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Similar to most visual animals, the crab Neohelice granulata relies predominantly on

visual information to escape from predators, to track prey and for selecting mates. It,

therefore, needs specialized neurons to process visual information and determine the

spatial location of looming objects. In the crab Neohelice granulata, the Monostratified

Lobula Giant type1 (MLG1) neurons have been found to manifest looming sensitivity

with finely tuned capabilities of encoding spatial location information. MLG1s neuronal

ensemble can not only perceive the location of a looming stimulus, but are also thought

to be able to influence the direction of movement continuously, for example, escaping

from a threatening, looming target in relation to its position. Such specific characteristics

make the MLG1s unique compared to normal looming detection neurons in invertebrates

which can not localize spatial looming. Modeling the MLG1s ensemble is not only critical

for elucidating the mechanisms underlying the functionality of such neural circuits, but

also important for developing new autonomous, efficient, directionally reactive collision

avoidance systems for robots and vehicles. However, little computational modeling

has been done for implementing looming spatial localization analogous to the specific

functionality of MLG1s ensemble. To bridge this gap, we propose a model of MLG1s

and their pre-synaptic visual neural network to detect the spatial location of looming

objects. The model consists of 16 homogeneous sectors arranged in a circular field

inspired by the natural arrangement of 16 MLG1s’ receptive fields to encode and

convey spatial information concerning looming objects with dynamic expanding edges

in different locations of the visual field. Responses of the proposed model to systematic

real-world visual stimuli match many of the biological characteristics of MLG1 neurons.

The systematic experiments demonstrate that our proposed MLG1s model works

effectively and robustly to perceive and localize looming information, which could be

a promising candidate for intelligent machines interacting within dynamic environments

free of collision. This study also sheds light upon a new type of neuromorphic visual

sensor strategy that can extract looming objects with locational information in a quick

and reliable manner.
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1. INTRODUCTION

How to improve collision detection and avoidance remains
a critical challenge for self-navigating robots, vehicles, and
unmanned aerial vehicles (UAVs). Evasion strategies might be
improved if the mobile machines can obtain and react to the

spatial positions of continually approaching objects. Current
schemes, such as radar, infra-red, laser, etc., or combinations
of these, are acceptable but far from perfection in terms of
their reliability, systematic complexity, or energy consumption.

Amongst those, visual-based sensors are more ubiquitous and
often accompanied by a compact hardware system. In addition,
vision sensors have the advantage of being non-invasive, and are
readily accepted for numerous application scenarios. However,
current vision-based sensors are still not sufficiently reliable to
detect imminent collisions in many conditions. Hence, a new
type of compact and energy efficient vision sensor is required for
collision detection in future robots and autonomous vehicles.

After millions of years of evolution, many animals possess
a critical ability to escape from suddenly appearing or rapidly
approaching predators or threats, due to the efficiency and
robustness of their visual systems that are capable of perceiving
looming objects (Gabbiani et al., 1999; Rind and Simmons,
1999; Borst and Euler, 2011; Borst and Helmstaedter, 2015;
Tomsic, 2016). Compared with vertebrates, invertebrates such
as arthropods have a relatively small number of visual neurons,
but they can still navigate flexibly in chaotic and dynamic visual
environments. Biological research has revealed a number of
specialized visual neurons for detecting motion cues including
looming in the visual pathways of invertebrates, for example, in
locusts (Rind et al., 2016), flies (Fotowat et al., 2009), crayfish
(Glantz, 1974), and praying mantis (Yamawaki and Toh, 2009).
Moreover, the stereotyped behaviors produced by invertebrates
are much easier to simulate and model (Webb, 2002), as are their
compact visual pathways (Rind and Bramwell, 1996; Browning
et al., 2009; Fotowat et al., 2009; Yamawaki and Toh, 2009; Rind
et al., 2016; Wang et al., 2018, 2019).

Modeling of the biological visual systems not only helps
neurobiologists and neuroethologists to further understand the
underlying mechanisms, but also provides solutions for robots
and autonomous systems (Clifford and Ibbotson, 2002; Yue and
Rind, 2006, 2007, 2013; Hu et al., 2016; Fu et al., 2019b; Zhao
et al., 2019). From the perspective of engineering, these bio-
plausible models can be produced easily on very large-scale
integration (VLSI) chips for high volume production (Sarkar
et al., 2012; Milde et al., 2017).

Amongst the visual motion detectors in invertebrates, the
lobula giant movement detectors (LGMDs, Gray et al., 2010;
Rind et al., 2016), the lobula plate tangential cells (LPTCs, Borst
and Euler, 2011; Fu et al., 2019a), the small target motion
detector (STMD, Nordström et al., 2006; Wiederman et al., 2008;
Nordström, 2012) have been the most extensively studied and
modeled neurons during the last few decades. Specifically for
looming sensitive neurons, the lobula plate/lobula columnar type
II (LPLC2) neurons in Drosophila demonstrates ultra-selective
response to expanding objects only from center of visual field
(Klapoetke et al., 2017). A pair of motion-sensitive detectors,

LGMD1 and LGMD2, found in locust have been shown to be
sensitive to looming stimuli, each with specific selectivity (Rind
and Bramwell, 1996; Rind et al., 2016). Although the locust
have at least two kinds of LGMDs, there is no convincing
behavioral evidence that the avoidance response to looming
stimulus is highly directionally tuned (Chan andGabbiani, 2013).
Therefore, these motion-sensitive neuronmodels can not localize
the spatial looming.

A species of crab named Neohelice granulata has shown a
remarkable capability for detecting spatial position of predators
impinging on its visual receptive field. The corresponding
motion-sensitive neurons have also been identified in such
crabs during the last two decades (de Astrada and Tomsic,
2002; Sztarker and Tomsic, 2004; Sztarker et al., 2005; Medan
et al., 2007, 2015; Oliva and Tomsic, 2012, 2014). In crabs,
the avoidance responses to looming stimuli are far from being
a ballistic-like stereotyped behavior but reflect a finely tuned
escape system. For example, the direction of escape is continually
regulated according to changes in the spatial position of the visual
stimulus (Oliva and Tomsic, 2014). This finely tuned directional
escape system cannot be realized by a single motion-sensitive
neuron, but is accomplished by an assembly of MLG1 neurons.
In fact, a directional change in the stimulus of less than 1
deg is enough to make the running crab adjust its direction of
movement (Medan et al., 2015), whichmeans the crabs accurately
identify the spatial location of the looming stimulus. Under
the guidance of such a compact visual system, crabs exhibit
surprising accuracy in detecting the spatial location of a looming
stimulus, and this makes it an ideal model on which to fashion
future robotic vision systems.

