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Abstract—In this paper, a new method for accelerating the 2D direct Convolution operation on x86/x64 processors is presented. It
includes efficient vectorization by using SIMD intrinsics, bit-twiddling optimizations, the optimization of the division operation,
multi-threading using OpenMP, register blocking and the shortest possible bit-width value of the intermediate results. The proposed
method, which is provided as open-source, is general and can be applied to other processor families too, e.g., Arm.
The proposed method has been evaluated on two different multi-core Intel CPUs, by using twenty different image sizes, 8-bit integer
computations and the most commonly used kernel sizes (3x3, 5x5, 7x7, 9x9). It achieves from 2.8× to 40× speedup over the Intel IPP
library (OpenCV GaussianBlur and Filter2D routines), from 105× to 400× speedup over the gemm-based convolution method (by
using Intel MKL int8 matrix multiplication routine), and from 8.5× to 618× speedup over the vslsConvExec Intel MKL direct convolution
routine. The proposed method is superior as it achieves far fewer arithmetical and load/store instructions.

Index Terms—Convolution, Gaussian blur, Code Optimization, Vectorization, AVX, OpenMP, OpenCV, Intel MKL, Intel IPP, High
Performance Computing (HPC), image processing

F

1 INTRODUCTION

THE 2-D Convolution is a widely used operation in image
and video processing for filtering, smoothing, sharp-

ening, edge detection and differentiation. Furthermore, it
is the most computationally intensive building block in
Convolutional Neural Networks (CNNs).

Speeding up the convolution operation is a challenging
and non-trivial task. This is due to two main reasons. First,
the optimization process must take into account multiple
parameters: input image dimensions and image bit-depth,
kernel size, kernel values, and target hardware architec-
ture. Second, modern compilers fail to provide optimized
code, therefore different manually vectorized (e.g., using
SSE/AVX intrinsics) and optimized routines are needed,
and most importantly these routines must be customized
to the above mentioned parameters.

Three main strategies are typically used to speedup the
convolution operation: a) optimizing the direct convolution
method [1], e.g., Intel IPP and Intel MKL libraries provide
such routines, b) using the highly optimized Matrix-Matrix
Multiplication (MMM) routines of Intel MKL or BLAS op-
timized libraries [2] [3], c) using either the Fast Fourier
Transform (FFT) [4] or the Winograd algorithm [5] [6].
According to [7] an efficient direct convolution implementa-
tion achieves higher performance than the MMM-based and
FFT based convolution methods on CNNs, as the non-direct
methods introduce computational and memory overheads.
The proposed method uses the direct method.

The aim of this work is to speedup the 2D convolution in
the context of image and video processing algorithms. The
extension of the proposed method in CNNs is left for future
work.

To speedup the convolution operation, CPU vendors
provide optimized libraries such as Intel IPP (Integrated
Performance Primitives) and Intel MKL that are commer-
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cial proprietary libraries working only on Intel processors.
OpenCV (Open Source Computer Vision), which is a very
popular library of programming functions for real time
computer vision applications, uses Intel IPP (specified in the
installation phase) to accelerate its routines on Intel CPUs.
Its optimized routines use multiple threads and AVX/SSE
intrinsics (IPP uses the direct method). Intel MKL provides
a set of routines to efficiently execute the direct convolution
operation for single and double precision real and complex
data. Furthermore, Intel MKL provides highly optimized
int8/int16/FP32 MMM routines that are widely used to
compute the convolution layer of CNNs.

In this paper, the design and implementation of the
2D convolution operation on x86/x64 processors is deliv-
ered, for different kernel sizes, kernel values, vectorization
technologies, number of physical CPU cores, image bit-
depths and image sizes as well as for separable kernels.
The proposed method achieves far fewer arithmetical and
Load/Store (L/S) vector instructions than the state of the
art libraries/methods as it includes efficient vectorization by
using SIMD intrinsics, bit-twiddling optimizations, efficient
vector division, register blocking and the shortest possible
bit-width value for the intermediate results. In particular,
our method offers high SIMD utilization.

Fig. 1 shows the instruction gains over the Intel libraries
for an 1024x1024 image. The results are extracted by using
the Valgrind tool [8]. The MMM-based method gives the
highest number of instructions mainly because of the extra
computation/memory overhead of the im2col operation (it
is explained in Section 2). The two direct methods achieve
fewer instructions as there are no overheads.

The proposed method is evaluated over a) the Intel IPP
/ OpenCV and in particular GaussianBlur and Filter2D
routines [9], b) the MMM-based convolution method, by
using Intel MKL ’cblas gemm s8u8s32()’ int8 MMM rou-
tine [10], c) ’vslsConvExec’ Intel’s MKL direct convolution
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routine (it does not support integer data, thus floating point
(FP) input data are used) [11], on two multi-core Intel
CPUs, by using a wide range of 8-bit greyscale images
and the most commonly used kernel sizes (3x3, 5x5, 7x7,
9x9). Our method achieves high performance and energy
consumption gains in all cases.

The main contributions of this paper are: a) a new
method for computing the 2D convolution operation on
modern CPUs, achieving far fewer arithmetical and L/S
instructions compared to the state of the art software com-
mercial libraries, b) a research work providing the theoreti-
cal background and source code 1, to efficiently design and
implement the 2D convolution operation on different CPUs
and for different kernels and images, c) an experimental
procedure showcasing that the proposed method achieves
high performance gains on two different CPUs.

The remainder of this paper is organized as follows.
In Section 2, the related work is reviewed. The proposed
method is presented in Section 3, while the experimental
results are discussed in Section 4. Finally, Section 5 is
dedicated to discussion while Section 6 is dedicated to
conclusions and future work.
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Fig. 1: Instruction gain over Intel MKL/IPP libraries

2 RELATED WORK

The main strategies that have been followed to improve
the performance of the convolution operation on CPUs can
be classified into three main groups. The proposed method
belongs to the first group.

The first group of works uses the direct algorithm. The
main optimizations used are vectorization, improving the
memory layout to enable vectorization, parallelization (by
using OpenMP) and register blocking. Although paralleliza-
tion can be easily applied by using OpenMP pragmas, the
efficient application of vectorization is far more challenging
and necessitates the manual development of low-level soft-
ware; furthermore, if applied efficiently, it gives by far the
highest performance gain.

There are three main vectorization strategies for the
convolution operation [12] [13] [14] [7]. The first strategy
(aka coefficient propagation) broadcasts each kernel’s scalar
coefficient to a separate vector variable [12] [13] [14] (each
vector variable has multiple copies of just one scalar co-
efficient). In the second strategy, all the scalar coefficients
which are located in a kernel’s row are copied into a vector

1. https://github.com/kelefouras/2D Convolution

variable, multiple times [12] [13]. According to [12], the
first method above is faster than the second (when using
16/32-bit instructions), as it achieves fewer arithmetical
instructions. The third strategy, which is used in CNNs
only, vectorizes the depth or filter loop [1] [15] [7], and
data are processed in a way similar to Method2; note that
in CNNs the convolution layer includes three more loops
(both the input feature map and the weights are tensors) and
thus a comparison with our method is hard to be realized.
Most of the works use 32-bit FP instructions, some use 16-
bit integer instructions [12] [13] [14] [16], but no related
work uses 8-bit instructions on x86/x64 processors. 8-bit
implementations are far more challenging as first, there is
no x86/x64 8-bit vector multiplication instruction, second,
there is no vector instruction for integer division, and
third, packing/unpacking becomes complicated and extra
instructions are required. Thus, none of the current methods
can be directly extended to 8-bit (serious modifications are
required), e.g., the first vectorization strategy cannot be
efficiently implemented in 8-bit because of the first reason
above.

To the best of our knowledge, the proposed method
achieves fewer L/S and arithmetical instructions compared
to all the currently published methods for the following
reasons. First, it leverages the existing available 8-bit integer
instructions. Second, the proposed method efficiently packs
and stores the output pixels in memory; in Subsection
4.1.3, we show that this step boosts performance by about
x2.5. Third, it uses optimizations that the existing works
do not; the number of instructions is further reduced by
optimizing the division operation and the bit-width of the
intermediate results (in Subsection 4.1.3, we show that these
optimizations boost performance by about x1.6, each).

In [17], a parallel implementation of Harris corner
detection algorithm is proposed for NUMA architectures.
In [18], the Harris operator is optimized using a number
of optimizations such as vectorization, data interleaving
and parallelization, on both x86/x64 and Arm processors.
In [19], different ways of vectorizing the 3D convolution
are shown. In [20], a white paper for a Gaussian Blur
implementation on Intel processors is proposed, using FP
computations. In [21], a performance comparison is applied
between x86 SSE and Arm NEON intrinsics for four image
processing routines, including Gaussian Blur. In [15], au-
thors propose a method to accelerate CNNs by using Arm
NEON intrinsics and 16-bit computations. In [22], the 2D
convolution is optimized by using AVX512 and OpenMP. In
[23], authors study the vectorization process in CNNs, using
Matlab code. Last, in [24], an implementation for canny
edge detection algorithm is delivered. The proposed method
achieves fewer L/S and arithmetical vector instructions than
[17-24] for the three reasons explained above.

In [1], the CNN convolution kernels are implemented
via a dynamic compilation approach on x86/x64 processors.
In [25], [1] is extended to compute the 1D dilated convo-
lution. In [7], authors optimized the convolution layer of
CNNs. [1] and [7] cannot be directly applied on 8-bit.

