printf("Memory successfully allocated for the spins\n");
}

for(int node=0; node<N; node++) {

if (g->what_segment(node) == GraphType::SOURCE){
spin[node]=1;

}
else{

spin[node]=-1;
}

Efield = Efield -h[node] * spin[node];
}

for(int node=0; node<N; node++) {

int right = node + 1;
int up = node - L;
int down = node + L;
int upright = up +1;

if (right % L == 0 ){
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right -= L;
upright=right-L;
if (up < 0){

upright+=N;
}

}
if (up < 0){

up +=N;
upright=up+1;
if (right % L == 0 ){

upright-=L;
}

}
if (down > (N-1)){

down -=N;
}

Ebond = Ebond -J* (spin[node]*spin[right] + spin[node]*spin[down]
+spin[node]*spin[upright]);

Etotal=Ebond+Efield;

mag = mag + spin[node];
}

free(h);
free(spin);

printf("Total flow = %g\n", flow);
double flow_spin = flow/N;
printf("Total flow per spin = %g\n", flow_spin);

printf("Field energy = %g\n", Efield);
double Efield_spin = Efield/N;
printf("Field energy per spin = %g\n", Efield_spin);
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printf("Bond energy = %g\n", Ebond);
double Ebond_spin = (double) Ebond/N;
printf("Bond energy per spin = %g\n", Ebond_spin);

printf("Total energy = %g\n", Etotal);
double Etotal_spin = Etotal/N;
printf("Total energy per spin = %g\n", Etotal_spin);

printf("Magnetization = %d\n", mag);
double mag_spin = mag/pow(L,D);
printf("Magnetization per spin = %g\n", mag_spin);

delete g;
return 0;

}

A.6 Code for multiple realizations of the quenched
disorder, where the graph is rebuilt for each
one of them, for a square ! × ! RFIM with
Gaussian random-field distribution, where
! = 4

#include <stdio.h>
#include "graph.h"
#include <gsl/gsl_randist.h>
#include <math.h>
#define L 4
#define N (L*L)
#define z 4
#define J 1
#define D 2 /
#define statesNo 10000
#define delta 1.0

using namespace std;
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static gsl_rng *rng;

void Init_RNG(int seed) {
rng=gsl_rng_alloc(gsl_rng_mt19937);
gsl_rng_set(rng, seed);

}

int main(int argc, char *argv[]){

double *h;
h = (double *)malloc(sizeof(double)*N);

double *spin;
spin = (double *)malloc(sizeof(double)*N);

FILE *Thermodynamic_quantities;
char filename1[64];
sprintf(filename1,"results/L_%d_h_%g_statesNo_%d_
Thermodynamic_quantities.dat", L, delta, statesNo);

Thermodynamic_quantities = fopen(filename1, "w");

if (Thermodynamic_quantities == NULL) {
printf("I couldn’t open L_%d_h_%g_statesNo_%d_Thermodynamic
_quantities.dat for writing.\n");
exit(0);

}

FILE *Disorder_average;
char filename2[64];
sprintf(filename2, "results/L_%d_h_%g_statesNo_%d_Disorder_average.dat",
L, delta, statesNo);

Disorder_average = fopen(filename2, "w");

if (Disorder_average == NULL) {
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printf("I couldn’t open L_%d_h_%g_statesNo_%d_Disorder_average.dat
for writing.\n");
exit(0);

}

int seed=12345;
Init_RNG(seed);

double abs_mag_spin_AVE=0;
double mag2_spin_AVE=0;
double mag4_spin_AVE=0;
double Efield_spin_AVE=0;
double Ebond_spin_AVE=0;
double flow_spin_AVE=0;

for (int i=0; i<statesNo; i++){

for(int i=0; i<L; i++) {
for(int j=0;j<L;j++) {

int node_RF=j+L*i;
double r=gsl_ran_gaussian(rng, delta);
h[node_RF]=r;

