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Abstract 

 

Qualitative clinical assessments of the recovery of awareness after severe brain injury require an 

assessor to differentiate purposeful behaviour from spontaneous behaviour. As many such behaviours 

are minimal and inconsistent, behavioural assessments are susceptible to diagnostic errors. Advanced 

neuroimaging tools such as functional magnetic resonance imaging and electroencephalography (EEG) 

can bypass behavioural responsiveness and reveal evidence of covert awareness and cognition within 

the brains of some patients, thus providing a means for more accurate diagnoses, more accurate 

prognoses, and, in some instances, facilitated communication. As each individual neuroimaging method 

has its own advantages and disadvantages (e.g., signal resolution, accessibility, etc.), this thesis studies 

on healthy individuals a burgeoning technique of non-invasive electrical and optical neuroimaging—

simultaneous EEG and functional near-infrared spectroscopy (fNIRS)—that can be applied at the 

bedside. Measuring reliable covert behaviours is correlated with participant engagement, instrumental 

sensitivity and the accurate localisation of responses, aspects which are further addressed over three 

studies. Experiment 1 quantifies the typical EEG changes in response to covert commands in the 

absence and presence of an object. This is investigated to determine whether a goal-directed task can 

yield greater EEG control accuracy over simple monotonous imagined single-joint actions. Experiment 

2 characterises frequency domain NIRS changes in response to overt and covert hand movements. A 

method for reconstructing haemodynamics using the less frequently investigated phase parameter is 

outlined and the impact of noise contaminated NIRS measurements are discussed. Furthermore, 

classification performances between frequency-domain and continuous-wave-like signals are 

compared. Experiment 3 lastly applies these techniques to determine the potential of simultaneous 

EEG-fNIRS classification. Here a sparse channel montage that would ultimately favour clinical utility 

is used to demonstrate whether such a hybrid method containing rich spatial and temporal information 

can improve the classification of covert responses in comparison to unimodal classification of signals. 

The findings and discussions presented within this thesis identify a direction for future research in order 

to more accurately translate the brain state of patients with a prolonged disorder of consciousness. 
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Chapter 1 

 

Literature review and aims 

 

1.1.  Introduction 

 

In the UK, every three minutes an individual is hospitalised due to a traumatic (e.g. fall, assault, 

motor vehicle accident) or non-traumatic (e.g. stroke, brain haemorrhage, anoxia) brain injury, equating 

to approximately 300,000 admissions per year (Headway, 2017). Many of these patients will experience 

little or no long-term effects and will rapidly transit through the following states of Prolonged Disorder 

Of Consciousness (PDOC) during recovery: Coma, Vegetative State (VS) (which is also frequently 

referred to as Unresponsive Wakefulness Syndrome (UWS) in the literature (Laureys et al., 2010)), 

Minimally Conscious State (MCS) and emergence from MCS (EMCS) (figure F1.1) (Gosseries et al., 

2011). This recovery path is consistent with the two aspects of consciousness; in the first instance an 

individual’s level of consciousness is recovered, i.e. wakefulness, followed by the re-building of its 

contents, i.e. awareness (Bayne et al., 2016; Zeman, 2001). Patients in a VS/UWS are clinically awake, 

with eyes open and preserved reflexes, yet appear to be unaware of their surroundings or of themselves 

(for a detailed review of the PDOC states please refer to (Laureys et al., 2004)). Patients in a VS/UWS 

can be categorised into three groups, specifically: 1) transitory, where a patient very briefly displays 

signs of a VS however rapidly progresses towards independence; 2) continuing, which is defined as a 

sustained VS present one month after acute traumatic or non-traumatic brain damage, and 3) permanent, 

when it is still present six months after non-traumatic brain damage, or twelve months after traumatic 

injury (Laureys et al., 2004; Royal College of Physicians, 2020; The Multi-Society Task Force on PVS, 

1994). Patients in a minimally conscious state exhibit inconsistent but purposeful evidence of 

awareness, such as visual pursuit and following verbal commands (Giacino et al., 2002). The 

classification of PDOC is not to be confused with the branch of Locked in Syndrome (LiS), which is a 

condition due to a specific brain stem injury in which patients are aware but have limited or no means 
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to move or communicate (Bauer et al., 1979; Laureys et al., 2005). As a result, LiS patients share similar 

challenges as those diagnosed with PDOC (i.e. patients in an early minimally conscious state are 

clinically aware but can lack the mobility to respond to commands).  

 

 

Figure F1.1: A potential route towards recovery following severe traumatic brain injury. LiS, locked-in 

syndrome; VS, vegetative state; UWS, unresponsive wakefulness syndrome; MCS, minimally conscious state; 

MCS+, minimally conscious state plus; MCS−, minimally conscious state minus; MCS?, vegetative state with 

covert awareness; EMCS, emergence from a minimally conscious state. Figure adapted from (Laureys et al., 

2004). No permissions were required. 

 

 The progression between each of the states of PDOC is generally smooth (Gosseries et al., 

2011) and therefore the difficulty lies in accurately determining and diagnosing a patient in a single 
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state using qualitative clinical assessment methods. The need to accurately detect awareness remains a 

thorough subject of research as misdiagnoses can lead to inappropriate healthcare decisions, such as 

instances of pain perception (Demertzi et al., 2009) or end-of-life decisions (Demertzi et al., 2013). 

Standardised behavioural assessments such as the JFK Coma Recovery Scale-Revised (CRS-R) and 

Wessex Head Injury Matrix (WHIM) are the current “gold standard” for detecting signs of awareness 

(Giacino et al., 2004; Morrissey et al., 2018; Shiel et al., 2000). Various other methods, including skin 

conductance response, diameter of the pupils, breathing control and mini movement micro-switch have 

also been proposed to advance the diagnosis and assessment of PDOC (Charland-Verville et al., 2014; 

Lancioni et al., 2012; Scott et al., 2011; Stoll et al., 2013). However, as clinicians must rely on 

observable behaviours to determine a patient’s level of awareness, it is possible that a significant 

proportion of patients can be misdiagnosed (approximately 40% (Schnakers et al., 2009)) if they are 

unable to produce purposeful behaviours due to a motor impairment. Indeed it has been estimated that 

15% of patients (Kondziella et al., 2016) who meet the behavioural gold-standard for vegetative state 

have a cognitive-motor dissociation (Schiff, 2015) or covert awareness (Fernández-Espejo et al., 2015) 

that can only be detected with brain imaging. This therefore stresses the need for objective multimodal 

assessments that can cover all aspects of brain functioning including:  

• Positron Emission Tomography (Laureys et al., 1999; Schiff et al., 2002) to assess metabolism, 

• Magnetic Resonance Imaging (MRI) (Fernández-Espejo et al., 2010a) to capture structural 

images, 

• Functional MRI (fMRI) (Owen et al., 2006), functional Near-Infrared Spectroscopy (fNIRS) 

(Kempny et al., 2016) and functional Transcranial Doppler (Naro et al., 2018) to record 

haemodynamic responses, 

• Diffusion Tensor Imaging (Cavaliere et al., 2015; Fernández-Espejo et al., 2010b, 2011) to 

obtain structural changes in the white matter, 

• Electroencephalography (EEG) (Cruse et al., 2011) and Magnetoencephalography (Schiff et 

al., 2002) to map dynamics of cortical activations. 
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In the first demonstration of covert command-following, Owen and colleagues asked a patient 

who fulfilled all clinical criteria for a diagnosis of vegetative state to undertake two motor imagery tasks 

in an MRI scanner (i.e. applied an fMRI methodology); the first involved playing a game of tennis and 

the second, a spatial navigation task, involved imagining visiting the rooms of their house (Owen et al., 

2006). As is seen in healthy individuals when completing the same tasks, significant activity was 

observed in the patient’s supplementary motor area (SMA) whilst imagining playing tennis, and in the 

parahippocampal gyrus, the posterior parietal cortex, and the lateral premotor cortex (PMC) when 

imagining moving around their house. This brain-imaging evidence of the patient following the 

commands indicated that the patient was aware, despite the fact that they were unable to demonstrate it 

with their behaviour. Subsequently, by assigning each imagery task to a ‘yes’ or ‘no’ communication 

output, several patients have been able to answer a series of questions about themselves and their lives 

(Bardin et al., 2011; Fernández-Espejo and Owen, 2013; Monti et al., 2010; Naci and Owen, 2013), 

hinting at the potential for brain-computer interfaces (BCIs) and assistive devices for this patient group. 

Here a BCI is defined using the definition proposed by Wolpaw and colleagues: a device that “provides 

the brain with a new, non-muscular communication and control channel” ((Wolpaw et al., 2002), page 

768). In this context a BCI serves to directly measure neural activity associated with the users’ intent 

and translate the recorded signals into corresponding control signals for BCI applications. 

Following this work, Vogel and colleagues were able to predict recovery in patients diagnosed 

as vegetative or minimally conscious using the same paradigm of tennis playing and room navigation. 

In contrast to the study by Owen and colleagues whereby fMRI activation profiles of the two tasks were 

compared to rest (Owen et al., 2006), Vogel and colleagues contrasted the two profiles to each other 

thereby reducing the false positives rate (Vogel et al., 2013). By examining the neural regions of interest 

(ROIs) that are expected to show significantly increased activations for each contrast they were able to 

identify 100% of patients (5 out of 5) in a VS that progressed into an MCS state and 67% of patients (6 

out of 9) in an MCS state that transitioned into an EMCS state. Furthermore, none of the patients in a 

vegetative or minimally conscious state that presented no activations in the ROIs progressed towards 

recovery. 
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Despite the success of fMRI in the field of PDOC, the technology is limited because many 

patients’ reduced mobility requires them to be transported to advanced facilities that feature such 

equipment. However, recently Fernández-Espejo and colleagues demonstrated that single subject 

activations of ROIs during mental imagery tasks could be achieved in approximately 80% of cases 

using both 3T and hospital grade 1.5T MRI scanners lending the technique to widespread clinical use 

(Fernández-Espejo et al., 2014). Nevertheless, the need to bring patients to a scanner makes repeated 

assessments difficult, and can overlook evidence of awareness in patients whose arousal levels fluctuate 

throughout the day (Bardin et al., 2011). Furthermore, the fMRI approach is unsuitable for those with 

metallic implants, is highly sensitive to motion artefacts, and requires patients to lay supine. A portable, 

inexpensive, and non-magnetic method for measuring the same haemodynamic response as measured 

by fMRI could be used to translate the successes of fMRI to the bedside. 

 Following in the footsteps of fMRI research in PDOC, the overarching goal of this thesis is to 

improve the accuracy of detecting covert command-following at the bedside. The limitations of fMRI 

together with the need for continuous bedside neuroimaging methods suggest further exploration of 

portable EEG and NIRS technology in their capabilities to accurately and sensitively measure cortical 

activity from the scalp. In order to achieve this overarching goal, the aim of the presented research is to 

specifically investigate the utility of fNIRS and simultaneous EEG-fNIRS for detecting covert 

command-following using motor imagery. The research within this thesis, whilst concentrated on 

healthy individual data collection and analysis, incorporates select challenges faced in patient 

assessments and therefore acts as the fundamental building blocks for extending the proposed 

simultaneous EEG-fNIRS technology and methodology into the clinic. With further development of 

this research it is possible that we may be able to achieve continuous bedside monitoring that ultimately 

improves diagnostic accuracy of a patient’s level of awareness and communication between clinicians 

and patients in a PDOC. 

 The remainder of this chapter provides an overview of both EEG and fNIRS technology, and 

the literature surrounding its use for covert command-following using motor imagery. Furthermore, this 

chapter explores research that has been performed using simultaneous EEG-fNIRS, discusses 

limitations of the hybrid technology and methodology in its current form, and provides notable 
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examples of where the technology has been piloted for use in patients with PDOC or LiS for either 

awareness detection or communication. This chapter concludes by summarising key discussion points 

and detailing the hypotheses and rationale for each of the three experimental chapters within this thesis. 

The three experimental chapters work towards developing a simultaneous EEG-fNIRS imaging 

methodology for covert command-following detection. The outputs of these chapters are then discussed 

together in a final conclusions chapter with respect to the method’s clinical potential for awareness 

detection in patients with PDOC. 

 

1.2.  Electroencephalography 

 

Electroencephalography is a portable, non-invasive, inexpensive tool for recording neural 

activity and is widely growing popular within the field of PDOC as an alternative method to fMRI and 

behavioural assessments to determine the level of awareness in patients. EEG activity primarily arises 

from the temporal synchronised activity of populations of cortical pyramidal neurons as revealed by the 

summation of postsynaptic potentials at their apical dendrites (Pfurtscheller and Lopes da Silva, 1999). 

The ability to directly measure these electrical fields enables EEG to benefit from high temporal 

resolution (millisecond time-frame). The creation of an extracellular voltage that is more negative at 

these dendrites than elsewhere along the neuron results in randomly oriented groups of neurons of like 

charges repelling one another and an impeded “wave” of charge traveling through the extracellular 

space. This process of volume conduction is responsible for the propagation of the EEG signal within 

the brain and is aided by cerebrospinal fluid and various ion-filled substances in the brain that are very 

good conductors of this electrical charge (figure F1.2). Once the volume conducted signal reaches the 

end of its volume such as the dura layers, skull, scalp and electrode, capacitive conductance is 

responsible for propagating the signal between these layers (figure F1.2). The size of the inner charged 

pool of ions, and the distance between the pool of charged ions and the insulating layer will determine 

the extent of capacitive conduction. Each layer will have its own volume conduction effect that 

propagates in multiple directions. As such, a negative by-product of this at the scalp electrodes is a 

spatially smeared signal. At the scalp insulating layer, the conducted neural signals propagate through 
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the electrode gel and can be amplified at active electrodes (Mathewson et al., 2017) before reaching the 

acquisition computer. Both the electrode gel and amplifier aim to increase the signal-to-noise ratio 

(SNR), however in different ways. Prior to application of the electrode gel the skin is extensively 

prepared (skin aberration), thereby minimising the resistance of the electrode-scalp connection. At the 

electrode, amplification of the signal is dependent on the impedance of the electrode which drops the 

voltage to an extent that significantly reduces electrical noises that may enter the system as the signal 

propagates along the wires to the computer (Jackson and Bolger, 2014). 

 

 

Figure F1.2: An example of an electrical signal propagation pathway through the brain. A difference in charge 

between the soma and apical dendrites of several radial dipoles results in a net positivity in the immediate vicinity. 

Through the process of volume conduction (repulsion of like charges in all directions in a homogeneous medium) 

this positive charge propagates across the brain till it reaches a capacitive layer. The electrical signal propagates 

across several capacitive layers, including the layers of brain, dura, skull, scalp and electrode gel through the 

repulsion of like charges at the boundary surfaces (the size of this repulsion depends on the thickness of the 

boundary). The gel is a conductor and hence less attenuation allows more of the signal to reach the electrode. 

Figure adapted from (Jackson and Bolger, 2014). No permissions were required. 
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The output of an EEG signal is a waveform encompassing multiple frequencies. The frequency 

characteristics of the signal are predominantly categorised into five groups that reflect different aspects 

of brain activity, including delta (<4 Hz), theta (4-8 Hz), alpha (8-13 Hz), beta (13-30 Hz) and gamma 

(>30 Hz). An individual at rest with their eyes closed generates the posteriorly dominant alpha rhythm. 

Both alpha frequency and amplitude are generally symmetrical over the two hemispheres of the head 

and any deviation from this (i.e. slower oscillations) may suggest abnormal cerebral functioning. 

Unilateral or bilateral alpha band activity over the sensorimotor cortices are termed mu (Kuhlman, 

1978). Rolandic mu rhythms are unrelated to eye opening and are sensitive to movement, 

somatosensory stimuli and thoughts of movement. Such cortical alpha rhythms are correlated with 

conscious awareness and are abnormal in patients in a VS due to their lack of awareness (Hughes, 

1978). Unlike alpha, beta frequencies are lower in amplitude and are sensitive to the functions of the 

sensorimotor cortex, whilst also being enhanced by drowsiness (Britton et al., 2016; Kumar and 

Bhuvaneswari, 2012). As such, both mu and beta rhythms are most commonly explored in the context 

of motor function and mental imagery in the field of PDOC. The amplitude of the raw EEG is relatively 

small and as such subtle functional changes induced by sensory, motor or cognitive activities cannot be 

observed unless the data are averaged. Averaging increases the SNR therefore revealing activity that is 

time-locked to the stimulus, so called Event Related Potentials (ERPs) (Lehembre et al., 2012). Each 

ERP may represent frequency specific changes that can be identified by either decreases (event-related 

desynchronisation or ERD) or increases (event-related synchronisation or ERS) of the power in given 

frequency bands. Such fluctuations are associated with increases or decreases in synchrony of the 

underlying neural populations (Pfurtscheller and Lopes da Silva, 1999). 

An EEG in a patient in a VS will show a marked general slowing of their electrical brain activity 

(Schiff et al., 2014). EEG power spectra for patients in a VS are concentrated at very low frequencies 

(<1 Hz) whereas those of patients in an MCS show prominent peaks within the theta (3-7 Hz) and beta 

(15-30 Hz) frequency bands (Schiff et al., 2014). It has additionally been shown that patients in a 

continuing VS with some level of consciousness and patients in an MCS can have low alpha rhythm 

activity (8-13 Hz) across parietal and occipital brain regions (Babiloni et al., 2009).  As such, if a patient 

were misdiagnosed then their ability to follow commands and display signs of awareness would be 
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reflected in heightened brain activity in the regions corresponding to the task, provided that they were 

structurally present. In the first study of its kind, Cruse and colleagues demonstrated the utility of EEG 

to detect command following, and as such awareness, in three out of sixteen patients who met the CRS-

R definition of VS using motor imagery of the right-hand and toes (Cruse et al., 2011). Here, motor 

imagery is defined as imagined movement of the body while keeping the muscles still. Motor imagery 

tasks can be divided into visual and kinaesthetic tasks. In the former, the participant visualises the 

movement whilst in the latter the participant imagines the feelings and sensations produced by the 

movement. Kinaesthetic motor imagery is more often used as it has been shown to recruit more of the 

cortical motor system (Guillot et al., 2009). Motor imagery tasks can provide proxies of command-

following for those patients who may be aware but unable to produce purposeful overt behaviours. 

However, motor imagery blood-oxygen-level-dependent (BOLD) activation is not always detectable in 

all participants; indeed, Fernández-Espejo and colleagues found no appropriate activation in 20% of 

healthy participants in one study (Fernández-Espejo et al., 2014). Nevertheless, the patients in the study 

by Cruse and colleagues took part in four to eight blocks (median 114 trials) of right-hand and toes 

imagery (Cruse et al., 2011). Having derived a single feature vector for each trial containing band-

power activity from the alpha and beta frequency ranges at each timepoint within the action period, the 

team were able to classify trials of the two types of motor imagery using a support vector machine 

(SVM) classifier with an average accuracy of 70% for the three patients. This study highlighted that 

potentially misdiagnosed patients capable of following commands were able to modulate the 

appropriate frequency bands of the EEG signal that are associated with motor imagery, over the same 

regions of the head where this activity is known to occur in healthy individuals. A follow up study by 

Cruse and colleagues used only four electrodes for analysis (in comparison to the previous 25) on a 

single patient diagnosed in the VS for 12 years (Cruse et al., 2012). The patient was asked to perform 

left- and right-hand movements, and following single trial classification, significantly above chance 

accuracies at a maximum of 67% were found between left-hand and rest. Overall, Cruse and colleagues 

were able to identify that it was possible to detect ‘attempts’ to follow commands by patients in the VS 

even in the absence of any overt motor output. 
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Feature classification, as used to differentiate EEG responses to the two different commands in 

the above studies, is a pattern recognition technique used to categorise data into different classes. The 

feature vector is a collection of defining or characteristic observations from the pooled data (thus 

forming points in a feature space) that have similar values for one class and different values for another 

class. A combination of these features from a subset of trials with known class labels can then be used 

as a training set to train a classifier (supervised learning). During this period, points within the feature 

space are transformed in a manner that allows their effective separation into two or more well separated 

class spaces (i.e. a pattern is derived). Trials of a test data set are then applied to this learned-classifier 

in order to separate brain-signal patterns into different classes to a degree of accuracy (Bishop, 2006; 

Jain et al., 2000; Lotte et al., 2018; Naseer and Hong, 2015). For a two-class problem (i.e. left- and 

right-hand imagery) support vector machine (SVM) classifiers are greatly favoured, as they attempt to 

maximise the distance between the separating hyperplane and the nearest training points – or so-called 

support vectors thereby increasing generalization capabilities (Lotte et al., 2007, 2018; Naseer and 

Hong, 2015). Other classifiers include linear discriminant analysis (LDA, another linear classifier 

similar to SVM), multi-layer perceptron (a type of neural network classifier), hidden Markov models 

(a type of Bayesian classifier) and k-nearest neighbour (a type of nearest neighbour classifier) (Lotte et 

al., 2018; Naseer and Hong, 2015). The choice of classifier depends on several factors including how 

noisy the data is and thus the number of outlier features, the stationarity of signals, dimensionality and 

complexity (i.e. are the classes linearly or non-linearly separable) of the feature space, the number of 

training sets, and the required classification speed (Lotte et al., 2007). The classified signals are then 

sent to an external device to generate the desired response. Based on the typical BCI definition, such 

desired responses are translated outputs from neuronal electrophysiological user inputs that can be used 

to control electrical devices. However, in the context of motor imagery research for awareness 

detection, the desired response is a display of the accuracy of the users’ intent, based on their brain 

activity allowing self-regulation of brain functions. 