Intel IPP and Intel MKL provide high performance direct
methods for computing the convolution operation; these
optimized routines have been implemented by using AVX
and multiple threads. A comparison with these methods is
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provided in Section 4.
Last, there are methods that apply auto-vectorization by

using image processing domain-specific languages (DSL)
such as Halide [26] [27].

The second group of works implement the convolution
operation by using the highly optimized Matrix-Matrix
Multiplication (MMM) routines of Intel MKL and BLAS
optimized libraries [2] [3]. In these methods, convolution
is implemented on top of MMM, leveraging the aforemen-
tioned highly optimized libraries. This approach is mainly
used in CNNs and has been employed in mainstream deep
learning frameworks [3].

MMM-based algorithms rely on ’im2col’ or ’im2row’
memory transformations [2] to convert the Convolution
problem into an MMM problem, introducing a non-trivial
overhead in memory storage and bandwidth, which is pro-
portional to the kernel size. In the 2D convolution case, the
’im2col’ / ’im2row’ operation copies the N×M input image
to a new 2D array of size (N ×M)× (k× k), where k× k is
the kernel size. This is a slow and memory-bound operation.
Furthermore, the MMM operation is applied on the new
tall and skinny matrix whose dimensions are dissimilar
from the matrices arising from traditional high performance
computing (HPC) applications and according to [7] the
MMM routines do not achieve their peak performance in
this case. Last, the memory size needed is k × k larger
compared to the direct method.

An indirection buffer is introduced in [2] to avoid
reshuffling the data. In [3], im2col conversion and MMM
packing operations are merged to one, reducing the mem-
ory footprint. In [28], an efficient CPU implementation
for convolution-pooling in CNNs is presented, by using
convolution interchange and vectorization.

To better utilize the CPU’s vector extensions in CNNs,
quantization is used. In [29], authors optimize CNNs by
using extremely low-bit quantization on ARM CPU (from
2 up to 8-bit) for the MMM and Winograd methods. Intel
oneAPI Deep Neural Network Library (oneDNN) [30]
supports 8-bit quantization and three algorithms (direct,
MMM-based and Winograd-based).

Regarding the third group, either the Fast Fourier Trans-
form (FFT) [4] or the Winograd algorithm [5] [6] are used,
to reduce the number of FP computations required. The
Winograd-based methods are mainly used for small kernel
sizes (e.g., 3x3), while the FFT-based methods are mainly
used for larger kernel sizes. However, the reduced number
of operations does not always align with performance as
several challenges make it hard to fully utilize the hardware
resources on modern CPUs. The Winograd’s based con-
volution algorithms cannot efficiently utilize the memory
hierarchy and the wide vector registers that modern CPUs
support [6]. FFT-based approaches suffer from significant
performance overheads too [7]. Note that both algorithms
suffer from a lack of precision.

In [31], a distributed implementation for the IBM Cell
Broadband Engine processor is proposed. [5] extends and
optimizes the Winograd-class of convolutional algorithms to
the N-dimensional case of CNN on x86/x64 CPUs. In [6],
another Winograd implementation is presented for many-
core CPUs. In [32], a new class of Winograd algorithms for
integer arithmetic is presented.

3 PROPOSED METHOD

The inputs to our method are the following: kernel size,
kernel values, vectorization technology (e.g., AVX,SSE),
number of physical CPU cores, image bit-depth and im-
age dimensions; for different parameters, different code
implementations are proposed. The proposed method is
broken down into seven Subsections. For ease of presenta-
tion, we assume AVX technology (256-bit operations), 8-bit
input/output images and a 2D kernel of size 3× 3.

3.1 Bit-width selection of the Intermediate Results (IRs)
In 2D convolution, a k × k kernel ’slides’ over the input
image, performing k×k multiplication, (k×k−1) addition
and 1 division (integer coefficients are assumed here) oper-
ations and the result is stored into a single output pixel. A
naive implementation is shown on the left of Fig. 2 (for ease
of presentation, the border pixels are not computed here).

Most of the image formats use 8-bit pixels and there-
fore to achieve maximum performance 8-bit processing is
needed so as to fully utilize the wide vector instructions.
This means that the ’input’, ’output’ and ’coef’ arrays in
Fig. 2, should be 8-bit. However, ’tmp’ variable is 32-bits.

Given that the range of the output pixel value is always
within [0, 255] (uses 8-bits), the range of the ’tmp/divisor’
value in Fig. 2, should always be within 0 ≤ tmp/divisor ≤
255 and as a consequence 0 ≤ tmp ≤ 255 × divisor. This
means that ’tmp’ needs to be defined as a 32-bit variable for
large ’divisor’ values only (large ’coef’ values give large
’divisor’ values); note that large ’coef’ and ’divisor’ values
can be avoided in many cases by scaling down both values.
The kernel values affect the optimization process.

If all the kernel values in Fig. 2 ( ’coef’) are positive,
then ’tmp’ can be defined as an unsigned 16-bit variable
([0, 65535]), if divisor ≤ 257. Otherwise (if divisor � 257),
’tmp’ should be defined as a 32-bit variable. If the kernel
contains negative values too, then ’tmp’ can defined as a
signed 16-bit variable, if divisor ≤ d, where 128 ≤ d ≺ 257
and d depends on the kernel values; in this case, we cannot
calculate the maximum divisor value without knowing the
exact kernel values.

Conclusion: In most cases, 16-bit IRs bit-width is ad-
equate for kernels of size 3x3 and 5x5; for larger kernel
sizes, 32-bit width is normally needed, depending on the
coefficients’ values. Note that for separable kernels, e.g.,
Gaussian Blur, 16-bit width is adequate for larger kernel
sizes too, as fewer operations are executed in this case;
two 1D kernels are used instead of one 2D (one for the X
and another for the Y dimension), and thus the number of
operations being performed is lower. In Section 4, we show
that 16-bit width provides a speedup from x1.05 to x2.0
over 32-bit width (about x1.5 on average).

Hardware Limitations: Accuracy loss is likely when
using 8-bit inputs, regardless of the IRs bit width; the
reason follows. In x86/x64 processors there is just one 8-
bit vector multiplication instruction available (maddubs);
maddubs, includes both multiplication and addition of
the IRs (Fig. 5). Its first operand is of type unsigned 8-
bit integer (used for storing the pixels), while its second
operand is of type signed 8-bit integer (used for storing
the coefficients); the output contains signed 16-bit integers
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and thus (−32768 ≤ i0 × C00 + i1 × C01 ≤ 32767). When
both maddub’s operand values are near to their maximum
values, an overflow occurs, which leads to accuracy loss.
Given that the maximum value of the input (e.g., i0, i1)
is 255, an overflow will never occur if the sum of each
coefficient pair (e.g., C00+C01) is smaller or equal to 128.

Fig. 2: On the left, a naive implementation of the 3×3 Gaus-
sian Blur algorithm is shown. On the right, the application
of register blocking optimization is shown

3.2 Vectorization
The optimization of the vectorization process is the key
to achieve high performance in convolution operation. The
proposed vectorization method minimizes the number of
arithmetical instructions as well as the number of store
and division operations. It also reduces the number of load
operations; to minimize the number of load operations, the
optimization in Subsection 3.3. must be also applied.

Fig. 3 shows a high level illustration of the proposed
method. For a kernel of size k × k, k vector load op-
erations are needed to load the first working set of the
input image (r0,r1,r2 in Fig. 3). Each vector contains
simd.length/pixel.size pixel elements, e.g., for AVX tech-
nology (256-bit) and 8-bit pixels, each vector contains 32
pixel elements. The first output result is calculated by
processing the first k elements (0:k-1 elements) of the k
previously loaded vector variables, e.g., 0:2 elements in
Fig. 3. The second output result is calculated by pro-
cessing the elements 1:k, the third 2:k+1, etc. Loading
k×(simd.length/pixel.size) pixels and calculating just one
result is very inefficient as first, the hardware vectorization
unit is underutilized, and second, more vector instructions
are required. The two main objectives of the proposed
method are first, to utilize the vector instructions as much
as possible (and as a consequence the number of vector
instructions is reduced), second, to select the appropriate

vector instructions (note that modern CPUs support a rich
instruction set with diverse latency and throughput values).

To meet the first objective, multiple and not one output
results should be computed together. To this end, we fill the
vector coefficients with many copies of the scalar coefficients
(Fig. 4); to calculate out.pixels output results, out.pixels
copies of the scalar coefficients are required. In the general
case, out.pixels copies of the scalar coefficients are needed
(Fig. 4), where out.pixels = b( simd.length/pixel.size

k+1 )c, when
k is odd. For a kernel of size 3× 3, 12 vector coefficients are
used (if all the scalar coefficients are different) (Fig. 4); the
first four vector coefficients (V C00-V C03) are generated
from the first row of the kernel, while the other eight are
generated from the second and third kernel rows, respec-
tively. By packing as many scalar coefficients as possible into
vectors, the overall number of multiplications/additions is
reduced. Note that the overall number of vector coefficients
is k × (k + 1), which becomes too high for kernels of size
7 × 7 and larger, and thus a slightly different algorithm
is proposed in this case (explained later). The reason that
the vector variables in Fig. 4 include a zero after every k
elements lies in the fact that the only 8-bit vector multiplica-
tion instruction available is ’maddubs’ (Fig. 5) and the IRs
should not be mixed. Note that our method is more efficient
when k is even.