The current research on MLG1s focuses on physiological
investigations (de Astrada and Tomsic, 2002; Sztarker and
Tomsic, 2004; Sztarker et al., 2005; Medan et al., 2007,
2015), and encoding the neural firing response based on the
approaching stimulus angular velocity (Oliva and Tomsic, 2014,
2016; Carbone et al., 2018). However, little has been done
on quantitative modeling the MLG1s and their pre-synaptic
via approaches from computer vision and image processing.
Besides, there is no motion-sensitive neuron computation model
for encoding spatial looming information. To fill this gap,
we have developed a computational model of MLG1s and
their pre-synaptic network to simulate the functionality of
spatial localization in crabs with looming sensitive neurons.
The computational model demonstrates the spatial localization
capability analogous to the MLG1s in crabs and can be used by
neurobiologists for testing hypotheses. It can also be integrated
directly into intelligent robots for detecting spatial location and
direction of approaching objects.

The paper is structured as follows. In section 2, we describe
the characteristics of the MLG1 that plays a central role in the
crab visual system, and outline some of the current research
on bio-inspired visual motion detection models and their
applications. In section 3, we propose a novel MLG1s-based bio-
inspired neural network. In section 4, systematic experiments
are described that prove the validity and robustness of the
proposed neural network for looming spatial localization. Section
5 comprises further discussion. Section 6 concludes the paper.
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FIGURE 1 | Distribution of the main dendritic profiles of the 16 MLG1s across

the transversal lobula axis (see Medan et al., 2015 for details). Dashed lines

indicate region of the lobula where the lateral visual pole of the eye (90◦) and

the medial visual pole (−90◦). D, Dorsal; V, ventral; L, lateral; M, medial.

2. RELATED RESEARCH

Within this section, we briefly review related research in the areas
of (1) motion-sensitive giant neurons in crabs, (2) bio-inspired
visual motion perception models and their applications.

2.1. Motion-Sensitive Giant Neurons of
Crabs
According to their morphology and physiology (Medan et al.,
2007; Tomsic et al., 2017), four different classes of lobula giant
neurons had been described. These are monostratified lobula
giant 1 and 2 neurons, and bistratified lobula giant 1 and 2
neurons (MLG1, MLG2, BLG1, and BLG2, respectively).

These are thought to be central elements involved in motion
detection. Similar to LGMD1 in locust, LGs respond to object
motion rather than to optic flow (Medan et al., 2007).

As shown in Figure 1, theMLG1 neurons form an ensemble of
16 elements which are distributed on the lateromedial lobula axis
where they map the 360-deg azimuthal positions of visual space
(Tomsic et al., 2017). Nevertheless, with a mean receptive field of
118.4± 38.9 deg, MLG1 neurons have considerable overlap with
their neighboring elements (Medan et al., 2015). Morphological
and physiological measurements show that more MLG1 neurons
focus on the lateral area. In other words, crabs have themaximum
optical resolution laterally (De Astrada et al., 2012). Because
of the distributions of receiving domains, MLG1s are suited
perfectly for encoding the positions of objects, which is necessary
for escaping from predators directly away. In addition, MLG1s
have been proved sensitive to the size and speed of the looming
stimulus (Oliva and Tomsic, 2014). Figure 2 shows the responses
of an MLG1 neuron to looming stimuli with differing dynamics.

Contrasting with the receptive field of MLG1 neurons, MLG2
neurons have wide and homogenous receptive fields that cover
the entire visual receptive field (Oliva and Tomsic, 2014). There
is apparently only oneMLG2 neuron in the lobula and it has been
found to encode the changes in speed of approaching stimuli. The

speed change information is then conveyed downstream to the
motor control system of the crab enabling them to continuously
adjust their escape speed (Oliva and Tomsic, 2012). In addition,
the MLG2 neuron appears to be insensitive to the spatial position
of the moving object. Furthermore, no differences could be found
between MLG2 responses to objects moving along the vertical or
the horizontal axes (Oliva et al., 2007). Thus, during an event
of approaching danger, MLG1 and MLG2 neurons are thought
to continually regulate escape direction and speed, respectively,
based on the observed changes of the approaching stimuli. It
should be noted that MLG1 neurons have a significantly shorter
latency in responding to luminance change than any other giant
motion-sensitive neurons in crab (Medan et al., 2007). This
could be an important factor in influencing crabs to react, timely
and effectively, to directional looming stimuli corresponding to
different evasive actions, which inspire us to model the MLG1s
and their pre-synaptic networks initially.

2.2. Bio-Inspired Motion Detection Models
and Applications
The monostratified lobula giant neurons (MLGs) in the crab and
the LGMD1 in locust perform similarly in detecting approaching
objects (Oliva et al., 2007; Oliva and Tomsic, 2014, 2016). Thus,
we will mainly review the research on modeling motion-sensitive
detectors inspired by LGMDs in the locust.

LGMD1 is a large visual interneuron in the optic lobe of
the locust that shows a strong response to looming stimuli but
little to receding stimuli (Rind and Simmons, 1992). Rind and
Bramwell (1996) first built a functional neural network based
on the LGMD1 input circuit. Their model mainly depends on
the expanding edges of looming objects and lateral inhibition to
mediate collision avoidance. Yue and Rind (2006) had further
developed this neural network. They introduced a new feature to
enhance the recognition of expanding edges of colliding objects.
This allows the model to be used for collision detection against
complex backgrounds and has since been applied successfully
to vehicles to detect incoming collisions (Yue et al., 2006). To
enhance the selectivity to approaching and receding objects,
(Meng et al., 2009) proposed a modified LGMD1 model
with additional movement information concerning direction of
motion in depth. The offline tests showed improvements in
efficiency and stability with little additional computational cost.
Fu et al. (2018) introduced plausible ON and OFF pathways
and a spike frequency adaptation mechanism to strengthen the
LGMD1’s collision selectivity. Very recently, (Xu et al., 2019b)
propose a novel temporally irreversible visual attention model
based on the implementation of central bias, LGMD, DSNs and
attentional shift. With similarities to human dynamic vision, this
model performs best when compared with other visual attention
models. Also, it greatly reduces the computational workload (Xu
et al., 2019a). Furthermore, the authors used a similar structure to
devise a model to estimate human gaze positions when driving.
In Drosophila, Fu and Yue (2020) proposed a computational
visual pathway model to decode the translating directions against
cluttered moving backgrounds. The outstanding robustness and
computational simplicity are the most important features of the
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FIGURE 2 | Response of an MLG1 neuron to different looming stimuli. Looming stimuli parameters (stimuli 1–7): l is the half-size of the object. v is the approach

speed. θ0 is the initial angular size of the object in degrees. l/v is used to describe the dynamics in terms of time to collision. Black traces are real intracellular

recordings from MLG1 neuron. Light gray traces are average membrane potential. Dark gray traces below correspond to the firing frequency. Dotted circles on the top

of the lines are the peak of responses. The lines at the bottom are the stimuli image expansion. Dashed vertical lines signal the beginning of the stimulus expansion.