Alongside motor imagery, several other imagery strategies have also been explored including 

auditory imagery, face imagery, mental rotation, mental singing, mental subtraction, spatial navigation, 

word generation (Banville et al., 2017; Curran et al., 2004; Friedrich et al., 2012), and emotion-induced 
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imagery (Bigirimana et al., 2020; Iacoviello et al., 2015; Sitaram et al., 2011). Curran and colleagues 

reported higher EEG classification accuracies across a group of 10 healthy participants for navigation 

and auditory imagery tasks over classical left-/right-hand motor imagery movement tasks (Curran et al., 

2004). In contrast, Bigirimana and colleagues showed comparable (Bigirimana et al., 2017) or greater 

(Bigirimana et al., 2020) EEG single-trial classification accuracies for simple motor imagery tasks 

verses emotion-induced imagery. In their most recent publication (Bigirimana et al., 2020), using a 

computer game to better engage the participants attention with the task, participants were instructed to 

imagine moving their left-/right-hand when directed to the left-/right-side cue respectively during the 

motor imagery run. For the emotion-induced imagery task participants were instructed to recall a 

sad/happy event for the left-/right-side cue respectively. Across a group of 12 healthy participants, 10 

had higher average single-trial classification scores for motor imagery over emotion-induced imagery 

tasks. Furthermore, of these 10 participants, 7 had average scores above 70%. Reasons for the greater 

effectiveness of motor imagery over emotion-induced imagery include the consistency of the imagined 

action (unspecified emotional imageries can be highly varied across participants), spatial patterns 

consistently highlighting activation of the sensorimotor cortex (Pfurtscheller and Neuper, 1997) 

(depending on the vividness of the imagery, an emotional-induced task may activate several areas of 

the brain (Addis et al., 2007)), and long duration frequency activation in alpha and beta bands (for 

emotional-induced imagery, frequencies activated in these bands are short lived) (Bigirimana et al., 

2020). Nevertheless, alterative imageries can be beneficial for those who cannot control a motor 

imagery BCI. 

Beyond simple motor imagery commands, progress in the field has involved assessing the 

scope of more complex mental imagery tasks. Gibson and colleagues measured EEG accuracies of 

healthy participants performing a range of simple (right-hand, left-hand and both hands) and complex 

(juggling with two hands, playing a guitar, clapping) mental imagery tasks with the aim of detecting 

increased brain activity during complex motor imagery and obtaining higher classification accuracies 

than when imagining relatively simpler actions (Gibson et al., 2014a). Further to this, pianists were 

recruited to perform imagery of simple piano playing followed by imagery of a complex piece to 

determine whether prior motor familiarity of a task could boost classification accuracies for a complex 
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yet familiar task. The authors presented that when single trial classifying against rest, complex imagery 

marginally out-performed simple imagery (average classification scores for simple and complex 

imageries were 61% and 63% respectively). This was likewise true for skilled participants such as the 

pianists, which achieved scores of 66% and 70% during simple and complex piano imagery 

respectively. Their results highlighted the potential for customised complex imageries to be used for 

detecting covert command-following in, and even communicate with, behaviourally non-responsive 

patients and stressed to confer with care-givers to identify actions with which the patient had experience 

and that would activate multiple sensory brain regions. Following this, Goldfine and colleagues 

demonstrated a patient in the MCS and one in a LiS to perform swimming and room navigation 

imageries using power spectral analysis at multiple frequencies (Goldfine et al., 2011). Horki and 

colleagues extended this to detect mental imagery of playing a sport of one's choice and navigating 

around a room and attempted movements of feet dorsiflexion using classification in six patients in a 

MCS (Horki et al., 2014). Using the data from 32 EEG electrodes, band power features were calculated 

for multiple frequency bands and classified using an LDA classifier. The authors showed that 

classification accuracies above chance were reached in all three tasks, with motor tasks yielding 

significant results more often than navigation. Furthermore, the two motor tasks (sport imagery and 

attempted feet movements) accounted for 62% of sessions yielding significant accuracies in line with 

previous studies (Friedrich et al., 2012). 

Due to the heterogeneity of aetiology and pathology in patients with a PDOC, multiple imaging 

techniques and functional tasks can additionally improve the accuracy in identifying a patient’s covert 

ability to follow commands. Gibson and colleagues in a later publication demonstrated the effectiveness 

of multimodal imaging (EEG and fMRI) in comparison to behavioural assessments as measures of 

awareness (through covert command-following) in patients in VS and MCS states (Gibson et al., 

2014b). fMRI motor (tennis) and spatial (navigation) imagery commands were identical to those 

previously used (Fernández-Espejo et al., 2014; Owen et al., 2006; Vogel et al., 2013), whereas with 

EEG imagery commands were in the form of squeezing the right-hand (Cruse et al., 2011) and dialling 

a phone number. Interestingly, by studying the fMRI ROIs for tennis and navigation imagery (see 

section 1.1) and power spectral estimates of the two electrode channels, Gibson and colleagues were 
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able to identify that of three patients that were unable to follow commands, one patient in the VS 

produced evidence of covert command-following in both the fMRI and EEG tasks and two patients 

(one in the VS and one in the MCS-) exhibited evidence of command following in the spatial navigation 

fMRI task only (Gibson et al., 2014b). 

Having seen that patients with signs of awareness can discriminate motor imageries of multiple 

tasks using EEG, it is possible to extend this classification into a communication tool as previously 

demonstrated with fMRI (Bardin et al., 2011; Fernández-Espejo and Owen, 2013; Monti et al., 2010; 

Naci and Owen, 2013). Guger and colleagues compared the efficacy of motor imagery in comparison 

to vibro-tactile stimulation as a communications means for patients in a LiS (Guger et al., 2017). 

Patients were given vibro-tactile stimulation on the left- and right-wrists and a stronger distractor 

stimulation on the back or shoulder. Patients were then asked to count stimuli to a target hand (left or 

right) resulting in the generation of a P300 event related potential. When extending towards 

communication, patients were asked questions and a reply of ‘yes’ or ‘no’ was determined by the patient 

counting stimuli on either the left- or right-hand respectively. In comparison, during motor imagery 

patients answered ‘yes’ or ‘no’ by imagining hand movements of the left- or right-hand accordingly. 

Nine patients took part in the vibro-tactile communication task resulting on average in 80% 

classification accuracy (8 of 10 questions answered correctly), whereas for the three patients that took 

part in the motor imagery-based communication task, the classification accuracy achieved was 94%. 

The different patient group sizes taking part in motor imagery based and vibro-tactile stimulation based 

communication make it difficult for direct comparisons to be made, however previous research has 

found P300-based systems to typically need less training time and to achieve higher accuracies than 

motor imagery-based BCI systems (Acqualagna et al., 2016; Guger et al., 2003). A follow-up study 

using the P300 vibro-tactile stimulation as a communication means in patients with UWS resulted in 

more than 60% of the questions being answered correctly (Guger et al., 2018). 

Dayan and colleagues on the other hand used a sensorimotor rhythm-based BCI protocol to 

assess awareness in patients with PDOC whilst additionally testing a communication paradigm using 

closed questions with known answers (Dayan et al., 2019). Sensorimotor rhythms are defined as the 

oscillatory changes in mu and beta frequency bands during sensorimotor processing (Coyle et al., 
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2005a; Pfurtscheller et al., 1998; Pfurtscheller and Lopes da Silva, 1999). In the first EEG study, three 

patients diagnosed with UWS and two patients diagnosed with MCS performed hand/feet imagery 

whilst receiving stereo-auditory feedback given as broadband noise or music samples (Coyle et al., 

2015). These patients were able to modulate their brain activity in the initial motor imagery assessment 

(average classification accuracy of 67%), which further improved in the presence of feedback (average 

classification accuracy of 77%). Having identified patients with UWS as reporting significant above 

chance accuracies conflicted with their diagnosis of lacking awareness. Furthermore, the authors noted 

that average classification accuracies across multiple assessment/feedback sessions for both patients 

with UWS and MCS were insignificantly strongly positively correlated to the CRS-R and WHIM 

behavioural scores. These findings demonstrate that such EEG-based sensorimotor rhythm BCIs may 

provide supplementary diagnostic information not detected by standard behavioural tests designed for 

assessing patients with UWS. In the second EEG study, two patients (one of the three patients with 

UWS and one of the two patients with MCS) and two healthy individuals performed hand or feet motor 

imagery as ‘yes’ or ‘no’ responses to 48 questions that were semantically similar e.g., “You are 33 years 

old” verses “You are 47 years old”. The authors reported above chance classification accuracies of 69% 

(UWS) and 73% (MCS) respectively for the patients that were lower than the scores obtained by the 

two healthy individuals (77 and 81%). Despite having kept the patients engaged with the task through 

question being delivered by family members, the authors highlighted an important future need for a 

third task as a response to “I don’t know” to prevent patients from performing a complex dual response 

or an entirely different response when the answer to a question was unclear. 

Mangia and colleagues demonstrated EEG-based communication imagery in five patients with 

a PDOC (predominantly in a MCS) by measuring modulations in sensorimotor rhythms following 

extraction of power values from frequency band analysis (Mangia et al., 2014). They initially performed 

imagery investigations of the right-hand and right-foot to determine whether the patients’ level of 

cognitive activity was sufficient to allow attempts to communicate through the tasks. This yielded mean 

classification scores of approximately 85%. Assigning an affirmative answer to the imagery of the right-

hand and a negative answer to the imagery of the right-foot to personalised questions yielded 

communication imagery scores of 92%, which was measured for correctness from the patients’ relatives 
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after the study. Interestingly, the authors statistically tested for the best electrodes post classical imagery 

and identified a subset of eight electrodes that would enhance communication imagery classification. 

One of these was C3 corresponding to the right-hand area of the human homunculus whereas the others 

were more right of C4 and occipitally located. This is interesting as foot activation is thought to be more 

mid-central (Pfurtscheller et al., 2006b, 2008), shedding light on the wider or altered neural activation 

patterns in patients with PDOC following traumatic brain injury, in comparison to that generated by the 

norm.  

The studies presented in this section highlight brain electrical responses to motor imagery being 

well correlated with those generated by the physical performance of the action due to a relatively 

consistent activation of the sensorimotor cortex. In this regard, EEG is a powerful tool as it directly 

samples this activity (i.e. task-related electrical potentials) at the scalp level. The consistent encoding 

of adult motor task signatures within narrow frequency bands (i.e. alpha and beta frequency bands) 

thereby enables activity in recovering patients to be compared with spatial patterns from healthy 

individuals. The challenges of EEG motor imagery research are however related to the type of task, i.e. 

simple verses complex/goal-directed motor imageries. Whilst the latter, for example imagining playing 

tennis or a piano, can better stimulate the participants engagement with the task, they in-turn can also 

activate a wider brain response beyond the sensorimotor cortex due to the required trajectory planning 

and the synergy of multiple joints (Zhang et al., 2017b). Nevertheless, signal classification of complex 

motor imagery responses have shown to yield greater accuracies than those following signal 

classification of simple motor imagery responses. Cross study classification comparisons are generally 

difficult due to the range of participants, number of trials, number of testing sessions, and pre-processing 

and classification tools used. However, from these studies it is clear that provided a participant/patient 

has received some training and is fully engaged/motivated with the task, clinical standard classification 

accuracies can be achieved. From studies that have extended EEG motor imagery classification into a 

BCI communication tool in patients, it is also evident that there is a need for unique tasks for each 

possible response to a question/statement as using a resting brain activity response to convey “no” or 

“I don’t know” can increase the false positive rate. 
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Whilst motor imagery can therefore be considered to be a promising medium by which 

individuals can present their brain state or communicate when unable to perform the corresponding 

overt action, there is an important need to localise sources from scalp recorded signals in order to 

confirm the physiological plausibility of the response. Although EEG is greatly beneficial for its 

temporal resolution, it is strongly limited by the lack of spatial localisation present; a resolution of 50-

90 mm can be achieved using high-density electrode montages which decreases (i.e. >100 mm) with 

lower density setups (Burle et al., 2015; Ferree et al., 2001). This is because randomly distributed and 

oriented dipoles acting in all directions propagate the electrical field through volume conduction to 

scalp electrodes resulting in a strongly measured signal far from the original source. Source localisation 

methods are one way of achieving spatial information from EEG data, however at best these are 

estimates making use of several assumptions in order to model the propagation of the EEG electric field 

from a source (Kim et al., 2018; Michel and He, 2019). Other ways of achieving good spatial 

information involve the simultaneous use of EEG alongside spatial resolution rich imaging devices such 

as positron emission tomography (Chennu et al., 2017) and fMRI (Edlow et al., 2017; Gibson et al., 

2014b). However, as previously discussed, the lack of portability of these instruments and individual 

contraindications limit the scope of their use for patients with PDOC. As an alternative, next discussed 

is the optical imaging method of functional near infrared spectroscopy and its potential use for 

simultaneous imaging alongside EEG. 

 

1.3.  Functional near-infrared spectroscopy 

 

Functional near-infrared spectroscopy (fNIRS) is an alternative method to fMRI that similarly 

measures blood-oxygenation-level-dependent (BOLD)-like haemodynamic responses (Huppert et al., 

2006; Villringer and Chance, 1997) (for an in-depth review please refer to (Ferrari and Quaresima, 

2012)). The haemodynamic response is a collective term for the set of physiological responses that take 

place during the onset of neuronal activations. These include changes in cerebral blood flow, cerebral 

metabolic rate of oxygen and cerebral blood volume (Buxton et al., 2004). The BOLD signal detected 

in fMRI systems are indirectly sensitive to increases in these elements (i.e. metabolic demands) during 
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neural activation. The increasing oxygen demands of active neurons causes the expansion of blood 

vessels which in turn changes the ratio of oxygenated haemoglobin (diamagnetic as no unpaired 

electrons) to deoxygenated haemoglobin (paramagnetic as four unpaired electrons) in the blood. This 

shift in neuronal vascular magnetic properties results in local gradients in the magnetic resonance field 

whose strength, and thus recovered signal, depends on the degree of deoxygenation (Glover, 2011). 

fNIRS is a portable, inexpensive, fast, non-invasive method that has limited contraindications in 

comparison to fMRI (Gratton et al., 1995a; Strangman et al., 2002; Villringer and Chance, 1997). 

Nevertheless, without sophisticated hardware and signal processing techniques, the technology offers 

significantly reduced spatial resolution, due to the diffuse nature of light propagation in tissue. The 

typical fMRI voxel size for clinically available systems is between 3-4 mm3 (Glover, 2011), however a 

spatial resolution of 500 microns or less can be achieved using higher field magnets (7 Tesla) (Shmuel 

et al., 2007). Unlike fMRI, the NIRS image resolution is between 10-20 mm (Cui et al., 2011) and can 

increase to <10 mm using high-density diffuse optical tomography (Eggebrecht et al., 2014; White and 

Culver, 2010). This lower resolution in comparison to fMRI is predominantly due to the strong 

scattering and attenuation of near infrared photons and the ill-conditioned inverse problem of 

reconstructing three-dimensional brain activity maps (see later discussions for further details) (Cui et 

al., 2011). fNIRS is an optical neuroimaging method that records counts (intensity), phase shifts and 

the time-of-flight of scattered and reflected source photons (near-infrared light) at detector fibres which 

in turn can be used to derive (by modelling light propagation in tissue) changes in the concentrations of 

oxygenated (Δ[HbO]) and deoxygenated (Δ[HbR]) haemoglobin molecules in the blood depending on 

the degree of near infrared light attenuation (Rupawala et al., 2018). Therefore, like fMRI, fNIRS is 

also an ‘indirect’ neuroimaging tool in the sense that it monitors haemodynamic responses to neural 

activations on the basis that neural activations are tightly coupled to vascular processes; a process 

known as neurovascular coupling. Several models have been derived in order to explain the coupling 

between these two processes, and simply, it is understood that postsynaptic activation at the apical 

dendrites drive dynamic molecular changes in the terminus resulting in an amplitude-coupled increase 

in the local cerebral blood flow, later followed by a transient increase in local oxygenation tension 

(Buxton et al., 2004; Buxton and Frank, 1997; Lourenço et al., 2014). Based on these properties, fNIRS 
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has been shown to have a broad spectrum of uses including studies of vision (Gratton et al., 1995a), 

hearing (Zaramella et al., 2001), speech (Cannestra et al., 2003), learning (Leon-Carrion et al., 2010), 

emotion (Leon-Carrion et al., 2006) and pain (Yucel et al., 2015), and as such, recently has also begun 

demonstrating its use within the field of PDOC (Kempny et al., 2016; Molteni et al., 2013; Zhang et al., 

2018b). Furthermore, as a component of neurovascular coupling relies on end-to-end asynchronous 

electrical signalling to drive neural activations, there is growing interest in simultaneous 

electroencephalography (EEG)-fNIRS - both of which share similar advantageous properties (e.g. 

portability, inexpensive and non-invasive) (Kempny et al., 2016). 

 

 

Figure F1.3: Sensitivity maps of the sampled fNIRS signal at multiple source detector distances. A single source 

and detector constitute the simplest NIRS channel. Depending on the source-detector separation distance, and the 

subjects’ skull and scalp thicknesses, the light may or may not sufficiently penetrate the superficial layers to 

sample the deeper layers. A separation of 3 cm is commonly used however increasing this to 4 cm can increase 

the penetration depth of the light sampled tissues. Short separation channels are located within 1 cm of the source 

and can provide physiological (noise) data within the superficial layers. This activity can then be regressed from 

the long separation channel, resulting in a signal corresponding to activity solely within deep brain tissues. Figure 

adapted from (Davies et al., 2015). No permissions were required. 

 

Spectroscopy is based on the study of interactions between matter and electromagnetic 

radiation. In the near-infrared (NIR) range of light, with wavelengths between ~600-900 nm, biological 
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tissues are effectively transparent. The low molar absorptivity of lipids and water in this region enables 

light to effectively penetrate and be maximally absorbed by oxygenated (HbO) and deoxygenated 

(HbR) haemoglobin (Ferrari et al., 1985; Jobsis, 1977). These primary light-absorbing compounds in 

tissue in the NIR range are called chromophores (Jobsis, 1977). Optical neuroimaging using fNIRS 

typically requires the use of a set of light-emitting diodes (light sources) on the scalp, and an equal or 

larger set of detectors, depending on the number of source-detector channels required. NIR light of 

wavelengths specific to each biological chromophore will be absorbed primarily by that chromophore 

(HbO, HbR and cytochrome c-oxidase). Scattered light then follows a trajectory back towards the 

surface of the scalp, in a characteristic ‘banana’-shaped photon path, where it is captured and recorded 

by, for example, photodetectors (figure F1.3) (Gratton et al., 1994). This banana-shaped trajectory is 

referred to as the “spatial sensitivity profile” of a source-detector pair (Strangman et al., 2013). 

Absorption and scattering are the two main attenuating interactions that take place between 

light and tissue (figure F1.4). As light from a source penetrates through the layers of the head, specific 

wavelengths will be absorbed by the absorbing (chromophore) components within the different media. 

The photons that reach the detector on the scalp are primarily those that have scattered within the 

medium, and therefore have travelled a greater distance than the geometrical (straight-line) distance 

between the light source and detector. The measured intensity at multiple wavelengths is then used to 

separate the absorption due to different chromophores. Due to the scattering properties of light on route 

to the detector, the fNIRS signal has limited spatial resolution (8-20 mm (Cui et al., 2011)) of the 

underlying chromophore concentrations with respect to its location in the head but contains rich contrast 

(i.e. a small change in attenuation change will result in a large measured intensity change). 
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Figure F1.4: Light propagation paths through a medium. Depending on the wavelength of the emitted light, 

photons may either be absorbed by the medium, scatter to the extent that they are no longer detectable, scatter and 

yet be detected, or travel through the scattering medium in a straight line (ballistic photon). For fNIRS devices, 

ballistic photon paths are highly unlikely to occur due to source and detectors being positioned on the surface of 

the head, and the light propagating directly into the brain. Figure adapted from (León-Carrión and León-

Domínguez, 2012). No permissions were required. 

 

The depth within the skull that can be studied using fNIRS is largely dependent on the inter-

optode distance, or source-detector separation distance as it is also referred. As a general approximation, 

the penetration depth achievable is approximately a third-to-half the source-detector separation distance 

(Cui et al., 1991; Strangman et al., 2002), up to a maximum of ~25 mm beyond which the resolution of 

the final image is severally compromised due to greater light attenuation (Doulgerakis et al., 2019a; 

Gunadi et al., 2014). At greater source-detector separation distances, deeper penetration of light is 

achieved at the cost of poorly resolved signals due to less light being captured by the detector (figure 

F1.3). Diffuse optical tomography can improve this resolution by employing a large number of 

overlapping measurements, each generating their own sensitivity map. Combining these signals allows 

a deeper three-dimensional reconstruction of the haemodynamic signals from the brain (Gervain et al., 

2011). 

Haemodynamic signal integrity can be readily compromised by the effect of superficial layers 

on the detected signal. These layers of tissue are assumed to have a constant attenuation effect on the 
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light signal; however there is a slight effect due to extracerebral signal components (Kohl-Bareis et al., 

2002). The attenuating layers in the head include the skin, scalp, skull, cerebrospinal fluid, grey matter 

and white matter, in addition to the chromophores within the blood. Of these however, the scalp and 

skull have been shown to be most significant (Strangman et al., 2014). Traditionally, it was assumed 

that haemodynamic changes in the overlying tissues layers were uncorrelated with the changes in brain 

function. However, research has shown that the systemic physiological signals from superficial layers 

can exponentially decay the light from the emitter (Boas et al., 2004); that is to say that NIRS 

measurements are inherently most sensitive (i.e. have largest magnitude) to tissue nearest the source 

and detector (Boas et al., 2004). Major contributors of physiological interference include heartbeat 

(1~1.5 Hz) (Gratton and Corballis, 1995), respiration (0.2~0.5 Hz) (Franceschini et al., 2002), low-

frequency oscillations including Mayer waves (~0.1 Hz) (Obrig et al., 2000), and task-related changes 

in systemic physiology (Kirilina et al., 2012). 

 The mean scalp plus skull thickness in an adult human is typically 10-18 mm (average modelled 

values of ~7 mm for scalp and ~6 mm for skull as reported by (Strangman et al., 2014)). Okada and 

Delpy showed that increasing the skull thickness from 4-10 mm would result in an 80% loss in NIR 

signal intensity (Okada and Delpy, 2003). In contrast, Strangman and colleagues argued that the scalp 

consistently had a greater influence on NIRS brain sensitivity than skull (Strangman et al., 2014). In 

addition, they looked at how source-detector separations could overcome this and found that as 

separations increased above 20 mm (mean sensitivity of 0.06), the effect of the superficial layers 

became less influential, with near-maximal sensitivity to brain tissue being achieved at or above 45 mm 

(mean sensitivity of 0.19) (Strangman et al., 2014). Other methods of effectively detecting absorption 

changes from deep brain tissues whilst keeping a normal source-detector separation distance (e.g. 45 

mm) include the use of independent component analysis (Katura et al., 2008), principal component 

analysis (Virtanen et al., 2009), and model-based analysis such as the general linear model (Plichta et 

al., 2007).  

