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Abstract  

 

 

 

The Urban Heat Island (UHI) as a result of urbanisation processes remains a compelling 

focus of urban climate research. With the advance of thermal remote sensing, surface 

urban heat island (!"#$ ) quantified by the land surface temperature from satellite 

observations becomes more prevalent in studying the UHI effects. The difference and the 

physical linkage between !"#$ and urban canopy air heat island (%"#$) measured by 

Urban Meteorological Network (UMN) intrigue the whole urban climate community. The 

complicated relationship between the intensity of !"#$  (!"#$$) and %"#$  (%"#$$) 

across cities limits the application of the thermal remote sensing in urban environment. 

This thesis explores the relationship between nocturnal !"#$$ and %"#$$ (the !"#$$-

	%"#$$ relationship) by applying a transferable method, using MODIS satellite and UMN 

in Oklahoma City, US and Birmingham, UK. Specific patterns of the !"#$$-	%"#$$ 

relationship under different seasons, wind speed conditions and land characteristics are 

found in both cities. The comparisons between the two cities highlight the strong controls 

of the local climate and the configurations of the UMN on the differences of the !"#$$-

	%"#$$ relationship across cities, which are considerable factors in order to generalise 

this relationship globally. 
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Chapter 1   Introduction 

 
 

 

1.1 Research background 

Over the past 200 years or so, the industrial revolution has continued to alter the 

surface properties of urban areas by the urbanisation process (Collier, 2006). It has been 

reported that the world’s population living in urban areas has increased from around 2.5 

billions in 1950 to 7.8 billion in 2002, which could be potentially reach 8.5 billions by 

2030 (United Nations and Social Affairs, 2015). This rapid urbanisation process is 

inevitably influencing the urban weather and climate with potential impacts on human 

lives (Jin and Shepherd, 2005). 

Urbanisation processes mainly impact upon the physical processes and dynamical 

structure particularly in the atmospheric surface layer that is roughly the lowest 10% of 

the atmospheric boundary layer (ABL), defined as the lowest part of atmosphere with the 

Earth’s surface (Oke, 2002b). The complex structures and surface characteristics 

contribute to the different climate in urban environments, and as such, the atmosphere 

directly influenced by urban areas has its unique structure and is commonly called the 

urban boundary layer (UBL). One of the most well documented phenomena resulting 

from modifications to the urban climate is the Urban Heat Island (UHI) effect. The UHI 

is considered as an increasingly significant issue for inhabitants in cities where urban 
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temperatures become elevated as a result of anthropogenic modification of the 

atmospheric environment by urbanisation and industrialisation (Oke and Fuggle, 1972, 

Roth et al., 1989, Ren et al., 2011, Parlow et al., 2014). 

A range of consequences for social economy, health and meteorology have been 

found to be associated with the intensification of UHI, such as atmospheric stability, 

modification of precipitation processes, air pollution dispersion, human comfort and 

morbidity and mortality (Oke, 2002a). However, its impacts can be either negative or 

positive, particular to the socio-economic and health aspects (Unger, 2004). This is 

largely due to the complicate urban environments that increase the diversity and 

uncertainties of the UHI effects in different cities. Correspondingly, recent research has 

developed strategies in order to utilise or mitigate its adverse effects (e.g. implementation 

of urban green infrastructure (Kong et al., 2014, Cavan et al., 2014)). It remains 

indispensable to gain further insight into the UHI by a more comprehensive understanding 

of the underlying physical processes in the UBL. 

The scientific literature typically classifies the UHI into (i) canopy air urban heat 

island (!"#$), (ii) surface urban heat island (%"#$), (iii) boundary layer heat island 

(UHIUBL) and subsurface heat island (UHISub) (Oke, 1995). These four types of UHI have 

different their own physical representations as a result of different observational methods. 

The magnitude/intensity of !"#$ (!"#$$) is quantified as the difference of the screen-

level (usually 2 m above ground level) air temperature (&!) between urban and rural 

(reference) stations. The !"#$$ is of greater importance than the other measures of UHI 

because of its better representation of thermal comfort sensed by human, in close 

relationship with disease transmission and health risk (Koken et al., 2003, Tomlinson et 

al., 2011b). However, with the continual advances and development of satellite 
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techniques, research related to %"#$  commonly derived from satellite-sensed land 

surface temperature (&") has rapidly increased. The key advantage of using satellites over 

other methods is the spatial continuity of the data with relative high-spatial resolution 

(Anniballe et al., 2014). In contrast, the high-spatial resolution &! data have historically 

been less available. This is largely because of the increased expense due to the 

requirement of observation apparatus regarding the configuration and maintenance of a 

dedicated urban weather station or, more recently, an urban meteorological network of 

stations (UMN) (Peng et al., 2011). The UHIUBL is the difference of the air temperature 

above the UCL and that at similar altitude over the rural area. It is controlled by the energy 

balance at top of the roughness sublayer and the boundary layer. Temperature sensors 

mounted on aircraft, balloons or tall towers are needed to quantify the UHIUBL. UHISub is 

the difference of the temperature in the ground under the city and rural surface, generally 

measuring by the temperature sensors placed within the substrate. It is therefore driven 

by the subsurface energy balance differences between urban and rural (sub)surfaces. This 

thesis will only focus on the !"#$ and %"#$ which are the most commonly studied types 

in the scientific literature. 

Table 1.1 adapted from Oke et al. (2017) describes the main differences between 

!"#$  and %"#$  that limit the application of the %"#$  as a surrogate of the !"#$ . 

Specifically, urban surface is seen from a plan or bird’s eye view from satellite. From this 

perspective, &"  (or the intensity of %"#$  [%"#$$ ]) is estimated from the integrated 

radiance emitted from the surfaces that could be measured by satellite sensors. &!  (or 

!"#$$ ) from the ground measurement is observed by a screen-measurement level; 

therefore, it largely depends on the processes within the urban canopy layer (a more 

comprehensive review regarding the %"#$ and !"#$	is provided in Chapter 2). Despite 
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significant scientific effort to study %"#$$ , three main questions (research gaps) 

regarding the application of &" in urban environment raised by Roth et al. (1989) have not 

yet been fully solved, which includes:  

(i) the explicit characteristics of the urban surface as viewed by thermal remote 

sensors; 

(ii) the exact relationship between &" and &! in urban-atmosphere interface; 

(iii) the relation between %"#$$ and !"#$$. These are the fundamental limitations 

of applying the thermal remote sensing in urban climate studies.  

Along with these issues, the paucity of &!  data has proved to be the biggest 

limitations in studies investigating the relationship between %"#$$ and !"#$$ (%"#$$-

	!"#$$ relationship). However, a recent step-change in the availability of &! data (thanks 

to an increase in UMNs now) means that there exists a new opportunity to extend previous 

investigations into the %"#$$-	!"#$$ relationship and thus gain further knowledge of the 

physical interaction between surface and air atmosphere in urban climate research (Voogt 

and Oke, 2003). The whole analysis will focus on night-time period only. The reason for 

considering night-time period only is two-fold. Firstly, nocturnal UHI occurs more 

frequently than daytime UHI (Jauregui, 1997) and UHII was found to be higher than that 

during daytime (Kim and Baik, 2005, Lemonsu and Masson, 2002, Montávez et al., 2000, 

Kłysik and Fortuniak, 1999). Secondly, nocturnal UHII is not directly affected by solar 

radiation and the %"#$$-!"#$$ relationship becomes less complicated than the one at 

daytime. More importantly, better agreement between %"#$$ and !"#$$ has been found 

during night time by previous studies (Sun et al., 2015, Anniballe et al., 2014), providing 

more confidence to explore the nocturnal %"#$$-!"#$$ relationship. In this thesis, the 

recently available high-density UMNs in Oklahoma City, US (Oklahoma Micronet and 
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Mesonet network) (Basara et al., 2011) and Birmingham, UK (Birmingham Urban 

Climate Laboratory) (Warren et al., 2016) are used to explore the %"#$$ - 	!"#$$ 

relationship across cities, with considerations of different climate and configurations of 

UMN and the possibility of generalising this relationship globally. Overall, the newly 

available, high resolution, &! data from UMNs provides the means to tackle the long-

standing research gap that exists pertaining the relationship between &" and &!. 
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Table 1. 1 Summary of !"#$ and %"#$ in terms of their scale, causative thermal processes, observational method and the advantacges 

and disadvantages of the measurements (adapted from Oke et al. (2017)). 

 

UHI Type  Scale Processes Measurement Pros & Cons of the measurements 

!"#$ Local Surface energy balance Satellite • Spatial continuous data;  
• Free of charge 
• Lower temporal resolution 

%"#$ Micro Surface energy balance and energy 
balance of urban canopy layer air 
volume 

Ground stations 
or UMN 

• Limited number of stations 
• Uneven distribution 
• Large cost for configuration and 

maintenance 
• High temporal resolution 
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1.2 Study area 

This thesis uses Birmingham, UK, and Oklahoma City (OKC), US, as case study 

areas, offering an opportunity to gain insights in two different environments. These two 

cities were primarily chosen due to the accessibility of UMN data that provides the 

opportunity for investigating the relationship between !"#$  and %"#$ . Furthermore, 

these two cities offer a valuable chance to compare the !"#$$-%"#$$ relationship under 

various geographical and climatic background that plays an important role to the 

formation and development of UHI and will be further introduced as below. 

Birmingham is the second largest city in UK with a population of about 1 million in 

2011 (Birmingham City Council, 2013). It is a post-industrial city with an area of around 

267.8 km2 located on a fairly flat plateau in the West Midlands region of the UK (Figure 

1.1). Birmingham is also the main city in the West Midlands conurbation that extends to 

approximately 901 km2. General climate characteristics during the study period are 

summarised in Table 5.1. The climate type is humid subtropical with an annual mean 

temperature of around 9.10℃. The total amount of precipitation is about 660 mm with 

the mean relative humidity of 64%. 

OKC (Figure 1.2) is one of the ten largest cities in the US and spans approximately 

1610 km2, with an estimated population of 562,343 2009. It is not a consolidated city 

where the urbanised area is around 630 km2 embedded by a central business area of 20 

km2. OKC is situated at a reasonably high elevation with an average of 382 m on a flat 

plateau. According to Table 5.1, OKC belongs to the marine west coast climate with an 

average temperature of 20.54℃. Larger amount of total precipitation is recorded in OKC 

(928 mm) compared to Birmingham, but the RH is much lower in OKC (64%) 
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Figure 1. 1 Map of Birmingham within the UK with altitude information provided by 
Ordnance Survey (2014), 
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Figure 1. 2 Map of Oklahoma City within the USA with altitude information provided by 
Oklahoma City Council (2020). 
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1.3 Aim and objectives 

Given the established research gaps and the newly available data in which to tackle 

it, the overall aim of this thesis is to investigate the relationship between nocturnal surface 

and urban canopy air heat island (the !"#$-%"#$ relationship) for individual cities and 

to examine the generalisation of the !"#$-%"#$ relationship across different cities. The 

aim of examining “generalisation” is mainly focused on comparing the outcome of the 

!"#$-%"#$ relationship from two different cities and identifying the conditions under 

which the relationship can be equally applied to the two cities.  Specifically, the fulfilment 

of the aim is mainly based upon the following three steps. Firstly, the atmospheric 

variables that have significant impacts on both !"#$$ and %"#$$ need to be determined. 

Secondly, a method to quantify the !"#$$-%"#$$ relationship needs to be developed, 

and Birmingham is chosen as a case study to explore the characteristics of the !"#$$-

%"#$$  relationship under certain meteorological conditions and the land surface 

characteristics. Thirdly, the method is applied to another city (OKC) under same 

conditions (meteorology and land surface characteristics) and then similarity or 

dissimilarity of the !"#$$-%"#$$ relationship across the two cities (Birmingham and 

OKC) will be carefully examined in order to seek the possibility of generalising the 

!"#$$-%"#$$ relationship and to further understand the impact of UMN configuration 

and local climate on the !"#$$-%"#$$ relationship. 

In summary, there are four specific objectives that are consistent with the three steps 

discussed above for this thesis as below (note: detailed explanations regarding the four 

objectives are provided in Section 2.7): 
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(i) Investigate the atmospheric variables that have a strong link to the 

seasonal and spatial variations of nocturnal surface (!"#$$) and urban canopy heat 

island intensity (%"#$$) in OKC as a case study, which is achieved in Chapter 3. 

(ii) Explore the effects of the atmospheric conditions and levels of 

urbanisation on the nocturnal !"#$ -%"#$  relationship in Birmingham, UK in 

Chapter 4, to discover specific characteristics of this relationship with 

understanding of its corresponding physical processes, by developing a repeatable 

methodology that could be applied in another city (i.e. OKC). 

(iii) Determine whether the specific characteristics discovered in (ii) are more 

broadly applicable and could be explained by the same physical processes in OKC 

in Chapter 5. 

(iv) Discover the possibility of generalising the !"#$-%"#$ relationship by 

comparing it between OKC and Birmingham, with consideration of their local 

climate background and configurations of the UMNs in Chapter 5. 

1.4 Structure of thesis 

This introductory chapter has underlined the concepts and information related to 

research background for this thesis (Section 1.1), mainly incorporating types of UHI and 

the available observation methods: thermal remote sensing and urban meteorological 

network as well as primary differences between %"#$  and !"#$ . This chapter is 

followed by the main literature review (Chapter 2) regarding the modelling of the 

nocturnal surface and canopy heat island which is relevant for the three main parts to this 

thesis (Chapters 3 - 5). 
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An illustrative framework (Figure 1.3) is provided to demonstrate how the four aims 

summarised in Section 1.3 to be achieved within the context of the thesis. 

The response of the !"#$$  and %"#$$  to the atmospheric condition is firstly 

explored in OKC (Chapter 3). The atmospheric variables that have strong links to the 

UHI have been discovered. This chapter provides evidence regarding the consideration 

of the atmospheric condition in studying the nocturnal !"#$-%"#$  relationship. The 

atmospheric parameters used to represent the atmospheric condition are then considered, 

together with surface characteristics (levels of urbanisation) as key factors for building 

the nocturnal !"#$-%"#$ relationship in Birmingham (Chapter 4). 

The repeatable methodology developed in Chapter 4 is then used for studying this 

relationship over OKC in Chapter 5. This enables comparisons of this relationship 

between OKC and Birmingham according to different climate background and settings / 

configurations of the UMNs.  

The thesis concludes (Chapter 6) with a synthesis of the main chapters and critiques 

of the thesis alongside potential future perspectives. 



13 
 

 
Figure 1. 3 Overview of thesis structure



14 
 

 

 

Chapter 2   Literature review 

 
 

 
This chapter offers a review on the physical processes and state-of-the-art of modelling 

of the relationship between surface and canopy air heat island during night-time, which 

are relevant for Chapters 3 - 5. The relationship between satellite-sensed land surface 

temperature and air temperature from ground observations are also discussed, which is 

strongly linked to the magnitude of urban heat island. At the end of this Chapter, the data 

and method used in this thesis are explicitly introduced. Please note that individual 

chapters (3 - 5) also offer short reviews of other relevant materials that are not fully 

covered by this Chapter. 
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2.1 Introduction 

Traditionally, the intensity of UHI (UHII) is quantified by the urban-rural differences 

of the air temperature (!!) observed from ground stations within the urban canopy layer 

(UCL) (i.e. "#$%%, as introduced in Chapter 1). The advent of thermal remote sensing 

provides new avenues to observe the UHI by satellite instruments (i.e. &#$% , as 

introduced in Chapter 1) that could produce land surface temperature ( !" ) with 

comparative high temporal resolution (e.g. four times daily from MODIS satellite). It is 

also a less costly way to acquire UHI information for any city when compared to the use 

of weather stations or indeed, an urban meteorological network (UMN) over urban areas. 

!" is connected with the !! within the lowest parts of the urban atmosphere. This 

connection is of prime importance to urban climate (Gallo et al., 1995). Both !" and !! 

are the central meteorological parameters in modifying the surface energy balance (SEB) 

and therefore determine both &#$%% and "#$%% that affect the comfort of city dwellers 

(Arnfield, 2003). However, as discussed in Chapter 1, various physical mechanisms 

contributing to the dynamic of both &#$%%  and "#$%%  make it methodologically 

complicated to approximate the relation between the two parameters and therefore limit 

the application of satellite technology in the study of urban climatology (As a parameter, 

!!  has considerably more utility). It is expected that an increased exploration of the 

relationship between &#$%%  and "#$%%  (the &#$%% -"#$%%  relationship) will allow a 

better understanding of the surface-atmosphere interaction, and the application of satellite 

products, as well as the development of other temperature-related studies and applications 

such as numerical weather prediction, urban planning and management. Therefore, there 

remains a scientific need to better identify the causative factors influencing the spatial-
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temporal patterns of both the &#$%  and "#$%  in order to develop a thorough 

understanding of their mechanisms and the relationship between them. In doing so, the 

satellite data could be more confidently used to as a surrogate to weather stations/UMNs 

for temperature-related studies in urban environment. 

This review will firstly provide an introduction to "#$% and &#$%, by emphasizing 

the SEB and influencing factors that largely control or affect their spatial or temporal 

characteristics. This is followed by the demonstrations of progresses that have been made 

in modelling the relationships between !" and !! (the !"-!! relationship) over different 

environments. It then reviews the progress made on the investigation of the &#$%%-

"#$%% relationship. It also makes comment on the modelling concerns and the possibility 

of generalisation of the &#$%%-"#$%% relationship. Finally, informed by the literature 

review, the chapter concludes by introducing the data and methodology used in this 

project. 

2.2 Surface energy balance and UHI 

After sunset, UHI arises from the differences of the cooling rates between urban and 

rural areas that are inherently attributed to the alternation of SEB by urbanisations 

(Rizwan et al., 2008). The roles of !" and !! playing in the SEB provide the physical 

reasons for studying the !"-!! or &#$%%-"#$%% relationships. Herein, this section will 

provide the general information of the surface energy balance and emphasize the roles of 

!" or !! in energy exchanges over urban and rural environment. 

The surface radiant budget at any surface can be described as: 

'∗ = )∗ + +∗ = )↓ − )↑ + +↓ − +↑                                                               Equation (2.1) 
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where '∗, )∗ and +∗ are the net allwave, shortwave and longwave radiation flux density 

(Wm&') with arrows of incoming (↓) and outgoing (↑) from surface, correspondingly. 

During night-time, there is no input of the solar radiation, therefore, the longwave 

radiative exchanges dominant in the surface radiant budget: 

'∗ = +↓ − +↑ = +↓ − [23!(
) + (1 − 2)+↓]                                                   Equation (2.2) 

where 2 is the average emissivity of surface (or emitting body) over longwave radiation 

bands, 3 is the Stefan-Boltzmann constant (≈ 5.67 × 10&*	Wm&'K&)), !( in Kelvin (K) 

is the absolute temperature of the surface. The 2 indicates the radiative efficiency of the 

ground surface. The emitting body is a blackbody (a perfect emitter) if the 2 equals to 1. 

However, most of the objects are imperfect emitters and emissivity values are spectrally 

dependent. Herein, the 2 is assumed to be the average 2 value over a suitable spectral 

range (i.e. longwave radiation bands herein). The 23!() therefore reflects the total energy 

flux density or emittance from the emitting body. The (1 − 2)+↓ refers to the reflected 

longwave radiation that is primarily from the atmosphere during nights. Kirchhoff’s law 

states that the emissivity of an object at a given wavelength equals its ability to absorb 

radiation at the same wavelength. Therefore, we could assume that the average emissivity 

value over the longwave radiation bands (2) equals to the corresponding absorptivity (A). 

Furthermore, the radiant energy conservation states that there are three fates of the 

radiation of a given wavelength when it encounters a medium: (1) absorbed by the 

medium determined by the absorptivity; (2) reflected by the medium determined by the 

reflectivity and (3) passing through the medium determined by the transmissivity. In 

general, the transmissivity of a solid and opaque surface is 0 and hence the reflectivity = 

1 – absorptivity under the a given wavelength. Therefore, the reflected portion of the +↓ 
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from ground surface over the longwave radiation bands can be estimated as (1 − 2)+↓. !" 

is estimated by the radiation emitted from ground surfaces by Stefan-Boltzmann law. It 

is evident that !" is physically distinguished from !( with the latter close to the complete 

urban surface temperature that is the surface temperature considering the total active 

surface area and defined by Voogt and Oke (1997). As previously discussed,	!" is the 

estimated surface temperature taking into account the active surface sensed by the satellite. 

Thereby, to some extent, it still exerts controls on the surface radiant budget. As 

emissivity is between 0 – 1 (usually greater than 0.9 for land surfaces), the reflected 

longwave radiation (i.e. from atmosphere) is usually minor ((1 − 2)+↓ from Equation 2.2) 

(Oke et al., 2017). According to the longwave radiation emitted from the atmosphere (+↓), 

researchers have attempted to estimate it from satellite instruments by applying empirical 

methods, e.g. by using temperature/humidity profile with cloud top heights (Darnell et al., 

1986), relations to radiance from the top of the atmosphere in channels 4 and 5 of the 

AVHRR satellite (Meerkoetter and Grassl, 1984), or based on the relationship with 

surface meteorological parameters (i.e. relative humidity and ambient air temperature) 

(Masiri et al., 2017). However, the standard errors of the estimated +↓ are non-negligible 

(e.g. 10-25 W	m&' from the method proposed by Frouin et al. (1988)) and the technique 

used in the estimation has not been tested over urban areas from most of the studies 

(Pinker, 1990). Although the longwave fluxes could be observed from ground 

measurements (i.e. pyrgeometer), doing so incurs instrument and maintenance costs 

which are not commonly considered for collecting the irradiance data. Some efforts have 

been made to compare the +↓  between urban and rural environments from routine 

measurements (i.e. flux tower). It has been found that +↓ is generally larger in urban areas 

because of the warmer urban boundary layer resulted from the UHI effect. Studies show 
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that the UHI effect significantly triggers the convective processes over urban canopy and 

increase the amount of +↓ from atmosphere received by the urban surface (Estournel et 

al., 1983, Bergeron and Strachan, 2012, Oke et al., 2017). Although this is not the focus 

in this review, the estimation or observation of the +↓  are of great importance in 

constructing the &#$%-"#$% relationship. 

The surface energy balance may be written as: 

'∗ = '+ + ', + '-                                                                                        Equation (2.3) 

where '+ and ', are the turbulent heat fluxes of sensible heat and latent heat (Wm&'), 

respectively, and '-  is the storage heat flux (Wm&'). By considering the 3-D energy 

conservation at larger scales, the surface energy balance for a volume is written as (Oke, 

1988b): 

'∗ + '. = '+ + ', + ∆'/ + ∆'0                                                               Equation (2.4) 

where '.  is the anthropogenic heat flux released within the volume due to human 

activities, ∆'/ is the net heat storage variation by all elements in the volume and ∆'0 is 

the net energy added or subtracted by wind advection which is usually ignored by 

assuming an extensive and relatively homogenous urban surface where the horizontal 

differences are negligible in practice field studies. However, the advection term should 

not be neglected particularly under high wind speed condition when the advection of rural 

air over the city becomes more influential. Herein, there is a direct link between surface 

and air temperature in the estimation of '+  that is generally calculated based on the 

‘resistant’ approach (i.e. aerodynamic resistance that is affected by wind speed, surface 

roughness and atmospheric stability (Oke et al., 2017)) due to the fact that it needs costly 

requirement of instrumentation and careful field implementation for data retrieval. ', is 
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defined by the energy used to vaporise the water mass (e.g. evaporation or condensation) 

and it is largely determined by the water availability. It can also affect surface and air 

temperatures indirectly. In theory, evaporation removes the energy from the surrounding 

environment, leading to the decrease of the surface and air temperature while 

condensation can bring the heat back and warm the surface and air layers. The calculation 

of these fluxes has been reviewed by Oke et al. (2017) and it will not be repeatedly 

introduced here. However, it is still noteworthy that the turbulent heat fluxes ('+ and ',) 

are inherently controlled by the surface and the overlaying air layers, which provides 

theoretical evidence for building the !"-!! or &#$%%-"#$%% relationships. Specifically, 

surface properties (e.g. vegetation and building materials) and atmospheric conditions 

(e.g. wind speed, wind direction, horizontal and vertical thermal structure and humidity 

variability or advection) are the most influential factors in controlling the temporal or 

spatial variations of energy fluxes. The heat storage change (∆'/) is mainly controlled 

by the input of the heat outside (i.e. solar radiation) and inside (indoor human activities 

[i.e. cooking]) the volume, together with the thermal properties of the materials (e.g. heat 

capacity and thermal conductivity). It is intrinsically linked to the surface temperature 

and influences the air temperature ultimately. Regarding '. , heat converted from 

chemical and electrical energy and released to the atmosphere is the fundamental source, 

mainly resulting from human activities. It also has non-negligible effects on modulating 

the interaction between surface and air layers, such as the heat released from fuel, which 

has been found to be able to enhance the turbulent mixing and modify the UHI circulation 

particularly during night-time period (Chen et al., 2009).  

In summary, the SEB is the principle of the near-surface thermal microclimate of a 

site and it is responsible for many urban climate effects (i.e. UHI), which is also 
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influenced by the status of the surface layer and surface properties (e.g. radiative, 

aerodynamic, thermal and moisture etc.). Therefore, it is pertinent to have a good 

understanding of the SEB before studying the UHI, although there are still many 

difficulties or uncertainties to apply the !" in the SEB and to establish the association with 

!!, particularly over urban areas. 

2.3 Canopy heat island 

2.3.1 Air temperature 

Air temperature (!! ) is normally observed from temperature sensors at weather 

stations installed within the urban canopy layer over urban areas or surface layer over 

rural areas. !!  is fundamentally determined by the energy balance via radiation, 

conduction and convection in the air volume surrounding the site (Oke et al., 2017). !! is 

also indirectly influenced by !"  with reference to turbulent heat fluxes between land 

surface and air as discussed in Section 2.2. Meteorological conditions (i.e. atmospheric 

stability), together with the surrounding environments of a site (i.e. site configuration and 

exposure) contribute to the cooling or warming of !! at micro- or local scale. Specifically, 

the causative factors largely determine the size or shape of the source area and are 

responsible for the variations of !!  observed by sensors. In particular, temperature 

sensors are more sensitive to the turbulence status and therefore their exposure is termed 

as turbulent source area that is generally located upwind of the sensor. 

2.3.2 Quantification of canopy air heat island 

It is impossible to measure the urban effects on temperature by performing ideal 

experiments (Lowry, 1977). Nonetheless, efforts have been made to quantify the 
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difference to !! caused by urbanisation, using a pair of weather stations in urban and non-

urban areas (surrounding rural areas) (Kukla et al., 1986). "#$%% is then calculated as the 

difference in !!  between urban and rural sites. There are three fundamental concerns 

related to the calculation of the "#$%%, including (i) the representativity / exposure of 

stations, (ii) the accuracy of the temperature sensors and (iii) the overall configuration of 

the UMN, which are explained in detail below. 

(i) Site exposure 

For cities having limited urban stations, the quantification of the "#$% is often based 

on temperature obtained from a single urban station with comparisons to the reference to 

the closest rural station (Wilby et al., 2011). There are many site factors and criteria 

involved in the configuration of weather stations in any area (both urban and rural) 

(Lowry, 1977). Regarding the urban station, the process is particularly complicated (Oke, 

1999) and there are limited options in most cities due to the difficulties of deployment 

and providing the maintenance in urban areas. Indeed, it can be difficult to assess the 

representation of the local thermal environment from urban stations due to its highly 

heterogeneous surface structure. Although concepts of Urban Climate Zone (Oke et al., 

2006) or Local Climate Zone (Stewart and Oke, 2012) have been developed to classify 

urban areas into zones in terms of similar local environment (e.g. thermal and surface 

structure etc.), further analysis for examining the spatial variations of the "#$%% within 

the UCL is increasingly needed with the increasing prevalence of UMN deployments. 

Issues aren’t limited to the urban reference temperature. Variations in rural temperature 

can also be caused by land cover differences (Oke, 1999), topography and heat advection 

from cities. For example, it was found that the rural thermal variability (amongst four 

rural sites over Oklahoma City, US) was maximised during the nocturnal period (Basara 
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et al., 2008), which is of vital importance for studying UHI. Fiebrich and Crawford (2001) 

has claimed that the rural temperature variability is principally induced by the vegetation 

variability across sites from Oklahoma Mesonet. Furthermore, topographic variability (i.e. 

elevation) can influence the wind from regional to local scale and increase the variance 

of the observed UHI, particularly for studies using the average temperature from all rural 

stations within a defined rural buffer surrounding the city (Hawkins et al., 2004). 

Although the rural reference site is assumed to be largely free from the urban climate 

effects, limited studies tried to concern or exclude the potential contamination of the 

urban heat. Bassett et al. (2016) firstly developed a comparatively simple method for 

estimating the averaged urban heat advection from UMN over a year period. The advected 

urban heat is still hard to be quantified at hourly or daily time scale and further analysis 

is needed. However, the possible impacts of the urban heat advection on the rural 

reference site need to be investigated by considering the background wind conditions. 

Otherwise it is biased for proclaiming the "#$%% by using single/multiple stations as the 

rural reference, particularly for comparisons across cities with various climate 

background (Brazel et al., 2000). 

(ii) Instrument accuracy 

The traditional method for calculating the magnitude/intensity of UHI (UHII) with 

respect to the observational temperature differences between urban and rural areas can 

inevitably introduce some uncertainties in the calculation. The errors (or accuracy) of the 

temperature sensors used in weather stations are usually better than 0.5℃, e.g. accuracy 

of ±0.2℃ for the Met Officer MIDAS station network (Parton, 2015), < ±0.24℃ in 

average after calibrations for the Birmingham Urban Climate Laboratory network (BUCL) 

(Warren et al., 2016), ±0.3℃ for the Oklahoma Micronet network (OKCNET) (Basara 
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et al., 2011) and ±0.5℃ for temperature at 1.5 m above ground level (a.g.l) for Oklahoma 

Mesonet (McPherson et al., 2007) etc. The subtraction method would be likely to double 

the inaccuracies (in maximum) compared to the ones from temperature sensors in 

calculations of the UHII that is normally found to be a few degrees during night time 

(Kolokotroni and Giridharan, 2008, Gaffin et al., 2008, Smith et al., 2011, Chowienczyk 

et al., 2020). These errors are unavoidable from observational data; however, numerical 

models are promising in exploring the "#$%  to avoid these instrument-caused 

uncertainties. 

(iii) Configuration of station network 

Regarding the configuration of weather stations in cities, a dense weather station 

network (i.e. Urban Meteorological Network, UMN) is required because it is impossible 

for a small number of individual stations to resolve variations in meteorology at the city 

scale (Oke, 2007). A review of existing UMNs (Muller et al., 2013a) concluded that a 

standardised protocol was required due to the heterogeneous topography and morphology 

encountered in cities. Turbulence and obstacles existing in the UCL cause a large 

temperature variation between different urban sites and limits the source area for a sensor 

as well. As a result, different interpolation schemes are used to derive the spatial 

distribution of !!  or "#$%%. However, all of the interpolation schemes are ultimately 

restricted by the number and location of the stations. In theory, such approximations 

cannot be used with confidence over urban areas due to its complex structure. Therefore, 

careful implementation of dense UMN is necessary for studying the spatial variations of 

the thermal pattern in cities. This could potentially be facilitated by the increasing use of 

low-cost of non-standard, yet fit for purpose, wireless temperature sensors are becoming 

a new method to retrieve !! with a finer spatial resolution in cities (Warren et al., 2016). 
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2.3.3 Impact of weather and climate on !"#$$ 

2.3.3.1 Atmospheric stability 

The local weather conditions and the related physical mechanisms through which the 

development of the "#$% is driven are well documented (Arnfield, 2003). The UHI is a 

result of the differences of the energy balance between urban and rural areas (Oke and 

Maxwell, 1975), with maximum UHI intensity (UHII) being recorded under clear and 

calm conditions. Hence, one of the causative factors in determining the development of 

the UHI is atmospheric state that is a response to the energy, mass and momentum 

exchanges in urban and its surrounding rural environments (Oke, 1982). When the 

atmosphere is unstable, as is often the case in urban atmosphere comparing to the rural 

background (Lee, 1979), the increased generation rate of the turbulence due to the warmer 

surface air temperature than the air above in an unstable atmosphere can affect the surface 

layer. This then becomes convective, well-mixed with small vertical gradients. In contrast, 

if the air temperature near the surface is colder than that directly above, the atmosphere 

becomes stable with a negative heat flux and turbulence is restrained and reduced, leading 

to the stratification with large vertical gradients (Bardal et al., 2018). The neutral 

atmosphere comes with nearly zero vertical heat flux, since then, vertical mixing in the 

atmosphere is no longer affected by the buoyancy forces (Emeis, 2018). The UHII is 

clearly influenced by atmospheric conditions and research related to UHI under varying 

conditions during the measurement period has previously led to inconclusive results 

(Krüger and Emmanuel, 2013). This has been tackled in previous studies by investigating 

the relationship between meteorological parameters and the "#$%, such as the synoptic 

situation or general weather conditions / mean sea level pressure (Morris and Simmonds, 

2000, Kassomenos, 2003), cloud cover and background wind speed (Unger, 1996, 
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Figuerola and Mazzeo, 1998, Levermore et al., 2018), or thermal rural inversion (Basara 

et al., 2008, Hu et al., 2013, Lauwaet et al., 2016). However, there is scope to improve 

upon these approaches by using a classification scheme for overall atmospheric 

conditions, which could induce uncertainties of the true extent of the UHI (Krüger and 

Emmanuel, 2013). 

