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Abstract

This paper describes a novel differential geometry method that is used in com-

bination with 3D digital image correlation (3D-DIC) for crack tip field charac-

terization on non-planar (curved) surfaces. The proposed approach allows any

of the two-dimensional crack tip field models currently available in the litera-

ture to be extended to the analysis of a 3D developable surface with zero

Gaussian curvature. The method was validated by analyzing the crack tip dis-

placement fields on hollow thin-walled cylindrical specimens, manufactured

from either 304L or 2024-T3 alloy that contained a central circumferential

crack. The proposed approach was checked via a comparison between experi-

mentally measured displacement fields (3D-DIC) and those reconstructed from

a modified 2D crack tip model (utilizing either 2, 3, or 4 terms of the William's

expansion series) and implementing a 3D geometrical correction. Further vali-

dation was provided by comparing model-derived stress intensity factors with

values provided by empirical correlations.
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1 | INTRODUCTION

Optimized design of mechanical components requires
guarantees of their in-service structural integrity perfor-
mance over the complete lifetime. This implies associated
development of accurate methods of analysis that reduces
their behavioral uncertainty. Cracks, or crack-like
defects, are endemic in mechanical elements, and their
existence can lead to catastrophic failures, particularly

from fatigue processes.1 Evaluation of the severity of a
defect or crack is based on characterization of the crack
tip stress/strain distributions, and a number of different
mathematical models, based on various singular crack tip
parameters, are available in the literature.2–9 Many of
the mathematical models, such as Westergaard's clas-
sical equations,2,3 Williams' series expansion,4 or
Muskhelishvili's complex potentials,6,7 are based on lin-
ear elastic fracture mechanics (LEFM). However, there
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some other models, for example, those due to Hutchin-
son5 or Pommier and Hamman8 that assume an elasto-
plastic material behavior. More recently, a mathematical
approach based on Muskhelishvili's complex potentials
has been developed by Christopher, James, and
Patterson, that is referred to in the literature as the CJP
model.9 It considers the potential influences on the sur-
rounding elastic field of the plastic enclave around the tip
and flanks of a fatigue crack. This opens up the possibility
of directly assessing the influence of shielding mecha-
nisms during fatigue crack growth.10 The singularity
characterization parameters that are given by most
models can be successfully determined by combining the
mathematical description of the crack tip field with
experimental measurements obtained using full-field
optical techniques. Descriptions of such techniques are
given in Brewster11 (digital photo-elasticity), Schreier
et al12 (digital image correlation [DIC]), and Thomson13

(thermoelastic stress analysis [TSA]), and they allow
direct analysis of the crack tip fields, and hence evalua-
tion of the driving force for fatigue crack advance,14,15 or
the assessment of crack shielding phenomena.16–18 All of
these models have their origin in the differential equa-
tions of the theory of elasticity and simplify the situation
to a planar geometry under 2D plane stress or plane
strain conditions. The crack tip field is then generally
defined by a set of polar coordinates (origin at the crack
tip) in the crack plane together with the respective char-
acterization parameters. This limitation of the models to
the analysis of flat surfaces, and consequently planar
components, is a major restriction in their more general
applicability.

Consequently, there is a very limited number of
research works in the literature in which such 2D models
have been employed for the analysis of non-planar
cracked surfaces. In such cases, important assumptions
are made to provide an approximation to the real crack
tip field at the surface. Mokhtarishirazabad et al19

employed 2D-DIC with a high magnification lens, to cal-
culate the stress intensity factor (SIF) from the Williams
equations in an analysis of a cracked cylindrical surface.
This approximate approach was valid when the magnifi-
cation was sufficiently high over a small analysis zone,
that the surface curvature could be neglected. However,
the presence of the near crack tip plastic enclave consti-
tuted a major limitation on this approach as the authors
used a linear elastic crack tip model. In essence, only data
from the plastic enclave could be captured at this resolu-
tion while any plasticity effects are explicitly excluded
when using a linear elastic crack tip model. To rectify this
anomaly, the analysis has to be focused on the elastic
zone which requires a decrease in the spatial resolution,
where the effect of specimen curvature can no longer be

neglected. In more recent work, Vormwald et al20

employed 3D-DIC for the analysis of crack tip displace-
ments; however, they also assumed a hypothetical negli-
gible curvature with very high magnification, in order to
infer SIFs using a 2D crack tip model in a thin-walled
cylindrical tube under mixed mode loading.