With multiple-distance optodes (i.e. a short separation channel and long separation channels), 

some groups have shown this method to advance a general linear model approach in eliminating 

superficial effects (Gagnon et al., 2011, 2012; Yücel et al., 2015). In this approach, short separation 
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detectors that are located in the activation area but have shorter source-detector separation distances 

(<10 mm) are more sensitive to activity in the superficial layers, whereas the signal received at the long 

separation detectors are sensitive to both the brain and superficial layers (figure F1.3). Regressing out 

the short separation signal from the long separation signal effectively filters out the superficial 

component (see (Kirilina et al., 2012) for more information about how the data from the short separation 

channel is regressed from that of the long separation channel). Other approaches to improve deep tissue 

spatial resolution with multiple-distance probes include the use of multi-distance probes along with 

independent component analysis (Funane et al., 2014), and diffuse optical tomography (Dehghani et 

al., 2009). Alternatively, low processing options to eliminate physiological signals include low pass 

filtering (only to eliminate cardiac oscillations) (Franceschini et al., 2003) and wavelet filtering (Lina 

et al., 2008). Recently, using an advanced frequency domain (FD) NIRS imaging system (see 

discussions below) it has also been shown that the additional phase information is inherently less-

sensitive to superficial activity (Doulgerakis et al., 2019a).  

 

 

Figure F1.5: Illustration of three different fNIRS techniques. The simplest and most commonly used method is 

continuous-wave near-infrared imaging (top), which measures changes in light intensity having passed through 

the tissue. Two other methods – FD (bottom left) and time-domain (bottom right) – are variations of this and 

provide increased information content (see text for further details). I0: incident light signal, I: detected light signal 

and Φ: phase shift. Figure adapted from (Scholkmann et al., 2014). No permissions were required. 
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The three types of systems that are primarily used for near-infrared imaging are continuous-

wave (figure F1.5a), frequency-domain (figure F1.5b) and time-domain/resolved (figure F1.5c). Of 

these, continuous-wave devices are the most common instruments for measuring the fNIRS signal. 

These devices emit light at a constant intensity and measure changes in the intensity of the re-emerging 

(i.e. diffusely reflected) light, having passed through the tissues. To quantify chromophore 

concentrations from the recorded light intensities requires modelling of the medium through which the 

light has propagated. The earliest model is the Beer-Lambert law, proposed in 1729 by the French 

mathematician Bouguer (Bouguer, 1729). This type of spectroscopy represents a linear relationship 

between absorbance and concentration of an absorbing species, and as such has been widely used in 

colorimetric analysis, with similar principles applied to biological tissue. Biological tissue, such as the 

brain, is a highly scattering environment. To account for such scattering of light, Delpy and colleagues 

developed the modified Beer-Lambert law (Delpy et al., 1988; Patterson et al., 1989). This has been 

used widely in continuous-wave devices as a means to derive concentration changes of each 

chromophore (Δ[HbO], Δ[HbR] and total haemoglobin, Δ[HbT]). 

In addition to continuous-wave measurements, two other diffuse optical measurements that 

have been developed include FD and time-domain fNIRS. In the former, light sources emit light 

continuously, like continuous-wave-fNIRS, however the amplitude is modulated at frequencies in the 

MHz range. The absorption and scattering properties of tissues are then obtained by recording the 

amplitude decay and phase shift (delay) of the detected signal with respect to the incident beam (Obrig 

et al., 2000). In time-resolved fNIRS, short (picosecond) incident light pulses are introduced into tissues 

and as they penetrate through the various layers (i.e. skin, skull, cerebrospinal fluid and brain) the signal 

is broadened and attenuated. As the photons leave the tissue, the recorded temporal distribution by the 

time-domain system, and the shape of this distribution, provides information about tissue absorption 

and scattering. Advantages and disadvantages of these three systems are summarised in table T1.1. 

Table T1.1 indicates that whilst continuous-wave fNIRS devices offer a cheap and portable method of 

rapidly capturing brain haemodynamic activity, their simplicity limits the spatial resolution and the 

penetration depth that can be achieved in comparison with frequency- and time- domain fNIRS systems. 
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Table T1.1: Advantages and disadvantages of the three commonly used fNIRS techniques. Table adapted from 

(Strangman et al., 2002). 

Measurement 
type Advantages Disadvantages References 

Continuous-
wave 

▪ High sampling rate – up to 
100 Hz 

▪ Can be miniaturised – ease in 
portability 

▪ Simple to use 
▪ Low cost 

▪ Low penetration depth – 
increased sensitivity to 
superficial layers 

▪ Difficult to separate 
absorption and scattering 

(Blankertz et 
al., 2008; Fazli 

et al., 2012) 

Frequency-
domain 

▪ High sampling rate – up to 
50 Hz 

▪ Relatively accurate 
separation of absorption and 
scattering 

▪ Phase measurements are less 
sensitive to activity in the 
superficial layers 

▪ Moderate penetration depth 
▪ Intensity measurements are 

increasingly sensitive to 
activity in the superficial 
layers 

▪ Phase measurements can be 
more susceptible to noise 

(Doulgerakis et 
al., 2019a; 

Graimann et 
al., 2010; Koo 
et al., 2015) 

Time-domain 

▪ High spatial resolution 
▪ High penetration depth – 

mean time-of-flight and 
variance values can separate 
brain tissue from superficial 
layers 

▪ Most accurate separation of 
absorption and scattering 

▪ Low sampling rate – greater 
loss of photons 

▪ Instrument size/weight is 
larger 

▪ Stabilisation/cooling required 
▪ Costlier system as most 

advanced 
▪ Can be more susceptible to 

noise – can impact the 
usefulness of studying 
variance values 

(Holper and 
Wolf, 2011; 
Zich et al., 

2016) 

 

A variety of motor imagery paradigms have been examined for use with fNIRS, the majority 

of which require activation of the hand and foot areas of the cortical homunculus (Abdalmalak et al., 

2016; Hsu et al., 2017; Wriessnegger et al., 2008). Coyle and colleagues used a continuous-wave-fNIRS 

system to demonstrate that when three healthy participants imagined squeezing a ball, their Δ[HbO] 

increased reliably above that from rest in the C3 and C4 regions of the motor cortex (based on the EEG 

international 10-20 system), regions predominantly associated with hand movements (Coyle et al., 

2007). Interestingly, after averaging each participants’ data over 20 trials, haemodynamics following 

motor imagery activation could be prominently distinguished by eye from that of baseline prior to signal 

processing. Although this may indicate that such experimental paradigms can generate profound 

neuroactivational changes, it is important to note that their findings were based off a small cohort of 
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three participants. Nevertheless, the authors were further able to show that, by solely studying Δ[HbO], 

motor imagery could be used to correctly classify a user’s intent ~80% of the time. Other types of motor 

imagery paradigms that have established significant haemodynamic signal changes with fNIRS include 

tennis arm-swinging motion (Abdalmalak et al., 2016) and a finger tapping sequence (Iso et al., 2015).  

Aside from these, of popular interest with fNIRS is the ability to differentiate activations from 

left- and right-hand movements, whether that be tapping, gripping or flexing of the wrist. Sitaram and 

colleagues reported that fNIRS recordings of motor imagery for left- and right-hand tapping were 

similar to motor execution recordings, but smaller in magnitude (Sitaram et al., 2007). Nevertheless, 

from the data it was clear that the haemodynamic responses for left-hand and right-hand motor imagery 

had distinct patterns that could be used by a classifier to discriminate between the two classes. As such, 

the researchers of this study were able to achieve approximately 89% accuracy using their classifier, 

with similar results being achieved by others (87% accuracy achieved when distinguishing between 

imagined right-wrist and left-wrist flexion) (Naseer and Hong, 2013; Sitaram et al., 2007). 

To add to the hand tapping motor imagery paradigm, recently there has been significant interest 

in separating left- and right-foot tapping’s using fNIRS. When using a four-class motor imagery 

paradigm (left/right foot/hand) in a BCI setting, Batula and colleagues achieved an average 

classification accuracy of approximately 46% over three participants (chance = 25%; two participants 

had a classification accuracy over 50%) (Batula et al., 2014). Nevertheless, the authors suggested that 

improved performance could be achieved by utilizing more informative features or classifiers through 

a more detailed inspection of the activation patterns, or a better selection of motor tasks. However, from 

their confusion matrix, it can be seen that right-foot was most frequently misclassified. This is not 

surprising as distinguishing between left- and right-foot using fNIRS is challenging as the foot motor 

areas are near or within the longitudinal fissure between brain hemispheres (Cheyne et al., 1991). 

Nevertheless, improvements to classification accuracies could be achieved by using a single “feet” or 

leg motor imagery task (Hsu et al., 2017), or by providing feedback training to strengthen the 

participants motor imagery abilities (Miller et al., 2010). 

Many of the NIRS systems currently employed in motor imagery research are continuous-wave, 

and so require extensive montage (source and detector layout) development and data processing. 
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However, time-domain-NIRS devices have the potential to enhance depth sensitivity as they record the 

arrival times of individual photons to build a distribution of times of flight (Diop and Lawrence, 2012; 

Diop and St. Lawrence, 2013). Early work by Abdalmalak and colleagues assessed the feasibility of 

time-domain-fNIRS to detect brain activity during motor imagery (Abdalmalak et al., 2016). Seven 

participants performed tennis-playing imagery of which four showed prominent activity in either the 

PMC alone or PMC and SMA, as detected by fMRI. During the task, increases in blood flow and 

volume in the PMC and/or SMA led to an increase in light absorption, and thus a decrease in the number 

of photons, N, reaching the detector and their mean time-of-flight, <t>. These changes in N and <t> 

precisely occurred during the onset of motor imagery and not during rest for the four participants that 

likewise showed BOLD signal change as measured by fMRI. On a small scale, this study demonstrated 

good agreement between both imaging modalities, strengthening the argument for the use of fNIRS in 

motor imagery. However, in three of the seven healthy participants, who were demonstrably aware, no 

activity was detected by either imaging modality. While no method will be perfectly sensitive (see 

(Fernández-Espejo et al., 2014)), it is clear that considerably greater levels of sensitivity are required 

before this method may be used clinically. Therefore, the same authors tested 15 healthy participants 

with the same tennis-playing imagery task and instead evaluated the mean and variance, which have 

greater depth sensitivity, and report sensitivity values between 86 and 93% in the SMA and PMC, 

respectively, the highest being for <t> as the data are less influenced by noise (Abdalmalak et al., 

2017a). Furthermore, of the 15 participants that took part in the study, 93% generated responses that 

were detectable by fMRI and 87% by fNIRS, a considerable improvement over their earlier work 

(Abdalmalak et al., 2016) and a clear demonstration of the power of advances in physical and 

computational methods to improve detection of clinically-meaningful information from fNIRS signals. 

These promising results also confirm that time-domain-fNIRS is an alternative means of reducing scalp 

contamination and for enhancing the sensitivity to brain activity, and thus may be a well-suited tool for 

use on patients with PDOC. At this time, time-domain-fNIRS data have not yet been reported in patients 

with PDOC but the technology has been applied for stroke and traumatic brain injury assessments 

(Lange and Tachtsidis, 2019).  
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Research in patients with PDOC has, however, been accomplished using other fNIRS devices. 

Molteni and colleagues detected residual functional activity in two minimally conscious state patients 

using a commercially available NIRS device (although undefined in the manuscript) and a protocol that 

involved somatosensory, passive movement, and active movement stimulations (Molteni et al., 2013). 

Whilst somatosensory stimulation (using a vibrating pillow) elicited a weak response over the 

somatosensory cortex, passive movement stimulation (hand movement with the assistance of the 

experimenter) generated clearer haemodynamic responses (increase in Δ[HbO], decrease in Δ[HbR]). 

Active movement tasks (self-performed hand opening and closing) generated the weakest 

haemodynamic response in the hand region of M1 in both patients, however this was expected as the 

patients were unable to move their hands autonomously and showed no signs of engagement with the 

task. Furthermore, their T1-weighted MRI brain scans indicated the presence of severe atrophy that 

could have allowed for fluid accumulation. An excess of cerebrospinal fluid would have increased 

attenuation of the NIRS signal (see earlier discussions) thereby reducing the chance of a measurable 

response to the task. Overall, as a primary study, the authors were able to show that residual brain 

activity can be detected in patients with PDOC using fNIRS, and favours the use of motor imagery with 

fNIRS as a means of overcoming the need for patients to execute movements, which may not always 

be possible. 

 In a study by Kempny and colleagues, 16 patients (11 in a MCS and 5 in a VS) performed a 

kinaesthetic motor imagery task of squeezing a ball with their right-hand whilst being evaluated with 

continuous-wave-fNIRS (Kempny et al., 2016). In addition, healthy participants were asked to 

physically perform and kinaesthetically imagine the same task in order to obtain patterns that could be 

used to validate responses in patients with PDOC. A typical fNIRS response to movement and motor 

imagery is an increase in the Δ[HbO] accompanied by a less pronounced decrease in the Δ[HbR] (Leff 

et al., 2011; Sato et al., 2007). However, the groups in this study exhibited two types of responses during 

motor imagery; the typical responses and an inverted response (decrease in Δ[HbO] and an increase in 

Δ[HbR]). Furthermore, patients in a MCS, in comparison to those in a VS, more often exhibited a 

haemodynamic response that was similar to that of healthy participants. Fluctuations in haemodynamic 

patterns have been shown to depend on the location of the probe and the difficulty of the task (Mihara 
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et al., 2012), highlighting the importance of normative data from healthy individuals against which to 

compare a given patient’s response. Kempny and colleagues further identified that the greatest 

reduction in Δ[HbO] was found on the right hemisphere of the head across all three groups during motor 

imagery (Kempny et al., 2016). Regions of haemodynamic activation were in line with previous studies 

(Leff et al., 2011; Wilson et al., 2014), with greater activation observed on the ipsilateral side (see 

(Batula et al., 2017) for similar results). Whilst this may seem unusual as one would expect primarily 

activation of the contralateral areas during hand motor imagery, Batula and colleagues demonstrated 

that this is not always the case, in particular when the left-hand is involved, which generated a more 

bilateral activational pattern during motor imagery (Batula et al., 2017); a pattern confirmed by fMRI 

(Cramer et al., 1999; Verstynen et al., 2005).  

The above studies demonstrate the feasibility of fNIRS in the field of PDOC. However, there 

is much to do to ensure that the signals measured are sufficiently reliable and interpretable for use in 

clinical contexts. Next discussed is one potential means of achieving that goal. 

 

1.4.  Simultaneous EEG and fNIRS 

 

The neurovascular coupling model (as previously discussed in section 1.3) fundamentally 

connects regional increases in cerebral blood flow (and thus an increase in oxygen influx) to 

synchronised bursts in electrical activity by populations of neurons. As outlined above, both these 

components can be independently sampled using inexpensive portable devices such as EEG and fNIRS. 

Nevertheless, both of these technologies are in some form limited with respect to their image resolution 

capacity: EEG can sample electrical neural activity at a millisecond time frame however offers poor 

spatial resolution (50-90 mm) due to volume conduction effects (Burle et al., 2015), whereas NIRS 

indirectly measures the slow haemodynamic changes in the brain (similar to fMRIs BOLD response 

where the peak signal occurs approximately 5–6 s after the onset of a brief neural stimulus (Glover, 

2011)) to a relatively good spatial resolution only (8-20 mm) (Cui et al., 2011). Therefore, 

simultaneously recording both haemodynamic and electrical signals by positioning both EEG and NIRS 
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sampling systems on the scalp offers an improved means of rapidly measuring and better localizing 

changes in brain function and health in response to tasks. 

The majority of EEG-fNIRS studies to date have been within the field of BCIs. BCIs are used 

for several applications including spelling devices, environmental control, navigation in virtual reality, 

simple computer games, cursor control applications and control of prostheses and robotic arms 

(Blankertz et al., 2007; Millan et al., 2004; Sellers and Donchin, 2006; Velliste et al., 2008). The most 

commonly studied signals in BCI are those of EEG, with features derived from either the ERP or 

frequency band analysed ERD or ERS windows (Guger et al., 2017; Han et al., 2019). There have been 

several applications of EEG-based BCI in the field of PDOC, rehabilitation, and for other conditions 

resulting from a traumatic brain injury or motor impairing disease (for a detailed list of references please 

refer to (Mikołajewska and Mikołajewski, 2014), and discussions within section 1.2). 

In fNIRS-BCI, features for classification are mostly extracted from haemodynamic signals 

(Δ[HbO], Δ[HbR] and Δ[HbT]), such as peak amplitude, mean value, variance, slope, skewness, 

kurtosis and coefficients of a wavelet transform (Naseer and Hong, 2015). fNIRS is a relatively novel 

technique in the field of motor imagery-based BCIs, with EEG still viewed by many as the gold 

standard. As such, several research groups have opted for a hybrid BCI approach whereby NIRS 

features are used to support and complement EEG-based BCIs. Koo and colleagues demonstrated the 

reliability of a hybrid (fNIRS and EEG) self-paced motor imagery based BCI using a FD NIRS system 

(Koo et al., 2015). Here self-paced motor imagery is where the onset of motor imagery is not known, 

and neither are the brain signals corresponding to the detected motor imagery (in cue-based motor 

imagery, the start or cue of the motor imagery is known, hence a BCI system can recognise the motor 

imagery from the participants brain signals). Whilst a FD system was used for the study, which aided 

in the hybrid BCI achieving true positive rates of 88% (i.e. the BCI well recognised the intentions of 

the participants), it was clear that no phase data was extracted and analysed, and thus the instrument 

was analysed as if it were a continuous-wave system. The majority of work using FD systems beyond 

continuous wave-like systems has been limited to motor execution studies (i.e. tapping tasks), with 

those using the device having either evaluated both FD signals (intensity and phase) (Gratton et al., 
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1995b), or fast optical signals (Morren et al., 2004; Wolf et al., 2002) (see (Gratton and Fabiani, 2009, 

2010) for more information regarding fast optical signals and event related optical signals).  

Fazli and colleagues conducted a motor execution and EEG-based, visual feedback controlled 

motor imagery study on 14 healthy right-handed volunteers required to perform left- and right-hand 

gripping (Fazli et al., 2012). Twenty-four fNIRS channels (8 sources and 16 detectors) and 37 EEG 

electrodes were used for data acquisition. The NIRS data were low pass filtered (0.2 Hz) and baseline 

corrected before using the modified Beer-Lambert law to calculate concentration changes of 

haemoglobin. Using a sliding window approach, time–averaged concentration changes (Δ[HbO] and 

Δ[HbR]) were used as features for LDA classification. EEG bandpass filtered coefficients in the alpha 

and beta bands were spatially filtered using a method known as Common Spatial Patterns (Blankertz et 

al., 2008) before the LDA classifier was computed. The LDA results from EEG, Δ[HbO], Δ[HbR], and 

combinations of all three were fed into a meta-classifier before testing. For motor imagery, combining 

EEG with either Δ[HbO], Δ[HbR], or both, resulted in classification accuracy scores of ~83%, ~81% 

and ~83% respectively, that were statistically different from the accuracies of the individual methods 

(EEG: ~ 78%, Δ[HbO]: ~72%, Δ[HbR]: 65%). However, it has recently been shown that both age and 

feedback can affect motor imagery patterns during simultaneous EEG-fNIRS data acquisition (Zich et 

al., 2016). 

In studies by Fazli and colleagues (Fazli et al., 2012), Blokland and colleagues (Blokland et al., 

2014), and Buccino and colleagues (Buccino et al., 2016), different EEG windows were used to 

simultaneously extract EEG features with fNIRS. The drawback with this is that false EEG signal 

detections may be introduced into the hybrid classifier yielding lower classification accuracies. As such, 

Khan and colleagues proposed the use of a novel classifier using a modified vector phase diagram and 

the power of the EEG signal for early prediction of hemodynamic responses without knowing the start 

time of a brain task (Khan et al., 2018). In this method a circle based on the magnitude of Δ[HbO] and 

Δ[HbR] during the baseline period is placed in a four-quadrant vector diagram. A second smaller circle 

is placed in the vector diagram using the magnitudes of Δ[HbO] and Δ[HbR] corresponding to the 

window in which EEG is activated. Using a FD fNIRS system comprising of twelve sources and three 

detectors, and six EEG channels surrounding the C3 region, thumb taps from the right-hand were 
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measured from three healthy participants. Activity was detected if the phase trajectory of Δ[HbO] and 

Δ[HbR] in a moving 1 s EEG time window crossed the outer and inner circles in the fourth quadrant 

(where Δ[HbO] is positive and Δ[HbR] has a negative value). Comparing the results from this method 

(which resulted in a mean accuracy of 86%) to that of traditional classification (where using LDA 

resulted in a mean accuracy 64%) yielded accuracies that were 22% higher. 

With the improved knowledge of brain activation sources and scalp topographies in relation to 

motor-related tasks (Van Oostende et al., 1997), there is a growing interest into the use of a reduced 

subset of EEG electrodes and fNIRS channels for EEG-fNIRS BCI development as demonstrated by 

Khan and colleagues (Khan et al., 2018) and others (Ge et al., 2017; Li et al., 2017). There are several 

benefits to focusing on a small area of the scalp such as the reduced dimensionality of the data (Bellman, 

1957) and the associated reduced computational costs during classification. Furthermore, from a clinical 

standpoint, low-density systems increase portability, reduce preparation time and improve patient 

comfort in comparison to that of whole head systems. However, a drawback of channel limited systems 

is that it is difficult to confirm the physiological plausibility of the spatial pattern maps associated with 

each task in the absence of real time or well documented fMRI data. Nevertheless, a top-down approach 

to achieving a few-channel dataset was recently demonstrated by Ge and colleagues (Ge et al., 2017). 