2.3.3.2 Seasonal impact 

Seasonal influences can further modulate the thermal differences (i.e. temporally and 

spatially) between urban and non-urban surfaces. Factors underpinning the seasonal 

variation of the development of UHI mainly include: (1) changes in the amount of solar 

radiation received from ground surface; (2) variations of the metabolic activity of 

vegetation (e.g. soil moisture); (3) precipitation; (4) release of anthropogenic heat and (5) 

snow cover. Specifically, solar input (including the length of day) is a surrogate of 

measuring heat storage ('-) within the urban elements and the amount of long-wave 

radiation (+↑) releasing from it during nights, resulted in the higher temperature in urban 

sites. Thereby, the greater "#$%% is usually observed during summer and spring seasons 

when the input of the solar radiation is larger. Meanwhile, these two seasons are 

considered as the growing seasons when the growth of the vegetation is more active, 

contributing to higher soil moisture and lower temperature in rural sites (Deilami et al., 

2018). Several other meteorological patterns, predominantly in summer, are found to be 

the main driving factors for the maximum "#$%%. For instance, the prevailing winds 

blowing from Lake Michigan lead to the greatest "#$%%  during summer nights in 

Chicago (Ackerman, 1985). Chow and Roth (2006) found that higher "#$%% is prevalent 

during monsoon seasons (i.e. summer) in Singapore. In contrast, other found that the 

maximum "#$%% occurs in colder seasons (i.e. autumn and winter) because of the larger 
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controls on the "#$%% comparing to solar input, such as location, local climate and the 

anthropogenic heat released etc. (Kim and Baik, 2002). 

Precipitation modulates the "#$%% through modifying the Bowen ratio (I) that is 

significant to surface climate represented as the ratio of the two turbulent heat fluxes 

('+/',) (Gu and Li, 2018). Some studies have demonstrated that the "#$%% is stronger 

in wetter climate because it enhances the rate of evapotranspiration over rural areas where 

the I  becomes smaller, resulting in lower rural temperature particularly during the 

summer period with largest evapotranspiration rate (Li et al., 2016). However, infiltration 

is likely to be reduced with greater runoff in cities because of the nature of urban structure. 

In general, the role of precipitation in modulating the thermal anomaly is temporary and 

limited. Particularly, Zhao et al. (2014) identified that the nocturnal "#$%%  was not 

correlated with the amount of precipitation at annual mean scales. Gu and Li (2018) 

highlighted that the role of precipitation in the development of the "#$% was sensitive to 

locations (/climates) and seasons. The uncertainties remaining motivate further study 

related to the sensitivity of the UHI to precipitation. 

In conclusion, seasonality brings marked changes to many aspects of a city and its 

surrounding rural areas, e.g. vegetation status, surface moisture and admittance even 

seasonal wind pattern, seasonal variations of precipitation etc. Therefore, cities are not in 

static status and season as a solely controlling variable might be too rough and simple to 

investigate the seasonal pattern of the "#$%. 

2.3.4 Urban form controls on !"#$$ 

Urban form predominantly controls the spatial thermal response (i.e. "#$%%) which 

is generally reflected by the local orography, building structure, amounts of soil, 
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vegetation or green space, distributions of water bodies and the release of anthropogenic 

heat (Oke et al., 2017). The materials used for urban construction, such as asphalt, 

concrete and gravel change the thermal properties resulting in a greater heat capacity than 

vegetated or other natural surfaces in rural areas. As a consequence, urban elements 

absorb larger quantities of shortwave radiation that is then available to be released at night. 

The vegetated rural environment facilitates the evaporation process during the day, 

leading to the enhancement of the heat retention that reduce the heat from incoming solar 

radiation stored in and re-emitted from rural surfaces (Oke, 2002b). Meanwhile, urban 

structure with canyons and dense buildings reduce the efficiency for emitting longwave 

radiation from ground surfaces during night-time, contributing to weaker thermal cooling 

rate and the heat excess comparing to surrounding rural areas (Stone and Rodgers, 2001). 

The heterogeneity of urban surfaces introduces nearly infinite spatial variations of 

the temperature or UHII across cities. Notwithstanding, scientists have endeavoured to 

investigate the spatial pattern of the "#$%% and its associations with all possible physical 

factors related to the urban form so that it can be estimated or modelled in terms of these 

influencing factors rather than using ground stations as many as possible. However, the 

limited number of the weather stations and the complex urban surfaces, leading to the 

sparse and uneven distributions of the stations’ deployment, largely hinder the progress 

for investigating the spatial pattern of the "#$%. As mentioned previously, interpolation 

techniques, such as Kriging (Nguyen et al., 2015) and Inverse distance weighted (IDW) 

(Taskinen et al., 2003) etc., are generally used to compensate for these deficiencies by 

estimating the air temperature, in spite of the evidence showing that they are restricted to 

topography, land surface characteristics and seasonality (Cao et al., 2009, Kuzevicova et 

al., 2016). Satellite observations provide an alternative approach, and there are increasing 
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number of studies attempting to estimate the !! from !" in order to explore the spatial 

pattern of the "#$%, which will be further discussed in Section 2.6. 

Many surface parameters are developed to represent the urban form and are generally 

found to be strongly associated with the "#$%% because of the decisive role of the three-

dimensional (3-D) geometrical configuration in regulating the heat loss in cities (Unger 

et al., 2004), as previously mentioned. Amongst all the surface parameters summarised 

by Deilami et al. (2018), the ones closely representing street geometry are the primary 

concerns for determining the intra-urban variations of "#$%% or !! inside a city (Unger, 

2004). For example, the ratio of building height (H) to the street / canyon width or 

averaged space between buildings (W) demonstrates the density of the buildings with 

regards to their heights. Similarly, the sky view factor (SVF) indicates the radiation 

geometry of a given site by measuring the totally obstructed and free spaces (Oke, 1988a). 

Both are strongly correlated with the UHII because of their associations with the level of 

radiation loss and the efficiency of turbulent heat transfer surrounding the site (e.g. 

Reading, UK (Parry, 1987), Birmingham, UK (Johnson, 1985), Belo Horizonte, Brazil 

(dos Santos et al., 2003), Szeged, Hungary (Unger, 2004) etc). However, it remains more 

appropriate to focus on general characteristics or controls of the intra-urban thermal 

distribution instead of investigating the nearly infinite spatial differences of it in different 

locations within a city. 

Different climate-based classification systems have been developed based on various 

land surface parameters for urban or rural sites at neighborhood-scale, mainly including 

the ones from Chandler (1965), Auer Jr (1978), Ellefsen (1991), Urban Climate Zone 

(UCZ) from Oke et al. (2006) and Local Climate Zone (LCZ) from Stewart and Oke 

(2012). LCZ is explicitly designed to classify heat island field sites, with considerations 
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of various surface properties including, but not limited to geometric and surface cover 

properties (e.g. SVF, aspect ratio, terrain roughness class), thermal, radiative and 

metabolic properties (e.g. albedo, admittance and anthropogenic heat output) (Stewart 

and Oke, 2012). As a result, numerous studies have attempted to conclude the general 

spatial patterns of the "#$%% according to LCZ classifications within or between cities 

(Yang et al., 2020, Chieppa et al., 2018, Kotharkar and Bagade, 2018). Nonetheless, 

intercomparisons of the "#$%%  among cities still need to be treated with caution, 

considering the city-based climatic background that would result in dissimilarities of the 

"#$%% predicted from the same LCZ in different cities (Chieppa et al., 2018). 

In addition, few previous studies pay attention to the impacts of weather / climate on 

the spatial pattern of the "#$%, despite the fact that studies tend to simplify the controls 

of "#$%  by choosing the calm, clear nights when turbulent mixing is weak and the 

atmospheric influences are considered to be minimised during different seasons. In doing 

so, thermal gradients become increasingly large in both horizontal and vertical across the 

city and prominently determined by the local urban environment (Takahashi, 1959, 

Taesler, 1980, Einarsson and Lowe, 1955, Jauregui, 1973). Some recent studies have 

made efforts in quantifying the magnitude of "#$% induced by heat advection (UHA) 

from ground observations and numerical models (Bassett et al., 2016, Bassett et al., 2017, 

Heaviside et al., 2016). Lowry (Lowry, 1977) describes the constituents of a 

meteorological variable (i.e. temperature) at given time and location that is the results of 

mutual contributions from (i) macroclimate of the region (background), (ii) local 

landscape or topography and (iii) human activities and urban effects (i.e. UHI). The 

subtraction method for calculating the "#$%%, to some extent, minimises the effect of 

regional climate. The UHII caused by the local landscape and urban-rural meteorological 
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difference might be submerged in the calculated "#$%%. Therefore, further studies, which 

take these concerns into account, will need to be undertaken. 

2.4 Surface urban heat island 

2.4.1 Land surface temperature 

2.4.1.1 MODIS Satellite instrument  

There now exists a range of satellite instruments available to obtain !" via thermal 

infrared (TIR) channels such as AVHRR, SEVIRI, ASTER, AATSR and MODIS (see 

Tomlinson et al. (2011a) for a comprehensive review). MODIS is a popular instrument 

for temperature-related studies (especially for delivering the time-series of temperatures), 

because of its global coverage, temporal and spatial resolution, and accessible surface 

products with moderate spatial resolution. Specifically, MODIS provides a daily 

maximum of four !" products in a study area (Sohrabinia et al., 2015). Moreover, many 

MODIS products related to urban environmental studies are available, such as land 

surface albedo, emissivity, leaf area index (LAI), land cover, snow, cloud and aerosol 

characteristics. It provides more parameters to be considered for studying the !" -!! 

relationship (Jin and Shepherd, 2005). 

2.4.1.2 Concerns regarding the application of K1 

There are two principal considerations for the application of the satellite-derived land 

surface temperature (!") from TIR data, discussed as below: 

(i) Physical determinants 

In contrast to the surface temperature observed from ground instruments, !"  is 

estimated by the measured radiation from Earth and its atmosphere viewed by the thermal 
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infrared sensors onboard satellites (Li et al., 2013). Fundamentally, satellites have a bird’s 

eye view of ground surface from a sensor that receives the average radiative information 

from the surface for each pixel (after correcting the atmospheric effects). It is thus 

intrinsically determined by the SEB between the surface from every surface element and 

the overlying air temperature above it. Oke et al. (2017) summarised the five surface 

properties that exert exceptionally strong controls on the emitted longwave (including 

reflected or multiple reflected radiations) radiation from the land surface, including the 

geometric, radiative, thermal, moisture and aerodynamic properties. The geometric 

property is primarily considered for urban surfaces (i.e. urban form), as discussed in 

Section 2.3.4. For rural surfaces, it is reflected by the roughness length or the distribution 

of the vegetation (e.g. grass or trees). It fundamentally regulates the reflected longwave 

radiation among surface elements before re-emitting to the atmosphere during nights and 

is difficult to be quantified from ground observations, but progress been made through 

numerical simulation (Harman and Belcher, 2006). The radiative (i.e. albedo and 

emissivity) and thermal (i.e. thermal conductivity and heat capacity etc.) properties are 

mainly referred to the capacity of the land surface to reflect and absorb radiations, 

respectively, intrinsically governed by different types of land surfaces (e.g. materials used 

in artificial surfaces). Regarding the moisture property, it is less important in urban 

environment due to the limited latent heat from the non-vegetated areas. For vegetated 

areas or moist soil surfaces, !" can decrease or increase by experiencing the evaporation 

or condensation processes, correspondingly, which affects the received radiance from 

satellite sensors ultimately. The aerodynamic property is recognised as the interference 

of the turbulence or wind flow by the land surface, basically attributed to the roughness 

length and structure of the surface elements. These five properties infinitely vary across 
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different locations, leading to the extremely complex of !", particularly between urban 

and rural environments. 

(ii) Atmospheric, surface emissivity and cloud effects 

The basic theoretical background with regards to the estimation of the !" from the 

radiative transfer equation (RTE) has been detailed by Wan and Dozier (1989). However, 

the complexities and difficulties of atmospheric and surface emissivity corrections make 

the development of the !" algorithm challenging. The atmospheric corrections include the 

correcting processes of radiance measured by sensors for the effects of atmospheric 

attenuation, emission and reflection (Li et al., 2013). It is difficult to implement mainly 

because it requires a large number of unknown parameters as inputs to the RTE, primarily 

including the absorption coefficient of atmospheric molecules (i.e. water vapour), 

scattering coefficient of aerosols and accurate atmospheric profiles (i.e. water vapour and 

temperature) (Perry and Moran, 1994). The surface emissivity correction requires the 

accurate surface emissivity for different land-surface materials that varies in different 

spectrums and viewing angles, in order to correct the reflected radiance received by 

sensors from surface. The surface emissivity data is normally derived from laboratory 

data. If atmospheric effect is not fully corrected, the surface emissivity at specific range 

of spectra derived from satellite could be different from the laboratory data (Rivard et al., 

1993). Despite the difficulties in relation to the atmospheric and surface emissivity 

corrections, the algorithms developed to estimate !"  have been significantly improved 

over the past several decades. The single-channel and split window methods are the two 

commonly used algorithms to estimate !" with known land surface emissivity data as pre-

requisites (details can be found in Li et al. (2013)). The validation of the estimated !" is 

normally via comparisons with the surface temperature derived from field measurements 
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that is the way to indirectly check the satisfaction of the algorithms and the corresponding 

atmospheric as well as surface emissivity corrections. Although the accuracy of the 

estimated !" is normally better than a few degrees (e.g. 1 K from MODIS (Wan, 2008)), 

the validation sites are commonly chosen over large homogenous areas in order to 

configure the high-accuracy TIR radiometers at multiple locations (e.g. lakes and 

grasslands (Wang et al., 2004, Coll et al., 2005)). The atmospheric and surface emissivity 

effects are therefore known to be limited for both urban and vegetated (rural) areas, 

potentially leading to uncertainties in &#$% studies. 

One of the primary limitations for !"  derived from TIR bands is the influence of 

cloud. !" from TIR is normally only available under clear-sky conditions as TIR does not 

penetrate cloud layers. However, calculations of !" can be contaminated for the pixels 

covered by cirrus clouds since TIR can only partially penetrate cirrus layers (Li et al., 

2013). Taken the MODIS !"  products as an example, although the !"  products were 

filtered by the cloud mask (the grid cell is cloud-free if it has the grid value for !"), Wan 

(2008) found that cloud contamination still exists since the cloud-removing scheme 

insufficiently removes contaminated pixels under both light and modest cloudy 

conditions, especially in the high-altitude areas or areas with high reflectivity (i.e. deserts 

and snow covers). The contaminated pixels usually refer to the temperature at the top of 

clouds representing the extreme low values (Mutiibwa et al., 2015). For example, it has 

been found that the cloud-contaminated pixels from MODIS !" product (V004) can reach 

12 K lower than the non-contaminated ones over Lake Tahoe, US. Although new 

refinements have been applied in the MODIS !"  product in version 005 (V005), the 

validation study effectively still showed the impossibility to remove all cloud-
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contaminated pixels over Lake Tahoe (Wan, 2008). Therefore, cautious need to be taken 

for pixels with extreme low values of !". 

2.4.1.3 Characteristics of K1 over urban environment 

(i) Heterogeneity of urban land surface 

In urban areas, the characteristics of !"  become increasingly complex due to the 

stronger spatial variability of surface characteristics in cities than other natural areas. In 

general, variations of !"  primarily depend on daytime solar insolation and longwave 

radiation emission during night-time (Prigent et al., 2003). Spatial-continued variations 

of the emissivity or albedo caused by the heterogeneity of urban surface (i.e. the diverse 

land use types) affect the radiance for each pixel received by satellite imageries and 

increase the spatial variance of !" . Specifically, the transformation of a surface 

component from soil to more asphalt and concrete contributes to the change of surface 

albedo and emissivity. The range of different materials of the buildings and road surfaces 

in cities result in the diversity of the thermal inertia and heat capacity. These would 

increase the variability of the radiation sensed by a satellite amongst urban pixels. 

Furthermore, variable amounts of vegetation (parks, grasses or trees) and water content 

(rivers or reservoirs) existing in cities result in different interaction processes between 

surface and air temperature during different seasons. 

The impacts of the human activities on the urban SEB are termed as the '. which 

affects the net radiation balance in estimating the !". Although '. is generally considered 

to be small, numerous studies have attempted to quantify the '.  in different cities. 

However, it is still difficult to fully characterise human activities in terms of temperature, 

due to the various sources of '. and the difficulties in quantifying them. In light of the 

aspects discussed above, the heterogeneity of the urban surface contributes to unique 
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spatial patterns of !" for each city and make it harder for comparisons across different 

cities. 

(ii) Three-dimensional (3-D) structure of city 
The 3-D structure of urban elements induces temperature variability partially 

resulting from different local solar zenith angles and satellite zenith angles on facets, 

which leads to thermal anisotropy (Lagouarde et al., 2004). Using the MODIS !" product 

as an example, (Wan, 2007) stated that the maximum of satellite zenith angle from nadir 

is ±65° (Note: the negative sign means satellite viewing the grid from east). Previous 

studies showed that, although the anisotropy effect can be strong for the area with many 

tall buildings during daytime (Hu et al., 2016a), the thermal anisotropy is in generally 

negligible during night-time (Lagouarde et al., 2012). Lagouarde et al. (2012) estimated 

the urban anisotropy effect of around 1℃	based on the differences of surface temperature 

at between off-nadir and nadir from airborne observations obtained in the early or middle 

part of the night (3 nights in autumn and winter conditions) over the city center of 

Toulouse, France. The modelling approach from Lagouarde et al. (2012) also indicated 

that the thermal anisotropy effect could diminish rapidly following sunset and become 

negligible and almost azimuthally independent in the evening. Another study, carried out 

by Hu et al. (2016a) who estimated the anisotropy effect using the !" from MODIS during 

warm months (May to September) for a 10-year period over Chicago and New York, also 

observed about 1℃ temperature bias due to the anisotropy effect at nights. They also 

found small variation of &#$%% as a function of satellite zenith angle that varied by city. 

Both studies are in highly urbanised areas and the effects should reduce further for less 

urbanised areas, however further research is required to investigate the spatial variation 

of the nocturnal anisotropic effect in urban areas, which remains of great importance in 
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the &#$% studies. Areas covered by vegetation may raise more uncertainties because little 

is known about the thermal anisotropy caused by vegetation within urban areas (Dyce 

and Voogt, 2018). 

2.4.2 Quantification of surface urban heat island 

The quantification of &#$%% is the difference of the !" between the urban and rural 

areas. The nature of observed !" provides more options for choosing representative urban 

and rural background locations. There are mainly two approaches to calculate the &#$%% 

for a city from the literature and the key process is the way to define the pixels as urban 

and rural areas (or suburban), respectively. Some studies classified pixels as urban and 

rural areas for a city by using land-use type products or urban fraction data from satellite 

instrument or land classification from ordnance survey (Peng et al., 2011, Zhou et al., 

2014, Schwarz et al., 2011, Clinton and Gong, 2013). In doing so, !" for urban and rural 

areas are generally calculated as the average temperature from all urban and rural pixels 

correspondingly. This method thus depends on the accuracy of the underpinning land-use 

product or other data used to define urban and rural pixels. For example, Martilli et al. 

(2020) has pointed out that the SEDAC’s Global Rural-Urban Mapping project 

(Schneider et al., 2009) is known for its overestimation of urban areas but it is still often 

used as reference to define urban and rural areas in the calculation of &#$%% by other 

studies (e.g. (Manoli et al., 2019)). Alternatively, single pixel (i.e. pixels closest to 

weather stations) (Schwarz et al., 2012, Tomlinson et al., 2012) or pixels within a buffer 

around a station or city centre are used to define the !" from cities, particularly for studies 

attempting to examine the relationship between !" and !! or between &#$%% and "#$%%. 

For example, urban !"  is averaged from the pixels within an interval of 30 m buffers 
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(3 × 3, 4 × 4…13 × 13) in city centre (data: Landsat-8 OLI/TIRS with 30 m spatial 

resolution) to build up the relationship with impervious surface density and green space 

density (Estoque et al., 2017). Careful investigations of the cloud conditions from surface 

stations are needed because limited pixels are used which may increase the uncertainties 

of the estimated !". 

2.4.3 Impact of weather or climate on %"#$$ 

As per the "#$%, remarkably few studies have been undertaken to examining the 

weather influences on &#$%% (note: estimated from satellite observations). This is also 

one of the key research gaps identified in this thesis. A possible explanation for this might 

be that &#$%% is less affected by the weather but inherently determined by land surface 

characteristics, comparing to the "#$%%. More importantly, the relatively low temporal 

resolution, together with the great chance of cloud effects limits the availability of the 

satellite observations, which inevitably restricts the corresponding research progress. 

Consequently, previous studies have been focusing on studying the seasonal variations of 

the &#$%%. The underlying physical mechanisms of its seasonal patterns can be largely 

explained by the regional weather patterns or meteorological conditions (i.e. driven by 

the weather patterns) in surface layer, discussed as follows. 

Regional weather patterns are generally season dependent, which becomes one of the 

driving factors modulating the seasonal patterns of the &#$%%. It has been found that 

regional weather patterns can induce heatwaves because of the favourable high-pressure 

system dominating particularly during summer in some cities. For examples, a strong 

positive relation between heatwaves, caused by atmospheric blocking that is a large-scale 

atmospheric dynamic feature usually identified in the mid-troposphere, and &#$%% was 
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found during summer in south-eastern US (Dong et al., 2018). Likewise, the predominant 

anticyclonic weather system associated with the heatwave events during summer was 

found to govern the nocturnal &#$%% in Cluj-Napoca city, Romania (Herbel et al., 2018). 

In addition, the regional weather pattern determines the seasonal changes of the surface 

properties that is associated with the seasonal patterns of the &#$%% . The surface 

properties are largely reflected by the ground heat fluxes ('-) and the soil moisture. Soil 

moisture is normally increased during the wet winters in many mid-latitude cities. It could 

induce a larger soil thermal admittance, leading to the weaker nocturnal surface cooling 

and reduce the &#$%% consequently (Oke et al., 2017). One such example is that the 

&#$%% (from Landsat 8 satellite) is found to be positively correlated with soil moisture, 

particularly during dry seasons (spring and winter) in Toluca, Mexico (Rivera et al., 2017). 

However, there is no consensus with respect to the seasonal patterns of the &#$%% that 

could vary in cities with different geographical locations. For instance, greater &#$%% in 

winter (comparing to summer) is found in Casablanca, Morocco, resulted from its 

geographical location at the coast that alters the local weather pattern by increasing the 

wind speed from strong see breeze during summer (Bahi et al., 2016b). In contrast, higher 

&#$%%  are found during spring and summer in Brazil, explained by the cycle of 

precipitation and controls the robustness of the vegetation due to the weather patterns 

(Alves, 2016). Further research is needed in order to generalise or conclude the seasonal 

patterns of the &#$%% across cities, which is necessary for a better understanding of the 

physical mechanisms of it. 

Regarding the influence of atmospheric conditions in surface layer on &#$%%, cloud 

amount, input of solar radiation (from previous day), wind speed, relative humidity are 

the meteorological parameters primarily considered. As nearly all estimates of &#$%% are 
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under cloudless conditions, it is quite hard to explore the impact of cloud on the variation 

of &#$%% . However, the UHI derived from surface temperature (e.g. from surface 

temperature sensors (Culbertson, 2001)) is supposed to be reduced in cloudy skies due to 

the greater loss of longwave radiation from surface during night-time. The input of 

previous-day solar radiation is directly related to the ground storage heat and the amount 

of emitted longwave radiation and therefore positively correlated with the &#$%%. It is 

often highlighted by studies that found greater &#$%% during summer period (Ward et al., 

2016) It has been acknowledged that the influence of wind speed on &#$%% has not been 

thoroughly scrutinised (Oke et al., 2017). However, some studies have attempted to 

explore the role of the rural background atmospheric stability in surface layer on the 

development of &#$%%. The Pasquill-Gifford (P-G) stability classification scheme that 

considers wind speed, solar input, and cloud amount to define stability classes from 

unstable to neutral and stable (Pasquill and Smith, 1983) was typically used in these 

studies. Nocturnal &#$%%  was found to be intensified when the stability class shifts 

towards stable with low wind speed and clear skies (Tomlinson et al., 2012, Azevedo et 

al., 2016). This is a consequential attempt for examining the impacts of atmospheric 

stability with consideration of readily retrieved atmospheric parameters on the &#$%%, 

despite the fact that the studies mentioned above focused on summer period only with 

limited satellite dataand further study is needed. &#$%% is intended to be reduced with 

high humidity, owing to the weaker radiative cooling difference as a result of the smaller 

urban-rural differences of the humidity (Oke et al., 2017). Further research is needed for 

investigating the atmospheric impacts on the development of &#$%%. 
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2.4.4 Urban form controls on %"#$$ 

Contrary to the "#$%%, the role of the urban structure on the intra-urban variance of 

the &#$%% is investigated much easily because of the spatially continuous data format of 

satellite products. Urban structure can be quantified or represented by more spatial or 

non-spatial continuous parameters, e.g. vegetation fraction, Normalised Difference 

Vegetation Index (NDVI), impervious surface area (ISA), building fraction (BF), map of 

anthropogenic heat release, SVF, H/W ratio etc. (Unger, 2004). The spatial pattern of the 

&#$%%  is fundamentally determined by the urban-rural differences of the surface 

properties that control the SEB and the variations of !", as discussed in Section 2.4.1. 

Thus, parameters associated to the surface properties are supposed to have significant 

relationship with the &#$%%. For instance, &#$%% demonstrates good agreement with the 

differences in vegetation fraction from MODIS products between urban and rural areas 

(Cui and De Foy, 2012). It is evident that the vegetation fraction is largely reflected the 

surface albedo, moisture and even ISA indirectly. &#$% is also found to be significantly 

correlated with impervious surface area (%) and less correlated with NDBI (normalised 

difference built-up index) that is a rough measure of the BF in terms of differences of the 

surface reflection in middle and thermal infrared bands from satellite and it is season 

dependent (Rivera et al., 2017). Regarding the NDVI, &#$%% is negatively correlated 

with vegetation amount or the greenness that is usually represented by the NDVI product 

from satellite. It is evident that this correlation depends upon seasonality because of the 

seasonal-dependent latent heat processes dominantly affected by the vegetation and 

moisture (Yuan and Bauer, 2007). Although the potential seasonal influences are 

considered, contrasting relations between &#$%% and NDVI were stated from previous 

studies. It was found that this relationship is less significant during dry summer in semi-
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arid city of Erbil, Iraq (Rasul et al., 2016), as a result of the decrease of NDVI that limits 

the range of one of the variables in the correlation analysis. However, &#$%%  was 

inversely correlated with the NDVI during winter and it was largely attributed by the 

greater soil moisture in urban areas resulted from the irrigation of urban green space but 

lower soil moisture in rural areas where the agriculture is rain-fed rather than irrigated in 

Erbil. Likewise, many studies have made efforts to build up the relationship between SVF 

or H/W ratio to the &#$%% and Unger (2004) has reviewed most of these studies. The 

increasing release of the anthropogenic heat because of  energy consumption (i.e. air 

conditioning and heaters), plays an important role for the intensification of &#$%%  in 

different cities, such as Beijing, China (Yao et al., 2017) and Nagoya, Japan (Kato and 

Yamaguchi, 2005). 

However, the same problem exists that the empirical relationships derived from the 

past literature vary time by time and city by city. This largely hinders the process of w 

generalising the intra-urban variation of the &#$%% globally. Here, the concept of LCZ 

has again helped to make further progress in this field where the intra-urban pattern of 

the &#$%% has been tried to be analysed by considering the LCZs across cities, similarly 

to the "#$%%. It is generally found that &#$%% differs significantly between LCZs, which 

provides confidence in using LCZ to discriminate the intra-urban thermal differences 

quantified by !"  (Dian et al., 2020, Geletic et al., 2019). Seasonal factors are also 

considered in these studies due to the fact that local environment is seasonal-dependent. 

According to the intercomparison of the LCZ across different cities, few attempts have 

been made. Nonetheless, this intercomparison should not only consider the LCZ but also 

the regional/local climate background. Chieppa et al. (2018) highlighted that the LCZ 

systems do not predict the UHI equally in spite of comparing between cities with similar 
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background climates. Therefore, it is of critical importance to separate the local climate 

effect when doing an intercomparison of &#$%% across cities. 

2.5 Modelling of the !!-!" relationship 

A review of previous efforts in modelling the !"-!! relationship is now discussed. 

The reason for reviewing the !"-!! relationship from the literature is mainly because of 

the fact that the &#$%%-"#$%% relationship is fundamentally determined by the linkage 

between !" and !! (from the definition). However, researchers have paid most attention 

to the !" - !!  relationship by using empirical or physical modelling over different 

environments. It is thereby indispensable to summarise and criticise the methods and 

findings with respect to the !" -!!  relationship before investigating the &#$%%-"#$%% 

relationship. From the literature, the progress made to the relationship between surface 

(not from satellite) and air temperature starts from the similarity theory (Section 2.5.1), 

subsequently leading to empirical modelling regarding the !"-!!  relationship (Section 

2.5.2) and numerical models (Section 2.5.3) to simulate the air and surface temperature. 

2.5.1 Surface layer similarity theory and parameterisation (MOST) 

As regards the relationship between the surface temperature and the air temperature 

above the roughness elements in the atmospheric surface layer, applicability of the 

Monin-Obukhov similarity theory (MOST) has been well justified over smooth surfaces 

(Foken, 2006). MOST (Monin and Obukhov, 1954) is developed by A.S Monin and A.M. 

Obukhov based on the similarity of the dimension-less wind gradient (M234∗N
546
53̅ ) and 

temperature gradient (M234∗N
586
53̅) comparing to the dimensionless length scale (O/+) within 
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the inertial sublayer. Their relationships can be written with universal functions (A9 and 

A') (Foken, 2006): 

M
23
4∗
N
546
53 = A9(O/+)                                                                                         Equation (2.5) 

M
23
4∗
N
586
53 = A'(O/+)                                                                                        Equation (2.6) 

where P is the von Karman constant, z is height, Q∗ is friction velocity, Q̅ and !S are mean 

velocity and temperature at specific z, respectively, and + is Obukhov length that is a 

function of Q∗ , T /!(  (T : gravity acceleration, !( : surface temperature [note: it is 

distinguished from the satellite-sensed land surface temperature]), two assumed constant 

variables – shear stress (as a function of air density [U], fluctuation of vertical [V:] and 

horizontal [Q:] wind velocity) and V:!:SSSSSS (!:: fluctuation of temperature), to describe the 

atmospheric turbulence and stability above the roughness sublayer. In addition, many 

different universal functions (A9 and A') have been developed based on experiments in 

various locations, e.g. Businger et al. (1971) from 1968 KANSAS experiment (Izumi, 

1971), which are introduced in Foken (2006). 

As introduced above, MOST can address the vertical profile of !!  above small 

roughness surface (constant-flux layer), such as barren land, grassland over rural areas. 

As a result, many land surface schemes and models based on the MOST framework have 

been developed (Kimura, 1989). The MOST formulations in these studies are taken as a 

principle for the accuracy inspection due to the limitation for data acquisition prepared 

for land surface schemes. The Advanced Research Weather Research and Forecasting 

(WRF-ARW) mesoscale model has two surface layer parameterisations (MM5-similarity 

(Paulson, 1970) and Eta-similarity schemes (Janjic, 1996) based on MOST. Hari Prasad 
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et al. (2016) investigated the performance of these two surface-layer parameterisations 

with qualitative and quantitative comparisons of eight observation variables such as 

friction velocity, sensible and latent heat fluxes using eight-day data including four 

seasons over tropical sites in southeast India. In this study, MOST was taken as a 

fundamental theory in both mesoscale model and actual observation (Eddy correlation 

method). More typically, MOST is used to calculate sensible heat and momentum fluxes 

or drag coefficient etc. in terms of measured temperature and wind data by ground 

observations. 

However, to apply MOST to link urban canopy air temperatures and satellite 

products of land skin temperatures for an urban surface is extremely difficult, despite 

MOST being well developed to study mean wind flow and temperature profile regarding 

to different heights within the inertial sublayer. Two issues relating to (i) satellite-sensed 

land surface temperature (!") and (ii) the applicability of MOST inside the UCL, might 

be the key concerns to apply MOST to study the !"-!! relationship over urban areas. 

(i) The issue of satellite skin temperature (K1) 

There are two main issues regarding the application of the !" in MOST, including (1) 

!" is distinguished from the surface temperature used in MOST and (2) the accuracy of 

the !" is insufficient and !" is hard to be used to estimate the temperature profile in urban 

areas. These two issues are further discussed as follows: 

Ideally, !"  may then be approximated as !(  (surface temperature) in the MOST-

derived temperature profile of !!  within the inertial sublayer (if exists, above the 

roughness sublayer), but this !" over urban areas is still much different from the surface 

temperature that is described as the temperature at or near ground surface used in the 
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estimated temperature profile from MOST. As previously discussed, for an urban area, 

!" is derived based on the combined radiation emissions from the top of ground materials 

(e.g. top of roof or tree, wall or ground surface etc.). It is therefore not perfectly used to 

represent the surface temperature in MOST over urban areas. This is one of the difficulties 

for applying MOST based on satellite-sensed land surface temperature over urban areas. 