}
}

typedef Graph<double,double,double> GraphType;
GraphType *g = new GraphType(N+2, 2*N+N*z/2+1);
for(int i=0; i<N; i++) g -> add_node();

double w=0,k=0;
double sC=0,tC=0;
double Crightout=0,Crightin=0,Cleftout=0,Cleftin=0,Cdownout=0;
double Cdownin=0,Cupout=0,Cupin=0;

for(int node=0; node<N; node++) {
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int right = node + 1;
int left = node - 1;
int up = node - L;
int down = node + L;

Crightout=4*J;
Crightin=0;
Cleftout=0;
Cleftin=4*J;
Cdownout=4*J;
Cdownin=0;
Cupout=0;
Cupin=4*J;

if (right % L == 0 ){
right -= L;
Crightout=0;
Crightin=4*J;

}
if (node % L == 0){

left +=L;
Cleftout=4*J;
Cleftin=0;

}
if (up < 0){

up +=N;
Cupout=4*J;
Cupin=0;

}
if (down > (N-1)){

down -=N;
Cdownout=0;
Cdownin=4*J;

}

w=-2*h[node] - (Crightout+Cleftout+Cdownout+Cupout
-Crightin-Cleftin-Cdownin-Cupin)/2;
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if(w > 0) {
sC=0;
tC=w;

}
else {

sC=-w;
tC=0;

}

k += sC+tC;

g -> add_tweights(node, sC, tC );

g -> add_edge(node, right, Crightout, Crightin);

g -> add_edge(node, down, Cdownout, Cdownin);

}

double oC=-N*z/2-k/2;

double flow = g -> maxflow();
flow += oC;

double Efield=0;
int Ebond=0;
double Etotal=0;
double mag = 0;

for(int node=0; node<N; node++) {

if (g->what_segment(node) == GraphType::SOURCE){
spin[node]=1;

}
else{
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spin[node]=-1;
}

Efield = Efield -h[node] * spin[node];
}

for(int node=0; node<N; node++) {
int right = node + 1;
int down = node + L;

if (right % L == 0 ) right -= L;
if (down > (N-1)) down -=N;

Ebond = Ebond -J* (spin[node]*spin[right]
+ spin[node]*spin[down]);

Etotal=Ebond+Efield;

mag = mag + spin[node];
}

double flow_spin = flow/N;
printf("Total flow per spin = %g\n", flow_spin);

double Efield_spin = Efield/N;
printf("Field energy per spin = %g\n", Efield_spin);

double Ebond_spin = (double) Ebond/N;
printf("Bond energy per spin = %g\n", Ebond_spin);

double Etotal_spin = Etotal/N;
printf("Total energy per spin = %g\n", Etotal_spin);

double mag_spin = mag/pow(L,D);
printf("Magnetization per spin = %g\n", mag_spin);



124 Appendix A. BK Codes

double abs_mag_spin = fabs (mag_spin);
printf("Absolute value of magnetization per spin = %g\n",
abs_mag_spin);

double mag2_spin =pow(mag_spin,2);
printf("2nd magnetic moment per spin = %f\n", mag2_spin);
double mag4_spin = pow(mag2_spin,2);
printf("4th magnetic moment per spin = %f\n", mag4_spin);

fprintf(Thermodynamic_quantities, "%d, %g, %g, %g, %g, %g, %g\n",
i, abs_mag_spin, mag2_spin, mag4_spin, Efield_spin, Ebond_spin,
flow_spin);

abs_mag_spin_AVE = abs_mag_spin_AVE + abs_mag_spin/statesNo;
mag2_spin_AVE = mag2_spin_AVE + mag2_spin/statesNo;
mag4_spin_AVE = mag4_spin_AVE + mag4_spin/statesNo;
Efield_spin_AVE = Efield_spin_AVE + Efield_spin/statesNo;
Ebond_spin_AVE = Ebond_spin_AVE + Ebond_spin/statesNo;
flow_spin_AVE = flow_spin_AVE + flow_spin/statesNo;

delete g; //delete the graph

}

fclose(Thermodynamic_quantities);

if (spin == NULL) {
printf("Memory not allocated\n");
exit(0);