Stimulus 8: black square expands at a constant angular velocity ω = 7.4deg/s, adapted from Oliva and Tomsic (2014).

all these models. Hence, such collision avoidance strategies have
been widely used in the application of vehicles, microrobots
and UAVs (Green and Oh, 2008; Hu et al., 2016; Sabo et al.,
2016; Hartbauer, 2017; Fu et al., 2018, 2019b; Zhao et al., 2018,
2019). However, how to extract spatial cues from continuously
looming motions still presents serious challenges among these
motion-sensitive neuron inspired models and robots.

For visual motion-sensitive neurons ensemble in crabs, (Oliva
and Tomsic, 2014, 2016) proposed biophysical computational
models to fit the biological responses of MLG1 and MLG2
neurons by encoding information on the stimuli and angular
velocities, respectively. The results show that the computational
value is in good agreement with the actual value. Stouraitis
et al. (2017) demonstrated a crab robot designed to mimic
the escape behavior of fiddler crabs. They created a biological
compound eye model to simulate the crab ommatidium, and
a color filter to extract visual cues. The effectiveness of the
evasion response was then verified through different visual
cues in tests. However, the capacity of MLG1 in the detection
of looming objects was not mentioned in their study. To
the best of our knowledge, there is no previously published

computational MLG1s model to describe the looming spatial
localization capabilities in crabs. In this paper, we propose a visual
neural network model of the MLG1 neurons for the first time,
with a focus on directional responses and looming. Compared
to the introduced bio-inspired methods, this neural network
model addresses the deficiency of single neuron computation
in extracting local, spatial looming information, that not only
fulfills the revealed characteristics of the crab’s motion sensitive
neural systems, but also provides an alternative effective solution
to real-world collision detection-and-avoidance problems.

3. FRAMEWORK OF THE PROPOSED
MLG1S-BASED MODEL

Although MLG1 neurons demonstrated looming spatial
localization capability, the underlying mechanisms and circuits
remain unclear (Oliva and Tomsic, 2014). Similar to visual
nervous systems in invertebrates, crabs have retina layer, lamina
layer, medulla layer, and lobula complex to process visual
signals. As mentioned above, in locust, the looming sensitive
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neuron LGMD and its computational models have been studied
extensively. In this study, we take the inspiration of LGMD
neural circuits to form part of the MLG1 neuron models.
Nevertheless, our proposed model characterize a winner-take-all
mechanism as the post-synaptic to judge the spatial location of
the approaching object and introduced a robust and bio-plausible
spike frequency adaptation mechanism to enhance the selectivity
to looming and receding stimuli.

3.1. Characteristics of Eyes and MLG1
Neurons
The crab Neohelice granulata has a sophisticated visual system
consisting of two compound eyes. Each compound eye contains
9,000 ommatidia spherically distributed around the tip of each
eyestalk to collect visual information from 360 deg in the
azimuthal plane (Tomsic et al., 2017). The visual signals are
transferred from the retina to the lamina, the medulla and the
lobula complex, which includes the lobula and lobula plate. 16
motion-sensitive neurons (MLG1s) are almost evenly distributed
in the lobula, as shown in Figure 1. Each of the MLG1 neurons
have an average receptive field of 118.4 ± 38.9 deg which means
each MLG1 has considerable overlap with its neighbors (Medan
et al., 2015). Studies have shown that MLG1 neurons have two
characteristics: (1) as an ensemble, the MLG1s allows continual
looming spatial localization, and (2) the MLG1 neuron has
a higher degree of sensitivity to larger or faster approaching
objects, as shown in Figure 2. In this paper, we propose a looming
spatial localization detector to model these two features.

3.2. The Proposed Looming Spatial
Localization Detector
Since the crab has a monocular 360 deg receptive field, we used
a panoramic camera to capture images, as shown in Figure 3A.
The panoramic image calibration experiment could be find in the
Supplementary Material. The center of the captured image is the
sky above the camera. The objects approaching from the distant
horizon will be projected initially onto the panoramic image at
an inner circle and move toward an outer circle. Different to
natural MLG1 neurons, although our neural network models the
characteristics, it divides the panoramic images into 16 equal
segments. Each segment has a total field of view of 37.5 deg. Of
this, 15 deg of perceptual field is shared with each neighbor, whilst
the central 7.5 deg is perceived by the segment alone. Figure 3A
shows the proposed method to divide up the image. Each green
and blue arc represents one MLG1 neuron to encode the specific
looming spatial location.

Figure 3B illustrates the proposed neuromorphic structure.
WR stands for the whole receptive field, since the crab has a
monocular 360 deg receptive field, we use a panoramic image
representation. Partial receptive field (PR) is the view field
covered by each MLG1 neuron. Each MLG1 neuron has the
same neural network structure, named partial neural network
(PNN) in our proposed neuromorphic structure. Generally
speaking, each PNN includes: (1) a photoreceptor layer to
retrieve continuous motion information, (2) inhibition and
excitation layers to fulfill a biological lateral inhibition function,

FIGURE 3 | Example images from the panoramic camera. (A) The panoramic

image divided in 16 equal segments. The proposed method involves dividing

(Continued)
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FIGURE 3 | the field of view into 16 equal segments. Each unit consists of a

37.5 deg receptive field, 15 deg of which are overlapped with each neighbor.

Blue and green arcs illustrate the way neighboring receptive fields overlap. (B)

The proposed neuromorphic structure based on MLG1s for looming spatial

localization. In total, sixteen identical PNNs make up the proposed

MLG1s model.