Furthermore, although !" is widely used for some applications, the accuracy of !" is 

still a concern for other applications, such as assessment of MOST, which involves the 

vertical temperature gradient (Equation (2.6)), 5853 ≈
8"(3)&8#

3 , ideally requires a high 

accuracy of !"	due to the fact the vertical variation of the temperature near the urban 

ground surface, !!(O) − !", is generally within one degree and occasionally a few degrees 

(Kanda et al., 2005, Kanda et al., 2006), even though the biases from cloud cover are not 

excluded (e.g. by selecting clear-sky conditions). As an example, a comparison with on-

site longwave radiation data from the BUBBLE campaign at Basel showed that MODIS 

night-time radiation data had an error of 3-5%, which corresponds to an error of about 

2.2-3.7 K for the !". Among multiple factors causing the errors, contamination from the 

atmospheric irradiance can be significant and inaccurate atmospheric corrections may 

lead to an error of a few degrees even for a simple land-use type such as bare soil (Dash 

et al., 2002). However, removal of the contamination via atmospheric correction is not a 

trivial task without simultaneous atmospheric profile measurements (Li et al., 2013). A 

very careful use of the NCEP profiles of humidity and temperature to correct MODIS 

Terra product for relatively homogeneous rural ground would still bear an error of ±1 K 

(Petitcolin and Vermote, 2002). Overall, the accuracy of the satellite products is another 

concern for using !" to explore the MOST application. 
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(ii) The issue of applicability of MOST within the roughness sublayer or UCL 

Even if the temperature data is accurately collected, it is common knowledge that 

MOST is only valid in inertial sublayer that is the upper part of surface layer (Lumley 

and Panofsky, 1964, Monin and Yaglom, 1999, Wyngaard, 2010). The lower limit of the 

inertial sublayer is typically two to five times the height of buildings, approximately 25 

– 250 metres. The upper limit of it is usually taken as the 10% of the boundary-layer 

height. Over the homogenous land surface (e.g. rural areas), the horizontal variations and 

the vertical variations of turbulent fluxes are small (< 5%) in the inertial sublayer (Oke et 

al., 2017), therefore, it is also called the constant-flux layer as mentioned earlier in this 

section. In doing so, the logarithmic wind profile (Prandtl, 1925) that is one of the 

fundamental findings as a basis of MOST is applicable in the inertial sublayer. The 

logarithmic wind profile describes the semi-empirical relationship between the vertical 

distribution of wind speed and atmospheric stability in surface layer (Oke, 2002b). The 

height of the air temperature discussed herein is within the UCL (usually taken 2 m above 

ground level) that is the lowest part of the roughness sublayer where the logarithm wind 

profile is no longer valid. This is largely due to the fact that surface-wake generation and 

interactions are predominant, and the flow is extremely heterogenous attributed by the 

complicated geometric nature of the roughness elements over urban surfaces (Basu and 

Lacser, 2017). Even within the upper part of the roughness sublayer (above UCL), the 

effects of the roughness elements over ground surface (e.g. vegetated surface) on the 

applicability of the MOST cannot be neglected, which was firstly described in detail by 

Raupach et al. (1980) in a wind tunnel analysis. In summary, for urban area or vegetated 

areas, the roughness sublayer can be tens of meters thick and the inertial sublayer is often 

very shallow or not existent (Raupach et al., 1980). The temperature or wind profiles then 
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will not follow the ones stated in MOST anymore. Consequently, the application of 

MOST in the !"-!! relationship is hardly possible and to the best of our knowledge, no 

previous study is found with respect to this investigation. 

2.5.2 Empirical modelling 

In contrast to MOST, the empirical modelling approach based on regression 

techniques is more broadly applied in the investigation of the !"-!! relationship. Data 

required for this approach is more readily achievable and the results are more 

straightforward. It is evident that the !" - !!  relationship becomes increasingly 

complicated from rural non-canopy, vegetation canopy and urban canopy environments, 

which will be further discussed respectively as below. It should be noted that there is no 

standard height for measuring the !!  over rural non-canopy and vegetation canopy 

environments. The height of the measurement depends on the purpose for each individual 

analysis. 

2.5.2.1 Rural non-canopy environment 

Rural non-canopy environment is herein referred to the land surface without 

vegetation (such as bare soil, sand, rock or ice) or the vegetated areas with average 

vegetation height lower than a weather station where !! is measured (such as grasslands 

or shrublands). Strong correlation between the !" from MODIS products and minimum 

!! from 28 weather stations at nighttime was found over different ecosystems (from bare 

soil to forest) in Africa (Vancutsem et al., 2010). It was found that the differences between 

!" and !! (the !"- !! differences) were up to 6℃ over barren land compared with 0.6℃ 

over the vegetated areas. It should be noted that the transpiration of the existing vegetation 

often narrows the differences between surface and air temperatures. Moreover, the !"- !! 
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correlation is higher in bare soil and shrubland environment compared to grassland. 

Overall, the !"- !! relationship is much more straightforward with larger discrepancy but 

higher correlation over barren land environment. Nonetheless, there are few studies 

focused on the !"- !! relationship over barren land at micro-scale or pixel-scale because 

of the mature development of the MOST applied in bare soil or low vegetation 

environment. 

2.5.2.2 Vegetation canopy environment 

In the vegetation canopy environment (average height of vegetation taller than the 

screen height of weather stations), where !! is referred to as understory temperature or 

under canopy temperature, the !" -!!  relationship becomes complicated. Specifically, 

Hanes and Schwartz (2011) showed a non-linear relationship between the daily maximum 

!" derived from MODIS and the daily maximum !! derived from in situ observations at 

1.5 m and 30 m levels above ground. The non-linear relationship was attributed to the 

seasonal variations in Chequamegon National forest, Wisconsin, USA. Moreover, the !"- 

!! discrepancy decreased with the increase of the vegetation density in this study. Laskin 

et al. (2016) improved the prediction of understory temperature (1 m above ground level) 

from MODIS !" data over the forest areas in Alberta, Canada, particularly during daytime 

by using the top-ranked model based on the multivariate statistical approach. The 

predictors include more than 18 forest metrics derived from both conventional inventory 

and LiDAR data. Canopy closure and tree height data played an important role to estimate 

the understory temperature in this study. Similarly, Laskin et al. (2017) estimated the 

understory temperature using !" products from MODIS by means of generalised linear 

models (!" as predictor for estimating the !!) over the same study area. They declared 

that there is no previous research on the estimation of understory temperature using 
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MODIS temperature products only. However, their studies still cannot draw a confirmed 

relationship over forest environments due to the lack of physical representations. In forest 

environments,	!" can be a combination of ground surface temperature and the surface 

temperature at the top of trees in sparse forest; thus !" depends on the distributions and 

features of vegetation. Meanwhile, temperature differences between above and below 

canopy can reach −	10℃ under stable conditions and the differences depend on forest 

stand type, canopy height and closure etc. (Flerchinger et al., 2015). In conclusion, the 

!"-!!  relationship is more complex and it empirical relationship is more variant over 

different vegetated areas. 

2.5.2.3 Urban canopy environment 

The !"-!! relationship is even more complicated in urban canopy environments and 

more influencing factors need to be considered for empirical statistical modelling. 

Previous studies focused on the !"-!! relationship are generally based on regression 

models over urban areas. For example, the night-time !"-!! relationship was documented 

with strong correlations (W') in linear regression models from some previous studies 

(Table 2.1): W'  value of 0.60  was demonstrated based on the data from stations in 

Birmingham, UK over summer 2013 (Azevedo et al., 2016). Stronger relationship (W' =

0.92 ) between the !"  and the minimum !!  at night-time was found in Casablanca, 

Morocco, from 2011 to 2012 (Bahi et al., 2016a). The higher correlation of the !"-!! 

relationship is potentially due to the year-around data used by Bahi et al. (2016a), 

comparing to Azevedo et al. (2016) who considered summer cases only. In reality, a linear 

!"-!!  relationship is likely to be significant with high W'  values because of the large 

variability of regional-scale background temperature and/or seasonal signals (note: the 
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“regional-scale” here means the scales larger than the urban area of interest). Specifically, 

differences between !" and !! can be only few degrees comparing to the range of !" and 

!! across seasons during a year. This can result in a much greater magnitude than several 

degrees typically for &#$%% or for "#$%%, taken as the surface and air temperature after 

removing the seasonal effects, to some extent. For example, Sheng et al. (2017) found the 

variation of the !" - !!  range for a station Y  ( !"  minus !! , Δ!"&!
(=) ) between 

−1.12℃	~	12.92℃ (14.04℃ differences in maximum) while the range of !" and !! are 

30℃ and 31℃ respectively. Indeed, this large seasonal variation of temperature is the 

dominant signal in the !" -!!  regression models of these previous studies, which can 

increase the R2 values for these linear relationships.  

Overall, the !"-!! relationship is still not fully understood and varies with locations and 

study periods, despite the significant correlation between these two temperatures found 

in the literature. 
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Table 2. 1 Selected previous studies on the !!-!" relationship in urban areas. NB: a.g.l, above ground level. 

Study Study area and 
period !!	and	!"	Data	

Additional 
considered 
parameters 

Temperature range (at night-
time)	 Derived (# (Nighttime)	 Key findings 

(Bahi et al., 2016b)  Casablanca, 
Morocco; 2011-2012 

!!: MODIS Terra 
(MOD11A1) 
 !": 9 weather 
stations (2 m a.g.l) 

 Day length, seasons, 
day/night Not available 

!!~!"(%&'): 0.92 
 
!!~!"(%")): 0.83 

(a) Significant !!-!" 
correlation at 
nighttime; 
(b) Stronger 
relationship by 
separating data in 
summer and winter 

(Azevedo et al., 
2016) 

Birmingham, UK; 
Summer (June, July, 
August), 2013 

!!: MODIS Aqua 
(MYD11A1) 
!": BUCL: 82 air 
temperature sensors 
and 25 automatic 
weather stations (3 m 
a.g.l)  

Day/night, land use 
types 

!":	11℃	~	14℃ 
!! ∶ 	8℃	~	12℃ 
Δ!!*"(&) :	− 0.7℃	~	3.2℃ 

!!~!":	0.6 
 

!!~!" ∶ 0.8	~	0.99	
(:;<=>?	:@A@;B<) 

(a) Strong relationships 
in both day and night 
at neighbourhood scale 
but negligible 
relationship at city 
scale; 
(b) Stronger 
relationship at 
nighttime; 
(c)  !! and !" are more 
dependent on land 
surface characteristics 
and advection, 
respectively  

(Tomlinson et al., 
2012) 

Birmingham, UK; 
Summer (June, July, 
August), 2010 

!!: MODIS Aqua 
(MYD11A1) 
!": 28 sites with two 
iButtons for each site 
 

Land cover data from 
MODIS 

!":	12℃	~	22℃ 
!! ∶ 	9℃	~	12℃ 
Δ!!*"(&) :	1.67℃	~	6.39℃ 

!!~!" ∶ 0.51	~	0.95	
(:;<=>?	:@A@;B<) 

(a) No clear 
relationship at city 
scale; 
(b) Strong relationship 
at neighbourhood scale 
and the relationship 
varied between each 
station 



53 
 

Numerous studies have focused on the influences induced by advection (Nichol et 

al., 2009, Bassett et al., 2016, Bassett et al., 2017, Shiflett et al., 2017) atmospheric 

stability (Azevedo et al., 2016), land use types (Tomlinson et al., 2012, Xu and Liu, 2015), 

and seasonal variation (Sheng et al., 2017, Bahi et al., 2016a) during daytime and night-

time conditions. It is expected that the !!-!" relationship is more significant during night-

time due to the negligible impacts from solar radiation in urban environments (Sheng et 

al., 2017). Moreover, this study showed that !" is more affected by different land covers 

at night and the correlation between !!  and !"  is improved during night-time when 

microscale advection is reduced. Likewise, Tomlinson et al. (2012) also presented the !!-

!"  relationship using Aqua MODIS observations and paired iButton air temperature 

loggers from 28 sites, with consideration of land use types across the city of Birmingham, 

UK. The impact of atmospheric stability on the UHI development was highlighted in their 

study. Azevedo et al. (2016) investigated the !!-!" relationship from Aqua MODIS and 

a UMN for both daytime and night-time in Birmingham, UK. In this study, higher 

correlations were found at night-time. However, the relationship became negligible at the 

neighborhood scale (when the focus shifted to each weather station rather than the whole 

city). It was thereby suggested that the !!-!" relationship varies spatially over urban areas 

(e.g. different LCZs). Meanwhile, this study pointed out that the !!  and !"  are more 

dependent on land surface characteristics and advection respectively. 

Limited studies have investigated the impacts of different seasons on the !! -!" 

relationship in urban environment. Stronger !!-!" relationship was found in summer and 

winter in Casablanca, Morocco (Bahi et al., 2016a), while the weaker relationship was 

found during hot seasons in four cities, Zhejiang province, China (Sheng et al., 2017). 

Overall, the literature provides convincing findings regarding the causative factors 
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affecting the !!-!" relationship, which is of vital importance to future research. However, 

less clear interpretation (e.g. physical explanations) existed in the discussed studies, and 

the complicated urban environments and limited studies induce different results and the 

ambiguous !!-!" relationship in different cities. 

Consideration of the SEB is a typical representation of the physical processes for 

surface-air temperature modelling over urban environments. For instance, Hou et al. 

(2013) proposed a model for estimating !" based on the SEB and applied the approach in 

Beijing, China, where the model estimation of mean temperature had an error of 2.2℃ at 

midnight. This model used the following data: !!  from Landsat TM, the aerodynamic 

resistance from the roughness length data, the Bowen coefficient from NDVI, normalised 

difference water index (NDWI), and the %# from MODIS. Likewise, Sun et al. (2005) 

calculated the !"  based on SEB using the !!  from MODIS, vegetation index and a 

resistance over the north China Plain. Comparing all the studies without the consideration 

of physical processes, the methods used are generally universal and have the potential to 

be implemented elsewhere where in situ observations exist. 

In summary, the !!-!" relationship becomes more complex and uncertain for urban 

areas. Previous studies focused on the rural non-canopy and vegetation canopy 

environments have made a contribution to the understanding of the !!-!" relationship in 

urban environments, in according to the development of the data retrieval and analysis 

methods and additional considerations of different influencing factors. However, the 

empirical statistical approach is yet to derive a satisfactory !!-!" relationship at this stage 

although there is a lack of representation of physical mechanism for land-atmosphere 

interaction. However, there is no doubt that the !!-!" correlation is clearly presented by 
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this method based on multiple specific equations to derive !"	from !! . Therefore, the 

empirical statistical approach may still be adopted to demonstrate the characteristics of 

the !!-!" relationship on the case-by-case basis. More importantly, the large range of the 

daily or seasonal variation of temperature present studies from investigating the real 

differences between the !! and !" that can be submerged in it. Further research is needed 

to minimise this effect in the !! -!"  relationship, e.g. investigating '()** - +()** 

relationship instead which will be further discussed in Section 2.6. 

2.5.3 Numerical modelling 

The interactions between the land surface and atmosphere inside the UBL is 

ultimately non-linear and means that the !!-!" relationship will never be fully explained 

by empirical statistical methods. Numerical modelling provides an alternative process-

based approach on the basis of MOST and SEB parameterisations for the atmospheric 

boundary layer, possibly coupled with flow dynamics (Best et al., 2006). The energy 

transfer via heat fluxes between surface and atmosphere by incorporating temperatures 

(modelled surface and air temperature) can be estimated in numerical models. It would 

therefore be beneficial to provide evidence relating to the physical processes when 

studying the !!-!" relationship. 

Numerical models generally incorporate both atmospheric models and urban canopy 

models (UCM) over urban areas. As many of the atmospheric models do not have enough 

spatial resolution to account for the change of dynamics and thermodynamics by urban 

structures (Boybeyi, 2000) urban canopy schemes (i.e. UCM) have been developed to 

approximate the impacts from urban elements. In general, an atmospheric model can 

provide the upper boundary conditions (such as air temperature, humidity and wind 
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velocity) to urban schemes in the UCL. Meanwhile, urban schemes can provide the 

turbulent heat, momentum, moisture fluxes within the UCL to atmospheric models. To a 

large extent, UCMs are used to explicitly provide detailed information of urban 

morphology and energy exchanges within UCL, and to be connected to an atmospheric 

model to represent the interaction between land surface and atmosphere in urban 

environments. Various parameterisations of urban environments can be grouped into two 

primary categories (Grimmond et al., 2010)— single layer urban canopy model 

(SLUCM) and multi-layer urban canopy model (MLUCM). In general, SLUCM has the 

advantage of simplicity and transferability whereas MLUCM has the detail to represent 

the urban heterogeneities even at street level. 

However, numerical models are not designed to unravel the !! -!"  relationship 

because of the distinct definitions of the modelled air (!",%) and surface temperature 

(!!,% ) from the observations (i.e. !!  and !" ). Using SLUCM (Masson, 2000) as an 

example, !! can be different from !!,% because !! is taken as the integrated temperature 

from all the urban components (such as roof, road, and wall) as well as non-urban 

components (such as vegetation and bare land) in each grid cell. In order to compare with 

the !!, it is necessary to incorporate the contributions from non-urban components. The 

calculated !!,%  considers a simpler constitution of the urban elements in a grid. For 

example, !!,%  is an integrated temperature according to the percentage of urban 

(considering surface temperatures of wall, roof and ground which are modelled as 

prognostic variables based on energy balance equations) and non-urban areas. !",%  in 

SLUCMs is a diagnostic variable calculated based on !!,%, representing the average air 

temperature of the urban surface, with consideration of the total heat flux and interaction 

with atmospheric model. Consequently, there should be a difference between the !" and 
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!",%  since !"  is the air temperature at a specific height (i.e. 2 m a.g.l) whereas !",% 

represents the canyon-averaged temperature. Therefore, a case can be made that 

numerical models are best used as a secondary method to provide physical evidences to 

study the empirical !!-!" relationship. 

2.6 Modelling of the !"#$$-%"#$$ relationship 

As discussed in Section 2.5.2.3, linear models based on the !! and !" are insufficient 

to reveal the ‘true’ !!-!" relationship and of limited use to estimate +()** from !!.The 

smaller variability of the differences between !!  and !"  due to different atmospheric 

conditions or land surface properties would be submerged in the seasonal variability (or 

regional-scale background temperature variability) and the physical processes 

determining the !!-!" relationship would become unclear and difficult to investigate. In 

contrast, a direct investigation of the '()**-+()** relationship is expected to minimise 

the impact of background temperature variability and/or seasonal signals, which are 

subsequently cancelled out in their definitions (i.e. temperature differences between 

urban and rural areas). Meanwhile, the exploration of the '()**-+()** relationship is 

more directly linked to the urban effects on the local climate. More importantly, the 

generalisation of the '()**-+()** relationship would become more promising across 

different cities. 

Table 2.2 lists the previous studies that focused on the comparison of the differences 

between '()**  and +()**  or building the '()** - 	+()**  relationship based on 

regression models during the night-time period. Due to the ad-hoc distribution of weather 

stations over urban areas, screen-level !"  was estimated based on satellite and other 

auxiliary data directly to generate +()**  and compare its magnitude (seasonal or 
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monthly) and spatial distribution with '()**  from most of the previous studies. For 

example, Li and Zha (2019) compared the spatial patterns between the +()** and '()** 

at national scale (32 cities in China) using estimated !" data obtained via a random forest 

regression model with consideration of !! from MODIS and other parameters (e.g. night-

time lights, enhanced vegetation index, digital elevation model data etc.). Likewise, 

+()**  data were generated to compare with '()**  based on the estimated !"  from 

MODIS land surface temperature products by using linear regression models (Sun et al., 

2015) or from the radiance and reflectance products from MODIS (Anniballe et al., 2014). 

These studies have generally reported a similar spatial pattern between '()** and +()** 

with relative high correlation; for example, a R2 of 0.81 was found from 32 cities in China 

(Li and Zha, 2019). However, as mentioned previously, the strong correlation between !! 

and !"  could be attributed to the large variation of background temperature. +()** 

estimated from the empirical relationship between !!  and !"  is lack of confidence to 

further compare with '()** . In contrast, an exploration of the '()** - 	+()** 

relationship based on !" directly derived from weather stations or UMNs is suggested to 

provide more accurate information about this relationship and the differences between 

the surface and the canopy layers. 

Regarding temporal variations, comparisons between '()** and +()** are mostly 

based on mean values, e.g. seasonal mean and annual mean (Hu et al., 2019, Li and Zha, 

2019). These studies generally make a conclusion of the good agreement between '()** 

and +()**. Notwithstanding, the averaged comparison can potentially smooth the noise 

and reduce the disparity between two variables. Alternatively, a direct comparison (e.g. 

time by time, pixels to stations) present an alternative means to showcase the true 

differences between '()** and +()** despite the dependence on the availability of the 
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satellite observations. A comparison of the spatial pattern is normally based on the 

interpolation of the ground observation (i.e. +()**) or spatial mean of both '()** and 

+()** in specific days (Rivera et al., 2017, Anniballe et al., 2014, Chow et al., 1994), as 

a result of limited urban stations in most of the cities. Likewise, it may induce 

uncertainties and the true relationship may become compromised by using interpolation 

or averaged methods. 

In summary, research with regard to the modelling of the '()**-	+()** relationship 

is typically based on empirical models from the literature. As no two cities are alike, it is 

more appropriate to build up this relationship city by city, which is useful and necessary 

to understand the characteristics of UHI for each city. In doing so, the influences of the 

causative factors (e.g. meteorological factors and land surface properties) on '()**-

	+()** relationship need to be investigated fundamentally by case studies in cities with 

good observational data from UMNs (e.g. Birmingham, UK and Oklahoma City, US). 

The comparisons of this relationship are then conducted with consideration of the diverse 

local climate and response to the causative factors from the previous step across different 

cities. 
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Table 2. 2 Selected previous studies related to the comparisons between !"#$$ and %"#$$ during night-time. 

Study area Study period Temperature Data 
Method used to compare 

!"#$$ to %"#$$ 
Considered 

parameters 
Key findings 

Three cities in 

China (Hu et al., 

2019) 

2003-2016 

Ts: MYD11A2 and MOD11A2 

Ta: 8 stations in Beijing; 7 stations in Shanghai; 4 

stations in Guangzhou 

Magnitude comparison 

(annual mean, without 

separating daytime or 

night-time cases) 

Season; Humidity; 

Precipitation 
-- 

32 Cities in 

China (Li and 

Zha, 2019) 

2009 

Ts: MYD11A2 

Ta: estimated from the random forest regression model 

by considering the following parameters: enhanced 

vegetation index (EVI), night-time lights, land-use 

types, digital elevation model (DEM) and &! 

Spatial pattern comparison 

by considering spatial 

mean UHI 

Season 

(i) LRM (%"#$$	 = 	0.52 ∗
!"#$$	 + 	0.03) of annual mean 

%"#$$ on !"#$$ with R2 of 0.81 

at national scale (based on the 

data from all 32 cities) 

(ii) Lower correlation between 

%"#$$  and !"#$$  in summer 

compared other seasons as a result 

of larger stored heat flux during 

summer period 

Toluca, Mexico 

(Rivera et al., 

2017) 

2014 
Ts: Landsat 8 (4 images) 

Ta: 11 stations 

Magnitude and spatial 

pattern comparisons 

Season (dry and 

wet) 

!"#$$ and %"#$$ are well 

correlated with soil moisture, 

particularly during dry seasons 

(spring and winter) 

Birmingham, 

UK (Azevedo et 

al., 2016) 

June, July and 

August in 2013 

Ts: MYD11A1 

Ta: UMN: 82 air temperature sensors and 25 weather 

stations 

Comparison of the Spatial 

distributions between the 

mean !"#$$ and mean 

%"#$$ under different 

atmospheric stabilities 

Atmospheric 

stability based on 

Pasquill-Gifford 

classification 

(i) Both !"#$$ and %"#$$ are 

both stronger under stable 

conditions 
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(ii) Similar spatial patterns 

between the !"#$$ and %"#$$ 
are found 

Beijing, China 

(Sun et al., 2015) 
2009-2010 

Ts: MOD11A1 and MYD11A1 

Ta: estimated from Ts based on linear regression 

model (Ta = a*MOD11A1+b*MYD11A1+c, where a, 

b, c are the corresponding regression coefficients) 

(i) Spatial distribution 

based on one-day data 

(ii) Temporal variation 

comparisons based on the 

daily average UHI across 

whole year 

season 

(i) No significant seasonal 

differences between the !"#$$ 
and %"#$$ 
(ii) Similar spatial patterns 

between the !"#$$ and %"#$$ 
are found 

Milan, Italy 

(Anniballe et al., 

2014) 

June to 

September 

between the 

years 2007 and 

2010 

Ts: MOD11A1 and MYD11A1 

Ta: estimated from the level 1B MODIS radiance and 

reflectance products 

(i) Spatial distribution 

comparisons between the 

mean !"#$$ and mean 

%"#$$ by using Gaussian 

surface 

(ii) Comparison of the 

relationship with the 

normalised difference 

vegetation index (NDVI) 

between %"#$$ and 

!"#$$ 

NDVI 

(i) %"#$$ has similar features to 

!"#$$, e.g. similar magnitude and 

orientation  

(ii) Correlation coefficient 

between !"#$$ and 012$ is 

stronger than the one between 

%"#$$ and NDVI based on the 

mean values of the UHII (!"#$$ 
and %"#$$) during summer 2008 

Birmingham, 

UK (Zhang et 

al., 2014) 

2002 – 2007 
Ts: MYD11A1 

Ta: single urban and rural station 

(i) Comparisons of the 

monthly mean value of 

%"#$$ with !"#$$  
(ii) LRM of %"#$$ to 

!"#$$ based on all data 

(all stations) 

(i) Classify UHI 

based on lamb 

weather types 

(ii) Season 

(i) Seasonal variations of the 

magnitude of %"#$$ and !"#$$ 
are not significant 

(ii) LRM: %"#$$	 = 	0.55 ∗
!"#$$	 + 	1.75, R2=0.18 
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Mexico city, 

Mexico (Cui and 

De Foy, 2012) 

2006 
Ts: MYD11A2 and MOD11A2 

Ta: single urban and rural station 

Temporal (monthly) 

comparison 

Wet and dry 

seasons 

(i) Similar seasonal trend of 

%"#$$	and !"#$$ is observed; 

(ii) %"#$$ is more affected by 

atmospheric stability while !"#$$ 
is strongely detetmined by the 

vegetation cover and daytime 

insolation 

Milan, Italy 

(Pichierri et al., 

2012) 

2007-2010 

Ts: estimated based on the multiple linear regressions 

between Ta and radiance/reflectance products from 

MODIS (MOD021KM/MYD021KM) 

Ta: 6 weather stations (3 urban and 3 rural stations) 

Temporal (daily) 

comparisons between the 

!"#$$ and %"#$$ on 

25/07/2010 

-- 

Daily patterns of !"#$$ and 

%"#$$ are consistent to each 

other  

Shanghai, China 

(Chow et al., 

1994) 

20:00PM, 1984 
Ts: MYD11A2 

Ta: Single paired of urban and rural station 

Spatial pattern comparison 

in specific days 
-- %"#$$ is spatially relate to !"#$$ 
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2.7 Data and methods 

The ambition of generalising the !"#$$ - %"#$$  relationship across cities (or 

globally) will result in a better understanding of the UHI. It will further facilitate the 

development of approaches to study and utilise this heat effect to improve human’s life 

in urban environment for every city. As previously mentioned in Section 1.3, the process 

for this goal fundamentally includes: (i) define the influencing factors of the UHI 

(!"#$$	and %"#$$ ) and their corresponding physical mechanisms; (ii) explore the 

characteristics (i.e. temporal or spatial) of the !"#$$ - %"#$$  relationship with 

considerations of the influencing factors from (i) in some case studies; (iii) Compare and 

generalise peculiar characteristics of the !"#$$-%"#$$ relationship between two cities 

and attribute the differences to the climatic and urban structures of these two cities, which 

provides evidence or guidance for further comparisons until the goal has been achieved. 

This three-step is implemented in Chapters 3-5 and follows the workflow in Figure 1.3 in 

order to achieve the aim in this thesis, which will be further introduced as follows. 

This literature review has demonstrated the comprehensive nature in which the key 

factors controlling the !"#$$ and %"#$$ have been studied (Oke, 1982, Arnfield, 2003, 

Voogt and Oke, 2003, Rizwan et al., 2008, Mirzaei and Haghighat, 2010). Therefore, 

there exists sufficient support by efforts from previous research for the first step regarding 

the generalisation of the !"#$$-%"#$$ relationship. Specifically, atmospheric condition 

and land surface properties are the key factors that more evidently impact upon the 

physical linkage between surface and air layers from the literature. Lots of atmospheric 

variables can be used to represent the atmospheric condition and it is dispensable to 

evaluate the impacts of these variables on the development of UHI. Regarding the land 
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surface properties, UCZ or LCZ typologies are now mature enough to universally classify 

the urban areas into different climate zones. However, a paucity of meteorological data 

per climate zone remains a major limitation in terms of further classification. As such, at 

the initial stage of the generalisation process, it appears sensible to simplify this step into 

suburban / urban. In addition, there are some requirements regarding the satellite products 

used to estimate the !"#$$. It is better to choose the satellite with comparatively high 

temporal and moderate spatial resolution in order to compare with %"#$$  calculated 

based on the '! data from UMNs, e.g. MODIS satellite. 

Regarding the second stage of the generalisation process, several concerns need to 

be carefully considered. Firstly, an appropriate method to study the !"#$$ -%"#$$ 

relationship needs to be selected. Numerical and empirical models have been shown to 

be the two main approaches for studying this relationship. Numerical models are 

preferable to provide the evidence for energy transfer in the processes of the surface-air 

interaction. However, it is not desirable to build up the !"#$$-%"#$$ relationship by 

using the modelled air and surface temperatures. The primary concern is about the 

accuracy of such models and limited confidence due to limited observations. In contrast, 

empirical methods are based directly on the observations which are readily to be applied. 

Although the derived relationship or values are subjective to location and time, without 

providing relevant physical processes, the stratifications of the data and the 

intercomparisons of the derived relationship under specific conditions defined by 

physical parameters are also promising for generalising the !"#$$-%"#$$ relationship. 

There is also an additional need to develop a statistical method with regard to the 

comparisons of the !"#$$-%"#$$ relationship under specific conditions (i.e. atmospheric 
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stability and land surface properties). It needs to be easily transferable to other cities in 

order to accomplish the generalisation in the third stage. 

For the third, intercomparison stage, the local climate effects on the UHI become one 

of the biggest challenges in generalising the !"#$$-%"#$$ relationships. This is difficult 

to isolate using statistical methods but sensitivity tests using numerical models might be 

a prudent approach. Otherwise, comparisons under specific atmospheric conditions are 

needed to minimise these effects. Furthermore, the different settings of the weather 

stations or UMNs are also largely responsible for the differences of the	!"#$$-%"#$$ 

relationships across cities because of its impacts on the data sample (i.e. '!  and '" ). 

However, these impacts are still unclear and future work is required to establish these 

fundamental knowledges in order to achieve the generalisation of the !"#$$-%"#$$ 

relationships globally. 

Overall, as highlighted, the paucity of measurements in urban areas remains a major 

issue in developing a universal approach. It is clear from the literature review, that the 

greatest recent advances in the area have occurred due to the increasing use of UMNs in 

deriving insights. As such, this thesis will focus on data from two UMNs. In the following 

sections, general descriptions of the ground observations (the two UMNs) are firstly 

introduced, following by the satellite data used in this thesis, data processing and the 

computation of !"#$$ and %"#$$. 

2.7.1 Ground observations 

2.7.1.1 Birmingham 

The ground observations are retrieved from the Birmingham Urban Climate Lab 

(BUCL) and Met Office during the period from 01/06/2013 to 31/08/2014 (due to the 
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data availability) over Birmingham. Part of BUCL included an installation of 24 

automatic weather stations with sensors at 3 m a.g.l across the whole city (more details 

in Chapman et al. (2015)). These 24 Vaisala WXT520 weather stations measure seven 

atmospheric variables including air temperature, precipitation, wind speed and wind 

direction etc. with average spacing of 3 km and a high-quality control. These seven 

variables are sampled every 15 seconds and an average produced each minute (Warren et 

al., 2016). Two additional UK Met Office weather stations complement the network 

(Paradise Circus and Coleshill stations), with temperature data from Paradise Circus 

station being particularly useful due to its location in the middle of the central business 

district (shown in Figure 2.1). The temperature and wind are hourly measured at 1.25 m 

and 10 m a.g.l at Met office sites, respectively. Overall, the temperature data from 20 

BUCL weather stations are used (4 stations are excluded because they are sited outside 

the city and over more vegetated areas) located within the city limits and the one station 

from UK Met Office over urban areas. The Coleshill station (Figure 2.2) is located outside 

the city, and as per other UHI studies (Tomlinson et al., 2012, Azevedo et al., 2016) in 

Birmingham and it is chosen to be the rural reference site (or urban background) for 

temperature, wind speed, relative humidity, daily accumulated solar radiation and cloud 

data in this thesis. 
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Figure 2. 1 Location of BUCL stations(source of boundary data: Ordnance Survey (2014)) 
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Figure 2. 2 Location of Coleshill station from Google street map 
2.7.1.2 Oklahoma City 

The air temperature data over urban areas are derived from the Oklahoma City 

Micronet (OKCNET) which was deployed since 2008 to provide high-quality 

atmospheric observations in near real-time in OKC. This dense network consists of 36 

robust automatic weather stations (using the WXT510 sensors) mounted on traffic signals 

at a height of 9 m, with an average spacing of about 3 km across OKC metropolitan area. 