}
else {

printf("Memory successfully allocated for the spins\n");
}
if (h == NULL) {

printf("Memory not allocated\n");
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exit(0);
}
else {

printf("Memory successfully allocated for the random fields\n");
}

free(h);
free(spin);
double U_4_spin_AVE = 1 - (mag4_spin_AVE/3*pow(mag2_spin_AVE,2));

fprintf(Disorder_average, "%g, %g, %g, %g, %g, %g, %g, %g\n", delta,
abs_mag_spin_AVE, mag2_spin_AVE, mag4_spin_AVE, Efield_spin_AVE,
Ebond_spin_AVE, flow_spin_AVE, U_4_spin_AVE);

fclose(Disorder_average);

return 0;
}

A.7 Code for multiple realizations of the quenched
disorder, where the graph is built only once,
for a square ! × ! RFIM with Gaussian
random-field distribution, where ! = 4

#include <stdio.h>
#include "graph.h"
#include <gsl/gsl_randist.h>
#include <math.h>
#define L 4
#define N (L*L)
#define z 4
#define J 1
#define D 2
#define statesNo 10000
#define delta 1.0
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using namespace std;
static gsl_rng *rng;

void Init_RNG(int seed) {
rng=gsl_rng_alloc(gsl_rng_mt19937);
gsl_rng_set(rng, seed);

}

int main(int argc, char *argv[]){

typedef Graph<double,double,double> GraphType;
GraphType *g = new GraphType(N+2, 2*N+N*z/2+1);

for(int i=0; i<N; i++) g -> add_node();

for(int node=0; node<N; node++) {

int right = node + 1;
int left = node - 1;
int up = node - L;
int down = node + L;

if (right % L == 0 ){
right -= L;

}
if (node % L == 0){

left +=L;
}
if (up < 0){

up +=N;
}
if (down > (N-1)){

down -=N;
}
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g -> add_tweights(node, 0, 0);

g -> add_edge(node, right, 0, 0);
g -> add_edge(node, down, 0, 0);

}

typename GraphType::arc_id arc = g->get_first_arc();

double flow = g -> maxflow();

FILE *Thermodynamic_quantities;
char filename1[64];
sprintf(filename1, "results/L_%d_h_%g_statesNo_%d_
Thermodynamic_quantities.dat", L, delta, statesNo);

Thermodynamic_quantities = fopen(filename1, "w");

if (Thermodynamic_quantities == NULL) {
printf("I couldn’t open L_%d_h_%g_statesNo_%d_
Thermodynamic_quantities.dat for writing.\n");
exit(0);

}

FILE *Disorder_average;
char filename2[64];
sprintf(filename2, "results/L_%d_h_%g_statesNo_%d_
Disorder_average.dat", L, delta, statesNo);

Disorder_average = fopen(filename2, "w");

if (Disorder_average == NULL) {
printf("I couldn’t open L_%d_h_%g_statesNo_%d_
Disorder_average.dat for writing.\n");
exit(0);

}



128 Appendix A. BK Codes

int seed=12345;
Init_RNG(seed);

h = (double *)malloc(sizeof(double)*N);
double w=0,k=0;
double sC=0,tC=0;
double Crightout=0,Crightin=0,Cleftout=0,Cleftin=0,Cdownout=0;
double Cdownin=0,Cupout=0,Cupin=0;

double *spin;
spin = (double *)malloc(sizeof(double)*N);

double mag = 0, Efield=0,Etotal=0, mag_spin = 0, mag2_spin =0;
double mag4_spin =0, Efield_spin=0, Ebond_spin=0, Etotal_spin=0;
double abs_mag_spin=0;
int Ebond=0;

double abs_mag_spin_AVE=0, mag2_spin_AVE=0, mag4_spin_AVE=0;
double Efield_spin_AVE=0, Ebond_spin_AVE=0, Etotal_spin_AVE=0;

for (int i=0; i<statesNo; i++){

for(int i=0; i<L; i++) {
for(int j=0;j<L;j++) {

int node_RF=j+L*i;
double r=gsl_ran_gaussian(rng, delta);
h[node_RF]=r;