Input (NxM) Output (NxM) Kernel (3x3)

r0
r1
r2

V_C00
V_C01
V_C02
V_C03

V_C10
V_C11
V_C12
V_C13
V_C20
V_C21
V_C22
V_C23

32 elements

30 elements

x(r0,r1,r2) (V_C00,V_C10,V_C20) Results for output 0,4,8,12,16,20,24,28

x(r0,r1,r2) (V_C01,V_C11,V_C21) Results for output 1,5,9,13,17,21,25,29

x(r0,r1,r2) (V_C02,V_C12,V_C22) Results for output 2,6,10,14,18,22,26

x(r0,r1,r2) (V_C03,V_C13,V_C23) Results for output 3,7,11,15,19,23,27

out

Vector 
variables

Convolution 
operation

Pack 
results

Fig. 3: High level illustration of the proposed vectorization
method (Algorithm 1) for a kernel of size 3x3

C02 C01 C00 0 C02 C01 C00 0 C02 C01 C00 0 C02 C01 C00 0 C02 C01 C00 0 C02 C01 C00 0 C02 C01 C00 0 C02 C01 C000

C00 C01 C02
C02 C01 C00 0 C02 C01 C00 0 C02 C01 C00 0 C02 C01 C00 0 C02 C01 C00 0 C02 C01 C00 0 C02 C01 C00 0 C02 C01 C00 0

0 0 0 C02 C01 C00 0 C02 C01 C00 0 C02 C01 C00 0 C02 C01 C00 0 C02 C01 C00 0 C02 C01 C00 0 C02 C01 C00 0 0

0 0 0 C02 C01 C00 0 C02 C01 C00 0 C02 C01 C00 0 C02 C01 C00 0 C02 C01 C00 0 C02 C01 C00 0 C02 C01 C00 0 0

C10 C11 C12

C20 C21 C22

Kernel
Coefficients

031 16
V_C00

V_C01

V_C02

V_C03

Fig. 4: Vector coefficients for Algorithm 1. The least signifi-
cant elements are the rightmost.

C02 C01 C00 0 C02 C01 C00 0 C02 C01 C00 0 C02 C01 C00 0 C02 C01 C00 0 C02 C01 C00 0 C02 C01 C00 0 C02 C01 C000

i31 i30 i3 i2 i1 i0

031 16
V_C00

In

Out

Out=_mm256_maddubs_epi16(In, V_C00)

i0*C00+i1*C01i2*C02+ i3*0i30*C02+i31*0

Fig. 5: mm256 maddubs epi16() vector multiplication in-
struction

In the previous paragraph we explained how out.pixels
are calculated together (Fig. 3). These output results need to
be stored k + 1 memory locations apart, and as we will be
showcasing below, this is not efficient as multiple extract
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Algorithm 1 Proposed vectorization algorithm for kernel
sizes 5 × 5 and smaller (16-bit IRs). For presentation pur-
poses the implementation of the 3 × 3 kernel is shown. All
the x86/x64 intrinsics can be found in this link [33].
1: unsigned short int a=65535 //in binary a = (11111111 11111111)2
2: m256i r0,r1,r2,m0,m1,m2,out even, out odd
3: m256i mask1 = set epi16(0, a, 0, a, 0, a, 0, a, 0, a, 0, a, 0, a, 0, a)

//odd positions in mask1 are zero
4: m256i mask2 = set epi16(a, 0, a, 0, a, 0, a, 0, a, 0, a, 0, a, 0, a, 0)

//even positions in mask2 are zero
5: m256i V C[3][4]//Although an array of coeffs is shown here,

we have implemented this by using 12 variables instead
6: for (row = 1; row < N − 1; row ++) do
7: for (col = 30; col <= M − 32; col+ = 30) do
8:
9: //Load 32 8-bit pixels

10: r0 = loadu si256(&input[row−1][col−1])//un-aligned load
11: r1 = loadu si256(&input[row][col − 1])
12: r2 = loadu si256(&input[row + 1][col − 1])
13:
14: //This loop must be fully unrolled to avoid the if-conditions

below
15: for (X = 0;X < 4;X ++) do
16:
17: //Multiply by the mask (16 16-bit results)
18: m0 = maddubs epi16(r0,V C[0][X]) // ’maddubs’ is ex-

plained in Fig.4
19: m1 = maddubs epi16(r1,V C[1][X])
20: m2 = maddubs epi16(r2,V C[2][X])
21:
22: //Vertical addition
23: m0 = add epi16(m0,m1) //16 16-bit additions
24: m0 = add epi16(m0,m2)
25:
26: //Horizontal addition
27: m1 = srli si256(m0, 2) //right shift by 2 bytes (each

element is 2 bytes)
28: m0 = add epi16(m0,m1)
29:
30: //Pack the 16-bit results
31: if (X == 0) then
32: //keep m0 elements in positions 0,2,4,6,8,10,12,14 only
33: out even = and si256(m0,mask1)
34: else if (X == 1) then
35: //keep m0 elements in positions 0,2,4,6,8,10,12,14 only
36: out odd = and si256(m0,mask1)
37: else if (X == 2) then
38: //keep m0 elements in positions 1,3,5,7,9,11,13 only
39: m0 = and si256(m0,mask2)
40: out even = add epi16(out even,m0)
41: else if (X == 3) then
42: //keep m0 elements in positions 1,3,5,7,9,11,13 only
43: m0 = and si256(m0,mask2)
44: out odd = add epi16(out odd,m0)
45: end if
46: end for
47:
48: //16-bit Vector Division (16-bit inputs, 8-bit output)
49: out even = DIV 16(division case, out even, div vector)

//see Alg.5 (out even / div vector)
50: out odd = DIV 16(division case, out odd, div vector)
51:
52: //Extract and blend the 8-bit final results
53: out odd = slli si256(out odd, 1) //left shift by 1 bytes (each

element is 1 byte)
54: out even = add epi8(out even, out odd)//32 8-bit addi-

tions
55:
56: //store the 8-bit final values to memory
57: storeu si256(&output[row][col], out even)//un-aligned

store
58: end for
59: //calculate loop reminder
60: end for

maddubs(r0,V_C00)

maddubs(r1,V_C10)
maddubs(r2,V_C20)

X=0:

maddubs(r0,V_C01)

maddubs(r1,V_C11)

maddubs(r2,V_C21)

X=1:

maddubs(r0,V_C02)

maddubs(r1,V_C12)

maddubs(r2,V_C22)

X=2:

maddubs(r0,V_C03)

maddubs(r1,V_C13)

maddubs(r2,V_C23)

X=3:

Vertical and
Horizontal addition
(lines 17-28).
Even positions in 
m0 contain 8
16-bit IRs of the
output pixels
0,4,8,12,16,20,24,28

Vertical and
Horizontal addition
(lines 17-28).
Even positions in 
m0 contain 8
16-bit IRs of the
output pixels
1,5,9,13,17,21,25,29

Vertical and
Horizontal addition
(lines 17-28).
Odd positions in m0 
contain 7
16-bit IRs of the
output pixels
2,6,10,14,18, 22,26

Vertical and
Horizontal addition
(lines 17-28).
Odd positions in m0 
contain 7
16-bit IRs of the
output pixels
3,7,11,15,19, 23,27

Pack the 
16-bit IRs
(lines 29-45).
out_even contains
15 16-bit IRs of the 
output pixels
0,2,4,6,8,10,12,14,16,
18,20, 22,24,26,28

Pack the 
16-bit IRs
(lines 29-45).
out_odd contains
15 16-bit IRs of
the output pixels
1,3,5,7,9,11,13,15,1
7,19,21,23,25,27,29

Vector Division 
(lines 48-50).
out_even contains
15 8-bit final results 
of output pixels
0,2,4,6,8,10,12,14,1
6,18,20, 22,24,26,28

Vector Division 
(lines 48-50).
out_even contains
15 8-bit final results 
of output pixels
1,3,5,7,9,11,13,15,17,
19,21,23,25,27,29

Blend the 30 8-bit 
final results to 
out_even and 
store into memory 
(lines 52-57).

Fig. 6: A higher level illustration of Algorithm 1.

and store instructions are needed. Thus, we repeat the
previous process k+1 times to calculate all the output values,
and then pack the results into a single vector variable, which
is stored into memory by using a single store instruction.

The proposed vectorization algorithm for kernels of size
3x3 is shown in Algorithm 1 (for ease of presentation, the
calculation of the border pixels is not shown here). To ease
the presentation of Algorithm 1, Fig. 6 is also provided.
Firstly, the following coefficients (V C00, V C10, V C20)
are multiplied by the input vectors, by using maddubs
instruction (lines 18-20 in Algorithm 1). Then, the results
are vertically and horizontally added (lines 23-28). The
Horizontal addition is needed so as to add all the pairs in
the ’out’ variable in Fig.5; it is implemented by using ’shift’
and ’add’ instructions as the easy ’hadd’ instruction to use
is an expensive operation. Note that for larger kernel sizes,
more than one horizontal addition is needed.

The reason that 12, instead of 3 (one for each kernel’s
row), vector coefficients are used, follows. By using multiple
vector coefficient variables (Fig. 4), less load (or no shift) vec-
tor operations are required. Instead of loading the input im-
age again and again (e.g., loading elements 0:31, then 1:32,
then 2:33 etc) and multiplying the input vectors by a single
vector coefficient (e.g.,V C00), the input is loaded once and
it is multiplied by the four pre-computed shifted coefficients
(Fig. 4). It is preferable to use multiple coefficient variables
rather than loading the input image multiple times because
first, the coefficients can be loaded just once and remain
into hardware registers and second, less memory address
calculations are required. Furthermore, instead of loading
the input to a vector and then shifting it multiple times
(AVX shift instructions are expensive), the pre-computed
shifted coefficients are used instead (Fig. 4). Note that shift
is an expensive operation in AVX because the existing 256-
bit shift instructions are implemented as two 128-bit shift
instructions and therefore the 16th vector position (there
are 32 in total) is always filled with zero (two separate 128-
bit shift operations occur); therefore additional instructions
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are needed to fill that empty position with the appropriate
value. However, using multiple vector coefficients is not
efficient for large kernel sizes, as their number becomes too
high; therefore a slightly different algorithm (Algorithm 2)
is proposed in this case (explained later).