The current work advances the characterization of
curved surfaces by outlining a novel experimental
approach for crack field quantification based on non-
planar bodies in combination with 3D digital image cor-
relation (3D-DIC). The method is based on a modified
two-dimensional planar model using a differential geom-
etry formulation to account for the 3D shape of the sur-
face. In this way, a generalized plane stress crack field
description for non-flat surfaces can be obtained at the
surface of the specimen. The proposed methodology was
applied to the analysis of crack tip displacement fields on
the surface of hollow cylindrical specimens with a wall
thickness of 2.11 mm made from either 304-L stainless
steel or 2024-T3 aluminum alloy. Specimens contained
starter notches in the form of central circumferential
holes on opposite sides of the specimen with crack-like
sawn extensions at their equatorial plane (illustrated in
Figure 3). The accuracy of the proposed approach was
assessed by comparing the displacement field measured
using 3D-DIC, with that reconstructed by using a modi-
fied 2D Williams' model (with either 2, 3, or 4 terms)
with a 3D geometrical correction. The observed average
fitting error was lower that 0.15%, highlighting the capa-
bility of the approach in characterizing the crack tip field
at the surface of a non-planar geometry. SIFs were deter-
mined at maximum load for various crack lengths and
compared with empirical correlations available in the lit-
erature for this geometry.21–23 Experimental and model-
ing results showed a high level of agreement, with an
average error lower than 5%. Finally, to illustrate the
robustness of the proposed methods, the plane stress
assumption made at the specimen surface was experi-
mentally demonstrated to be valid from an analysis of
displacement components at the specimen surface, again
using 3D-DIC.

This technique has significant potential in application
areas that include identifying empirical fatigue crack
growth relationships and determining the effective driv-
ing force for crack growth using advanced crack tip field
models that incorporate influences of plasticity-induced
shielding. Fatigue and fracture models developed for pla-
nar surfaces can now be extended to curved surfaces.
There is also potential for application to problems of
crack propagation direction, as the analysis presented has
been developed for Mode I, but could be extended to
include Modes II and III, allowing the likelihood of crack
deflections to be predicted from the SIF changes.
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2 | FUNDAMENTAL THEORY

2.1 | Williams crack tip field model

The Williams expansion series4 is widely recognized
inside the fatigue and fracture community as a reliable
model that approximates the crack tip field on a flat
cracked surface. According to this model, the displace-
ment fields around the crack tip under opening mode
(tensile) loading can be defined as follows:
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where ux and uy are respectively the horizontal and verti-
cal components of the displacement field; r and θ are
polar coordinates over an xy plane centered at the crack
tip; G is the shear modulus; p is a sum index; κ is a func-
tion of Poisson's coefficient, which depends on the stress
state (2D or 3D); and ap is the half crack length for a
through-thickness crack. The first coefficient of the sum
is related to the Mode I SIF, KI while the second coeffi-
cient is related to the non-singular stress in the
x direction (the T-stress), σ0x ¼ 4a2. Higher order terms
can be neglected if only the singularity zone is being ana-
lyzed and no significant plastic deformation at the crack
tip occurs. Moreover, if only the first two terms are con-
sidered, the Williams' model is equivalent to the Irwin–
Westergaard model.2,3 Under plane stress conditions, the
out-of-plane displacement component normal to the
crack plane is given by Equation 2.

uz ¼�2z
G 1þνð Þ

ν
σxþσy
� � ð2Þ

where z is the out-of-plane coordinate and σx and σy are
the normal stresses in the horizontal and vertical direc-
tions. Conventionally, the x-axis is the crack growth
direction, and the y-axis is the crack opening direction
under tensile loading.