}
}

arc = g->get_first_arc();

for(int node=0; node<N; node++) {

int right = node + 1;
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int left = node - 1;
int up = node - L;
int down = node + L;

Crightout=4*J;
Crightin=0;
Cleftout=0;
Cleftin=4*J;
Cdownout=4*J;
Cdownin=0;
Cupout=0;
Cupin=4*J;

if (right % L == 0 ){
right -= L;
Crightout=0;
Crightin=4*J;

}
if (node % L == 0){

left +=L;
Cleftout=4*J;
Cleftin=0;

}
if (up < 0){

up +=N;
Cupout=4*J;
Cupin=0;

}
if (down > (N-1)){

down -=N;
Cdownout=0;
Cdownin=4*J;

}

w=-2*h[node] - (Crightout+Cleftout+Cdownout+Cupout-Crightin
-Cleftin-Cdownin-Cupin)/2;

if(w > 0) {
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sC=0;
tC=w;

}
else {

sC=-w;
tC=0;

}

g -> set_trcap(node, sC-tC);

g->set_rcap(arc, Crightout);

arc = g->get_next_arc( arc );
g->set_rcap(arc, Crightin);

arc = g->get_next_arc( arc );
g->set_rcap(arc, Cdownout);

arc = g->get_next_arc( arc );
g->set_rcap(arc, Cdownin);
arc = g->get_next_arc( arc );

}

flow = g -> maxflow();

Efield=0; //initialize field energy

for(int node=0; node<N; node++) {

if (g->what_segment(node) == GraphType::SOURCE){
spin[node]=1;

}
else{

spin[node]=-1;
}
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Efield = Efield -h[node] * spin[node];
}

Ebond=0;
mag = 0;

for(int node=0; node<N; node++) {
int right = node + 1;
int down = node + L;

if (right % L == 0 ) right -= L;
if (down > (N-1)) down -=N;

Ebond = Ebond -J* (spin[node]*spin[right] +
spin[node]*spin[down]);

Etotal=Ebond+Efield;

mag = mag + spin[node];
}

Efield_spin = Efield/N;
printf("Field energy per spin = %g\n", Efield_spin);

Ebond_spin = (double) Ebond/N;
printf("Bond energy per spin = %g\n", Ebond_spin);

Etotal_spin = Etotal/N;
printf("Total energy per spin = %g\n", Etotal_spin);

mag_spin = mag/pow(L,D);
printf("Magnetization per spin = %g\n", mag_spin);
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abs_mag_spin = fabs (mag_spin);
printf("Absolute value of magnetization per spin = %g\n",
abs_mag_spin);

double mag2_spin =pow(mag_spin,2);
printf("2nd magnetic moment per spin = %f\n", mag2_spin);
double mag4_spin = pow(mag2_spin,2);
printf("4th magnetic moment per spin = %f\n", mag4_spin);

fprintf(Thermodynamic_quantities, "%d, %g, %g, %g, %g, %g, %g\n",
i, abs_mag_spin, mag2_spin, mag4_spin, Efield_spin, Ebond_spin,
Etotal_spin);

abs_mag_spin_AVE = abs_mag_spin_AVE + abs_mag_spin/statesNo;
mag2_spin_AVE = mag2_spin_AVE + mag2_spin/statesNo;
mag4_spin_AVE = mag4_spin_AVE + mag4_spin/statesNo;
Efield_spin_AVE = Efield_spin_AVE + Efield_spin/statesNo;
Ebond_spin_AVE = Ebond_spin_AVE + Ebond_spin/statesNo;
Etotal_spin_AVE = Etotal_spin_AVE + Etotal_spin/statesNo;

