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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• A multi-objective AD system optimisa-
tion model is demonstrated for a one 
tonne per day case study plant in India. 

• Mean percentage error between daily 
ADM1 and plant data values was 5.7% 
(March 2017) and 17.8% (July 2017). 

• GA was used to minimise biogas flaring 
and unmet gas demand for cooking. 

• Flaring reduced from 886.62 m3 to 
88.87 m3 (March 2017) by controlling 
the substrate feeding rate. 

• Minimising energy cost increased 
flaring.  
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A B S T R A C T   

This paper presents a method to model and optimise the substrate feeding rate of an anaerobic digestion (AD) 
system. The method is demonstrated for a case study plant in Bangalore, India, using onsite kitchen waste to 
provide biogas for cooking. The AD system is modelled using Anaerobic Digestion Model No. 1 (ADM1) and a 
genetic algorithm (GA) is applied to control the substrate feeding rate in order to simultaneously minimise the 
volume of flared biogas, unmet gas demand and energy cost. Our results show that ADM1 can predict biogas 
yield from a continuously operated digester well with mean percentage errors between daily predicted and 
measured data values of only 5.7% for March 2017 and 17.8% for July 2017. When biogas flaring and unmet gas 
demand were minimised, the amount of biogas flared reduced from 886.62 m3 to 88.87 m3 in March and from 
73.79 m3 to 68.49 m3 in July. When the energy cost was also considered within the objective function, the biogas 
flared reduced from 886.62 m3 to 281.27 m3 for March, but increased from 73.79 m3 to 180.11 m3 for July. The 
amount of flaring increased in July as the energy cost function increased biogas yield without considering surplus 
gas production beyond demand and storage capacity. As AD systems are often operated to maximise biogas 
production, these results highlight the need for multi-objective optimisation, particularly for off-grid AD systems.   
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1. Introduction 

Anaerobic digestion (AD) systems are typically controlled to maxi-
mise their biogas output (Nixon, 2016). Research, therefore, has had a 
tendency to focus on optimising the operational decisions that influence 
yields (e.g. feedstock mixture, temperature, and loading rate) to increase 
the production of biogas from digesters (Huang et al., 2014a) (Akbaş 
et al., 2015) (Enitan et al., 2014) (Balaji et al., 2018). However, there are 
a wide range of downstream applications of the produced biogas (elec-
tricity generation, cooking, and injection into gas networks) and this 
paper investigates how to address the AD system optimisation problem 
when there are multiple conflicting technical and financial objectives. 

To obtain an optimised AD system, all components (pre and post 
treatment technologies, digester type and operating conditions) need to 
be simultaneously selected and optimised. However, most researchers 
tend to focus only on the optimisation of the digester. For example, 
Huang et al. (2014b), Akbaş et al. (2015), Enitan et al. (2014), Balaji 
et al. (2018) and García-Diéguez et al. (2011) investigated optimising 
similar objective functions based on maximising biogas yield and 
methane content and/or minimising effluent chemical oxygen demand 
(COD). The optimisation variables in these studies included digester 
temperature, pH, hydraulic retention time (HRT), substrate feeding rate 
and carbon/nitrogen (C/N) ratio. These authors did not assess how 
digester performance affects other components in the system and 
whether an overall financial improvement in system performance was 
achieved or not from their digester parameter optimisation. 

Research focusing on digester optimisation has typically relied on 
simple data-driven or first-order kinetic anaerobic digestion models to 
predict biogas yields. Huang et al. (2014b) used an artificial neural 
network (ANN) to create a data-driven AD model, Balaji et al. (2018) 
used lab experimental data to predict yields from a full-scale digester – 
although Kowalczyk et al. (2011) notes that the ability of lab-scale di-
gesters to accurately predict biogas yields for full-scale digesters de-
pends on the similarity in digester operating conditions, digester 
geometry, mixing type, substrate properties and feeding frequency – and 
Enitan et al. (2014) used the first-order Chen and Hashimoto AD model 
to determine biogas yields from an industrial wastewater treatment 
plant. The advantage of these relatively simple AD models is that it re-
duces the computational complexity for an optimisation algorithm, 
particularly when there are a large number of system variables. The use 
of a more detailed digester model, such as the well-established Anaer-
obic Digestion Model No. 1 (ADM1), could offer greater opportunities 
for AD system control and multi-objective optimisation. 

In comparison to optimising the operation of a specific AD compo-
nent, such as a digester, there has beenlimited research on AD tech-
nology combination and selection. Mavrotas et al. (2015) minimised the 
net present value (NPV) and greenhouse gas (GHG) emissions when 
finding the optimal combination of AD technologies that can be used to 
process different types of municipal solid waste (MSW). In addition to 
anaerobic digestion, other alternate waste processing pathways were 
investigated, such as composting, landfilling and recycling. Balaman 
and Selim (2014) looked at maximising the profit of the biomass supply 
chain, defining system boundaries to include biomass transportation, 
storage, energy generation and fertilizer disposal. Rather than optimis-
ing the AD system and its components, their study mainly focused on 
financial aspects of transporting and storing biomass at anaerobic 
digestion sites and the costs associated with supplying electricity to the 
grid. 