The authors demonstrated the accuracy of a few-channel BCI using EEG-fNIRS on participants 

conducting a left- and right-hand gripping motor imagery task (Ge et al., 2017). To validate which few-

channels to use for the BCI (i.e. feature extraction and classification steps), the initial paradigm was 

performed simultaneously using a 64-channel EEG electrode set and 52-channel fNIRS set. Of these 

52-channels however, 31 (11 detectors and 11 sources) were placed over the sensorimotor cortices (C3-

Cz-C4 in 10-20 nomenclature). From the 64 EEG and 31 fNIRS channels, electrodes at positions C3, 

Cz and C4 and 14 fNIRS channels (6 sources and 6 detectors) centred around C3 and C4, were used for 

the few-channel EEG-fNIRS BCI, as these showed distinct neural activity during both left and right 

motor imagery tasks (see Figure 3 in (Ge et al., 2017) for further information on the montage layout). 

Following feature extraction, fusion of both EEG and fNIRS datasets, and classification using SVM, 

the researchers were able to demonstrate that few-channel EEG-fNIRS had a significantly higher 
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classification accuracy for 11 out of 12 participants than either of the individual modalities (average 

classification accuracies: EEG – 75%, fNIRS – 57%, EEG-fNIRS – 81%). 

In the validation step, source analysis for both the 64 EEG and 31 fNIRS channels was 

performed to localise the neural signals during the motor imagery task (Ge et al., 2017). Source analysis 

effectively attempts to solve the question of what brain tissues/areas are being probed by a given 

measurement. In EEG, source analysis involves estimating solutions to the ill-posed inverse problem, 

which arises because of the infinite number of source configurations (i.e. radial and tangential) that 

generate a particular pattern of voltage at the scalp (Jackson and Bolger, 2014). Source analysis thus 

requires estimating the final surface voltage pattern and then working backwards to determine which 

neural sources generated that voltage pattern. As a result of this, the inverse problem can be seen as a 

NP-hard (non-deterministic polynomial-time hard) problem, where no absolute answer is available. 

Nevertheless, several methods are available, based on certain assumptions, to obtain approximate 

solutions (Grech et al., 2008; Hallez et al., 2007). In fNIRS, the question for source analysis becomes 

more specific as we aim to understand the depth penetration of the instrument. Light propagation 

through scattering media, such as the head (heterogeneous structure) is inherently complex and as such 

mathematical models of this process (radiative transport equation and its diffusion equation) are 

difficult to solve analytically (Pogue and Patterson, 1994). Estimations can however be made by solving 

the diffusion equation for optically homogeneous tissues with infinite, semi-infinite or slab boundary 

conditions (Arridge et al., 1992; Schweiger et al., 1993). Two types of numerical approaches can also 

be used to gain information about sensitivity and penetration depth in complex tissue: 1) approaches 

based on finite element and finite difference analysis, or 2) Monte Carlo simulations of photon 

propagation through the tissue. The latter was used by Strangman and colleagues to highlight that an 

increase in source-detector separation increased sensitives of higher level grey matter samples, however 

at the cost of exponentially decaying sensitivity in depth penetration (Strangman et al., 2013). Returning 

to the study of Ge et al., standardised low-resolution electrical tomographic analysis (Grech et al., 2008) 

was used to compute an inverse solution for the EEG motor imagery data, whereas digitised points and 

topographical maps of Δ[HbO], superimposed onto the surface of a standard three-dimensional head 

model, were used for the fNIRS data (Ge et al., 2017).  
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These methodological advances have ultimately aided efforts to improve BCI communication 

in patients with LiS at the bedside. Gallegos-Ayala and colleagues demonstrated that a single patient 

with LiS could be trained (using feedback) to directly communicate through their haemodynamic 

signatures ‘yes’ and ‘no’ answers to a number of individually tailored personal sentences (Gallegos-

Ayala et al., 2014). The patient was specifically asked to think (not imagine) ‘yes’ or ‘no’ when 

answering the auditorily presented statements and questions. A number of sentences with known (“You 

were born in 1975.”) and unknown (“Are you in pain?”) answers were presented. Findings 

demonstrated that for both known (also termed closed) and unknown (also termed open) sentences there 

were significantly different deoxygenation levels between the thought yes and no answers. As such, 

SVM classification of extracted features resulted in overall performances of 76%, with a few known 

and unknown sentence communication sessions yielding 100% correct classification. Accuracy of the 

open sentence responses were based on the haemodynamic profile similarity of yes and no responses to 

closed sentences. The fact that these known sentence responses were inconsistent and recording 

sessions with known and unknown sentences were performed on different days (spread also across 

several days) limits the confidence in the accuracy of any single classification result. Nevertheless, this 

study marks a huge leap in the capabilities of fNIRS BCI, especially when compared to the study a 

decade ago by Naito and colleagues (Naito et al., 2007). Nevertheless, caution should be taken since 

these results were based on a single patient only. Additionally, the underlying neurocognitive 

mechanism is unclear, as responses were not detected via a proxy mental action (i.e. in motor imagery) 

but by apparent processing of the ‘correctness’ of the statements – i.e. that they were indeed in pain, 

rather than that they were performing a cognitive behaviour to signal that they were experiencing pain. 

The lack of a clear neurocognitive model may impede its utility in a wider patient group. 

 Furthermore, this school of thought is opposed to the more widely-used method of using proxy 

behaviours for communication – e.g. imagining playing tennis to answer ‘yes’. This approach 

importantly does not rely on unclear models of neurocognitive processing but makes use of a clear 

signal of volitional command-following. However, command-following places higher cognitive 

demands on the communicator as they must map the appropriate response onto an arbitrary behaviour 

and produce that behaviour. Conversely, the approach of Gallegos-Ayala and colleagues (Gallegos-
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Ayala et al., 2014) assumes that the communicator’s passive experience of the correctness of the 

statement is sufficient to provide the communicative output, and is therefore a potentially more 

functional method for patients with limited cognitive resources as a result of brain injury.  

More recently, Abdalmalak and colleagues presented a patient case report whereby a traditional 

proxy behaviour was used as means of communication (Abdalmalak et al., 2017b). The authors tested 

their previously designed four-channel time-resolved fNIRS system (Abdalmalak et al., 2016, 2017a), 

which enhances depth sensitivity by discriminating between early and late arriving photons (see 

previous discussions between continuous-wave and time-domain systems). With this technique, they 

detected motor imagery (imagining playing tennis) from a patient who was diagnosed with an acute 

form of LiS. Furthermore, by assigning this imagined action as a ‘yes’, the researchers could detect 

yes/no responses to a series of questions addressed to the same patient. The accuracy of the answers 

was confirmed by the patient’s residual eye-movement communication channel. While this method has 

the potential to be translated to patients with PDOC, post-injury functional reorganisation of the brain 

may affect the choice of probe placement, and ischaemia or haematoma can impede scattering and 

absorption of light. As such, structural imaging data would contribute significantly to increasing the 

accuracy of fNIRS BCI methods. Furthermore, it is necessary to take into account any medications or 

sedatives used by the patient, as some are known to cause haemodynamic fluctuations that could be 

misinterpreted as being task-related (Yeom et al., 2017). 

 

1.5.  Summary and experimental hypotheses 

 

The literature examined in this chapter highlights the significant contribution of researchers in 

their efforts to progress both EEG and fNIRS technology and associated experimental analysis methods 

in order to more accurately and sensitively examine cortical activity at the scalp level following motor 

imagery assessment. The portability, inexpensiveness and non-invasiveness of both devices highlights 

their significant potential for bedside detection of awareness, however it is also clear that much work 

needs to be performed in order for the technology to meet clinical standards for use on patients with 

PDOC. Such challenges include a manageable sparse cap montage that can be easily repositioned at the 
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scalp level above lesion-free brain regions, a selection of paradigms that can maintain the patients 

engagement and can be reliably used to validate command following, a highly discriminable 

classification model that can reach clinical standard accuracies from as few trials as possible (thereby 

allowing for a less exhaustive paradigm), and confirmation of a physiological meaningful response in 

the measured signals with respect to the task (i.e. noise free data).  

The majority of fNIRS research has focused on detecting covert command-following via 

sensorimotor activity during imagined actions. However, due to the relative infancy of fNIRS, there 

remains significant work to do in terms of hardware, signal processing, and analyses; especially because 

the vast majority of fNIRS work in motor imagery has mostly been conducted with less sensitive but 

simpler continuous-wave devices. Motor imagery is a promising command following alterative to 

performing a physical action that aligns with many of the neurobehavioural functions evaluated using 

CRS-R and WHIM qualitative assessments. However, little evidence exists in comparing the 

performance differences between simple and complex (known to enhance participant engagement) 

motor imageries whereby two imagery types of each class (simple and complex) are classified between 

each other rather than to baseline (resting) activity. Nevertheless, EEG-based motor imagery in its 

current form has progressed well in the field of PDOC as a method that is widely explored for aiding in 

clinical assessments in the repeated diagnoses of an individual patients’ state, having recently also 

shown its use as a communications tool for this patient class. However, the lack of structural and spatial 

information offered by EEG indicates that a simultaneous assessment approach with fNIRS can deliver 

the physiological meaningful results required to confirm a true response to a command. Simultaneous 

EEG-fNIRS BCIs have shown to be successful in preliminary clinical studies highlighting a promising 

pathway for reaching the standards required for clinical applicability in PDOC. 

 Recent investments into a FD fNIRS system by the University of Birmingham provides an 

opportunity to explore and assess brain behaviour at greater depths during imagined actions. 

Simultaneously combining the millisecond resolution of EEG with the heightened sensitivity and 

improved spatial resolution of FD fNIRS has the potential to improve classification of multiple 

contrasting behaviours, thereby significantly aiding BCI development for awareness detection and 
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communication in PDOC patients. With the aims of this thesis in mind, the three key hypotheses for 

each experimental chapter are as follows: 

• EEG-sampled object-oriented motor imagery responses can yield better classification results 

than simple limb motor imagery actions. This hypothesis stems from minimally explored fMRI 

and EEG research that has identified the addition of an object or goal to enhance an individual's 

motor imagery ability (Li et al., 2015; Mizuguchi et al., 2013). 

• The additional phase shift component of the FD fNIRS system will more sensitively sample the 

underlying brain tissue during motor imagery responses, thereby enhancing the classification 

of multiple motor imagery actions in comparison to intensity measurements alone (which are 

the only measure of continuous-wave devices). 

• The simultaneous recording of EEG and FD fNIRS can improve the classification of imagined 

actions beyond that achieved by a FD fNIRS system alone. 
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Chapter 2 

 

Object-oriented motor imagery detection using EEG 

 

2.1. Introduction 

 

 Motor imagery describes the mental simulation of voluntary movements without its actual 

execution (Jeannerod, 1995). The persistent mental rehearsal of specific movements can drive brain 

plasticity activating the same cortical areas stimulated by the overt performance (Jeannerod, 1994; 

Lotze et al., 1999). It is a task that has been used to drive skill acquisition and motor learning in fields 

such as sport and motor rehabilitation (Jackson et al., 2001; Murphy, 1994; Sharma et al., 2009). 

Furthermore, in patients diagnosed with a Prolonged Disorder of Conscious (PDOC) or Locked-in 

Syndrome (LiS), such covert training has: (i) identified potential cases of misdiagnoses through the 

detection of neural activity in response to commands; (ii) induced brain changes (plasticity) associated 

with the control and rehabilitation of key motor skills, and (iii) provided a means of clinician-patient 

communication through extensive research and development of brain computer interfaces (BCIs) 

(Cruse et al., 2011; Guger et al., 2017; Horki et al., 2014; Lee et al., 2011; Owen et al., 2006; Silvoni 

et al., 2011). 

There are two different approaches of motor imagery investigated in the literature - simple 

paradigms involving finger (flexion-extension or opposition), hand (grasping), arm (elbow extension-

flexion), tongue, toe and foot movements (Batula et al., 2017; Ehrsson et al., 2003; Erbil and Ungan, 

2007; Gerardin et al., 2000; Morash et al., 2008; Porro et al., 1996; Solodkin et al., 2004; Tavakolan et 

al., 2016), and the more complex paradigms based on performing sports, navigating through a room or 

utilising tools (Abdalmalak et al., 2017a; Owen et al., 2006; Szameitat et al., 2007; Wriessnegger et al., 

2014, 2018; Zhang et al., 2017b). Most often, fMRI imaging has identified both these approaches to 

map onto the same homuncular organisation in the sensorimotor network (Ehrsson et al., 2003; Stippich 

et al., 2002; Szameitat et al., 2007), despite contradictory reports during movement imagery of stance, 
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walking, and running (Jahn et al., 2004), and the misperception that complex paradigms recruit large 

parts of the motor system with significant overlap (Schieber and Hibbard, 1993). However, unlike 

simple covert tasks, complex imagery movements have been shown to elicit stronger activations (Boly 

et al., 2007; Kuhtz-Buschbeck et al., 2003), yet are prone to achieving high false-negative rates for the 

bedside examination of some patients (i.e., patient and healthy participants who have shown 

behavioural evidence of command following do not demonstrate the expected activations during 

imagery) (Gibson et al., 2014b; Monti et al., 2010).  

Recent efforts have focussed on translating such fMRI research to EEG through the 

investigation of frequency band-specific oscillatory changes over the motor regions. Wriessnegger and 

colleagues outlined spectral distribution patterns following two complex motor imagery paradigms 

(tennis and ball squeezing) (Wriessnegger et al., 2018). The authors noted that for both tasks, in the 

alpha frequency band (8-13 Hz), an event-related desynchronisation (ERD) over primary motor areas 

was accompanied by an event-related synchronisation (ERS) pattern over sensorimotor regions. 

Furthermore, following motor imagery training of the two tasks, a stronger (weaker) ERD was present 

over the contralateral primary motor area for the right-hand tennis (ball squeezing) imagery condition. 

The observations for the tennis imagery condition were in agreement with the results of a previous 

fMRI study (Wriessnegger et al., 2014). Such research has been widely extended to develop EEG-based 

BCI systems using a variety of pattern recognition algorithms (Padfield et al., 2019). Zhang and 

colleagues highlighted that simple single joint motor imagery tasks (e.g. elbow extension and flexion) 

can be used to successfully derive training models on which multiple goal-oriented tasks (e.g. closing 

a draw or lifting weights) can be classified with high accuracy, thus reducing the need for repetitive 

data acquisitions and model trainings (Zhang et al., 2017b). 

Fundamentally, the performance of motor imagery by participants highly depends on two key 

components: (i) their ability to form a mental representation of an action, and (ii) their ability to stay 

attentive to the mental imagery for the duration of the task. The former can be achieved using 

complex/goal-oriented imagined movements as these have shown greater EEG-control accuracy than 

simple/non-goal oriented methods (Gibson et al., 2014a; Wriessnegger et al., 2018; Yong and Menon, 

2015), whereas the latter can be achieved through extensive prior mental rehearsal (Li et al., 2015) 
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which is also known to guide motor learning in a manner that aids actual execution (Allami et al., 2008). 

The presence of an object has previously been shown to strengthen the ERD response to leg flexion-

extension motor imagery (Li et al., 2015). Li and colleagues demonstrated that participants shown a 

video of a leg kicking a ball generated a contralateral suppression in the mu and beta rhythms during 

motor imagery (Li et al., 2015). In contrast, the same participants when shown a video of a leg in the 

absence of a ball only generated a contralateral ERD in the mu rhythm. Similar increased brain 

activation profiles have been demonstrated using fMRI involving an imagined hand squeezing task in 

the presence of a ball (Mizuguchi et al., 2013). 

These studies highlight that complex/goal-oriented tasks have the potential to aid motor 

imagery performance through increasingly modulating frequency band power in sensorimotor brain 

regions. Furthermore, the vividness of these tasks and familiarity with individuals to their daily lives 

drives comparable cortical networks to those of simple mundane imagery paradigms. It is also evident 

that such complex tasks enable better participant engagement which in turn can induce plastic changes 

within the brain following repetitive mental practice. The majority of EEG motor imagery studies to 

date have limited comparisons of frequency band spatial profiles between either physical movement 

and simple imagery tasks, or simple and complex imagery paradigms. This is likewise the case for EEG 

BCI studies which have reported classification accuracies between tasks for these two groups with a 

range of participants numbers and a varying number of trials and sessions, preventing direct 

comparisons from being made. In the absence of this research, fundamental questions remain with 

respect to the physiological similarity of the spatial patterns derived from complex and simple motor 

imagery tasks to that generated by a closely matched physical response, and the effective classification 

performances by each of these three groups.  

To address this gap in the literature, this EEG study aims to explore frequency-band functional 

responses of an object-oriented motor imagery paradigm in comparison to the responses obtained by 

simple mental imagery and physical execution. As prior knowledge of the task is known to influence 

motor imagery performance (Wriessnegger et al., 2018), the objects used for the object-oriented 

imagery task included a cup and a comb, and healthy individuals were expected to kinaesthetically 

imagine drinking from the cup and combing using the comb. The majority of prior research has 
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presented pictures of the object (Li et al., 2015; Wriessnegger et al., 2018; Zhang et al., 2017b) whereas 

here the object itself was directly positioned in front of the participant to aid in constructing a three 

dimensional mental picture that could be used to potentially enhance the imagined response. An initial 

hypothesis for this study was therefore that spatial patterns following object-oriented motor imagery 

would demonstrate stronger event desynchronisations across the contralateral primary motor cortex in 

comparison to simple hand imagery. Furthermore, these profiles should align with the responses to 

physical movement of the hand. Due to the limited application of an object-oriented motor imagery 

study in the field of BCIs, this study additionally aims to demonstrate accuracy scores for the three 

paradigms across a group of twelve participants who contributed clean data for classification. A second 

hypothesis for this study was therefore that the complex motor imagery task would yield better 

classification accuracies over the simple imagery paradigm, with the former yielding comparable scores 

to those obtained following physical movement signal classification. With respect to the overarching 

goal of this thesis, the EEG focussed research within this chapter will identify fundamental data analysis 

parameters and classification tools that will ultimately aid simultaneous EEG-fNIRS motor imagery 

research. Whilst exemplifying how increasingly complex motor imageries compare to actual execution 

in healthy individuals, this study shall provide a framework from which both the motor imagery 

paradigm and methodologies can be developed in order to be beneficial for clinical application. 

This chapter begins with a brief review of EEG signal processing methods in order to highlight 

the range of data analysis and classification tools available to researches and as explored in this and 

subsequent chapters. Primarily the methods discussed include: 1) enabling spatial localisation of brain 

responses, 2) extracting frequency band encoded neural signatures and 3) transforming 

multidimensional signals into a lower dimensional space that can be used for data classification. 

Following this we present the methods and results of this study before discussing them with respect to 

the findings of previous literature. 
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2.1.1. EEG analysis methods 

 

Raw EEG scalp potentials are known to have a poor spatial resolution. This is a combination 

of a volume–conduction-induced mixture (i.e. a weighted sum) of the underlying brain sources (Jung 

et al., 1998; Nunez et al., 1994) and the necessary use of a reference electrode to measure differences 

in potentials (Burle et al., 2015). Several time domain methods have been proposed to address the 

volume conduction problem including global average referencing (referencing the EEG data from every 

electrode to the average EEG over all electrodes), bipolar referencing (see chapter 4), Laplacian filter 

estimates and common spatial pattern (CSP) filters (primarily used for EEG-based BCIs) (Blankertz et 

al., 2008; Brunner et al., 2016; Lei and Liao, 2017).  

Simple Laplacian spatial filters (also referred to as current source and current scalp density 

estimates, CSD) estimate the spherical spline surface Laplacian of recorded scalp potentials thereby 

providing a means of reducing correlations among scalp-recorded channels (Jackson and Bolger, 2014; 

Kayser and Tenke, 2015; Rathee et al., 2017; Schomer and Silva, 2012) without the need of 

computationally expensive inverse imaging estimates (Baillet et al., 2001). The surface Laplacian is a 

two-dimensional reference free spatial high-pass filter that filters out spatially broad features of the data 

(low-spatial-frequency activity present at most electrodes) that are likely to reflect volume-conducted 

potentials in the absence of head tissue conductivities and brain source locations (Carvalhaes and de 

Barros, 2015; Cohen, 2014b; Kayser and Tenke, 2015). As a result of this transformation there is an 

overall enhancement in the spatial resolution of the EEG signal amongst other benefits (Kayser and 

Tenke, 2015). Nevertheless, whilst known to have several shortcomings (e.g. insensitivity to deep 

generator sources) (Biggins et al., 1991; Kayser and Tenke, 2015; Nunez et al., 1994), this tool has been 

widely applied to motor imagery research (Rathee et al., 2017; Wang et al., 2004). For example, Rathee 

and colleagues analysed multiple referencing and Laplacian filtering methods in terms of their pairwise 

binary classification performance of four motor imagery tasks (left-hand, right-hand, feet, and tongue) 

(Rathee et al., 2017). Two key findings noted by the authors were that, firstly, in comparison to a 

monopolar referencing scheme (i.e. left-mastoid referencing), current source density estimates better 

reflected contralateral effects in the alpha and beta frequency bands for the left- and right-hand imagery 
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conditions. Secondly, current source density filtered data generated mean classification accuracy scores 

above 80% in five out of the six pairwise binary classifications and 77% for the feet versus tongue 

condition, which were all greater than the classification results of both monopolar and global average 

referencing methods. 

Having more accurately localised brain activity by reducing the negative impact of volume 

conduction, oscillatory changes in the alpha/mu and beta frequency bands can be better observed. 

Event-related EEG oscillations are typically studied by decomposing EEG signals into magnitude and 

phase information for each frequency present in the EEG (Roach and Mathalon, 2008). Changes in 

these frequency characteristics over time with respect to task events give this approach the term “time-

frequency analysis” (Roach and Mathalon, 2008). EEG rhythms are the product of synchronously 

activated neurons therefore time-frequency analysis can assess spatially localised changes in power and 

synchronisation across trials through event-related desynchronisations (decreases in rhythmic activity 

power within a particular frequency band) and synchronisations (increases in rhythmic activity power 

within a particular frequency band) (Pfurtscheller and Aranibar, 1977; Roach and Mathalon, 2008). 

Such energy changes are typically non-phased locked to an event unlike event-related potentials which 

are phase-locked and explained as positive and negative voltage deflections present after averaging 

several EEG epochs time-locked to a stimulus (Pfurtscheller, 2001). The benefit of time-frequency 

analysis research over event-related potentials is that the former explains the parallel information 

processing of the brain with frequency specific or frequency banded oscillations reflecting multiple 

neural processes co-occurring and interacting (Lisman and Buzsáki, 2008).  

