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Abstract: Due to the high-velocity collision-based nature of elite rugby league and union, the risk of
sustaining a concussion is high. Occurrence of and outcomes following a concussion are probably
affected by the interaction of multiple genes in a polygenic manner. This study investigated whether
suspected concussion-associated polygenic profiles of elite rugby athletes differed from non-athletes
and between rugby union forwards and backs. We hypothesised that a total genotype score (TGS)
using eight concussion-associated polymorphisms would be higher in elite rugby athletes than
non-athletes, indicating selection for protection against incurring or suffering prolonged effects of,
concussion in the relatively high-risk environment of competitive rugby. In addition, multifactor
dimensionality reduction was used to identify genetic interactions. Contrary to our hypothesis, TGS
did not differ between elite rugby athletes and non-athletes (p ≥ 0.065), nor between rugby union
forwards and backs (p = 0.668). Accordingly, the TGS could not discriminate between elite rugby
athletes and non-athletes (AUC ~0.5), suggesting that, for the eight polymorphisms investigated,
elite rugby athletes do not have a more ‘preferable’ concussion-associated polygenic profile than
non-athletes. However, the COMT (rs4680) and MAPT (rs10445337) GC allele combination was
more common in rugby athletes (31.7%; p < 0.001) and rugby union athletes (31.8%; p < 0.001) than
non-athletes (24.5%). Our results thus suggest a genetic interaction between COMT (rs4680) and
MAPT (rs10445337) assists rugby athletes in achieving elite status. These findings need exploration
vis-à-vis sport-related concussion injury data and could have implications for the management of
inter-individual differences in concussion risk.
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1. Introduction

Sport-related concussion has been defined as a traumatic brain injury (TBI) induced
by external forces [1]. It has been reported that over a playing career, ~80% of rugby
(league and union) players will experience at least one concussion [2]. In male elite rugby
union (RU), concussion has been the most common injury in the English Premiership since
2011 (accounting for 21% of all injuries from the 2014 to 2019 seasons) [3]. In elite male
rugby league (RL), concussion accounted for 29% of all injuries in illegal play and 9% of
all injuries in legal play [4]. Sustaining a prior concussion increases the risk of subsequent
time-loss injuries and repeated concussions [5–8]. There is a growing concern about the
potential short and long-term neurodegenerative consequences associated with concussion,
such as chronic post-concussion syndrome, cognitive impairment, forms of dementia,
migraines, sleep dysfunction and anxiety [1,9–13]. Several genetic factors have previously
been associated with inter-individual variability in traumatic brain injury incidence and
severity [14].

Molecular pathophysiological investigations show that a concussive event can trigger
a neurometabolic cascade resulting in altered gene expression and neuronal dysfunction
within the brain [15]. Inter-individual variability means that the severity of concussion
in rugby can range from 2 days to >84 days absence (period from injury to availability
for match selection) but typically ranges from ranges 9–21 days [8,10,16–18]. To better
understand and manage the inter-individual variability in injury occurrence and outcomes
following concussion, the main risk factors must be identified. One such factor is genetic
predisposition, as the interaction of multiple genes in a polygenic manner could reflect
the complex pathophysiology of incidence and recovery from concussion [19]. Heritability
of concussion has not been determined, but it is likely that a substantial genetic compo-
nent exists for concussion risk and recovery, as heritability of brain structure is shown
to be ~90% and cognitive performance ~60% [20–23]. Previous candidate gene studies
have identified potential genetic risk factors associated with the risk of concussion and
recovery [6,7,24–33]. Those genetic variants influencing concussion risk and recovery may
confer an advantage/disadvantage for rugby athletes by affecting the ability to train and
compete and thus advance their careers, and investigating this could provide additional
information to support the management of the cumulative effects of concussions [14].