}

fclose(Thermodynamic_quantities);

if (spin == NULL) {
printf("Memory not allocated\n");
exit(0);

}
else {

printf("Memory successfully allocated for the spins\n");
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}
if (h == NULL) {

printf("Memory not allocated\n");
exit(0);

}
else {

printf("Memory successfully allocated for the random fields\n");
}

free(h);
free(spin);

double U_4_spin_AVE = 1 - (mag4_spin_AVE/3*pow(mag2_spin_AVE,2));

fprintf(Disorder_average, "%g, %g, %g, %g, %g, %g, %g, %g\n",
delta, abs_mag_spin_AVE, mag2_spin_AVE, mag4_spin_AVE, Efield_spin_AVE,
Ebond_spin_AVE, Etotal_spin_AVE, U_4_spin_AVE);

fclose(Disorder_average);

return 0;
}

A.8 Code for calculating the ratio A, for a square
!×! RFIM with Gaussian random-field dis-
tribution, where ! = 4, for various disorder
strengths ℎ

#include <stdio.h>
#include "graph.h"
#include <gsl/gsl_randist.h>
#include <math.h>
//#define L 4
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#define N (L*L)
#define z 4
#define J 1
#define D 2

using namespace std;
static gsl_rng *rng;

void Init_RNG(int seed) {
rng=gsl_rng_alloc(gsl_rng_mt19937);
gsl_rng_set(rng, seed);

}

int main(int argc, char *argv[]){

int L = atoi(argv[1]);
int statesNo = atoi(argv[2]);

typedef Graph<double,double,double> GraphType;
GraphType *g = new GraphType(N+2, 2*N+N*z/2+1);

for(int i=0; i<N; i++) g -> add_node();

for(int node=0; node<N; node++) {

int right = node + 1;
int left = node - 1;
int up = node - L;
int down = node + L;

if (right % L == 0 ){
right -= L;

}
if (node % L == 0){

left +=L;
}
if (up < 0){
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up +=N;
}
if (down > (N-1)){

down -=N;
}

g -> add_tweights(node, 0, 0);

g -> add_edge(node, right, 0, 0);
g -> add_edge(node, down, 0, 0);

}

typename GraphType::arc_id arc = g->get_first_arc();

double flow = g -> maxflow();

double a = 1.0;
double b = 2.0;
double step = 0.2;

FILE *Breakup;
char filename2[64];
sprintf(filename2, "results/L%d_%dsamples_h[%g,%g]_step%g_Breakup.dat",
L, statesNo, a, b, step);

Breakup = fopen(filename2, "w");

if (Breakup == NULL) {
printf("I couldn’t open L%d_%dsamples_h[%g,%g]_step%g_Breakup.dat
for writing.\n");
exit(0);

}

for (a; a<= b; a += step){
double delta = a;

int seed=12345;
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Init_RNG(seed);

double *h;
h = (double *)malloc(sizeof(double)*N);

double *spin;
spin = (double *)malloc(sizeof(double)*N);

double w=0,k=0;
double sC=0,tC=0;
double Crightout=0,Crightin=0,Cleftout=0,Cleftin=0,Cdownout=0,
Cdownin=0,Cupout=0,Cupin=0;

int count=0;

for (int i=0; i<statesNo; i++){

for(int i=0; i<L; i++) {
for(int j=0;j<L;j++) {

int node_RF=j+L*i;
double r=gsl_ran_gaussian(rng, delta);
h[node_RF]=r;

}
}

arc = g->get_first_arc();

for(int node=0; node<N; node++) {

int right = node + 1;
int left = node - 1;
int up = node - L;
int down = node + L;