When the vertical and horizontal additions are com-
pleted (line 28), the 16-bit results, which are located in the
even positions of ’m0’ (0,2,4,6,8,10,12,14), need to be divided
(eight 16-bit elements). However, dividing ’m0’ at this point
is inefficient as a) division is an expensive operation and
only 8 out of 16 elements of ’m0’ contain useful data, b)
the division results, which are 8-bit, must be stored into
positions (col, col+4, col+8, col+12, col+16, col+20, col+24,
col+28) and thus multiple store operations are required. So,
instead of dividing ’m0’ just after line 28, more IRs are
calculated (X loop is added to address this issue, line 15) and
then packed in an elegant and efficient way (lines 31-46). In
Subsection 4.1.3, we show that if multiple store instructions
are used here, performance is highly degraded. Although
X loop is fully unrolled in our implementations, X is not
shown unrolled in Algorithm 1, so as to fit in a single page.
In X = 0 and X = 1, the IRs of the following 8 output
pixels are performed (Fig. 6), while in X = 2 and X = 3,
the IRs of the 7 following output pixels are computed:

1: X=0: col,col+4,col+8,col+12,col+16,col+20,col+24,col+28
2: X=1: col+1,col+5,col+9,col+13,col+17,col+21,col+25,col+29
3: X=2: col+2,col+6,col+10,col+14,col+18,col+22,col+26
4: X=3: col+3,col+7,col+11,col+15,col+19,col+23,col+27

The last two output pixels (col+30,col+31) are not com-
puted here as an extra load operation is needed (to compute
32 output pixels, 34 input pixels are needed).

Note that after line 28, either the odd or the even el-
ements of ’m0’ must be discarded (depending on the X
value), as these elements do not contain any useful data; this
is realized by using the ’and’ operations in lines 33,36,39,43;
two different masks are needed, i.e., ’mask1’ and ’mask2’,
because in X = 0 and X = 1, the results are located in the
even positions of ’m0’, while in X = 2 and X = 3 the
results are located in the odd positions of ’m0’. Note that
the least significant elements are the rightmost.

As far as the number of division operations is concerned,
instead of applying division just after the horizontal addi-
tion step in line 28 (which is the easiest thing to do), the
results are efficiently packed into out even and out odd
vector variables, and division is applied outside X loop
(lines 49-50). This way, the number of division operations
is reduced from four to two (the IRs are first packed and
then divided).

The IRs are packed in an elegant and efficient way, and
therefore a significant amount of arithmetical vector instruc-
tions is saved. In Subsection 4.1.3, we show that this step
has a high positive impact on performance. By separating
the even and odd results of X loop into separate vectors
(out even and out odd), makes the process of extracting
and blending the output 8-bit values into one vector vari-
able (lines 53,54) efficient, saving lots of arithmetical vector
instructions. Last, the X for loop is fully unrolled to avoid
using the if-conditions in lines 31-46.

For kernels of size 7 × 7 or larger, a slightly modified
algorithm is used instead (Algorithm 2), because in this case
Algorithm 1 gives a very high number of vector coefficients,

e.g., 56 vector coefficients are required for the general case of
7×7. When the number of vector variables is higher than the
number of the CPU’s hardware registers, then the variables
cannot remain into the registers and they are loaded/stored
many times from/to memory (a.k.a. register spills), degrad-
ing performance. Algorithm 2 uses just k coefficients (when
the kernel is of size k × k - one vector coefficient is used
for each kernel’s row), addressing this problem. Algorithm
2 loads the input more times (lines 12-14) than Algorithm 1
(more load instructions), but it computes more output pixels
per iteration (32 instead of 30 in Algorithm 1). Algorithm 2
is always faster than Algorithm 1 for kernels of size 7x7
and larger, as in this case Algorithm 1 gives a very high
number of vector coefficients. On the contrary, Algorithm 1
is normally faster for kernels of size 5x5 and smaller.

32-bit IRs: The bit-width of the IRs has a strong impact
on vectorization. The most efficient way to make the 16-bit
IRs 32-bit, is by using madd epi16 instruction. In Algorithm
3, we show the implementation of Algorithm 2 for 32-bit
IRs. First, maddubs instruction multiplies 8-bit numbers and
outputs signed 16-bit integers (lines 16-18 in Algorithm 3).
Then, madd epi16 instruction multiplies the 16-bit output of
maddubs by the value of ’1’ and adds the adjacent results
(lines 21-23), generating 32-bit integers. The results are then
vertically added and afterwards directly divided as ’m0’
contains only useful data now (eight 32-bit values). In the
32-bit case the number of division operations doubles. The
implementation of Algorithm 1 using 32-bit IRs is similar.

The aforementioned algorithms can be easily extended
to larger kernel sizes, 16-bit computations and different
vectorization technologies, e.g., AVX-512, SSE, Arm SVE,
Arm NEON (see Section 5).

3.3 Register Blocking
Convolution is a data intensive loop kernel and therefore
the number of load/store (L/S) operations performed is
critical. So far, the number of load operations is reduced
by packing as many scalar coefficients as possible into the
vector coefficients and by using multiple coefficient vector
variables (Algorithm 1). The number of store operations is
minimized by efficiently extracting and blending the IRs. In
Algorithm 1, 30 output pixels are calculated and stored by
using just 3 load operations and a single store instruction.

To further reduce the number of load operations of
Algorithm 1, register blocking optimization is applied. Reg-
ister blocking consists of loop unroll and scalar replacement
optimizations. For ease of presentation, we show the register
blocking optimization using scalar code (Fig. 2), but its ap-
plication on Algorithm 1 is trivial. In Fig. 2, the application
of register blocking is shown with a factor of 2. Firstly,
loop unrolling is applied to ’row’ loop, exposing common
array references in the loop body. Then, the common array
references are replaced by variables (scalar replacement). On
the left of Fig. 2, every time the row iterator is incremented,
two of the three input image rows are loaded again, which
is not efficient; on the right, the number of load operations
is reduced by about 1.5×.

Register blocking optimization is applied to Algorithm 1
only; it cannot be applied to Algorithm 2, as different pixel
values are loaded in each X iteration. We found experi-
mentally that register blocking can boost performance by
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Algorithm 2 Proposed vectorization algorithm for kernel
sizes 7×7 and larger (16-bit IRs). For presentation purposes
the implementation of the 3 × 3 kernel is shown. All the
x86/x64 intrinsics can be found in this link [33].
1: unsigned short int a=65535 //in binary a = (11111111 11111111)2
2: m256i r0,r1,r2,m0,m1,m2,out even, out odd
3: m256i mask1 = set epi16(0, a, 0, a, 0, a, 0, a, 0, a, 0, a, 0, a, 0, a)

//odd positions are zero
4: m256i V C00, V C10, V C20 //just three vector coefficients

are required
5:
6: for (row = 1; row < N − 1; row ++) do
7: for (col = 32; col <= M − 34; col+ = 32) do
8:
9: //This loop must be fully unrolled to avoid the if-conditions

below
10: for (X = 0;X < 4;X ++) do
11: //Load 32 8-bit pixels
12: r0 = loadu si256(&input[row − 1][col − 1 + X])//un-

aligned load
13: r1 = loadu si256(&input[row][col − 1 +X])
14: r2 = loadu si256(&input[row + 1][col − 1 +X])
15:
16: //Multiply by the mask (16 16-bit results)
17: m0 = maddubs epi16(r0,V C00) // ’maddubs’ is ex-

plained in Fig.4
18: m1 = maddubs epi16(r1,V C10)
19: m2 = maddubs epi16(r2,V C20)
20:
21: //Vertical addition
22: m0 = add epi16(m0,m1)//16 16-bit additions
23: m0 = add epi16(m0,m2)
24:
25: //Horizontal addition
26: m1 = srli si256(m0, 2) //right shift by 2 bytes (each

element is 2 bytes)
27: m0 = add epi16(m0,m1)
28:
29: //Pack the 16-bit results
30: if (X == 0) then
31: //keep m0 elements in positions 0,2,4,6,8,10,12,14 only
32: out even = and si256(m0,mask1)
33: else if (X == 1) then
34: //keep m0 elements in positions 0,2,4,6,8,10,12,14 only
35: out odd = and si256(m0,mask1)
36: else if (X == 2) then
37: //keep m0 elements in positions 0,2,4,6,8,10,12,14 only
38: m0 = and si256(m0,mask1)
39: m0 = slli si256(m0, 2) //left shift by 2 bytes (each

element is 2 bytes)
40: out even = add epi16(out even,m0)
41: else if (X == 3) then
42: //keep m0 elements in positions 0,2,4,6,8,10,12,14 only
43: m0 = and si256(m0,mask1)
44: m0 = slli si256(m0, 2) //left shift by 2 bytes (each

element is 2 bytes)
45: out odd = add epi16(out odd,m0)
46: end if
47: end for
48:
49: //16-bit Vector Division (16-bit inputs, 8-bit output)
50: out even = DIV 16(division case, out even, div vector)