The polymorphisms that have been examined in this study have some of their basic
functions summarised in Table 1. Regarding concussion in particular, the ε4 allele of
apolipoprotein (APOE) gene could be responsible for up to 64% of the ‘hazardous influence’
of TBI [24] and athletes who possess the ε4 allele suffered prolonged physical and cognitive
symptomatic responses to concussion [25]. Carriers of the APOE promoter T allele have a
three to eight-fold greater risk of experiencing repeated concussions [5,7], and TT genotype
carriers were observed to experience unfavourable outcomes post-TBI [26]. From the
microtubule-associated protein tau (MAPT) gene, the TT genotype has been weakly associated
with a greater risk of repeated concussion [6,7]. The Nitric oxide synthase (NOS3) gene C
allele has been associated with lower cerebral blood flow in patients with severe TBI [27].
The T allele of the ankyrin repeat and kinase domain-containing 1 (ANKK1) gene has been
associated with worse measures of learning, working memory and response latencies
post-TBI [28–30]. In addition, the brain-derived neurotrophic factor (BDNF) gene Met/Met
homozygotes have been reported to be at a higher risk of sustaining a concussion than
Val/Val homozygotes [31]. The catechol-O-methyltransferase (COMT) gene rs4680 Val allele
carriers performed poorer on tests of executive function post-TBI [32], and Met carrying RU
players have been reported to be approximately three-fold more likely to have a history of
concussion [33]. Indeed, elite rugby athletes have ~1.4 times the odds of being Val/Val (GG)
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genotype compared to non-athletes [34], while other single nucleotide polymorphism (SNP)
variants related to different injury types are also more frequent in elite rugby athletes [35].

Table 1. Summary of polymorphisms examined in this study.

Gene Name Gene Abbreviation and
Polymorphism Identifier Alleles Relevant Effects Associated with TBI

Ankyrin repeat and kinase
domain containing 1

ANKK1
rs1800497 A/G

The A allele has been associated with altered
cognitive behavioural capacity via modulation of

expression of D2 receptors.

Apolipoprotein E APOE
rs429358, rs7412 ε2, ε3, ε4

Affects repair and plasticity of the brain. APOE
isoforms have differing effects on neurite
extension, which can influence ability to

recover post-concussion.

rs405509 G/T Associated with functional regulation of
APOE transcription.

Brain-derived
neurotrophic factor

BDNF
rs6265 Val/Met (C/T)

Affects repair and plasticity of the brain via
strengthening existing synaptic connections and

modulating the creation of new synapses.

Catechol-O-
methyltransferase

COMT
rs4680

Met/ Val
(A/G)

Affects cognitive behavioural capacity
post-concussion and could increase impulsivity

and risk taking.

Microtubule-associated
protein tau

MAPT
rs10445337 C/T

Affects repair and plasticity of the brain via
modulation of microtubule formation, structural

stabilisation of the neuronal axons and drives
growth of neurites.

Endothelial nitric
oxide synthase

NOS3
rs2070744 C/T

Could affect severity of concussion and cognitive
behavioural capacity post-concussion via

modulating cerebral blood.

Alleles previously associated with traumatic brain injury are underlined (adapted from Antrobus et al. [14]).

The Total Genotype Score (TGS) has been used to indicate the extent of an individual’s
genetic predisposition for athletic performance, muscle damage and disease risk [36–42].
Based on a genetic algorithm proposed by Williams and Folland [36], TGS can range from
0 to 100 and represents the number of ‘preferable’ genotypes an individual possesses for
the phenotype in question. Previous hypothetical and experimental TGS studies indicate
that athletes have higher TGS scores, thus possessing more ‘preferable’ polygenic profiles
than non-athletes for performance, injury and potential disease [36–45]. The potential
applications of this approach to concussion are attractive but have not yet been explored.

Therefore, the primary objective of this study was to investigate if concussion-associated
polygenic profiles differ between elite rugby athletes and non-athletes. Based on prior
literature, it was hypothesised that the elite rugby athletes would have a higher TGS than
non-athletes, indicating a more ‘preferable’ polygenic profile with respect to concussion,
and/or display gene–gene interactions that differ from non-athletes.

2. Materials and Methods
2.1. Participants

As part of the ongoing RugbyGene project [46], a total of 1357 individuals were recruited
and provided written informed consent to participate in the present study. An a priori
calculation for 80% power to detect a small effect size (w) of 0.1 indicated > 785 participants
were required. The total sample comprised elite 635 Caucasian male rugby athletes (mean
(standard deviation) height 1.85 (0.07) m, mass 102 (12) kg, age 29 (7) years), including
66.4% British, 11.4% Irish, 9.5% Italian, 8.9% South African, and 3.8% of other nationalities,
and 722 Caucasian non-athletes (48% male, mean (standard deviation) height 1.70 (0.10)
m, mass 73 (13) kg, age 41 (23) years), including 97.6% British and 2.4% other nationalities.
Athletes were considered elite if they had competed regularly (>5 matches) since 1995 in
the highest professional league in the UK, Ireland or South Africa for RU or the highest
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professional league in the UK for RL [47]. In total, 53.5% of the RU athletes had competed at
the international level for a “high performance union” (Regulation 16, https://www.world.
rugby/organisation/governance/regulations/reg-16 (accessed on 1 February 2022)) and
45.8% of RL athletes had competed at the international level. As the majority of athletes
(534) competed in RU, they were also divided into forwards (304) and backs (230) for
comparison (to detect an effect size (w) of 0.13 required >464 participants). Ethical approval
was granted by the ethics committees of Manchester Metropolitan University, Glasgow
University, University of Cape Town and University of Northampton, and all experimental
procedures complied with the Declaration of Helsinki [48].