There are only a few studies that have investigated optimising an 
entire AD system considering multiple objectives. Yan et al. (2016) 
looked at minimising energy consumption and maximising green degree 
and biomethane production when finding the optimal combination of 

digestion temperature, methane recovery ratio, feedstock co-digestion 
ratio and biogas upgrading technology. Li et al. (2018) aimed to find 
optimal combination of digester operational variables, feedstock mix-
tures, biogas upgrading technologies and digester heating technologies 
when minimising the NPV and maximising the green degree. Yan et al. 
(2016) and Li et al. (2018) both predicted digester biogas yields using 
simple correlations between the rate of methane production and tem-
perature, as reported in literature for different feedstock co-digestion 
ratios. Both studies used non-dominated sorting genetic algorithm 
(NSGA-II) to perform multi-objective optimisation and obtained a set of 
Pareto optimal solutions. However, this resulted in numerous optimal 
solutions (i.e. combination of decision variables) and this can make it 
difficult for decision makers to decide on the best case scenario. This 
limitation can be overcome by combining multiple objectives in a single 
utility function. 

This paper aims to present a method for enabling multi-objective 
optimisation of an AD system, where each of the components are 
modelled in detail, to arrive at a single optimal result. The paper further 
aims to investigate how ADM1 can be used with plant data to improve 
system control with an optimisation algorithm to balance conflicting 
objectives. The results will provide insightful details for designers, en-
gineers, and operators of these systems on how they can use multi- 
objective optimisation to enhance system performance by controlling 
the substrate feeding rate. 

In the next section the methodology used is outlined and demon-
strated for a case study system defined in section 3. The models used for 
each system component and the formulation of the utility functions are 
given in section 4. The results are discussed in section 5 and the paper 
concludes by reflecting on how this method can be extended to other 
existing AD systems in section 6. 

2. Methodology 

A case study AD system is initially defined which provides gas for 
cooking and storage, with excess gas being flared. The challenge for the 
system operators is to balance meeting demand without excessive flar-
ing or use of an expensive non-renewable gas backup tank. The case 
study system, therefore, represents well a multi-objective AD optimisa-
tion problem. Measured data from the case study system is available for 
the months of March and July 2017, and this data is used to validate the 
performance of an ADM1 model used to predict the biogas yield from the 
digester. First order AD models are not used as according to Ashraf et al. 
(2021), Deepanraj et al. (2017), Donoso-Bravo et al. (2010) and Kafle 
et al. (2016), they are more suitable for batch operated systems and not 
continuously fed digesters. The ADM1 model used is this work is based 
on Nguyen’s (2014) implementation of ADM1 in Matlab, which has been 
translated to Python for the purposes of this research. Since the standard 
ADM1 model is typically used for modelling the anaerobic digestion of 
wastewater, Nguyen (2014) altered the stoichiometric, biochemical and 
physiochemical coefficients of ADM1 to make the model suitable for 
food waste. An assumption made in this study is that these same co-
efficients can be used to adequately model the digestion of food waste 
processed at the case study system. 

Once the performance of ADM1 was found to be satisfactory, each 
component of the case study system was modelled and two multi- 
objective optimisation problems were formulated: (i) minimise flared 
biogas and unmet gas demand, and (ii) minimise energy cost along with 
flaring and unmet gas demand. Utility functions were created for each 
optimisation scenario by normalising and adding the individual objec-
tive functions to give a single objective function value to be minimised. 
A utility value was considered to be converged when the percentage 
change in subsequent values was less than 0.01%, for five consecutive 
iterations. The optimisation problem was set-up in Python and genetic 
algorithm (GA), with a population size of 20, from Python’s multi- 
objective optimisation library ‘pymoo’ was used to determine the opti-
mised solution. 
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3. Case study system 

Plant performance data is taken from a one tonne per day anaerobic 
digestion facility in Bangalore, India. The facility handles food waste 
from an onsite kitchen, consisting of preparation waste and cooked food 
waste. On average, as recorded by the facility operators and mentioned 
in a confidential plant performance report, the plant produces around 
126 m3 of biogas per tonne of food waste added, which is used for 
cooking or stored in a balloon. Any excess biogas produced that cannot 
be stored is flared. A back-up Liquefied Petroleum Gas (LPG) connection 
exists for any gas demand, which cannot be met from the AD system. 

Data recorded from the plant on a daily basis includes the amount of 
substrate added (kg), biogas going to the balloon (m3), the amount of 
biogas flared (m3) and the biogas consumed (m3) for cooking. Due to the 
location of the measuring points (Fig. 1), the total biogas produced (m3) 
from the digester in a day is determined by adding the biogas going to 
the balloon and the amount flared. For the months of March and July 
2017, no demand was met by the backup LPG cylinders. The datasets are 
shown in the supplementary material Tables S1 and S2. Note that for the 
month of March, data is missing from measuring points (2, 3 and 4) on 
March 12th and 13th, 2017. These two days are excluded from the 
measured and predicted mean error percentage calculations. Assumed 
values for LPG, flaring and demand are shown in Table S1. The only 
information regarding the characteristics of the food waste available 
were the total and volatile solids content, which are shown in Table 1. 