Crightout=4*J;
Crightin=0;
Cleftout=0;
Cleftin=4*J;
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Cdownout=4*J;
Cdownin=0;
Cupout=0;
Cupin=4*J;

if (right % L == 0 ){
right -= L;
Crightout=0;
Crightin=4*J;

}
if (node % L == 0){

left +=L;
Cleftout=4*J;
Cleftin=0;

}
if (up < 0){

up +=N;
Cupout=4*J;
Cupin=0;

}
if (down > (N-1)){

down -=N;
Cdownout=0;
Cdownin=4*J;

}

w=-2*h[node] - (Crightout+Cleftout+Cdownout+Cupout-Crightin
-Cleftin-Cdownin-Cupin)/2;

if(w > 0) {
sC=0;
tC=w;

}
else {

sC=-w;
tC=0;

}
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g -> set_trcap(node, sC-tC);

g->set_rcap(arc, Crightout);

arc = g->get_next_arc( arc );
g->set_rcap(arc, Crightin);

arc = g->get_next_arc( arc );
g->set_rcap(arc, Cdownout);

arc = g->get_next_arc( arc );
g->set_rcap(arc, Cdownin);
arc = g->get_next_arc( arc );

}

flow = g -> maxflow();

for(int node=0; node<N; node++) {

if (g->what_segment(node) == GraphType::SOURCE){
spin[node]=1;

}
else{

spin[node]=-1;
}

}

double mag = 0;
for(int node=0; node<N; node++) {

mag = mag + spin[node];
}

double mag_spin = 0, abs_mag_spin=0;

mag_spin = mag/pow(L,D);
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abs_mag_spin = fabs (mag_spin);

if (abs_mag_spin != 1){
++count;

}

}

double ratio= (statesNo - double (count))/ statesNo;
fprintf(Breakup, "%g, %g\n", delta, ratio);

if (spin == NULL) {
printf("Memory not allocated\n");
exit(0);

}
else {

printf("Memory successfully allocated for the spins\n");
}
if (h == NULL) {

printf("Memory not allocated\n");
exit(0);

}
else { // Memory has been successfully allocated

printf("Memory successfully allocated for the random fields\n");
}

free(h);
free(spin);

}

fclose(Breakup);
return 0;

}
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Python Codes

Appx. B includes the content of the python codes that we developed for plotting
spin configurations of the ground states of many different RFIM examples. The
codes read appropriate data files where all the spins (±1) of a particular ground
state for a specific lattice size !, disorder strength ℎ and RNG seed are stored
vertically.

B.1 Code for a square ! × ! RFIM

import numpy as np
import matplotlib.pyplot as plt
from matplotlib import cm

FigureName=[’2048’,’1’, ’12345’]

data = np.loadtxt(’SQUARE_GS_spins_L_{0}_h_{1}_seed_{2}_HOR.dat’
.format(FigureName[0],FigureName[1],FigureName[2]))

Nx,Ny = np.shape(data)
x = np.arange(0,Nx,1)

fig, axes = plt.subplots(figsize=(3,3))

axes.imshow(data,vmin=-1,vmax=1,cmap=cm.Greys_r)

plt.title(’SQUARE \n L={0},h={1},seed={2}’.format(FigureName[0]
,FigureName[1],FigureName[2]),y=1.08)

axes.set_yticklabels([])
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axes.set_xticklabels([])

fig.tight_layout()

plt.savefig(’SQUARE_CONF_L{0}_h{1}_seed{2}.pdf’.format(FigureName[0],
FigureName[1],FigureName[2]))

B.2 Code for a triangular ! × ! RFIM

import numpy as np
import matplotlib.pyplot as plt
from matplotlib import cm

FigureName=[’4096’,’1’, ’12345’]

data = np.loadtxt(’TRIANGULAR_GS_spins_L_{0}_h_{1}_seed_{2}_HOR.dat’
.format(FigureName[0],FigureName[1],FigureName[2]))