(3) a summation layer to combine both an inhibition cell and
excitation cell, (4) a grouping layer to suppress noise, (5) an
MLG1 cell to generate spikes, (6) an SFA mechanism to enhance
the excitation signal to achieve sensitivity and selectivity, (7)
a feed-forward inhibition cell to control the activation of each
MLG1, and (8) a looming spatial localization mechanism to
integrate the 16 MLG1s’ outputs and judge the spatial location
of an approaching object.

We choose one partial neural network of our model as an
example to present its mathematical structure and principle in
the following sections.

3.3. Photoreceptor Layer
In the proposed MLG1 motion-sensitive neuron model, the first
layer consists of the photoreceptor layer arranged in a 2D-Matrix.
Each pixel in successive images capture changes in gray-scaled
brightness. The output P(x, y, t) is described by Equation (1),

P(x, y, t) =

Np∑

i

ai · P(x, y, t − i)+ L(x, y, t)− L(x, y, t − 1) (1)

where P(x, y, t) is the current luminance change in pixel (x, y) at t
moment. In addition, the luminance change can last for a limited
number of frames Np. The persistence coefficient ai ∈ (0, 1), and

ai = (1+ eµi)−1 (2)

where µ ∈ (−∞,+∞), i indicates the previous frame (t − i)
counted from the current frame t. Equation (2) is used to simulate
the attenuating effect of the first few frames on the brightness of
the current frame.

3.4. Inhibition and Excitation Layer
The inhibition and excitation (IE) layer is made up of an
inhibition cell and excitation cell. The mathematical value of
the excitation cell is transferred directly from the photoreceptor
layer.

E(x, y, t) = P(x, y, t) (3)

The lateral inhibition cell has one frame delay to its retinotopic
counterpart’s neighboring cells.

I(x, y, t) = P(x, y, t − 1) ·Wi (4)

and the weightings of the convolution kernelWi fit the following
matrix,

Wi =



1/8 1/4 1/8
1/4 0 1/4
1/8 1/4 1/8


 (5)

3.5. Summation Layer
The output of the summation layer is the sum of the inhibition
and excitation layers, i.e.,

S(x, y, t) = E(x, y, t)+ I(x, y, t) ·WI (6)

whereWI is the weight of inhibition.

3.6. Grouping Layer
In this proposed MLG1 based neural network, in order to extract
collision targets against complex backgrounds, the extended
edge represented by cluster excitation needs to be enhanced.
Therefore, a passing coefficient, Ce(x, y, t) has been applied to
the grouping layer to multiply the excitations. It should be
noticed that the grouping layer is a mathematical filter with no
physiological basis.

The coefficient is determined by the cell’s surrounding
neighbors:

Ce(x, y, t) =

r∑

i=−r

r∑

j=−r

S(x+ i, y+ j, t) ·We(i, j) (7)

where We is an equal-weighted kernel. While in this model, we
set r = 1, which meansWe is set to:

We =
1

9



1 1 1
1 1 1
1 1 1


 (8)

In the meantime, using the equal-weighted matrix We can also
restrain the isolated noise in G layer to some extent.

Therefore, the excitation in the location (x, y), G̃(x, y, t) can be
computationally presented as:

G̃(x, y, t) = S(x, y, t) · Ce(x, y, t) · ω−1 (9)

where ω is a scale and calculated at every frame as:

ω = △c+max(abs[Ce(x, y, t)])C−1
w (10)

In the above Equation (10), △c is a small real number, Cw is a
constant positive coefficient. In consequence, ω ∈ (0,+∞) and
G̃(x, y, t) is positively correlated with Cw.

In the grouping layer, we also set a threshold to suppress the
decayed excitations.

G(x, y, t) =

{
G̃(x, y, t) if G̃(x, y, t) ≥ Tg

0 otherwise
(11)

where G(x, y, t) is the value of the excited pixels that have passed
the threshold Tg at time t.

3.7. MLG1 Cell
The membrane potential of the MLG1 cell, m(t), is the sum
of each pixel output from the grouping layer with a rectifying
operation, which can be represented as

m(t) =

row∑

x=1

col∑

y=1

abs(G̃(x, y, t)) (12)
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The membrane potential of the MLG1, m(t) is then mapped to
the sigmoid function to simulate the activation of the artificial
neurons. The equation is computed as follows:

M(t) = (1+ e−c(t)·m(t)·n−1
cell )−1 (13)

c(t) is an adaptive coefficient which refers to the derivative of
m(t), and its value range is (0,+∞). Since m(t) and c(t) are each
greater than zero, the normalized spikes,M(t) ∈ (0.5, 1].

3.8. Spike Frequency Adaptation
Mechanism
As presented in Equation (14), the biophysical spike frequency
adaptation (SFA) mechanism has been introduced to enhance
the model’s sensitivity to looming and receding stimuli. Previous
research revealed an intrinsic neural property of such looming-
sensitive neurons, the SFA mechanism, which enables the
neurons to discriminate approaching versus receding and
translating (Fabrizio and Krapp, 2007; Peron and Gabbiani,
2009a,b). In such biophysical theory, the SFA could be
illustrated as, when the motion-sensitive neuron challenged by
an approaching stimulus, the continuously expanding edges
activate an increasing number of excitatory synaptic inputs
(i.e., photoreceptors in our proposed model) (Fabrizio and
Krapp, 2007). This overcome the SFA in neurons. Our proposed
computational function serves to enhance the signals from
looming stimuli with a positive derivative coefficient, or inhibits
signals from receding stimuli rapidly. C(t) can be mathematically
defined as:

c(t) =





△c if c(t) ≤ 0
c(t − 1)+ ci1 if m(t)′ > 0 & m(t)′′ ≥ 0
c(t − 1)+ ci2 if m(t)′ > 0 & m(t)′′ < 0
c(t − 1)− ca if m(t)′ ≤ 0

(14)

Where △c is a small real number and c(t) is affected by its
previous moment c(t − 1), incentive coefficient ci1, ci2 and
attenuation coefficient ca.

It should be noted that the digital signal has no continuous
derivative. We calculate the gradient by comparing the signals of
consecutive discrete frames. So,m(t)’ andm(t)” can be defined in
Equation (15) and (16), respectively,

m(t)′ =
dm(t)

dt
=

m(t)−m(t − 1)

τ
(15)

m(t)′′ =
d2m(t)

dt2
=

m(t)+m(t − 2)− 2 ·m(t)

τ 2
(16)

where τ is the time constant which depends on the camera frame
rate. Compared with the SFA mechanism proposed by Fu et al.
(2018), our method responds to motion changes more quickly.