4. Model formulation 

This section details how the components in the case study system 
were modelled, followed by definitions for the utility functions and the 
formulation of the optimisation problem. A flowchart is also shown to 
illustrate how the optimisation problem is solved. 

4.1. Component models 

Equations from literature were used to model the components in the 
system. Values of unknown parameters, either taken from literature or 
the case study report, are outlined in Table 2. It is assumed that the mass 
of substrate added to the shredder and the digester are the same 
(mf1 = mf2) and that biogas volume does not change when it passes 
through the hydrogen sulphide (H2S) scrubber and water (H2O) 
condenser, as shown in Fig. 1 (VBP1 = VBP2 = VBP3). 

4.1.1. Shredder 
Bitra et al. (2009) regressed the total specific energy of a shredder as 

a function of the screen size, mass feed rate and motor speed to obtain 
second order polynomial equations for switch grass, wheat straw and 

corn stover. The assumption made was that the second order polynomial 
equation for corn stover could be used for food waste. The total specific 
energy consumption of a shredder can be calculated as (Bitra et al., 
2009), 

Eshredder =
(
a − bD× cF+ dN − eDF − fFN+ gDN+ hD2 + iF2)mf110− 3

(1)  

where, Eshredder is the total specific energy consumption of the shredder 
(kWh/day), D is the screen size (mm), F is the mass feed rate (kg/min), N 
is the motor speed (rpm) and a-i are coefficients obtained by Bitra et al. 
(2009) from multiple regression analysis (shown in Table 2) and mf1 is 
the substrate added to the shredder (kg/day). 

4.1.2. Digester 
Equation (2) was used to determine the energy needed to heat the 

substrate going into the digester. 

Eheat =mf2

(

cw
(

1 −
TS
100

)

+ cS
TS
100

)

(TD − TF) (2)  

where, Eheat is the energy needed to heat the digester (kJ/day), mf2 is the 
substrate added to the digester (kg/day), cw and cS are the specific heat 
capacity of water and substrate, respectively (kJ/kgK). TS is the total 
solids content in the substrate (%) and TD and TF are the digestion and 
inlet substrate temperatures (◦C), respectively. 

Equation (3) is used to determine the temperature of the water 
required in the coil so that it can provide the thermal energy needed to 
heat the substrate. 

Tw2 =
Eheat

2πrchchwater
+ TF (3)  

where, Tw2 is the temperature of the water in the coil (◦C), rc and hc are 
the radius and length of the coil (m), respectively, and hwater is the 
convection heat transfer coefficient of flowing water (W/m2K). 

The mass of water to be heated in the coil is determined by assuming 
that the coil is cylindrical in shape. 

Fig. 1. The case study anaerobic digestion (AD) system showing mass flows into and out of the components and measuring points 1 (food waste added), 2 (biogas 
going to balloon), 3 (biogas flared) and 4 (biogas consumed from balloon). The mass flows are calculated by the model when 750 kg of substrate was added on the 
March 1, 2017, as seen from supplementary tables S1 and S2. 

Table 1 
Properties of the food waste used in the case study system.  

Parameter Unit Value 

Type of food 
waste 

– Kitchen waste (uncut and leftover vegetables and 
vegetable peels, rice, curry, bread etc.) 

Total Solids 
(TS) 

% of wet 
weight 

15 

Volatile Solids 
(VS) 

% of TS 90  
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mw = πr2
c hcρH2O l (4)  

where, mw is the mass of water in the tank heated by electricity (kg/day) 
and ρH2O l is the density of water (kg/m3). 

The electrical energy needed to heat the water to the required tem-
perature for heating the digester was determined using Equation (5). 

Eheatwater =mwcw(Tw2 − Tw1) (5)  

where, Eheatwater is the electrical energy needed to heat a fixed mass of 
water that can travel in the coil (kJ/day) and Tw1 is the initial temper-
ature of water (◦C). 

The heat loss from the digester was determined by assuming that the 
digester was cylindrical in shape and that heat loss occurred from the 
top, bottom and sides of the digester. As only the volume of the digester 
was known, it was assumed that its height was equal to twice the radius. 

Eloss =
(
2πrdhd + 2πr2

d

)
hair(TD − Tamb) (6)  

where, Eloss is the energy loss to ambient air from the digester (kJ/day), 
rd and hd are the radius and height of the digester (m), respectively, hair 
is the convection heat transfer coefficient of free air (W/m2K) and Tamb is 
the ambient temperature (◦C). 