Site selections are constrained by the OKC WIFI access points and data are measured at 

minute resolution. Due to the data availability, 33 stations shown in Figure 2.3 are chosen 

to represent the urban thermal conditions over OKC during the period from 01/01/2009 

to 31/12/2010. 

Coleshill 
station 
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Regarding the urban background reference, SPENCER station, part of  the Oklahoma 

Mesonet network, which serves as the dense network for monitoring the surface-layer 

meteorological condition at mesoscale across the state, is considered as rural reference to 

provide the background temperature, wind and humidity conditions that are measured at 

an interval of 5 minutes over OKC. It is located within a fenced 100 m2 plot of land close 

to the rural area but within the city limits (Figure 2.4). Temperature and wind are 

measured at two different height levels – temperature at 1.5m and 9 m, wind at 2 and 10 

m. Other sensors (e.g. humidity, pressure, solar radiation etc.) are mounted on or near a 

10 m tower (Basara et al., 2011). 

 
Figure 2. 3 The location of OKCNET stations 
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Figure 2. 4 Location of Spencer station (available from 
http://www.mesonet.org/index.php/sites/site_description)  

2.7.2 Satellite observations 

The following satellite products from Moderate Resolution Imaging 

Spectroradiometer (MODIS) are used in this project (all available from: 

https://modis.gsfc.nasa.gov/data/), which are processed in ArcGIS 10.4.1 and the 

projection is converted from the Sinusoidal projection to WGS 1984 Web Mercator 

Auxiliary Sphere over OKC and to British National Grid over Birmingham respectively. 

I. Yearly land cover types product (MCD12Q1) with approximate 500-m spatial 

resolution  

II. Night-time daily land surface temperature ('") products in version 5 (V005) from 

MODIS onboard Aqua (MYD11A1) and Terra (MOD11A1) satellites with 

approximate 1-km spatial resolution (926.63 m); 

III. Normalised Difference Vegetation Index (NDVI) from the vegetation index 

product from MODIS onboard Aqua (MYD13A2) and Terra (MOD13A2) 

satellites; 

SPENCER 
station 
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According to the land cover types product, it is derived in the year of 2010 over OKC 

and in the year of 2014 over Birmingham, in order to present the land surface 

characteristics across these two cities. 

The '" dataset is developed based on the generalised split-window algorithm from 

the two thermal infrared bands of MODIS (bands 31: 10.78 − 11.28	/0  and 32: 

11.77 − 12.27	/0) (technical details for the MODIS product can be found in Wan 

(2007)). The MYD11A1 and MOD11A1 are stored in a hierarchical data format (HDF) 

including 12 scientific datasets such as day and night-time '", satellite overpassing time 

and view zenith angle etc (Wan, 2006). Although they are pre-filtered by the cloud mask 

(the pixel is cloud-free if it has the grid value for '" ), Wan (2008) stated that cloud 

contamination still exists in the V005 products since the cloud-removing scheme is 

unable to remove the contaminated pixels under light and moderate cloud conditions. The 

contaminated pixels usually refer to the extreme low temperature at the top of clouds 

(Mutiibwa et al., 2015). Therefore, the selection of the satellite data is restricted to images 

with no missing value or extreme '" value over the study areas. Moreover, cloud cover 

data measured from ground observations (cloud data derived at Coleshill station in 

Birmingham and at four Oklahoma ASOS stations [available from: 

https://mesonet.agron.iastate.edu/]) have been utilised to double-check the cloud 

conditions and further quality control the satellite data. 

NDVI products from MODIS are retrieved to approximate levels of greenspace in 

the vicinity of each station, which has been widely used in previous studies (Montandon 

and Small, 2008, Li and Liu, 2008, Grover and Singh, 2015). NDVI is one of the 

subdatasets of the MODIS vegetation indices product (MYD13A2 and MYD13A2) with 

1 km spatial resolution and 16-day temporal resolution. The calculation of the NDVI is 
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based on a filter with consideration of cloud cover and viewing geometry etc. which 

enables to retrieve the NDVI with good quality (Van Leeuwen et al., 1999). It is noted 

that a simple linear averaging method is used to generate daily NDVI data by using the 

two 16-day NDVI products as they contain an 8-day overlap.  

Likewise, the satellite data ( '"  and NDVI) are derived from 01/01/2009 to 

31/12/2010 over OKC and from 31/06/2013 to 31/09/2014 over Birmingham. Table 2.3 

provides a summary of the available satellite data of '" across the two cities. Data from 

Aqua and Terra satellites are combined for the analysis due to the limited sample size, 

which is further discussed in Section 2.7.3. 

Table 2. 3 Summary of the available satellite imageries and sample size across OKC and 

Birmingham. NB: total sample size from all stations is based on the availability of '" and 

'! from each station. 

City Study period 
Available 

imagery from 
Aqua Satellite 

Available 
imagery from 
Terra Satellite 

Total sample size 
from all stations 
(Combine two 

satellites) 

OKC 01/01/2009 - 
31/12/2010 52  83  4034 

Birmingham 31/06/2013 - 
31/08/2014 63  88  2316 

 

2.7.3 Data processing 

This section will introduce the pre-processing of the '" and '! data and the way to 

compute the !"#$$  and %"#$$ . There are two primary concerns that need to be 

considered for comparing or investigate the relationship between the !"#$$ and %"#$$, 

including the temporal and spatial consistency between '"  and '! , which will be 

discussed in the following two sections, respectively. 



73 
 

2.7.3.1 Temporal consistency between 1# and 1$ 

There are two available daily night-time observations ('" ) from MODIS with 

approximate overpass times of 01:30 (Aqua satellite, from north to south) and 22:30 

(Terra satellite, from south to north) local solar time across the equator. However, the 

overpassing time does vary day by day and their achieves can be accessed at 

https://www.ssec.wisc.edu/datacenter/. The differences between actual overpassing time 

and the approximate equatorial overpassing time for OKC and Birmingham are compared 

(Figure 2.5). As the mean differences are about within an hour for both satellites, the 

overpassing time of Aqua and Terra satellites are assumed to be the same as the ones 

crossing the equator and the variations of the real overpassing time are not considered in 

this project. As introduced in Section 2.7.1, the '! is collected at every 1-minute from 

OKCNET and is sampled at every 15 sceonds from BUCL. On the basis of the small 

difference between local solar time and local time over the two cities, the '! dataset in 

this study is calculated as the hourly average values of the '! (01:00 - 02:00 for Aqua and 

22:00 - 23:00 for Terra satellite) to achieve the temporal consistency between satellite 

and ground measurements. 
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Figure 2. 5 Differences between the actual overpassing time and the approximate 

equatorial overpassing time for Aqua (~01.30 AM) and Terra (~10.30 PM) satellites over 

two cities, where the cross symbols are the corresponding mean differences 

As previously mentioned, the differences of the '" observed from Aqua and Terra 

satellites or the '! collected from ground measurements are not considered in this project, 

which are combined to increase the sample size. There are two types of evidence 

supporting this combination. Firstly, the corresponding linear relationships between '" 

and '!  at the acquisition time of Aqua and Terra satellites are similar over OKC�

234%:	'! = 0.89 ∗ '" 	+ 	5.05, <% = 0.97, = = 1569;	 

'@AA%:	'! 	= 	0.86 ∗ '" 	+ 	6.56, <% = 0.95, = = 2465; 

and Birmingham:  

234%:	'! = 0.93 ∗ '" 	+ 	2.17, <% = 0.95, = = 957;	 

'@AA%:	'! = 0.90 ∗ '" 	+ 	1.83, 	<% = 0.97, = = 1359; 
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Although there are about 1.5 K differences (indicated by intercept values in 

regression model) between estimated 	'! from Aqua and Terra satellites, the subtraction 

method for quantifying the UHI (temperature differences between urban and rural sites) 

will further minimise the differences between the two satellite. It therefore provides 

confidence to combine the data from these two satellites for the further analysis. Indeed, 

the overpassing time of Aqua and Terra satellite is approximately three hours apart, which 

could potentially cause the different UHII (both air and surface) particularly during 

summer period. However, previous research found that the %"#$$ will increase rapidly 

during the early evening transition period that has been found to be 19:00-20:00 in OKC 

during April 2009 – October 2010 (Hu et al., 2016b). After that, %"#$$ will stay at a 

roughly constant level throughout the night until early the next morning. Therefore, data 

was combined from both Aqua and Terra satellites to increase the sample size. 

2.7.3.2. Spatial consistency between 1# and 1$ 

It is difficult to achieve the spatial consistency between point-derived '! and pixel-

averaged '", especially over urban areas where the terrain is complex (Oke, 1988a). In-

situ sensed '!  is strongly associated with the turbulent source area, whereas remote-

sensing '"  is mainly determined by the radiation source areas (Oke et al., 2017). The 

turbulent source area of '! cannot be defined confidently using a traditional approach (e.g. 

a footprint model (Kent et al., 2017)) because the measurement height is within the urban 

canopy layer. Although the turbulence source area can be local, the selection of the sites 

considered their representativeness (as best as can be achieved in the heterogenous urban 

area) of microclimatic environments of the area on a neighbourhood scale (≲ 1 km), 

which is about the spatial resolution of the satellite data of '". Some previous studies have 
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investigated the spatial variability of '! by comparing the correlations between '! and '" 

estimated from different “window sizes”. However, the most appropriate spatial scales of 

'! varied in different study areas. For example, 200 m, 450 m and 700 m were found to 

be the most appropriate spatial scale of '! for urban, suburban and rural areas respectively, 

in Hong Kong, China (Nichol and Wong, 2008). Although spatial variability is not a key 

aim in this project, a simple correction based upon Inverse Distance Weighting (IDW) is 

applied to achieve the spatial consistency between '" and '!. 

The IDW interpolation has been widely adopted to estimate the spatial distribution 

of some variables such as rainfall (Teegavarapu and Chandramouli, 2005) and 

temperature (Greenberg et al., 2011) etc. based on the data at some given points (e.g. 

weather station). Herein, a 500-metre radius buffer is created for each weather station. 

The '" values of the pixels overlapping with the buffer are then adopted to calculate the 

'" value at the weather station using the following formulas: 

E& =
!
"#

' !
"#

$

#%!

                                                                                                 Equation (2.5) 

'" = ∑ E& ∙ '"&(
&)*                                                                                         Equation (2.6) 

where 0 is the index of the pixel overlapping with the buffer for the weather station, 

H&  is the distance between the centre of the 0 -th pixel and the station, E&  is the 

weighting coefficient for the 0-th pixel, '"& is the land surface temperature for the 0-th 

pixel. Figure 2.6 gives an example to estimate the '"  in a weather station (W026) of 

BUCL based on the above scheme. 
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Figure 2. 6 An example for calculation of '" for a specific station (W026), where the 

circle represents the 500-m buffer, the cross symbols are the centre of each pixel from 

satellite imagery, black point is the weather station from BUCL in Birmingham (W026). 

2.7.4 Quantification of surface and canopy heat island 

%"#$$/!"#$$ is defined as the difference between the temperature from a weather 

station/pixel located in urban area ('!
(,)  or '"

(,) ) and the temperature from a rural 

station/pixel ('!
(.) or '"

(.)): 

!"#$$ = ∆'"
(,) = '"

(,) − '"
(.)                                                                         Equation (2.7) 

%"#$$ = ∆'!
(,) = '!

(,) − '!
(.)                                                                       Equation (2.8) 

Here, i represents weather station index in urban areas and A is for the rural station 

in the study area (Coleshill or Spencer station in Birmingham and OKC respectively). 

The surrounding environment of the two rural stations have been introduced in Section 

2.7.1. %"#$$ has been found to be sensitive to the wind advection (Bassett et al., 2016), 

therefore, the rural sites should be chosen  with consideration of the prevalent wind 
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direction. Southernly winds are predominant during the study period over the two cities, 

while the two rural stations are located in the east of the city centres. Thus, the heat 

advection from city to the rural stations is taken to be negligible in this thesis. The number 

and location of stations chosen to be configured in a UMN are meant to be confidently 

showcase the temperature variation of a city. Data from all stations are then used to 

formulate the regression models under different conditions. In addition, it could increase 

the sample size to make the results more reliable. 

2.8 Conclusion 

This review has given an overview of !"#$ and %"#$ with respect to their own 

characteristics, surface-layer and urban canopy processes that impacts upon the UHII, 

and previous literature regarding attempts of establishing the '"-'!  and !"#$$-%"#$$ 

relationship. It is clear that the current research has been surrounding of these 

relationships (i.e. the '" - '!  and !"#$$ - %"#$$  relationship) by using empirical 

modelling and these relationships vary city by city. There is a significant research gap 

relating to the characteristics of the !"#$$-%"#$$ relationship with consideration of the 

potential influencing factors.  However, as shown in the choice of methods for this thesis, 

it is now possible to acquire the high-resolution data for both '"  and '!  which could 

significantly advance our understanding of this relationship. Alongside this, the above 

review highlights the needs and difficulties to achieve the generalisation of the !"#$$-

%"#$$	relationship globally. 

2.9 Summary 

This review clearly illustrates the causative factors (e.g. climate or meteorological 

factors and surface characteristics) influencing the !"#$$-%"#$$	relationship during 
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nights. Also, the majority of the approaches used to study this relationship have been 

summarised and discussed, including their advantages and application limits. This 

review has important implications for the data analysis in this thesis, because the key 

element of the thesis is to discover specific characteristics of the !"#$$ -

%"#$$	relationship in Birmingham, UK (Chapter 4) and compare it to those in Oklahoma 

City, US (Chapter 5). Both cities have well developed UMNs and thus provide an 

excellent opportunity to progress this research in two areas of different geography.
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Chapter 3   Characterising the Nocturnal Surface 

and Canopy Heat Islands in Oklahoma City, US 

according to the Atmospheric Condition 

 
 

 
This chapter aims to explore the potential impacts of the atmospheric condition on the 

magnitude of the surface urban heat island (!"#$$) and canopy heat island (%"#$$) 

during night-time. Results from this chapter are used to underpin later analyses in this 

thesis which investigate the variations of the relationship between !"#$$  and %"#$$ 

under different atmospheric conditions and levels of urbanisation in Chapter 4 and 

Chapter 5.
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3.1 Introduction 

The process of urbanisation has inadvertently modified the urban climate. Impacts 

such as the Urban Heat Island (UHI) well documented in the scientific literature (Stewart, 

2011). The importance of the UHI effects on human’s lives and the future urban design 

strategies has been increasingly recognised. There is growing evidence showing that the 

UHI effect has the potential to intensify extreme climatic events (Patz et al., 2005). For 

instance, heatwave events could intensity the UHI and increase the heat health risk in 

cities, resulting in excess deaths (Meehl and Tebaldi, 2004, Gosling et al., 2009, 

Tomlinson et al., 2011b). There is therefore a continued need to further understand and 

manage the UHI effect (De Wilde and Coley, 2012). 

As discussed in Chapter 2, one of the determinant factors influencing the 

development of the UHI is the atmospheric stability / state. Stability is used to 

qualitatively describe the property of the atmosphere based on the controls of the 

acceleration of the vertical motion of an air parcel (Mohan and Siddiqui, 1998). When 

the atmosphere is unstable, the acceleration is positive and turbulence increases. It 

becomes zero in neutral (deceleration) and negative in stable atmosphere (turbulence 

suppressed). There are seven major stability schemes used to classify the atmospheric 

stability (details of the definition and calculation of each scheme can be found in Mohan 

and Siddiqui (1998)): (a) Pasquill-Gifford (P-G) stability system, (b) standard deviation 

of the horizontal wind direction fluctuation method, (c) temperature gradient method, (d) 

Gradient Richardson method (Ri), (e) Bulk Richardson number method, (f) Moni-

Obukhov length method, and (g) wind speed ratio method. Previous studies have tried to 

assess the effectiveness of these schemes ((b) to (g)) by comparing with the P-G scheme. 
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Result indicates the better agreement between the three schemes (including (d), (e) and 

(f)) and the P-G scheme. However, to the best of our knowledge, there is no study trying 

to assess their effectiveness based on classifying the characteristics of the UHI. The 

choice of a particular scheme potentially impacts on the final outcome of the analysis of 

UHI and a comparative study to find out the key meteorological variables as 

representation of the atmospheric condition that significantly affects the UHI is needed. 

UHI studies of, the relationship with atmospheric stability, mainly use one of the 

following two methods: (i) synoptic weather type (Kolokotsa et al., 2009, Zhang et al., 

2014) and (ii) P-G stability system (Tomlinson et al., 2012, Krüger and Emmanuel, 2013, 

Azevedo et al., 2016, Drach et al., 2018). The synoptic weather system method is largely 

dependent on the variations of the surface pressure (i.e. Anticyclonic or Cyclonic) with 

considerations of wind direction (i.e. southeasterly, southerly, northerly, westerly, 

southweaterly, northweaterly, easterly, and northeasterly), such as the Lamb weather 

types (Lamb and HH, 1972). Studies highlighted the strong relationship between the 

intensity of the UHI (UHII) and anticyclonic conditions. As an alternative, the P-G system 

is widely used because of its simplicity. It is based on the local surface meteorological 

conditions, with considerations of insolation and surface wind speed for daytime 

scenarios and cloud cover and surface wind speed for night-time cases (Turner, 1970). 

Subsequently, each case is classified into different stability classes which include A-C, D 

and E-G that represents unstable, neutral and stable conditions respectively (see Table 3.1 

for night-time cases). 

Table 3. 1 Pasquill-Gifford stability classes during night-time (adapted from Pasquill 

and Smith (1983) and Chapman et al. (2001)) 

Surface wind speed measured 
at 10 m a.g.l (m/s) 

Pasquill-Gifford stability class 
>= 4/8 oktas cloud <4/8 oktas cloud 
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<2 G G 
2-3 E F 
3-5 D E 
>5 D D 

Although the P-G system is designed to describe dispersion conditions and never 

intended to be used as a “stand-alone” system to measure stability (Kahl and Chapman, 

2018), it has been shown that the P-G scheme can be confidently used for characterising 

the temporal variations of the canopy air heat island (%"#$) from ground observations 

and the surface urban heat island (!"#$) (Azevedo et al., 2016). As discussed above, 

there exists many potential variants / improvements to the P-G stability scheme which 

could provide more quantitative detail on the nature of the atmospheric stability (e.g. the 

six schemes [b-g]). In order to test the utility of adding additional complexity to the 

established, but simplistic, P-G scheme, it is necessary to conduct a comparison amongst 

parameters, including Ri, vertical temperature and wind gradient and parameters used to 

define P-G scheme in this study (thoroughly introduced in Section 3.2.4), to characterise 

the UHI. Ri is chosen mainly because previous research disclosed that it gave more 

reasonable comparisons than the rest of the parameters mentioned above when comparing 

with the P-G scheme regarding the classification of atmospheric stability (Mohan and 

Siddiqui, 1998). The considerations of the wind speed and temperature gradients (at two 

different heights) are largely due to the fact that they can be simply used as estimates of 

wind generated turbulence and thermal-damping capacity of the turbulence, 

correspondingly. The other reason is that these two parameters are the determinants of 

the Ri and it is worth to explore their controls on Ri. 

Overall, the aim of this chapter is to find the key meteorological variable affecting 

the UHI by assessing the effectiveness of the P-G classification scheme and comparing it 

to four other parameters related to atmospheric condition. This will be achieved by (i) 
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examining whether the robustness of the P-G classification scheme varies across seasons 

for characterising the daily mean %"#$$  and !"#$$  and determine the key variable 

impacting upon the UHI; and (ii) exploring the potential impacts of the key variable on 

the spatial variations of both nocturnal  %"#$$ and !"#$$ over Oklahoma City (OKC), 

US, by using both a dense Urban Meteorological Network (UMN) and land surface 

temperature products from MODIS satellites. 

3.2 Methods 

3.2.1 Study area 

OKC is the study area (Figure 3.1) used in this analysis, as introduced in Chapter 2. 

It provides a unique opportunity in which to conduct this study due to unique observation 

instrumentation that enables the measurement of temperature at two different heights at 

multiple locations across the city (i.e. the suburban areas beyond the CBD are also 

considered). Previous research into the !"#$ in OKC has been limited, while several 

studies have investigated the magnitude and spatial patterns of the %"#$ estimated from 

the UMNs. For example, the JU2003 (Joint Urban 2003 field experiment) used 13 PWIDS 

(Portable Weather and Information Display Systems) and 33 HOBO temperature data 

loggers deployed in and near the CBD to measure the temperatures at 2 m and 9 m a.g.l, 

respectively between 28 June and 31 July 2003. In this study, Basara et al. (2008) found 

that the urban environment is consistently warmer than the surrounding rural areas at both 

the 2- and 9-m heights at night (over 1.5℃ at 9 m and 2℃ at 2 m) whilst an urban cool 

island was also found during afternoon period over CBD in OKC. A large intra-urban 

variability in temperature between the urban sites was also found by Basara et al. (2008), 

compared to the greater spaced rural sites. 
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Figure 3. 1 UCZ classification for urban stations used in this study. Note: the land 
classification shown in the map is from Oklahoma City Council (2020) 

3.2.2 Canopy air urban heat island 

The definition of canopy air heat island intensity (%"#$$) is as per Chapter 2. To be 

consistent with the site classification scheme applied in this analysis (introduced in 

Section 3.2.5), urban ground observations from the 26 stations and a rural station (Spencer 

station) shown in Figure 3.1 are used to calculate the %"#$$  during the period from 

01/01/2009 to 31/12/2010. In order to achieve the temporal consistency between ground 

and satellite observations, '!  measured only during 22:00-23:00 and 01:00-02:00 are 

considered for the %"#$$ computation, as introduced in Chapter 2. 
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3.2.3 Surface urban heat island 

The calculation of the nocturnal surface heat island intensity (!"#$$) uses the same 

method as introduced in Chapter 2, using the daily land surface temperature ('") products 

(MOD11A1 and MYD11A1) from MODIS aboard the Terra and Aqua satellites. The pre-

processing with respect to the spatial consistency between the '"  and '!  follows the 

method introduced in Chapter 2, simply described as follows. '" pixels within the 500-m 

buffer centred on each of the 26 stations are considered for the computation of the !"#$$ 

during the same period in which the %"#$$  is calculated, by applying the Inversed 

Distance Weighted (IDW) to get an average '" corresponding to each station. In addition, 

data processing related to the computation of the !"#$$, such as quality control of cloud 

contamination and the combination of both Terra and Aqua satellites etc., is referred to 

the introduction in Chapter 2 and will not be repeatedly mentioned here. 

3.2.4 Atmospheric stability and corresponding meteorological variable 

3.2.4.1 Previous studies in OKC 
Some previous studies in OKC have tried to consider the impacts of the atmospheric 

stability on the development of the UHI (i.e. %"#$) over OKC. For example, Hu et al. 

(2013) observed a strong relationship between the strength of nocturnal Low-level jets 

(LLJs) and the UHI derived from ground observations (2 m and 9 m a.g.l). The increased 

surface wind speed caused by the LLJs that induces more intense turbulent mixing and 

reduced atmospheric stability in the nocturnal boundary layer contribute to the weaker 

%"#$$. Later, Hu et al. (2016b) found large spatial variability of the nocturnal UHI over 

OKC between April 2009 and October 2010. This study used Ri, estimated by the 

temperature differences (9 m and 1.5 m a.g.l), and wind speed differences (10 m and 2 m 
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a.g.l) at two levels from seven rural sites. It found that Ri could become larger than 0.20 

that is considered quite stable condition in average during night-time (Banta et al., 2003, 

Galperin et al., 2007), which could largely explain the existence of the nocturnal UHI 

over OKC. Correlation between the nocturnal UHII and temperature inversion at the 

seven rural sites was also investigated in their study, which was as strong as the one with 

the wind speed at the same rural sites. The nocturnal UHII is positively and negatively 

correlated to the rural temperature inversion and wind speed, respectively, while these 

two parameters (temperature inversion and wind speed) are the determinants of the 

atmospheric stability (i.e Ri). It is thereby suggested the great influences of both 

background temperature gradient and wind speed on the determination of the atmospheric 

stability and the development of the UHI over OKC. 

3.2.4.2 Pasquill-Gifford (P-G) stability classification scheme 

(i) Classification Approach 

The Pasquill-Gifford (P-G) stability classification scheme (Pasquill and Smith, 1983) 

will be used to classify the satellite images into D (Neutral), E (Slightly Stable), F 

(Moderately Stable) and G (Extremely stable) classes in this analysis (Table 3.1). As 

introduced in Chapter 2, a quality control of the cloud conditions is applied by checking 

the ground observations and assuring that all of the images are collected under clear-sky 

conditions. Regional wind speed (KL*/&, 10 m a.g.l) measured at Spencer station (shown 

in Figure 3.1) during 22:00 - 23:00 and 01:00 – 02:00 for Terra and Aqua satellites 

respectively is therefore the only parameter that considers for the P-G classification. 

(ii) Image availability 
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The total number of available images is 130 in this analysis with 26 paired groups of 

UHII (i.e. !"#$$ and %"#$$) for each image. These cases are classified into class D, E, 

F and G, approximately accounting for 17%, 40%, 43% and 10% correspondingly. The 

outstanding percentage of the nights under slightly (E) or moderately (F) stable conditions 

is consistent with Tomlinson et al. (2012) who explored the !"#$$  during summer 

months between 2003 and 2009 over Birmingham, UK. 

Figure 3.2 provides a summary of the available images for each stability class during 

four seasons. The less availability of images in winter are a result of cloud influence, 

therefore, data during winter are not considered in the following analysis. Regarding 

autumn and spring, hereafter known as the transition seasons, the similar trend of the 

averaged background temperature under each stability class from them (Table 3.2) gives 

confidence to combine them to increase the sample size and reliability of the analysis in 

the following analysis. Therefore, to explore whether the robustness of the P-G 

classification scheme for characterising the !"#$$  and %"#$$  varies across seasons, 

responses of the UHII (!"#$$ and %"#$$) to the atmospheric stability between summer 

and transition seasons are compared. 
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Figure 3. 2 Frequency of the images classified by the Pasquill-Gifford stability class 

Table 3. 2 Average background air temperature (℃) under four stability classes in four 

seasons 

Season 
Average background air temperature under four stability classes 

D E F G 
Spring 17.28 18.20 14.51  -- 

Summer 27.10 26.75 26.66 26.05 
Autumn 17.59 19.10 18.40 15.85 
Winter 5.29 3.54 9.67 3.19 

3.2.4.3 Assessment of the Pasquill-Gifford (P-G) stability classification scheme 

Four meteorological parameters based on the observations from Spencer station are 

chosen to compare with the key parameters (KL*/&) used to determine the P-G scheme, 
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by conducting the correlation analysis with both !"#$$  and %"#$$  respectively. 

Specifically, all of the four parameters can directly or indirectly reflect the atmospheric 

stability and were taken as variations of the P-G system to compare with the P-G scheme 

(Mohan and Siddiqui, 1998), which include: (i) P-G classification based on WS measured 

at 2 m a.g.l (KL%&); (ii) Gradient Richardson number (Ri) calculated based on two height 

levels of temperature and wind speed measurements (Stull and Ahrens, 1995): 

!" = ![($!"%$#.%")/∆)&*+']∆)()
$#.%"(-.#*"%-.)"))

                                                       Equation (3.1) 

where M ≈ 9.8	0!0% is the acceleration due to gravity, Γ1 = 0.01℃	00* is the dry 

adiabatic lapse rate (DALR), '2&  and '*.4&  in Kelvin (K) are the air temperature 

measured at 9 m and 1.5 m a.g.l respectively, KL*/& and KL%& in 0/! are the wind 

speed measured at 10 m and 2 m a.g.l correspondingly, ∆Q5 = 7.50 and ∆Q6 = 8.00 are 

the height differences between the two levels of the temperatures and wind speeds 

measurements respectively; (iii) the wind speed gradient (∇KL , ∇KL = (KL*/& −

KL%&)/∆Q6 ) and (iiii) the temperature gradient (∇', ∇' = ('2& − '*.4&)/∆Q5 ). The 

reasons for choosing these four parameters are summarised in Section 3.1. 

3.2.5 Site classification 

To investigate the response of the spatial pattern of UHI to the atmospheric condition, 

stations/pixels are grouped by different Urban Climate Zones (UCZ) (Oke et al., 2006). 

UCZ is principally determined by three parameters: roughness class, aspect ratio and 

fraction of impermeable surface (more details in Oke et al. (2006)). It aims at classifying 

a city into districts with similar modifying characteristics for the local climate. OKCNET 

has previously been classified by Schroeder et al. (2010) but significant challenges were 
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found for the classifications of some of the stations located within the areas from urban 

to suburban or from suburban to rural. To overcome this, only 26 clearly defined stations 

from the OKCNET are selected in this analysis (see Figure 3.1 and Table 3.2). Table 3.3 

also presents additional information for each UCZ, including (i) the averaged Normalised 

Difference Vegetation Index (NDVI) from MODIS vegetation indices products 

(MOD13A2 and MYD13A2) during the study period and (ii) the averaged building 

fraction from the building footprints data in the year of 2010 (Oklahoma City Council, 

2010). In general, the NDVI and building fraction follows the UCZ system, such as the 

greatest NDVI at UCZ7 and largest building fraction at UCZ1. 
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Table 3. 3 Information related to UCZ classification 

UCZ Number of 
stations 

Averaged 
NDVI 

(within 500-
m buffer) 

Averaged 
Building 

fraction (within 
500-m buffer) 

General definition of UCZ from (Oke et al., 2006) 

Description Roughness 
class Aspect ratio 

Fraction of 
impermeable 

surface 

UCZ1 5 0.227 0.293 
Intensely developed urban with 
detached close-set high-rise buildings 
with cladding 

8 > 2 > 90 

UCZ2 2 0.239 0.275 

Intensely developed high density 
urban with 2 – 5 storey, attached or 
very close-set buildings often of brick 
or stone 

7 1.0 - 2.5 > 85 

UCZ4 8 0.333 0.158 

Highly developed, low or medium 
density urban with large low 
buildings & paved parking, e.g. 
shopping mall, warehouses   

5 0.05 - 0.2 70 - 95 

UCZ5 2 0.389 0.117 
Medium development, low density 
suburban with 1 or 2 storey houses, 
e.g. suburban housing   

6 0.2 - 0.6 35 - 65 

UCZ6 5 0.393 0.08 
Mixed use with large buildings in 
open landscape, e.g. institutions such 
as hospital, university, airport   

5 0.1 - 0.5 < 40 

UCZ7 4 0.47 0.107 
Semi-rural development, scattered 
houses in natural or agricultural 
area  

4 > 0.05 < 10 

*Additional information related to stations classified by each UCZ: UCZ1: KCB103, KCB104, KCB105, KCB106, KCB108; UCZ2: 
KCB102, KCB107; UCZ4: KCB101, KNE104, KNW103, KNW106, KNW107, KNW108, KSW103, KSW107; UCZ5: KSW109, KSW111; 
UCZ6: KCB110, KNE202, KSW102, KSW104, KSW108; UCZ7: KNE103, KNW104, KSE102, KSW110.
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3.3 Examining the relation between meteorological variables 

and UHI 

As mentioned in Section 3.2.4.2, the four parameters (!"!", Ri, ∇!" and ∇$) with 

underlying linkage to the atmospheric stability were compared with the !"#$" which is 

the decisive parameter for the P-G scheme. A correlation analysis with the averaged 

%&'((  (%&'(()))))))) ) (Figure 3.3a) and *&'((  (*&'(()))))))) ) (Figure 3.3b) demonstrates that 

!"#$" has the strongest associations with both the %&'(()))))))) (coefficient correlation [+] of  

-0.50) and *&'(())))))))  (+ = −0.57), indicating the reliability of background wind speed 

condition at 10 m a.g.l (!"#$") as a representative of atmospheric condition to study the 

UHI. 

Ri should theoretically provide more robust means to identify the state of the 

atmosphere, when compared to the P-G scheme based on cloud and wind data which does 

not incorporate the dynamics of the surface layer, although it is elegant in its simplicity 

and useful in the absence of ground measurements (Gupta and Sastri, 1990). However, 

Ri performs unsatisfactorily in the relationship with the UHII (+ = 0.23 with %&'(()))))))) and 

+ = 0.24 with *&'(())))))))). The increase of the Ri occurs with the greater ratio of ∇$ to ∇!" 

that is a measure of the dynamic stability through the ratio of buoyant production to 

mechanical production of turbulence near the rural ground surface (Mohan and Siddiqui, 

1998, Stull, 2012). Near ground surface, turbulence is the pivotal factor controlling the 

vertical exchange of momentum and heat fluxes and its intensity is estimated by the ∇!". 