//see Alg.5 (out even / div vector)
51: out odd = DIV 16(division case, out odd, div vector)
52:
53: //Extract and blend the 8-bit final results
54: out odd = slli si256(out odd, 1) //left shift by 1 bytes (each

element is 1 byte)
55: out even = add epi8(out even, out odd)
56:
57: //store the 8-bit final values to memory
58: store si256(&output[row][col], out even)//aligned store
59: end for
60: //calculate loop reminder
61: end for

Algorithm 3 Implementation of Algorithm 2 for 32-bit IRs

1: m256i r0,r1,r2,m0,m1,m2, ones = set1 epi16(1)
2: m256i V C00, V C10, V C20 //vector coefficients
3: m256i out[4] //For ease of presentation an array is shown here,

but four variables must be used instead
4:
5: for (row = 1; row < N − 1; row ++) do
6: for (col = 32; col <= M − 34; col+ = 32) do
7:
8: //This loop must be fully unrolled and four vector variables

are used instead of out[4]
9: for (X = 0;X < 4;X ++) do

10: //Load 32 8-bit pixels
11: r0 = loadu si256(&input[row − 1][col − 1 + X])//un-

aligned load
12: r1 = loadu si256(&input[row][col − 1 +X])
13: r2 = loadu si256(&input[row + 1][col − 1 +X])
14:
15: //Multiply by the mask (16 16-bit results)
16: m0 = maddubs epi16(r0,V C00)
17: m1 = maddubs epi16(r1,V C10)
18: m2 = maddubs epi16(r2,V C20)
19:
20: //Horizontal addition - 16-bit input, 32-bit output
21: m0 = madd epi16(m0, ones)//Multiplies signed 16-bit

integers and horizontally adds the results
22: m1 = madd epi16(m1, ones)
23: m2 = madd epi16(m2, ones)
24:
25: //32-bit Vertical addition
26: m0 = add epi32(m0,m1)//8 32-bit additions
27: m0 = add epi32(m0,m2)
28:
29: //32-bit Vector DIVISION - m0 now contains 8 32bit values
30: out[X] = DIV 32(division case,m0, div vector) //see

Alg.6 32-bit Division (32-bit inputs, 8-bit output)
31: end for
32:
33: //Extract and blend the 8-bit final results
34: out[1] = slli si256(out[1], 1)//left shift by 1 byte (each ele-

ment is 1 byte)
35: out[0] = add epi8(out[0], out[1])
36: out[2] = slli si256(out[2], 2)//left shift by 2 bytes (each

element is 1 byte)
37: out[0] = add epi8(out[0], out[2])
38: out[3] = slli si256(out[3], 3)//left shift by 3 bytes (each

element is 1 byte)
39: out[0] = add epi8(out[0], out[3])
40:
41: //store the 8-bit final values to memory
42: store si256(&output[row][col], out[0])//aligned store
43: end for
44: //calculate loop reminder
45: end for

up to 1.2×. The register blocking factor needs to be found
experimentally and it depends on the kernel size, image size
and hardware platform. The kernel size affects the blocking
factor as the smaller the kernel size is, the fewer the vector
coefficients are; if the number of the vector variables is
larger than the number of the available hardware vector
registers (in x64 there are normally 16 registers), then the re-
used variables cannot remain into the registers and they are
spilled to L1 data cache (aka register spilling). However, it is
performance efficient to apply register blocking even when
register spills occur as the number of saved load operations
is high, normally outweighing the cost of register spilling
(this is hardware dependent). The image size also affects the
blocking factor; when the width of the input image is very
large (e.g., M=5184), then L1 data cache almost fills up (with
the input/output image rows) and thus register spilling
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causes useful data to be evicted from the cache, degrading
performance. Note that more image rows are processed at a
time when register blocking is applied.

Algorithm 4 Unsigned scalar division with fixed divisor
(x/d)

1: x = dividend
2: d = divisor
3: w = word size in bits
4: b = floor(log2(d))
5: f = 2(w+b)/d
6:
7: if f is an integer then
8: // DIV Case A
9: result = x >> b // d is a power of 2

10: else if the fractional part of f is lower than 0.5 then
11: // DIV Case B
12: result = ((x+ 1) ∗ floor(f)) >> (w + b)
13: else
14: // DIV Case C
15: result = (x ∗ ceil(f)) >> (w + b)
16: end if
17: }

3.4 Optimizing the division operation

Division is a long-latency operation and its optimization
highly impacts the overall performance. Its optimization is
broken down into two steps.

Firstly, the division operation is transformed into multi-
plication and shift operations. The (x/d) operation is trans-
formed into (x ∗ ceil(f)) >> (w + b) [34], where w is the
word size in bits (e.g., w = 16, if 16-bit division is applied),
b = floor(log2(d)) and f = 2(w+b)/d. The unsigned scalar
division with fixed divisor is shown in Algorithm 4. Note
that the divisor is always a constant value; therefore the
computationally expensive procedure that calculates the
ceil(f) and b values, is applied just once for each input
image.

The second step includes the optimization of the mul-
tiplication operation in (x ∗ ceil(f)) >> (w + b). Let us
assume that 16-bit width is used for the IRs. In this case,
the aforementioned multiplication is a 16-bit multiplication
and its result needs 32-bits to be stored. Therefore, two
vector multiplication instructions are needed ( ’mullo’ and
’mulhi’). ’Mullo’ is needed to calculate the low 16-bits,
while ’mulhi’ is needed to calculate the high 16-bits; then,
extra instructions are also needed to pack the results and
process the 32-bit results. This procedure, which is compu-
tationally expensive, is optimized by using the bit twiddling
optimizations shown in Algorithm 5; this way, only one
multiplication operation is performed and no packing of
the results is needed [34]. All the x86/x64 intrinsics can be
found in [33]. The 32-bit division is shown in Algorithm 6.

3.5 Multi-Threading

The ’row’ loop in Algorithm 1-Algorithm 3 is parallelized
by using the ’for’ directive of OpenMP framework. The
number of the threads used equals to the number of the
physical CPU cores.

Algorithm 5 16-bit vector division with unsigned divisor
(m2/f vector)

m256i DIV 16(const unsigned int division case, m256i m2, const
m256i f vector) {

//f vector is a pre-computed vector containing multiple copies of
the scalar value ceil(f)
// b is a pre-computed scalar value (Algorithm 4)

m256i m1,m3

if (division case == 1) then
// DIV Case A
return (srli epi16(m2, b)) //m2 >> b

else if (division case == 2) then
// DIV Case B
m2 = add epi16(m2, set1 epi16(1))
m3 = mulhi epu16(m2, f vector)
m1 = sub epi16(m2,m3)
m1 = srli epi16(m1, w) //m1 >> w
m3 = add epi16(m3,m1)
return srli epi16(m3, b) //m3 >> b

else
// DIV Case C
m3 = mulhi epu16(m2, f vector)
m1 = sub epi16(m2,m3)
m1 = srli epi16(m1, w) //m1 >> w
m3 = add epi16(m3,m1)
return srli epi16(m3, b) //m3 >> b

end if
}

Algorithm 6 32-bit vector division with unsigned divisor
(m2/f vector)

m256i DIV 32(const unsigned int division case, m256i m2, const
m256i f vector) {

//f vector is a pre-computed vector containing multiple copies of
the scalar value ceil(f)
// b is a pre-computed scalar value (Algorithm 4)

m256i m1,m3

if (division case == 1) then
// DIV Case A
return (srli epi32(m2, b)) //m2 >> b

else if (division case == 2) then
// DIV Case B
m2 = add epi32(m2, set1 epi32(1))
m1 = mul epu32(m2, f)
m1 = srli epi64(m1, w)
m3 = srli epi64(m2, w)
m3 = mul epu32(m3, f)
m3 = blend epi16(m1,m3, 0xCC)
m1 = sub epi32(m2,m3)
m1 = srli epi32(m1, w) //m1 >> w
m1 = add epi32(m3,m1)
return srli epi32(m1, b) //m1 >> b

else
// DIV Case C
m1 = mul epu32(m2, f)
m1 = srli epi64(m1, w)
m3 = srli epi64(m2, w)
m3 = mul epu32(m3, f)
m3 = blend epi16(m1,m3, 0xCC)
m1 = sub epi32(m2,m3)
m1 = srli epi32(m1, w) //m1 >> w
m1 = add epi32(m3,m1)
return srli epi32(m1, b) //m1 >> b

end if
}



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2022.3171471, IEEE
Transactions on Parallel and Distributed Systems

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

Algorithm 7 Implementation of Algorithm 2 for a Separable
kernel
1: m256i r0,r1,r2,m0,m1,m2,even,odd,V Cy0,V Cy1,V Cy2,V Cy0 sh,