The quantity of biogas produced from the digester was determined 
using ADM1. A modified ADM1 model by Nguyen (2014), including the 
ADM1 coefficients and substrate initial conditions for food waste, is used 
in this work. The assumption was, therefore, made that the food waste 
substrate modelled by Nguyen would be representative of the food waste 
processed at the case study plant. For example, the total and volatile 
solids content of the substrate used in Nguyen’s (2014) work were 
21.3% and 89.2%, respectively, which were similar to the 15% and 90% 
provided in Table 1; however, further parameters such as volatile fatty 
acids content, total organic carbon and nitrogen were not available for 
the case study plant. Nguyen (2014) determined the ADM1 model co-
efficients using the Transformer Tool (Zaher et al., 2007). The full 
substrate parameters, coefficients and ADM1 pathway equations used 
are available in Nguyen (2014). Methane concentration in biogas is 
generally considered to be between 50% and 70% (Monlau et al., 2015), 
and a value of 60% was assumed for this study. 

When ADM1 is used to model the anaerobic digestion of a substrate, 
calibration is required to allow the model to adjust to the system. For 
example, Ozkan-Yucel and Gökçay (2010) recorded data from a waste-
water treatment plant for 375 days and used the initial 150 days to 
calibrate the model. Other researchers modelled a start-up phase where 
the initial coefficient values for ADM1 were taken from a digester at 

Table 2 
Model inputs and their associated values and references.  

Parameter Definition Units Value Reference 

Shredder: 
D Screen size mm 25 Bitra et al. (2009) 
N Motor speed rpm 1440 Case Study Plant 

Report 
a Coefficient – 20.3836 Bitra et al. (2009) 
b Coefficient – 5.1879 

× 10− 1 
Bitra et al. (2009) 

c Coefficient – 8.9192 Bitra et al. (2009) 
d Coefficient – 1.3455 

× 10− 1 
Bitra et al. (2009) 

e Coefficient – 2.4206 
× 10− 1 

Bitra et al. (2009) 

f Coefficient – 2.4531 
× 10− 1 

Bitra et al. (2009) 

g Coefficient – 3.9630 
× 10− 4 

Bitra et al. (2009) 

h Coefficient – 2.2116 
× 10− 2 

Bitra et al. (2009) 

i Coefficient – 2.3247 Bitra et al. (2009) 
Digester: 
cw Specific heat capacity 

of water 
kJ/ 
kgK 

4.2 
Engineering 
ToolBox (2004c) 

cS Specific heat capacity 
of substrate 

kJ/ 
kgK 

2.16 
Manjunatha et al. 
(2020) 

TD Temperature inside 
the digester 

◦C 38 Case Study Plant 
Report 

TF Temperature of 
substrate entering the 
digester 

◦C 30 Assumed 

rc Radius of the coil 
around the digester in 
which hot water 
circulates 

m 0.02 Case Study Plant 
Report 

hc Length of the coil 
around the digester in 
which hot water 
circulates 

m 50 Case Study Plant 
Report 

hwater Convention heat 
transfer coefficient of 
flowing water 

W/ 
m2K 

1000 
Engineering 
ToolBox (2003c) 

ρH2O l Density of water kg/m3 1000 
Engineering 
ToolBox (2003b) 

Tw1 Initial temperature of 
water in the hot water 
tank 

◦C 25 Assumed 

rd Radius of the digester m 1.798 Case Study Plant 
Report 

hair Height of the digester W/ 
m2K 

0.265 
Engineering 
ToolBox (2003a) 

Tamb Temperature of 
ambient air outside 
the digester 

◦C 25 Assumed 

ρs Density of substrate kg/m3 800 
TUHH et al. (2018) 

V_dig Total volume of the 
digester 

m3 20 Case Study Plant 
Report 

V_liq Volume of the liquid 
part of the digester 

m3 15 Case Study Plant 
Report 

Storage: 
VBLMAX Maximum storage 

capacity of the 
balloon 

m3 240 Case Study Plant 
Report 

H2S Scrubber: 
H2Sin Concentration of H2S 

in biogas entering the 
scrubber 

mg/ 
m3 

485 
Kuo and Dow (2017) 

H2Sout Concentration of H2S 
in biogas leaving the 
scrubber 

mg/ 
m3 

300 Case Study Plant 
Report 

ηabsrb % 0.2 
Pagliai and Di Felice 
(2015)  

Table 2 (continued ) 

Parameter Definition Units Value Reference 

Removal efficiency of 
the scrubber 
adsorbent 

Cabsrb Cost of a kilogram of 
adsorbent 

$/kg 0.87 
Abatzoglou and 
Boivin (2008) 

H2O Condenser: 
BH2O Water vapour content 

in biogas 
% 0.05 

Mamun and Torii 
(2017) 

ρH2O v Density of water 
vapour 

kg/m3 0.051 
Engineering 
ToolBox (2004a) 

PS Saturation vapour 
pressure of biogas 

mmHg 37.7 Engineering 
ToolBox (2004b) 

Tdew Dew point 
temperature of water 

◦C 33 
Engineering 
ToolBox (2004b) 