2.2 | Tangential directions and Frenet
trihedral

When a non-planar curved surface is under consider-
ation, it can be parametrized as a function of two param-
eters ξ and η which represent two orthogonal directions.
Each point at the surface can be defined by a position
vector ρ

! referred to a general Cartesian reference system

(x, y, z) as shown in Figure 1. For a particular surface
point, Q, three tangent directions can be defined by three
orthogonal unity vectors (tangential, T

!
, binormal, B

!
, and

normal, N
!
) according to the Frenet–Serret formulation,

which gives an innate geometric description of a curve.24

These three vectors are calculated from the position vec-
tor and the parameters ξ and η as shown in Equations 3,
4, and 5.
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where T
!
, B
!
, and N

!
are the tangential, binormal, and nor-

mal unitary vectors, respectively. Double vertical bars
denote the two-norm of the vector (which calculates the
distance of the vector coordinate from the origin of the
vector space), the operator � denotes the vector cross-
product, and ex , ey, and ez are the components of unit
vectors in the Cartesian directions.

The lengths x0 and y0 over the surface along the
parametrization directions, ξ and η, are obtained by inte-
gration according to Equations 6 and 7.
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FIGURE 1 Schematic illustration showing the components of

the Frenet trihedral for an arbitrary point over a generic non-flat

surface24
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y0 ¼
Z η

η0
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where ξ0 and η0 are the integration lower limits,
respectively.

2.3 | Extended crack tip model for the
analysis of curved surfaces

The proposed formulation for the analysis of the crack tip
field on curved surfaces assumes plane stress conditions.
The objective is to combine the description provided by
the curved surface crack tip field model with experimen-
tal stress and strain measurements obtained from any
suitable optical technique. Thus, considering a develop-
able surface, that is, one that can be flattened onto a
plane without distortion, the normal direction given by N

!

is the principal direction and the stress value is zero. For
simplicity in illustrating the proposed methodology, a
cylindrical surface containing a central circumferential
crack has been considered (Figure 2A). The parametric ξ
and η directions have been chosen to be respectively coin-
cident with the crack growth and opening directions. In
addition, the surface can be geometrically unwrapped
over a ξ�η plane as schematically illustrated in
Figure 2B. Hence, as for the case of a two-dimensional
flat surface, the Williams model can be reformulated to
account for the effect of the curvature in the unwrapped
surface (Equations 5 and 6). As indicated in Figure 2, the
displacement in the horizontal direction (crack growth
direction) is replaced by the displacement in the tangen-
tial direction, while the displacement in the vertical
direction (crack opening direction) is replaced by the dis-
placement in the binormal direction. Similarly, the

rectilinear coordinates of the surface points are replaced
by the curvilinear coordinates.
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where uT , uB, and uN are the displacement components
in the tangential, binormal, and normal directions,
respectively. If the surface is unwrapped over a plane, r0

and θ0 are the polar coordinates of a point Q referred to a
Cartesian reference system x’� y’ (Figure 2B), zn is the
normal coordinate in the unwrapped plane (out-of-plane
direction), and σT and σB are the normal stresses along
tangential and binormal directions, respectively. The dis-
placement components uT , uB, and uN are calculated by
projecting the displacement vector u

!
at each direction

defined by the Frenet trihedral as shown in Equations 10
to 12.
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FIGURE 2 Figure to

illustrate the analogy with flat

models. Cracked surface (A, 3D

surface) and the equivalent

system on the unwrapped plane

(B, unwrapped surface) [Colour

figure can be viewed at

wileyonlinelibrary.com]
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FIGURE 3 304L-SS specimen used during

fatigue experiments

TABLE 1 Chemical composition of both alloys (wt %)