2.2. Procedures
2.2.1. Sample Collection

Procedures were consistent with those described previously [35,47,49]. Blood (70.4%
of all samples), buccal swabs (15.4%) or saliva (14.2%) samples were obtained. Blood was
drawn from a superficial forearm vein into EDTA tubes, saliva samples were collected
into Oragene DNA OG-500 tubes (DNA Genotek, Ottawa, ON, Canada) and sterile buccal
swabs (Whatman OmniSwab, Springfield Mill, UK) were rubbed against the buccal mucosa
of the cheek for ∼30 s.

DNA isolation and genotyping. DNA isolation and genotyping were performed in the
Manchester, Glasgow and Cape Town laboratories. The majority of samples were processed
and genotyped in the Manchester laboratory. There are some differences between protocols,
summarised below.

In Manchester and Glasgow, DNA isolation was performed with the QIAamp DNA
Blood Mini kit and spin column protocol (Qiagen, West Sussex, UK). Briefly, 200 µL of
whole blood was lysed and incubated, the DNA washed, and the eluate stored at 4 ◦C.
In Cape Town, using a different protocol [50], samples were lysed and centrifuged, the
DNA washed, and samples stored at −20 ◦C. DNA isolated in Cape Town was genotyped
in Glasgow.

Genotyping for eight polymorphisms (see Genotyping assays) was performed us-
ing two protocols. Protocol one: Approximately 40% of samples were genotyped using a
StepOnePlus (Applied Biosystems, Paisley, UK) as previously described [47] with variations
to thermocycling conditions depending on reagents used. Protocol two: Approximately
60% of samples were genotyped by combining 2 µL of GTXpress Master Mix (2×) (Ap-
plied Biosystems), 0.2 µL of 20× Fast GT Sample Loading Reagent (Fluidigm, Cambridge,
UK), 0.2 µL of H2O and 1.6 µL of purified DNA. Furthermore, 1.78 µL of assay (20×)
(Applied Biosystems), 1.78 µL of 2× Assay Loading Reagent (Fluidigm) and 0.18 µL of
ROX reference dye (Invitrogen, Paisley, UK) were combined. An integrated fluid circuit
controller RX (Fluidigm) mixed samples and assays using a Load Mix (166×) script. PCR
was performed using a real-time FC1 Cycler (Fluidigm) GT 192 × 24 Fast v1 protocol. The
192 × 24 microchip plate was placed into the EP1 Reader (Fluidigm) for end-point analysis
using Fluidigm SNP genotyping analysis software. Duplicates of all samples were in 100%
agreement for both protocols.

2.2.2. Genotyping Assays

For ANKK1 (rs1800497), APOE (rs429358, rs7412 and rs405509), BDNF-AS (rs6265),
COMT (rs4680), MAPT (rs10445337) and NOS3 (rs2070744), the appropriate TaqMan assays
were utilised (Applied Biosystems). APOE ε2/ε3/ε4 data were derived from rs429358 and
rs7412 [51]. The TaqMan assay context sequence for each polymorphism, with VIC/FAM high-
lighted in bold and concussion-associated risk alleles underlined (although for some the prior
evidence of risk is controversial), were: ANKK1 (rs1800497) TGGTC[A/G]AGGCA, APOE
(rs429358) ACGTG[C/T]GCGGC, APOE (rs7412) AGAAG[C/T]GCCTG, APOE (rs405509)
GTCTG[G/T]ATTAC, BDNF-AS (rs6265) TATCA[C/T]GTGTT, COMT (rs4680) CTGGC[A/G]
TGAAG, MAPT (rs10445337) TCACT[C/T]CCCGA, NOS3 (rs2070744) CTGGC[C/T]GGCTGA.