Energy Cost: 
Celec Cost of electricity in 

India 
$/kWh 0.111 

GlobalPetrolPrices 
(2021)  
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steady state, with the same inoculum and substrate additions, as the 
digester in their system (Fatolahi et al., 2020). Poggio et al. (2016) set up 
an experimental 2.4 L semi-continuous digester where they gradually 
increased the organic loading rate (OLR), for the first 80 days to allow 
the digester to settle, before starting to record biogas yields. The 
experiment was ran for 142 days in total. When the experiment was 
modelled in ADM1, a similar approach was followed where the OLR was 
gradually increased, to calibrate ADM1 for 80 days, before comparing 
the biogas yields with the experimental values. A similar approach to 
Poggio et al. (2016) was used in this study where the substrate feeding 
rate in the ADM1 model was gradually increased for 30 days, for both 
March and July, until the required substrate feeding rates on the first 
days of those months was reached. After these initial 30 days of 
adjusting the model to the flowrates used in the case study plant, the 
model results were compared with the measured data on the first days of 
both March and July. The flowrate values used to gradually adjust the 
model to the substrate additions, for March and July, are shown in the 
supplementary material Tables S3 and S4. Feedstock flow rate was used 
as the OLR was not known. The volume of the substrate entering the 
digester was determined by dividing the substrate feeding rate by the 
density of shredded food waste (ρs) (TUHH et al., 2018). The liquid and 
total volume of the digester were taken from the case study report to be 
were 15 m3 and 20 m3, respectively (see Table 2). 

4.1.3. Balloon storage 
Before the system could be optimised, the amount of biogas in the 

balloon on day 0, for both March and July, is determined. This was done 
by subtracting the biogas consumed from the balloon VC from the biogas 
entering the balloon VBS on day 1, as shown in supplementary materials 
Tables S1 and S2. This value was used to determine the amount of biogas 
in the balloon on day 0. 

VBL(0)=
{
VBLMAX − (VBS − VC), (VBS − VC) ≥ 0
− (VBS − VC), otherwise (7)  

where, VBL is the level of biogas in the balloon (m3) at time t = 0 and 
VBLMAX is the maximum balloon capacity (m3). 

4.1.4. Hydrogen sulphide scrubber 
The mass of H2S removed by the scrubber in a day was determined 

using Equation (8). As shown in Table 2, the concentration of H2S 
entering the scrubber was taken from literature as 323 ppm (485 mg/ 
m3), as that value could not be determined from ADM1. The concen-
tration of H2S in the biogas when leaving the scrubber was assumed to 
be 200 ppm (300 mg/m3). This was the limit set by the local environ-
mental protection agency and assumed to be met by the scrubber. 

mH2S =(H2Sin − H2Sout)VBP110− 6 (8)  

where, mH2S is the mass of the H2S that needs to be removed (kg/day), 
H2Sin and H2Sout are concentrations of H2S in the biogas entering and 
leaving the scrubber (mg/m3) and VBP1 is the volume of biogas produced 
by the digester (m3/day). 

The removal efficiency of the adsorbent was used to determine the 
mass of adsorbent required in a day to remove the H2S. 

madsrb =
mH2S

ηabsrb
(9)  

where, madsrb is the mass of adsorbent required (kg/day) and ηabsrb is the 
removal efficiency of the adsorbent (%). The cost associated with 
scrubbing off the required H2S (CH2S) was determined by multiplying the 
mass of adsorbent required with the cost of a kilogram of adsorbent 
(Cabsrb). 

4.1.5. Water condenser 
The mass of water to be removed from the biogas is given by, 

mH2O =VBP2BH2OρH2O v (10)  

where, mH2O is the mass of water in the biogas VBP2 (kg/day), VBP2 is the 
volume of biogas entering the condenser (m3/day), BH2O is the water 
content in biogas (%) and ρH2O v is the density of water vapour (kg/m3) 
taken from Engineering ToolBox (2004a), assuming that the tempera-
ture of biogas is 40 ◦C. 

By assuming that the biogas entering the scrubber is at atmospheric 
pressure, the saturation vapour pressure (PS) of biogas is determined by 
multiplying the atmospheric pressure with the percentage of water in 
biogas. The exact percentage of water in the biogas, when the biogas was 
at 38 ◦C, was not known. Hence, it was assumed that the water content 
in the biogas was 5%, as reported by Al Mamun and Torii (2017) to be 
the water content in biogas when it is at 32 ◦C. 

Once the PS was known, the PS against temperature table (Engi-
neering ToolBox, 2004b) was used to determine the dew point tem-
perature of water (◦C) at that PS. The energy needed to cool the biogas to 
that dew point temperature was then determined using Equation (11). 

Econdenser =mH2Ocw(TD − Tdew) (11)  

where, Econdenser is the cooling energy needed to condense water out of 
biogas (kJ/day) and Tdew is the dew point temperature of water (◦C). 

4.2. Defining the utility functions 

For the months of March and July 2017, two optimisation scenarios 
are considered: (i) minimise flared biogas and unmet gas demand, and 
(ii) minimise energy cost along with flaring and unmet gas demand. The 
unmet gas demand is determined by calculating the volume of LPG used. 
The individual objective functions are normalised before being added 
together so that a dimensionless utility value can be obtained. As stated 
by Grodzevich and Romanko (2006), objective functions can be nor-
malised by dividing their optimised values by their absolute values at 
current design. This approach is followed in this study where the amount 
of biogas flared, LPG consumed and energy cost are divided by their 
values at current design and then added together, with equal weightings, 
to give a single utility function value as shown in Equations (12) and 
(13). 

