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Research Article

The value of genotype-specific reference for
transcriptome analyses in barley
Wenbin Guo1 , Max Coulter2, Robbie Waugh2,3 , Runxuan Zhang1

It is increasingly apparent that although different genotypes
within a species share “core” genes, they also contain variable
numbers of “specific” genes and different structures of “core”
genes that are only present in a subset of individuals. Using a
common reference genome may thus lead to a loss of genotype-
specific information in the assembled Reference Transcript
Dataset (RTD) and the generation of erroneous, incomplete or
misleading transcriptomics analysis results. In this study, we
assembled genotype-specific RTD (sRTD) and common
reference–based RTD (cRTD) from RNA-seq data of cultivated
Barke andMorex barley, respectively. Our quantitative evaluation
showed that the sRTD has a significantly higher diversity of
transcripts and alternative splicing events, whereas the cRTD
missed 40% of transcripts present in the sRTD and it only has
~70% accurate transcript assemblies. We found that the sRTD is
more accurate for transcript quantification as well as differential
expression analysis. However, gene-level quantification is less
affected, which may be a reasonable compromise when a high-
quality genotype-specific reference is not available.
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2022 | Accepted 11 April 2022 | Published online 22 April 2022

Introduction

For more than a decade, RNA sequencing (RNA-seq) has become
the preferred method for large scale transcript identification and
quantification (Wang et al, 2009; Conesa et al, 2016). It accesses a
more diverse collection of transcripts than earlier technologies
like microarrays and allows studies of alternative splicing (AS)
(Mantione et al, 2014; Conesa et al, 2016; Zhao, 2019). Consequently,
one of themain uses of RNA-seq data is to quantify gene expression
at both gene and transcript levels. Several studies have shown that
for gene-level analysis, quantification at transcript resolution im-
proves the overall estimation of gene expression (Trapnell et al,
2013; Zhao et al, 2015). Currently, the gold standard quantification of
transcripts depends upon the use of well-annotated reference
transcript datasets (RTDs) (Zhang et al, 2015, 2017; Brown et al, 2017;
Rapazote-Flores et al, 2019) in conjunction with rapid and accurate

computational programs that implement approaches based on
pseudo alignment, such as Salmon (Patro et al, 2017) and Kallisto
(Bray et al, 2016). De novo assembly methods can assemble
transcripts without the guidance of a reference genome, but
they suffer from significantly enhanced mis-assemblies and low
sensitivities (Martin & Wang, 2011; Conesa et al, 2016; Marchant
et al, 2016). High-quality transcript assembly is still fre-
quently derived from reference genome mapping-based as-
sembly approaches.

In the reference genome mapping-based approach, transcript
assembly generally starts by mapping RNA-seq reads to a common
reference; a haploid sequence considered representative of the
genomes of related individuals within a phylogenetic clade (in our
example this would be all domesticated barley genotypes). For
example, the barley RTD BaRTv1.0 was constructed by mapping
RNA-seq reads frommore than 150 barley cultivars to the reference
Morex genome (Hv_IBSC_PGSB_v2) (Rapazote-Flores et al, 2019).
However, pan-genome studies have revealed that diverse genotypes
contain a shared set of core genes as well as a large proportion
(10–60%) of genotype-specific genes in subsets of individuals (Hirsch
et al, 2014; Li et al, 2014; Golicz et al, 2016; Jin et al, 2016; Montenegro et
al, 2017; Sun et al, 2017; Tao et al, 2019). Moreover, genomic sequences
of common reference and individual strains contain frequent se-
quence variations, such as single nucleotide polymorphisms (SNPs),
short deletions and insertions (INDEL), which also affect the tran-
script determinations in the assembly (Munger et al, 2014); sequence
variation at splice sites will disrupt the recognition of introns and
exons and alter protein translations (Anna & Monika, 2018; Baeza-
Centurion et al, 2020).

Recently, high-quality genome assemblies for 20 genotypes of
diverse geographical origin, spike morphology and annual growth
habit have been made available through investigations into vari-
ation in the barley pan-genome (Jayakodi et al, 2020). In this study,
~1.5 million present/absent variants (PAVs) ranging from 50 to ~1M
bp were identified and 5,602 deletions longer than 5 kb were found
in Barke relative to Morex alone. Thus, the impact of moving from
common reference to genotype-specific reference genome for
transcriptomics studies, such as transcript assembly, quantifica-
tion, and differential expression analysis could be profound. The
availability of high-quality genotype-specific reference genomes
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has created an opportunity to investigate the impacts of genotype-
specific genetic variation on transcriptomics studies.

Here, we present a comprehensive investigation to quanti-
tatively explore the benefits of using a genotype-specific refer-
ence genome for transcriptomics analysis in barley. We mapped
RNA-seq data generated from Barke to the Morex genome (common
reference; second release) (Mascher et al, 2017; Monat et al, 2019) as
well as a newly assembled high-quality Barke genome (genotype-
specific genome) (Jayakodi et al, 2020) and generated a common
reference-based RTD (cRTD) and genotype-specific RTD (sRTD) in
parallel using the same tools and parameters (Fig 1A). We evaluated
the impact of using the sRTD in comparison with cRTD on tran-
scriptome analysis using the following metrics: (1) gene and
transcript diversity; (2) transcript sequences; (3) transcript struc-
tures; (4) AS; (5) quantification of transcript abundance; and (6)
differential expression accuracy (Fig 1B).

Results

Evaluation of genome quality and the bias caused by the
transcript assemblers

The barley pan-genome project showed that the Barke genome and
Morex genome used in our study are of very similar quality with the
Morex genome being slightly better in most metrics. They both had
a high co-linearity and comparable presentation of gene models
(Jayakodi et al, 2020). To further investigate the genome quality, we
calculated the scaffold statistics of seven chromosomes and the
unassigned contig in the two haploid reference genomes. The total
scaffold sizes of Barke and Morex genomes are 4.2 billion and 4.3
billion. The N50 numbers are 605.6 million and 624.2 million, re-
spectively. The unknown nucleotide bases in the Morex genome are
slightly higher, with 2.72% compared with 0.96% in the Barke ge-
nome. The percentages of adenine (A), cytosine (C), guanine (G), and

thymine (T) are very close in the two reference genomes (Table S1).
We also used BUSCO to evaluate the completeness of the genomes
by using embryophyta_odb10 as the lineage dataset (Manni et al,
2021). The completeness of the two reference genomes is equally
good. The complete (C) and single-copy (S) proportions of the Barke
and Morex genome are 98.2% and 98.5%, respectively (Fig S1).
Therefore, the discrepancy between sRTD and cRTD caused by
reference genome quality is likely to be minimum.