3.9. The Feed Forward Inhibition
Mechanism
The feed forward inhibition (FFI) mechanism is introduced to
adapt the threshold in response to a sudden change in the whole

visual receptive field. The feed forward inhibition and lateral
inhibition work together to handle such whole scene movements:

F(t) =

Na∑

j

ajF(t − j)+

nr∑

x=1

nc∑

y=1

abs(P(x, y, t − 1))n−1
cell

(17)

where aj is the persistence coefficient for FFI and its range of
value is (0, 1). Na defines how many time steps the persistence
can last.

Once F(t) exceeds its threshold TFFI(t), spikes in the MLG1
model are inhibited immediately. It is defined by formula (18)

TFFI(t) = TF0 + affiTFFI(t − 1) (18)

where TF0 is the initial value of TFFI . The adaptable threshold is
determined by the previous TFFI(t − 1). affi is a coefficient.

3.10. Spike Unit
The crab’s escape behavior is initiated once MLG1 neurons
have been activated, which means the looming spatial location
has been already confirmed. However, neuron spikes may be
suppressed by the feed forward inhibition (FFI) mechanism
when the background changes dramatically. So, after MLG1 and
FFI mechanisms, the final spike will be generated if Mt exceed
its threshold Ts and F(t) doesn’t exceed its threshold TFFI(t),
respectively, i.e.,

Sspike(t) =

{
1 if M(t) ≥ Ts & F(t) < TFFI(t)
0 otherwise

(19)

where 1 represents a spike, 0 means no spike. F(t) is a global scene
change judgment mechanism, and its TFFI(t) threshold value is
also adaptive.

A final collision alarm signal C(t) will be produced if the

number of S
spike
t which are continuously excited, exceeds the set

number of time steps, as defined in Equation (20),

Cj(t) =





1 if
t∑

i=t−Nt

Sspike(t) ≥ nsp

0 otherwise

(20)

where nsp and Nt denote the number of successive spikes and
frames, respectively. j indicates the segment number of each
MLG1 neuron. nsp is greater than Nt in this model, as the
exponential mapping from membrane potential to firing rate.

3.11. The Looming Spatial Localization
Mechanism
To determine the specific spatial location of an approaching
object, MLG1s may need to inhibit each other to win
a competition. Although lateral inhibitions between MLG1
neurons in crabs are not confirmed, recent research suggested
that there are connections between motion-sensitive neurons in
the same lobula layer [e.g., MLG2 and BLG2 (Cámera et al.,
2020)]. In this study, we propose a winner-take-all (WTA)
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FIGURE 4 | A Winner-take-all network for looming spatial localization. The

solid arrow lines and dashed lines represent excitation and inhibition,

respectively. The hidden layer contains 16 neurons h1 ∼ h16. The red neuron

MLG13 represents the first activated neuron, the blue neuron MLG14 is the

second one. MLG13 firstly activates h3 and inhibits the rest of hidden neurons.

Thus, the output of LSL layer is LSL3.

network based on the early spike timing to determine the spatial
location of the approaching object, as shown in Figure 4.

The WTA network consists of the inputs layer (i.e., the 16
MLG1s), a hidden layer and a looming spatial localization (LSL)
layer with excitatory and inhibitory synaptic connections, as
shown in Figure 4. The hidden layer receives excitation from
corresponding MLG1 neurons and inhibition from other MLG1
neurons. When a spike of a MLG1 neuron (e.g., red neuron
MLG13 in Figure 4), is generated at a time t, the corresponding
hidden layer neuron (i.e., h3 neuron) will be activated, so the
output of LSL is LSL3. The other hidden layer neurons will be
suppressed. Even if another MLG1 (e.g., blue neuron MLG14)
fires in the next moment, its corresponding hidden neuron will
not be activated. The output of LSL could be defined as:

LSLoutput = LSLi,Ci(t) = max(Ĉj(t)) (21)

where i is the index number of the activated MLG1 neuron. Ĉ(t)
could be calculated at every frames as:

Ĉj(t) = α1Cj(t)+α2Cj(t−1)+· · ·+αnCj(t−n),Cj(t) 6= 0 (22)

where 0 < α1 < α2 < · · · < αn,α1 + α2 + · · · + αn = 1.
j is the number of MLG1 neuron (j ∈ [1, 16]) and n represents
frames in a time window. If the approaching stimulus activates
two neighboring MLG1s at the same time, their Ĉj(t) should be
equal. Thus, the approaching location would be treated as in the
middle of the two neighboring MLG1s.

In general, our proposed LSLmechanism indicates the spatial-
temporally encoded local approaching motions at a specific
moment. The post-synaptic neural network for global motions

TABLE 1 | The predefined parameters and descriptions of proposed model.

Parameter Description Value

Np Luminance persistence in frames Eq.1 1

WI Inhibition weight Eq.6 0.3

Cw Constant positive coefficient Eq.10 4

△c Small real number Eq.10&14 0.01

Tg Threshold Eq.11 30

ci1 Incentive coefficient Eq.14 0.5

ci2 Incentive coefficient Eq.14 0.3

ca Attenuation coefficient Eq.14 0.3

τ Time constant Eq.15&Eq.16 0.04

Ts Spike threshold 19 0.7

nsp Number of spikes Eq.20 4-5

Na Luminance persistence Eq.17 1

TF0 Initial value of Tffi Eq.18 15

affi Coefficient Eq.18 0.02

perception is outside the scope of this paper and will be
investigated in our future work.

4. EXPERIMENTS AND RESULTS

This section presents five experiments to test the feasibility
and robustness of the proposed looming spatial localization
neural network.

The main objectives are as follows: (1) To examine the
effectiveness of the proposed looming spatial localization
detector in collision detection. (2) To test the sensitivity and
selectivity of the proposed model while handling looming stimuli
with different dynamics. (3) To test sensitivity to contrast and
the inhibition to a receding stimulus. (4) A self-rotating video
is used in this subsection to examine the selectivity of the FFI
mechanism. (5) To verify the effectiveness and robustness of the
MLG1s model in a realistic urban scene.

4.1. Parameters Setting
Parameters of the proposed model have been determined
according to preliminary experiments carried out for the
implementation and optimization of functions. All parameter
settings and descriptions are shown in Table 1.