V Cy1 sh,V Cy2 sh,V Cx
2: unsigned char temp[M] //temp storage for the output of 3 x 1

kernel. M is the image width size
3: //3 x 1 kernel Coefficients
4: unsigned char Cy0,Cy1,Cy2 //there are just 3 different scalar

coefficients for the 3 x 1
5: V Cy0 = set epi8(0, Cy0, 0, Cy0, ..., 0, Cy0, 0, Cy0) //multiple

copies of Cy0 into even positions
6: V Cy1 = set epi8(0, Cy1, 0, Cy1, ..., 0, Cy1, 0, Cy1) //multiple

copies of Cy1 into even positions
7: V Cy2 = set epi8(0, Cy2, 0, Cy2, ..., 0, Cy2, 0, Cy2) //multiple

copies of Cy2 into even positions
8: V Cy0 sh = set epi8(Cy0, 0, Cy0, 0, ..., Cy0, 0, Cy0, 0) //multi-

ple copies of Cy0 into odd positions
9: V Cy1 sh = set epi8(Cy1, 0, Cy1, 0, ..., Cy1, 0, Cy1, 0) //multi-

ple copies of Cy1 into odd positions
10: V Cy2 sh = set epi8(Cy2, 0, Cy2, 0, ..., Cy2, 0, Cy2, 0) //multi-

ple copies of Cy2 into odd positions
11: //1 x 3 kernel Coefficients
12: unsigned char Cx0,Cx1,Cx2//there are just 3 different scalar coef-

ficients for the 1 x 3
13: V Cx = set epi8(0, Cx2, Cx1, Cx0, ..., 0, Cx2, Cx1, Cx0) //vec-

tor coefficient - like the first coefficient in Fig.3
14:
15: for (row = 1; row < N − 1; row ++) do
16: //——- 1D Convolution, 3 x 1 kernel ———
17: for (col = 0; col <= M − 32; col+ = 32) do
18: //Load 32 8-bit pixels
19: r0 = load si256(&input[row − 1][col])//aligned load
20: r1 = load si256(&input[row][col])
21: r2 = load si256(&input[row + 1][col])
22:
23: //Multiply even pixels by the mask (16 16-bit results)
24: m0 = maddubs epi16(r0,V Cy0) //explained in Fig.4
25: m1 = maddubs epi16(r1,V Cy1)
26: m2 = maddubs epi16(r2,V Cy2)
27:
28: //Vertical additions
29: m0 = add epi16(m0,m1) ; m0 = add epi16(m0,m2)
30:
31: even = DIV 16(division case,m0, div vector) //see Alg.5

16-bit Division (16-bit inputs, 8-bit output)
32:
33: //Multiply odd pixels by the mask (16 16-bit results)
34: m0 = maddubs epi16(r0,V Cy0 sh) //explained in Fig.4
35: m1 = maddubs epi16(r1,V Cy1 sh)
36: m2 = maddubs epi16(r2,V Cy2 sh)
37:
38: //Vertical additions
39: m0 = add epi16(m0,m1) ; m0 = add epi16(m0,m2)
40:
41: odd = DIV 16(division case,m0, div vector) //see Alg.5

16-bit Division (16-bit inputs, 8-bit output)
42:
43: //pack even and odd to one register and store
44: odd = slli si256(odd, 1)//left shift by 1 byte
45: r0 = add epi8(even, odd);
46: store si256(&temp[col], r0)
47: end for
48: //calculate loop reminder
49:
50: //——-1D Convolution, 1 x 3 Kernel ———
51: for (col = 32; col <= M − 32; col+ = 32) do
52: for (X = 0;X < 4;X ++) do
53: r0 = loadu si256(&temp[col − 1 + X]) //Load 32 8-bit

pixels
54:
55: m0 = maddubs epi16(r0,V Cx) //Multiply by the mask

(16 16-bit results)
56:
57: m1 = srli si256(m0, 2) //Horizontal addition
58: m0 = add epi16(m0,m1)
59: //code used in lines 30-58 of Algorithm 2
60: end for
61: end for
62: //calculate loop reminder
63: end for

3.6 Separable kernels

A separable k × k 2D kernel can be broken down into two
1D kernels, a kernel of size k × 1 and another of size 1× k;
this can reduce the number of arithmetical instructions,
especially for medium/large kernel sizes (Gaussian Blur
is separable). The most efficient way of implementing the
separable kernels is by merging the two 1D convolution
operations. First, the k × 1 kernel is applied on the first
row and its results are stored into a new array ( ’temp’
in Algorithm 7) which is then processed by the 1 × k
(Algorithm 7). The procedure is repeated row by row.

The optimization process of the 1 × k kernel is a sim-
plified version of Subsection 3.2. Regarding the k × 1 ker-
nel, there is no 8-bit multiplication vector instruction and
thus the multiplication of the even and odd elements is
performed separately (lines 24-26 and 34-36).

It has been found experimentally that separable kernels
perform better for kernels of size 7× 7 or larger (as the gain
in arithmetical instructions is high), worse for kernels of size
3× 3, and both methods perform almost equally for kernels
of size 5× 5.
3.7 Image Boundaries
In the aforementioned algorithms, the calculation of the
border pixels (first and last columns/rows) is not included,
to ease presentation. The first columns are processed by
shifting the vector coefficients by one position and filling the
gap (first position element) with a special value depending
on the border type policy needed, e.g., zero. Regarding the
last column pixels, they are processed separately to avoid
the cost of array padding. A separate routine is used for the
loop reminder that stores the output pixel elements either
in shorter vectors or one by one. Note that to achieve best
performance, different loop reminder routines are needed
for different M values, e.g., if just one column needs to
be computed, an optimized scalar version would be faster.
Last, the computation of the first and last row output pixels
can be simplified as normally the border pixel policy is
filling with zeros.

4 PERFORMANCE EVALUATION
The experimental results are performed on two host PCs;
an Intel quad-core i7-4790 CPU at 3.60GHz with DDR3
1600MHz (PC1) and an Intel quad-core i5-7500 CPU at
3.40GHz with DDR4 2666MHz (PC2), both running Ubuntu
20.04. Both processors support AVX2 instructions. PC2
achieves higher memory bandwidth than PC1 and this is
why all the implementations run faster on PC2, apart from
the largest three image sizes where PC1 performs better in
some cases; this is because PC1 has a larger L3 cache, i.e.
8MB compared to 6MB of PC2 (this is explained below).

The proposed method is compared to the latest version
of OpenCV (version 4.5.1) with Intel IPP, AVX and multi-
threading enabled as well as to the latest version of Intel
MKL library (version 2021.3). Note that the OpenCV rou-
tines being evaluated use the Intel IPP library. All the codes
are compiled by using gcc 9.3.0 and ’-O3’ option.

The performance metrics used are speedup and Cal-
culated Pixels per Second (CPS); we have used CPS in-
stead of execution time, as CPS better shows how well
the hardware is utilized. The CPS formula is given by
(M × N × times.run)/measured.ex.time, where M is the
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image width, N is the image height and times.run is the
number of times each code version has run. To get accurate
execution time values, each version runs multiple times
(times.run) so as its execution time is about one minute.

The register blocking factors used are 2 and 3, for the
5x5 and 3x3 case, respectively. Register blocking is not
efficient for the largest image size (5184x3456) for the reason
explained in the end of Subsection 3.3. Note that register
blocking is not applicable to Algorithm 2 (7x7 and 9x9 case).
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Fig. 7: Evaluation over Intel IPP / OpenCV on 3×3 Gaussian
Blur. M is width and refers to the bottom value, while N is
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4.1 Evaluation over Intel IPP / OpenCV
The proposed method is evaluated using two different con-
volution loop kernels for image smoothing. The first one
is the Gaussian Blur (OpenCV GaussianBlur routine [9]);
the Gaussian Blur is separable and its coefficient values are
symmetrical, e.g., in a 3× 3 kernel the coefficients of the 1st
and 3rd row are identical. The second loop kernel is non-
symmetrical and non-separable (OpenCV filter2D routine
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Fig. 10: Evaluation over Intel IPP / OpenCV on 9 × 9
Gaussian Blur

[9]) and all its coefficients are different. Four different kernel
sizes have been used for each case, i.e., 3x3, 5x5, 7x7 and 9x9,
and a wide range of greyscale 8-bit image sizes. Algorithm
1 is used for the 3x3 and 5x5 cases, while Algorithm 2 for
the 7x7 and 9x9.

4.1.1 Gaussian Blur
Fig. 7- 10 show the evaluation of the proposed method for
the Gaussian Blur. To improve readability, the results on
’PC1’ and ’PC2’ are shown using the same colours; ’PC2’
uses a continuous line while ’PC1’ a discontinuous line. The
’Unoptimized (O3)’ line refers to a naive single threaded
implementation. Although OpenMP gives average speedup
of 3.4× here, we did not use OpenMP in the unoptimized
version as we would like to evaluate the code that a non-
expert would use. One implementation is used for all the
kernel sizes. ’16/32’ refers to the bit-width used for the
IRs, ’A/B/C’ refers to the division case (see Algorithm
5/6) while ’sep’ refers to separable kernels (in this case
Algorithm 7 has been used). The Gaussian Blur is separable
and thus Algorithm 7 can be used to reduce the number of
arithmetical instructions. Algorithm 7 performs better than
Algorithm 1 for the 7x7 and 9x9 kernels, but Algorithm
1 performs better for the 3x3 case as in this case there is
no gain in arithmetical instructions. For the 5x5 case, both
algorithms provide roughly the same performance.

Regarding the 3x3 case (Fig. 7), all the implementations
achieve their highest CPS values, as the 3x3 case includes
fewer calculations than the 5x5,7x7 and 9x9 cases. The unop-
timized single-threaded code (’O3’ option is used) achieves
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about 69 and 59 Mega CPS (MCPS) and is about 233 and
272 times slower than the proposed method, on ’PC1’
and ’PC2’, respectively. IPP achieves from 2.22 to 3.52 Giga
CPS (GCPS) and from 1.88 to 3.86 GCPS, on ’PC1’ and
’PC2’, respectively, delivering high speedup values over the
unoptimized method (Fig. 7). Note that IPP uses separable
kernels for the GaussianBlur routine.