In addition, we also investigate the transcript assemblies by
using different assemblers. We used Cufflinks (Trapnell et al, 2010),
Scallop (Shao & Kingsford, 2017), and Stringtie (Pertea et al, 2015) to
perform three parallel transcript assemblies for 20 diverse tissue
samples from the barley cv. Barke as described in Coulter et al
(2021) Preprint. The transcripts using each assembler were merged
by Stringtie-merge. The read mapping and quality control steps
were the same as in Fig 1A. We identified problematic transcripts
from a few categories, including transcripts with false splice
junctions (SJs were not present at read alignments) and low read
support SJs, redundant transcripts with an identical structure to a
longer transcript in the same gene, transcripts likely to be frag-
mented (length <70% of the gene length) and unstranded tran-
scripts (Table S2). We found that Cufflinks assembled significantly
more problematic transcripts compared with Scallop and Stringtie.
Cufflinks could generate up to 80% misassembled transcripts, in-
cluding ~55% transcripts with false SJs. In addition, both Cufflinks
and Scallop produced a high number of mono-exon antisense
transcripts (mono-exon transcripts that overlap with a gene are in
antisense), which is likely to be a result of mis-assembly from reads
with incorrect strand information (Mourão et al, 2019). Also, Scallop
generates 20,000 (50%) fewer transcripts compared with Stringtie.
As the focus of this study is to investigate the impact of reference
genome on transcriptomics analysis, to minimise the biases in-
troduced by assemblers, we have focused on the Stringtie results in
this study given this is the assembler that presented the best
accuracy and sensitivity.

Figure 1. Workflow.
(A) RTD assembly pipeline with Barke RNA-seq read
mapping to Barke and Morex genome, respectively.
(B) Evaluation pipeline of the assembled sRTD and
cRTD.
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Genome mapping comparisons

We used STAR to map Barke RNA-seq reads to the Barke and Morex
genomes by allowing 0 mismatches (Dobin et al, 2013). The average
mapping statistics of the samples are shown in Table S3. We can see
that >8.6 million extra pairs of reads (7.26% more of the total) are
uniquely mapped to the Barke genome compared with Morex. The
percentage of unmapped reads is higher when mapping to the
common reference (Morex). Most of the unmapped reads (>98%)
are due to the mapping length being less than 2/3 of the mapped
read length. STAR statistics show that 14.13% of total reads are
unmapped in the common reference for this reason, whereas this
number dropped to 6.90% in the genotype-specific (Barke) genome.
The genotype-specific reference genome has fewer missing seg-
ments than the common reference and thus has a low percentage
of unmapped reads. The spliced reads used to locate introns in the
transcript assembly are also more abundant by >9.4 million pairs of
reads (10.96%) in the genotype-specific alignment. Sequence var-
iations including deletions and insertions, increase from 0.01 to
0.02% and 0.00 to 0.02%, respectively, with their average lengths
longer when mapping to the common reference (Table S3).

To investigate the effect of increasing the tolerance to sequence
variations on the read mapping and transcript assembly, we ex-
plored the allowances of 0, 2, 4 and 6 mismatches in the second
pass of read mapping during sRTD and cRTD assembly (Tables
S4–S6). We observed a general trade-off in that by allowing more
mismatches, more reads are mapped but the chances of mis-
mapping also increase. When mapping Barke RNA-seq reads to
the Morex genome allowing two mismatches, 107,619,513 (89.78%)
reads map uniquely, compared with 107,770,451.15 (89.89%) when
mapping the same data to the Barke genome allowing 0 mis-
matches. We, therefore, used Gffcompare to assess differences in
the transcript structures in a cRTD constructed allowing two mis-
matches, denoted as cRTD_m2 (Table S7). When allowing two
mismatches, the number of missed gene loci in cRTD_m2 reduced
by 1,979 from 21.5 to 18.2%. However, the number of false-positive
loci increased by 3,600 from 13.6 to 18.6%. Thus, allowing two
mismatches enables more genes to be discovered but this is ac-
companied by more false discoveries. For individual transcripts, we
observed decreased precision at almost all levels when allowing
mismatches, whereas recall increases at almost all levels. Thus, to
focus on the impact of the reference genome and to minimise the
confounding ofmismatch settings, we used a cRTD constructed with
the parameter setting of 0 mismatches for all the quantitative
analyses. The errors and false discovery rates we use are therefore
conservative estimates.

Comparison of high-level statistics on sRTD and cRTD

We compared high-level statistics of various features, such as
genome coverage, genes, transcripts, exons, and introns between
sRTD and cRTD (Table 1). At the genome level, cRTD covers ~91.16
million bases on the genome, whereas sRTD covers 103.79 million
bases, a 13.85% increase. This is consistent with the higher number
of unmapped reads identified during the STAR mapping step (Table
S3). At the gene level, sRTD and cRTD include a similar number of
genes but sRTD has 8.69% more multi-isoform genes. Protein-

coding genes with significant hits in the UniProt Plant database
(Bateman et al, 2021) are also 2.26% higher in sRTD (21,365 in sRTD
versus 20,893 in cRTD). Differences at the transcript level are more
profound. Despite having 0.36% fewer genes, the number of
transcripts in sRTD increased to 144,872 compared with 128,438 in
cRTD, a 12.8% (16,434) increase. The numbers of protein-coding
transcripts and those with significant hits in the UniProt Plant
database in the sRTD are 15.09% and 13.03% higher, respectively,
than in the cRTD and the average protein-coding length is 16.43
(4.28%) longer. Transcript diversity in the sRTD also shows a 13.19%
increase, rising to 2.44 from 2.15 transcripts per gene in cRTD (Table 1
and Fig S2). The sRTD tends to have more and longer exons with the
average transcript length in sRTD 12.11% (268.56 bp) longer than in
cRTD. With the effects of longer transcripts and increased transcript
diversity, there is a 26.45% increase of the total transcript length
(exonic) in sRTD over cRTD. With significantly less genome coverage,
shorter transcripts and fewer protein sequences, it is likely that
there are more transcript fragments and incomplete gene models
in cRTD than in sRTD and the fragmentation and incompleteness of
cRTD transcripts affect their coding capacity. Associated with the
increased transcript diversity in sRTD we observe an increased
number of AS events in all event categories. The increase ranges
from 21.78% for alternative acceptor sites (A3) to 30.98% for mu-
tually exclusive exons (MX) (Table S8).