All the experimental videos are real-world looming stimuli
against a cluttered background which contains shadows,
reflections, different gray-scaled objects, etc. The videos are
recorded by the panoramic camera, Insta360 ONE X (see Ins,
2021), to imitate the crab’s eyes. The camera operates at 30 fps and
the video resolution is 720*720 in all the experiments. It should
be noted that the video resolution doesn’t affect the results of
experiments a lot. Higher resolution means more computation,
in other words, it takes longer to produce results.

All experiments are conducted on a Windows 10 platform
with a PC [CPU: Intel (R) Core (TM) i7-4770 CPU @ 3.40
GHz, RAM: 16GB]. Data analysis and visualizations have
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been implemented in Matlab R2019b (The MathWorks, Inc.
Natick, USA).

4.2. Detection of Looming Spatial Location
For this, which is the most important characteristic, we first
examine if the proposed model can recognize the spatial location
of the approaching stimulus. In this experiment, we fixed the
panoramic camera on the desktop and used a black ball to
approach the camera directly along the track and finally collide
with the camera. The red dashed line is the trajectory of looming
in Figure 5A. The experiment’s top view has been shown in
Figure 5B. As shown in Figure 5E, each subgraph represents one
MLG1 which corresponds to the equivalent segment number of
the structure in Figure 3A. The activities of MLG1s represent
their signaling of the looming events. The results illustrate the
response of our proposed MLG1s model to a looming stimulus
mainly located in segments 3–5. MLG14 is the main response
neuron which exceeds the threshold at 39th frame, and the
collision warning (red area in coordinate images) is generated
at 42nd frame. In MLG15 the threshold response occurs at the
42nd frame and the collision warning occurs at the 45th frame.
In MLG13 the threshold response warning occurs at the 58th
frame whilst the collision occurs at the 60th frame. The other
neurons produce no warnings. In other words, sinceMLG14 first
perceives the looming stimulus, the LSL judge the spatial location
of the looming stimulus is approximately located in the receptive
field corresponding to MLG14. And the output has been shown
in Figure 5C. In addition, the similar responses shown during
ten repeat experiments, (Figure 5D) illustrate that the model is
very robust. Our results in the aforementioned figures show that
the proposed MLG1 neurons model could successfully detect the
spatial location of looming stimuli.

We have also investigated the performance of the model
using non-collision. Figure 6A shows the image of four looming
trajectories with different angles of approach. The experimental
videos can be found on our Github. The statistical results in
Figure 6C demonstrate that the direct looming stimulus (0 deg,
blue line) creates the highest spike counts inMLG14 andMLG15.
With an approaching angle of 5 deg (red line), the highest spike
counts appear in MLG12. As the approaching angle increases
(yellow and purple lines), so does the distance between the
stimulus and the camera, which results in lower spike counts.
This suggests that the angular looming actions can also activate
the MLG1s neural network, but the spike frequency falls off
considerably when the object moves to pass with a significant
deviation. Figure 6C demonstrates that themain segments where
the approaching event occurred, but it can’t show when the
approaching event began or ended. Figure 6E shows the eight
MLG1s’ outputs when challenged with four kinds of angular
looming. When the approaching angle is 0 deg (blue lines in the
Figure 6E), the output of MLG14 firstly exceeds the threshold
(0.7) for four successive frames at the 134th frame. MLG15
spikes at the 142nd frame. Therefore, the LSL unit confirms that
the location of the approaching ball firstly comes from LSL4.
As the ball continues approaching, it distorts heavily in the
captured images and appears in segments 3 and 6. However, the
outputs of neighboring MLG13 and MLG16 will not contribute

to the approaching location judgement as well, even though their
outputs exceed the threshold. When the looming angle is 5 deg
away from the direct collision course (0 deg here), the outputs of
MLG13 firstly exceed the threshold in four successive frames. The
approaching location is therefore determined by LSL3. Although
the outputs ofMLG12 andMLG11 exceed the threshold gradually
later, they will not change the perceived original approaching
angle already decided by LSL3. As the time goes on to 182nd
frame, the ball passes through segment 3. The LSL3 then has been
released, MLG11 and MLG22 still have been activated. Because
of the WTA-based LSL mechanism, the output of LSL is LSL2.
When the approaching angle is with 10 deg deviation, it only
activates MLG11 successfully in this single test as illustrated in
yellow lines in Figure 6E, so the approaching location is LSL1.
When the looming angle is with 20 deg deviation, no MLG1 of
our proposed model responds to it. The LSL outputs for this
angular looming test has shown in Figure 6D.

4.3. Multiple Size and Looming Velocity
Tests
Secondly, we tested the effect of the looming object size on the
model output. The microrobot Colias proposed by Hu et al.
(2018) is used as a looming physical stimulus in this experiment.
As shown in Figure 7, a group of comparative experiments are
conducted with stimuli diameters of 4 cm, 6 cm, and 8 cm. The
largest size stimulus has the earliest spike tendency. The neural
response of the proposed model also matches the biological
characteristics in Figure 2(1)–(4).

As mentioned above, the biological research confirms that
MLG1 neurons are sensitive to looming speed (Oliva and Tomsic,
2014). Thus, we devised a series of experiments to show the
influence of the looming speed with distance-to-collision (DTC).
It should be noted that the speed of the Colias robots could not be
maintained at an identical level in each single test, even though
the speed rate parameter is the same. As illustrated in Figure 8,
we employed five gradually increasing speeds from 3 cm/s to 30
cm/s. The statistical result shows that the DTC increases when
the looming speed increases. At the looming speed of 3 cm/s,
the average DTC has been issued in the ten repetitions is 3.86
cm. When the looming speed is 30 cm/s, the average distance
has increased to 18.00 cm. The neural response is consistent
with biological studies on the characteristics of MLG1 neurons
as shown in Figure 2(5)–(7).