The EEG signal is a composite of multiple sine waves varying in amplitude and frequency 

across time. As such several time-frequency decomposition methods exist in the literature (Allen and 

MacKinnon, 2010; Jerbic et al., 2015; Wang et al., 2018) that estimate a complex number for each time 

point in the time domain signal yielding both time and frequency domain information. Most commonly 

used decomposition methods include continuous complex Morlet wavelet (CMW) (Ferrante et al., 

2015) and filter-Hilbert transformations (Rathee et al., 2017). Complex Morlet wavelets are by 

definition complex-valued sine waves windowed by a real-valued Gaussian that enable temporal 

localisation of frequency information from a non-stationary signal (Cohen, 2019). Convolution of the 
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time series signal with the CMW yields a complex-valued signal from which instantaneous power can 

be extracted at each time point. The width of the Gaussian taper has significant importance for 

controlling the trade-off between temporal and frequency precision - i.e. a narrow (wider) Gaussian 

leads to an increased temporal (spectral) precision at the cost of decreased spectral (temporal) precision 

(see appendix figure AF2.1). Unlike wavelet convolution, the Hilbert transform allows extraction of a 

complex signal from the entire real-valued time series (Papoulis, 1977). Application of this 

transformation requires prior filtering of the data into specific frequency bands such that the resulting 

analytical signal is a reflection of the pass-band of interest. Two branches of filters commonly exist: 

finite impulse response (FIR - e.g. windowed linear phase) and infinite impulse response (IIR – e.g. 

Butterworth, Chebyshev and Elliptic). Whereas the former is considered more stable and less likely to 

introduce nonlinear phase distortions, the latter is known to improve the frequency specificity of the 

signal by plateauing maximally in the desired pass-band (see appendix figure AF2.2) (Cohen, 2014a). 

Prior work by Allen and MacKinnon used multiple time frequency analysis tools to assess 

ERD/ERS responses over the C3 region during a finger tapping task (Allen and MacKinnon, 2010). 

The authors noted that whilst a 64-sample short time Fourier transform and epileptic filter separated 

ERD/ERS activity in the time axis, a Butterworth filter, 128-sample short time Fourier transform, and 

continuous wavelet transform were better at discriminating between alpha and beta activity. 

Interestingly, a report by Bruns which reviews wavelet, short-time Fourier and Hibert spectro-temporal 

analysis methods demonstrates that the derived parameters (i.e. amplitude and phase) from each of the 

transforms are mathematically equivalent and thus results can be effectively matched provided that 

analysis parameters are similar (Bruns, 2004). 

Classification of multi-channel EEG potentials have been known to occur on both spectral 

(Pfurtscheller et al., 1998) and frequency band filtered (Wang et al., 2005) data. For the latter, the CSP 

algorithm is a widely accepted pre-processing tool in motor imagery-BCI research as it aims to construct 

optimal spatial filters that discriminate two classes of EEG measurements. The CSP algorithm was 

introduced in the field of EEG analysis by Koles and colleagues (Koles et al., 1990) and is based on 

principal component analysis decomposition (Wold et al., 1987) and can be regarded as a supervised 

blind source separation technique (Parra and Sajda, 2003) (similar to independent component analysis 
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(Comon, 1994)) whereby high-dimensional spatio-temporal raw EEG signals are projected onto a few 

spatial filters that are designed such that signal variances between two classes are maximised (i.e. the 

resulting signals carry only the most discriminative information) (Müller-Gerking et al., 1999). The 

spatial patterns derived from the CSP filter reflect EEG source distribution vectors and the most 

weighted channels within each of these patterns are likely the channels most correlated with the task 

specific sources. 

For effective use of the CSP algorithm, several parameters need to be specified, including the 

EEG time interval relative to the stimulus, frequency limits for band-pass filtering, the band-pass 

filtering method and the subset of CSP filters (i.e. number of components) (Blankertz et al., 2008). For 

CSP band-pass filtering methods, both FIR (Ramoser et al., 2000) and Butterworth (Zhang et al., 2018a) 

filters have equally been reported in the motor imagery literature. The optimal number of filters for 

classification however depends on the number of channels used for recording. Limiting the classifier to 

only the first and last filters may limit the model’s ability to fully capture discriminating features 

between the two classes, whereas the use of a larger number of inward filters may result in overfitting. 

It has therefore been suggested to use a total of between two to six CSP filters (Blankertz et al., 2008). 

Since the publication of the first CSP algorithm by Koles and colleagues, there have risen a range of 

variants to this classical approach (Koles et al., 1990). These include the class of regularised CSP 

methods that improve the algorithms robustness against noise and outliers and prevent overfitting (Lotte 

and Guan, 2011; Yong et al., 2008), and CSP methods that tackle the issues of manually setting a broad 

frequency range or subject-specific optimal frequency ranges prior to spatial filtering (such as common 

spatio-spectral pattern (Lemm et al., 2005), common sparse spectral spatial pattern (Dornhege et al., 

2006), sub-band CSP (Novi et al., 2007) and filter-bank CSP (Ang et al., 2008)). 

 This overview highlights that a single pipeline cannot be applied to all EEG studies, and the 

final choice of methods is driven by the research question, the type of paradigm explored, the density 

of the electrode cap and its spatial coverage on the scalp, and the quality of the measured data. Whilst 

many EEG processes are standardised (Delorme and Makeig, 2004; Oostenveld et al., 2011), there 

remain several fine-tuning parameters that require identifying in order to reliably and accurately 

demonstrate brain responses to a cue. As such, in line with the aims of this study, results in this chapter 
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are presented for different analysis methods in order to develop a framework that be extended and 

applied to simultaneous EEG-fNIRS data analysis. 

 

2.2. Methods 

 

2.2.1. Experimental setup and paradigm 

 

Twenty healthy participants (7 male, 12 female, 1 undisclosed, aged 18-33 years) that had 

provided written and informed consent took part in the study which had ethical permission obtained 

from the University of Birmingham STEM ethics board. A 64-channel, Biosemi Active Two system 

(Biosemi Inc., Amsterdam, Netherlands) was used to acquire the EEG data. Participants wore a headcap 

with 64 pre-positioned electrode holders based on the 10-20 International system of electrode 

placement. The holders were filled with saline gel prior to inserting the Ag-AgCl electrodes. In addition 

to the 64 active electrodes, two offline reference electrodes were placed on the left- and right-mastoids. 

Participants were then transferred to a sound-attenuating room where they sat comfortably in front of 

an adjustable screen. 

The experimental paradigm (figure F2.1) designed in Matlab (R2016b, MathWorks, MA, USA) 

using the Psychophysics Toolbox extensions (Psychtoolbox-3) (Brainard, 1997; Pelli, 1997) involved 

the completion of three tasks as follows: 

i. Object-oriented motor imagery: A cup and comb were positioned next to each other at an arm's 

distance from the participant without obscuring the screen. Participants were instructed to look 

at the object (i.e. cup or comb) during the preparation phase and then either kinaesthetically 

perform motor imagery of “drinking out of a cup” or “combing” with their right-hand during 

the action phase respectively.  

ii. Classical motor imagery: Participants were presented with and would look at the words “Hand” 

or “Toes” on the screen during the preparation phase, following which they were required to 

imagine repeatedly gripping and releasing their right-hand or wiggling their toes during the 

action period. 
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iii. Physical movement: Participants were presented with and would look at the words “Hand” or 

“Toes” on the screen during the preparation phase, following which they were required to 

physically and repeatedly grip and release their right-hand or wiggle their toes during the action 

period. 

Participants completed the three independent tasks in one sitting in the order of 1) object-oriented motor 

imagery, 2) classical motor imagery and 3) physical movement. Each task was divided into four blocks 

of twenty-four trials (twelve of each trial type, for example twelve trials of right-hand movements and 

twelve trials of wiggling of toes for the physical movement task). Between blocks and tasks participants 

were given a sufficient rest period and prior to the start of each block/task electrodes were ensured to 

be fastened correctly, impedances were corrected, and participants were instructed to remain as still as 

possible to minimise any movement artifacts. The trials within each task were randomised such that no 

more than two of the same kind were presented in a row. Each trial included a baseline period, a 

preparation phase and an action period. The purpose of the additional preparation phase of the study 

was to avoid confounds of eye movements across conditions. Having participants shift their gaze to 

either the screen or object during this time limited possible eye movement artifacts during the execution 

period of the study. 
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Figure F2.1: Overview of the study paradigm. Participants completed three independent tasks in one sitting (see 

the main text for further details on each task). A total of 96 trials were performed per task (four blocks of twenty-

four trials). Each trial lasted 9 s and included a 1500 ms baseline recording, 3000 ms preparation phase and 4500 

ms action period. During the baseline recording a white fixation cross was presented on the screen and participants 

were asked to relax and refrain from thinking about the task. During the preparation phase, the instruction for the 

forthcoming action was presented on the screen. Depending on the task being undertaken, the participant was 

instructed to either continue watching the screen or observe the object on the table. Finally, during the action 

period, a green square was displayed on the screen signalling to participants to perform the action corresponding 

to the instruction given in the preparation phase. 

 

2.2.2. Data pre-processing 

 

Pre-processing and analysis of the EEG data sampled at 256 Hz was performed in Matlab with 

the aid of functions from the EEGLAB (version 14.1.1b, Swartz Center for Computational 

Neuroscience, UC San Diego) toolbox (Delorme and Makeig, 2004). Of the twenty participants that 

took part in the study, eight were excluded from the analysis either due to instrumental errors or the 

failure to complete all three components of the experiment.  
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Initial pre-processing included referencing the 64 electrodes to the linked left- and right-

mastoids, high- and low-pass filtering between 0.5 and 40 Hz to attenuate low frequency drifts and 

electrical noise respectively, and the rejection of high amplitude artifact contaminated trials/channels. 

Marked epochs/channels were identified as those with a z-score greater than three standard deviations 

from the mean trial/channel voltage. Using this method between 0 and 4 trials were removed per task 

per participant leaving an average number of 47 trials for each action cue within a particular task to be 

further analysed. Further pre-processing of the data included independent component analysis, channel 

interpolation, spatial filtering, and lastly the baseline correction of each epoch to enhance the effects of 

the preparation and execution phases of the study. 

The non-directional method of independent component analysis which identifies independence 

between sources of the data was performed to eliminate spontaneous eye movement and blink artifacts 

(Hoffmann and Falkenstein, 2008). Using EEGLAB’s ‘pop_runica’ function, independent component 

analysis computation generated scalp components from which topographies representing ocular 

artifacts were manually identified and removed. Between 1 to 2 independent components were removed 

per participant that topographically predominantly represented blinks and/or horizontal eye movement 

activity along frontopolar electrodes. The resulting data were then back-projected and previously 

eliminated channels were interpolated (using EEGLAB’s ‘pop_interp’ function) to reinstate a complete 

dataset.  

Following this, the signals were spatially filtered using the surface Laplacian (section 2.1.1). 

This was performed using the CSD toolbox (version 1.1) (Kayser, 2009; Kayser and Tenke, 2006) with 

a spline flexibility value of 4 (resulting in a rigid spline interpolation) and a regularization (smoothing) 

parameter of 1x10-5. The effects of this technique on individual and group scalp topographies in the 

current study are shown in figure F2.2. A single participant performing physical and repeated grips of 

their right-hand (figure F2.2a left) generated an alpha-band filtered topographic profile with a 

prominent desynchronisation over the C3 region 500s onwards post spatial band-pass filtering. 

Similarly, elimination of the broad spatial component to wiggling of the toes condition (figure F2.2a 

right) highlighted a modest desynchronisation over Cz and CPz. Interestingly, group averaging of 

surface Laplacian maps brought to light the hemispheric cross-talk present during repeated grips of the 
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right-hand (figure F2.2b right). Between 500-2000 ms a strong contralateral (C3 and CP3 scalp 

locations) response is present as similarly found in the single subject case, however, with an additional 

growing negative energy ipsilateral response around C4. Interestingly, for the condition of wiggling of 

the toes (figure F2.2b left), across the group the response at Cz is lost and instead a strong 

desynchronisation is identified around CP1-P1-Pz-CPz. This is either a sole response to the presentation 

of a bright green screen marking the onset of the action period of the task, and thus a lack of a detectable 

response of moving the toes by individual participants given its nestled location within M1 (Ehrsson et 

al., 2003), or a combination of the two. 

 



 50 
 

 

Figure F2.2: Spatial filtering effects of the surface Laplacian. These data demonstrate the alpha frequency band, 

physical movement topographic maps, following no CSD (left) and CSD (right) spatial filtering within the data 

pre-processing stage. The pre-processed data were time-frequency decomposed using a fifth-order Butterworth 

filter Hilbert transformation to generate the above plots. For both the single subject (a) and group average (b) 

topographies, the CSD spatial filter appears to eliminate a broad component spanning the central (motor) scalp 

electrodes thereby emphasising effects pertaining to both right-hand gripping (contralateral activation at C3 or a 

bilateral activation at both C3 and C4) and the wiggling of toes (activation at Cz-CPz). 
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After separating the pre-processed epochs into their respective conditions, the frequency band-

specific power (amplitude squared) of the recorded potentials were subsequently examined. 

Specifically, the frequency bands of interest were that of alpha/mu (~8-13 Hz) and beta (~13-30 Hz). 

Three approaches of time-frequency decomposition were investigated including CMW, FIR-filter 

Hilbert transforms and IIR-filter Hilbert transforms (section 2.1.1). For the CMW analysis, ten-cycle 

wavelets, nine seconds in length were created for each frequency within the studied alpha and beta 

bands. These were in turn convolved with the data to yield the desired power spectral densities. For the 

filter Hilbert analysis, FIR filtering was performed using a thirty second-order windowed linear phase 

filter kernel (Matlab function ‘fir1.m’) whereas IIR filtering was performed using a fifth-order 

Butterworth filter kernel (Matlab function ‘butter.m’). For the latter the fifth-order filter provided a 

good trade-off between frequency precision and the introduction of breaks and ripples within the desired 

pass-band (see appendix figure AF2.3). These filters were in turn applied to the time series signal using 

the function ‘filtfilt.m’. The resulting real-valued filtered data containing band specific frequencies 

specified by the frequency response of the filter kernel was Hibert transformed (using the function 

‘hilbert.m’) to yield the desired power spectral densities. Time-frequency analysed signals were then 

averaged across trials and decibel baseline normalised to allow effective comparisons. 

 

2.2.3. Classification 

 

Single trial and single subject classification of the two conditions within each of the three tasks 

was achieved through a multistep process including CSP pre-processing, feature selection and classifier 

training and testing. The CSP algorithm designs a spatial filter by means of spatial covariance and signal 

whitening. A linear transformation then projects the multi-channel EEG data into a low-dimensional 

spatial subspace in which only a subset of components (containing weights for channels) explain the 

majority of differences between classes (by way of maximising their variances) (Ramoser et al., 2000; 

Wang et al., 2005). Details of the algorithm published by Ramoser and colleagues (Ramoser et al., 

2000) and as used in this study are presented through equations 2.1-2.8. 
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The CSP algorithm was applied on short centred and scaled overlapping data segments that 

were previously filtered into alpha and beta frequency bands using a fifth-order Butterworth filter. 

Specifically, the 4500 ms action period of the task was divided into 1000 ms sliding windows with a 

75% overlap. The option to classify overlapping data segments was based on previous research by 

Asensio-Cubero and colleagues, which identified that using overlapping windows (1000 ms segments 

with an 80% overlap) performed better than using entire epochs and uniform segments without any 

overlap when attempting to classify multiple limb imagery tasks (right-hand, left-hand, feet and tongue) 

(Asensio-Cubero et al., 2011). 

In the first step of the algorithm, the normalised spatial covariance of two different tasks were 

calculated as follows: 

 

𝑹' =
𝑿'𝑿'′

𝑡𝑟𝑎𝑐𝑒(𝑿'𝑿'′)
										𝑹3 =

𝑿3𝑿3′
𝑡𝑟𝑎𝑐𝑒(𝑿3𝑿3′)

 [eq. 2.1] 

 

Here, XH and XF for example represent a single right-hand trial and toe trial within the physical 

movement task. These matrices have dimensions N×T, where N is the number of channels and T is the 

number of sampled data points. 𝑿′ is the transpose of X and trace(Y) computes the sum of the diagonal 

elements of Y. Averaging RH and RF over all the trials in each group gives the averaged normalised 

spatial covariance matrices 𝑹'5555 and 𝑹35555. Summating these values gives the composite covariance matrix, 

RC, which can be factored into the product of three matrices as follows: 

 

𝑹6 = 𝑼6𝝀6𝑼6′ [eq. 2.2] 

 

where UC is the matrix of eigenvectors and 𝝀6 is the diagonal matrix of eigenvalues. The whitening 

transformation matrix, P, is then formed as follows: 
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𝑷 = :𝝀6;<𝑼6′ [eq. 2.3] 

 

which then transforms the average normalised covariance matrix as follows: 

 

𝑺' = 𝑷𝑹'5555𝑷>									𝑺3 = 𝑷𝑹35555𝑷> [eq. 2.4] 

 

Applying a whitening transformation matrix to the data ensures that the resulting matrices, SH and SF, 

are uncorrelated. These matrices share common eigenvectors and their corresponding eigenvalues sum 

to one. Factorisation of SH and SF as: 

 

𝑺' = 𝑼𝝀'𝑼>									𝑺3 = 𝑼𝝀3𝑼′ [eq. 2.5] 

 

yields 

 

𝝀' + 𝝀3 = 𝑰 [eq. 2.6] 

 

where I is the identity matrix. Thus, in the whitened measurement space spanned by U, the variance 

accounted for by the first m eigenvectors (those corresponding to the m largest eigenvalues in 𝝀') will 

be maximal for XH. Furthermore, because of the sum constraint on 𝝀3, the variance accounted for by 

these eigenvectors must then be minimal for XF. The reverse will be true for the last m eigenvectors for 

which the eigenvalues in 𝝀3 are maximal. The whitening matrix and common eigenvectors can then be 

used to compute a projection matrix, W, 

 

𝑾 = 𝑼>𝑷 [eq. 2.7] 
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that transforms the original time series, X, into uncorrelated components, Z, (i.e. the strong correlation 

between the two conditions are removed and both distributions are simultaneously de-correlated) using 

the following equation: 

 

𝒁 = 𝑾𝑿 [eq. 2.8] 

 

Each column vector of W is a spatial filter and each column of A, where 𝑨 = (𝑾;<)′, is a spatial pattern 

that illustrates how the sources project to the scalp. 

The first and last columns of W and A are the most important spatial filters and patterns 

respectively as these explain the greatest variance for the two conditions. The first column explains the 

greatest variance for the positive condition and least variance for the negative condition, and vice versa. 

As it has previously been suggested to use between one to three eigenvectors from each end of the 

projection matrix (resulting in a total of two to six components) (Blankertz et al., 2008), classification 

performances were obtained for a four-component matrix extracted from a 64-electrode dataset and 

subsequently a two-component matrix extracted from a reduced (35-channel) dataset as performed by 

Wang and colleagues (Wang et al., 2004). The latter reduced dataset focussed on fronto-central, central 

and fronto-parietal scalp electrodes (F1, F3, F5, FC5, FC3, FC1, C1, C3, C5, CP5, CP3, CP1, P1, P3, 

P5, Pz, CPz, Fz, F2, F4, F6, FC6, FC4, FC2, FCz, Cz, C2, C4, C6, CP6, CP4, CP2, P2, P4 and P6) 

spanning brain regions known to be active during both physical and imagined activations of the hands 

and toes. 

After extracting a set number of eigenvectors from the projection matrix, an m-dimensional 

feature vector was then constructed from the variance of the columns of Z as follows: 

 

𝑓E = log	 I
𝑣𝑎𝑟(𝑧E)

∑ 𝑣𝑎𝑟(𝑧M)NO
MP<

Q [eq. 2.9] 
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where m corresponds to the number of columns from each end of W, zq is the q-th column vector of Z, 

and var(z) denotes variance as estimated from elements of z, which are viewed as realisations of a 

random variable (Ramoser et al., 2000). 

 Following feature extraction and selection, single trials were classified using a support vector 

machine (SVM). For a two-class problem (i.e. hand and foot movements) an SVM classifier is greatly 

favoured as it attempts to maximise the distance between the separating hyperplane and the nearest 

training points or so-called support vectors. Furthermore, SVM is known to have good generalisation 

properties, scales well to high-dimensionality data, can explicitly control errors, is insensitive to 

overtraining (in the linear SVM case) and is suitable for small training sets (Cortes and Vapnik, 1995; 

Jain et al., 2000). The trials from each task were equally divided into six folds and a six-fold cross-

validation procedure was implemented whereby a single consecutive fold of trials was used for testing 

the classifier and the remaining five folds for training. Classification scores were estimated with an 

empirical receiver-operating curve (ROC) analysis applied on trials' predicted probabilities (King et al., 

2013). The results of the ROC analysis were summarised by the area under the curve (AUC) with an 

AUC of 50% implying that true positive predictions and false positive predictions are, on average, 

equally probable, whereas an AUC of 100% indicating a perfect positive prediction with no false 

positives. The advantage of studying this classification result as opposed to the mean accuracy is that 

as a non-parametric analysis method no assumptions are implied about the distribution of the underlying 

data. 

 

2.2.4. Statistical analysis 

 

Statistical analysis was performed on the time-frequency analysed data and the AUC results 

following classification. Single subject and group level significance testing was determined between 

opposing conditions within each of the three tasks. A cluster-based permutation test was conducted 

using the method described by Maris and Oostenveld (Maris and Oostenveld, 2007). An example 

workflow corresponding to the group statistical analysis of the physical movement time-frequency 

decomposed data is described as follows: 
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1. Time point wise t-tests were performed (using the Matlab function ‘ttest.m’) between the trial 

averages of the right-hand condition and that of the toes condition across all twelve participants. 

The test statistics (t-values) for all time points within significant clusters were summated and 

stored. 

2. The data from the two experimental conditions were re-collected and the condition label of 

each participant was randomly shuffled (using the Matlab function ‘randi.m’) such that the 

number of participants in each condition remained the same. 

3. A t-test was once again performed on these randomly partitioned contrasts and the t-values for 

all time points within the largest significant cluster were summated and stored. 