304L 0.02 C 0.39 Si 1.37 Mn 0.001 S 0.029 P 8.01 Ni 18.15 Cr

2024-T3 3.8 Cu 0.1 Cr 0.3 Mn 0.5 Fe 1.2 Mg 0.5 Si 0.15 Ti 0.25 Zn

TABLE 2 Mechanical properties of the alloys

Mechanical property Units 304L 2024-T3

Young modulus MPa 197,000 73,100

Poisson ratio Dimensionless 0.33 0.33

Yield stress MPa 312 355

Ultimate tensile stress MPa 646 483

Elongation at failure % 53 18

3 | EXPERIMENTAL DETAILS

The proposed approach was validated by fatigue crack
growth rate testing using cylindrical seamless tubes with
centrally introduced notches as shown in Figure 3. Speci-
mens were machined from either 304L austenitic stain-
less steel or 2024-T3 aluminum alloy. The chemical
composition and mechanical properties of the two alloys
are given in Tables 1 and 2. The specimens were designed
and manufactured according to ASTM standard E-
606-92,25 with a length of 203.2 mm and a thickness of
2.11 mm. To suit the available material, the external
diameter of the 304L specimens was 26.8 mm and that of
the 2024-T3 specimens was 25.4 mm. The central notch
(Figure 3) was machined from an initial drilled through-
thickness hole extended with a 0.1-mm sawn slot in the
circumferential direction. Crack length was calculated in
radians, as the ratio between the circumferential angle
subtended by the crack divided by the complete circum-
ference (2π radians). The normalized initial notch length
was 0.02 (equivalent to a crack length along the outer cir-
cumference of 1.7 mm, or 1.5� expressed in terms of the
crack angle) and was chosen to provide a good resolution
of the crack tip field even for very short cracks. However,
the notch manufacturing process left residual stresses

that affected the crack tip field at short crack lengths
(in the range of normalized crack lengths from approxi-
mately 0.02 to 0.15). A 100-kN servohydraulic testing
machine (MTS Landmark 370.10) was used in the fatigue
tests with constant amplitude tensile loading at 10 Hz.
The stress ratio was 0.525, in order to avoid any influ-
ences of crack wake closure in the measured crack tip
field.10,26 The maximum applied load was selected to
ensure that SIF values were significantly higher than the
threshold range16,26 for fatigue crack growth. Hence, the
maximum applied load was 30% of the yield stress for
stainless steel and 20% for the aluminum specimens.

The specimen surface was prepared for the DIC work
by spraying it with a stochastic black speckle pattern on a
white background. Crack tip displacement fields were
recorded using a 3D-DIC technique.12 3D-DIC can record
the three-dimensional surface displacement field on the
specimen, allowing calculation of the experimental SIF at
maximum load for a given crack length. Experimental
data were acquired with a stereoscopic vision system
comprising three 5-megapixel monochrome CCD cam-
eras each fitted with a zoom lens (MLH-10X EO) to
increase the spatial resolution around the crack tip. The
required depth of field to avoid blurring in the image was
set via the lens aperture, with smaller apertures giving
greater depth of field. A dual point fiber optic light guide
was used to achieve a uniform illumination pattern
around the initial notch on both sides of the specimen.
The experimental set-up is shown in Figure 4.

A calibration grid (a rectangle comprising 9 � 6 dots
with a 2-mm spacing between dots)27 was used to cali-
brate the stereoscopic system and calculate the relative
position and distance between the cameras and the speci-
men surface.12 This calibration process was particularly
important when measuring the very small displacements
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associated with small crack lengths, and an average spa-
tial resolution of 0.02 mm/pixel was achieved. That aver-
age spatial resolution was computed as the mean value of
the distance between the adjacent points in a domain. In
order to capture all possible movements of the non-
planar specimen surface during a test, it was important
to account for any motion of the calibration plate (either
rotation or displacements) that might occur during the
calibration process. DIC processing used a square subset
facet size of 29 pixels with an overlap of one pixel, as this
was found to reliably provide the required displacement
field information.

4 | DISPLACEMENT FIELD
MEASUREMENT

The crack tip displacement field under maximum load at
various crack lengths was measured using the previously
described 3D-DIC set-up and the commercial software
VIC-3D from Correlated Solutions Inc. The measured
surface displacement field together with the spatial coor-
dinates of the central point of the facets allowed calcula-
tion of the directions of the Frenet trihedral. Figure 5
gives the measured displacement values in the Frenet
binormal and tangential directions. Note that normalized
crack length in radians has been used in this figure,
defined as the ratio of the half angle subtended by the
crack γ/π. For the chosen geometry, the crack growth
direction corresponded with the circumferential direction
while the crack opening direction corresponded with the
axial direction since the applied load was perpendicular
to the crack plane. Using Equations 3 to 7, the unitary
transformation vectors and the coordinates of the
unwrapped surface relative to the crack tip were