4.4. Multiple Contrast Tests and SFA Test
Thirdly, we tested the performance of the proposed MLG1s
model with stimuli exhibiting a range of contrasts to examine
whether the contrast influences the MLG1s model response to
collision events. We move the ball directly toward the camera at
a standard velocity in these tests. Figure 9A shows six colored
balls and their gray levels. The statistical results of contrast tests
in Figure 9B demonstrates that the proposed MLG1s model is
sensitive to the contrast between the looming stimulus and the
background. As the balls approach, the MLG1s model responds
earliest to the black ball which creates maximum contrast with
the background. The green and red balls with similar, medium
contrast levels result in approximate neural responses. The pink,
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FIGURE 5 | Response of the proposed model to a looming stimulus. (A) Looming stimulus. The collision event occurred at the 60th frame. The red dashed line is the

looming trajectory. (B) Top view of looming test. The red dashed line is the looming trajectory as same as in (A). (C) The first outputs of LSL unit in this test. The LSL

has no output until 42nd frame (i.e., MLG14 firstly generates spike at this frame). (D) Outputs from MLG14 neuron when challenged by repeated identical looming

tests. The looming stimuli start from same position at similar speeds. (E) The response of the 16 MLG1 neurons from our proposed model. The blue lines are

membrane potential of MLG1 neurons. Red area is collision warning. The number of each subgraph corresponds to the segment number within the proposed

structure in (B) and Figure 3A. The Y-axis denotes a normalized membrane potential and the X-axis denotes the number of frames. The red vertical dashed line

indicates the time at which the response output exceeds the threshold. The red area is the time window in which each MLG1 neuron generates spikes.

yellow, and white balls, which gradually present lower contrasts,
cause the responses to take progressively longer.

In this group of experiments, we examined the selectivity of
the SFA mechanism by using experimental videos containing
both looming and receding stimuli. The movements mainly

occurred in segment 3 and segment 4, so the neural response
to looming is more pronounced in these two neurons. Our
results in Figure 10B show that when challenged by a looming
stimulus, the SFA mechanism enhanced the model’s response,
so the output is amplified. On the other hand, when challenged
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FIGURE 6 | (A) The angular looming experiments set. The blue, red, yellow and purple lines represent angular looming trajectories with angles 0, 5, 10, and 20 deg,

respectively. Different approach angles make the images of the balls travel through various segments of the receptive fields of view. (B) Top view of the angular

looming test. (C) statistical results for angular looming experiments. The Y-axis denotes the spike count. The X-axis shows the numeration of MLG1 neurons, which is

the same as in Figure 3A. Different looming trajectories excite corresponding MLG1 neurons. However, as the looming angles increase, neuron reactions decrease.

Each experiment is repeated ten times at each angle. (D) the outputs of LSL in each of four angular looming tests. (E) eight MLG1 outputs for angular looming

experiments. The X-axis is the number of frames. The Y-axis donates a normalized membrane potential. It should be noted that the closest object has a significant

distortion in the panoramic image, so that it will elicit responses by adjacent neurons.

by receding stimulus, the SFA mechanism inhibited the response
causing it to decay more quickly. In short, the SFA mechanism
has been proven to identify and selectively modulate the response
to approaching and receding stimuli. Like the repeated identical
looming tests, we use a group of receding videos to examine
our proposed model. Figure 11 is the results of ten times
looming and receding tests. The outputs of MLG14 from the
40th frames to around 47th frames are very close due to the
similar positions of the balls and tracks used in the repeated
experiments and the fast inhibitory effect of the SFA mechanism.
It can also prove that the function of receding inhibition

in our proposed model is very robust when handling the
receding stimulus.

4.5. Rotational Visual Stimuli Test
In all of our previous experiments, we have the panoramic camera
fixed to the table, so the camera doesn’t move or wobble or rotate.
If we want to embed this model in autonomous microrobots
with the function of collision detection and avoidance, we must
inhibit the false spikes caused by themicrorobot’s rotations or fast
turning. So, we set up an FFI mechanism to inhibit the output at
these critical moments.
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FIGURE 7 | (A) Three objects of different sizes are used as the looming stimuli. (B) Statistical result (shaded error bar) shows that the larger looming objects will lead

to an earlier neural response. Each experiment is repeated ten times at each objective size.

FIGURE 8 | (A) Five approaching objects with different speeds are used as the stimuli. (B) Statistical results (error bars) shows that the looming stimulus with the

highest velocity has the longest warning distance in these comparative experiments. Each experiment is repeated five times at each speed.

FIGURE 9 | (A) Six grey-scaled balls. (B) The statistical results of contrast tests. The looming stimulus with the highest contrast responds soonest. Each experiment is

repeated ten times.

In the rotational tests, we examined the selectivity of the
FFI mechanism by using a video captured while the camera
is rotating. In this experiment, the panoramic camera rotates
clockwise at a constant angular speed of around 90 deg

per second. The red arrow in Figure 12A is the direction of
rotation. Our results in Figure 12B show that when the camera
rotates violently, the FFI mechanisms in MLG1 neurons have
been activated immediately. Thus, there are no spikes in MLG1s.
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FIGURE 10 | The selectivity of the SFA mechanism to looming and receding stimuli. (A) Experimental video containing looming and receding stimuli. The motions are

mainly located in areas covered by MLG14 and MLG15. The red and blue dashed lines represent the approaching and leaving trajectory, respectively. (B) The result of

MLG14 and MLG15 show the model with the SFA mechanism that improves the neural response generated by the looming stimuli while inhibiting the response during

the recession. In MLG13 and MLG16, the SFA has little impact on the output because they are not the main area where the movements take place. The number of

each subgraph corresponds to the segment number of the proposed structure in Figure 3A. The Y-axis denotes a normalized membrane potential and the X-axis is

the number of frames.

FIGURE 11 | The MLG14 response to looming and receding stimuli with the

SFA mechanism. Looming occurred between 10–30 frames, receding 40–50

frames. The trajectories of the object in the stimuli are similar to those in

Figure 10A. The results are overlaid from the same experiment repeated ten

times.

Although the FFI mechanisms perform well in the rotational
test, we still consider the FFIs as a whole. For example, when
10 of the 16 FFIs are activated, the model determines that it is
self-rotating and then inhibits all MLG1s from spiking.

4.6. Urban Scene Test
All experimental videos above subsections are recorded in the lab
with a static scene. It is also interesting to test if the proposed
model works for urban scenarios with uncontrolled backgrounds
and moving objects. In this subsection, we will use the same
panoramic camera to record outdoor videos in a city setting
and investigate MLG1s model performance against a dynamic
cluttered background. The urban video is recorded in a city
square with a complex background containing buildings, trees,
distant pedestrians, and two people approaching from different
spatial locations at the same time (see Figure 13A). As shown
in the figure, the two people approach the camera courses at

an angle of 45 deg between each other. Their approaching
trajectories are indicated in a red and a blue arrow, respectively.
The experimental video can be found on Github.