https://www.world.rugby/organisation/governance/regulations/reg-16
https://www.world.rugby/organisation/governance/regulations/reg-16
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2.3. Calculation of TGS

To quantify the combined influence of the candidate polymorphisms (Table 2), an
additive TGS algorithm was utilised [36] based on the assumption of codominant allele
effects. For bi-allelic polymorphisms, the homozygote genotypes with the lower concussion
risk and ‘preferable’ outcome according to prior literature were allocated a genotype score
of 2, heterozygote genotypes scored 1 and the ‘non-preferable’ homozygote genotypes
scored 0. APOE is a tri-allelic (ε2, ε3, ε4) polymorphism—two C/T SNPs at residues 112
(rs429358) and 158 (rs7412) produce six possible genotypes (ε2/ε2, ε2/ε3, ε2/ε4, ε3/ε3,
ε3/ε4, ε4/ε4). A score of 0 was allocated for ε4 allele possession (ε4+) and a score of
2 was allocated for non-possession of a ε4 allele (ε4−) (no score of 1 allocated). A TGS
of 100 represents the ‘perfect’ polygenic profile for low concussion risk and favourable
outcome, for the eight SNPs (seven genotype scores) examined, while 0 represents the
‘worst’ possible profile for concussion risk and outcome.

TGS = (100/14) ∗ ANKK1rs1800497 + APOErs429358, rs7412 + APOErs405509 + BDNF-ASrs6265, COMTrs4680 + MAPTrs10445337 + NOS3rs2070744

Table 2. Genotype score of each polymorphism and genotype frequencies in elite rugby athletes and
in non-athletes [34].

Gene Name Gene
Abbreviation Polymorphism Alleles Genotype Score Frequency in Elite

Rugby Athletes (%)
Frequency in

Non-Athletes (%)

Ankyrin repeat and
kinase domain
containing 1

ANKK1 rs1800497 A/G GG = 2, GA = 1,
AA = 0

GG = 65.2, GA = 31.0,
AA = 3.8

GG = 65.2, GA = 30.6,
AA = 4.2

Apolipoprotein E APOE
rs429358 and

rs7412
rs405509

ε4+/ε4−
G/T

0 = ε4+, 2 = ε4−
GG = 2, GT = 1,

TT = 0

ε4+ = 28.9, ε4− = 71.1
GG = 25.8, GT = 48.7,

TT = 25.5

ε4+ = 28.2, ε4− = 71.8
GG = 26.2, GT = 47.3,

TT = 26.5
Brain-derived

neurotrophic factor
antisense RNA

BDNF-AS rs6265 C/T CC = 2, CT = 1,
TT = 0

CC = 67.5, CT = 28.9,
TT = 3.6

CC = 66.3, CT = 30.1,
TT = 3.6

Catechol-O-
methyltransferase COMT rs4680 A/G AA = 2, GA = 1,

GG = 0
AA = 24.8, GA = 49.8,

GG = 25.4
AA = 30.2, GA = 47.4,

GG =22.4
Microtubule-

associated protein
tau

MAPT rs10445337 C/T CC = 2, TC = 1,
TT = 0

CC = 4.7, TC = 35.7,
TT = 59.6

CC = 4.7, TC = 31.4,
TT = 63.9

Endothelial nitric
oxide synthase NOS3 rs2070744 C/T TT = 2, TC = 1,

CC = 0
TT = 37.6, TC = 47.6,

CC = 14.8
TT = 38.7, TC = 44.3,

CC = 17.0

Alleles previously associated with traumatic brain injury are underlined. ε4+ = ε4 allele possession, ε4− = absence
of ε4 allele.

In addition, a TGS algorithm determined only by observed genotype frequencies
in elite rugby athletes was also calculated, wherein three of the seven genotype scores
allocated had different values that reflected the prior evidence [34] (APOE rs405509 TT = 2,
GT = 1, GG = 0, COMT rs4680 GG = 2, GA = 1, AA = 0 and NOS3 rs2070744 TT = 2, TC = 1,
CC = 0).