calculated. Note that for the particular case considered,
the transformation performed is equivalent to the use of
a cylindrical (polar) coordinate system. Circumferential
and axial directions were calculated from the relative
position between the surface points and the directional
derivatives were calculated using a finite difference
approach. To reduce the error arising from the dis-
cretization process, the first derivative was calculated
using a second-order finite difference approach (central
derivative). Computation of the distance between points
at the specimen surface used a numerical integration
approach based on the compound trapezium rule. Hence,
the transformation parameters were calculated
corresponding to the unwrapped surface of the displace-
ment field. Figure 5 shows tangential and binormal dis-
placement components over the unwrapped plane for a
particular crack length of 19.71 mm. Figure 5A.1,B.1
shows both displacement components in a three-
dimensional plot while Figure 5A.2,B.2 shows both dis-
placements on a map plot.

In order to extract singularity characterizing parame-
ters from the displacement field, the Multi-Point Over-
Deterministic Method (MPODM) developed by Sanford
and Dally28 was used. Mathematical fitting was per-
formed using a mesh of points in an annular region
around the crack tip (see Figure 6). This annulus avoided
the plastic enclave surrounding the crack tip so that
LEFM parameters could be determined. Previous work10

has shown that the choice of mask shape, that is, rectan-
gular or circular, does not significantly affect the results
and a circular mask is easier to implement and define in
data collection terms. The inner mesh radius was com-
puted using the Dugdale29 plastic zone radius approxima-
tion. The outer radius value was chosen in order to
capture the singularity zone. Thus, according to some

FIGURE 4 Experimental set-up [Colour

figure can be viewed at wileyonlinelibrary.com]
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previous works,6,16 a value around 40% of the crack
length was chosen. Mesh points were defined linearly
and therefore were equally spaced. Crack tip singularity
parameters were then computed by solving a linear sys-
tem of equations (with a suitable matrix factorization)
using the measured surface displacements (uT and uB) at
selected locations around the crack tip and their relative
position in the unwrapped plane (x0 and y0). The influ-
ence of the number of terms in the crack tip stress equa-
tions on the quality of the mathematical fitting and its

effect on the calculated SIF was also evaluated. As dis-
cussed in Section 2, most crack tip stress/displacement
models are formulated assuming that the crack tip is at
the origin of the reference coordinate system. In the cur-
rent analysis, the center of the annular mesh was placed
at an initial location estimated from the observation of
the measured displacement field. That initial point can
be located easily and precisely since the crack path can
be recognized in both maps. To locate the precise crack
tip position on the unwrapped plane, a search grid was

FIGURE 5 Displacement field around the crack tip in terms of binormal and tangential directions at maximum load for a crack length

of 19.7 mm (normalized crack length γ/π = 0.2377). (A) Binormal and (B) tangential components. 304L-SS [Colour figure can be viewed at

wileyonlinelibrary.com]

FIGURE 6 Annular mesh for data collection. (A) binormal displacement map and (B) tangential displacement map [Colour figure can

be viewed at wileyonlinelibrary.com]
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defined over the plane as shown in Figure 7. For each
point of the grid, which are defined by their coordinates
x0i and y0i, an error function Fi was formulated
(Equation 13). The model was then fitted to the experi-
mental data at each point of the grid and the minimum
value of the error function was used to determine the
crack tip location.30,31 These positions were then used to
calculate SIFs. Hence, from the mathematical fitting,
coefficients that describe the crack tip fields could be
obtained and the opening mode SIF KI calculated.

F¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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where double vertical bars indicate the operator norm
and superscripts e and th refer to experimental and theo-
retical displacement data, respectively.