When challenged with the urban scene, the parameters to cope
with the noise caused by the dynamic background have been
adjusted. The threshold has been set toTs = 0.88 in Equation (19)
and the nsp = 6 in equation (20). The experimental results in
Figure 13B show the response of theMLG16 neuron first exceed
the threshold at 120th frame and triggers the collision warning
at 126th frame. That is because the person in segment 6 walks a
little faster (see video on Github). All the locations of the looming
objects in this video are perceived successfully by our proposed
MLG1s model. The results demonstrate that the MLG1s model
can cope with the dynamic and cluttered background effectively
and robustly.

5. FURTHER DISCUSSION

The systematic off-line experiments illustrate that our proposed
MLG1s model, comprising the parallel 16 partial neural
networks and spike frequency adaptation mechanism, shows
characteristics similar to the biological characteristics of real
MLG1 neurons in the crab Neohelice granulata, as in Figure 2.
Compared with the looming sensitive neurons LGMD1, MLG1
neurons have many similar features. For example, the both
responses of neurons to looming stimuli are strongly tuned by the
stimulus velocity and size. Despite these similarities, MLG1 and
LGMD1 neurons differ in many aspects. The most obvious one is
that the locust has only one LGMD1 neuron to cover the entire
view of the eye, but the crab Neohelice granulata has 16 MLG1
neurons. Furthermore, the firing peak of each MLG1 neuron
is influenced by the size of the receptive field. Also, the escape
response to the looming stimulus in the crab Neohelice granulata
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FIGURE 12 | Response of the proposed model to rotational motion. (A) counter-clockwise rotation. The panoramic camera rotates clockwise to simulate rotational

movements. The red arrow is the direction of the stimuli resulting from camera rotation. (B) the outputs of rotational tests from all 16 MLG1s. The blue lines are the

membrane potential outputs of MLG1 neurons. The green lines are the outputs of FFI. The red lines are spiking outputs from every MLG1 neuron, representing the

collision warning. The FFI function can inhibit spikes caused by rotation efficiently. The number on the top of each subgraph corresponds to the segment number

within the proposed structure in Figure 3A.

has been proven to be highly directional. The finely tuned
directional control can be accomplished suitably with a neuronal
ensemble, which comprises the set of 16 MLG1 neurons.

In this paper, we have presented a plausible, bio-inspired
model that can perceive the spatial location of looming stimulus.
It’s worth pointing out that the angular looming objects could
activate neighboring MLG1 neurons in different timing, which
is similar to those looming objects in direct collision course
but with different sequences. As shown in Figure 6, when the
looming angle is 5 deg deviation from the directly looming, the
approaching object travels through segment 3, segment 2, and
finally, segment 1. The relevant neurons are also activated in
this sequence. If the approaching object is with a large deviation,
e.g., 20 deg from a direct collision course, no MLG1s will be

triggered. This is a suitable feature for a robotics vision system
that could respond to relevant approaching objects but not by
irrelevant ones. Further research might be required to investigate
the coordination and interactions between neighboring MLG1s
to understand how they could cope with diverse approaching
objects. This may enable us to improve the collision selectivity
of the model in the future. Moreover, the spike timing of each
activated MLG1 neuron can also be encoded and extracted cues
to perceive global motions around all receptive fields, which is
our future work.

Except for the parallel partial neural networks, the SFA
mechanism in the proposed MLG1s model demonstrates
considerable preference in looming stimulus instead of receding
events. Our phased results also indicate that the SFA mechanism
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FIGURE 13 | (A) urban scene. Two approaching people form an angle of 45 deg with the camera. The red and blue dashed lines represent the two approaching

trajectories. (B) the outputs of 16 MLG1s in urban scene. The person at segment 6 (red line) approaches a little faster, so the neuron response first exceeds the

threshold at frame 120, and the first collision warning is generated at frame 126. The Y-axis denotes a normalized membrane potential and the X-axis denotes the

number of frames.

can differentially enhance signals produced in response to
different looming stimuli. However, the selectivity of the SFA
mechanism has not been explored quantitatively in this paper.
In the future, we will explore further the potential of the
SFA mechanism and aim to embed our model into the
microrobot Colias to evaluate its potential under a variety of
real-world conditions.

In addition, our contrast test shows that the contrast
difference between the target and background could influence
the MLG1’s response. This is because we have not implemented
pre-processing algorithms to deal with contrast’s differences.
In crab, however, it can process polarization and intensity
information independently and in parallel, and the final
response depends on which one is most significant (Smithers
et al., 2019). It is a common feature for most motion-
sensitive neurons that the movement-elicited response is

independent of the contrast between the background and
moving stimulus (Wiersma, 1982; de Astrada and Tomsic,
2002). In the future, the relevant bio-plausible visual pre-
processing methods could be implemented pre-synaptically
to the MLG1s computational model to accommodate the
contrast invariance.

The final experiment for the urban scene also demonstrates
the robustness and effectiveness of our proposed model.
However, our MLG1s model, similar to all other visual neural
models, has limitations to realistic environmental conditions.
The proposed model is a luminance-change-based method, it
is highly dependent on lighting conditions. For example, a
shadowing road with bright sunlight could be a tough challenge.
Moreover, the size and distance of a looming target also influence
the neural response. Similar to the crab’s MLG1 neurons, the
tiny target needs to be much closer to the panoramic camera to
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activate the MLG1s model. The MLG1s model response distance
to the looming stimulus is approximately 0.3 m to a ball (0.05
m height) and 4 m to a person (1.8 m height). As a result, our
MLG1s model can only perceive the motions (include looming
and translating) happening within this distance and ignores
long-distance motions.

6. CONCLUSIONS

In this paper, we have presented a visual neural network model
based on biological MLG1 looming sensitive neurons in the
visual nervous system of the crab Neohelice granulata. The
MLG1s ensemble could encode the spatial location of a looming
stimulus. Our proposed MLG1s model not only detects the
looming spatial location but, like its biological counterpart, is
sensitive to speed and size.

Furthermore, our systematic experiments demonstrated that
the proposed MLG1s visual computational model works robustly
and effectively. The MLG1s model may be a good candidate
for visual neuromorphic sensors to perceive looming spatial
location when applied in microrobots due to its low energy cost,
efficiency, and reliability. In the future, we will further model the
post-synaptic neural networks of MLG1 neurons. We will also
investigate the potential to integrate multiple motion-sensitive
neural networks to cope with complex visual stimuli for robots.
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