2.4. Data Analysis

SPSS for Windows version 26 (SPSS, Chicago, IL, USA) software was used for analysis.
TGSs of athletes and non-athletes were compared using independent t-tests, as were height
and body mass. Pearson’s χ2 tests were utilised to compare genotype frequencies in upper
and lower TGS quartiles of all rugby athletes vs. non-athletes, RU athletes vs. non-athletes,
RL athletes vs. non-athletes, RU Forwards vs. non-athletes, RU Backs vs. non-athletes
and RU Forwards vs. RU Backs. Additionally, receiver operating characteristic (ROC)
curves and area under the curve (AUC) were used to evaluate the ability of the TGS to
correctly distinguish between athletes (including positional groups) and non-athletes [52].
Multifactor dimensionality reduction (https://sourceforge.net/projects/mdr/, (accessed
on 1 February 2022)) software was used to identify SNP–SNP epistasis interactions [53]
that distinguish between athlete groups and non-athletes. αwas set at 0.05.

https://sourceforge.net/projects/mdr/
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3. Results
3.1. TGS

Genotype frequencies were in the Hardy–Weinberg equilibrium for all polymorphisms
in the non-athlete and athlete groups. Athletes (all male) were taller and heavier (p < 0.001)
than male non-athletes. No participant had a TGS of zero or 100 (range was 21.4–92.9).
Only one rugby athlete and one non-athlete possessed the highest observed TGS of 92.9.
Similarly, five rugby athletes (0.8%) and just one non-athlete possessed the lowest observed
TGS of 21.4. Collectively, 76.7% of rugby athletes and 77.2% of non-athletes had a TGS > 50.

There was no difference in TGS between any rugby athlete group (all rugby athletes,
RU, RL, RU forwards, RU backs) and the non-athlete group (p ≥ 0.769). Mean (SD) and
kurtosis statistics of TGSs are reported in Table 2, and frequency distributions of rugby
athletes and non-athletes are shown in Figure 1A. Similarly, there was no difference in TGS
between RU forwards and backs (p = 0.842).
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Figure 1. No difference in frequency distributions of the TGS of all athletes and non-athletes (p = 0.797
for comparison of means) (A). Receiver operating characteristic curve displays the inability of the
TGS to discriminate elite rugby athletes from non-athletes. Dotted line = no discrimination. AUC;
area under the curve (B).
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When the numbers of athletes (including discrete groups) and non-athletes in the
upper and lower 25% of TGS were compared, no significant differences were found
(Table 3). Similarly, there were no differences between RU forwards and backs in terms
of their presence in the upper and lower quartiles of TGS (p = 0.668). ROC AUC analysis
confirmed the TGS algorithm could not identify elite rugby athlete status (AUC = 0.504;
95% CI = 0.470–0.538; p = 0.800; Figure 1B). There was also no ability to distinguish be-
tween athletes and non-athletes when discrete groups of athletes were considered (RU
vs. non-athletes, RL vs. non-athletes, RU Forwards vs. non-athletes, RU Backs vs. non-
athletes; Table 3).

Table 3. Prior literature-based TGS with kurtosis statistics, and group comparisons via independent
t-test, top quartile vs. bottom quartile comparisons via χ2, and ROC curve analysis AUC.

Group Mean (SD)
TGS

Mean (SE)
Kurtosis

p-Value Athlete
Group

vs. Non-Athletes

p-Value Top
Quartile vs.

Bottom Quartile
TGS

ROC Curve
Analysis AUC

(95% CI)

p-Value
AUC

Non-athletes 56.4 (12.8) −0.403 (0.217)

All Rugby Athletes 56.5 (13.6) −0.506 (0.198) 0.797 0.349 0.504
(0.470–0.538) 0.800

RU Athletes 56.4 (13.4) −0.490 (0.215) 0.828 0.415 0.504
(0.468–0.539) 0.830

RL Athletes 56.9 (14.7) −0.617 (0.488) 0.821 0.444 0.507
(0.440–0.575) 0.823

RU Forwards 56.3 (13.3) −0.384 (0.283) 0.934 0.678 0.502
(0.460–0.544) 0.935

RU Backs 56.5 (13.5) −0.613 (0.328) 0.769 0.326 0.507
(0.460–0.554) 0.772

Even when using a TGS algorithm using genotype scores determined solely by geno-
type frequencies we observed in elite rugby athletes, there was no difference between all
rugby athletes and non-athletes (p = 0.065; Figure 2), nor was there a difference between
the numbers of athletes and non-athletes in the upper and lower TGS quartiles (p = 0.144).
ROC AUC analysis again demonstrated that the data could not correctly distinguish elite
rugby athletes from non-athletes (AUC = 0.532; 95% CI = 0.497–0.567, p = 0.067).
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Figure 2. Similar frequency distribution of the data-led TGS for all athletes and non-athletes; p = 0.065
for difference in mean (SD) between all athletes (59.6 (12.4)) and non-athletes (58.4 (12.1)).
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3.2. SNP Epistasis