The amount of biogas flared in the current system is given in the raw 
plant data, shown in supplementary material Tables S1 and S2 and the 
energy cost of the system is calculated using the substrate feeding rate 
values given in those tables. However, since no LPG was consumed for 
the months of March and July, the LPG objective function was being 
divided by zero in Equations (12) and (13). To overcome this issue, as 
suggested by Chang (2015), non-zero values can be assumed for those 
objective functions at current design. 

Equations (12) and (13) show the utility functions U1 and U2. 
U1: 

minf
(
mf2

)
=
∑

x∈R

VBF
(
mf2

)

|VBF(raw)|
+
VLPG

(
mf2

)

|VLPG(raw)|
0<mf2 < 1000, x ∈ R (12) 

U2: 

minf
(
mf2

)
=
∑

x ∈R

VBF
(
mf2

)

|VBF (raw)|
+

VLPG
(
mf2

)

|VLPG (raw)|
+

CEC
(
mf2

)

|CEC (raw)|
0<mf2 < 1000, x

∈ R
(13)  

where, VBF is the volume of biogas flared (m3/day), VLPG is the volume of 
LPG required (m3/day) and CEC is the energy cost of the system 
($/m3biogas). VBF(raw), VLPG(raw) and CEC(raw) are the biogas flared 
(m3/day), volume of LPG required (m3/day) and energy cost ($/m3 

biogas), respectively, of the current system. 
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4.2.1. System storage, flaring and gas consumption logic 
The balloon level VBL, volume of biogas flared VBF and the volume of 

LPG required to meet the unmet gas demand VLPG during the optimisa-
tion study were determined using Equations (14)–(16), respectively. 

VLPG(t) =
{
VD − ((VBP3 + VBL(t − 1)), VD > ((VBP3 + VBL(t − 1))
0, otherwise , t

= 1, 2…n
(16)  

where, VD is the gas demand (m3/day) and VBP3 is the volume of biogas 
leaving the condenser (m3/day). 

4.2.2. Energy cost 
Equation (17) was used to determine the energy cost of the system. 

CEC =

((

Eshredder +
Eheatwater + Eloss + Econdenser

3600

)

Celec +CH2S

)/

VBP1 (17)  

where, Celec is the cost of electricity in India ($/kWh). .

4.3. Setting up the optimisation problem 

Fig. 2 shows how the optimisation problem was formulated and 
solved. For all optimisation scenarios, a run time of around 45 min, 
running on Intel Broadwell nodes (Intel ® Xeon ® CPU E5-2683 v4 @ 
2.10 GHz) was recorded. 

5. Results and discussion 

This section presents and discusses the results obtained when the 
performance of ADM1 was compared with measured data. Optimal 
substrate feeding rate values obtained, for March and July 2017, when 
the biogas flared and unmet gas demand are minimised (U1) and energy 
cost is also minimised (U2) are shown. Optimised objective function 
values and the optimal substrate feeding rates are compared with the 
current performance of the system to assess the performance of the 
optimiser. 

5.1. Comparison of predicted biogas yield with measured data 

The graphs in Fig. 3a and b compare the predicted biogas yield with 
the measured data for the months of March and July 2017. 

The results show that the predicted biogas yield agrees well with 
measured data for both July and March. In March, ADM1 slightly under 
predicts the biogas yield and in July there is an over prediction. This is 
most likely due to variations in feedstock composition, as a single TS and 
VS value were used in the ADM1 model, and therefore more detailed and 
frequent feedstock characterisation would be needed to improve the 
accuracy of ADM1. Neglecting any outliers using the interquartile range 
method, the mean percentage error between the daily predicted and 
measured data values is 5.7% for March (mean absolute error of 6.7 m3) 
and 17.8% for July (mean absolute error of 9.8 m3). Further discrepancy 
between the results can be due to a number of other assumptions made 
in the model, e.g., determining the substrate feeding rate without 
knowing the OLR, uncertainty regarding the digester operational vari-
ables, percentage methane content in the biogas and the substrate 
feeding rate values used to calibrate ADM1 for 30 days before the start of 
the month. 

To ensure that the predicted model matches the plant data well, the 
model performance should be compared for the entire year and not 
specific months and real-time recordings of digester operational vari-
ables such as temperature and pressure are needed to model the 
behaviour of the digester more accurately. If measured data for other 
parameters such as the volumetric production of carbon dioxide (CO2), 
hyrdogen (H2), total volatile fatty acids (VFAs), valeric, propionic, 
butyric and acetic acid were also available, they can be used to assess the 
performance of the individual digestion stages and to determine the 
stages that are being modelled well and the ones that are not. This can 
help to identify the ADM1 coefficients that need to be more accurately 
determined. 

5.2. Substrate feeding rate optimisation 

This section shows the optimised results obtained, for both March 
and July 2017, when the utility functions were minimised and compares 
the results to the present-day performance of the system for those 
months. 