4. Steps 2 and 3 were repeated 1000 times to draw a histogram of permutation t-values. These 

1000 t-values corresponded to the summed t-values (step 3) computed from each randomisation 

(step 2). 

5. This distribution was used to test each significant cluster’s summed t-value obtained in step 1. 

If the p-value of a significant cluster was smaller than the critical alpha-level (typically, 

p<0.05), then it was concluded that, within that particular time range, the data in the two 

experimental conditions were significantly different. 

Statistical testing of temporal clusters alone does not account for the spatial connectivity 

recorded by each scalp electrode. Functions from the FieldTrip toolbox (version 20171231, Radboud 

University, Netherlands), such as “ft_prepare_neighbours” with a neighbourhood radius parameter of 

40 mm, were therefore used to perform the spatiotemporal statistical testing on the power spectral 

density data (Oostenveld et al., 2011). Two-tailed t-tests were only conducted for the action period of 

task as this study predominantly intended to investigate significant differences between conditions of 

different motor responses. To account for the number of tails within the statistical test, a Bonferroni 

correction was further applied reducing the critical value to p<0.025. 

In comparison to the power spectral density data, cluster-based permutation testing was applied 

to both the single subject and group AUC results following classification. In the single subject case 

individual trial labels were randomly shuffled across the two conditions during the randomisation step. 

Unlike the t-test based permutation statistics previously performed, to account for the non-parametric 
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nature of the AUC result, a one-tailed Wilcoxon-Mann-Whitney (or rank sum) test was performed with 

an alpha value of 0.05, and a distribution of temporally significant clusters in the action period of the 

task, based on the values of the U-test statistic, was devised. For both time-frequency and classification 

statistical analyses, a total of 1000 randomised permutation runs were performed at the group-level 

whereas 200 were performed at the subject-level due to extensive computation demands. 

 

2.3. Results 

 

2.3.1. Time-frequency analysis 

  

 Group averaged spectral topographies for three frequency decomposition methods are depicted 

in figure F2.3. For the alpha envelope during right-hand physical movement, the Morlet wavelet (figure 

F2.3a) highlights a strong event related desynchronisation over C3 with an equally strong ipsilateral 

response between 500-1500 ms. After this time the response over C4 appears to diminish whereas the 

contralateral response persists for a further 500 ms. In contrast, the beta response to right-hand 

movement has a strong contralateral desynchronisation that is present in the first 500 ms following 

presentation of the action command. The response over C3 remains prominent until 2500 ms after the 

action instruction whereas the ipsilateral response dissolves in the first 1500 ms. Interestingly, a third 

strong desynchronisation is present over Cz which persists across all 500 ms time windows except 

between 1500-2000 ms where the response is solely over C3. The alpha response to toe physical 

movements begins after the first 500 ms following task onset and primarily spans the region enclosing 

CP3-CP1-P1-Pz-CPz. The strong desynchronisation within this window continues for 1000 ms 

following which the parietal responses dissipate. In contrast to this profile, the beta envelope delivers a 

topographic picture that includes strong desynchronisations over both Cz-CPz regions and fronto-

central contralateral hand regions. The Cz-CPz electrodes which were positioned directly above the 

midline and were hypothesised to be most responsive to toe activations had an increasing negative 

energy (prominent event related desynchronisation (ERD)) that was separated from the hand response 

between 1000-2000 ms.  
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 In similar agreement with these responses were the profiles obtained following filter-Hilbert 

transformation. Unlike the alpha band profiles of right-hand movement for Morlet wavelet convolution 

and Butterworth filter-Hilbert transformation (figure F2.3c), FIR filtering (figure F2.3b) identified a 

negative (albeit weak) desynchronisation at the occipital electrodes, a response possibly in result to 

presentation of the green screen which marked execution of the command. Extraction of this occipital 

activity by FIR filtering was additionally present in the alpha band activity of toe movements. FIR 

filtered beta responses to right-hand and toe movements were similar to those generated by Morlet 

wavelet and IIR filtering. Butterworth filtered Hilbert transformations yielded right-hand and toe 

movement topographic maps closely matched to those generated by Morlet wavelet convolution. 

Strikingly, the largest difference between these two time-frequency analysis methods is seen in the beta 

response between 1500-2000 ms. Whereas an exclusive strong desynchronisation was present over the 

C3 region during this time window for Morlet wavelet convolution, filter-Hilbert transformations 

additionally sampled responses over the Cz-CPz region. Nevertheless, unlike Morlet wavelet and FIR 

filtering analyses, the power responses to Butterworth filter Hilbert transformation are of much greater 

strength in the negative direction thus enabling better separation of strongly and weakly activated brain 

regions in response to the task.  
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Figure F2.3: Group averaged power spectral density maps for three different time-frequency analysis methods. 

Alpha (left) and beta (right) frequency band results for the physical movement task are shown in the above figure. 

For complex Morlet wavelet convolution (a) twenty-three ten-cycle wavelets were created (each considering a 

single frequency between 8-30 Hz) and convolved with the data and the results averaged in the two frequency 

bands of interest. Prior to the Hilbert transformation, two different filtering options were also explored including 

the FIR windowed linear phase (b) and IIR Butterworth (c) filters. For the former, a 32-cycle filter order was 

applied to improve the frequency precision of the filter kernel to the slowest frequencies of interest (in this case 

the 8 Hz signal of the alpha window), whereas for the latter, a fifth-order filter was applied to attenuate fewer 

frequencies in the passband and prevent any rippling effects within the stop band. The topographic plots showcase 

highly similar outputs for the CMW and Butterworth filter Hilbert transform methods. 
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Subsequently demonstrated are group averaged, Butterworth-filtered and Hilbert transformed 

spectral topographies for the classical (figure F2.4b) and object-oriented imagery (figure F2.4c) tasks. 

Like the physical responses (figure F2.4a), the neural responses to imagery commands predominantly 

reflect a decrease in energy however these are of approximately half the power. In the alpha window, a 

strong contralateral response to right-hand imagery is present over the C3-C1-CP3-CP1 region between 

500-1500 ms followed by a weaker response between 1500-2000 ms. Interestingly, whilst some 

desynchronisation is present over FCz and Cz, regions corresponding to foot movements, there is no 

ipsilateral response as noted during physical right-hand movement. In contrast, in the beta band, whilst 

there was a lacking ipsilateral response to right-hand physical movement after 1000 ms, this is not the 

case for imagery where an observable response over FC2-FC4-C2-C4 is present. Nevertheless, like the 

beta response to physical right-hand movement, it appears right-hand imagery likewise samples both 

the contralateral and midline regions, albeit more widespread across the duration 0-2500 ms. Toe 

imagery in the alpha and beta windows present topographic profiles similar to those of physical toe 

movements. The alpha window displays a weakening desynchronisation over CPz-C1-P3 from 500 ms 

onwards, whereas the beta window whilst portraying activation over C3 and Cz-CPz regions has an 

equally strong ipsilateral response following the onset of the action period of the task.  

It was aimed that the alpha and beta profiles to object-oriented imagery (figure F2.4c) would 

share similarities to right-hand imagery responses due to the nature of the imagery task involving the 

activation of the hand/arm to “drink” or “comb”. In both alpha and beta analyses a lower contralateral 

response is present over CP3-CP1 with additional occasional recruitment of central and frontal regions 

in the beta window. Interestingly, the scalp response to cortical activation is rapid and is present within 

the first 500 ms of task onset. Unlike cup motor imagery, comb imagery in the alpha window has 

prominent contralateral (C3) and ipsilateral (C4) event related synchronisations (ERS) and a strong 

desynchronisation over the occipital region 500 ms after participants are asked to perform the task. Beta 

analysis however refrains from sampling the lower occipital activation and instead highlights a 

desynchronisation over the contralateral-central regions of the scalp. This varied response of comb 

motor imagery may possibly be a result of the vagueness of the command. Simply asking the participant 
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to comb in the absence of any direction may have resulted in a multitude of unfocused responses across 

the group generating such topographic maps. 

 

 

Figure F2.4: Group averaged power spectral density maps for physical movement (a), classical motor imagery 

(b) and object-oriented imagery tasks. The topographic images for the alpha (left) and beta (right) frequency bands 

were generated using a fifth-order Butterworth filter Hilbert transform. Plots were decibel baseline normalised. 
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Group level spatio-temporal cluster statistics yielded the results depicted in figures F2.5 and 

F2.6. Physical movement in the alpha window (figure F2.5, left) highlighted significantly different 

electrical activity (p<0.025, between right-hand and toe movements) spanning the parietal, and centro-

parietal brain regions across the right hemisphere. The significant extent was largest over the right 

hemisphere whilst that across the left parietal region lasted approximately 120 ms. In the right 

hemisphere the significant difference was greatest over the CP4 electrode, which began 930 ms after 

participants were asked to perform the action and lasted approximately 800 ms. The differences in 

topographic plots highlight the precise time point at which significance was maximum. At 1238 ms the 

right-hand movement topography represents a strong desynchronisation that spans from the C3 to C4 

region via the parietal lobe. In contrast, toe movements presented a map with weaker 

desynchronisations over Cz and lower parietal regions that spanned primarily over the left hemisphere. 

As such, the difference of the two topographies, whilst highlighting overall desynchronisations over C3 

and CP4, found significance primarily over the latter due to neighbouring electrodes additionally 

portraying large differences between the two conditions. 
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Figure F2.5: Spatio-temporal statistical analysis results for the physical movement task. The data from the alpha 

(left) and beta (right) frequency bands were independently analysed. The top images represent the time courses 

for each cue at each electrode. Statistically significant time points (p<0.025) are highlighted by the grey shaded 

regions. The middle images present the topographic distributions of each cue and the difference (third topographic 

plot). The electrode with the peak statistic is highlighted by a white circle in the third topographic plot. The bottom 

images present the average time course of all electrodes within the significant spatial cluster and overlaid (yellow 

shaded region) is the window of significance for the electrode that yielded the peak statistic. 

 

 Unlike the alpha window, physical movement in the beta band (figure F2.5, right) highlighted 

significantly different power profiles across the left fronto-central region. Peak statistical significance 

was observed over AFz and spanned 100 ms, ~1600 ms after task performance began. This significance 

region is driven by the topographic profile developed following toe movements across the group. Strong 

desynchronisations are present over the left M1 and span forwards into the left dorsolateral prefrontal 

cortex. In contrast, right-hand movements generate a map that is greatly negative over C3-Cz. 

Recruitment of the frontal cortex in the beta window is possible due to the spatial variability of toe 
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actions. Activations of this region have previously been observed for physical hand deflections and toe 

imagery movements using fMRI (Ehrsson et al., 2003; Hanakawa et al., 2003; Nakata et al., 2019). On 

the other hand, during the imagery task (figure F2.6), statistical significance in the beta band was 

identified across the right centro-parietal and temporal regions with greatest significance achieved at 

the CP4 electrode. Interestingly, the significant contrast which lasted 63 ms began more than 3000 ms 

after imagery onset and is primarily due to a return to baseline of right-hand elicited electrical responses. 

 

 

Figure F2.6: Spatio-temporal statistical analysis results for the classical imagery task. Although the data from 

both the alpha and beta frequency bands were analysed independently, significant clusters were only found for 

the latter. Refer to figure F2.5 for details on each of the plots displayed. 
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Unlike the group-level statistics, at the subject-level spatio-temporal regions of significant 

activation were additionally observed for both the classical imagery task in the alpha window and the 

object-based imagery paradigm (table T2.1). For the latter, peak significant clusters were identified in 

two participants in the alpha window spanning the occipital cortex. In contrast, filtering in the beta 

frequency band yielded two alternate participants with significant clusters over C3 and AFz. Given that 

object-oriented tasks were hypothesised to involve the recruitment of M1, significant activation at C3 

highlights the greater desynchronisation of cup imagery (data not shown) which involved a directed 

drinking action in comparison to that of comb imagery. Physical movement and simple imagery tasks 

predominantly yielded peak statistically significant clusters across the right hemisphere (FC4, FC3, C4, 

CP2, CP4, PO8) over time windows that varied across the duration of the action period. In the alpha 

window however, participants 1 (movement), 2 and 3 (imagery) displayed peak channels at or 

immediately around the C3 electrode. This represents that in comparison to toe actions, the neural 

response to right-hand physical or imagined tasks was much greater for these participants.  

Due to the temporal resolution of EEG being within the millisecond range it is unlikely that 

right-hand and toe responses for both physical movement and simple imagery tasks would be time 

varying such that significant differences (in the statistical sense) could be obtained at both the C3 and 

Cz regions. With this in mind and taking into consideration the spatial connectivity accounted for by 

the statistical method, a significance score in the right hemisphere and in the lower parietal regions 

depicts either stronger activations over both C3 and Cz regions during hand and toes cues or a lack of 

any response in these two regions from baseline. However, with respect to the latter theory, responses 

between baseline and action periods were in fact found to be significantly different (p<0.025) at these 

two electrodes (C3 and Cz) for both right-hand and toes cues when accounting for their spatial 

connectedness. These statistical differences were obtained by comparing the average baseline response 

with the average responses from 500 ms sliding windows in the action period for the group. For the 

physical movement task, both alpha and beta frequency band responses between baseline and all 500 

ms time windows in the action period were significantly different (p<0.025). This was similarly the 

case for simple right-hand (significant differences observed between 500-3500 ms for alpha band 

activity and 0-4500 ms for beta band activity) and toes imagery cues (significant differences observed 
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between 500-4000 ms for alpha band activity). However, for beta frequency band responses from toes 

imagery trials the significant period was limited to 0-1000 ms which is in line with the beta rebound 

(beta ERS) displayed in figure F2.6 at the Cz electrode after this brief period. 

 

Table T2.1: Participants displaying statistically significant (p<0.025) spatio-temporal clusters for each of the 

three tasks and each of the two frequency bands. Individual trial responses for each participant were randomised 

and the average response tested for regions of significance between the two action cues within each task to form 

a distribution. This distribution was used to determine overall regions of significance between the true average 

response for the two action cues for each participant. In addition to the participant number, also present are the 

electrodes and time points corresponding to the peak statistics. 

Participants with a significant cluster 
Task Frequency bands Participants Peak channels Peak windows (ms) 

     

Move 

Alpha 
1 

FC4 
C3 

 
FC3 

617 - 1176 
1379 - 1621 
3301 - 3633 
3910 - 4180 

5 C4 430 - 895 
9 PO3 1473 - 1734 

Beta 

1 FC4 2039 - 2102 

5 
PO8 
CP2 
CP4 

504 - 598 
605 - 652 
695 - 781 

 

Imagery 
Alpha 

2 CP3 551-1016 
3 CP5 2125 - 2543 

Beta 12 PO8 3445 - 3492 
 

Object-Imagery 
Alpha 

3 PO7 0 - 617 
3781 - 3973 

5 Oz 3270 - 4191 

Beta 
1 C3 2965 - 3016 
10 AFz 1461-1531 

 

2.3.2. Classification 

 

 Feature extraction and selection utilised the CSP algorithm to decompose the channel data into 

a subset of components that maximised the variance between the two task conditions. Using a 4-
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component matrix, spatial patterns (inverse of the spatial filters) for a 64- and 35-electrode set are 

portrayed in figure F2.7. For the 64-channel decomposition, the single subject case (figure F2.7a) 

prominently highlights that the spatial pattern of one task (i.e. right-hand) presents the ERD distribution 

of the second task (i.e. toes). From the alpha envelope for this participant (figure F2.2), the 

desynchronisation over C3 is dominant between 1500 and 2000 ms for right-hand movement, and as 

such, in component space (SP=1 in figure F2.7a) this action has an increased EEG variance over the 

toe area (Cz). In contrast, the weaker response to toe flexion results in close to zero EEG variance in 

the hand region (SP=3 in figure F2.7a). Across the group (figure F2.7c) a similar profile is seen with 

increased EEG variance over CPz for right-hand movement (SP=1) and a close to zero EEG power over 

C3-CP5 for toe movements (SP=3). In comparison to the 64-channel spatial patterns, the 35-channel 

maps for this participant (figure F2.7b) identifies strong EEG variances at both C3 and Cz electrodes 

for toe and hand movements respectively in the first-most important components (SP=1 and SP=4). 

This increased EEG power at C3 for hand movements is likewise noticeable at the group level (SP=4 

in figure F2.7d), yet the response at Cz (SP=1 in figure F2.7d) remains extremely weak in line with the 

mild toe response generated by the group in figure F2.4a between 1500-2000 ms. 
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Figure F2.7: First two-most important spatial patterns determined by the CSP algorithm for the physical 

movement task. (a, b) Illustrative source projections on the scalp for a single participant and (b, d) average source 

projections across the group for both the (a, c) 64-channel and (b, d) 35-channel montages. The sliding time 

window used to develop these topographic maps was between 1250-2250 ms. The first-most important 

components (SP=1 and SP=4) explain the greatest variance between the two classes whereas inward components 

(SP=2 and SP=3) account for additional variances. Spatial patterns 1 and 2 predominantly correspond to hand 

movements whereas components 3 and 4 correspond to toe flexions. 

 

Group classification scores for the 64 and 35 channel montages (decomposed to four and two 

spatial components respectively) are shown in figure F2.8. For the higher channel montage (figure 

F2.8a) statistically significant AUC scores (p<0.05) above chance (where chance was an AUC of 0.5) 

were observed for physical movement (beta frequency band only) and object imagery (both alpha and 

beta frequency bands) tasks only. In contrast, for the reduced channel classification (figure F2.8b), 

significant clusters were obtained in all three tasks and for both frequency bands. Whilst the group 

averaged AUC scores for the 64-channel layout remained below 0.60, those in the alpha band for the 

35-electrode montage (figure F2.8b) peaked at approximately 0.65 and 0.61 for physical movement and 

imagery tasks respectively. Furthermore, group peak AUC scores for each task, frequency band and 

channel montage in the action period were greater than the peak AUC scores obtained following 
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classification of baseline responses (peak AUC scores for 64- and 35-channel montages were 0.51 and 

0.53 respectively). The improved classification results found using a subset of the 64 recording 

electrodes represents improved spatial filtering of the two conditions within each task by the CSP 

algorithm. 
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Figure F2.8: Group average classification scores for each sliding time window. SVM classification was 

performed between cues within each of the three tasks using a four-component feature vector derived from the 

64-channel montage (a) and a two-component feature vector derived from the 35-channel montage (b). Here the 

first score at time 0.5 s represents the average of a time window spanning 0-1000 ms. The light shaded time course 

represents the standard error in the AUC scores. Clusters of statistically significant time (window) points (p<0.05) 

are highlighted as blocked yellow regions. AUC scores in the action period of the task were only compared to 

those of chance (an AUC score of 0.5) in the statistical test. 
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Having additionally classified individual trials at the subject-level, a summary of the percentage 

of individuals displaying at least one statistically significant cluster for each of the channel montages is 

displayed in table T2.2. Generally, at least one additional participant was found to display a significant 

cluster when classifying the 35-channel dataset. The greatest increase in participant number however 

was for the simple imagery task where only one participant displayed a significant AUC score when 

classifying the 64-channel data, which increased to five (beta) and six (alpha) participants displaying a 

significant cluster when classifying the 35-electrode data. 

 

Table T2.2: Percentage of participants displaying at least one statistically significant (p<0.05) AUC score (or a 

cluster of scores at multiple time points) for each task, channel montage and frequency band. Unlike the group 

analysis in figure F2.8, statistical analysis was performed using the subject-level approach described in section 

2.2.4. 

Percentage of participants with a significant AUC score 

Task 
64 Channels 35 Channels 

Alpha (%) Beta (%) Alpha (%) Beta (%) 
Move 16.67 25.00 33.33 50.00 

Imagery 8.33 8.33 50.00 41.67 
Object Imagery 25.00 0.00 33.33 8.33 

 

Peak AUC scores for all participants and both channel montages are displayed in table T2.3. 

Using two CSP features for classification (as derived from the 35-channel montage) yielded group 

average peak AUC scores that surpassed the 70% threshold for physical movement and imagery tasks 

in the alpha frequency band. Furthermore, except for the object imagery task in the beta frequency band, 

all other average peak scores for this reduced setup were greater than the highest average peak score 

obtained with the 64-channel montage (0.65 during physical movement). The 50% of participants that 

yielded at least one significant AUC time point (or cluster) for the simple imagery task (table T2.2 - 35 

channels, alpha frequency band) had peak discrimination success rates of at least 70% (table T2.3), with 

one participant even obtaining an AUC score of 95%. This is an interesting finding given the increasing 

complexity of a motor imagery task and the absence of any prior training or feedback. Although no 

direct comparison can be made between the object and classical imagery classification results due to 
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the different limb areas activated within the brain, average peak scores for the former task were lower 

than those of the latter task (when comparing alike frequency bands for the 35-channel montage) and 

may likely be due to the lack of specificity provided in the instruction for comb imagery. Nevertheless, 

whether the addition of an object enhances an individual's motor imagery performance is unclear from 

this current study and as such needs to be further explored. 
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Table T2.3: Peak classification AUC scores for each participant. Results are presented for each channel montage, 

task and frequency band. The p-values on the bottom row of the table represent the results of a one-tailed Student’s 

t-test (p<0.05) between the peak scores of the two channel montages. Overall classification of the two-component 

feature vector (as derived from the 35-channel montage) yielded higher average peak AUC scores that were 

significantly different from those obtained from high-density channel classification. 