Multifactor dimensionality reduction analysis identified an SNP–SNP interaction of
COMT rs4680 and MAPT rs10445337 polymorphisms that best predicted elite athlete status
(testing accuracy 0.531; cross-validation consistency 9/10). There was a greater frequency
of the COMT-MAPT G-C allele combination in all rugby athletes (31.7%; OR = 1.43, 95%
CI = 1.12–1.81) and RU athletes (31.8%; OR = 1.44, 95% CI = 1.12–1.84) than non-athletes
(24.5%; both comparisons p < 0.001) (Figure 3).
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4. Discussion

In this present study, we investigated suspected concussion-associated polygenic
profiles for determining elite status in rugby. This was the first use of elite rugby athlete
data, TGS models and SNP–SNP epistasis interactions to determine whether a concussion-
associated polygenic profile is more suitable for achieving elite status in the high concussion
risk environment of rugby. For the eight suspected concussion-associated genetic variants
used in the TGS algorithm, there was no difference in elite rugby athlete and positional
subgroup TGSs compared to non-athletes. However, multifactor dimensionality reduction
analysis found a 2-SNP model of COMT (rs4680) and MAPT (rs10445337) G-C allele
combination produced the best model for predicting elite athlete status (testing accuracy
0.531; cross-validation consistency 9/10).

Our data show that mean concussion-associated TGS is approximately 56–57 for
both rugby athletes and non-athletes, based on the eight SNPs we studied. This find-
ing indicates that, for these eight SNPs previously associated with concussion incidence
and/or severity, elite rugby athletes do not tend to have a more ‘preferable’ polygenic
concussion-associated profile than non-athletes, thus not supporting our hypothesis. This
contrasts with previous associations of physical performance-associated (as opposed to
injury-associated) TGSs with elite athlete status of track and field athletes, rowers, cy-
clists and soccer athletes [38,40,41,44,54]. However, a musculoskeletal soft-tissue injury-
associated TGS has recently been shown to differ between injured and non-injured soccer
players [55].

It was anticipated that the TGS distributions of athletes and non-athletes might differ
at their extremes. However, there was no difference between the upper and lower TGS
quartiles in terms of the proportion of rugby athletes and non-athletes. The same large
interindividual variability (TGS range = 21–93) was observed for both elite rugby athletes
and non-athletes. This wide distribution of scores highlights the variable genetic potential
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with respect to concussion in the general population. Nevertheless, ~23% of elite rugby
players possessed a concussion-associated TGS of 50 or less, which could indicate those
athletes are more at risk of concussion and/or poorer outcome post-concussion due to
possession of a ‘less preferable’ polygenic concussion profile.

We separately found no differences in genotype frequencies between elite rugby ath-
letes and non-athletes for seven out of eight concussion-associated genetic variants [34].
That might have been because individual variants cannot represent the complexity of
concussion risk and do not reflect SNP–SNP interactions, known as non-linear interaction
or epistasis [53]. Here, we identify that the 2-SNP model of the COMT (rs4680) and MAPT
(rs10445337) polymorphisms produced the best model to predict elite athlete status. The
GC allele combination was more common in rugby athletes (~32%) than non-athletes
(~25%). Previously, GG (Val/Val) carriers of COMT (rs4680) have been observed to have
~33% increased COMT activity when compared with AA (Met/Met) carriers, thus reducing
dopamine levels in the prefrontal cortex region of the brain [56]. Lipsky et al. [23] observed
that GG carriers had 40% poorer executive function than AA carriers post-TBI. Recently, it
has been observed that elite rugby athletes have 1.4 times the odds of possessing the GG
genotype of COMT (rs4680) compared to non-athletes [34]. In addition, Mc Fie et al. [33]
observed that A allele carriers in a cohort of youth and professional South African RU play-
ers were approximately three-fold more likely to have a history of concussion. Considering
the pleiotropic nature of COMT (rs4680), G carriers could possess greater stress resilience
and reduced anxiety in competitive environments and be at lower risk of experiencing
concussions but also be at risk of poorer cognitive function post-concussion [34,57,58]. The
MAPT TT genotype (rs10445337) has been weakly associated with a greater risk of repeated
concussion [6,7]. Mutations in MAPT have been shown to accelerate the aggregation of
markers of neurotoxic hyperphosphorylated tau in response to repetitive concussions
by 20–60% in animal studies and are associated with neurodegenerative diseases in hu-
mans [59,60]. Elite rugby athletes who possess the C allele could have a reduced risk of
repeated concussion and potential neurodegenerative diseases. The GC allele combination
could reduce the risk of experiencing concussions and provide a small advantage for attain-
ing elite competitive status in the high concussion risk environment of competitive rugby.
It should be noted that the SNP–SNP interaction analysis relies on data mining to identify
the best genetic model to fit the data, potentially leading to overfitting. Cross-validation
was utilised to compensate, although the 2-SNP model we identified should be investigated
in other cohorts to confirm it.