To validate the accuracy of the plane stress assump-
tion at the specimen surface, displacement fields in the
normal direction were obtained experimentally and theo-
retically (the latter via mathematical fitting) and com-
pared. Once crack tip parameters were calculated, the
displacement field in the normal direction could be cal-
culated (Equation 6) and compared with that measured
using 3D-DIC. This comparison was also made for SIFs,
where calculated experimental values were compared
with values calculated from empirical correlations
reported by Tada et al23 based on Sanders' results.21,22

It should be noted that for the stainless steel, the
crack grew from the notch on a single side of the speci-
men, while in the case of the aluminum alloy cracks grew
from both notches, as indicated in Figure 8. The crack
topology in the two different materials therefore corre-
sponds to different empirical correlations. Tada's
correlation21–23 for a single crack (304L-SS) is given by
Equation 14, and for the case of a double crack
(2024-T3-Al), Equation 15 is applicable.
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FIGURE 7 Search grid for crack tip localization

FIGURE 8 Schematic illustration showing

how the crack was growing during fatigue test

for the two materials tested during fatigue

experiments, left) single crack corresponding to

304L-SS and (right) double crack corresponding

to 2024-T3-Al [Colour figure can be viewed at

wileyonlinelibrary.com]
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KI ¼
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πRγ

p
ð15Þ

In these expressions, P is the axial load, R is the mean
radius of the cylindrical specimen, t is the wall thickness,
ν is Poisson's ratio, and γ is the subtended half angle of
the crack. The crack length was measured as the distance
over the specimen surface between the crack tip location
and the center of the original starter hole. In addition,
the crack angle was calculated as the ratio between the
curved surface crack length and the outer radius of the
cylinder. To assess the quality of the proposed methodol-
ogy in describing the crack tip field, a comparison was
made between the experimental and theoretically fitted
displacement field in terms of the SIF confidence inter-
vals and their relative fitting error.

5 | RESULTS AND DISCUSSION

Experimental data were fitted to the Williams model
using the methodology described above while also
sequentially increasing the number of terms used in the

expansion series. In the present work, beyond four terms,
the model output became stable, and the magnitude of
higher order terms was negligible (less than 10�16). This
is indicative of a high quality correlation between the
experimental and the mathematically fitted data. Fur-
thermore, the SIF values obtained using a reduced num-
ber of terms did not change significantly as the number
of terms was increased. The resultant Mode I SIF values
calculated using 2, 3, and 4 terms in the Williams' expan-
sion series as a function of the normalized crack length
are shown in Figure 9 for 304L-SS and in Figure 10 for
2024-T3-Al. The reliability of the results was also illus-
trated via a comparison with the nominal values of KI

calculated according to Equations 14 and 15 (Figures 9
and 10) and showed a high level of agreement, with aver-
age errors for the 304L alloy of only 6.36%, 5.38%, and
4.13% using 2, 3, and 4 terms, respectively, and 3.18%,
3.74%, and 3.18% for 2, 3, and 4 terms in the case of the
2024-T3 alloy.

These small differences can be explained by the pres-
ence of noise inherent to the DIC stereoscopic calibration
residuals and the differentiation process that occurs
when implementing the proposed approach. Moreover,
the use of average values in the elastic constants could
also modify the results by around 1% (the range of
Young's modulus provided by the alloy manufacturer).

FIGURE 9 Variation with the

normalized crack length and the

number of terms in the Williams

stress series expansion used in the

calculations, as a function of (A) the

ratio between the calculated and the

standard expression stress intensity

factors; (B) relative fitting error

between the calculated and

standard SIF values; and (C) the

ratio between the stress intensity

factor range within a 95%

confidence interval and the

standard stress intensity factor

values for 304L-SS
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Equally, however, standard SIF correlations do not con-
sider any effect of crack tip plasticity during fatigue crack
growth and, consequently, their values may differ slightly
from the experimental values calculated using the pre-
sent hypothesis. Nonetheless, the mathematical model
developed to perform the stress field fitting is also based
on linear elastic fracture mechanics, thus any shielding
effect due to crack tip plasticity is not explicitly
considered.