Gcc cannot auto-vectorize the code because of the if-
condition in the loop body; an if-condition is required to
process the border pixels differently. Note that if we process
the border pixels separately (in another loop kernel), then no
if-condition is needed and gcc is capable of auto-vectorizing
the code; still, the speedup achieved is quite low (around
1.8×). The ’Ofast’ option does not provide any further per-
formance gain here. The divisor value of the unoptimized
code is always a power of two and therefore gcc replaces
the division operation with a shift operation.

The performance of the proposed method is shown
for different divisor values (Fig. 7). As it was explained
in Subsection 3.4, there are three different division cases
(Algorithm 5/Algorithm 6). If the divisor is a power of
2 (case A), then the division is realized by using just a single
shift instruction, while in case B and case C, 7/11 and 5/9
instructions are executed, for the 16/32 case, respectively.
This is why case A is faster than case C and case C is faster
than case B, at all times.

Regarding the three largest input sizes, there is a per-
formance drop for both IPP and the proposed method,
because the input/output images are larger than L3 cache.
Performance is degraded more on ’PC2’ than on ’PC1’
because ’PC2’ has a smaller L3 size (6MB compared to
8MB). The image size 2400x2400 is the most extreme case
where PC1 is 1.8× faster than PC2; in this case, the input
image fits into the PC1’s L3 cache, but it cannot remain into
the PC2’s L3 cache. The drop is much higher for the 3x3 case
compared to the other kernel sizes because the arithmetic
intensity (the ratio of arithmetical instructions and bytes
loaded/stored) of the 3x3 case is lower than the others,
which means that the 3x3 case is more memory-bound; for
large input sizes, the overall performance is bounded by
the DDR bandwidth. The proposed method achieves high
speedup values in all cases.

Both the proposed method and IPP, cannot achieve their
best performance for very small images, as the scalability is
lower. The number of threads used is four at all cases. Note
that performance is degraded by using either more or fewer
threads, even in the smallest studied image sizes.

Fig. 8 shows the evaluation of the proposed method
for the kernel size of 5x5. We have not included a figure
showing the CPS because of the limited page size. As it was
expected, all methods are slower in the 5x5 case (compared
to the 3x3 case), as the overall number of instructions is
higher. IPP achieves from 1.34 to 1.59 and from 1.79 to
2.76, Giga CPS (GCPS), on PC1 and PC2, respectively. The
proposed method achieves from 5.61 to 7.74 and from 5.62
to 7.97 GCPS, on PC1 and PC2, respectively. The proposed
method achieves high speedup values in all cases.

In the 5x5 case (Fig. 8), some of the proposed imple-
mentations include a separable kernel (Algorithm 7) and
some not (Algorithm 1). However, both methods provide
roughly the same performance here. It is important to note

that the separable case (Algorithm 7) executes more division
operations and therefore its performance is degraded more
in the ’B/C’ division cases.

Regarding the 7x7 case (Fig. 9), our method achieves
more CPS than the 5x5 case. It achieves from 6.0 to 9.1
and from 6.0 to 9.2 GCPS, on PC1 and PC2, respectively.
Although the 5x5 case theoretically requires fewer arith-
metical instructions than the 7x7 case, in practice it executes
more, as the process of the last horizontal addition (line 26 in
Algorithm 2) becomes complicated. In the 3x3 and 7x7 cases,
sets of 4 and 8 scalar coefficients (including the zeros) are
used to fill the vector coefficients (Fig.3), and thus each set
of scalar coefficients is located either on the lower or on the
upper half of the AVX registers. However, in the 5x5 and 9x9
case a set always uses both AVX parts, and this makes the
horizontal-add operation more complicated, requiring extra
vector instructions. This is because in AVX, the existing 256-
bit shift instructions are implemented as two 128-bit shift
instructions and therefore the 16th vector position is always
filled with zero; therefore additional instructions are needed
to fill that empty position with the appropriate value. This is
the reason that the 5x5 and 9x9 cases achieve lower speedup
values over IPP, compared to the 3x3 and 7x7 cases.

For the 9x9 case, the proposed method achieves from
2.72 to 3.25 and from 2.72 to 3.38 GCPS, on PC1 and PC2,
respectively.

4.1.2 Filter2D

Fig. 11- 12 show the evaluation of the proposed method
for the non-symmetrical convolution kernel (Filter2D). The
kernels are not separable in this case and therefore 32-bit IRs
are needed for the 7x7 and 9x9 case. We have not included
a figure showing the CPS because of the limited page size;
this is why we also show the speedup values for the 5x5,7x7
and 9x9 cases in a single figure.

We were surprised when we found out that Filter2D rou-
tine is several times slower than the GaussianBlur routine,
e.g., about x10 and x15 times slower for the 3x3 and 5x5
case, respectively. The main reasons follow. Firstly, Filter2D
routine is single-threaded; we are not aware of the reason
that Filter2D routine is not parallelized. Secondly, the Gaus-
sianBlur routine uses separable kernels.

The proposed method achieves speedup from 16× to
40× over Filter2D routine. The performance of the proposed
method is lower for small M values and large images, for the
reason explained in Subsection 4.1.1.

The proposed method achieves fewer CPS for the non-
symmetrical Filter2D kernel compared to the Gaussian Blur
since a) all the scalar coefficients are different now and as
a consequence the number of vector coefficients required
by the proposed method is higher, b) Algorithm 7 is not
applicable, c) 32-bit IRs are needed for the 7x7 and 9x9 case.
Regarding the 3x3 case, the number of vector coefficients
has been increased from 8 to 12 and this why performance
is degraded by about 1.76× and 1.4×, on PC1 and PC2,
respectively. Note that the arithmetic intensity is even lower
for non-symmetrical kernels. In the 5x5 case, the number
of coefficients has been increased from 18 to 30; by using
more coefficients, a larger number of register spills occurs,
and for this reason the proposed method achieves better
performance in the Gaussian Blur case (about 1.46× on
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PC1 and 1.25× on PC2). Regarding the 7x7 and 9x9 cases,
Algorithm 3 is used instead of Algorithm 7; our method
performs about 3× times faster on the GaussianBlur case
because of the (b)-(c) reasons above.
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4.1.3 Performance Breakdown

In this Subsection, we provide a performance analysis of
different optimizations of the proposed method on PC1.
First, a performance evaluation of different IRs bit-width
values is performed (Fig. 13); the first bar always refers to
the ’A’ case, the second to the ’B’, while the third to the
’C’ case. As it was expected, the implementation using 32-
bit IRs is always slower than the one using 16-bit, as extra
arithmetical instructions are being executed. Performance
degradation is lower when the divisor is a power of 2
(case A), as in this case both 16-bit and 32-bit division is
realized via a single shift instruction. However, when the
actual division is computed (case B/C), an extra overhead
occurs for the 32-bit case. This is because the 32-bit division
(Algorithm 6) uses more arithmetical instructions compared
to the 16-bit division (shown in Algorithm 5). For large
input images and 3x3 kernel sizes, the performance drop
is insignificant, as the code becomes memory-bound and

the execution time highly depends on the time needed to
load/store the data.
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Fig. 13: Performance evaluation of different IRs values.

Second, a performance evaluation of the optimizations
shown in Subsection 3.4, Subsection 3.2, and Subsection 3.1
is made, for kernels of size 3x3 (Fig. 14).

To evaluate the performance gain of Subsection 3.4,
we have replaced the optimized division operation with a
routine that uses the ’ mm256 div ps()’ instruction. We did
that because this is the only division instruction supported
in x86/x64. ’ mm256 div ps()’ divides FP values and thus,
the 16-bit integer intermediate results are converted to FP to
perform the division and then they are converted to integer
values again. The division operation described in Subsection
3.4 gives a speedup of about x1.6. For large input images the
code becomes memory-bound and this is why there is no
performance gain; however, this is not true for larger kernel
sizes where performance gain occurs even for large images.

Next, we have evaluated the performance of the last step
of Algorithm 1 (lines 31-57) (see ’L/S not optimized’ line
in Fig. 14). When the vertical and horizontal additions are
completed (line 28), the results (m0), need to be first divided
and then stored to memory into positions (col, col+4, col+8,
col+12, col+16, col+20, col+24, col+28); the latter includes
multiple store instructions as the elements are not stored
into consecutive memory locations (this is further explained
in Subsection 3.2). To optimize this process, in Algorithm
1, more IRs are calculated and then packed in an elegant
and efficient way (lines 31-46); this allows for a single store
operation as well as to less division operations.

To evaluate the impact of lines 31-57 in Algorithm 1, in-
stead of executing the code in lines 31-57, we divide m0 just
after line 28 and then its useful data (e.g., data in positions
(col, col+4, col+8, col+12, col+16, col+20, col+24, col+28)) are
extracted and stored into memory. This results into multiple
extract/store operations which degrade performance by a
factor of about x2.5. Note that dividing m0 just after line 28,
also results into extra division operations, but this does not
really affect the results here as we have chosen Case A only,
where division is realized by using a single shift instruction.

4.2 Evaluation over Intel MKL library

The proposed method is evaluated over Intel MKL library
on PC2, by using two different convolution methods, an
Intel MKL MMM based method and an Intel MKL direct
method (Fig. 15, Fig. 16). For a fair comparison, non-
symmetrical kernels are used here. Note that in the case
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Fig. 14: Performance analysis of the proposed optimizations

where symmetrical kernels are used, the proposed method
is significantly faster, especially for the 7x7 and 9x9 cases.