Transcript sequence and structure comparisons

We used Blastn (https://blast.ncbi.nlm.nih.gov/Blast.cgi) to com-
pare the transcript sequences between sRTD and cRTD. To estimate
the technical variations caused by Blastn itself, we also compared
transcript sequences in sRTD to itself. We defined precision, recall
and their weighted mean F1 score to evaluate the sequence sim-
ilarity (Fig 2A). Blastn locally aligns stretches of sequences with a
high level of base matches without considering diverging regions
(Altschul et al, 1990). Thus, two transcript sequences may have
significant Blastn e-value and high bit-score but have only a small
proportion of overlap. Thus, we defined an “F1 score” to identify
transcript pairs with significant sequence overlap proportional to
the full length of sequences. At the nucleotide base level, on av-
erage 95.2% (precision) of the transcript nucleotides in cRTD are the
same as sRTD. Less than 5% of transcript sequences are unique to
cRTD. However, 11% of the nucleotide bases from sRTD are missing
from the cRTD, indicating a loss of >10% of transcript sequence
information when mapping RNA-seq reads to the common refer-
ence, consistent with the lower genome coverage identified above.
At the individual transcript level, we used an F1 value of 0.78 (the
lower limit of outliers of cRTD and sRTD sequence similarity, Figs 2A
and S3A) as a cut-off to determine transcripts with a high pro-
portion of sequence overlap. With this threshold, Blastn identified
98.8% of transcripts between sRTD and itself, indicating a low level
of technical false positives and negatives (both at 1.2%) caused by
Blastn and the chosen parameters. In comparison between cRTD
and sRTD, we found that 39,920 (31.1%) transcripts in cRTD do not
have amatched transcript of sufficiently high sequence similarity in
sRTD. These are likely to be misassembled transcripts. 56,354
(38.9%) of the transcripts in the sRTD do not have a corresponding
transcript in the cRTD, representing transcripts that failed to
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assemble when mapping to the common reference (Fig 2B). The
transcript sequence discrepancy between cRTD and sRTD directly
affects the translated proteins. Only 46,019 of 73,081 protein-coding
transcripts in sRTD have a match in cRTD, indicating that 37% of the
protein-coding transcripts are not assembled or with sufficient
similarity to those in sRTD (Figs 2B and S3B). When summarised to
the gene level, 20,007 (33.7%) genes in sRTD do not find any genes of
sufficiently high transcript sequence similarity in cRTD, whereas
20,224 (33.9%) genes in cRTD have no corresponding genemodels in
sRTD. Only 72.3% of the protein-coding genes in sRTD have been
retrieved in cRTD with at least one matched protein sequence (Fig
2C).

To analyse the transcript structure on the same genome coor-
dinate system, we mapped the whole transcript sequences of sRTD
and cRTD to the Barke genome with Minimap2 (Li, 2018), denoting
as sRTD.minimap2 and cRTD.minimap2, respectively. Like Blastn
analysis, the former was used as technical control to estimate the
errors introduced by Minimap2. We used Gffcompare to evaluate
the structure match of sRTD.minimap2 and cRTD.minimap2 to sRTD
at various levels, including nucleotide bases, exon, intron, intron
chain, transcripts and gene loci (Pertea & Pertea, 2020). In the

Gffcompare analysis, the overlapped gene models shared the same
loci. Duplicate transcripts or transcripts whose segments were
aligned to multiple chromosomes and/or strands by Minimap2
were discarded, which filtered out 247 transcripts in sRTD.minimap2
and 1,906 transcripts in cRTD.minimap2 (Table 2). The evaluation
statistics of true positive was defined as those features that had
identical boundaries between the RTDs for comparison (Fig S4).
Minimap2 can accurately map the Barke-based assembly back to
the Barke genome with minor technical errors of both false pos-
itives and false negatives at <2% at all levels (Tables 2 and 3).
However, by using the common reference (Morex) for transcript
assembly, we lose ~10% of introns and exons defined by their
genomic coordinates and 20% of gene loci. We also have up to 13%
of novel predictions that do not exist in the sRTD (Table 2). These
observations indicate that the common reference genome poses a
significant challenge to accurately determine the genomic loca-
tions of genotype-specific genes and transcripts, including the AS
sites, alternative transcriptional starts as well as polyadenylation
site selections.

At the transcript level, Gffcompare classified multi-exon tran-
scripts with identical intron chain or mono-exon transcripts with

Table 1. Basic statistics of the assembled sRTD and cRTD.

Category sRTD cRTD (sRTD-cRTD)/cRTD

Genome-covered bases 103,793,515 91,164,519 13.85%

Gene number 59,447 59,664 −0.36%

Multi-isoform gene number 16,163 14,871 8.69%

Mono-exon gene number 32,833 33,001 −0.51%

Multi-exon gene number 26,614 26,663 −0.18%

Protein-codinga 33,254 (55.94%) 31,961 (53.57%) 4.05%

Best-hit in UniProt Plant (e < 0.01)b 21,365 (35.94%) 20,893 (35.02%) 2.26%

Transcript number 144,872 128,438 12.80%

Mono-exon transcript number 33,429 33,578 −0.44%

Multi-exon transcript number 111,443 94,860 17.48%

Protein coding 73,998 (51.08%) 64,294 (50.06%) 15.09%

Protein average length 399.93 383.5 4.28%

Best-hit in UniProt Plant (e < 0.01) 47,614 (32.87%) 42,126 (32.80%) 13.03%

Transcript number per gene 2.44 2.15 13.19%

Transcript N50 3,284 3,056 7.46%

Transcript N90 1,457 1,286 13.30%

Transcript average length (exonic) 2,486.78 2,218.22 12.11%

Transcript total length (exonic) 360,264,709 284,903,601 26.45%

Exon number 881,447 722,816 21.95%

Exon number per transcript 6.08 5.63 8.10%

Exon average length 408.72 394.16 3.69%

Intron number 736,575 594,378 23.92%

Intron number per transcript 5.08 4.63 9.85%

Intron average length 643.8697 655.8377 −1.82%
aProtein-coding genes are defined as those genes with at least one protein-coding transcript.
bThe number of genes that have at least one protein-coding transcript with the best-hit in the UniProt Plant database.
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significant overlap (more than 80% to the longer transcript; default
by Gffcompare) as equivalent transcripts. The matched genes must
have at least one matched transcript (Fig S4). In Table 3, we can see
that cRTD.minimap2 loses about 40% of the total transcripts, multi-
isoform transcripts (intron chains) and gene loci present in sRTD
and has about 35% novel assemblies where the structure cannot be
found in sRTD, agreeing with the transcript sequence comparisons
in Fig 2B. The detailed sub-categories of the transcript structure
differences are shown in Fig S4. The largest categories of un-
matched cRTD transcripts are fragments with (1) only one side of a
splice junction correctly matched (8.70%); (2) correct splice junc-
tions (7.63%); and (3) retained introns (7.18%). The metrics improve
when scaled down to smaller units (nucleotide bases, exons and
introns). The introns are the best retrieved, with 85% recall and 94%

Figure 2. Summary of transcript sequence
comparisons of sRTD and cRTD.
(A) Metrics distribution of transcript sequence
comparisons. The transcript sequences of cRTD and
sRTD (query) were both compared with sRTD (target)
with Blastn. The recall was defined as the number of
sequence matched bases over the target sequence
length, whereas precision was the matched bases
divided by query sequence length. F1 score was the
harmonic mean of recall and precision. (B) Venn
diagram of the transcript-to-transcript match. The
overlaps of sRTD versus sRTD and cRTD versus sRTD
were those transcripts with sequence similarity F1 > 0.78
(also see Fig S3). PC: protein-coding. (C) Gene level
comparisons. The overlap represents the genes of
matched transcript in (B).