The discriminatory power of the TGS is dependent upon the polymorphisms in-
cluded, and the mathematical model utilised [61]. In both athletes and non-athletes,
Ben-Zaken et al. [44] observed a higher mean TGS in a 2-SNP model than a 5-SNP model.
However, the 5-SNP model provided greater discriminatory accuracy between groups [44].
In contrast, including many SNPs in a TGS model could reduce the explained variance.
Thomaes et al. [62] reported that a 54-SNP model probably increased ‘background noise’
as all alleles were weighted equally, whereas—in reality—some variants will have larger
effects on a phenotype than others. Adjustments to the weightings applied to each genetic
variant in the algorithm could compensate, but a more extensive body of literature is re-
quired to apply relative weightings to different SNPs with confidence. The polymorphisms
we included in the TGS are all reported to be associated with concussion (incidence, severity
or recovery) or its related biological mechanisms [14].

In addition, our TGS gave all the SNPs equal weighting as we assumed allelic effects to
be codominant and each SNP to have an equal additional effect, which may not uniformly
be the case with respect to the pathophysiology of concussion in elite rugby athletes. The
addition of polymorphisms in the TGS that do not influence the phenotype in question can
decrease the discriminatory accuracy of the model [63]. In our study, only COMT (rs4680)
has individually been previously associated with elite rugby athlete status [34]. Indeed,
using a data-led TGS algorithm determined from previously observed genotype frequen-
cies in elite rugby athletes [34], the eight suspected concussion-associated genetic variants
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we examined here were still unable to collectively distinguish athletes from non-athletes.
Therefore, we cannot exclude the possibility that our TGS included polymorphisms poten-
tially do not influence concussion risk in elite rugby athletes. Future studies will no doubt
identify new candidate polymorphisms, and replication studies could indicate stronger
associations between existing polymorphisms and concussion, which could be used to in-
crease the accuracy of the algorithm. For example, a recent genome-wide-association study
has identified two novel SNPs (SPATA5 rs144663795 and PLXNA4 rs117985931) associated
with concussion [64]. There is also the question of whether a low number of concussions
that have long recovery times or more numerous concussions that apparently resolve more
quickly is more clinically problematic. Further GWASs and further replication studies
of candidate gene approaches are needed to establish a TGS that quantifies estimated
concussion risk effectively.

5. Conclusions

Concussion is a complex phenotype influenced by environmental factors and an in-
dividual’s genetic predisposition, and in the high concussion risk environment of elite
rugby, genetically mediated resistance to aspects of concussion could be advantageous for
career success and longevity. However, in contrast to our original hypothesis, a concussion-
focused polygenic model could not discriminate between elite rugby athletes and non-
athletes, although the large range of TGS scores could underpin the inter-individual vari-
ability in injury occurrence and outcomes following concussion. Nevertheless, epistasis
analysis identified a genetic interaction of COMT (rs4680) and MAPT (rs10445337) G-C
alleles as more common in elite rugby athletes, and carriage of these variants may affect
stress resilience, behavioural traits and altered risk of concussion incidence and severity. It
is possible that combining genetic data from multiple concussion-associated gene variants
such as these could inform risk assessment and recovery from concussion in the future.
Future studies should include polymorphisms for which strong associations with con-
cussion have been newly observed to increase the accuracy of the model and potentially
build towards a practical tool for concussion screening and management strategies in high
concussion risk sports such as rugby.
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