Firstly, the proposed method is evaluated over the
MMM-based convolution method. This process consists of
two steps. First, the input array (of size N ×M ) is copied
into another bigger 2d array of size ((N×M)×(k×k)), a.k.a.
im2col operation (k×k is the size of the kernel). Second, the
’cblas gemm s8u8s32()’ Intel MKL routine [10] multiplies
the new array (2d array of size (N ×M) × (k × k)) by the
kernel (1d array of size (k × k)). ’cblas gemm s8u8s32()’
routine takes as input 8-bit integer values and returns 32-bit
integer values; this is a highly optimized routine which in-
cludes AVX intrinsics and multiple threads. The first routine
(im2col) has been manually developed and is not optimized.
Although, the convolution operation cannot be realized
without the ’im2col’ step, we show the performance of the
MMM-based convolution with and without ’im2col’ step
in order to show that the proposed method achieves high
speedup values even without running the ’im2col’ step.
The MMM-based method does not perform division and
therefore just one speedup line is shown for each case.

The proposed method provides high speedup values
over the MMM-based convolution method in all cases
(Fig. 15); it achieves speedup values from 105× to 400×,
from 261× to 372×, from 298× to 375× and from 160× to
181×, for kernels of sizes 3x3, 5x5, 7x7 and 9x9, respectively.
The proposed method achieves a lower speedup value for
the 9x9 case, because a) the process of the horizontal addi-
tions (Algorithm 2) requires more arithmetical instructions
in this case, b) fewer pixels are calculated per iteration.
Note that the performance bottleneck of the MMM-based
convolution is the ’im2col’ routine, which is not optimized.
Although, the performance of the ’im2col’ routine can be
improved (e.g., by parallelizing it), the proposed method
provides superior performance even when this routine is not
used at all (Fig. 15). The proposed method achieves speedup
values from 9.7× to 35×, from 10.0× to 14.8×, from 6.2× to
14.7× and from 2.1× to 6.3×, over ’cblas gemm s8u8s32()’
routine when the ’im2col’ routine is not used, for kernels of
sizes 3x3, 5x5, 7x7 and 9x9, respectively (Fig. 15).

The proposed method achieves high performance gains
for three main reasons. First, it uses the direct method
and thus there are no computational/memory overheads
( ’im2col’). Second, ’cblas gemm s8u8s32()’ routine cannot
achieve its peak performance for tall and skinny matrices

[7]. Third and most importantly, the proposed method
achieves far fewer L/S and arithmetical instructions than
’cblas gemm s8u8s32()’ routine (and less memory); this is
because a) ’cblas gemm s8u8s32()’ routine operates on an
array which is k × k times larger than the input image, b)
the proposed method better utilizes the AVX instructions
and computes multiple output pixels in each iteration.

The second Intel MKL routine that we evaluated our
work is ’vslsConvExec()’ [11] (Fig. 16). Intel MKL provides
a set of routines to perform linear convolution for single
and double precision real and complex data. Given that
there is no convolution routine for integer numbers, we have
used the ’vslsConvExec()’ routine, which uses numbers of
type ’float’ (2d convolution is applied). ’vslsConvExec()’ is
a highly optimized routine which supports AVX intrinsics
and multiple threads. The experimental results show that
the ’vslsConvExec()’ direct convolution method achieves
high performance gains over the MMM-based, in all cases
(Fig. 15/Fig. 16). It is important to note that the execution
time of the ’vslsConvExec()’ routine is not affected by the
kernel size but it is stronly affected by the input size; it
achieves from 23 MCPS to 131 MCPS. The proposed method
achieves speedup values from 98× to 618×, from 50× to
291×, from 23× to 146× and from 8.5× to 47×, for kernels
of sizes 3x3, 5x5, 7x7 and 9x9, respectively.

The proposed method achieves high performance gains
for the following reasons: a) it uses int8 instead of FP input
data; int8 can give a performance gain up to 4×, compared
to FP, b) it achieves fewer L/S and arithmetical instructions
as it better utilizes the AVX instructions and computes
multiple output pixels in each iteration.
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Fig. 16: Evaluation over Intel MKL direct method

4.3 Energy Consumption
The proposed method is also evaluated over Intel IPP
and Intel MKL in terms of power and energy consump-
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tion (Fig. 17), on PC2 (a power meter is used). The aver-
age power/energy consumption and execution time reduc-
tion values are calculated by using the 20 studied image
sizes and the following formula (value1-value2)/value2 x
100%. The UnOpt.(O3), Filter2D and im2col implementa-
tions consume on average 32, 35 and 40.5 Watts, respectively.
gemm s8u8s32 and vslsConvExec consume on average 56.6
and 57.2 Watts, respectively. The latter two implementations
run on all the four cores and this is why power consumption
is higher. The Gaussian.Blur routine (symmetrical case),
which is the second fastest routine after the proposed,
consumes more power (on average 73.8 Watts) as it bet-
ter utilizes the processing capacity of the processor. The
proposed method consumes on average 74.8 and 70 Watts,
for the non-symmetrical and symmetrical case, respectively.
For symmetrical kernels, the proposed method consumes
less power than the non-symmetrical, as there are fewer
load instructions and fewer memory accesses in memory
hierarchy. The proposed method achieves high energy gains
in all cases.
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Fig. 17: Average energy and power consumption reduction

5 DISCUSSION

Different kernel sizes and kernel values: The proposed
vectorization method is more efficient for even kernel sizes,
as no zeros are inserted in this case and thus more pixels are
calculated by using the same number of instructions.

In the general case, the kernel values cannot fit into 8-
bit variables for kernels of size 11 × 11 or larger, and in
this case 16-bit computations are needed. This is not true
for the separable kernels (e.g., Gaussian Blur) as their kernel
values are smaller and thus 8-bit width is adequate for large
kernel sizes too. Extending Algorithm 1 and Algorithm 2
by using 16-bit computations is straightforward. Although
we have evaluated the proposed method by using 8-bit
kernel values only, we expect the 16-bit case to be up to two
times slower, and therefore significant performance gains
are expected in the 16-bit case too. Note that the Intel IPP
and the MMM-based methods are expected to run slower
in this case too, e.g., ’cblas gemm s16s16s32()’ is needed
instead of ’cblas gemm s8u8s32()’.

The kernel size and values also affect the bit-width of
the intermediate results; 16-bit width is adequate for the
3 × 3 and 5 × 5 case, while for larger kernel sizes 32-bit
width is normally needed (see Subsection 3.1). For separable
kernels, 16-bit width is adequate for larger kernel sizes too.

The proposed method provides impressive speedup values
in both cases.

Furthermore, for kernel sizes larger or equal to
17x17/9x9 when 8-bit/16-bit inputs are used, the vector
coefficients in Fig. 4 can hold just one set of scalar coeffi-
cients. In this case just one output pixel is computed in each
iteration and thus Algorithm 1 and 2 are simplified.

CNN Convolution Layers: The proposed method can
be extended to compute the CNN convolution layer. How-
ever, CNNs introduce extra parameters that need to be
considered in the optimization process. First, CNNs include
different stride and dilation values. The application of Al-
gorithm 1/Algorithm 2 is straightforward when stride=1
and dilation=1, but for different stride and dilation values,
the proposed algorithms need to be appropriately extended.
Furthermore, the number of instructions required to cal-
culate an output value is way higher in CNNs, and this
affects the vectorization process. This also affects the bit-
width selection process in Subsection 3.1; we expect that
16-bit IRs would not be adequate in most cases, unless the
quantization level is high. The CNN layer introduces three
additional loops, where vectorization and register blocking
can be applied; in CNNS, the depth or filter loop is normally
vectorized [1] [15] [7]. Another difference relates to the
size of the kernel. In CNNs, there are many kernels and
not one, and each kernel requires more memory. Given that
multiple kernels exist, the following question arises, should
we traverse each kernel on the input array separately, or
traverse multiple kernels together?

Different Processors: The proposed algorithms can be
easily extended to different vector lengths (e.g., AVX-512)
and vectorization technologies (e.g., Arm NEON, Arm SVE);
however, different manually vectorized routines are needed
for each case. The proposed method is also expected to scale
well to processors with many CPU cores, as the studied
algorithm is data parallel.

6 CONCLUSIONS AND FUTURE WORK

In this paper, a fast method for computing the direct 2D con-
volution operation on x86/x64 processors is delivered. We
provide important insight on how to design and implement
the 2D convolution for different kernel sizes, kernel values,
vectorization technologies, number of physical CPU cores,
image bit-depths and image sizes. The optimized routines,
which are provided as open-source, include efficient vector-
ization using SIMD intrinsics, bit-twiddling optimizations,
the optimization of the division operation, multi-threading
using OpenMP and others.

The proposed method has been evaluated by using
twenty different size images, both 16-bit and 32-bit inter-
mediate results, four different kernel sizes (3x3,5x5,7x7,9x9)
and two different processors, and it provides high speedup
values over Intel IPP and Intel MKL in all cases. To the best
of our knowledge, the proposed method is superior as it
achieves far fewer arithmetical and L/S instructions.

As far as our future work is concerned, the first step
includes the evaluation of the proposed method to larger
kernel sizes. In the longer term, we are planning to apply
and evaluate the proposed method to the convolution layer
of CNNs. Although the proposed method can be extended
to multiple channels and different dilation/stride values
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(with a reasonable effort), we expect that several changes
might be required in order to achieve peak performance.
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