A strong rural thermal inversion quantified by the ∇$  implies the strong stable 

stratification that can result in the suppression of the turbulent motion and reducing the 

turbulent fluxes. This reduction of the fluxes contributes to the shallower, but more stable, 
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surface boundary layer that could accommodate very low temperatures over rural areas 

during clear skies (Poulos and Burns, 2003), leading to the magnification of the *&'(( 

(Hu et al., 2013). 

One of the likely causes for Ri not performing as well as expected is the accuracy of 

the temperature and wind speed instruments. Accuracy, commonly known as systematic 

error, is defined as the capability of the instrument to measure the accurate value (or 

closeness to this value) while precision is the observational errors that is a random error 

and not related to the instrument itself (Cork et al., 1983). Previous studies have shown 

that Ri can be extremely sensitive to small variations in temperature and particularly in 

wind speed due to the greater control of it in the definition (see Equation 3.1) (Golder, 

1972, Bardal et al., 2018). Indeed, the increased scatter between !"#$" and Ri (Figure 

3.4a), compared to the one between !"#$"  and ∇$  (Figure 3.4b), suggest that the 

uncertainties triggered by the wind/temperature measurements potentially result in the 

poor performance of Ri. For example, Golder (1972) draw attention to the errors in the 

instruments of wind and temperature at two levels which could create errors in the 

calculation of the Ri, thereby, temperature and wind speed sensors are recommended to 

be mounted so far apart so that the temperature/wind speed gradient will be dominating 

over the uncertainty. Likewise, the comparisons between the Ri measuring by different 

heights of the sensors and the one observed by eddy covariance method at two coastal 

sites outlined the importance of choosing the measurement height that should be made 

with sufficient vertical separation to reduce the inaccuracies from the wind speed and 

temperature instruments (Bardal et al., 2018). The conclusion is that wind measured at 

single level is not only more pragmatic (and common) but also sufficient to describe the 

atmospheric condition for characterising the UHI (i.e. as a key parameter for classifying 
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the atmospheric stability in the P-G stability system). Using this finding as a basis for 

further analyses, this chapter continues by investigating seasonal impacts of background 

wind speed condition on seasonal and spatial variations of UHII.
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Figure 3. 3 Correlation coefficients (r) between five meteorological parameters and (a) 

%&'(()))))))) and (b) *&'(()))))))) 
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Figure 3. 4 Scatterplot between (a) !"#$" and Ri and (b) !"#$" and 5$, where the 

dashed lines represent the threshold of !"#$" for the PG classes 

3.4 Seasonal variations of the UHII and atmospheric 

condition 

3.4.1 General results 

According to the analysis in Section 3.3, background wind speed at 10m a.g.l (WS#$%) 

is found to be the meteorological parameter highly correlated to the UHI. Meanwhile, it 

is also the determinant to classify the atmospheric stability in the P-G scheme. This 

section will then assess the impacts of the WS#$% on the seasonal patterns of the UHII by 

applying the P-G classification scheme. 

Without considering seasonal differences, the daily magnitude of the pixel-averaged 

%&'(( (Figure 3.5a) and station-averaged *&'(( (Figure 3.5b) for different P-G stability 

classes present a significant increase in the UHII as atmospheric stability increases. These 

responses of both the %&'(( and *&'(( to the !"#$"  generally corroborate previous 

work in Birmingham, UK (Tomlinson et al., 2012, Azevedo et al., 2016). 
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The differences between the UHII (i.e. %&'(( and *&'(() under the four stability 

classes are statistically significant, supported by a one-way analysis of variance (ANOVA) 

test for independent samples together with the post-hoc Tukey tests. It shows that 

significant differences in the %&'((  ( 8 = 12.342, ; < 0.001 ) and *&'((  ( 8 =

24.561, ; < 0.001) exist at least between two scenarios (D-E, D-F, D-G, E-F, E-G, or 

G-F) at 0.001 confidence level. These significant differences of both %&'(( and *&'(( 

under different !"#$" conditions indicate that the !"#$" generally performs well for 

characterising the UHII during night-time. 

The P-G classification scheme can effectively be considered as an estimator of a 

simplified bulk Richardson number by considering only one WS measurement (Larsen 

and Gryning, 1986, Arya, 2001). The increase of the stability implies the decrease of 

!"#$" that is found to be crucial for modulating the spatial pattern and the magnitude of 

the thermal features that would be advected downwind of the source areas (Oke, 1982) 

and affect the *&'(( ultimately (Morris et al., 2001). Results herein also highlight the 

consistent impacts of !"#$" on modulating the magnitude of the %&'(( that is reduced 

under higher WS conditions, which was also found over Birmingham, UK (Tomlinson et 

al., 2012). Indeed, Lee (1979) discovered the existence of a “critical” background WS 

over urban areas, below which the city atmosphere becomes more unstable, compared to 

the rural atmospheric stability. Therefore, the increase of the %&'(( under more stable 

rural atmospheric conditions could be explained by the more unstable city atmosphere 

that allows a greater momentum heat flux to the surface and increase the surface 

temperature over urban areas. In addition, the more steady increment of the mean *&'(( 

under more stable conditions, reflected by the red points in Figure 3.5, gives evidence 

that the *&'(( is more affected by the !"#$", comparing to the %&'(( that is possibly 
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affected by the differences of other influential factors (e.g. seasonal differences of the 

input of solar radiation and anthropogenic heat etc.), together with the cloud and wind 

conditions under different P-G classes, becoming less stable or “linear” with increasing 

atmospheric stability. 

 
Figure 3. 5 Boxplots of daily (a) pixel-averaged sUHII and (b) station-averaged aUHII 

magnitude for different atmospheric stabilities, where the red points are the mean values 

of the UHII correspondingly 

3.4.2 Seasonal differences 

It is evident that the responses of both *&'(( (Figure 3.6a) and %&'(( (Figure 3.6b) 

to !"#$" differ under summer and transition seasons. Specifically, the increments of the 

mean UHII (i.e. *&'(( and %&'((: Figure 3.6) when the stability shifts towards stable 

are more substantial during summer, particularly from E to G. However, the limited 

number of available images possibly contributes to the misleading results under class D, 

where the mean UHII are similar to the ones under class E during summer. More 

importantly, the irregular variation of the %&'((  that tends to be weaker under more 

stable and neutral conditions during transition seasons from Figure 3.6b, indicating that 
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the WS#$%  generally has less of a role to play with the %&'((  in these conditions, 

compared to the *&'((. This rather contradictory result may be due to %&'(( being more 

affected by other causative factors particularly during transition seasons. One potential 

factor is the background temperature that could indirectly reflect the daily input of the 

solar radiation into the urban environment. This has been found to be linked to the 

seasonal variations of the %&'(( (from MODIS) from previous studies (Zhou et al., 2013, 

Zhou et al., 2016). Zhou et al. (2016) also discovered that the seasonal variations of the 

%&'(( are less evident when the input of the shortwave radiation into the urban system 

is controlled to be constant throughout the year from a modelling analysis. It is thereby 

suggested that land surface temperature follows the astronomical seasons mainly driven 

by solar radiation, where as the *&'((  is more influenced by the meteorological 

conditions corresponding to the regional climate (Zhou et al., 2013). Therefore, the larger 

variations of the background temperature under different stability classes during the 

transition seasons (Table 3.3) could have a greater impact on the development of the 

%&'((, leading to the inconsistent variation of the %&'(( shown in Figure 3.6 and the 

poorer performance of the !"#$"  in characterising the %&'(( . Figure 3.7 provides 

statistical evidence by showing the variations of the background air temperature during 

the transition seasons. On averaged, the change of the mean temperature (red dots in 

Figure 3.7) is consistent with the change of the %&'(( (Figure 3.6) during the transition 

seasons, where both the background temperature and %&'(( increase from class D to E 

before slightly decreasing from E to G. 

In addition, the results (Figure 3.6c) demonstrate that the differences between *&'(( 

and %&'((  (∆&'(( , *&'((  minus %&'(( ) are less affected by the WS#$%  during 

summer, where the averaged ∆&'(( is nearly constant (≈ 0℃) from class D to F.  It is 
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suggested that the impacts of the WS#$%  are more consistent on %&'((  and *&'(( 

particularly under neutral condition when the influences of the WS#$% more evidently 

affect the UHII, comparing to other causative factors. 

 



102 
 

 

Figure 3. 6 Boxplots of daily mean (a) aUHII, (b) sUHII and (c) ∆&'(( (=aUHII - sUHII) 

under summer and transition seasons where the available images are: Summer: D(3), 

E(23), F(24), G(9); Transition seasons: D(14), E(27), F(17), G(4); and each image 

considers aUHII and sUHII from 26 stations 
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Figure 3. 7 Background air temperature ($&(()) under the four stability classes during 

transition seasons 

3.5 Spatial variations of the UHII and atmospheric condition 

To investigate whether the spatial patterns of UHII are influenced by the WS#$%, the 

variations of the daily mean *&'(( and %&'(( across the six UCZs under four stability 

classes during summer and transition seasons are presented in Figure 3.8. The inter-UCZ 

UHII are clearly differentiated and universally follow the UCZ typology, where the most 

urbanised sites (UCZ1 and UCZ2) present the greatest nocturnal UHII. Contrary to 

expectations, both *&'(( and %&'(( from UCZ6 are greater than the ones from UCZ5 

under most of the cases (Figure 3.8). Stations classified as UCZ5 are more urbanised, 

have a lower NDVI and greater building fraction (Table 3.3), compared to UCZ6.  The 

reason for this unexpected contrasting magnitude of UCZ5 and UCZ6 is not clear but 

could possibly be explained by the geographical location of UCZ5 and UCZ6 in OKC. 

Referring to Figure 3.1, it is evident that stations classified as UCZ5 are located in the 
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south of UCZ6 and the central business district (CBD) in OKC. As a southerly wind is 

dominant over the study period, the advection effect from the southerly wind, together 

with the greater distance to the CBD, is likely to generate these surprising results that the 

UHII from UCZ5 is lower than the ones from UCZ6. (Note: the prevalence of Low-Level 

Jets (LLJs) which have been previously found to have significant impacts on the *&'(( 

in OKC: (Hu et al., 2013). Similar results (greater *&'(( from UCZ5 than UCZ6) were 

also found by Hu et al. (2016b) in OKC and in Jihon, France (Richard et al., 2018). 

Unfortunately, neither study provides explanation or further investigation. However, 

there is similar issue related to the station locations regarding the analysis of Richard et 

al. (2018), where some of the stations assigned as UCZ6 are closer to the city centre. This 

finding raises intriguing questions regarding the necessary considerations of advection 

(i.e. wind direction) and location of the stations in UMNs (i.e. distance to city centre) for 

a typology (i.e. UCZ) to classify the urban stations. Specifically, urban heat advection 

effects to the downwind areas from city centre have been shown to be non-negligible by 

using observational (Bassett et al., 2016) or numerical modelling data (Bassett et al., 

2017). Further studies, which take these additional concerns into account for inter-UCZ 

or inter-LCZ comparisons, will need to be undertaken. 

Significant differences of both the %&'((  and *&'((  across UCZs under all 

different conditions (Figure 3.8) indicates that each UCZ apparently has its own regime 

of the land surface and screen-height temperatures. This is regardless of atmospheric 

stability/WS#$% and is supported by the statistical test from ANOVA with a confidence 

level of 0.05 (Table 3.4). It could be explained by the fact that the inter-urban thermal 

contrasts (i.e. UHII) are largely driven by land cover, building or street structure, and 

vehicle traffic or space heating/cooling strongly linked to the release of anthropogenic 
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heat, particularly during clam, cloudiness nights (Stewart and Oke, 2012) As a result, 

many studies have been motivated to investigate the associations between the spatial 

variation of the UHII and properties of urban sites that mainly include the urban structure 

(e.g. sky view factor (Unger, 2009)), urban cover (e.g. urban fraction (Song and Park, 

2019) and vegetation cover (Ferreira and Duarte, 2019)), urban fabric (e.g. reflectance of 

the building/pavement materials (Taleghani and Berardi, 2018)) and urban metabolism 

(e.g. anthropogenic heating (Bohnenstengel et al., 2014)) (Oke et al., 2006). 

Figure 3.9 provides evidence for the potential controls of the WS#$% exerted on the 

spatial pattern of the UHII, by presenting the mean UHII (i.e. *&'(( or %&'(() of each 

station under class D and G during summer period. Although the spatial pattern of the 

UHI generally follows the UCZ typology, which is dominantly driven by the land surface 

characteristics according to the results from Figure 3.8 (i.e., greatest in UCZ1), the 

comparisons among stations clearly show that the spatial patterns of both the %&'(( and 

*&'((  varies under different !"#$"  conditions. Specifically, the thermal contrasts 

across stations are more consistent with the UCZ typology under low wind condition 

(class G), which generally decreases from UCZ1 to UCZ7. In particular to stations 

classified UCZ1, UHII tends to be reduced comparing to UCZ2 and UCZ4 under high 

wind condition according to Figure 3.9. It is therefore suggested that the horizontal spatial 

form of the nocturnal UHI patterns is likely to be affected by the WS#$%. 

The differentiated inter-urban variances from class D to G, reflected by the standard 

deviations of the UHII (A&*+,, for *&'((; A-*+,, for %&'(() across the UCZs shown in 

Figure 3.10, further suggest that the spatial variations of both the *&'((  and %&'(( 

could be potentially modified by the background atmospheric condition indicated by the 

WS#$%. During nights with ‘ideal’ conditions when wind speed becomes extremely low, 
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the inherently generic factor (i.e. land surface characteristics) largely accounts for the 

inter-urban differences of the UHII. Results herein discover the negligible influence of 

the WS#$% on the spatial variations of UHII, particularly during summer when both the 

A&*+,,  and A-*+,,  increases from class D (A&*+,, ≈ 0.28℃; A-*+,, ≈ 0.65) to class E 

(A&*+,, ≈ 0.72℃ ; A-*+,, ≈ 1.04 ). The varying spatial variance of the UHII across 

different wind conditions implicates the local disparity of the wind speed conditions 

across UCZs. Indeed, the local wind speed (screen-height level) and cloud condition will 

differ from site to site. In particular, local wind speed is highly influenced by each 

individual urban element (e.g. roughness length, aspect ratio and orientation etc.) within 

a radius of only a few hundred meters within the UCL (Oke et al., 2017). Therefore, the 

stronger wind speed (< 7D/% herein) from rural background potentially contributes to 

greater contrasts of the local wind speed across UCZs and modifies the spatial pattern of 

the surface or air temperature and ultimately the %&'(( and *&'((. Meanwhile, it could 

also reduce the spatial differences of the UHII by strong wind advection, supported by 

the consistent decrease of both the A&*+,, and A-*+,, from low (class G) to high wind 

speed condition (class D), except for the class E during transition season that is likely to 

be affected by the background temperature discussed in Section 3.2.4. 
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Figure 3. 8 Bar plot with standard error bars of the (a) mean sUHII and (b) mean aUHII for each Pasquill-Gifford stability class distributed 

by the UCZ classification 
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Table 3. 4 ANOVA test for !"#$$ and %"#$$	across UCZs under the four atmospheric stability classes during summer and transition seasons. 

Summer 

UHII Type 
Pasquill-Gifford stability classes 

D E F G 
!"#$$ ' = 5.649, / = 0.002 ' = 8.398, / < 0.001 ' = 20.95, / < 0.001 ' = 3.215, / = 0.030 
%"#$$ ' = 7.662, / < 0.001 ' = 7.407, / < 0.001 ' = 8.249, / < 0.001 ' = 11.770, / < 0.001 

Transition seasons 

UHII Type 
Pasquill-Gifford stability classes 

D E F G 
!"#$$ ' = 7.752, / < 0.001 ' = 14.880, / < 0.001 ' = 10.990, / < 0.001 ' = 15.450, / < 0.001 
%"#$$ ' = 3.976, / = 0.011 ' = 6.408, / < 0.001 ' = 4.074, / < 0.001 ' = 5.009, / = 0.004 
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Figure 3. 9 Examples of Bar plots of averaged !"#$$ (a1 and a2) and %"#$$ (b1 and b2) from each station during summer under G (a1 

and b1) and D (a2 and b2) stability classes
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Figure 3. 10 Variation of the standard deviation of both the !"#$$ and %"#$$ across 

UCZs during (a) summer and (b) transition seasons 

3.6 Conclusions 

The configuration of OKCNET with multiple level temperature and wind 

measurements provides a unique opportunity to examine the effectiveness of the P-G 

classification scheme (i.e. comparisons with Ri) on characterising the seasonal and spatial 

patterns of the !"#$$ and %"#$$ durng night-time. The key findings for this analysis are 

summarised as follows: 

(i) Although it was postulated that the P-G scheme could be improved by 

using additional measures such as Ri, it appears that the PG classification scheme (in 

its simplest form) is applicable for characterising the UHII. This was supported by the 

strongest correlation between UHII and &'!"#  comparing to the other parameters 

studied. However, the sensitive nature of Ri to input data (at two levels) is highlighted 

as a caveat. 
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(ii) Without taking seasonal effects into consideration, the P-G classification 

indicated by &'!"#  yields significant differences of %"#$$  and !"#$$  across 

different classes (from high to extremely low wind conditions) and the averagely 

increase of both of them under more calm conditions. This result highlights the 

important role of WS!"$ on characterising the UHI. 

(iii) The seasonal analysis provides evidence that the role of WS!"$  is less 

well defined in Autumn and Spring. This is considered to be because the background 

temperature is more variable than during the summer months. 

(iv) The analysis of the spatial variation of the UHII across UCZs implies the 

potential impacts of the atmospheric condition represented by WS!"$ in determining 

the spatial pattern of both !"#$$ and %"#$$. 

Although limited samples used in this study can increase some uncertainties in the 

results and the findings summarised above will doubtless be much scrutinised, there is an 

immediately dependable conclusion that it is imperative to consider the effects of WS!"$ 

on investigating the relationship and difference between %"#$$  and !"#$$ . Further 

research should be undertaken to repeat this analysis in other cities or during a longer 

time period to explicitly determine the response of both UHII to the atmospheric 

condition. 

In addition, the contrasting magnitude of UHII from the two UCZs (UCZ5 and UCZ6) 

outlines the importance of (i) the local advection effect largely determined by surface 

wind conditions or synoptic weather system and (ii) the exact locations of the stations (i.e. 

distance to the CBD), which is worthy of consideration when further refining future 

typologies (e.g. UCZ, LCZ) for UHI studies. 
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3.7 Summary 

This chapter has outlined the influence of the atmospheric condition indicated by the 

background wind speed condition on the behavior of nocturnal surface and urban canopy 

heat islands, using land surface temperature data from satellite and ground observations 

from UMN in OKC as a case study. By accounting for seasonal and intra-urban (UCZ) 

variations of UHII, results clearly show that the P-G classification scheme is workable 

for classifying the atmospheric conditions that have significant impacts on the temporal 

and spatial patterns of the UHI. This chapter provides scientific evidence for choosing 

&'!"# as a key factor representing the atmospheric conditions to study the UHII, which 

is the fundamental basis for the analysis conducted in Chapter 4 and 5.
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Chapter 4   Impact of Atmospheric Conditions 

and Levels of Urbanisation on the Relationship 

between Nocturnal Surface and Urban Canopy 

Heat Islands 

 
 

 

This chapter aims to investigate into the relationship between %"#$$ and !"#$$ under 

specific atmospheric conditions and land surface characteristics. This is an important 

step for trying to compare it in difference cities for the generalisation purpose in Chapter 

5. 

 

This Chapter has been published as: 

Feng, J.L., Cai, X.M. and Chapman, L., 2019. Impact of atmospheric conditions and 

levels of urbanization on the relationship between nocturnal surface and urban canopy 

heat islands. Quarterly Journal of the Royal Meteorological Society, 145(724), pp.3284-

3299. https://doi.org/10.1002/qj.3619 
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4.1 Introduction 

The Urban Heat Island (UHI) - the phenomenon that the temperature in urban areas 

is warmer than the surrounding rural areas, has been investigated for several decades due 

to its potential impacts on human life in urban areas (Voogt and Oke, 2003), which has 

been fully introduced in Chapter 2. UHI has been well studied and quantified in many 

different cities (Kolokotroni and Giridharan, 2008, Shao et al., 2006, Streutker, 2002, 

Morris et al., 2001). However, it remains a compelling focus in urban climatology 

because the land-atmosphere interaction is far more complicated than originally 

hypothesised. The land-atmosphere interactions at city scale are based on various energy 

and moisture exchanges within a complicated urban ecosystem with feedback systems 

between the land-atmosphere interactions and the whole urban ecosystem that are still 

ambiguous, therefore there are more uncertainties in UHI studies (Jain et al., 2017). 

The intensity of the canopy air UHI (!"#$$ ) is generally quantified from a 

comparison of air temperatures (*% ) derived from weather stations within the urban 

canopy layer (UCL) with reference sites in rural areas (Oke, 1982). In this way, the energy 

exchange processes controlling the characteristics of !"#$$ are dominantly controlled 

by site-specific characteristics and the microscale turbulence processes. However, in the 

frequent absence of urban weather stations, surface heat island intensity (%"#$$) can 

instead be derived using the land surface temperature (*& ) from satellite instruments 

(Tomlinson et al., 2011a). %"#$$  data provide opportunities to study the UHI in a 

spatially continuous way with higher spatial resolution and lower cost compared to the 

approach of urban meteorological networks (UMN: (Muller et al., 2013a)). However, 

there exist significant compromises of low temporal resolution (i.e. a daily snapshot, and 
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the measurement of *& as opposed to *%). Therefore, it is both advantageous and practical 

to investigate the relationship between %"#$$  and !"#$$  (the %"#$$-!"#$$ 

relationship) in order to work backwards and estimate air temperatures from surface 

temperatures. However, this is a complex task with *&  having a different physical 

meaning compared to *%, which has been mentioned in Chapter 2. In brief, satellites have 

a view of ground surface from a sensor that receives the average radiative information 

from the surface for each pixel which depends on the satellite viewing angle. Explicitly, 

only radiative source areas and surfaces within the line of sight of the sensor can be 

detected. In this case, the different physical representations between *&  and *%  in the 

complicated city-atmosphere system induce more uncertainties between %"#$$  and 

!"#$$. 

There are numerous factors influencing the %"#$$-!"#$$ relationship which can be 

simply divided into three classifications: meteorological/climatological conditions (e.g. 

solar radiation, wind conditions and season etc.), land surface properties (e.g. land and 

cover types, albedo, and building structures etc.), instruments’ issues, e.g. satellite (e.g. 

overpassing time, viewing angle etc.) and weather stations (e.g. accuracy, exposure etc.) 

characteristics, as discussed in Chapter 2. However, it is difficult to simultaneously 

consider all due to interdependencies and difficulties in quantification. As discussed in 

Chapter 2, a direct investigation of the %"#$$-!"#$$  relationship can minimise the 

impact of background temperature variability submerged in the *& and *%, therefore, this 

study will focus on the impact of season, wind speed (WS) and basic land-use categories 

modified from local climate zones (LCZ) (urban / suburban) (Stewart, 2011) on the 

%"#$$-!"#$$ relationship during night-time. All three impacts are of great importance 

to the %"#$$-!"#$$ relationship as discussed in Chapter 2. In brief, seasonal patterns of 
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the %"#$$-!"#$$  relationship need to be considered because of the noticeable 

differences of the seasonal climate conditions whereas WS condition and different LCZs 

(i.e. land-use) can represent the evaporation or condensation tendency, atmospheric 

stability conditions and the amount of the reflected or emitted radiation fluxes in the urban 

environment. Specifically, WS in the atmospheric boundary layer can influence the 

transport of moisture, heat, momentum and pollutants horizontally and vertically by 

advection and turbulent mixing. The LCZ system is defined to classify the urban and rural 

sites based on “climatopes” (Wilmers, 1990) which are closely linked to surface 

structures and land-use types (Stewart and Oke, 2012). 

In order to investigate the nocturnal %"#$$-!"#$$ relationship, a unique statistical 

analysis combining linear regression models with two-dimensional (2-D) distribution 

tests is applied in this study. The high resolution *% data from a dense UMN (Birmingham 

Urban Climate Laboratory, BUCL) (Chapman et al., 2015) in Birmingham, UK, along 

with *& datasets from the Moderate Resolution Imaging Spectroradiometer (MODIS) are 

used.  

4.2 Methods and data 

4.2.1 Study area and meteorological station data 

4.2.1.1 BUCL Network 

Birmingham ( 52.4862°	3, 1.8904°& ) is the second largest city in the UK 

(approximate 278 km') located at the centre of the England with an estimated population 

of 1.1 million (Birmingham City Council, 2013). Further descriptions have been provided 

in Chapter 2. 
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Figure 4. 1 Locations and LCZ classification of weather stations from BUCL and Met 

office in this study in Birmingham. Note: The Urban Atlas land use type is classified by 

the European Environment Agency based on SPOT 5 images (2010) and city map (2008)
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4.2.1.2 Site Classification 

LCZ is an indicator for urban studies which considers the surface properties and the 

surrounding environment of a weather station, such as the sky view factor, aspect ratio 

and roughness etc.(Stewart and Oke, 2012). In particular, the structures of buildings and 

other roughness elements are of great importance to the modification of the longwave 

radiation emission and reflection from the urban surface that affects both the air 

temperature and surface temperature. For instance, the building height and sky-view 

factor are key parameters for the estimation of multi-reflected radiation inside a street 

canyon. The different density and orientation of roughness elements can enhance 

anisotropy effects which produces more uncertainties in sending or receiving the radiation 

information from the urban surface caused by different satellite viewing angles (Voogt 

and Oke, 1998). Moreover, the different materials (and age) of the roughness elements 

have diverse heat capacities, leading to the variant storage heat fluxes and the upward 

longwave radiation fluxes. The magnitude of the impact on airflow varies considerably 

across different roughness elements, which makes the surface-air temperature 

relationship substantially more complicated in urban areas. In addition, LCZ can also 

indirectly reflect the humidity condition for each station. 

The LCZ classification of the weather stations (Figure 4.1) used in this study are 

documented in (Bassett et al., 2016). There are five LCZs assigned to the weather stations 

in Birmingham (LCZ1: Compact high rise, LCZ2: Compact mid-rise, LCZ5: Open mid-

rise, LCZ10: Heavy industry, LCZ6: Open low rise). Only one station classified as LCZ1, 

LCZ10 or LCZ5; three stations are classified as LCZ2 and the remaining 15 stations 

belong to LCZ6. The details of surface and geometric properties of different LCZs were 

shown by Stewart and Oke (2012). 
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4.2.2 MODIS Land surface temperature data 

MODIS daily *& products (MOD11A1 and MYD11A1) are used in this study (further 

details can be found in Chapter 2). In summary, there are 63 and 88 images available for 

Aqua and Terra satellites respectively during the study period. The temporal and spatial 

consistence between *& and *% follows the method introduced in Chapter 2. 

4.2.3 Estimation of UHII 

Both %"#$$  and !"#$$  are calculated according to the method introduced in 

Chapter 2. 

4.2.4 Statistical methodology 

Data from all stations are grouped by (i) seasons, (ii) WS and (iii) levels of 

urbanisation (urban / suburban) respectively (Table 4.1 provides the summary of the 

sample size in terms of these three variables). The influences of season, WS and levels of 

urbanisation on the %"#$$-!"#$$ relationship are initially investigated, based on linear 

regression models (LRM) (Montgomery et al., 2012). LRM is chosen because of its 

simplicity compared to other non-linear regression models and it is easier to interpret the 

relationship between the two variables. Significance tests for the LRM and regression 

coefficients (slope and intercept) are conducted subsequently based on 0.01 level of 

significance. 
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Table 4. 1 Summary of the available satellite imageries and sample size according to different moderate variables 

Moderate variable Group Available imagery for Aqua satellite Available imagery for 
Terra satellite Total sample size from all stations (combined two satellites) 

WS  
WG1: 0-2 m/s  33 39  1073 
WG2: 2-4 m/s  27 45  1127 
WG3: 4-6 m/s  3 4  116 

Season 

Spring 14 21 660  
Summer 29 46  1048 
Autumn 10 13  351 
Winter 10 8  257 

Site classification 
Urban group  63 88  432 

Suburban group  63 88  1884 

NB: total sample size from all stations is based on the availability of !! and !" for each station
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An interaction effect can exist in LRM when the impact of an independent variable 

on a dependent variable is affected by a third moderator variable (Jaccard et al., 2003). In 

this study, the influence of the three moderator variables and the overall interaction effect 

is then examined by the analysis of covariance (ANCOVA) that can be used to compare 

two regression lines corresponding to two values of moderator variable and to show if the 

two regression lines (represented by their respective slope and intercept) are significantly 

different. For instance, LRMs are derived for four seasons, and the slopes/intercepts 

assessed via ANCOVA. The differences between LRMs in four seasons will be reflected 

by the assessment of slopes/intercepts in ANCOVA. The overall interaction effect 

indicates the seasonal impacts on the linear !"#$$-%"#$$ relationship. 

Uniquely, 2-D distribution analysis using confidence ellipses is implemented in this 

study. These are generated at the 90% confidence level (Monette, 1990) and used to 

visualise the 2-D distributions connected with linear models. This step adds a useful 

summary of the relationship between two variables such as the means and standard 

deviations etc. (Friendly et al., 2013). Specifically, the x-y coordinates of the centre of 

the confidence ellipse are the means of the two variables, i.e. !"#$$ and %"#$$. The 

magnitude and the orientation of the ellipse are the eigenvalues and eigenvectors, 

respectively, of the covariance matrix for the two variables, with consideration of a given 

confidence level (e.g. 90% in this study). In other words, the major and minor axes of the 

ellipse represent the direction and magnitude of the largest and second largest spread of 

the data. The samples (i.e. !"#$$ and %"#$$) can be decorrelated by rotating each data 

point such that the eigenvectors become the new reference axes – the major axis as y-axis 

and the minor axis as the x-axis. The principal component analysis (PCA) simply assumes 

that the most interesting feature is the one with the largest variance or spread. If all the 
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points are projected onto the largest eigenvector (major axis), the dimension of these data 

is reduced. In other words, the calculation of the confidence ellipse is equivalent to a two-

dimensional PCA. The confidence level is chosen based on the Chi-Square distribution 

(Wilson and Hilferty, 1931) with specific “degrees of freedom” (representing the number 

of unknowns) (Spruyt, 2014). The 2-D Kolmogorov-Smirnov (K-S) test is then applied 

to further investigate the goodness-of-fit for the 2-D distributions of the !"#$$-%"#$$ 

relationship in terms of season, WS and LCZ. The 2-D K-S test developed by Peacock 

(1983) is the analogue of the one-dimensional K-S test. The statistical result of the 2-D 

K-S test is the maximum difference of the corresponding integrated probabilities (the 

fraction of the points for a quadrant) in four natural quadrants at a given point in the data, 

called statistic D, which is the maximum absolute difference between the two cumulative 

distributions. The key parameters calculated in the K-S test are demonstrated in the study 

of Peacock (1983). 

4.3 Results 

LRMs are generated based on different moderator variables, where % is slope and & 

is intercept coefficient, and the independent (') and dependent (() variables are !"#$$ 

and %"#$$ respectively: 

( = % ∗ ' + &                                                                                                 Equation (4.1) 

The LRM for whole datasets was also calculated to compare with the LRMs with 

consideration of any moderator variable: 

( = 0.57' + 0.26, 	(5! = 0.35)                                                                     Equation (4.2) 
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This study is primarily focused on the regression output (5!, slope and intercept) 

from the LRMs, the confidence ellipses and the results from ANCOVA and K-S tests 

based on the three moderator variables. The 	5!  value herein is interpreted as the 

percentage of the variation of %"#$$ explained by the regression equation using !"#$$ 

as the only independent variable. The slope coefficient effectively represents an 

increment of the %"#$$ for every one-degree increment of the !"#$$, which can reflect 

the physical processes between surface and air. The intercept coefficient represents the 

value of %"#$$ when the !"#$$ becomes zero. A positive value of the intercept indicates 

that the %"#$$ still exists despite the lack of a !"#$$. Although there is limited available 

physical information from the interpretation of the intercept, the value of the intercept 

does appear to be statistically correlated with the slope.  

4.3.1 The effect of wind speed 

!"#$$  and %"#$$  data from all stations are grouped as low (WG1: WS<2m/s), 

median (WG2: WS=2-4m/s) and high (WG3: WS=4-6m/s) WS conditions. The linear 

regressions and 2-D distributions between	!"#$$  and %"#$$  are visualised in Figure 

4.2a and 4.2b. The mean values of the	!"#$$ and %"#$$ decrease with increasing WS, 

illustrated by the moving tendency of the centre of the estimated ellipses to (0,0). The 

ratio of major axis to minor axis is largest in the WG2, indicating the more apparent linear 

relationship. 