Peak AUC scores 
 

64 Channels 

Participant 
Move Imagery Object Imagery 

Alpha Beta Alpha Beta Alpha Beta 
1 0.82* 0.92* 0.65 0.56 0.59 0.55 
2 0.64 0.60 0.61 0.60 0.67 0.69 
3 0.56 0.55 0.60 0.56 0.62 0.56 
4 0.59 0.49 0.59 0.56 0.62 0.59 
5 0.80* 0.64 0.87* 0.78* 0.76* 0.68 
6 0.57 0.62 0.64 0.63 0.68* 0.57 
7 0.57 0.71 0.55 0.58 0.59 0.56 
8 0.58 0.57 0.58 0.56 0.67 0.67 
9 0.58 0.77* 0.56 0.59 0.59 0.55 
10 0.60 0.60 0.58 0.58 0.61 0.55 
11 0.64 0.58 0.57 0.53 0.56 0.57 
12 0.80 0.72* 0.60 0.60 0.69* 0.68 

Average 0.65 0.65 0.62 0.59 0.64 0.60 
 

35 Channels 

Participant 
Move Imagery Object Imagery 

Alpha Beta Alpha Beta Alpha Beta 
1 1.00* 0.93* 0.78* 0.67* 0.63 0.69* 
2 0.68 0.66 0.73 0.64* 0.68* 0.73 
3 0.67 0.56 0.70* 0.59 0.73* 0.62 
4 0.71 0.68 0.69* 0.57 0.71 0.60 
5 0.86* 0.82* 0.95* 0.83* 0.80* 0.68 
6 0.90* 0.64* 0.82* 0.64 0.75* 0.62 
7 0.63 0.71 0.65 0.62 0.56 0.60 
8 0.60 0.57 0.70 0.64 0.69 0.56 
9 0.61 0.69* 0.72* 0.80* 0.68 0.67 
10 0.64 0.64 0.65 0.62* 0.56 0.63 
11 0.71 0.61* 0.54 0.62 0.66 0.52 
12 0.81* 0.67* 0.62 0.65 0.66 0.77 

Average 0.73 0.68 0.71 0.66 0.68 0.64 
 

p 0.003 >0.05 <0.001 0.001 0.021 0.044 
* indicates a significant AUC score (p<0.05) established from an empirical null distribution of classification 

accuracies (AUC scores) derived from random observations (i.e. shuffled class labels). 
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Statistical analysis of peak AUC scores between the two channel montages (table T2.3) 

highlighted significant differences (p<0.05) for all tasks and frequency bands except for the physical 

movement scores in the beta frequency band. To conclusively demonstrate that the two-component 

matrix of the 35-channel montage yielded better classification results than the four-component matrix 

of the 64-electrode set, table T2.4 was drawn to highlight average peak AUC scores and significance 

values between two- and four-component matrices derived from the reduced electrode montage. The 

average peak classification scores for the two-component matrix were either equal to (physical 

movement, alpha frequency band) or greater than those of the four-component matrix. Furthermore, the 

peak results of the physical movement (beta frequency band) and simple imagery (alpha frequency 

band) tasks were found to be significantly different (p<0.05) between the two component matrices. 

 

Table T2.4: Group average peak AUC scores for classification performed using a different number of CSP 

components. Results are presented for the 35-channel montage, each of the three tasks and each of the two 

frequency bands. As shown in figure F2.7, represented here are the average peak classification results following 

a decomposition of the 35-channel matrix into the first-most important components (first and last spatial filters) 

and the first two-most important components. These correspondingly form two- and four-component feature 

vectors for classification. Once again, the p-values on the bottom row of the table represent the results of a one-

tailed Student’s t-test (p<0.05) between the peak scores (across the group) of the two CSP-classification methods. 

Group average peak AUC scores (35 Channels) 
CSP 

Components 
Move Imagery Object Imagery 

Alpha Beta Alpha Beta Alpha Beta 
2 0.73 0.68 0.71 0.66 0.68 0.64 
4 0.73 0.66 0.68 0.64 0.67 0.63 
       

p >0.05 0.046 0.031 >0.05 >0.05 >0.05 
 

Overall, these classification results highlight that application of the CSP spatial filtering 

algorithm on a reduced number of frequency-band filtered channel potentials that are focussed around 

regions activated during motor imagery (based on previous fMRI research) can better extract features 

discriminable by a classifier. Furthermore, where a reduced montage is used, the first and last spatial 

patterns are sufficient for classification as these account for the greatest variability across the two 
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classes. The discriminable quality of these patterns correlates with the differences in spectral maps of 

the two classes (such as those in figures F2.5 and F2.6). For example, physical movement and simple 

imagery tasks that activated regions predominantly over the contralateral hand (C3) and toe (Cz-CPz) 

brain regions (see figure F2.2 - single subject case) yielded the greatest peak classification scores for 

these participants.  

 

2.4. Discussion 

 

2.4.1. Time-frequency analysis 

 

 This study used EEG to demonstrate frequency band spatial patterns of physical movement and 

increasing complex motor imagery paradigms including that of simple limb and object-oriented 

everyday movements. Despite the small differences between the three time-frequency analysis methods 

explored, alpha and beta frequency rhythms for hand and foot cues were to some extent in line with 

previous fMRI and EEG research (Ehrsson et al., 2003; Hanakawa et al., 2003; Lee et al., 2019b; 

Mizuguchi et al., 2013; Nakata et al., 2019; Wriessnegger et al., 2018). Furthermore, spatial maps 

derived from cup/comb motor imagery suggest an active recruitment of the hand region in the beta 

frequency band (Zhang et al., 2017b), and an active recruitment of the occipital/parietal brain areas in 

the alpha frequency band. This latter trend likely reflects a state of cortical activation in which the 

occipital areas process, feature extract and prepare for an imagined movement in response to the visual 

presentation of familiar objects (resulting in a desynchronisation of alpha band activity in the occipital 

areas), subsequently followed by parietal areas activating cognitive processes and mechanisms of 

attention (resulting in a subsequent synchronisation and desynchronisation of alpha band activity in the 

occipital and parietal areas respectively) (Perry et al., 2011; Pfurtscheller et al., 1994; Vanni et al., 

1997). 

The mathematical equivalence of CMW and FIR/IIR-Hilbert transformations (Bruns, 2004) 

was successfully shown in the similar topographic maps generated in figure F2.3, and is consistent with 

the literature. Wang and colleagues examined left- and right-hand motor imagery spectral patterns using 
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a Butterworth-filter Hilbert transform. The authors observed that in seven out of nine participants, peaks 

in the mu band were present following the stimulus, whereas in only two of those seven were additional 

beta peaks identified at the termination of imagination (Wang et al., 2004). Such a profile was also 

observed in a later publication by the same group when using complex Morlet wavelet convolution 

instead to study ERD/ERS patterns at electrodes C3 and C4 (Qin and He, 2005). 

The Butterworth-filtered, Hilbert transformed spatial patterns in the current study portrayed a 

bilateral activation profile for right-hand gripping that diminished in ERD energy over time in both 

alpha and beta frequency bands. This is in agreement with the group average diminishing bilateral 

topography for both left- and right-hand finger movements displayed by Bai and colleagues (Bai et al., 

2005). In contrast, simple right-hand imagery spatial patterns were more spatially lateralised with a 

predominant ERD response around the C3 electrode. Yi and colleagues previously demonstrated EEG 

scalp topographies of right-hand and foot motor imagery from a single right-handed participant that 

was given prior imagery training (Yi et al., 2013). The authors depicted a strong contralateral (C3) 

activation in the alpha frequency band following right-hand imagery, which to some extent is in 

agreement with the group average topographies presented in the current study. The ERD feature for 

foot motor imagery presented by Yi and colleagues consisted of a strong desynchronisation that began 

on the left hemisphere around C3 and continued through the mid-central region to the right hemisphere 

where it terminated around C4. This somewhat reflects the fMRI profile generated following toe 

imagery, which highlights significant activation profiles in the mid-central region around Cz (which is 

the scalp electrode directly above the foot region in the Homuncular organisation (Akselrod et al., 

2017)) with localised and less intense activation patterns around C3 and C4 (Ehrsson et al., 2003). The 

current study’s group average spatial patterns for toe imagery were also consistent with the EEG 

findings of Yi and colleagues, whereby some central activation in the alpha band was observed, but a 

more prominent C3 to Cz ERD profile was present for the beta envelope. 

The choice of a large filter kernel for both alpha and beta frequency bands examined may have 

limited the potential to localise activity to specific brain regions and thus separate 

contralateral/ipsilateral/central activity across the two cues within each task. Wang and He previously 

highlighted that 10 and 11 Hz Butterworth filtered signals yielded Hilbert transform group average 
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spectral maps with strong contralateral ERDs for right- and left-hand motor imagery respectively (Wang 

and He, 2004). These optimal single frequencies were isolated by dividing the frequency range of 5-25 

Hz into 20 overlapping bins of approximately 2 Hz bandwidth. 

In a follow-up study of the same imagery paradigm, whilst examining slightly larger frequency 

bins (the frequency range of 6-30 Hz was divided into 13 bins where the ratio of the centre frequency 

over the bandwidth remained the same), the authors presented contralateral sensorimotor attribution of 

imagined hand movements in their differential-mode patterns (Wang et al., 2004). Here the differential-

mode patterns are the difference topographic distributions of two cues. The current study’s statistical 

results, which are akin to these differential-mode patterns, mostly reflected significant differences 

between hand and toe movements on the ipsilateral hemisphere. Nevertheless, from the difference 

topographic map for the physical movement task (figure F2.5 - alpha frequency band), weak negative 

and positive energy differences were observed between the regions spanning the C3 (right-hand) and 

Cz (toes) electrodes respectively. For the imagery task however (figure F2.6), an inverse difference 

pattern was observed that was consistent with the difference image found by Wang and colleagues for 

one out of the nine participants that took part in their research (Wang et al., 2004). Yi and colleagues 

on the other hand highlighted significant differences at C3 (between right-hand and combined right-

hand plus left-foot imagery), and Cz (between feet and combined right-hand plus left-foot imagery) 

electrodes between different hand and foot imagery conditions (Yi et al., 2013). Whilst the current study 

likewise observed significant activity in the FC3-C3-CP3-CP5 region for some participants, this 

difference in results is likely to be based on the way the spectral data were statistically analysed. Unlike 

the methodology used in the current study, the authors performed temporal statistical tests between 

specific single channels only and therefore did not spatially account for the activity at connected 

neighbouring electrodes. 

For the complex object-based imagery task, no statistical spatiotemporal differences were 

observed in the power responses between the two cues. Nevertheless, topographic maps for each 

response in the beta frequency band generally portrayed ERD patterns aligned over the contralateral 

hand region, corresponding to the brain region intended to be activated by such commands. This finding 

is in agreement with the results portrayed by Zhang and colleagues, which investigated topographic and 
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classification outcomes of complex elbow-centered motor imagery tasks (Zhang et al., 2017b). Across 

a group of 12 participant the authors depicted that imagery of “drinking a spoonful of soup” and 

“combing hair” generated strong activations within the 12-26 Hz frequency window at electrodes C3, 

C4, P3 and P4 (peak activity for these motor imagery tasks were found at C3 and P3 centred around 18 

Hz). Furthermore, additional weak activity was observed between 6-14 Hz at electrodes F7 and F8, 

likely relating to motor planning (Hanakawa et al., 2008). In the current study however, no such 

ipsilateral activity was observed for the cup-related imagery cue, yet a large ERS pattern was identified 

over the frontal regions for both object imagery conditions.  

In summary, the spectral patterns of simple imagined commands were to some extent in line 

with the maps of the physical movement task and those of published results. Despite all signals being 

spatially filtered using the surface Laplacian, simple hand gripping motor imagery had a contralaterally 

smeared spectral topographic pattern on average across the group. In comparison, the cup-based motor 

imagery maps were localised in the lower parietal cortex, indicating a greater focussing of the neural 

activity when performing such a hand-oriented motor imagery task in the presence of an object. 

Nevertheless, this conclusion does not hold for the comb-based imagery task, which in the beta 

frequency band had a centrally smeared response across both hemispheres. The difference in the group 

alpha and beta frequency band responses for the comb imagery cue is either physiological, with the 

frequency response to this command being highly embedded in the beta envelope and that of the visual 

cue being embedded within the alpha envelope, or is due to the lack of specificity provided within the 

instructions for this cue resulting a varied response. 

 

2.4.2. Classification 

 

 A second element of this research investigated group and individual classification performances 

for all three paradigms. A sub-band CSP architecture was used to spatially filter the multi-channel data 

into a lower dimensional space that maximised class variances. As a result, the findings in figure F2.8 

and table T2.3 showed that, CSP pre-processing and classification of data from a subset of electrodes 

centred around the primary motor cortex, posterior parietal cortex, premotor cortex and supplementary 
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motor areas yielded group- and subject-level classification accuracies for all three tasks (physical 

movement, simple imagery and objected-oriented imagery) that were better than the accuracies obtained 

following CSP pre-processing and classification of data from all 64 recording electrodes (whole head 

coverage). From table T2.3, improvements in the average peak classification accuracies for the 35 

channel over the 64 channel analysis ranged between 3-9% across the three tasks. 

Classification of the 64-channel dataset was performed on a reduced four-component feature 

space resembling the first two-most important CSP filters. In contrast, classification of the centrally 

focussed subset of electrodes was performed on a two-component feature space derived from only the 

first-most important CSP filters. Computing the CSP filters on a limited number of scalp electrodes is 

known to enhance the sensitivity of the covariance matrix estimation to channels preliminary involved 

with the task. Wang and colleagues demonstrated CSP spatial patterns from two different channel 

montages in their left- and right-hand motor imagery classification study (Wang et al., 2004). Across a 

20-channel montage, the authors highlighted discriminative spatial patterns over sensorimotor areas 

directly above the C3 and C4 electrodes in the first-most important components. Across a 28-channel 

montage however, these discriminative patterns strode across the first and second most important 

components. Their latter results were likewise evident in the current study where foot- and hand-related 

spatial patterns were located in the first (SP = 1) and second (SP = 3) most important components, 

respectively, in the single subject case (figure F2.7a). 

The findings of the group classification time courses highlighted the two-component feature 

vector (as derived from the centrally focussed 35 electrodes) to yield greater AUC scores for all three 

tasks in comparison to any four-component feature vector. This correlated with the better separated 

spatial pattern maps for the two classes as shown for example in figure F2.7d. Interestingly, when 

studying the individual peak classification scores for both physical movement and imagery paradigms 

in the alpha frequency band, 92% of participants had an improvement in their classification score when 

classifying features derived from the smaller channel set. Prior literature has observed a mean peak 

accuracy of 70% across 10 participants in the classification of seven motor imagery classes (rest, left-

hand, right-hand, feet, both hands, left-hand plus right foot, and right-hand plus left-foot) using a 64-

channel montage (Yi et al., 2013). This is much greater than the mean peak accuracy of 60.5% (average 
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of the mean alpha and beta band results) obtained in the current study for the same montage. Several 

participants obtained low classification scores (i.e. below 60% for the 64-electrode analysis and below 

70% for the 35-channel analysis) for both physical movement and imagery paradigms in table T2.3. 

This is either due to: (i) a weak neural activation profile in response to the command; (ii) a bilateral 

activation profile across the central hemisphere, thereby limiting the ability for a classifier to 

discriminate the two cues; (iii) fatigue; or (iv) an incorrect understanding of the task instructions. Prior 

work by Qin and He highlighted that a few participants performing a right- and left-hand motor imagery 

task displayed a strong ERD in the preparation phase that continued through to the execution phase of 

the study, whereas a single participant exhibited two individual ERDs at the preparation and execution 

phases of the study (Qin and He, 2005). Although the preparation phase of the current study was not 

explicitly analysed, it is possible that some participants may have begun executing or imagining the 

given command in this period or immediately prior to the action period thereby limiting the ability of 

the designed analysis pipeline to identify unique channel responses to each cue. 

With respect to the object-oriented imagery paradigm, the significant cluster of time points near 

the ends of the group AUC time courses for both channel montages are likely a result of a possible 

rebound in activity (ERS) after imagination, as previously detected by Qin and He (Qin and He, 2005). 

The post-imagery beta rebound has also been extensively studied by Pfurtscheller and colleagues who 

have identified terminations of motor commands to be reflected by a somatotopically specific, short 

lived brain state associated with the simultaneous inhibition and “resetting” of motor cortex networks 

(Müller-Putz et al., 2010; Neuper and Pfurtscheller, 2001; Pfurtscheller et al., 2005; Pfurtscheller and 

Solis-Escalante, 2009; Solis-Escalante et al., 2012). Interestingly, group average peak accuracy results 

for the object-oriented imagery task were above 60%, and thus higher than the maximum accuracy of 

54% achieved by a previous study exploring a similar “drink” and “comb” imagery paradigm (Zhang 

et al., 2017b). Zhang and colleagues argued that such low inter-task accuracy scores for this and similar 

elbow-centred complex motor imagery tasks were likely due to a similarity in their topographic 

distributions, which was centred primarily over the C3 region. Likewise, results from the current study 

showed strong beta ERDs centred over the C3 region for both ‘cup’ and ‘comb’ cues (figure F2.4). 

Nevertheless, the smeared distribution across both hemispheres for ‘comb’ imagery is likely to have 
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aided improvements in classification performance. Furthermore, for alpha frequency band signals, the 

higher peak accuracy scores achieved at the subject-level, and early statistically significant cluster of 

time points observed at the group-level, are likely due to the vast differences in power values obtained 

between ‘cup’ and ‘comb’ responses in the sensorimotor region (whereas ‘cup’-based imagery had a 

prominent ERD over the C3 region, ‘comb’-based imagery had a strong ERS component).  

Group-level AUC scores presented in this study were statistically tested for significance against 

a chance accuracy of 50% (AUC score of 0.5). Whilst such a threshold is frequently used in the literature 

for two-class paradigms to indicate total random classification (Cruse et al., 2011, 2012), it is an 

assumption that is strictly speaking only valid for infinite sample sizes. The chance level for a two-class 

classification problem is in fact 50% with confidence bounds that are dependent on the statistical alpha 

value and number of trials used within a study (Combrisson and Jerbi, 2015; Müller-Putz et al., 2008). 

These confidence intervals can be derived from the binomial cumulative distribution (Matlab function 

‘binoinv.m’) (Combrisson and Jerbi, 2015; Müller-Putz et al., 2008). For an alpha significance value of 

0.05, the theoretical chance level for each task in the current study (which included a total of 96 trials 

across two classes) was 58.3%. At this threshold it would appear that the group-level scores would no 

longer be significantly different from chance (i.e. the classifier does not significantly differ from a 

random one). The general low classification performance of the group (i.e. several participants had peak 

scores less than 70%) highlights limitations of a single session of motor imagery in the absence of any 

feedback. Whilst a single session of motor imagery does promote motor learning (Nicholson et al., 

2018), the first session effectively provides participants with a familiarity of the task resulting in varied 

responses across the group. This session is therefore predominantly used to train a classifier (using 

cross-validation) to obtain subject-specific weights that can be subsequently applied to the classifier 

following additional motor imagery sessions providing a true indication of motor imagery classification 

performance (Guger et al., 2003). 

In summary, the CSP filter is an efficient tool for maximising class differences for classification 

whilst also reducing the dimensionality of multi-channel data in feature space. However, this is most 

effective when performed on a small number of scalp electrodes centered more closely above brain 

regions directly involved with the task. This either requires the use of literature to guide which 
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electrodes to select for CSP processing, or the simultaneous use of instruments with good spatial 

information such as fMRI or fNIRS. The classification results presented in this study overall highlighted 

accuracies in the presence of an object being lower than the scores achieved using a classical imagery 

paradigm. Nevertheless, based on the above discussions, it can be hypothesised that further research 

using objects that activate different limb regions across the motor and sensorimotor areas (such as the 

foot and hand by ‘kicking a ball in the presence of a ball’ and ‘drinking soup in the presence of a cup’, 

respectively) will conclusively demonstrate whether the addition of these objects truly benefit motor 

imagery performance in individuals with no prior training or feedback. 

 

2.4.3. Summary 

 

The results presented in this chapter highlight that object-oriented motor imagery 

predominantly generated beta frequency band responses to some degree localised contralaterally around 

the hand region of the motor cortex. Whilst in line with the beta band responses of simple imagery and 

physical movement of the right-hand, the alpha band responses of the object-oriented imagery task 

highly varied from alpha band activities generated by other hand-oriented tasks. Furthermore, the lack 

of significant differences between cup- and comb-generated topographical profiles in the beta frequency 

band resulted in low classification performances at the group and subject levels. Nevertheless, where 

cues were spatially separated, such as the right hand and toes cues explored in the physical movement 

and simple imagery tasks, classification performances improved when a subset of centrally focussed 

electrodes were spatially filtered using CSP and classified. Although this study could not conclude 

imagery tasks in the presence of an object to yield better classification results than simple limb motor 

imagery actions, it is clear that the classification performances of individuals is directly related to the 

spatial and temporal localisation of responses as observed through spatial patterns. Such localised 

responses are frequency band specific and harnessing individual optimal frequency windows (within 

broad alpha and beta frequency bands) is likely to enhance classification performance. This coupled 

with multiple recording sessions is likely to generate the accuracy scores required to conclude the 

effectiveness of object imagery tasks and their potential future applicability in the clinic. 
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Chapter 3 

 

Motor imagery detection using frequency-domain functional near-

infrared spectroscopy  

 

3.1. Introduction 

 

 Functional near-infrared spectroscopy (fNIRS) provides insights into brain activity through 

measuring changes in the haemodynamic response. The haemodynamic response is a homeostatic 

process that replenishes nutrients used by biological tissues by adjusting blood flow to areas of activity. 

During periods of increased activity, the rate of oxygenated haemoglobin delivery at the neuronal 

tissues typically exceeds the rate of oxygen utilisation, resulting in a temporary increase in the 

concentration of oxygenated haemoglobin and a decrease in the concentration of deoxygenated 

haemoglobin. When NIR light is radiated into the head from the surface of the scalp two main physical 

phenomena affect the photon trajectory in tissues: scattering and absorption (Jacques and Pogue, 2008). 

Scattering (as represented by the reduced scattering coefficient) is the dominant effect caused by 

microscopic refractive index changes inside the tissue resulting in the diffuse nature of light propagation 

through the media. Absorption (as represented by the absorption coefficient) on the other hand results 

from a loss of photons due to the presence of particular chromophores inside the tissue. These 

chromophores absorb photons in order to release, for example, radiative (i.e., fluorescence) or 

nonradiative (i.e., vibrational) energies. With a multiwavelength NIR light source, the contribution of 

each chromophore can be separated enabling the quantification of changes in or absolute levels of 

concentration (Lange and Tachtsidis, 2019). 

 Absorption and scattering contribute non-linearly to the global attenuation of light by tissues 

and therefore one must solve an inverse problem in order to determine changes in these parameters 

independently (Arridge and Schotland, 2009). Light propagation in tissue (commonly known as the 
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forward model) can be approximately modelled by the diffusion equation derived from the radiative 

transport equation given certain assumptions (Dehghani et al., 2008; Durduran et al., 2010). Whilst 

Monte Carlo simulations can be used to solve the radiative transport equation (Boas et al., 2002; Hiraoka 

et al., 1993), the diffusion equation can be solved analytically (Jacques and Pogue, 2008), by employing 

the finite element method through software platforms such as NIRFAST (Dehghani et al., 2008) and 

TOAST++ (Schweiger and Arridge, 2014). 