Table 2. Missed and novel exon, intron and loci regions of Barke genome.

Category sRTD.minimap2a versus sRTDb cRTD.minimap2c versus sRTDb

False negative

Missed exons 1,158/291,963 (0.4%) 31,391/291,963 (10.8%)

Missed introns 304/172,487 (0.2%) 18,213/172,487 (10.6%)

Missed loci 805/59,440 (1.4%) 12,787/59,440 (21.5%)

False positive

Novel exons 448/291,743 (0.2%) 12,815/259,285 (4.9%)

Novel introns 132/172,398 (0.1%) 4,360/154,670 (2.8%)

Novel loci 354/58,990 (0.6%) 7,848/57,517 (13.6%)
aQuery sRTD.minimap2: 144,625 in 58,990 loci (111,207 multi-exon transcripts).
bReference sRTD: 144,872 transcripts in 59,440 loci (111,443 multi-exon).
cQuery cRTD.minimap2: 126,532 transcripts in 57,517 loci (93,268 multi-exon transcripts).

Table 3. Recall and precision of structure comparisons at transcript and
transcript unit level.

Category sRTD.minimap2
versus sRTD

cRTD.minimap2
versus sRTD

Statistics Recall Precision Recall Precision

Base level 99.5% 99.8% 76.9% 90.2%

Exon level 99.3% 99.4% 74.1% 81.4%

Intron level 99.6% 99.6% 84.6% 94.4%

Intron chain level 98.8% 99.0% 57.6% 68.6%

Transcript level 98.6% 98.6% 56.8% 64.6%

Locus level 98.1% 98.1% 62.5% 64.6%
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precision. The matched bases have slightly lower recall (77%) and
precision (90%). Because of the difficulties in matching the
boundaries of first and last exons, the statistics for the exons are
the lowest, at 74% and 81%, respectively. The drastic decrease in
recall and precision when combining the introns and exons into
transcripts is mainly due to the complexity of AS and variations at
the 59 and 39 sites.

By combining the sequence and structure comparisons, we
identified 78,540 (61.2%) transcripts in cRTD that find an equivalent
transcript in sRTD with a significant sequence as well as structure
similarity (Table S9). We also observed disagreements between
sequence and structure matches. We identified 1,776 transcripts
that had identical structures in sRTD and cRTD, but with signif-
icantly different sizes of first and/or last exons, thereby leading
to low sequence similarity of F1 ≤ 0.78 (Table S9 and Fig S5A). On
the other hand, 9,978 transcripts with high sequence similarity (F1
> 0.78) had distinct structures, which were due to inconsistent
intron sizes, such as the shift of intron boundaries, missing and
novel introns caused by technical errors in Minimap2, or se-
quence variation arising from mapping Morex-based assemblies
to the Barke genome (Table S9 and Fig S5B–D). Thus, the statistics
for sequence and structure comparisons show a different level of
similarities, especially for the nucleotide base level (Fig 2 and
Table 3).

Exonic and intronic sequence variations contribute to
transcript discrepancy

To further explain how the underlying exonic and intronic sequence
variations between Barke and Morex genomes contribute to the
common and different transcripts with sRTD and cRTD, we extracted
the gene loci sequences (including exonic and intronic sequences)
of cRTD from theMorex genome and aligned these sequences to the
Barke genome by using Minimap2. SNPs were identified with
BCFtools (Danecek et al, 2021), whereas insertions and deletions
(INDELs) were directly extracted from the cigar strings of the se-
quence alignment bam file. We calculated the exonic and intronic
sequence variation (SNPs + insertions + deletions) per base of the
common and different transcript sets in the sequence and struc-
ture comparisons. We found that common transcripts matched by
high sequence similarity or identical structure between sRTD and

cRTD tend to have significantly lower sequence variations in exons
and introns by comparing the Barke and Morex genomes. The
common transcripts also have substantially higher sequence
variations in the introns than in the exons. The unmatched tran-
scripts between cRTD and sRTD have sequence variations that are
10 times greater in the exonic regions and three times greater in the
intron regions (Fig 3A and B).

AS event comparisons

By using the Minimap2 results, we can directly compare the AS
events between cRTD.minimap2 and sRTD.minimap2 on their ge-
nomic coordinates. We used SUPPA2 to generate local AS events of
retained intron (RI), alternative 59 splice site (A5), alternative 39
splice site (A3), skipping exon (SE), alternative first exon (AF), al-
ternative last exon (AL), and mutually exclusive exons (MX) at the
splice junctions of multi-exon transcripts (Trincado et al, 2018). The
AS events of cRTD.minimap2 and sRTD.minimap2 are treated as
queries and compared with the target events in sRTD (Fig 4A). The
comparisons of sRTD.minimap2 and sRTD revealed minor technical
errors for all the events, with Precision and Recall both close to 1. The
precision and recall of cRTD.minimap2 against sRTD vary at different
events. The A3, A5, and SE events are the bestmatched, but still, about
10% of splice junctions failed to be identified, andwe observed a 30%
false discovery rate. Most of the AF and AL events in cRTD.minimap2
are incorrect predictions, which is consistent with our earlier analysis
that cRTD tends to contain short fragmented transcripts, which are
likely to be mis-annotated at the transcript ends.

We further studied the percentage spliced-in (PSI) of sRTD.
minimap2, cRTD.minimap2, and sRTD, a measure of the relative
abundance of AS events. We used Salmon and the Barke RNA-seq
reads of the 20 samples from Coulter et al (2021) Preprint to
generate TPMs for event PSI calculation in SUPPA2. We found that
the Pearson and Spearman correlations between PSI values in
cRTD.minimap2 and identical events in sRTD were significantly
lower than that in the control (comparison of sRTD.minimap2 and
sRTD) for all the AS events, whereas the mean relative errors
(absolute value of PSI difference divided by PSI of sRTD) of the 20
samples were significantly higher (Fig 4B–D). Thus, transcript as-
sembly from the cRTD is particularly problematic when used for AS
analysis.