The accuracy of the mathematical fitting together
with the relative error in the fitting process (given by the
error function defined in Equation 13) and the dimen-
sionless range of the 95% confidence intervals around the
results are illustrated in Figure 9 and 9C for the 304L
alloy and in Figure 10B,C for the 2024-T3 alloy. These
parameters in both materials show similar trends with a
higher fitting error of between 0.4% and 0.7% at shorter
crack lengths, followed by an exponential decrease to a
stable lower value of ≈0.005%. It is believed that these
initial higher values seen with short cracks (normalized
crack lengths between 0.1 and 0.15) reflect the influence
on the initial crack tip field of residual stresses generated
during notch machining. In all cases, the maximum error
was <1%. The upper limit of the model in terms of nor-
malized crack length, as indicated in Figures 9 and 10, is
around 0.5 for 304L alloy and 0.7 for the 2024-T3 alloy.
This upper limit occurs because the displacement fields

at longer crack lengths are not adequately described by
the Williams crack field equations, since the specimen
ligament was fully plastic. Thus, a limitation on applica-
bility of the proposed model arises from excessive plastic-
ity (large-scale yielding conditions) in the remaining
uncracked ligament in the specimen.

However, the results obtained clearly illustrate the
ability of the proposed differential geometry method to
characterize crack tip fields on non-planar elements
through a two-dimensional planar model.

In addition to a quantitative evaluation of the pro-
posed method in terms of the calculation of SIFs, it is
useful to show a direct comparison between the displace-
ment values measured at the fitting locations sup-
erimposed on the reconstructed 3D surface displacement
field obtained using Williams' analytical model with the
fitting coefficients obtained at various normalized crack
lengths (as shown in Figures 11 and 12). These figures
clearly illustrate three aspects of the proposed model (the
binormal displacement in the figures A.1 to A.3 and the
tangential displacement in figures B.1 to B.3). Firstly, the
number of terms used in the Williams stress expansion
does not have any significant effect on the observed
agreement between the experimental data and the
reconstructed displacement field. Secondly, at short crack
lengths, data dispersion is higher than seen for longer
cracks and, as previously discussed, this is attributed to

FIGURE 10 Variation with the

normalized crack length and the

number of terms in the Williams

stress series expansion used in the

calculations, as a function of (A) the

ratio between the calculated and the

standard expression stress intensity

factors; (B) relative fitting error

between the calculated and standard

SIF values; and (C) the ratio

between the stress intensity factor

range within a 95% confidence

interval and the standard stress

intensity factor values for 2024-T3-Al
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notch-induced residual stresses. Finally, as crack length
increases, the tangential component changes more signif-
icantly than the binormal component and this is

attributed to the influence of T-stress, whose value
increases as the uncracked ligament is reduced (far-field
boundary effect).32

FIGURE 11 304L alloy: Comparison between the experimentally measured and the fitted crack tip displacement fields (tangential and

binormal) as a function of normalized crack length and the number of terms used in the mathematical fitting; (A), (B), and (C) refer to

normalized crack lengths γ/π, of 0.1686, 0.2377, and 0.4370, while 1, 2, and 3 identify the number of stress expansion terms used, that is, 2, 3,

and 4 [Colour figure can be viewed at wileyonlinelibrary.com]
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To summarize this work, experimentally measured
3D displacement fields have been compared using a
mathematically fitted 2D model, in order to demonstrate

that the specimen surface experiences plane stress condi-
tions. Using the fitting coefficients obtained in the
process, the tangential and binormal stresses were

FIGURE 12 2024-T3 alloy: Comparison between the experimentally measured and the fitted crack tip displacement fields (tangential

and binormal) as a function of normalized crack length and the number of terms used in the mathematical fitting; (A), (B), and (C) refer to

normalized crack lengths γ/π, 0.2796, 0.3407, and 0.5827, while 1, 2, and 3 identify the number of stress expansion terms used, that is, 2, 3,

and 4 [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 13 304L alloy: Comparison between measured and fitted normal displacements as a function of the normalized crack length

and the number of terms used in the mathematical fitting; (A), (B), and (C) refer to normalized crack lengths of 0.1686, 0.2377, and 0.4370,

while 1, 2, and 3 identify the number of stress expansion terms used, that is, 2, 3, and 4 [Colour figure can be viewed at wileyonlinelibrary.

com]

FIGURE 14 Comparison between measured and fitted normal displacements as a function of the normalized crack length and the

number of terms used in the mathematical fitting; (A), (B), and (C) refer to normalized crack lengths of 0.2796, 0.3427, and 0.5827, while