VBL(t)=

⎧
⎨

⎩

0, VD ≥ VBP3 + VBL(t − 1)
VBLMAX , VD = 0 and (VBP3 + VBL(t − 1)) ≥ VBLMAX
(VBP3 + VBL(t − 1)) − VD, otherwise

, t = 1, 2…n (14)   

VBF(t) =

⎧
⎪⎪⎨

⎪⎪⎩

VBP3, VD = 0 and VBL(t − 1) = VBLMAX
(VBP3 + VBL(t − 1)) − VBLMAX , VD = 0 and (VBP3 + VBL(t − 1)) > VBLMAX
((VBP3 + VBL(t − 1)) − VD − VBLMAX , VD < (VBP3 + VBL(t − 1)) − VBLMAX
0, otherwise

, t = 1, 2…n (15)   
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5.2.1. Optimised result for March 2017 
Fig. 4a–e shows the result for March 2017 when the substrate feeding 

rate was optimised for U1 and U2 and compares the optimised system 
performance with the current performance. 

According to the measured data, daily biogas production from the 
system is between 100 m3 and 120 m3; however, since the gas demand is 

low, a large quantity of the biogas is flared (see Fig. 4a) (approximately 
60 m3 of biogas is flared on both the 7th and 8th of March). The anaerobic 
digestion process is commonly considered to be carbon neutral (Larsen 
et al., 2018); however, combustion of biogas can lead to net GHG 
emissions to the atmosphere (US EPA, 2017). According to Oil and Gas 
Authority (2020), 1 m3 of natural gas flared equates to 30 g of CO2-eq 

Fig. 3. Comparison of the predicted biogas yield with measured data for March (a) and July (b) 2017.  

Fig. 2. Flowchart to show how the optimisation scenarios were solved to determine the optimum substrate feeding rate for each month.  
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Fig. 4. Comparison of the current system performance (a) for March 2017 with the optimised results; U1 – minimisation of biogas flaring and unmet gas demand (b 
and c) and U2 – minimisation of the energy cost along with flaring and unmet gas demand (d and e). 
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Fig. 5. Comparison of the current system performance (a) for July 2017 with the optimised results; U1 – minimisation of biogas flaring and unmet gas demand (b and 
c) and U2 – minimisation of the energy cost along with flaring and unmet gas demand (d and e). 
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emissions. Since, biogas is taken to be 60% methane, flaring around 60 
m3 of biogas in a day equates to 1080 g of CO2-eq emissions. India is the 
third highest CO2 emitter in the world (Statista, 2021a) however, apart 
from different state governments imposing their own taxes to capture 
the cost of negative externalities, India does not have a uniform carbon 
taxation system across the country (Raghunathan, 2021). Hence, most 
plant owners find it economical to flare excess biogas. If this plant was 
located in Sweden instead, a country which imposes the highest carbon 
tax in the world (137 $/tonne CO2-eq emissions (Statista, 2021b)), 1080 
g of CO2-eq emissions would cost the plant owners $0.15 everyday. 

As seen from Fig. 4b, when the biogas flared and unmet gas demand 
were minimised, the optimiser ensures that the demand is met by the 
balloon and the substrate is only added when the balloon is empty. 
However, when the energy cost is also minimised, the system produces 
more biogas than needed to reduce the energy cost. This causes an in-
crease in flaring, but only results in a small reduction in energy cost. This 
result signifies that the definition of the energy cost function needs to be 
considered carefully and could include an environmental penalty linked 
with flaring. 

5.2.2. Optimised result for July 2017 
Fig. 5a–e shows the result for July 2017 when the substrate feeding 

rate was optimised for U1 and U2 and compares the optimised system 
performance with the current system performance. 

When the first utility function is minimised (Fig. 5b and c), the 
amount of biogas flared is similar to the current system. This is because 
less flaring is recorded in July in the first instance as seen in Fig. 5a and 
supplementary materials tables S1 and S2 due to empty storage at the 
start of the month. Similar to March, when the energy cost is added as an 
objective function, flaring increases in comparison to the first optimi-
sation scenario, due to an increase in the amount of biogas produced. 

5.2.3. Comparison between current and optimised system 
The overall performance of the optimisation algorithm is evaluated 

by comparing the substrate feeding rate, biogas flared, LPG consumption 
and energy cost in the current and optimised systems (Table 3). When 
the substrate feeding rate is optimised, the quantity of substrate used in 
March is almost half of what is currently used and for July it is almost a 
third less. Significant reductions in biogas flaring have been achieved for 
March; from the present-day flaring of 886.62 m3 it was reduced to 
88.87 m3 for U1 and to 281.27 m3 for U2. In July, the present day flaring 
of 73.79 m3 was reduced to 68.49 m3 for U1 and increased to 180.11 m3 

for U2. Flaring is higher in U2, for both March and July, as extra biogas 
is produced to reduce the energy cost. An increase in flaring, from the 
present-day performance of the system, is seen in U2 for July and 
similarly even though the unmet gas demand was zero for both March 

and July in the current system, an increase of 9.71 m3 is seen in U1 for 
March. These results show that even though significant improvement in 
system performance i.e. reduction in the amount of feedstock used and 
biogas flared were achieved, there were instances where flaring and 
unmet gas demand slightly increased. 