Figure 3. Exonic and intronic sequence variations of
the transcripts in the comparisons.
For each transcript, the exonic and intronic sequence
variation per base values were calculated with the total
bases of variations (SNPs + insertions + deletions) in
exons and introns divided by the transcript length,
respectively. (A) The matched transcripts are
determined by sequence similarity F1 score > 0.78.
(B) The matched transcripts are those with identical
structures determined in the structure comparison.
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Transcript quantification comparisons

To investigate how the expression estimation for individual genes is
affected and what are the characteristics of the genes that are most
affected, we generated simulated RNA-seq reads to assess the

quantification errors introduced by using different RTDs. We used
the read count matrix generated from Barke caryopsis and root
tissues (each with three biological reps) from Jayakodi et al (2020)
to simulate the RNA-seq data using the Polyester R package based
on sRTD (Frazee et al, 2015). The corresponding transcripts between

Figure 4. Comparisons of alternative splicing (AS) analysis accuracy.
(A) Comparisons of AS event numbers in sRTD.minimap2 and cRTD.minimap2 (query) against sRTD (target). Recall (R) = (target & query)/target, Precision (P) = (target &
query)/query. (B, C, D) The Pearson correlation (B), Spearman correlations (C) and mean relative errors (D) were calculated for different AS events in 20 samples. The
outliers of the distributions were removed.
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cRTD and sRTD were obtained using the Blastn sequence match
with F1 score > 0.78 and Gffcompare match with identical transcript
structures (Table S9). Thus, the transcript quantifications of cRTD
and sRTD can be directly compared with the read count matrix
(ground truth) used for the simulation. Although we used stringent
criteria to define the equivalent transcripts, we find that the Pearson
and Spearman correlations of comparisons between sRTD and
ground truth are constantly higher than that of cRTD and ground
truth (Fig 5A). The relative errors are significantly higher between
cRTD and ground truth at both gene and transcript levels (Fig 5B).
sRTD outperforms cRTD in all categories at both transcript and gene
levels. The relative errors are two to threefold higher when using
cRTD for quantification even at the gene level, indicating that sRTD
provides more accurate quantification at both transcript and gene
levels. The results also show that quantification is more accurate at
the gene level than at the transcript level for the RNA-seq data.

The cRTD transcripts with lower similarities to sRTD (F1 score <
0.78) were also investigated in terms of quantification accuracy. The
transcripts in cRTD were classified into eight groups according to
their F1 scores in intervals of 0.1 between 0 and 0.78 (Fig 6). The
relative error of the quantification increases from 0.5 (50%) to 1

(100%) as the sequence similarities between the corresponding
transcript in cRTD and sRTD decrease (Fig 6A). The average cor-
relation between the transcript abundance estimation using cRTD
and the ground truth also improves (Pearson correlation from 0.367
to 0.81, Spearman correlation from 0.028 to 0.65) with an increasing
similarity score (Fig 6B). Thus, transcripts in cRTD with sequences
different from those in sRTD (38.9% of transcripts with F1 score <0.78)
would produce significant quantification errors and should therefore
be a cause of concern when used for quantification and differential
expression analysis.

Differential expression and AS

We further investigated the downstream impact on differential
expression analysis with the simulated RNA-seq data. We used the
3D RNA-seq pipeline to investigate (1) differentially expressed (DE)
genes and transcripts; (2) differentially alternatively spliced (DAS)
genes; and (3) differential transcript usage (DTU) transcripts be-
tween the caryopsis and roots tissues (Guo et al, 2020). The PCA
plots (Fig S6A–C) reveal that the quantifications obtained using
both sRTD and cRTD successfully capture the variation in the data

Figure 5. Statistics of transcript and gene quantification comparisons.
(A, B) The read counts at gene and transcript levels from sRTD and cRTD quantifications were both compared to ground truth for calculations of (A) Pearson and
Spearman correlation of six samples and (B) relative errors (RE) in each sample. (B) The dots highlight the mean values of the distributions and the outliers in (B) are
removed for better visualisation.
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between caryopsis and root tissues as well as the biological rep-
licates of ground truth. The amount of the variation explained by
PC1 and PC2 in all three datasets is not significantly different.
Comparisons between DE genes, DAS genes, DE transcripts, and DTU
transcripts illustrate that DE analysis at the gene level is most
stable and least affected by the choice of RTD (Fig 7A). sRTD shows
precision and recall both >99% for DE genes, whereas the cRTD only
achieves 67.7% precision and 67.0% recall, missing about 4,000 DE
genes whereas inferring 4,000 false-positive genes. The transcript
level analysis is more variable, but the analyses for DAS genes and
DTU transcripts both show the superior performance of sRTD over
cRTD in both precision and recall, consistent with our observations
that the use of the cRTD presents significant challenges for tran-
scriptional level analysis.

We used the topGO R package to generate the enriched GO terms
(P-value < 0.01) of genes and transcripts with significant expression
changes in the categories of Biological Process, Molecular Function,
and Cellular Component. The comparisons of significantly enriched
GO terms indicate that sRTD hasmuch higher recall and precision in

GO enrichment analysis (Fig 7B). It consistently predicts more GO
information matched ground truth at both gene and transcript
levels. For example, sRTD predicts 68, 27, 116, and 69 more GO terms
from the DE genes, DAS genes, DE transcripts and DTU transcripts,
which are not present in the cRTD results (Fig 7B). Many of the
missing GO terms by cRTD are relevant to biological processes of
responses and regulation, such as response to cold, insect, abscisic
acid stimulus and stress, regulation of defense response and
immune response, and various plasma membrane related pro-
cesses (Table S10). Specifically, the GO terms regulation of response
to salt stress (GO:1901000; DE genes), regulation of response to
osmotic stress (GO:0047484; DE genes and DE transcripts), response
to water (GO:0009415; DE transcripts), lateral root formation (GO:
0010311; DE genes and DE transcripts), and root cap development
(GO:0048829; DE transcripts) associate with root formation and
growth (Ogawa & Yamauchi, 2006; Habte et al, 2014; Alahmad et al,
2019; Berhin et al, 2019; Kreszies et al, 2020; Ouertani et al, 2021). The
GO terms regulation of starch metabolic process (GO:2000904; DE
transcripts), amylase activity (GO:0016160; DTU transcripts), pigment