Nx,Ny = np.shape(data)
x = np.arange(0,Nx,1)

fig, axes = plt.subplots(figsize=(3,3))

axes.imshow(data,vmin=-1,vmax=1,cmap=cm.Greys_r)

.title(’TRIANGULAR \n L={0},h={1},seed={2}’.format(FigureName[0],FigureName[1]
,FigureName[2]),y=1.08)

axes.set_yticklabels([])
axes.set_xticklabels([])

#axes.set_xticks(x)
#axes.set_yticks(x)

fig.tight_layout()

plt.savefig(’TRIANGULAR_CONF_L{0}_h{1}_seed{2}.pdf’.format(FigureName[0]
,FigureName[1],FigureName[2]))
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Jackknife Codes

In Appx. C, the codes for performing the Jackknife analysis of our results from
our A definition approach regarding the breakup length problem of the square and
triangular 2� RFIM are included. The codes read appropriate data files which
contain the results of our simulations and are named according to specific lattice
sizes, disorder strengths, number of samples and data types.

C.1 Code for calculating the ratio A for 100 dif-
ferent bins, for ! = 8

#include <stdio.h>
#include <stdlib.h>
#define N 100000
#define binsNo 100
#define L 8
#define delta 2.375

int main() {

int binsSize = N/binsNo;

FILE * ALLSTATES;
ALLSTATES = fopen("ALLstates_2.375_L8.dat","r");

if (ALLSTATES == NULL) {
printf("Can’t open/find file\n");
return 1;

}
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FILE *HUNDREDPLOTS;
char filename3[64];
sprintf(filename3, "Hundred_plots/L%d_h%g_states%d_100plots.dat", L, N, delta);

HUNDREDPLOTS = fopen(filename3, "w");
if (HUNDREDPLOTS == NULL) {

printf("I couldn’t open L%d_h%g_states%d_100plots.dat for writing.\n");
exit(0);

}

fprintf(HUNDREDPLOTS, "%f\t", delta); //print delta to the file

double *magnet= (double *) malloc(sizeof(double)*N);
double *E_bond= (double *) malloc(sizeof(double)*N);
double *E_field= (double *) malloc(sizeof(double)*N);
double *FM= (double *) malloc(sizeof(double)*N);

double sumALL=0;

for (int i = 0; i<N ; i++) {
fscanf(ALLSTATES, "%lf, %lf, %lf, %lf", &magnet[i], &E_bond[i],
&E_field[i], &FM[i] );

sumALL = sumALL + FM[i];

}

fclose(ALLSTATES);

double ratioALL=0;
ratioALL = sumALL/N;
printf("\nSum of ALL ordered states is %g out of %d and the ratio is %f\n\n",
sumALL , N, ratioALL);

double ratioBIN = 0;

int b1=0;
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int b2 = binsSize - 1;

for (int bin=0; bin < binsNo; bin++) {

double sumBIN = sumALL;

for (int i=0; i<N; i++){
if (i>=b1 && i<=b2){

sumBIN = sumBIN - FM[i];
}

}

ratioBIN= sumBIN/ (N - binsSize);

if (bin < binsNo -1) fprintf(HUNDREDPLOTS, "%f\t", ratioBIN);

b1 = b1 + binsSize;
b2 = b2 + binsSize;

}

fprintf(HUNDREDPLOTS, "%f\n", ratioBIN);

if (FM == NULL) {
printf("Memory not allocated\n");
exit(0);

}
else {

printf("Memory successfully allocated for the FM states\n");
}

free(FM);

fclose(HUNDREDPLOTS);
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return 0;
}

C.2 Code for performing 100 simultaneous fits
for each of the 100 plots corresponding to a
bin, for ! = 8

gnuplot
N=101

do for [i=2:N] {
a=1;b=1;
f(x) = a*x + b
fit f(x) ’ALLdeltas_L8_100plots.dat’ u 1:i via a,b

set print "parameters.txt" append
print a,b
reset

}

C.3 Code for calculating the 100 solutions oc-
curring from the 100 fits performed in our
results, for ! = 8