1, 2, and 3 identify the number of stress expansion terms used, that is, 2, 3, and 4 [Colour figure can be viewed at wileyonlinelibrary.com]
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calculated, and hence, the normal component of the
stress could be found (Equation 9). In this case, the vari-
able zn represents the radial direction (for the particular
geometry evaluated, this is the radius of the sample, 13.4
and 12.7mm for the 304L alloy and the 2024-T3 alloy,
respectively). Figures 13 and 14 show a comparison
between the measured and calculated displacement field
in the radial direction, and similar trends are observed in
both materials. The scatter in the experimental data at
shorter crack lengths reflects the influence of the residual
notch manufacturing stresses, as the magnitude of the
measured normal displacements was particularly small
for the case of short cracks (values close to 1 μm) which
emphasizes the effect of any noise arising during differ-
entiation of the data. For longer cracks, the noise is very
significantly reduced as the magnitude of the measured
displacements increases. The mean relative fitting error
was calculated as 7.45% and 11.25% for the stainless steel
and the aluminum alloy, respectively. While these values
are significantly higher than the equivalent error found
in the binormal and tangential components, they seem
reasonable in view of the fact that the order of magnitude
of this displacement component is much lower than for
the binormal or tangential, and hence, the presence of
noise is more significant. Regarding the higher error in
the aluminum alloy, scatter was higher due to the lower
applied load levels, and in consequence, the lower dis-
placement values.

6 | CONCLUSIONS

A novel technique has been presented in this paper for
the characterization of crack tip fields on non-flat and
developable surfaces. It combines a two-dimensional
crack tip field model with differential geometry, and the
results obtained demonstrate that crack tip fields at the
surface on non-planar geometries can be accurately char-
acterized via a modified two-dimensional planar model.
In terms of SIF, the field shape and relative fitting error
results demonstrate a high level of agreement between
the measured and fitted displacement fields. The present
paper has presented an analysis of the proposed tech-
nique under pure Mode I loading. Extending the analysis
to mixed mode cracking is an obvious next step but has
increased complexity due to such mixed mode phenom-
ena such as load-path dependence, arising from crack tip
plasticity. The order in which the loads are applied, as
well as whether they are applied in-phase or out-of-
phase, therefore influence the crack path. However, the
proposed method opens up the possibility of experimen-
tally studying fatigue and fracture problems for curved
surfaces that, until now, could only be addressed

analytically or numerically. This paper therefore presents
a powerful tool in the analysis of cracked non-planar
structural components. Although there are some limita-
tions in the plane stress assumption, the proposed tech-
nique covers a wide range of thin-walled mechanical
elements with curved geometries. One of the main
advantages of this method is that the approach does not
require any additional experimental validation, in con-
trast with numerical simulations. The ability to analyze
cracked components with complex geometries using full-
field optical techniques in conjunction with crack field
models represents a significant advance in the subject, as
there is a scarcity of experimental-analytical models suit-
able for addressing this kind of problem.
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NOMENCLATURE

F relative error fitting function
G shear modulus
κ function of Poisson's coefficient
KI Mode I stress intensity factor
p Williams' model sum index
P axial loading
r,θ polar coordinates
r0,θ0 polar coordinates over the unwrapped

surface
Q arbitrary 3D surface point
R mean radius of the cylindrical pipe
t cylindrical pipe wall thickness
Ti,Bi,Ni component of the vector along Cartesian i

direction. i¼ x,y,z
uT ,uB,uN displacement field components expressed in

Frenet–Serret trihedron directions
ux ,uy,uz components of the displacement field
ν Poisson's coefficient
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x,y,z Cartesian coordinates
x0,y0 lengths over a 3D surface
zn out-of-plane direction in the unwrapped

plane
ap coefficients of Williams' model
γ subtended half angle of the crack
ξ,η parametrization parameters
ξ0,η0 integration lower limits of the integral for

computing curve lengths
σT ,σB normal stresses expressed along Frenet–

Serret trihedon directions
σ0x non-singular stress in the x direction
σx ,σy normal components of the plane stress

tensor
ex
!, ey

!, ez
! unitary vectors in Cartesian axes

ρ
! position vector
T
!
,B
!
,N
!

Frenet–Serret trihedon components
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