Figure 6. Comparison of transcript quantification of cRTD and ground truth at different sequence similarities.
F1 scores of sequence matches using Blastn are divided into different intervals. (A, B) The (A) relative errors and (B) Pearson and Spearman correlations of read counts
are calculated for the matched transcripts within corresponding F1 score intervals. The outliers of the boxplots are removed.
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Figure 7. Comparisons of differentially expressed and alternative spliced genes and transcripts.
The transcripts between sRTD and cRTD were matched by sequence Blastn criteria F1 > 0.78 and Gffcompare with identical structure. The matched gene must have at
least one matched transcript. The lowly expressed transcripts and genes in the ground truth, sRTD or cRTD were filtered, yielding 31,640 transcripts and 17,768 genes for
comparisons. (A) Venn diagrams of DE genes, differentially alternatively spliced genes, DE transcripts and differential transcript usage transcripts in sRTD and cRTD
compared with ground truth. R represents Recall and P represents Precision. (B) Venn diagrams of significantly enriched GO terms of DE genes, differentially
alternatively spliced genes, DE transcripts, and differential transcript usage transcripts. (C) L2FC relative error distributions of matched genes and transcripts. (D) L2FC of
matched transcripts. (E) L2FC of matched genes. In (D) and (E), the numbers and percentages on the top-left and bottom-right quadrants demonstrate the transcripts and
genes that switch up- and down-regulations. The dashed lines highlight the L2FC cut-offs of 1 and −1 that we often use to determine the change significance. (E) The red
circles in (E) highlight the genes that switch up- and down-regulation with |L2FC| ≥ 1.
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metabolic process (GO:0042440; DAS genes) and pigment biosyn-
thetic process (GO:0046148; DAS genes) are important to caryopsis
development (Pagano et al, 1997; Lin et al, 2008; Shaik et al, 2016;
Wang et al, 2020; Mackon et al, 2021). Therefore, the reductions of DE,
DAS, and DTU genes and transcripts by using cRTD can also lead to a
drop in important GO terms in the functional analysis.

We then compared the log2-fold change (L2FC) differences of
matched genes and transcripts using the quantification results
obtained by using two RTDs and the ground truth. The L2FCs at the
gene level are much closer to ground truth, with greater than one
magnitude lower relative errors compared with the transcript level
(Fig 7C). When comparing sRTD and cRTD to ground truth, we
identified that 1,849 (5.84%) expressed transcripts in sRTD and 2,276
(7.19%) in cRTD have inverted up- and down-regulation (Fig 7D). At
the gene level, the number of inversions significant decrease to 103
(0.58%) and 268 (1.51%) for sRTD and cRTD, respectively (Fig 7E).
Applying a cut-off |L2FC| > 1, the numbers of regulatory switches are
further reduced. For example, only two genes in cRTD and one gene
in sRTD switch to up-regulation and one gene in cRTD to down-
regulation.

Discussion

Several studies also demonstrated that genotype-specific or
individualised RTDs can improve some aspects of the tran-
scriptomics analyses in different species other than barley. Petek et
al (2020) constructed cultivar-specific RTDs in potato with a de novo
assembly approach and used readmapping rate to cultivar-specific
genome and transcriptome as the only evaluationmetric to present
the benefits of using cultivar-specific RTD. Munger et al (2014)
incorporated known SNPs and INDELs into the common refer-
ence genome to create a pseudo strain-specific genome of the
inbred mouse. The sequences variations were also integrated into
inferred haplotype sequences of the foundermouse to construct an
individualised diploid genome of outbred mice, which was a
combination of two individualised haploid genome sequences.
Then the offsets of the available transcriptome (a common ref-
erence RTD) were adjusted according to the two pseudo genomes
to create individualised RTDs. The evaluation of simulated reads
and real experimental data showed that read alignment, transcript
quantifications and expression quantitative analyses were im-
proved by using individualised RTDs in both inbred and outbred
mice. However, this approach relies on modifying a common ref-
erence RTD with known sequence variations and has failed to
address the comparisons of strain-specific AS events as well as
dispensable genes and transcripts, which could account for, for
example, up to 60% in crop species (Hirsch et al, 2014; Li et al, 2014;
Golicz et al, 2016; Jin et al, 2016; Montenegro et al, 2017; Sun et al,
2017; Tao et al, 2019). In our study, we implemented more accurate
evaluations by constructing the sRTD from the genotype-specific
genome reference and RNA-seq data. We assessed the read
mapping, transcript sequences and structures, AS events and ex-
pression quantitative analysis between sRTD and cRTD with the
same parameters, providing more comprehensive insights into
the superiority of genotype-specific genome reference for tran-
scriptomics data analysis. By setting the reference genome as the

only variable and comparing the assembled sRTD to itself to es-
timate the technical variations, we were able to investigate the
impacts of using a common reference on the outcomes of tran-
scriptomic data analyses from different but related genotypes.

Although the assembled gene numbers were comparable in
sRTD and cRTD, the use of a common reference genome resulted in
a significant reduction in transcript diversity. STAR is a splice-aware
aligner to map the RNA-seq reads to the reference genome and
place the spliced reads over the introns, thereby can be used to
determine the exon-intron boundaries and the AS sites (Dobin et al,
2013). The transcript isoforms and AS events are highly dependent
on the correct identification of intron gap-open of RNA-Seq reads to
the splice junctions of origin. We found that Barke RNA-seq read
alignment to the Morex genome produced 11.6% fewer splice
junctions which led to a >20% loss of introns and exons in the
assembled cRTD. The reduction of splice junctions also resulted in
>20% fewer AS events as well as >10% fewer transcript isoforms.

Predictably, the common transcripts of sRTD and cRTD have
notably lower sequence variations (SNPs and INDELs) between the
genomes of Barke and Morex (Fig 3). The sequence variations
between different genotypes affect the transcriptome assembly on
various levels. At the RNA-seq read mapping step, the sequence
variations create barriers for the reads to find the correct genomic
locations of origin. Higher sequence variations can lead to an in-
creased number of unmapped reads in STAR (Dobin et al, 2013;
Dobin & Gingeras, 2015). Our evaluation results (Table S3) as well as
many studies in the literature show that map reads to a genotype-
specific reference genome can greatly improve the read mapping
rate and increase the RNA-seq data usage (Yuan & Qin, 2012;
Munger et al, 2014; Petek et al, 2020). Most of the reference-based
transcriptome assembly tools, such as Cufflinks (Trapnell et al,
2010), Scallop (Shao & Kingsford, 2017) and Stringtie (Pertea et al,
2015), generate splice graphs from the aligned reads with vertices
representing exons and edges corresponding to splice junctions.
The read coverage of exons and junctions are regarded as the
weights to decompose the splice graph paths into optimal tran-
script models. The sequence variation can impact the identification
of exon-intron boundaries as well as the number of aligned reads
for weighting, thereby leading to changes of structure and diversity
in the inferred transcript sets between sRTD and cRTD. Genotype
variations, especially large deletions and insertions, also influence
the read mapping to transcriptome for transcript quantification. It
agrees with our findings that by using sRTD for quantification, the
read mapping rate to transcript sequences is 2–3% higher than
cRTD (Table S11).