The slope coefficient of the regression models becomes smaller with increasing WS 

(Figure 4.2a), which suggests the reduced sensitivity of the %"#$$ to WS compared to 

!"#$$. In addition, the intercept coefficients tend to decrease with increasing WS as well, 

demonstrating the smaller %"#$$ when !"#$$ comes to zero under high WS condition. 
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It should be noticed that most values of intercept are positive due to the prevalent 

existence of the UHI phenomenon in cities. 
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Figure 4. 2 Linear and elliptical trends of !"#$$ and %"#$$ based on three wind speed conditions in Birmingham: (a) LRM only; (b) 

confidence ellipse only and (c)LRM and confidence ellipse without data points, where the larger circles are the centre of corresponding 

ellipses, the smaller circles are the corresponding points of the major/minor axis, MX is major axis length and Ratio is the ratio of major to 

minor axis in (b)
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The !! value of the regression model is highest in median WS group (WG2) (!! =

0.35) but is slightly lower in WG1 (!! = 0.27). In WG3, both )*+,, and -*+,, are 

small so that the influence from other processes become visible and these are viewed as 

noise in Figure 4.2 where the !! value is smallest (0.09). The decrease of !! values from 

WG2 to WG3 suggests a smaller sensitivity of )*+,, to -*+,,. Moreover, the decrease 

of the slopes under high WS condition is also indicative to the decline of the !! values. 

For example, a slope value of zero implies that the value of -*+,, will be independent 

of )*+,,. Thus, it is much less confident to estimate -*+,, based on )*+,, under high 

WS condition. In addition, the !! values decreased after classifying the data based on 

different WS because the data are subtracted to a more specific or smaller range. 

The results from ANCOVA (Table 4.2) for the three wind groups (WGs) show that 

the overall WS effect on the linear 	)*+,,--*+,, relationship is significant at 99% 

confidence level (F=9.77). Moreover, the slopes and intercepts in the three WS groups 

are all significantly different at the 99% confidence level. The K-S test (Table 4.3) 

illustrates that the 2-D distributions are significantly different at 0.001 level in the three 

WGs. According to the D statistics, a 76% difference of the 2-D 	)*+,, - -*+,, 

distribution is found between WG1 and WG3, followed by 46% between WG2 and WG3 

and 39% between WG1 and WG2. 

Table 4. 2 ANCOVA results based on the updated wind speed groups 

Base level Slope Intercept Interaction effect 
WG1 (WG2, 
WG3) 

WG1≠WG2*** 
WG1≠WG3*** 

WG1≠WG2*** 
WG1≠WG3*** ≠*** (F=9.77, p<0.001) 

WG2 (WG3) WG2≠ WG3** WG2≠ WG3*** ≠*** (F=12.81, p<0.001) 
NB: “≠” means “reject null hypothesis” — significant different (slope and intercept) 
or significant interaction effect exists (WS effect) (0.001***, 0.01**, 0.05*, 0.1) 
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Table 4. 3 D statistics from K-S test results based on the three wind speed groups 

 Paired group WG1 WG2 WG3 

WG1 --    

WG2 0.39 (0.08) --  

WG3 0.76 (0.19) 0.46 (0.19) -- 
NB: the significant tests reached 0.001 confidence level for all paired groups and the 
numbers in brackets are the 0"("$%.%%') 
4.3.2 Seasonal differences 

The LRM and confidence ellipses for the )*+,,--*+,, relationship for four seasons 

are shown in Figure 4.3a and 4.3b. It is evident that the centre points of the ellipses, 

representing the mean values of )*+,,  and -*+,, , have a clear tendency to move 

towards the origin (0,0) in the order of summer, spring, autumn and winter, indicating a 

greater magnitude of the UHI in summer and spring. The longer major axis of the 

confidence ellipses and the larger ratio of major axis to minor axis are also indicative of 

the stronger linear trend in summer and spring. Although the available data in winter 

(n=257) is more limited than other seasons (Table 4.1), the lowest ratio of major axis to 

minor axis and the more rounded shape of the confidence ellipses indicate that the )*+,,-

-*+,, relationship is much less prominent in winter. 
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Figure 4. 3 Linear and elliptical trends of !"#$$ and %"#$$ based four seasons in Birmingham: (a) LRM only; (b) confidence ellipse only 

and (c) LRM and confidence ellipse without data points, where the larger circles are the centre of corresponding ellipses, the smaller 

circles are the corresponding points of the major/minor axis, MX is major axis length and Ratio is the ratio of major to minor axis in (b).
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Figure 4.3a also shows the summary of the estimated LRM in four seasons. The rate 

of change of the linear models (slope) is small for autumn and winter. All LRMs were 

statistically significant at 99.9% confidence level except for the intercept in winter (not 

shown here), suggesting less reliability of the linear models in colder weather. In Figure 

4.3a, the low !! values for autumn and winter suggest more uncertain influencing factors 

affecting the "#$%% -&#$%%  relationship. A more limited sample size (Table 4.1) in 

autumn and winter due to fewer clear-sky nights is also one of the potential factors 

causing the lower !! values. Moreover, the smaller magnitude of both "#$%% and &#$%% 

in colder seasons contributes to the reduced confidence of the estimated LRM. 

Furthermore, stronger anthropogenic heat (especially from space heating) may be 

responsible for the less correlated data between "#$%%  and &#$%% , leading to the 

decrease of !! values as well.  

Table 4.4 and Table 4.5 demonstrate the results from the subsequent ANCOVA and 

K-S test that present interaction effects and differences of intercepts and slopes between 

different seasons and the significant test of 2-D distributions between "#$%% and &#$%%, 

respectively. Overall, results from the two statistical tests provide the confidence to 

support the previous discussion of the regression models. The seasonal impacts (overall 

effect) are significant at 0.001 level in the group of four but less significant in these two 

groups – “spring and summer” and “autumn and winter”. However, K-S test (Table 4.4) 

demonstrates that in all tests, ' > '"("$%.%%') where '"("$%.%%') is the critical value of 

the statistics D at 99.9% confidence level; in other words, the 2-D distributions between 

"#$%% and &#$%% are all significantly different at 99.9% confidence level between any 

pair of two seasons from the K-S test result. Moreover, the D statistics represent the 

maximum 2-D distribution differences as well as the overlapping portions in a quadrant 
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of the data points in a paired group. In particular, the differences are greater in “summer, 

autumn (45%)” and “summer, winter (55%)” paired groups. In addition, the differences 

between '  and ')  (∆' = ' − ') ) are greatest in “summer, autumn” and “summer, 

winter” paired groups, which also indicated the bigger differences of the distribution 

comparing summer to autumn and winter. 

Table 4. 4 ANCOVA results based on the four seasons 

 Paired group Spring Summer Autumn Winter Four seasons 
Spring --  (≠*, =) (≠***, =) (≠***, =) -- 
Summer ≠* (F=3.44) -- (≠***, =) (≠***, ≠**) -- 
Autumn ≠*** (F=27.45) ≠*** (F=14.61) -- (=, ≠**) -- 
Winter ≠*** (F=15.74) ≠** (F=7.35) = (F=0.04) -- -- 
Four seasons -- -- -- -- ≠*** (F=10.80) 

Note: bold font – interaction effect, regular font – significant tests of slope and intercept; 
“=” means “cannot reject null hypothesis”, “≠” means “reject null hypothesis” — 
significant interaction effect exists (seasonal effect) (0.001***, 0.01**, 0.05*, 0.1) 
 

Table 4. 5 D statistics from K-S test results based on the four seasons 

 Paired 
group Spring  Summer  Autumn  Winter  

Spring --     

Summer 0.29 
(0.10) --   

Autumn 0.25 
(0.13) 

0.45 
(0.12) --  

Winter 0.43 
(0.14) 

0.55 
(0.14) 

0.22 
(0.16)  -- 

Note: the significant tests reached 0.001 confidence level for all paired groups and the 
numbers in brackets are the '"("$%.%%') 
 

4.3.3 The role of site characteristics 

The analysis is conducted to infer the role of LCZ. Due to the limited stations for 

some LCZs in the city, LCZ1 and LCZ2 are classified as urban group, whereas LCZ5, 

LCZ6 and LCZ10 are classified as suburban group. Figure 4.4 shows the confidence 
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ellipses and linear regression models based on the urban and suburban groups. As 

expected, the #$%% is stronger for urban group and weaker for suburban group whose 

ellipse’s centre is closer to (0,0). The longer major axis and the larger ratio of the major 

to the minor axis indicate a more noticeable linear relationship for urban group. 

Overall, differences in the regression coefficients between urban and suburban 

groups are evident, which increase from urban to suburban group for both slope and 

intercept. The pattern of the slopes of the LRMs indicates a lower sensitivity of the &#$%% 

than "#$%% for suburban group. In terms of intercepts, the positive values in both urban 

and suburban linear regression models indicate that &#$%% tends to exist even when the 

"#$%%  becomes zero. Meanwhile, the higher value of the intercept suggests that the 

magnitude of the &#$%% tends to be higher in urban than suburban group. !! values are 

higher in urban group (0.46) than suburban group (0.28). Compared with the !! value of 

0.35 for the whole dataset, a higher !! value of 0.46 is obtained for the subset, urban 

group. It is therefore concluded that among the three moderator variables (season, wind 

speed, and LCZ), LCZ can increase the !! value of the linear "#$%%-&#$%% relationship 

for a subset of data. This is consistent with the finding in Figure 4B that for the subset of 

‘urban’, both the major axis length and ratio of major to minor axis are the largest among 

all subsets for all three moderator variables (see Figures 4.2b & 3b). 
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Figure 4. 4 Linear and elliptical trends of !"#$$ and %"#$$ based on urban and suburban groups: (a) LRM only; (b) confidence ellipse 

only; (c)LRM and confidence ellipse without data point, where the larger circles are the centre of corresponding ellipses, the smaller circles 

are the corresponding points of the major/minor axis, MX is major axis length and Ratio is the ratio of major to minor axis in (b). 
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The ANCOVA (Table 4.6) and K-S tests (Table 4.7) are conducted for each LCZ 

subset and for the urban and suburban subsets. With respect to different LCZs, the two 

statistical tests show more evidence for the comparison between different paired groups. 

The results from ANCOVA test (Table 4.6) illustrate that the differences between the 

regression models are mostly significant among many of the different paired groups for 

LCZs (green highlighted section). However, the differences of some paired groups: LCZ6 

and LCZ1, LCZ6 and LCZ2 are not significant. Moreover, additional statistical tests for 

slope and intercept (blue highlight section) infer that the LRM differences between some 

paired groups of LCZs are not significant in this respect. From the K-S test (Table 4.7), 

the 2-D distributions are all significantly different between the five LCZs (! < 0.001). 

Moreover, it is evident that the differences between the values of & and &! (∆&) become 

larger when the compared group is less urbanised for each column. For example, the 

values of ∆& increase as the following order of the paired groups: “LCZ1, LCZ2”, “LCZ1, 

LCZ5”, “LCZ1, LCZ10”, “LCZ1, LCZ6”. In contrast, the ∆& values will decrease when 

the paired groups are more similar, such as “LCZ10, LCZ6”.  

For the urban and suburban groups, ANCOVA test (Table 4.6) provides sufficiently 

high confidence levels for the differences of the linear ()*++ -,)*++  relationship. 

Moreover, the highest F value (F=11.20) is found in the urban and suburban paired group, 

which indicates the reliability of this classification compared to analyse individual LCZ. 

The K-S test (Table 4.7) shows that the & statistics (& = 0.32, &! = 0.10) are almost the 

largest among all other paired groups at 0.01 confidence level, which also indicates the 

urban and suburban classification is appropriate and can be implemented for further 

analysis. 
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Table 4. 6 ANCOVA results based on different LCZs and levels of urbanisation 

 Paired 
group LCZ1 LCZ2 LCZ5 LCZ6 LCZ10 Urban 

group 
Suburba
n group 

All 
LCZ 

LCZ1 --  (=, ≠***) (≠***, =) (=, ≠**) (≠***,≠
***) -- -- -- 

LCZ2 = 
(F=0.66) -- (≠***, =) (=, =) (≠***, 

=) -- -- -- 

LCZ5 ≠** 
(F=9.99) 

≠*** 
(F=10.87) -- (≠**, =) (≠*,≠**

) -- -- -- 

LCZ6 = 
(F<0.01) = (F=0.14) 

≠** 
(F=10.22

) 
-- (≠, =) -- -- -- 

LCZ10 ≠** 
(F=7.87) 

≠*** 
(F=11.10) 

≠* 
(F=3.24) 

≠* 
(F=2.90

) 
-- -- -- -- 

Urban 
group -- -- -- -- -- -- (≠***,≠

***) -- 

Suburban 
group -- -- -- -- -- 

≠*** 
(F=11.

20) 
-- -- 

All LCZ -- -- -- -- -- -- -- 
≠*** 

(F=8.9
79) 

Note: bold font – interaction effect, regular font – significant tests of slope and intercept; 
“=” means “cannot reject null hypothesis”, “≠” means “reject null hypothesis” — 
significant interaction effect exists (0.001***, 0.01**, 0.05*, 0.1) 

Table 4. 7 D statistics from K-S test results for different LCZs 

Paired group LCZ1  LCZ2  LCZ5  LCZ6  LCZ1
0  

Urban group  Suburban group  

LCZ1 
Urban group 

 --    

  
  
  
0.32 (0.10)  
  
  

LCZ2 0.24 
(0.20)  --   

LCZ5 Suburban 
group 

0.36 
(0.26) 

0.23 
(0.23) --      

LCZ6 0.44 
(0.17) 

0.32 
(0.12) 

0.33 
(0.21) --   

LCZ1
0 

 0.42 
(0.27) 

0.28 
(0.24) 

0.34 
(0.29) 

0.27 
(0.21)  -- 

Note: the significant tests reached 0.001 confidence level for all paired groups and the 
numbers in brackets are the &"("$%.%%') 
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4.4 Discussion 

The statistical significance of the two regression coefficients (slope and intercept) of 

the LRMs analysed in Sections 4.3.1 - 4.3.3 can indicate some useful information about 

the relationship between ()*++  and ,)*++ . In fact, the slope can be related to the 

covariance between ()*++  and ,)*++  (denoted by 123(()*++, ,)*++) ) and the 

standard deviation of these two variables (denoted by 7&)*+,,  and 7&!*+,, ) (Fisher, 

1934):  

(82!9 = -./()*+,,,!*+,,)
1!2()*+,,) = : ∙ 34(!*+,,)34()*+,,)                                                         Equation (4.3a) 

: = -./()*+,,,!*+,,)
34()*+,,)∙34(!*+,,)                                                                                  Equation (4.3b) 

where :  is the correlation coefficient (: = √=6 ) and >,:(()*++)  is the variance of 

()*++. Table 4.8 lists the results of the statistical parameters for ()*++ and ,)*++. The 

following discussion will be based on these statistical quantities. 



136 
 

 
 
 

 

Table 4. 8 Statistical quantities related to	"#$%% and &#$%% for different wind speed groups, season groups and urban/suburban groups 

Moderate variable 
 

'()("#$%%, &#$%%) -.!"#$$ -.%"#$$ SD Ratio (= &'!"#$$
&'%"#$$

) 
Slope 
from 
LRM 

WS 
WG1 0.66 1.11 1.16 1.05 0.54 
WG2 0.59 1.15 0.87 0.76 0.45 
WG3 0.11 0.81 0.45 0.56 0.16 

Season 

Spring 0.61 0.99 1.07 1.08 0.63 
Summer 0.85 1.24 1.19 0.96 0.55 
Autumn 0.32 0.96 0.84 0.88 0.34 
Winter 0.16 0.71 0.69 0.97 0.32 

Site characteristic Urban group 1.04 1.23 1.25 1.02 0.69 
Suburban group 0.60 1.12 1.01 0.90 0.48 
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4.4.1 Difference of the !"#$$-%"#$$ relationship under three WGs 

According to the derived LRMs and confidence ellipses in Section 4.3.1, an increase 

of WS reduces the slope and intercept values. This is consistent with the rotation of the 

confidence ellipses with WS. From Table 4.8, the decrease of both !"!"#$$ and !"%"#$$ 

with increasing WS indicates that WS can reduce the variabilities of both #$%&& and 

'$%&& by turbulent mixing, but is more effective for #$%&&, which is reduced to 0.45℃ 

for WG3, compared with 0.81℃ for '$%&&. These imply that /! is more affected by WS 

than /%  due to different processes influencing these two variables by wind flow. In 

addition, 012('$%&&, #$%&&)  decreases significantly with WS, indicating a much 

weaker joint variability of '$%&& and #$%&& for WG3. This suggests that there are more 

similarities between '$%&& and #$%&& for low WS scenarios, but more dissimilarities 

for high WS scenarios. The implication is that use of satellite data to infer #$%&& has a 

higher confidence for low WS conditions than for high WS conditions. 

The slope is likely to be related to wind advection. The spatial pattern of #$%&& is 

shifted by advection due to the wind transport of air temperature directly (Bassett et al., 

2016, Heaviside et al., 2015). In contrast, the spatial pattern of '$%&& should be more 

influenced by the local-scale radiation processes and less affected by advection (the 

surface heat needs to be transferred to air first before the advection and heat transfer back 

to the surface in a downwind location). The shift of spatial pattern between '$%&& and 

#$%&& can be reflected by the statistical value of 012('$%&&, #$%&&) which decreases 

with WS. In other words, the covariance between '$%&&  and #$%&&  is increasingly 

smaller under higher WS conditions. From Equation 4.3a, the value of the slope of LRM 

equates to the ratio of 012('$%&&, #$%&&) to 6#7('$%&&), and it can also be interpreted 
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as a normalised covariance. As seen in Table 4.8, although 6#7('$%&&) decreases with 

WS (by about 50% from WG1 to WG3, estimated from the values of !"%"#$$ ), the 

decrease of 012('$%&&, #$%&&) with WS is much faster (~83% from WG1 to WG3). 

Therefore, the decrease of slope with increasing WS is due to the change of the 

012('$%&&, #$%&&) from statistical aspect. Moreover, a higher WS tends to destroy the 

nocturnal stable layer over the rural surface and to entrain the warmer air aloft downwards 

to warm the /! there, thus reducing the magnitude of #$%&&. Although this process may 

also warm the /% at the rural site, the magnitude of reduced '$%&& could be smaller. Such 

reductions of UHII can be reflected from the magnitudes of !"%"#$$ and !"!"#$$ in Table 

4.8. Consequently, the slope of the LRM will be reduced because the slope is linearly 

proportional to the !" ratio (Equation 4.3a). 

In Figure 4.2b or 4.2c, the centres of the ellipses represent the mean values of $%&&: 

('$%&&88888888, #$%&&88888888). The results show that all three centres are below the 1:1 long-dashed 

line. This is interpreted as a higher '$%&&88888888 than #$%&&88888888 for all wind groups, consistent 

with the dominating processes of storage-heat release and radiative trapping in urban 

areas. For the low WS group, WG1, the circle is very close to the 1:1 long-dashed line, 

indicating that '$%&&88888888 	≈ #$%&&88888888 . From the perspective of processes, under calm 

conditions, surface temperature drops rapidly by emitting longwave radiation, cooling the 

air near the ground, and the surface layer may become extremely stable and shallow (/% 

is lower than /!). Therefore, a thermal inversion may be formed near the surface with a 

limited amount of heat in the shallow surface layer being transferred to the ground, 

reducing /!(') more compared with windier conditions under which the surface layer is 

deeper. This leads to similar magnitudes of /!(') and /%(') within the shallow surface layer 
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and therefore, the characteristics of #$%&& and '$%&& are similar because the magnitude 

of UHII is sensitive to the extent of rural radiative cooling. For a high WS group, WG3, 

Figure 4.2c shows that #$%&&88888888 is close to zero, whereas '$%&&88888888 still has a finite value. As 

discussed above, surface loses radiative energy irrespective of high WS but  the nocturnal 

stable layer (or temperature inversion) above the surface layer over the rural site could be 

destroyed under high wind speed conditions, leading to an entrainment of warmer air in 

the residual layer aloft into the surface layer (Stull, 1988) and a subsequent less cooling 

effect of air temperature in rural areas. Therefore, #$%&&88888888 may reach zero while '$%&&88888888 

still exists. 

4.4.2 Effect of climatology (seasonal effect) 

Figure 4.3 indicates that both '$%&& and #$%&& are stronger in summer and spring, 

and weaker in winter and autumn at night-time. These were also reported by many 

previous studies (Fenner et al., 2014, Van Hove et al., 2015, Peng et al., 2011, Meng and 

Liu, 2013). Studies carried out in central Europe argued that the development of the UHI 

is favourable during summer at night-time because of the greater likelihood of clear skies 

and lighter winds for mid-latitudes climate (Fortuniak et al., 2006, Kłysik and Fortuniak, 

1999). Furthermore, the seasonal variation of rural thermal admittance related to soil 

moisture is considered as another significant contributor to seasonal differences of UHI 

(Arnfield, 1990, Runnalls and Oke, 2000). The seasonality of soil moisture has been 

found to be related to the heat island intensity in London (Zhou et al., 2016). Likewise, 

the drier seasonal climate during summer in Birmingham may reduce soil moisture, and 

therefore thermal admittance differences between urban and rural areas become greater 

(Oke et al., 1991, Imamura, 1991). The increased thermal admittance differences cause 

larger differences of the cooling rates between urban and rural areas, which could 
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contribute to faster decrease of temperature at rural site and increase of UHI consequently 

during the summer period (Runnalls and Oke, 2000). Moreover, the increase of solar 

insolation during summer time induces a greater amount of energy to be stored and 

released during daytime and night time respectively. Fenner et al. (2014) stated that the 

decoupling of the urban sites from the rural site is largely strengthened due to the stronger 

radiative forcing during summer compared to winter, leading to the strongest UHI 

developed on summer nights. In addition, the timing of sunset is between 21:00Z and 

22:00Z during the summer period, which is close to the satellite passing time mentioned 

in Chapter 2. This means that cooling might start later compared to other seasons, which 

could induce a larger UHII, especially '$%&& (e.g., larger mean differences of '$%&& 

compared to #$%&& (represented by the horizontal and vertical distance of the centre 

points of ellipses respectively) between summer and spring). However, causative factors 

governing the seasonal differences of the magnitude of both '$%&& and #$%&& are still 

needed to be further explored, e.g., seasonal variations of rural moisture and heat storage 

or temperature cooling rates differences between urban and rural areas etc. 

Table 4.8 shows very high values of 012('$%&&, #$%&&) for summer (0.85) and 

spring (0.61) and a very low value for winter (0.16), whereas the magnitudes of !"%"#$$ 

and !"!"#$$ show much less contrast across the seasons. This is consistent with the slope 

values in Figure 4.3a, larger slopes for spring and summer, and smaller for autumn and 

winter. The values of 012('$%&&, #$%&&)  and the slopes suggest some similarities 

between '$%&& and #$%&& for summer, but dissimilarities for winter. The implication is 

that use of satellite data to infer #$%&& has a higher confidence for summer and spring 

than for autumn and winter. The result is also in line the ;) values shown in Figure 4.3a.  
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To link the results here to mechanisms in the WS categorisation, we have calculated 

the mean wind speed for the four seasons: Spring: 1.98 m/s, Summer: 1.95 m/s, Autumn: 

2.21 m/s, Winter: 3.18 m/s. Use of the results in 4.3.1 and discussions in 4.4.1 suggests 

that low wind speed for spring and summer is one of the reasons why the magnitudes of 

both '$%&& and #$%&& and the slopes of the LRMs are greatest among four seasons. The 

values of ('$%&&88888888, #$%&&88888888) represented by the centres of the ellipses in Figure 4.3c can be 

partially explained by the WS mechanism discussed earlier, i.e. the faster WS is, the 

smaller the values of '$%&&88888888 and #$%&&88888888. As the values of mean wind speed are similar 

for summer and spring, the larger '$%&&88888888 and #$%&&88888888 for summer is explained by stronger 

solar insolation. Although the mean wind speed for winter is much larger than that for 

autumn, the values of '$%&&88888888 and #$%&&88888888 for winter are as large as those for autumn. This 

could be attributed to the release of anthropogenic heat due to more energy consumption 

during the winter season. In addition, the reduced surface albedo because of the removal 

of crops in rural areas and the loss of canopy cover in urban areas could increase the 

absorption of solar radiation during winter, which could be one of the reasons for similar 

magnitude of '$%&&88888888 and #$%&&88888888 between autumn and winter seasons. 

4.4.3 Difference of the !"#$$-%"#$$ relationship from urban to 

suburban group 

The results for two land-use groups are shown in Figure 4.4. It is worth mentioning 

that except for data missing scenarios, both groups of data cover similar wind conditions 

and seasonal distributions. Therefore, the differences shown in Figure 4.4 should be 

mainly attributed to the disparity of the land-cover characteristics between the two groups. 

It is evident in Figure 4.4c that larger '$%&&88888888 and #$%&&88888888 are found for the Urban group 
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than for the Suburban group. In addition, a larger slope is also evident for the urban group, 

which is caused by the larger joint variability between '$%&&  and #$%&& , i.e. 

012('$%&&, #$%&&), for the urban group, as shown in Table 4.8. In order to gain more 

insight into the relationships, a quadrant analysis is conducted and the results are shown 

in Figure 4.5, in which the values of ('$%&&88888888, #$%&&88888888) represented by the circle of the 

ellipse are used to separate the parameter space into four quadrants, Z1-Z4. A higher 

percentage of data points in Z1 (in which '$%&& > '$%&& AND #$%&& > #$%&&) and 

Z3 (in which '$%&& < '$%&&  AND #$%&& < #$%&& ) will enhance the value of 

012('$%&&, #$%&&), and increase the slope of the LRM. Likewise, a higher percentage 

of data points in Z2 (in which '$%&& < '$%&& AND #$%&& > #$%&&) and Z4 (in which 

'$%&& > '$%&& AND #$%&& < #$%&&) will reduce the value of 012('$%&&, #$%&&), 

decreasing the slope of the LRM. One imperative factor that may have an impact on the 

distribution of data points is wind advection. Warm advection can raise /! promptly with 

/% unchanged or warmed later; this could induce a greater chance of the Z2 scenario. 

Similarly, cold advection could induce a greater chance of the Z4 scenario. It should be 

noticed that an urban site near the city centre has a small chance of experiencing warm 

advection but is more subject to cold advection; this is supported by the data in Figure 

4.5a, showing 7% of Z2 and 12% of Z4. The stations in the suburban group in 

Birmingham, however, are scattered around the city centre, some near rural area and some 

close to parks (Figure 4.1). Therefore, they are collectively subject to both warm 

advection (from upwind urban patches) and cold advection (from upwind rural area or 

nearby parks), consequently yielding a higher percentage for Z2 (14%) and for Z4 (13%) 

as shown in Figure 4.5b. Accordingly, these explain that the value of 
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012('$%&&, #$%&&) is higher for the urban group (1.04 in Table 4.8) and lower for the 

suburban group (0.60 in Table 9). 

  

Figure 4. 5 Percentage of the data points in four quadrants (Z1, Z2, Z3 and Z4) dividing 

by the centre of ellipse, shown by red and blue dotted lines for (a) urban group and (b) 

suburban group. 

 

Considering that !"%"#$$ is similar for the two groups (1.23 and 1.12 in Table 4.8), 

according to Equation (4.3a), the slope of LRM is higher for the urban group than the 

suburban group; the result is also shown in Figure 4.4a. Based on the discussions, we may 

conclude that the data of '$%&&  for the urban sites are better correlated with #$%&& 

compared with those of the suburban sites. The implication is that wind advection 

(together with other factors not discussed here) may obscure the interpretation of satellite-

sensed land surface temperature for the purpose of representing #$%&& by '$%&&, and 

caution should be taken particularly for suburban locations. 

In addition, the positive intercept values in the regression models might provide an 

implication of the “lagged development” of #$%&&  compared to '$%&&  which is also 
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indicated by Oke et al. (2017). This implication is based on the assumption that the 

temporal variation of '$%&& and #$%&& is similar in pattern but with a time lag during 

night time due to the processes of heat storage in the surface during the daytime and heat 

transfer from the surface to the air during the night. According to Oke (2002b), the typical 

temporal variation of #$%&&  is that #$%&&  will increase after sunset and reach the 

maximum a few hours after sunset and it tends to decrease afterwards. The “lagged 

development” of #$%&& means that the increase and decrease of '$%&& take place earlier 

compared to #$%&& during night-time. Therefore, the point where '$%&& approaches 0 

but #$%&&	 > 	'$%&&	~	0  (intercept value) will appear at some time during the 

development of UHI. For a stronger UHI event, this point may occur later at night, 

whereas for a weak UHI event, this point may occur earlier (e.g. at the hours of this 

analysis). The positive intercept values are consistent based on different seasons and WS 

classification. In addition, the intercept value tends to be 0 when the wind speed increases 

(Figure 4.2a), indicating that the lag effect diminishes with increasing WS. However, 

most of the data points are away from the (0,0) point and we don’t have strong supporting 

evidence from our data. 

4.5 Conclusion 

An investigation of the '$%&&-#$%&&  relationship has been challenged by the 

complicated interactions between varying meteorological processes and the multi-scale, 

heterogeneous urban environment. However, using the methodology outlined in this 

paper, the linear '$%&&-#$%&&  relationship is shown to be statistically reliable, and 

clearer characteristics of this relationship are revealed for the categorised data groups 

based on three moderator variables: wind speed (WS), season and level of urbanisation. 
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The following results are highlighted: (i) The linear '$%&&-#$%&&  relationship 

significantly varies with respect to the three moderator variables; results indicate that 

satellite data can be used to infer #$%&& with a higher confidence for low wind speed 

conditions. Results also demonstrate better confidence in the approach for summer and 

spring seasons and for more urbanised sites. (ii) For the WS category, the decrease of the 

slope of LRM with increasing WS is explained by the same decreasing trend of the value 

of covariance between '$%&&  and #$%&& , 012('$%&&, #$%&&) ; subsequently, the 

decreasing 012('$%&&, #$%&&) with WS is partially attributed to wind advection which 

causes different shifts of the spatial pattern of '$%&& and #$%&&. (iii) The larger slopes 

in summer and spring are partly explained by the lower WS conditions during these two 

seasons; however, further investigations of other causative factors are needed. (iv) The 

quadrant analysis applied to two land-use groups (urban vs. suburban) yields the evidence 

to support the argument that wind advection may be responsible for the lower correlation 

between '$%&& and #$%&& for the suburban group. Therefore, different impacts of wind 

advection on /! and /% may affect the representation of #$%&& by '$%&&, and cautions 

should be taken particularly for suburban locations. 

In summary, investigation into the '$%&&-#$%&& relationship based on LRMs has 

previously been found difficult by a few studies. Compared with previous studies, the 

unique combination of analyses adopted in this study to investigate the '$%&&-#$%&& 

relationship is able to provide more statistical evidence to estimate the magnitude and the 

range of the #$%&& from '$%&& under different conditions. In addition, the exploration 

of the '$%&&-#$%&& relationship in this study provides more evidence and knowledge 

for the modelling of the /% - /!  relationship, which may also be useful to further 

understand the applicability of MOST in the urban environment. 
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Several limitations should be highlighted in this study. Firstly, it is unfortunate that 

the study did not determine the same or similar sample size for each group of the data 

based on different stratification levels. The different sample size of the data might 

produce some uncertainties in the estimation of LRMs, although the statistical tests for 

LRMs and regression coefficients have been conducted based on the 0.01 significance 

level. Secondly, the generalisability of these models is subject to certain limitations. For 

instance, the values of regression coefficients are valid only based on these specific 

datasets in Birmingham, under the specific regional climate conditions during the study 

period. Another weakness of this study is the lack of consideration of how these three 

moderator variables affect the '$%&& and #$%&& jointly due to the limited data size.  

Despite the above limitations, the study adds to the understanding of the 

'$%&&-#$%&& relationship. Further research based on this method needs to be conducted 

in other cities. Moreover, when sufficient data are available, multiple factors can be 

considered at the same time to study the '$%&&-#$%&& relationship and it is expected that 

such refined studies may yield improved outcome. In addition, '$%&& mainly depends on 

the quality of the satellite datasets. It is necessary to use other or higher-resolution remote 

sensing data to check or to validate the results of this study in the future. 

4.6 Summary 

This chapter has added a deeper understanding of the '$%&&-#$%&& relationship by 

using UMN data under different wind speed condition, seasons and levels of 

urbanisations. The decision to base the analysis on these three parameters is results from 

Chapter 2 that finds significant role of them in modulating both '$%&& and #$%&&. In 

addition to wind, specific characteristics of the '$%&&-#$%&& relationship have been 
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found for two further influencing factors of season and urbanisation. Further 

investigation is now required into the applicability of these characteristics in a different 

environment. This will be explored in Chapter 5.
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Chapter 5   A tale of two cities: The influence of 

urban meteorological network design on the 

nocturnal surface versus canopy heat island 

relationship in Oklahoma City, US and 

Birmingham, UK 

 
 
 

 

This chapter aims to further confirm the characteristics of the '$%&&-#$%&& relationship 

discovered in Chapter 4. This is achieved by extending the analysis to Oklahoma City 

(OKC), US, which then enables a comparative study between the cities of OKC and 

Birmingham. The work has also provided an opportunity to explore the implications of 

distinct climatic differences as well as the role of the design / configuration of Urban 

Meteorological Networks (UMNs). Finally, an attempt is also made to explore the 

possibility of generalising the '$%&&-#$%&& relationship across different cities. 