As energy cost values for the current system were not available, a 
direct comparison cannot be made between the current energy cost of 
the system and the optimised results. Between U1 and U2, the energy 
cost reduces from 0.344 USD/m3 biogas to 0.304 USD/m3 biogas for 
March and from 0.440 USD/m3 biogas to 0.430 USD/m3 biogas for July. 
This suggests that the optimisation scenario U2 is not achieving a large 
improvement in system performance in comparison to U1. This can be 
improved by either redefining the energy cost objective function or by 
assigning different weightings to each of the objective functions in U2. 
An alternate method could be to explore the economic value of other 
products from the system such as composting the excess feedstock. Ac-
cording to Raviprasad (2015), compost produced from municipal solid 
waste (MSW) can act as a soil enriching agent and can be sold to private 
parties and government agencies at a rate of INR 3500 per tonne and 
between INR 2100 and 2700 per tonne, respectively. If food waste from 
this system is assumed to be the same as MSW, for March, this can equate 
to a profit of INR 36,555 for U1 and INR 27,287 for U2. 

6. Conclusions and further work 

To conclude, this study investigated modelling and optimising a case 
study AD system for producing gas for cooking. By optimising the sub-
strate feeding rate, the volume of biogas flared, unmet gas demand and 
energy cost were minimised. When the predicted biogas yield was 
compared with measured data, it was found that ADM1 was able to 
model the digester performance well and the difference in the results 
was due to assumptions made regarding the digester. Results from the 
optimisation study show that when the amount of biogas flared and the 
unmet gas demand are minimised, significant reductions in gas flaring 
can be achieved. However, the energy cost objective function, which 
was based on maximising biogas yield, needs further evaluation as this 
can result in increasing surplus gas production and thus flaring. This 
study demonstrates how objective functions should be specific to an 
anaerobic digestion system, based on its setup and design, and that 
maximising the biogas yield might not always be desirable. 

Further work is needed to improve the performance of ADM1 and the 
optimisation results. Feedstock used in the case study system should be 
better characterised so that accurate ADM1 coefficients can be deter-
mined. Prolonged periods of plant data will also help to better assess the 
predictive capabilities of ADM1 and allow for the optimiser to run for 
longer times so that its performance can be evaluated in different sce-
narios. Formulation of the utility functions can be improved by assigning 
weightings to individual objective functions and minimising the objec-
tive functions individually first and then normalising them by the dif-
ferences in their optimal values over the Pareto front. The energy cost 
objective functions need to be better defined, such as adding a cost 
penalty to flaring or assigning a cost to unmet gas demand. 

To extend this work further, the performance of the system when 
alternate optimisation approaches are assessed, such as increasing the 
size of the balloon to store the excess biogas, converting all of the biogas 
to electricity or liquefying and selling the biogas instead, can be 
considered. Further pre and post treatment technologies could be 
included so that the effect of alternate technologies and/or adding or 
removing components from the system on the objective functions can be 
analysed. The model presented can be further expanded to include 
multiple decision variables, objective functions and to improve the 
performance of other case study systems. 
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Table 3 
Comparison between the current system performance and the optimised system 
performance.  

Month Scenarios Substrate 
Added mf2 

(kg) 

Biogas 
Flared VBF 

(m3) 

LPG 
Needed 
VLPG (m3) 

Avg. Energy 
Cost CEC 

(USD/m3 

biogas) 

March Present- 
day 

23,065 886.62 0 – 

U1 12620.78 
(↓10444.22) 

88.87 
(↓797.75) 

9.71 
(↑9.71) 

0.344 

U2 16439.53 
(↓6625.47) 

281.27 
(↓605.35) 

0 (no 
change) 

0.304 

July Present- 
day 

16,735 73.79 0 – 

U1 10175.34 
(↓6559.66) 

68.49 
(↓5.3) 

0 (no 
change) 

0.440 

U2 11177.70 
(↓5557.3) 

180.11 
(↑106.32) 

0 (no 
change) 

0.430  
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Akbaş, Halil, Bilgen, Bilge, Melih Turhan, Aykut, 2015. An integrated prediction and 
optimization model of biogas production system at a wastewater treatment facility. 
Bioresour. Technol. 196, 566–576. https://doi.org/10.1016/j.biortech.2015.08.017. 

Ashraf, R.J., Nixon, J.D., Brusey, J., 2021. Optimising Feedstock Flowrate to Improve the 
Performance of an Existing Anaerobic Digestion System. In , 0–12.  

Balaji, S., Sakthivel, M., Pasupathy, S.A., Kumar, Karthick, Sukanya, G., 2018. Multi 
objective optimization of anaerobic digestion of poultry litter using taguchi grey 
relational analysis. In: Applied Engineering Research, vol. 13, pp. 5216–5222. 
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