sRTD improved the quantifications of transcript abundances and
downstream differential expression analysis. We used simulated
RNA-seq read data to compare transcript quantifications using
cRTD and sRTD. We found that the quantifications of transcripts in
sRTD have a higher correlation and lower errors to the ground truth.
Not surprisingly, the quantification error increases and correlation
decreases as the transcript sequence discrepancies increase be-
tween cRTD and sRTD (Fig 6). We also found that when the tran-
scripts in cRTD have <40% sequence similarity to the transcripts in
sRTD, their expression starts to be significantly lower (Fig S7A and
B). The high expression often indicates better quality of the as-
sembled transcripts. Therefore, a filter of low expressed transcripts
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is an effective quality control to eliminate problematic transcripts.
In addition, gene-level quantification of transcript abundance
appears to be much more robust and less affected by the RTD with
the relative error almost one magnitude lower compared with
transcript level quantifications. As the designation of the common
reference genome is arbitrary, we are also expecting to see im-
proved quantifications for Morex RNA-seq data using Morex ge-
nome reference. In a recent study, we compared barley RTDs
BaRTv2 (Barke-based assembly) and BaRTv1 (Morex-based as-
sembly) using high-resolution RT-PCR data in Barke and Morex
against the RTD quantifications using Barke and Morex RNA-seq
data (Coulter et al, 2021 Preprint). With no exception, we see an
increased accuracy when BaRTv1 was used on Morex RNA-seq data
and when BaRTv2 was used on Barke RNA-seq data.

Quantification accuracy also directly affects the downstream
differential expression analysis. Our comparisons indicated that
with stringent filters of significance, only around 70% of the DE
genes quantified using cRTD agree with ground truth. The transcript
and AS level analyses have even lower precision (Fig 7A). We further
investigated the expression of the overlapped and unique sets of
genes and transcripts in the comparisons of Fig 7A. We found that
the DE genes, DAS genes, DE transcripts, and DTU transcripts cor-
rectly predicted by using cRTD have higher expression (Fig S8). Our
validation showed that the error of L2FC at the gene level is over
onemagnitude smaller than at the transcript level (Fig 7C). The error
of L2FC is significantly higher and we have fewer correct identifi-
cations of DE transcripts, especially the AS related DAS genes and
DTU transcripts (Fig 7A and D). At the gene level, there are only a few
outlier genes that appear to switch between up- and down-
regulation when assessed using the different RTDs (change sign
of L2FC). The number gets further reduced when applying additional
filters, for example, |L2FC| ≥ 1 (Fig 7E). The incorrect predictions of
genes and transcripts with significant expression changes in cRTD
also lead to the missing of important GO terms in the enrichment
analysis, especially at AS level (Fig 7B and Table S10). Thus, in
differential expression analyses, the high expressed transcripts and
gene-level results can be ranked with higher confidence to ac-
commodate a common reference.

Our evaluation indicated that after filtering the problematic
transcripts, such as fragmented transcripts and transcripts with
false splice junctions, we can have 70% correct assemblies by using
a common reference. The precision is much higher than de novo
approaches. In an evaluation study, Hsieh et al (2019) compared
three state-of-the-art de novo assemblers Trinity (Grabherr et al,
2011), rnaSPAdescated (Bankevich et al, 2012), and Trans-ABySS
(Robertson et al, 2010) with both simulated and real experimen-
tal data. The evaluation showed that these tools assembled up to
90% erroneous transcripts, including incomplete, over-extended,
duplicated, and family-collapse (multiple transcripts were col-
lapsed into a single contig in the assembly) transcripts. Freedman
et al (2021) investigated the error, bias and noise of using Trinity
(Grabherr et al, 2011) for de novo transcript assembly in mice. The
assembled transcripts were highly fragmented, with an assembly
error rate up to 83% at the nucleotide level. The quantification of
assembled contigs failed to provide accurate analysis at the
transcript level. Even at the gene level, the quantification had a
fourfold or greater than the quantifications of using a benchmark

reference transcriptome, thereby, leading to increased false
positives of downstream differential expression analysis. The
reference-based approach in our study started with read alignment
to a reference genome. It increases the efficiency and sensitivity
and it can assemble low expressed transcripts (Martin &Wang, 2011;
Conesa et al, 2016; Marchant et al, 2016). Thus, even if a genotype-
specific reference is not available or in the studies of outbred
genome, the assembly using a closely related reference genome is
more adequate to provide accurate transcripts than de novo
approaches.

With the development of cost-effective long read technologies,
such as Oxford Nanopore and PacBio sequencing, and a repertoire
of analysis tools, it is now more and more practical to generate a
customised genome reference that could reflect the samples under
investigation to make the best use of the data generated and
achieved analysis with higher resolution and accuracy
(Amarasinghe et al, 2020; Logsdon et al, 2020; Wang et al, 2021). In
many cases, the common practice of using a single reference for
one species is a method of convenience in the past due to various
cost and technical reasons. Analysis using individualised genomes
has gained great traction in human studies and is likely to cause
a paradigm shift in future reference-based sequence analysis
(Brittain et al, 2017; Rehm, 2017; Sherman & Salzberg, 2020). It has
been reported that the throughput of both Nanopore and PacBio
can reach 50–100 Gb per flowcell with a cost of <$50 per Gb
(Logsdon et al, 2020). With this yield, a small number of flowcells is
sufficient to sequence the full human genome. It is well worthwhile
to add in the extra cost to construct the genotype-specific genome
reference itself. Our study is one of the first studies to compre-
hensively examine the impact of genotype-specific genome ref-
erence on transcriptomics analysis. Our work presents the findings
for the first step towards this new paradigm.

In summary, because of the difficulty in assembling transcripts
accurately using short reads, transcript level analysis remains
challenging. When using contemporary pseudo alignment methods
for assessing transcript abundance, the impact of the RTD on
quantification accuracy can be considerable for transcript-level
analysis. However, reassuringly for most of the transcriptomic
analyses, working at the gene level appears relatively robust and
represents a reasonable, if potentially less informative, compro-
mise when a high quality and comprehensive genotype-specific
transcript reference is not available.