 

This chapter was published as: 

Feng, J.L., Cai, X.M. and Chapman, L., 2020. A tale of two cities: The influence of urban 

meteorological network design on the nocturnal surface versus canopy heat island 

relationship in Oklahoma City, US and Birmingham, UK. International Journal of 

Climatology. https://doi.org/10.1002/joc.6697 (In press).
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5.1 Introduction 

Detailed introductions related to the surface ('$%&&) and canopy air heat islands 

(#$%&&) have been provided in Chapters 1 - 2. Overall, an exploration of the relationship 

between '$%&& and #$%&& (the '$%&&-	#$%&& relationship) in different cities is needed 

to provide stronger confidence of the patterns of this relationship, which are of 

fundamental importance to seek the generalisation of this relationship because possible 

generalisations would be more useful in urban climate research rather than unique forms 

of the UHI across different cities (Oke, 1973). In previous chapter, a unique analysis 

combining linear regression with confidence ellipse, together with two statistical tests 

provides a starting point to generalise patterns of the '$%&&-	#$%&& relationship across 

cities. This chapter uses this approach to provide a comparative study of the nocturnal 

'$%&&-	#$%&& relationship in Oklahoma City (OKC), US and Birmingham (BHAM), 

UK, by using MODIS satellite data and ground observations from two Urban 

Meteorological Networks (UMNs). In doing so, the impacts of different climatic 

background conditions (e.g. wind speed, daily accumulated solar radiation) can be 

investigated. More significantly, the use of two different UMNs that have been set up 

based on different standards and protocols, allows for an exploration of how different 

configurations of urban climate networks can impact upon the broader results. 

5.2 Study areas 

5.2.1 Geography and climate background 

Table 5.1 provides the background with respect to the geography and climate 

characteristics across the OKC and Birmingham. Both cities are located inland with a 

roughly flat terrain where the range of the topography height (difference between the 
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highest and lowest values) is 60 m and 97 m within the city boundaries of OKC and 

Birmingham respectively. It should be noted that OKC is not a consolidated city-county, 

where the total area is approximately 1610 km2 including 630 km2 urbanised areas 

embedded by a central business district (CBD) with around 20 km2. In contrast, the city 

of Birmingham (268 km2) forms a conurbation where the total areas are around 901 km2, 

e.g. the city of Wolverhampton to the north west of Birmingham and Coventry city to the 

east of Birmingham. Figure 5.1 provides a clearer visualisation of the size of the city and 

the land-cover types over the two cities, based on the MODIS yearly land cover type 

product (MCD12Q1) that is retrieved in the year of 2009 and 2013 for OKC and 

Birmingham respectively with an approximate 500-m (463.32 m) spatial resolution over 

the two cities. 
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Figure 5. 1 MODIS Land cover map for (a) Oklahoma City and (b) Birmingham with 

LCZ classification of each station 
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Table 5. 1 General geography and climate background across two cities 

Geographical information 

City Location of city centre Total areas (km2) Population 
Topography height (above sea 

level) across the weather 
stations used in this study (m) 

Average building height (m) 

OKC 35.4676°	), 97.5164°-
  

 1610 (urbanised areas: 
630; CBD: 20) 562,343 (2009)  

 Max: 419 
Min: 359 

Average: 382 

 50-70 (max: 152) in CBD 
(Hu et al., 2016b) 

Birmingh
am 

52.4862°	), 1.8904°-
  

 268 (901 for the whole 
conurbations)  1,073,045 (2011) 

Max: 190 
Min: 93 

Average: 136  

 8 (max: 99) within the 
boundary of Birmingham 
(Ordnance Survey, 2014) 

Climatic/meteorological characteristics 

City 

Climate type with 
annual mean relative 
humidity within the 

bracket 

Annual mean 
temperature (℃) 

Annual total 
precipitation (mm) 

Mean daily accumulated solar 
radiation (23/5!) 

Mean wind speed and wind 
direction 

OKC Humid subtropical 
climate (64%)  16∗  847∗  22.64  2.52 m/s (South - southeast) 

Birmingh
am 

 Marine west coast 
climate (86%)  9∗  660∗  15.18 2.13 m/s (South - 

southwest)  

Note: statistics superscripted with * are derived from World Climate & Temperature (Climatemps.Com); Statistics including mean relative 
humidity, mean daily accumulated solar radiation, mean wind speed and wind direction are derived from rural stations (Spencer station in 
OKC and Coleshill station in Birmingham) during the study period. 
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5.2.2 OKCNET and BUCL urban meteorological networks  

OKC and Birmingham both have high-resolution UMNs which provide a dense 

dataset for !! used to calculate "#$%% in this study. Unlike the consistency achieved with 

!" products measured by the same satellite instrument (more details could be found in 

Section 5.3.2), large uncertainties of !! measurement may arise due to the differences of 

UMNs’ configurations. This is a consequence of no standard accepted protocol existing 

for the establishment of urban networks (e.g. Muller et al. (2013a)) and means that UMNs 

have often been designed for different purposes. All will have significant consequences 

on the nature of the data collected (and subsequent analysis), but no deployment solution 

is perfect and underpins the notion that there is no such thing as a representative urban 

temperature measurement (Muller et al., 2013a). Therefore, it is necessary to have a 

comprehensive background knowledge of the deployment strategy and configuration of 

the UMNs before investigating the characteristics of the "#$%% and &#$%% over OKC 

and Birmingham.  

5.2.2.1 General deployment rationale 

OKCNET (OKC Micronet) and BUCL (Birmingham Urban Climate Lab) are both 

UMNs that operate at the urban city scale based on the semi-random approach (Muller et 

al., 2013a). 

Specifically, the stations considered in this study from OKCNET include 33 stations 

mounted on traffic signals at a height of 9 m with an average spacing of approximately 3 

km over the OKC metropolitan area (Figure 5.1a). !! from OKCNET is measured at the 

minute scale using Vaisala WXT510 weather stations (full technical details of the 

OKCNET stations are provided by Basara et al. (2011) and as such will not be covered 
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here). For the BUCL network in Birmingham, 21 stations located in a course array with 

a similar average spacing of around 3 km are considered in this study (Figure 5.1b). In 

contrast to OKCNET, !! is sampled at a height of 3 m with a temporal interval of 15 

minutes via Vaisala WXT520 weather stations. Immediately, the difference in 

measurement height highlights a challenge. A previous study found that the air 

temperature gradient between 2 m and 9 m within the urban core tends to be neutral 

(within ±0.5℃) over OKC (Basara et al., 2008), but the different height of temperature 

sensor between the two UMNs might still induce some uncertainties of the measured !!, 

e.g. turbulent source areas (Oke, 2007). 

Another key difference in configuration between the networks, is the general 

exposure of the weather stations, with BUCL sites being generally more exposed than 

OKCNET sites. The deployment strategy for BUCL was to provide a site that was as 

representative as possible of the local environment (source areas/footprints with size 

generally extending within a few hundred metres of a station in urban areas (Stewart et 

al., 2014)). Therefore, the majority of the stations from BUCL are located on grass 

playing fields in schools or similar areas with fence protection (Chapman et al., 2015). In 

contrast, OKCNET sites are located directly in urban canyons where they will be affected 

by the urban fabric. For example, Figure 2 of Basara et al. (2011) and Figure 5 of 

Chapman et al. (2015) provide photographs of a weather station classified in urban group 

from OKCNET (KCB103) and BUCL (W026) respectively. It is evident that !! 

measured from the stations classified in urban group in OKC will be substantially more 

influenced by the traffic and heat transfer from building surface (e.g. walls) than those in 

Birmingham. Furthermore, wind (speed) is more likely to be less evident over stations in 

OKC (especially for the sites over CBD areas shown in Figure 5.1a) where the local WS 
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tends to be smaller. Therefore, the turbulent source areas of !! and the heat mitigation 

might be different across the two cities in spite of under the same background WS 

condition (measured from rural sites). 

5.2.2.2 Site classification 

Classification of the weather stations with regard to Urban Climate Zone (UCZ) (Oke 

et al., 2006) and Local Climate Zone (LCZ) (Stewart and Oke, 2012) are already 

documented in (Basara et al., 2011) for OKCNET and in (Bassett et al., 2016) for BUCL. 

To compare the two UMNs more consistently, stations in OKC have been reclassified 

from UCZ to LCZ based on the specific range of parameters such as building density and 

sky view factor etc. As shown in Figure 5.1, fewer stations are located in areas classified 

as LCZ1 (5 stations in OKC and 1 station in Birmingham) and LCZ2 (2 stations in OKC 

and 3 stations in Birmingham), which are classified as urban based on the higher level of 

urbanisation in later analysis. The rest of the stations are categorised as suburban. 

According to the suburban group, the LCZ type is more diverse and different between the 

two cities. For example, most of the stations are classified to LCZ6 in Birmingham 

whereas LCZ8 and LCZ9 are the most dominant LCZ types in OKC.  

5.3 Data and methods 

5.3.1 Ground observations 

Air temperature observations derived from each UMN and one rural station 

(highlighted in Figure 5.1a: Spencer station and Figure 5.1b: Coleshill station) are used 

to calculate the "#$%% across the metropolitan areas over OKC and Birmingham. Only 

the data of !! during the satellite passing time are used for the analysis (around 01:30 and 

22:30 local solar time for Aqua and Terra satellites respectively). Thus !!  from each 
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station is calculated based on the average !! from 01:00 to 02:00 and from 22:00 to 23:00 

local time during the nights from 01/01/2009 to 31/12/2010 in OKC and from 01/06/2013 

to 31/08/2014 in Birmingham when the satellite imagery are collected across the two 

cities in this chapter, as mentioned in Chapter 2. In contrast to the measurement height 

(!! at 9 m and 3 m are collected in OKC and Birmingham respectively), !! at 1.5 m and 

1.25 m are used to indicate the background temperature in OKC (Spencer station) and 

Birmingham (Coleshill station) respectively. Although !!  in the OKC rural site is 

measured at both 1.5 and 9 m above ground level (AGL), the one at 1.5 m is used to 

minimise the height differences between the two cities. 

Hourly averaged wind speed (WS), relative humidity (RH) and daily accumulated 

solar radiation from previous day (DASR) data are collected from the rural stations 

(Spencer station) to reflect the background climate condition, as introduced in Chapter 2. 

5.3.2 Satellite observations 

To generate &#$%% and characterise the surface properties over the two cities, two 

categories of MODIS products are used in this study (available from Earthdata Search: 

https://search.earthdata.nasa.gov/search): (i) night-time land surface temperature (!" ) 

daily data (MYD11A1 from Aqua satellite and MOD11A1 from Terra satellite) in version 

5 (V005) and (ii) normalised difference vegetation index (NDVI) from the vegetation 

index products (MYD13A2 from Aqua satellite and MYD13A2 from Terra satellite). 

This study follows the method introduced in Chapter 2 to achieve the spatial consistency 

between satellite data and ground observation. 
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5.3.3 Regression-based analysis 

&#$%% ("#$%%) is defined as the !" (!!) differences between urban sites and rural 

site across the two cities respectively: 

&#$%%($,&) = !"
($,&)

− !"
($,()                                                                         Equation (5.1a) 

"#$%%($,&) = !!
($,&)

− !!
($,()                                                                        Equation (5.1b) 

Where . represents the cities – OKC or Birmingham, / is for each station in urban 

areas and 0  is for the rural site (Spencer station in OKC and Coleshill station in 

Birmingham). 

To compare the &#$%%-"#$%%  relationship between OKC and Birmingham, two 

possible influencing factors are considered: (i) climatic conditions and (ii) configurations 

of the two UMNs. The climate backgrounds introduced in Section 5.2.1 differ 

substantially between the two cities. Cloud cover, WS, and surface wetness have been 

recognised as the three important climatic factors notably affecting UHI magnitude 

during night time (Runnalls and Oke, 2000). Given that satellite data are derived under 

cloudless condition, two climatic parameters, including WS and DASR are used as a 

surrogate to represent the climate conditions (Note: RH is not considered because the 

correlation between RH and urban heat island intensity (UHII) is found to be too weak in 

this study which is consistent with the study conducted by Kim and Baik (2002). WS is 

used to imply the turbulence intensity and atmospheric stability. DASR is used to 

represent the solar radiative energy input to the local system. 

The comparison analysis is firstly conducted with considerations of different climatic 

conditions. An indirect statistical method is then applied to remove or minimise the 



158 
 

impact of climate and the grouping analysis is further conducted in terms of urban and 

suburban groups. By doing this, the land surface properties of urban or suburban groups 

are less dissimilar between OKC and Birmingham, compared to using individual station, 

and its effects to the differences of the &#$%%-"#$%% relationship are presumed to be less 

dominant while the impact of UMNs’ configuration might be highlighted in the result. 

Regarding the comparison of the &#$%%-	"#$%% relationship under different climatic 

conditions across the two cities, data from all stations are grouped based on four different 

conditions of WS and DASR, and LRMs of &#$%%  on "#$%%  (Equation 5.2) with 

confidence ellipse at 90% confidence level are built correspondingly. Meanwhile, the 

analysis of covariance (ANCOVA) (Rutherford, 2001) and 2-D Kolmogorov-Smirnov 

(K-S) test (Peacock, 1983) are implemented to test the difference between LRMs and 

between the 2-D distribution of the data across two cities. 

&#$%%($) = 2($) ∙ "#$%%($) + 5($)                                                                Equation (5.2) 

Where m and b are the slope and intercept coefficients respectively. 

An approach called analysis of regression residuals (ANORES) (Maxwell et al., 1985) 

is adopted to remove the climate impact (WS and DASR) in &#$%% and "#$%%. The 

overall variance of a dependent variable (e.g. &#$%% or "#$%%) will always be induced 

by multiple factors (e.g. climatic factor, UMN’s configuration etc.). However, only a 

portion of the variance will be explained by a factor (e.g. UMN’s configuration). This 

variance can be dissected in parts that are uniquely induced by a factor (e.g. UMN’s 

configuration) and other parts confounded with other factors (e.g. climatic factor). The 

underlying rationale of ANORES is to remove the confounded part of variance (climatic 

factor) and analyse the variance that are solely due to other factors (e.g. UMN’s 
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configuration) (Pfister, 2011). The basic procedure of ANORES follows two steps: (i) 

(linear) regression models are generated to identify the impact of the confounding 

variables on the dependent variable; (ii) residuals can then be computed by subtracting 

the prediction of the regression models from observations and the impacts of other factors 

can be further analysed. In this study, climatic conditions of WS and DASR are 

considered as the confounding factors. Multiple linear regression model (MLRM) is 

generated to estimate the climatic contribution (WS and DASR) in &#$%% and in "#$%% 

based on the data from all stations for the two cities respectively: 

&#$%%($) = 6)
($)
∙ 78 + 9)

($)
∙ :68; + <)

($)                                           Equation (5.3a) 

"#$%%($) = 6*
($)
∙ 78 + 9*

($)
∙ :68; + <*

($)                                          Equation (5.3b) 

where 6) , 	6* , 	9) , 	9* , 	<)  and <*  are the corresponding regression coefficients in the 

MLRM. As discussed above, residual of a regression model is the difference between 

observed and predicted dependent variable (e.g. &#$%% in Equation 5.3a and "#$%% in 

Equation 5.3b), which can be taken as the variable excluding the impacts of climatic 

factors (WS and DASR). The LRMs below (Equation 5.4) built from the residuals from 

Equation 5.3a (&#$%%+,-($)) and 5.3b ("#$%%+,-($)) are subsequently compared with 

Equation 5.2, and therefore, the contribution of climatic impact could be estimated based 

on the difference of the R2 values between Equation 5.2 and Equation 5.4. Meanwhile, as 

the residuals could be taken as the UHI after removing or minimising the climatic 

influences (WS and DASR), the impact of the different UMN’s configurations on the 

difference of the &#$%%-	"#$%%  relationship can be further explored by building the 

regression model of &#$%%+,-($) on "#$%%+,-($) according to the classification of urban 

stations (urban and suburban groups). 



160 
 

"#$%%+,-
($)
= 2+,-($) ∙ &#$%%+,-

($)
+ 5+,-

($)                                           Equation (5.4) 

5.4 Results 

5.4.1 Comparison of the !"#$$-%"#$$ relationship under different 

climate conditions 

To explore the impact of different climate conditions on the differences of the 

&#$%%-	"#$%% relationship across two cities, &#$%% and "#$%% data are classified into 

four groups with respect to different climate conditions (WS and DASR):  

=1:	78 < 3	2/&	&	:68; < 20	EF	2.*;  

=2:	78 < 3	2/&	&	:68; > 20	EF	2.*;  

=3:	78 > 3	2/&	&	:68; < 20	EF	2.*;  

=4:	78 > 3	2/&	&	:68; > 20	EF	2.*.  

However, C4 is not considered in the result or discussion due to the limited data 

samples in Birmingham. In general, C2 would be the ideal condition for the development 

of UHI, which is under cloudless skies and light winds at night (the atmospheric surface 

layer is statically stable above the rural ground and possibly forms an inversion layer) as 

well as larger input of solar radiation during daytime. C1 and C3 could be used to compare 

the impacts of WS and DASR on the &#$%%-	"#$%% relationship, where the atmosphere 

is  also statically stable at night in C1 but with lower input of solar radiation during 

daytime, comparing to C3, in which the atmospheric surface layer tends to be dynamically 

neutral due to large WS. The mean WS (78IIIII , 78/01IIIIIIIII  for OKC and 782345IIIIIIIIIII  for 

Birmingham) and mean DASR ( :68;IIIIIIII , :68;/01IIIIIIIIIIII  for OKC and :68;2345IIIIIIIIIIIIII  for 
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Birmingham) of the samples under each group have been demonstrated in Figure 5.2. The 

difference of the 78IIIII between two cities within each group is approximately smaller than 

1 m/s and the influence of it on the comparison of the &#$%%-	"#$%% relationship could 

be neglected. The :68;IIIIIIII is greater over OKC and differences of about 4.41, 1.61 and 7.9 

MJ m-2 between OKC and Birmingham are found in C1, C2 and C3, respectively. The 

larger :68;IIIIIIII in OKC might affect the results for the comparison of the &#$%%-	"#$%% 

relationship, however, it is extremely difficult to balance the sample size and the 

distribution of DASR across these two cities. Nevertheless, the difference of the :68;IIIIIIII 

in C2 is relatively smaller and results under C2 could be used as a reference to compare 

the &#$%%-	"#$%% relationship under same WS and DASR conditions.
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Figure 5. 2 Linear and elliptical trends of &#$%%  and "#$%%  based on four climatic 

conditions: (a) C1: WS < 3 m/s and DASR < 20 EF/2*; (b) C2: WS < 3 m/s and DASR > 

20 EF/2*, (c) C3: WS > 3 m/s and DASR < 20 EF/2*  and (d) C4: WS > 3 m/s and 

DRAD > 20 EF/2* in OKC (triangle) and Birmingham (circle), where the regression 

models are all significant at 0.01 confidence level and the larger triangle and circle are 

the corresponding mean values
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Surprisingly, larger differences of the mean "#$%%  (∆"#$%%IIIIIIII , vertical distance 

between the two center points of ellipses) compared to mean &#$%% (∆&#$%%IIIIIIII, horizontal 

distance between the two center points of ellipses) between the two cities are shown in 

Figure 5.2. Specifically, mean "#$%% is larger in OKC than Birmingham ("#$%%IIIIIIII/01 >

"#$%%IIIIIIII2345) while mean &#$%% is nearly the same between the two cities (&#$%%IIIIIIII/01 ≈

&#$%%IIIIIIII2345). The correlation analysis and regression analysis (Table 5.2 and Figure 5.3) 

provide statistical evidence to these results. It demonstrates that &#$%%IIIIIIII/01  tends to be 

weaker than &#$%%IIIIIIII2345 under the same DASR condition (Figure 5.3a) but stronger than 

&#$%%IIIIIIII2345  under the same WS condition (Figure 5.3c). The result of &#$%%IIIIIIII/01 ≈

&#$%%IIIIIIII2345 under C1, C2 and C3 conditions indicate that impacts of DASR and WS on 

&#$%%  at city-scale between the two cities are counteracted. Regarding the ∆"#$%%IIIIIIII , 

"#$%% in OKC ("#$%%/01) is found to be slightly larger than Birmingham ("#$%%2345) 

under same DASR condition (Figure 5.3b) and "#$%%/01  is higher than "#$%%2345 

more significantly under same WS condition (Figure 5.3d), hence, "#$%%IIIIIIII/01 >

"#$%%IIIIIIII2345 and ∆"#$%%IIIIIIII > ∆&#$%%IIIIIIII is expected. 

Table 5. 2 Results of the Pearson correlation test across two urban contexts, where OKC 

is highlighted in the table 

                  OKC 
BHAM  "#$%% &#$%% WS DASR 

"#$%%  -- 0.62 -0.53 0.34 
&#$%% 0.59  -- -0.41 0.40 

WS -0.50 -0.36  -- --  
DASR 0.38 0.51   --  --  
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Figure 5. 3 Comparison of &#$%% and "#$%% according to the change of DASR (5.3a 

and 5.3b) and WS (5.3c and 5.3d) respectively between OKC (triangle) and Birmingham 

(circle)
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Under all the three climatic conditions (C1, C2 and C3), stronger &#$%%-	"#$%% 

relationship with higher R2 value and slope coefficient are found in OKC compared with 

Birmingham. From the perspective of statistics, slope and R2 value are closely related to 

covariance between &#$%% and "#$%% (.LM(&#$%%, "#$%%)). Stronger joint variability 

between &#$%% and "#$%% could cause the increase of covariance, which indicates the 

weaker advection effect on the UHII (Feng et al., 2019). Therefore, the larger 

.LM(&#$%%, "#$%%) shown in Table 5.3 is statistically responsible for the higher R2 value 

(defined as the standardised covariance) and slope in OKC. Weaker effect of advection 

on UHII is then suggested by the larger .LM(&#$%%, "#$%%) in OKC. 

The differences of the linear	&#$%%-	"#$%% relationship across the two cities vary 

under the three climatic conditions (C1, C2 and C3). Considering that the slope 

coefficient (2) is the key component in LRM that represents the rate of change of the 

"#$%% with respect to &#$%%,  even though the differences of slope between the two 

cities are not statistically significant at 0.1 confidence level according to the results from 

the ANCOVA test (Table 5.4), the discussion related to the differences of the &#$%%-

	"#$%% relationship will be still mainly based on the variation of the differences of the 

slope (∆2, ∆2 = 2/01 −22345 ) between the two cities under the three climatic 

conditions. Results (Figure 2) demonstrate that ∆2 tend to be smaller in the order of C2, 

C1 and C3 ( ∆21*[0.001] < ∆21)[0.032] < ∆216[0.070] ). Meanwhile, the data 

distribution differences in 2-D K-S test between the two cities are also smallest under C2 

followed by C1 and C3, indicated from the ∆:	(= : − :!) values, where D statistics 

represents the 2-D distribution differences between the two groups of data and ∆: is the 

relative D statistics that equals to the differences between D statistics and critical D 

statistics (critical D statistics is estimated based on the sample size) (Peacock, 1983) 
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(Table 5.4). The differences of the linear	&#$%%-	"#$%% relationships between the two 

cities are more likely to be smallest under C2 that is considered as the extreme ‘ideal’ 

condition for the development of heat island. 
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Table 5. 3 Statistical quantities related to	"#$%% and &#$%% according to the three climatic groups (C1, C2 and C3) and urban/suburban 

groups over two cities 

Group City !"#(%&'((, *&'(() ,-!"#$$ ,-%"#$$ 
SD Ratio (=
&'!"#$$
&'%"#$$

) Slope from LRM 

C1 
OKC 0.752 1.198 1.027   0.857    0.524  

Birmingham 0.402 0.904 0.981  1.085  0.492 

C2 
OKC 0.913 1.372 1.488  1.085  0.483 

Birmingham 0.670 1.178 1.43  1.214  0.483 

C3 
OKC 0.775 1.489 0.936  0.629  0.349 

Birmingham 0.145 0.720 0.569  0.790  0.279 

Urban 
OKC 0.274 1.090 0.814 0.747 0.231 

Birmingham 0.362 0.891 0.913 1.025 0.456 

Suburban OKC 0.663 1.315 1.087 0.826 0.383 
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Birmingham 0.322 0.959 0.849 0.885 0.350 

 

Table 5. 4 ANCOVA and 2D K-S test between two cities according to the three climatic groups (C1, C2 and C3) (significance level: 

0.001***, 0.01**, 0.05*, 0.1) 

Climatic group 
ANCOVA test 2D K-S test 

Slope Intercept Interaction effect ! ∆! 

#1:	'( < 3	+/-	&	!/(0 < 20	34/+& = ≠∗∗∗ = (8 = 0.536, = = 0.464) 0.514∗∗∗ 0.405 

#2:	'( < 3	+/-	&	!/(0 > 20	34/+& = ≠∗∗∗ = (8 = 0.003, = = 0.960) 0.341∗∗∗ 0.254 

#3:	'( > 3	+/-	&	!/(0 < 20	34/+& = ≠∗∗∗ = (8 = 1.693, = = 0.194) 0.570∗∗∗ 0.442 

 

Table 5. 5 ANCOVA and 2D K-S test between two cities according to the following four paired data groups including (i) '()!"# and 

*+,-+./ℎ&-!"#  ; (ii) '()$%#  and *$12$%#; (iii) '()$%#&'()*  and *$12$%#
&'()*  and (iv) '()$%##+(+'()*  and *$12$%#

#+(+'()*  

(significance level: 0.001***, 0.01**, 0.05*, 0.1) 

Paired group 
ANCOVA test 2D K-S test 

Slope Intercept Interaction effect - ∆- 

01!()&	, 3'45()& = ≠∗∗∗ = (7 = 2.459, = = 0.117) 0.338∗∗∗ 0.287 

01!+,&	, 3'45+,& ≠  = ≠ (7 = 3.273, = = 0.070) 0.124∗∗∗ 0.073 

01!+,&"-.%/, 3'45+,&
"-.%/ ≠∗∗∗ ≠∗∗∗ ≠∗∗∗ (7 = 20.791, = < 0.001) 0.156∗∗∗ 0.041 

01!+,&&0.0-.%/, 3'45+,&
&0.0-.%/ = ≠∗∗∗ = (7 = 1.766, = = 0.184) 0.148∗∗∗ 0.091 
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5.4.2 Generalising the climatic effect  

The differences of the linear !"#$$-	&"#$$ relationship before and after subtracting 

the climatic impact in the two cities are demonstrated in Figure 5.4a (!"#$$ and &"#$$) 

and 5.4b (!"#$$!"#  and &"#$$!"# ) correspondingly. The decreased '$  values, from 

0.380 to 0.227 in OKC and from 0.351 to 0.207 in Birmingham, indirectly point out the 

contributions of climate in the linear !"#$$-	&"#$$ relationship are non-negligible in 

both cities.



170 
 

 

Figure 5. 4 Linear and elliptical trends of !"#$$ and %"#$$ based on (a) observations and (b) residuals from MLRMs over OKC (triangle) 

and Birmingham (circle), where the regression models are all significant at 0.01 confidence level and the larger triangle and circle are the 

corresponding mean values
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It is therefore, somewhat surprising that the linear !"#$$-	&"#$$ relationships are 

more significantly different after removing the climatic impact between the two cities, 

given by the interaction effect that is significant at a higher confidence level with a larger 

F value in the '()!"#  and *#+,!"#  paired group (- ≈ 3.273, 4 ≈ 0.070) (Note: F 

value is the statistics used to test the significance of the interaction effect (Tabachnick et 

al., 2007)) comparing to the result from the '()$%# and *#+,$%# paired group (- ≈

2.459, 4 ≈ 0.117) (Table 5.5). Specifically, the more noticeable interaction effect is 

reflected by the greater slope difference between OKC and Birmingham after removing 

the climatic effect which increases from ≈ 0.03 to ≈ 0.04 shown in Figure 5.4a and 5.4b 

respectively. The linear !"#$$-	&"#$$ relationships at city scale contains the temporal 

and spatial information, while the MLRM used to remove the climatic impact does not 

account for the spatial information that will stand out in the !"#$$!"# -&"#$$!"# 

relationship (relationship between !"#$$!"#  and &"#$$!"#) illustrated in Figure 5.4b. 

The prominent spatial information that are reflected by the differences of a combinations 

of multiple factors (i.e. UMNs’ configuration) are likely to be the primary reasons for the 

larger interaction effect (differences) in the linear !"#$$!"#-&"#$$!"# relationship. 

5.4.3 Comparison of the !"#$$!"#-%"#$$!"# relationship under 

urban and suburban group 

The LRMs of &"#$$!"# on !"#$$!"# and data distribution for urban (Figure 5.5a) 

and suburban (Figure 5.5b) groups btween the two cities are visulised in Figure 5.5. The 

differences of the !"#$$!"# -&"#$$!"#  relationship between the two cities are more 

significantly in urban group, supported by the slope differences in LRMs (Figure 5.5) and 

statistical tests (Table 5.5). Specifically, ANCOVA test (Table 5.5) illustrates that the 
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differences of the interaction effect between the two cities is significant at 0.001 

confidence level ( - = 20.791, 4 < 0.001 ), indicating that the linear !"#$$!"# -

&"#$$!"# relationships differ significantly claimed by this test for urban group over the 

two cities. In contrast, the differences of the linear !"#$$!"#-&"#$$!"# relationships are 

not significant at 0.001 confidence level (- = 1.766, 4 = 0.184) for suburban group. 

However, the 2-D K-S test (Table 5.5) demonstrates larger differences of the data 

distribution in suburban group (∆? ≈ 0.091) compared to urban group (∆? ≈ 0.041) 

between OKC and Birmingham. Statistical parameters of the regression model shown in 

Table 5.3 provide the key output of the tests for the !"#$$!"#-&"#$$!"# relationships. It 

it evident that the ratio of the standard deviation (SD) of &"#$$!"# to !"#$$!"# between 

the two cities are larger in urban group, e.g. ≈ 0.278 (= |0.747 − 1.025|) and ≈ 0.007 

(= |0.826 − 0.833|) in urban and suburban group respectively. The difference of the 

variability of &"#$$!"# and !"#$$!"# between the two cities is therefore suggested to be 

larger in urban group. In addition, quadrant analysis demonstrated in Figure 5.6 also 

indicates the greater difference of the !"#$$!"#-&"#$$!"# relationship in urban group 

between OKC and Birmingham. It should be noted that data points in Z2 and Z4 are the 

“biases” weakening the joint variability between the !"#$$!"# and &"#$$!"# (if the joint 

variability between !"#$$!"#  and &"#$$!"#  is extermely high , e.g. a perfect linear 

regression with B& = 1, the percentage of data points in Z2 and Z4 would be 0%). 

Therefore, if the total percentage of Z2 and Z4 (or Z1 and Z3) is more similar, the 

regression models and the 2-D distribution of a paried group of data would be more 

analogous. Result shows that the differences of the total percentage of data points in Z2 

and Z4 between the two cities are smaller in urban group (10%: 39% for OKC vs. 29% 

for Birmingham) compared to suburban group (2%: 32% for OKC vs. 34% for 
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Birmingham), which provides further statistical evidence for the larger difference of the 

!"#$$!"#-&"#$$!"# relationship in urban group between the two cities.
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Figure 5. 5 Linear and elliptical trends of !"#$$!"# and %"#$$!"# based on (a) urban group and (b) suburban group in OKC (triangle) 

and Birmingham (circle), where the regression models are all significant at 0.01 confidence level and the larger triangle and circle are the 

corresponding mean values
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Figure 5. 6 Percentage of the data points in four quadrants (Z1, Z2, Z3 and Z4) dividing 

by the centre of ellipse for Urban group (a and b) and Suburban group (c and d) over 

OKC (triangle) and Birmingham (circle) respectively.
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5.5 Discussion 

5.5.1 The influence of climate 

The differences of the linear !"#$$-%"#$$ relationship (i.e slope coefficient), with 

considerations of the 2-D spatial distributions of the data points, tend to be smaller under 

the ‘ideal’ condition (low WS and large DASR) for the UHI development (C2, 

C2<C1<C3) between OKC and Birmingham. Lee (1975) stated that UHII is strongly 

associated with atmospheric stability when the surface receipt of radiation is large during 

daytime and stronger radiation cooling of surface happens at night with calm wind, 

because the solar radiation receipt is normally larger than other heat supplied from human 

activities, which in turn becomes more importantly in determining the UHII. In other 

words, the more similar linear !"#$$-	%"#$$ relationship between the two cities under 

C2 is because of the more stable atmospheric condition (low WS) during night-time with 

larger input of the radiation (DASR) into the urban system during daytime. The disparity 

of the linear !"#$$-	%"#$$ relationship increases under C1 due to the released heat that 

is less dominantly controlled by DASR, and therefore, other heat sources (e.g. traffic, 

heating and cooling systems etc.) accounted for the release of heat fluxes across the two 

cities become more important for the UHI development (compared to C2). Likewise, the 

increased WS under C3 may intensify the impact of heat advection that plays an 

increasingly important role compared to C1 and C2 in controlling the UHII, leading to 

larger differences of the !"#$$-	%"#$$ relationship between OKC and Birmingham. In 

addition, the prevalent low-level jets (LLJs) over the Great Plains in US may impact upon 

the !"#$$-	%"#$$ relationship in OKC, which could increase the differences between 

the two cities particularly under high WS conditions (i.e. C3). It is suggested that strong 
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shear in response to LLJs caused more intense turbulent mixing and reduced the 

atmospheric stability in the nocturnal boundary layer (Hu et al., 2013). More specifically, 

strong LLJs could enhance the downward transport of warmer air from the residual layer, 

resulted in the weaker radiation cooling over ground surface (Fast et al., 2005). 