#include <stdio.h>
#include <stdlib.h>
#define N 100
#define L 8

int main() {

FILE * PARAMETERS;
PARAMETERS = fopen("parameters.txt","r");

if (PARAMETERS == NULL) {



C.3. Code for calculating the 100 solutions occurring from the 100 fits 147

printf("Can’t open/find file\n");
return 1;

}

FILE *HUNDREDSOLUTIONS;
char filename3[64];
sprintf(filename3, "L%d_100solutions_linearfit.dat", L);

HUNDREDSOLUTIONS = fopen(filename3, "w");
if (HUNDREDSOLUTIONS == NULL) {

printf("I couldn’t open L%d_100solutions_linearfit.dat for writing.\n");
exit(0);

}

double *alpha= (double *) malloc(sizeof(double)*N);
double *beta= (double *) malloc(sizeof(double)*N);

for (int i = 0; i<N ; i++) {
fscanf(PARAMETERS, "%lf %lf", &alpha[i], &beta[i]);

}

fclose(PARAMETERS);

double x=0;
for (int i=0; i<N; i++){

x = (0.5 - beta[i])/alpha[i];
fprintf(HUNDREDSOLUTIONS, "%f\n", x);
x=0;
}

if (alpha == NULL) {
printf("Memory not allocated\n");
exit(0);

}
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else {
printf("Memory successfully allocated for the a parameter\n");

}
if (beta == NULL) {

printf("Memory not allocated\n");
exit(0);

}
else {

printf("Memory successfully allocated for the b parameter\n");
}

free(alpha);
free(beta);

fclose(HUNDREDSOLUTIONS);

return 0;
}

C.4 Code for the Jackknife analysis of the 100
solutions for the breakup field ℎB(!), for ! =
8

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#define N 100
#define L 8

int main() {

FILE * SOLUTIONS;
SOLUTIONS = fopen("L8_100solutions_linearfit.dat","r");
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if (SOLUTIONS == NULL) {
printf("Can’t open/find file\n");
return 1;

}

FILE *FINALRESULT;
char filename3[64];
sprintf(filename3, "L%d_JKresults_linearfit.dat", L);

FINALRESULT = fopen(filename3, "w");
if (FINALRESULT == NULL) {

printf("I couldn’t open L%d_JKresults_linearfit.dat for writing.\n");
exit(0);

}

double *HundredSolutions= (double *) malloc(sizeof(double)*N);

for (int i = 0; i<N ; i++) {
fscanf(SOLUTIONS, "%lf", &HundredSolutions[i]);
//printf("%f\n", HundredSolutions[i]);
}

fclose(SOLUTIONS);

fprintf(FINALRESULT, "%d\t", L);

double JKsum, JKvarsum;
double JKmean=0;
double JKvar, JKerror;

JKsum = HundredSolutions[0];
JKvarsum = HundredSolutions[0]*HundredSolutions[0];
for(int i=1; i<N; i++) {

JKsum = JKsum + HundredSolutions[i];
JKvarsum = JKvarsum + HundredSolutions[i]*HundredSolutions[i];

}
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JKmean= JKsum/N;
printf("The final JK estimation is %f\n", JKmean);
fprintf(FINALRESULT, "%f\t", JKmean);

printf("The sum of the squares of the 100 solutions is %f\n", JKvarsum);
JKvar = JKvarsum/N - pow(JKmean,2);

JKerror = sqrt(JKvar)*sqrt(N-1);
printf("The final JK error is %f\n", JKerror);
fprintf(FINALRESULT, "%f\n", JKerror);

if (HundredSolutions == NULL) {
printf("Memory not allocated\n");
exit(0);

}
else {

printf("Memory successfully allocated for the 100 solutions\n");
}

free(HundredSolutions);

fclose(FINALRESULT);

return 0;
}
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