Materials and Methods

Data pre-processing and transcriptome assembly

Barke Illumina RNA-seq data from 20 tissues were taken from
Coulter et al (2021) Preprint. The adapters on the raw RNA-seq reads
were trimmed using Trimmomatic v0.39 (Bolger et al, 2014) with
parameters chosen with the guidance of FastQC v0.11.9 (http://
www.bioinformatics.babraham.ac.uk/projects/fastqc/). The trim-
med reads in each sample were mapped to the Barke genome
(Jayakodi et al, 2020) and Morex genome (Mascher et al, 2017) with
STAR v2.7.3a (Dobin et al, 2013). We implemented the two-pass
approach to increase the sensitivity of splice junction (SJ)
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discovery. The minimum and maximum intron sizes were set to 60
and 15,000 in both passes. We allowed two mismatches at the first
pass to improve the SJ detection sensitivity. The detected SJs in the
first pass mapping were merged across samples and used as
guidance for read alignment in the second pass. To reduce spurious
alignments caused by sequence variation and compare the RTDs
more precisely, mismatch was not allowed in the second pass of
read mapping. We assembled the sRTD and cRTD in parallel using
the same processes and parameters using Stringtie v2.1.4 (Pertea et
al, 2015). The assemblies of 20 samples were merged with Stringtie-
merge (Pertea et al, 2015). We applied various filters to achieve high-
quality assemblies. (1) The transcripts with either non-canonical SJs
or SJs with low read support (support criteria ≥3 uniquely aligned
reads in ≥2 samples) were filtered out. (2) Redundant transcripts
were defined as those with the same intron combinations but with
different first and/or last exon lengths. Only the longest transcript
amongst the same group of redundant transcripts was kept. (3)
Transcript fragments <70% of the length of the longest in the same
group of redundant transcripts were removed. To determine
protein-coding transcripts, we extracted the transcript sequences
of sRTD and cRTD from the Barke and Morex genomes with Gffread
(Pertea & Pertea, 2020). We used Transuite, which identified au-
thentic AUGs in transcript sequences, to translate them into protein
sequences (Entizne et al, 2020 Preprint). We queried the protein
sequences against the plant protein database UniProtKB for best-
hit of annotated proteins using Blastp (Schneider et al, 2009). To
identify AS, we used SUPPA2 to demonstrate the diversity of AS
events of retained intron (RI), alternative 59 splice site (A5), alter-
native 39 splice site (A3), skipping exon (SE), alternative first exon
(AF), alternative last exon (AL), and mutually exclusive exons (MX)
(Trincado et al, 2018).

Assessing the impact on transcript sequences and structures

We aligned the transcript sequences of both cRTD and sRTD (query)
to transcript sequences of sRTD (target) with Blastn. Blasting sRTD
against sRTD was used as a reference to estimate the frequency
that Blastn fails to align a query sequence correctly. Each query
returned only one hit with the best e-value and bit-score (e-value
must <1.0 × 10−5 and Blastn parameter max_target_seqs = 1). If a
target was aligned by multiple query transcripts, only the one/ones
with the maximum matched bases were retrieved. To further
evaluate the proportions of matches to the target and query
lengths, we treated the query-to-target matched bases as true
positives (TP) of sequence alignment. The unaligned bases of the
target and query were false negatives (FN) and false positives (FP),
respectively. The proportions of sequence overlap were evaluated
with precision (TP/(TP+FP)) and recall (TP/(TP+FN)), and their
weighted mean F1 score (2 × (Recall × Precision)/(Recall + Preci-
sion)) which took both recall and precision into account.

As sRTD and cRTD were assembled from read mappings to
different reference genomes, their coordinates and structures
cannot be compared readily. To compare the structures of tran-
scripts at equivalent genome coordinates, we aligned the transcript
sequences of both cRTD and sRTD to the Barke genome with
Minimap2 v2.17 (Li, 2018), denoting the results as cRTD.minimap2
and sRTD.minimap2. Mis-aligned transcripts were filtered if the

fragments of a transcript aligned to multiple chromosomes or
strands and the aligned transcripts did not meet the criteria of
minimum intron size 60 and maximum intron size 15,000. Transcript
structures were evaluated by querying the genome coordinates of
cRTD.minimap2 and sRTD.minimap2 against target sRTD at levels of
nucleotide bases, introns, intron chains (combination of introns),
exons, transcripts and gene loci by using GffCompare v0.11.2 (Pertea
& Pertea, 2020). SUPPA2 was also used to investigate AS events and
percent spliced-ins (PSIs) in annotations of cRTD.minimap2 and
sRTD.minimap2 (Trincado et al, 2018). The AS events and PSIs of
these two annotations were compared with that of sRTD. At the AS
event level, we defined True Positives (TP) as the shared events
between query (cRTD.minimap2 or sRTD.minimap2) and target
(sRTD), False Positives (FP) as the events only in the query and False
Negatives (FN) as the events only in the target. Then, precision and
recall were used to measure the agreement between query and
target. The AS event PSI values were calculated based on the
transcript per million reads (TPMs) from the Salmon quantification
of sRTD.minimap2 and cRTD.minimap2 with Barke RNA-seq reads
from all 20 samples. In these analyses, the comparison of
sRTD.minimap2 to sRTD provided a reference to estimate technical
errors in Minimap2, GffCompare, and SUPPA2.

Assessing the impact on the accuracy of transcript quantification

To quantify the absolute quantification accuracy using both RTDs,
we also used simulated RNA-seq reads to compare the quantifi-
cations between sRTD and cRTD at both transcript and gene levels.
Specifically, the numbers of simulated reads for the sRTD tran-
scripts were directly specified according to a read count matrix. To
have replications and make the simulation results reflect real
experimental data as much as possible, we used the read count
matrix from the transcript quantification of “caryopsis” and “root”
tissues, which was a subset of the Barke RNA-seq seven-tissue data
in Jayakodi et al (2020), each with three biological replicates. We
used the Polyester R package to simulate RNA-seq data for caryopsis
and roots tissues each with three replicates, 150-bp paired-end
reads, 40–60 million reads per replicate from the sRTD transcript
sequences according to the read count matrix (Frazee et al, 2015).
Then we quantified the cRTD and sRTD with Salmon by using the
simulated RNA-seq reads (Patro et al, 2017). The gene and transcript
quantifications of two RTDs were compared, in terms of Pearson and
Spearman correlation and relative errors, to the ground truth read
count matrix used to generate the data.

Assessing the impact on differential gene and AS analysis

We applied the 3D RNA-seq pipeline to analyse the DE genes and
transcripts, differential alternative splicing (DAS) and differential
transcript usage (DTU) based on three datasets (Guo et al, 2020).
These were sRTD and cRTD quantifications from the simulated RNA-
seq reads and the read count matrix, which is the ground truth for
the simulation. In all analyses, we set the contrast group for testing
expression changes to “caryopsis versus root.” The significance was
determined with a Benjamini-Hochberg (BH) adjusted P-value <
0.01 and absolute log2-fold change ≥1 for DE genes and transcripts
and BH adjusted P-value < 0.01 and absolute Δ precentage spliced
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(ΔPS) ≥ 10% for the DAS genes and DTU transcripts. Gene Ontology
(GO) annotations of genes and transcripts in sRTD and cRTD were
generated by PANNZER (Törönen & Holm, 2021). GO enrichment
analyses of DE genes, DAS genes, DE transcripts and DTU transcripts
were performed by using the topGO R package with significance
criteria P-value < 0.01 (Alexa et al 2006). To compare the quanti-
fication at the individual gene and transcript level, we used the
results of transcript sequence and structure comparisons to match
the equivalent individuals.

Data Availability

The RNA-seq data used in this study are available at SRA with
BioProject accession number PRJNA755156. The scripts of the data
analysis can be viewed from: https://github.com/wyguo/genotype_
specific_RTD.
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