Meanwhile, the LLJs are found to be higher and weaker over urban areas (Kallistratova 

and Kouznetsov, 2012, Hu et al., 2013) and the reduced temperature inversion could be 

found in particular over rural areas. The reduced rural inversion intensity could weaken 

the %"#$$ within the shallower and more stable atmospheric boundary layer ultimately 

(Hu et al., 2016b). Although it is expected that the classification of the data based on 

different wind speed conditions could indirectly cover the impacts of the LLJs on our 

results, further research is still needed to examine or quantify the influences of the LLJs 

on the differences of the !"#$$-%"#$$ relationship across these two cities. 

5.5.2 The role of UMN configuration 

Although it is difficult to explicitly quantify the impact of different network designs 

on the differences of the linear !"#$$ - 	%"#$$  relationship between OKC and 

Birmingham, the results from the LRMs based on grouping analysis indicate the 

significant role of the UMNs’ configurations. To better illustrate the differences between 

the two UMNs, local environment and source areas of the stations are considered in the 

following discussions. 

5.5.2.1 Local environment 

The differences of the local environments between the two networks could be 

summarised in terms of the following three aspects: (i) larger mean building height 

around stations with most stations located within a street canyon in OKC, particularly in 



178 
 

the CBD; (ii) greenness (or amount of vegetation) around stations are lower in OKC with 

a site-average NDVI value of 0.35 compared to 0.46 in Birmingham; (iii) stations 

classified into the urban group are more distinguished with respect to site location and 

mean building height compared to the suburban group between the two cities. Several 

results can reflect the impacts of these aspects on the different linear !"#$$-	%"#$$ 

relationships between the two cities. 

(i) Contrasting magnitude of the mean '()** and +()** across the two cities 

The grouping analysis in Section 5.4.1 shows an interesting result of the mean UHII 

magnitude where !"#$$,,,,,,,,!"# ≈ !"#$$,,,,,,,,$%&'  and %"#$$,,,,,,,,!"# > %"#$$,,,,,,,,$%&'  (or 

!"#$$,,,,,,,,!"# < %"#$$,,,,,,,,!"#  and !"#$$,,,,,,,,$%&' > %"#$$,,,,,,,,$%&' ). Importantly, these results 

appear consistent under all the three climate conditions (C1, C2 and C3), indicating that 

climate is not likely to be the prime reason for these results. Instead, the larger mean 

building height together with lower vegetation amount around stations in OKC might be 

the driving forces for !"#$$,,,,,,,,!"# < %"#$$,,,,,,,,!"# . Before providing more details of the 

explanations, differences between !"#$$  and %"#$$  (!"#$$  minus %"#$$ , 0"#$$ ) 

could be also be computed by subtracting the difference between surface and air 

temperatures (1(  minus 1) , ∆1(*) ) at urban sites (∆1(*)(,) ) by the one at rural site 

(∆1(*)(.)). By focusing on the mean value of these variables, 0"#$$ could be written as: 

0"#$$,,,,,,,, = !"#$$,,,,,,,, − %"#$$,,,,,,,, 

= 51((/),,,,, − 1((.),,,,,,6 − 51)(/),,,,,, − 1)(.),,,,,,6 

= 51((/),,,,, − 1)(/),,,,,,6 − 51((.),,,,,, − 1)(.),,,,,,6 

= ∆1(*)(/),,,,,,,,,, − ∆1(*)(.),,,,,,,,,,,                                                                                    Equation (5.5) 
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Hence, !"#$$,,,,,,,,!"# < %"#$$,,,,,,,,!"#  also means the larger magnitude of the differences 

between surface and air temperature (note: ∆1(*)(/),,,,,,,,,, and ∆1(*)(.),,,,,,,,,,, are normally negative 

during night and the density plots of them are presented Figure 5.6) over urban areas 

compared to rural areas in OKC. This result ( !"#$$,,,,,,,,!"# < %"#$$,,,,,,,,!"#) was also found 

by previous studies (Song and Park, 2019, Marzban et al., 2018, Sheng et al., 2017). These 

could be possible because the roof and ground surfaces that usually induce lower 1( 

compared to building wall surface (Oke et al., 2017) take a greater proportion in a grid 

cell (i.e. pixel) over urban areas from the satellite product. 1)  is usually measured at 

screen-level and it is hard to represent the local temperature (e.g. a radius of 500 m that 

is the about same as the spatial resolution of 1(  herein) or temperature at roof-level, 

resulting in larger differences between surface and air temperatures (∆1(*)/,,,,,,,, < ∆1(*).,,,,,,,,, or 

!"#$$,,,,,,,, < %"#$$,,,,,,,, ), particularly over urban areas with higher buildings and building 

density. The contrasting results found in Birmingham (!"#$$,,,,,,,,$%&' > %"#$$,,,,,,,,$%&') are 

likely linked to the greater vegetation amount and lower mean building height. The 

percentage of roof/ground surfaces would decrease in a grid cell while the proportion of 

vegetation surfaces that commonly have higher 1( due to the lower emissivity compared 

to the roof/ground surfaces would increase, leading to the smaller differences between 

the surface and air temperatures at urban sites in Birmingham. 
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Figure 5. 7 Density plots of the ∆1(*) of rural and urban sites across two cities: (a) OKC 

and (b) Birmingham, where the two dash lines are the mean values correspondingly. 

 

(ii) Greater rate of change of +()**  with respect to '()**  in OKC before 

removing the climate effect 

The grouping analysis in Section 5.4.1 shows greater slope values of the regression 

lines in OKC under the three climate conditions (C1, C2 and C3). The larger rate of 

change of %"#$$ with respect to !"#$$ in OKC is potentially attributed by the weaken 

advection effect on the !"#$$-	%"#$$ relationship. Advection effect could increase the 

disparity between !"#$$ and %"$$$ as discussed in Chapter 4, which is represented by 

the lower 789(!"#$$, %"#$$) in Birmingham (Table 5.3), leading to the smaller slope 

and reduced R2 in the regression model. The underlying mechanism for these results could 

be the traffic light siting of the stations in OKC within the street canyon. This provides a 

shelter effect and more resistance to winds. WS is supposed to be smaller over the urban 

stations in OKC compared to Birmingham under same background WS, which in turns 
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weakens the lagged effect of wind on surface temperatures and increases the joint 

variability between !"#$$  and %"#$$ . Thus, stronger !"#$$ - 	%"#$$  relationship is 

expected with greater slope coefficient in OKC. 

5.5.2.2 Source areas 

Source areas (or footprints) are determined as the portion of the surrounding 

environments that can be ‘seen’ by a sensor/station. The temperature (1)) measured by 

sensors is intended to come into equilibrium with its turbulent source areas (turbulent 

footprint) (Oke et al., 2017). It is suggested that the turbulent source areas are associated 

with (i) height of measurement (larger at greater heights), (ii) surface roughness and (iii) 

atmospheric stability (increase from unstable to stable) (Oke et al., 2006). The turbulent 

source areas are literally larger for OKCNET stations compared to BUCL because of 

greater height of the sensors if the comparison is under similar atmospheric conditions 

and for the same LCZ, which could be responsible for some of differences of the !"#$$-

	%"#$$ relationship between the two cities found in Section 5.4.3. 

(i) Reduced rate of change of +()** with respect to '()** in OKC in urban 

group 

The differences of the linear !"#$$012 -%"#$$012  relationships between the two 

cities are represented by the reduced rate of change of %"#$$ respect to !"#$$ in OKC 

in the urban group. This result conflicts with the findings of “Greater rate of change of 

%"#$$  with respect to !"#$$  in OKC before removing the climate effect” discussed 

above and therefore provides further evidence of the impact of the different local 

environment and source areas between these two networks. Before removing the climate 

effect, the rate of change of %"#$$ with regard to !"#$$ is found to be larger in OKC, 
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resulted from the smaller WS around each site in OKC due to the siting within a street 

canyon where is more resistant from wind. After removing the climate effect, the wind 

effect has been minimised. In this way, OKCNET stations with larger turbulent source 

areas because of the greater sensor’s height (9 m compared to 3 m for BUCL) tend to 

have more sufficient interaction with the upper layer compared to BUCL, causing the 

larger impacts of the wind advection on the !"#$$012-%"#$$012 relationships. Quadrant 

analysis that divides the data points into four quadrants based on the mean !"#$$ and 

%"#$$ is conducted over OKC and Birmingham (Figure 5.6), in order to further explore 

the characteristics of the !"#$$ and %"#$$. Figure 5.6 provides statistical support for the 

discussions above, where percentage of data points in Z2 and Z4 are higher in Figure 5.6a 

than Figure 5.6b, indicating the larger impact of warm/cold advection on temperature 

variation in OKC. 

(ii) Greater rate of change of +()** with respect to '()** in OKC in suburban group 

A greater slope coefficient is found in the linear !"#$$012-%"#$$012 relationships 

under the suburban group in OKC compared to Birmingham (Figure 5.5b), which is 

contradictory to the one in the urban group (Figure 5.5a). It has been discussed that larger 

impacts of advection on the !"#$$012-%"#$$012 relationships are suggested due to larger 

turbulent source areas of OKCNET stations. However, this is only true for urban groups 

in OKC. Given the lower NDVI and the fact that the city is generally drier (lower mean 

RH in OKC illustrated in Table 5.1), the horizontal and vertical heat transfers of an air 

layer are supposed to be more efficient under drier conditions due to the increased thermal 

conductivity of air. Therefore, the cold/warm air from advection could be more readily 

homogenised with the surroundings, inducing the shorter distance of the advection 

affecting the suburban areas at downwind side. In addition, total areas distributed with 
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stations are more extended in OKC regardless of the similar average spacing of 3 km in 

both cities. Therefore, the advection effect on the suburban group is less significant in 

OKC compared to Birmingham. Lower percentage of data points in Z2 (warm advection) 

and Z4 (cold advection) for OKC (Figure 5.6c) provides the statistical evidence for these. 

5.6 Conclusions 

If more standardisation can be achieved with respect to UMNs, the results in this 

paper indicate that the method of confidence ellipse with LRM to explore the linear 

!"#$$-	%"#$$ relationship with quadrant analysis appears to be transferable to other 

cities (e.g. OKC). Indeed, several patterns of the linear !"#$$-	%"#$$ relationship could 

be generalised based on the results in this study, which are consistent with the study 

presented in Chapter 4. For example, the slope pattern is found to decrease with increasing 

WS for both cities, indicating the non-negligible effect of heat advection on the linear 

!"#$$ - 	%"#$$  relationship. The !"#$$ - 	%"#$$  relationship from a city with UMN 

could be used as a reference to estimate the city-specific !"#$$-	%"#$$  relationship 

under specific conditions for cities without UMNs. 

It is clear that some elements of the linear !"#$$-	%"#$$ relationship will be unique 

for each city. The results in this study highlight the differences of the UHI magnitude and 

the linear !"#$$ - 	%"#$$  relationship between OKC and Birmingham. These are 

attributed mainly to the climate differences and the network designs. Fortunately, the 

differences of the linear !"#$$-	%"#$$ relationship and the data distributions between 

the two cities are found to be smallest under the ‘ideal’ conditions for the development 

of UHI according to the results from the grouping analysis, which provides a starting 

point for generalising the linear !"#$$-	%"#$$ relationship. Furthermore, the grouping 
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analysis based on different climatic conditions (i.e. WS and DASR) highlights the 

following two differences across the two cities: (i) the greater rate of change of %"#$$ 

with respect to !"#$$ and higher R2 values over OKC under all three climatic conditions; 

(ii) site-averaged !"#$$ are similar but the site-averaged %"#$$ are greater over OKC 

under the three climatic conditions (i.e. !"#$$,,,,,,,,!"# ≈ !"#$$,,,,,,,,$%&'  and %"#$$,,,,,,,,!"# >

%"#$$,,,,,,,,$%&'). 

This study has attempted to remove the climate effect via a statistical method but the 

differences between the two cities are still significant. As such, the role of different 

network designs is more likely to be influential to the linear !"#$$-	%"#$$ relationship. 

Specifically, larger differences were found over the urban group compared to the 

suburban group (i.e. linear regression models and 2-D data distributions) as a result of the 

more distinct differences of the local environment and source areas between the UMNs 

over OKC and Birmingham. In reality, the network designs such as the deployment of 

each station are definitely distinctive for different cities. These would induce disparity of 

stations’ local environment and source areas between different UMNs, leading to 

network-derived differences of air temperature or %"#$$ and particular linear !"#$$-

	%"#$$ relationship ultimately. This finding underlines the requirement of following a 

standardised protocol for UMN design such as the one introduced by (Muller et al., 

2013b). In such a way, the generalisation of the !"#$$-	%"#$$ relationship could be 

more possible and workable across cities, by considering different background climate 

and their land morphologies. 

There are some limitations in this study, which are summarised as follows: (i) Wind 

direction is one of the determining factors on the impacts of heat advection on the !"#$$-
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	%"#$$ relationship. However, it is not considered in this study due to the limited sample; 

(ii) Although the local environments surrounding the rural stations across OKC and 

Birmingham have been investigated, it is still worth considering the impacts of the 

selections of rural station on the differences of the !"#$$ − %"#$$ relationship across 

these two cities in future analysis; (iii) Temporal variation (i.e. daily) of the !"#$$ −

%"#$$  relationship is not considered in this study because of the coarse temporal 

resolution of the MODIS satellite. The thermal bands data from the GOES-16 satellite 

with approximately 15-min temporal resolution (Minamide and Zhang, 2017) could be 

useful to further characterise the temporal variation of the !"#$$ − %"#$$ relationship 

across cities in the future. 

Moving forward, further comparisons of the linear !"#$$-	%"#$$ relationship in 

other cities is needed. In addition, numerical modeling could be possibly used to remove 

the impact of different climate backgrounds between cities by running different 

simulations.  However, there are promising signs that a universal !"#$$ - 	%"#$$ 

relationship is increasingly achievable. 

5.7 Summary 

In this chapter, a comparison has been made for the !"#$I-%"#$$  relationship 

between OKC and Birmingham with consideration of different atmospheric conditions 

and levels of urbanisations. Regarding the differences arising due to the local climate, a 

grouping analysis was successfully applied to facilitate the comparisons. Furthermore, a 

statistical method is used to minimise the local climate effect in order to explore the role 

of UMN configuration on the different !"#$I-%"#$$ relationships between the two cities. 

More importantly, the results from this chapter provide increased confidence in the 
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generalisation of the !"#$ I-%"#$$  relationship for different cities. Particularly, the 

differences of the !"#$ I-%"#$$  relationships between the two cities are minimised 

during the ‘ideal’ condition for UHI development.
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Chapter 6   Conclusions 

 
 
 

 

This thesis aims to explore the characteristics of the !"#$$ -%"#$$  relationship for 

individual cities and seek the possibility of the generalisation of the relationship across 

different cities (i.e. Birmingham and OKC) under certain climatic conditions and land 

surface characteristics. The generalisation process mainly focused on comparing the 

outcome of the !"#$-%"#$  relationship from two different cities and identifying the 

conditions under which the relationship can be equally applied to the two cities. This 

chapter reviews the findings in terms of the four objectives in order to fulfil the aim of 

this thesis from all the analysis in previous chapters, and to present a critique of the 

analysis with respect to future work. 
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6.1 Fulfilment of aims of the thesis 

Interest in the investigation of the relationship between surface urban heat island 

intensity (!"#$$) and canopy urban heat island intensity (%"#$$) (the !"#$$-	%"#$$ 

relationship) is growing mainly because of the global availability of satellite-sensed land 

surface temperature (1(). It is hoped that if such a universal relationship can be found, it 

could compensate for the spatial discontinuity of air temperature (1)) measurements that 

currently exist due to a paucity of weather stations in urban areas. As discussed in Section 

1.3, the “generalisation” mainly focused on comparing the outcome of the !"#$$-	%"#$$ 

relationship from the two cities and identifying the conditions under which the 

relationship can be equally applied to the two cities. It is achieved by firstly examining if 

there are some specific characteristics of the !"#$$-	%"#$$ relationship under certain 

conditions (Chapters 4-5). Certain conditions were identified that the !"#$$- 	%"#$$ 

relationships have similar characteristics across the two cities, e.g. the variations of the 

linear !"#$$-	%"#$$ relationship follows the change of wind speed (e.g. the reduction of 

the rate of change of !"#$$ with respect to %"#$$ with increasing WS) and the role of 

the site characteristics (i.e. non-negligible impacts of advection on the magnitude of UHII 

in urban and suburban groups). The !"#$$-	%"#$$ relationships were then compared 

between the two cities under these certain conditions to seek the possibility of the 

generalisation. This seems to be hard to achieve at the moment, however, results from 

this thesis provides further understandings of the role of the UMNs and local climate on 

the differences of the !"#$$ - 	%"#$$  relationships across cities. It concludes that a 

standard protocol of the UMN is the prerequisite in order to derive a universal !"#$$-

	%"#$$ relationship globally in the future. 
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Regarding the four objectives in this thesis, each of it is evaluated below with a 

summary and conclusion of the outcomes in relation to each chapter. 

(i) Response of +()** and '()** to different atmospheric conditions 

The magnitude of the Urban Heat Island (UHI) effect is well documented to be most 

significant during periods of high atmospheric stability and it is during these periods that 

its impacts are most acutely felt. Atmospheric condition is most commonly considered in 

UHI studies by using the Pasquill-Gifford (P-G) classification scheme to assign a class to 

each day or few hours of investigation. One advantage of this approach is its broad 

applicability, only requiring simple routine meteorological measurements to perform the 

classification. 

The availability of the Urban Meteorological Network (UMN) implemented in 

Oklahoma City (OKC), US, with meteorological observations available at two heights, 

provided a unique opportunity to evaluate the effectiveness of the P-G classification 

scheme by conducting the correlation analysis between the intensity of UHI (UHII, 

including %"#$$  and !"#$$ ) and the other four parameters related to atmospheric 

conditions (e.g. Richardson number, vertical gradient of temperature, vertical gradient of 

wind speed and wind speed at a different height level [2 m a.g.l]). 

Despite the added sophistication of multi-level data, the main findings of Chapter 3 

surprisingly confirmed the superiority of the P-G scheme for characterising the UHII, 

comparing to the other four parameters, indicating that background wind speed (10 m 

a.g.l) showcases strong controls in the variations of both !"#$$ and %"#$$. The P-G 

scheme is also found to be workable in differentiating both the daily %"#$$ and !"#$$ 

under different stability classes. 
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The analysis in Chapter 3 also provided more details regarding the inherent 

characteristic of the satellite-sensed land surface temperature. It was shown that the 

reliability of the P-G scheme was reduced for characterising !"#$$ during the transition 

seasons (Spring and Autumn). Furthermore, results show that the spatial variance 

(standard deviation) of both the !"#$$ and %"#$$ across different Urban Climate Zones 

(UCZs) generally increases from neutral to extremely stable conditions, particularly 

during summer seasons. It is therefore suggested that the atmospheric condition also 

potentially influences the spatial pattern of both !"#$$ and %"#$$.  

In summary, Chapter 3 demonstrates the significance of atmospheric condition 

(approximated by wind speed as cloud cover reduces the utility of satellite imagery) for 

spatial and temporal (or seasonal) variations of !"#$$  and %"#$$ . Results from this 

chapter are of great importance to explore the !"#$$-	%"#$$ relationship in the later 

chapters. 

(ii) Explore the effects of atmospheric conditions and levels of urbanisations on 

the nocturnal '()*-+()* relationship by developing a repeatable methodology 

Previous investigations of UHI are primarily focused either on the canopy air heat 

island intensity (%"#$$) and the surface urban heat island intensity (!"#$$). %"#$$ and 

!"#$$ are calculated as the air (from ground observations) and land surface temperature 

(from satellite instruments) differences between urban and rural sites, respectively. 

Research of the relationship between !"#$$ and %"#$$ (the !"#$$-%"#$$ relationship) 

is limited and this study attempted to further progress this possibility by examining the 

night-time !"#$$-%"#$$ relationship for three factors: season, wind speed, and basic 

landuse categories modified from local climate zones (urban / suburban), in Birmingham, 
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UK. Overall, Chapter 4 provided evidence of the potential generalising the !"#$$-%"#$$ 

relationship, with considerations of the three factors mentioned above. 

Other than the use of UMN data, the main contribution of Chapter 4 was the 

development of a new methodological approach consisting of regression analysis, 

confidence ellipse analysis of covariance (ANCOVA), and 2-D Kolmogorov-Smirnov 

(K-S) tests, and statistical evidence to present the varying patterns and magnitudes 

between !"#$$  and %"#$$ . This approach has been shown to provide the means to 

visually explore new insights into the relationship, backed up be robust statistical analysis. 

Using the method, the specific characteristics of the linear !"#$$ - %"#$$ 

relationship were found with regards to different seasons, wind speed conditions and 

levels of urbanisation in Birmingham. Specifically, the results indicate that satellite data 

can be used to infer %"#$$ with a higher confidence for low wind speed conditions. 

Results also demonstrate better confidence in the approach for summer and spring seasons, 

and for more urbanised sites. Indeed, the analysis potentially indicates that wind 

advection is a key factor for the investigation of the !"#$$-%"#$$ relationship. More 

importantly, this chapter provided a transferable methodology and convincing results 

regarding the generalisation of the !"#$$-%"#$$ relationship. 

(iii) Determine the specific characteristics of the '()** -+()**  relationship 

found in (ii) in OKC 

Chapter 5 attempted to accomplish confirms the specific characteristics of the 

!"#$$-	%"#$$ found in Chapter 4 by using the earlier developed statistical methods in 

Oklahoma City (OKC), US and comparing with Birmingham, UK. Particularly, some 

similarities are found across the two cities, such as the reduced rate of change of %"#$$ 
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with respect to !"#$$  with increasing WS and the non-negligible advection effect 

regarding the urban and suburban groups of stations in this relationship, which was also 

found in Chapter 4. Results from Chapter 5 provided evidence regarding the methodology 

developed in Chapter 4 that can be applied in other cities to study the !"#$$-	%"#$$ 

relationship confidently. 

(iv) Investigate the possibility of generalisation of the '()**-+()** relationship 

by considering the role of local climate background and configurations of the UMNs 

in two cities 

This objective was accomplished in Chapter 5 by comparing the !"#$$-	%"#$$ 

relationship between OKC and Birmingham. 

The differences of the linear !"#$$-	%"#$$ relationship across two cities were found 

to reduce under ideal conditions (clear skies, calm and large input of solar radiation from 

previous day [DASR] into urban system). It was mainly explained by the larger controls 

of the local meteorological conditions (WS and DASR) on the "#$$-	%"#$$ relationship, 

comparing to other influential factors. This implicated the higher chance of generalising 

the !"#$$-	%"#$$ relationship across cities under ideal conditions for UHI development. 

More importantly, the study emphasises the influence the configuration of UMNs on 

the !"#$$-	%"#$$ relationship. By removing the climatic element in the relationship (i.e. 

WS and DASR), the impacts of the different local environments, source areas and general 

configurations of the UMN become evident, indicating that a standardised protocol for 

the designs of UMN is the prerequisite for the generalisation of the !"#$$ - 	%"#$$ 

relationship across cities. Although there is ongoing work in this area (e.g. Muller et al. 

(2013b), World Meteorological Organization (2007)), this thesis has exposed the fact that 
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best practice in UMN design is urgently required to be established to ensure the full 

benefits of research efforts. 

Overall, this thesis has validated the unique variations of the !"#$$ - 	%"#$$ 

relationship under specific conditions and importantly, the comparisons between these 

two cities provide more confidence in the generalisation process for future analysis. 

Particularly, climatic effects and the setting of UMN in each city are the most 

considerable concerns in this process. 

6.2 Critique of thesis 

There are a number of uncertainties according to the data and methodologies applied 

in this thesis. These are mainly included the accuracy of data and the effectiveness of the 

methods, potentially leading to other issues and uncertainties in the results (e.g. the 

!"#$$-	%"#$$ relationship). These have been discussed thoroughly at the end of each 

analysis chapter (Chapters 3 - 5), but the following discussion will draw attentions to the 

major limitations in this thesis. The corresponding future work aiming to reduce these 

uncertainties and achieve the generalisation of the !"#$$-	%"#$$ relationship globally is 

introduced in Section 6.4. 

6.2.1 Data 

Data used in this thesis have been introduced in Chapter 2, mainly incorporating the 

MODIS satellite products and the ground observations from the two UMNs in the two 

cities. The following discussions underline the limitation of the data and the 

corresponding potential effects on the results in this thesis. 

(i) Satellite product (land surface temperature) 



194 
 

The accuracy of the land surface temperature estimated from satellite mainly depends 

upon the correction process of the atmospheric and emissivity effects which are highly 

variable under different atmospheric and surface conditions (Li et al., 2013). Although 

the freely access land surface temperature products from MODIS are used in this thesis, 

the corresponding constraints of the approximations and assumptions for estimating the 

land surface temperature are not considered due to the difficulties in light of the validation 

processes (e.g. availability of the ground measurements). Unfortunately, the validation of 

the land surface temperature products from MODIS has not been broadly conducted over 

urban areas. It is supposed that the highly heterogenous urban surface could inevitably 

induce some ambiguities of the estimation process (Wan, 2008). It is therefore likely to 

affect the estimation of !"#$$. The ground observations are used to filter the images from 

satellite and prevent them from being affected by cloud, to a large extent, even though 

this would reduce the available images and sample size in this study which is another 

limitation in respect to the data processing. 

In addition, the thermal anisotropy effects of the land surface temperature (1( ) 

induced by the variations of the satellite viewing angles, especially over urban areas, are 

considered to be negligible in this thesis because of (i) the lower level of the urbanisation 

over OKC and Birmingham, comparing to the study areas from previous studies that 

explored the anisotropy effect (Dyce and Voogt, 2018, Lagouarde et al., 2012) and (ii) 

the negligible effect of the thermal anisotropy at night-time (Hu et al., 2016a), as per 

discussed in Chapter 2. However, it may still increase the variation of the 1( over urban 

areas particularly during summer period when the daylight is longer. As the research 

related to the anisotropy effects is still limited, further analysis needs to be undertaken 

before considering it into the study of the !"#$$-	%"#$$ relationship. 



195 
 

(ii)  Ground observations from UMNs 

Although the accuracy (a systematic errors: the closeness of the observations to a 

specific/real value) of the sensors for measuring temperature, wind speed or relative 

humidity from the two UMNs has been assessed and validated (Warren et al., 2016, 

Basara et al., 2011), different models of the sensors that usually have different levels of 

tolerance could potentially generate uncertainties during data retrieval, which is the 

acknowledged limitation in this thesis. Nonetheless, these two extensive networks ensure 

the sufficiency of the data used in this work and to a certain extent, it could reduce its 

corresponding effect in our results. This is not withstanding the earlier conclusion that a 

standard protocol for UMN design is urgently needed, because of the highly heterogenous 

temperature field in the urban canopy layer (UCL). 

6.2.2 Methodology 

Although there is a desire to produce a universal relationship, Birmingham and 

Oklahoma City are the only case study areas considered in this thesis. Even though the 

methods are designed to be transferable and findings are probable to be similar in other 

cities, much of the work is only relevant to these two cities and further comparison and 

validation are needed in other cities. The main limitation to the replicability is determined 

by the availability of the UMN and the protocol used to design and configure it. 

Furthermore, several constraints with reference to the methodology applied in the thesis 

are discussed as below. 

UHI is the main focus of this study. The traditional method is used to calculate the 

UHI by subtracting the temperature at urban sites from rural sites. In doing so, the 

uncertainties induced by the measurements may increase. However, this is unavoidable 
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for observations. Therefore, a strict rule regarding the accuracy of the temperature sensors 

is necessary for configuring the weather station. 

Simple methods are used to achieve the spatial and temporal consistency between 

surface and air temperature in this work. The spatial consistency between 1( and 1) is 

achieved based on IDW with 500-m radius buffer, as mentioned in Chapter 2. Therefore, 

the calculation of 1( corresponding to a weather station (1)) has considered at least three 

pixels surrounding the weather station as the spatial resolution of the 1( product from 

MODIS is about 926.63 m. Although this is not the focus in this work, it is certainly not 

ideal and it could impact the results. Likewise, the temporal variations of the 1( from 

Aqua and Terra satellites are ignored, which is assumed to be derived at 01:30 AM and 

22:30 PM, respectively. Accordingly, the average 1) during 01:00 – 02:00 AM and 22:00 

– 23:00 PM are used. This approximation may trigger some uncertainties in the results, 

which is an important issue for future research. 

Selections of different rural stations would contribute to variations of the %"#$$ and 

!"#$$ . Local environments of the two rural reference stations -- Coleshill station is 

classified as scattered trees and Spencer station is classified as low plants, which are 

similar. The two rural stations are selected because they are the closest rural stations from 

the urban areas, which could reflect the rural conditions surrounding the urban areas more 

objectively. Moreover, southerly winds are prevalent during the study periods for the two 

cities while the two rural stations are located in the south of the cities, therefore, they 

could be less influenced by the heat advection from city centres. It is still worth 

considering the impacts of the selections of rural station on the differences of the !"#$$-

%"#$$ relationship across these two cities in future studies. 
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The analysis of the work is mainly based on linear regression techniques. linear 

regression model (LRM) is chosen because of its simplicity compared to other non-linear 

regression models and it is easier to interpret the relationship two variables. More 

statistical techniques can be implemented to assess the reliability of the LRM, e.g. 

significant test for whole LRM and regression co-efficients. However, it is well known 

that the 1(-1) relationship and !"#$$-%"#$$ relationship are extremely complicated and 

are expected to be non-linear. The specific characteristics found in terms of the LRMs are 

better for discovering the physical process between surface and air layers but the 

mathematical equations for building up the true relationships are more convincible by 

using non-linear models in future analysis. 

6.3 Research impact 

Overall, this thesis aims at moving closer to address the ambitious target of finding 

a universal !"#$$-%"#$$ relationship. Among many controlling quantities, a couple of 

‘universal’ ones representing weather/climate processes, namely wind speed (WS) and 

daily accumulated solar radiation from previous day (DASR) were chosen to test. Using 

the linear regression method, we attempted to examine whether the slope of the regression 

lines or the mean UHII possess any universal information, independent of cities, or not. 

If not, e.g. contrasting magnitude of the mean !"#$$ and %"#$$ across the two cities 

discovered in Chapter 5, we tried to raise the issue to the research community for further 

studies to identify any attributable (either universal or city-specific) quantities, in order 

to enhance our understanding. One attributable city-specific factor is urban environmental 

conditions (i.e. building height and vegetation amount). According to the results from 

Chapter 5, the contrasting magnitude of the mean !"#$$ and %"#$$ across the two cities 
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are shown in both urban and suburban groups and all climatic conditions. Therefore, these 

differences could be attributed to the differing urban environments. 

The impacts of the background atmospheric conditions and the configurations of the 

UMN are emphasized in generalisation process and the recommendation of a standardised 

protocol for configuration of UMNs. The standardised protocol is not trying to minimise 

the urban effect, but to highlight whether the differences of the UHI are induced by the 

UMN design, or by other factors such as urban structures and climate conditions. For 

example, for two identical hypothetical cities, but with UMNs of different configurations, 

the !"#$$-%"#$$ relationship should be different, but this is not resulted from the urban 

structures but from different settings of their own UMNs. The latter is unavoidable and 

almost impossible to be quantified. The generalisation of the !"#$$-%"#$$ relationship 

is also difficult to achieve due to the different climate background and urban structures 

across cities. However, the configuration of the UMNs across cities based on a 

standardised protocol is the first and important step to achieve this goal in the near future. 

Although it is hard to issue the standardised protocol that is workable for each city in the 

world, some specific guidelines can be proposed and followed. For example, for the 

configuration of the UMN aiming for UHI studies, stations are restricted to fixed height 

above ground level (i.e. 2 m) and there should be a threshold for the distance from the 

stations to the surrounding obstacles etc. 

In conclusion, the findings from this thesis provide a deeper understanding of the 

!"#$$-%"#$$ relationship and differences between nocturnal surface and canopy heat 

island. This is an important step for applying satellite products to studies referring to the 

UHI. The comparisons of the !"#$$-%"#$$ relationship across cities used a transferable 
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methodology that can be readily to be applied in other cities, in order to achieve the 

generalisation of the !"#$$-%"#$$ relationship globally. 

6.4 Future development and perspectives 

Completing a set of perfect, systematic and rigorous tests of the !"#$$ -%"#$$ 

relationship for different continents, with different morphologies and different 

background climates, and different UMN designs is an extremely challenging target. To 

achieve this ambitious target, multiple steps are required with regard to the data collection 

and data analysis. This work endeavours to take one step forward; this effort includes the 

development of a methodology to isolate the impact from one or two factors (e.g. 

background climate for different continents). Further research to compare the !"#$$-

%"#$$ relationship in cities with different continents, with different urban settings and 

climate background is needed and it is subjective to the availability of the UMN. It would 

be great if the same network design could be replicated in several cities and hopefully, 

and this will become possible in due course as WMO (World Meteorological 

Organization) protocols evolve. Moreover, the comparisons of the !"#$$ - %"#$$ 

relationship between these two cities could be further investigated by running numerical 

models (i.e. weather forecasting and research model) that could provide physical 

parameters in light of the interaction between surface and air layers. The impacts of 

different climate background or urban structures could then be estimated by utilising an 

expanded case study approach.
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