The unique feature of frequency-domain (FD) NIRS systems is that they radiate light modulated 

at frequencies in the megahertz range (see background information in Chapter 1). As this light 

propagates deep into brain tissue it is constantly attenuated and scattered resulting in shifts in the phase 

of the signal. This phase parameter enables one to determine the total depth penetrated by the light 

(Fantini and Sassaroli, 2020). Measuring both the intensity change and phase shift at two or more 

source-detector distances enables the diffusion equation to be solved and absorption and scattering 

coefficients to be computed that relate the recorded data to changes in chromophore concentrations 

(Fantini, 1995). 

Initial research using FD-NIRS for motor activity detection primarily focused on recording fast 

optical signals time-locked to the stimulus in order to gather event-related brain activity (Gratton and 

Fabiani, 2009). Unlike the slow haemodynamic response which corresponds to the blood oxygenation 

level dependent signal of fMRI, fast optical signals represent the rapid (millisecond) changes in tissue 

optical properties following a cue. In a hand/finger-to-thumb tapping paradigm, Wolf and colleagues 

recorded intensity and phase amplitudes approximately 1.5-times greater than those at rest for fibres 

positioned over the motor cortex (C3 region) (Wolf et al., 2002). Subsequently, Morren and colleagues 

highlighted using a similar paradigm and scalp-fibre montage that advanced signal processing 

techniques could separate fast signal components from both intensity and phase measurements where 

the power during the action period of the task was significantly larger than during rest (Morren et al., 

2004). 

More recent FD-NIRS research has extended the systems’ sensitivity and improved signal 

processing methods in order to better capture brain responses to motor imagery commands and develop 

fNIRS-related brain computer interfaces (BCIs) (Chiarelli et al., 2018; Khan et al., 2017, 2018; Koo et 
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al., 2015). When compared to the large number of publications using continuous wave NIRS systems 

for data collection, the utility of advanced technologies such as FD-NIRS is much more limited and is 

likely due to their increased costs, albeit significantly lower than fMRI. Furthermore, several research 

groups that have access to an FD-NIRS system tend to be limited to examining haemodynamic 

concentration changes derived using only the intensity parameter along with the modified Beer–

Lambert law equation (Chiarelli et al., 2018; Khan et al., 2018). This however is likely due to a limited 

understanding of the additional output parameters by the system and a lack of standardised operational 

and processing methods available to researchers within the NIRS community. 

The previous EEG study within this thesis identified that the presence of an object did not yield 

improvements in two-class object-oriented motor imagery classification when compared to the results 

of simple hand/toe motor imagery movements. Recently, Batula and colleagues exhibited fNIRS 

generated haemodynamic profiles following right-/left- hand and foot motor imagery responses (Batula 

et al., 2017). The authors highlighted upper limb tasks to generate some bilateral activity, however the 

spatiotemporal patterns were separated enough in order to distinguish left- from right-hand responses. 

In contrast, spatial maps for the foot imagery task highlighted strong ipsilateral activity and generally 

proved difficult to distinguish between the left and right cues. In light of the previous EEG findings 

presented in chapter 2 and taking into consideration the results presented by Batula and colleagues 

(Batula et al., 2017), the objective of this study was to better characterise right- and left-hand motor 

imagery responses by utilising both (amplitude-modulated intensity and phase) outputs of an FD-NIRS 

imaging system.  

Such a paradigm is well established and frequently investigated in the fNIRS-BCI community 

(Koo et al., 2015; Sitaram et al., 2007; Zhang et al., 2017a). Classification of NIRS measurements has 

been previously performed directly on pre-processed light intensities (Luu and Chau, 2009; Naito et al., 

2007) and on signals corresponding to the concentration changes in oxy- (Δ[HbO]) and deoxy- 

(Δ[HbR]) haemoglobin (Coyle et al., 2007; Sitaram et al., 2007). While some researchers have argued 

against classification of the latter signals due to high computational costs (Power et al., 2010), here the 

aim was to demonstrate accuracy scores from both signals by using analytical methods for converting 
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pre-processed measurements into chromophore concentration changes that are less computationally 

expensive. 

Through the analysis of FD measured signals (amplitude modulated intensity and phase), and 

haemodynamic parameters derived from these two components (Δ[HbO] and Δ[HbR]), the aim of this 

study was to address three key hypotheses: 

1. The additional phase shift component, which is less sensitive to signal contamination from the 

superficial tissues (Doulgerakis et al., 2019b, 2019a), would improve contrast between the two 

classes of motor imagery when comparing brain haemodynamic changes.  

2. Classification of measured FD signals and haemodynamic parameters (derived using both log-

intensity and phase-shift components) would deliver higher accuracy scores than when 

classifying data in the absence of any phase information. 

3. Classification of derived haemodynamic parameters would yield greater accuracy scores in 

comparison to the direct classification of multi-channel FD measurements. 

 

3.2. Methods 

 

3.2.1. Experimental setup and paradigm 

 

An FD-NIRS device (IMAGENTTM, ISS Inc., Illinois) was used to obtain NIRS-based data 

from 28 healthy adult volunteers (8 males, 19 females and 1 undisclosed, aged between 18-30 years 

with 25 right-handed and 3 left-handed) of the University of Birmingham community from which 

written and informed consent was obtained. This FD-NIRS study had ethical permission obtained from 

the University of Birmingham STEM ethics board. The FD-NIRS system consists of 32 sources, 

modulated at approximately 140 MHz, and 30 detector fibres. Each source is coupled to laser diodes 

emitting at 690 nm and 830 nm and each detector is a photomultiplier tube sampling data at 39.74 Hz. 

The output of such a FD system are complex numbers that can be decomposed into two parts: 

amplitude-modulated intensity (IAC) and phase (Θ). 
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Two novel imaging pads were designed consisting each of one source pair bundle and four 

individual detector fibres (at distances of 15, 25, 35 and 45 mm away from the source). These were 

positioned on the participants head over the left- and right-motor cortices (left C3 region, right C4 

region) (figure F3.1a). The primary function of the 15 mm detector on either hemisphere was to sample 

physiological activity from the superficial layers of the head, whereas the more distant detectors 

predominantly sampled brain tissue up to a maximum depth of ~20 mm (Cui et al., 1991; Strangman et 

al., 2002). Unlike previous research with continuous wave systems where increased light sampling by 

distant photodetectors has been achieved using a greater source to detector ratio (Strangman et al., 

2013), in the current setting each individual detector was set at a different voltage bias in order to 

increase signal gain. 

Participants were comfortably seated facing an adjustable screen while imaging pads were 

fastened onto their head using loop strapping. Once secure, the study involving left and right physical 

and imagined hand grip movements (figure F3.1b) was performed in a darkened room in order to 

maximise photodetector sensitivity to arriving photons that have penetrated the head. The experimental 

paradigm was designed in Matlab (R2016b, MathWorks, MA, USA) using the Psychophysics Toolbox 

extensions (Psychtoolbox-3) (Brainard, 1997). During motor execution participants were instructed to 

repeatedly grip and un-grip their left- or right-hand at a steady pace, whereas during motor imagery, 

participants were instructed to imagine the feelings of their actions (i.e. muscle contractions and 

relaxations) that drove the gripping and un-gripping of the corresponding hand. The study was divided 

into three ~30-minute blocks following which participants were allowed to rest in a re-lit room. Prior 

to the start of each block the voltage bias of each detector was optimised. Across the three blocks a total 

of 72 trials were conducted (18 of each of the four different action commands – right-hand gripping, 

left-hand gripping, right-hand imagined gripping and left-hand imagined gripping). The action tasks 

were randomised to ensure that no more than two of the same kind were presented in a row. 

 



 88 
 

 

Figure F3.1: (a) Source-detector montage and scalp positioning. For each participant, the intersection between 

the nasion-inion and left-right preauricular points were marked to reference the Cz location. The 25 mm detector 

position on each pad was subsequently placed 20% of the distance from Cz to the left- and right-preauricular 

points, thus at locations C3 and C4 in the International 10-20 system which describes the locations of scalp 

electrodes (Klem et al., 1999). (b) Experimental paradigm. The study involved a computer presentation of an 

instruction and fixation cross on a black background. Participants were to continually perform the given 

instruction while the fixation cross appeared and until the next instruction was presented. (1) An initial fixation 

cross of ~30 s was presented at the start of the experiment to record baseline activity. (2) Twenty-four cycles of 

paired rest (~30 s) and action (~20 s) commands followed. The four action instructions corresponded to right-

hand gripping (“Right Move”), left hand gripping (“Left Move”), right hand imagined gripping (“Right Imagine”) 

and left hand imagined gripping (“Left Imagine”). (3) A final rest command and fixation cross of ~30 s was 

presented to once again record baseline activity. 

 

3.2.2. Data pre-processing 

 

Pre-processing of the raw amplitude-modulated intensity and phase data was performed using 

the software package NeuroDOT (Eggebrecht, 2017) and Matlab. For both the initial and final baseline 

measurements, the first-most 20 seconds and last-most 20 seconds were respectively averaged and used 

to form the “true” baseline for each experimental block for each participant. With this baseline (𝑦S), 

Rytov’s approximation (Kak et al., 2002) was used to compute difference measurements, described as 

a logarithmic ratio for intensity (𝑦TUV) and a difference in phase (𝑦W), for the entire time series 𝑦 
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(equation 3.1). In this equation 𝑙𝑛 represents the natural logarithm, 𝑒 the exponential, 𝑖 the imaginary 

component of the signal and 𝑦TSUV and 𝑦WS the baseline intensity and phase measurements respectively. 

This approximation extends the delta optical density parameter defined in continuous wave systems 

(Huppert et al., 2009) to allow for changes to be measured in phase with respect to a baseline. 

 

𝑙𝑛 [
𝑦
𝑦S
\ = 𝑙𝑛 I

𝑦TUV𝑒
M]^

𝑦TSUV𝑒M]^_
Q = 𝑙𝑛 [

𝑦T
𝑦TS
\ + 𝑖(𝑦` − 𝑦`S) [eq. 3.1] 

 

Using this normalised dataset, the fast Fourier transform was computed to detect the presence 

or absence of physiological peaks (e.g. heart rate, respiration) (Doulgerakis et al., 2019b), both as a data 

quality measure and to identify filtering cut-off frequencies. Another measure of signal quality was to 

display the detector fall-off each time the imaging pads were repositioned, or the detector biases 

adjusted. As the detector distance increases from the source, light levels should fall off in a log-linear 

fashion, characteristic of photon diffusion through biological tissue. Placing a threshold of ≤7.5% 

temporal standard deviation for each mean normalised channel (Eggebrecht et al., 2014) identified 

channels for rejection. This was performed using the function ‘FindGoodMeas.m’ within NeuroDOT 

for each block and participant. This analysis was limited to amplitude-modulated intensity data 

provided by the 830 nm source due to greater attenuation of the 690 nm signal (i.e. reduced signal-to-

noise ratio (SNR)). Nevertheless, to compensate for this, at the start of each experimental block the gain 

of each photodetector was maximised without saturating the signal at 830 nm. Participant inclusion 

criteria in this analysis was limited to those where all 15, 25 and 35 mm channels fell below the standard 

deviation threshold.  

Differential measurements for each participant were then detrended to remove linear trends, 

high- (0.01 Hz) and low- (first at 1 Hz and then again at 0.15 Hz) pass filtered using a fifth-order 

Butterworth filter, concatenated across blocks and averaged across each trial type, resampled to 1 Hz, 

baseline corrected, and z-transformed to eliminate variability across participants. Of each 30-second 

rest period in a single trial (rest-action pair), the first 10 s were used to restore a previous trial’s motor-
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evoked activity to baseline, whereas the latter 20 s were used as the baseline period for normalizing the 

following action cue’s response. Between the two low-pass filters, intensity-based short channel 

regression was performed using the method outlined by Zeff and colleagues (Zeff et al., 2007). 

Extraction of first neighbourhood characteristics was performed to eliminate superficial effects present 

in the data of deeper sampled tissue. The resulting data from the three long-distant channels on each 

hemisphere were used for classification and statistical analysis. 

 

3.2.3. Reconstruction of haemodynamic changes 

 

To observe underlying changes in the concentration of oxy- (Δ[HbO]) and deoxy- (Δ[HbR]) 

haemoglobin from measured amplitude-modulated intensity and phase data required modelling and 

reconstruction of tissue optical properties, specifically changes in the absorption coefficient (Δ𝜇c) at 

two source wavelengths (690 and 830 nm). This was achieved through forward and inverse models 

which is described next. 

 

3.2.3.1. Forward model 

 

Light propagation in tissue was modelled using analytical solutions of the FD diffusion 

equation: 

 

−∇ ∙ 𝐷(𝑟)∇Φ(𝑟, 𝜔) + [𝜇c(𝑟) +
𝑖𝜔
𝑣j(𝑟)

\Φ(𝑟, 𝜔) = 𝑆(𝑟, 𝜔) [eq. 3.2] 

 

where 𝐷(𝑟) is the diffusion coefficient given by 𝐷(𝑟) = 𝜈j/3𝜇′o, 𝜇c and 𝜇′o are the absorption and 

reduced scattering coefficients respectively, and 𝜈j = 𝜈/𝑛< which describes the velocity of light in 

tissue (𝜈) for a refractive index value of 𝑛<. Here 𝑛<was set to the refractive index of water (1.33) due 

to the abundance of this molecule within the brain. Analytical solutions of this equation exist for a 
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number of simple geometries (Arridge et al., 1992; Contini et al., 1997; Li et al., 1996) which describe 

the photon fluence Φ(𝑟,𝜔) at any arbitrary location 𝑟 within a tissue for a source 𝑆(𝑟, 𝜔), which is 

sinusoidally modulated at frequency 𝜔 = 2𝜋𝑓, where 𝑓 is in the megahertz range. Assuming an infinite 

homogeneous medium where the diffusion coefficient is uniform throughout the volume, the first term 

in equation 3.2 reduces to the Helmholtz equation (Boas et al., 1995) with complex wavenumber, 𝑘, 

given by: 

 

𝑘 = s−𝑣𝜇c + 𝑖𝜔
𝐷  [eq. 3.3] 

 

The reduced diffusion equation requires boundary conditions to be solved. At the interface 

between two different media, specifically the air-tissue boundary, flux leaves the external boundary 

with some internal reflection of light back into the tissue. This mismatched refractive index between 

media can be derived from Fresnel’s law as: 

 

𝐴 =
2/(1 − 𝑅S) − 1 + |𝑐𝑜𝑠𝜃6|{

1 − |𝑐𝑜𝑠𝜃6|N
 [eq. 3.4] 

 

where 𝜃6 = 𝑎𝑟𝑐𝑠𝑖𝑛(1/𝑛<) is the angle at which total internal reflection occurs, and 𝑅S =

(𝑛< − 1)N/(𝑛< + 1)N. Extrapolated boundary conditions were employed whereby an isotropic source 

of photons was located at a depth of 𝑧S = −1/𝜇′o, and the fluence rate was zero at an extrapolated 

surface with a distance of 𝑧| = −2𝐴𝐷/𝑣 from the physical boundary. This extrapolated boundary 

condition has been previously discussed in the mirror image method (Aronson, 1995). In a semi-infinite 

homogeneous medium, the complex fluence can then be defined as: 
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Φ(𝑟,𝜔) 	= 	
𝑐

4𝜋𝐷
~
𝑒𝑥𝑝(𝑖𝑘𝑟<)

𝑟<
−
𝑒𝑥𝑝(𝑖𝑘𝑟N)

𝑟N
� [eq. 3.5] 

 

where 𝑐 is a constant equal to 1/√2𝜋, and 𝑟< = [(𝑦 − 𝑧S)N + 𝑥N)]</N and 𝑟N = [(𝑦 + 𝑧S + 2𝑧|)N +

𝑥N)]</N are the euclidean distances from the position of interest in the tissue, at depth 𝑃 = (𝜌, 𝑧), where 

𝜌 = (𝑥, 𝑦) (distance between source and photodetectors on the scalp surface), to the positive (𝑧 = −𝑧S) 

and negative (mirror image, 𝑧 = −𝑧S − 2𝑧|) point impulse sources, respectively. The resulting complex 

fluence can then be mapped to intensity and phase signals by computing the absolute and arctan 

functions, respectively. 

 

3.2.3.2. Inverse model 

 

The inverse solution can be solved iteratively yielding values of Δ𝜇c that in turn can be used to 

compute ΔΘ (changes in phase) and Δ𝐼��  (changes in intensity) equal to that of experimental 

measurements. Using a permutation approach (Arridge, 1999; Carraresi et al., 2001), the forward model 

was explicitly computed twice, once without and once with a 1% perturbation of the whole medium, 

thereby simulating a change in the optical properties (𝜇c and 𝜇′o) of the brain tissue underlying the 

region spanned by the optodes. The finite difference of the derived phase and log-intensity values (as 

given by Rytov’s approximation in equation 3.1) for all long detector channels gave rise to the Jacobian 

matrix, 𝑱 (Pogue et al., 1995). This matrix is also referred to as the sensitivity or weight matrix as it 

represents changes in boundary fluence measurements with respect to small changes in underlying 

tissue optical parameters, Δ𝜇c (Doulgerakis et al., 2019a). Using this normalised matrix and a first-

order Taylor expansion, a Newton-Raphson iterative algorithm (Yorkey et al., 1987) was used to 

calculate Δ𝜇c as follows: 

 

𝑱M(𝐼��, 𝜇c)(Δ𝜇cM ) = Δ𝐼��M  [eq. 3.6] 
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where 𝑖 is the iteration number and Δ𝜇cM  is the updated change in 𝜇c, with respect to a change in 

intensity, Δ𝐼��M . 

Tabulated values for 𝜇c and 𝜇′o are present in the literature for different head tissues (Barker 

et al., 2014). Using approximated initial conditions of 𝜇c��_	�� = 0.0256, 𝜇c��_	�� = 0.0285, 

𝜇′o��_	�� = 1.070 and 𝜇′o��_	�� = 1.440 for brain tissue from the publication by Barker and colleagues, 

a single update was computed for the Jacobian. To calculate Δ𝜇c (equation 3.7), the inverse of the 

Jacobian matrix was multiplied to the observed changes in amplitude-modulated intensity at each 

detector. As the sensitivity matrix is non-square, the inversion of 𝑱 required multiplication by its 

transpose, 𝑱>, where 𝑱> ⋅ 𝑱 is known as the Hessian (𝐻𝑒𝑠𝑠), and the addition of a regularisation parameter 

𝜆𝑰, where 𝑰 corresponds to the identity matrix. 

 

Δ𝜇c = [𝑱>(𝐼�� , 𝜇c)𝑱(𝐼��, 𝜇c) + 𝜆𝑰];<𝑱>(𝐼��, 𝜇c)Δ𝐼��  [eq. 3.7] 

 

Tikhonov regularisation was applied because as the distance between the source and detector 

increases, the Jacobian matrix results from low sensitivity changes in the absorption coefficient. This 

smoothing of the high spatial frequency noise is a minor loss in resolution whilst improving the accuracy 

of the inversion process. In this instance, the regularisation parameter 𝜆 was set at 0.01 following 

previously reported methods (Doulgerakis et al., 2019a; Eggebrecht et al., 2014). Using equation 3.7, 

changes in 𝜇c were computed for both amplitude-modulated intensity and phase measurements (using 

Δ𝐼��  and ΔΘ respectively) at each wavelength. Furthermore, by extension of the Jacobian matrix, a 

single Δ𝜇c value for each wavelength was computed by combining the intensity- and phase-change 

measurements as follows: 

 

Δ𝜇c = [𝐻𝑒𝑠𝑠(𝐼��, Θ, 𝜇c) + 𝜆𝑰];< ~
𝑱(𝐼��, 𝜇c)
𝑱(Θ, 𝜇c)

�
>
�Δ𝐼��ΔΘ � 

[eq. 3.8] 
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Assuming that vascular haemodynamic concentration changes are due only to changes in 

absorption (and therefore scattering effects are constant) (Villringer and Chance, 1997), the computed 

Δ𝜇c for both source wavelengths were used to derive changes in the concentration of oxy- (Δ[HbO]) 

and deoxy- (Δ[HbR]) haemoglobin as follows: 

 

�Δ𝐻𝑏𝑂Δ𝐻𝑏𝑅� = ~
𝜀'����_	�� 𝜀'����_	��
𝜀'����_	�� 𝜀'����_	��

� ~
Δ𝜇c��_	��
Δ𝜇c��_	��

� [eq. 3.9] 

 

where ε is the extinction coefficient that provides a measure of how strongly each of the chromophores 

attenuate light at a given wavelength. These extinction coefficients were obtained from pre-tabulated 

results (Matcher et al., 1995). 

 

3.2.4. Classification 

 

 Group- and subject-level classification was performed between left- and right-hand trials 

independently for both physical and imagined hand movements. For each trial, the 1 Hz time series was 

divided into 8-second sliding segments with an 87.5% overlap (Holper and Wolf, 2011). Having applied 

a six-fold cross-validation procedure, of the 36 z-normalised trials present for each participant across 

the three experimental blocks (i.e. 18 right-hand and 18 left-hand imagery trials), 30 were used for 

training and 6 for testing within each fold.  

 Feature extraction, selection and classification were independently performed on both derived 

haemodynamic and measured FD signals. Furthermore, results acquired from continuous-wave-like 

(CWL) measurements (log-intensity) were compared with those obtained from FD measurements (log-

intensity and phase-shift). Classification of all raw channel measurements would have been suboptimal 

due to the dimensionality of the feature matrix being much larger than the number of testing trials 

(Bellman, 1957). As this problem was similar to high-density EEG data classification, the common 

spatial patterns (CSP) algorithm (see Chapter 2.2.3) was employed to reduce multi-channel 
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measurements to two most-important uncorrelated spatial filters that maximised the variance between 

two classes. The benefits of the CSP algorithm on multi-channel NIRS data classification has been 

previously evaluated by Zhang and colleagues (Zhang et al., 2017a). The authors reported significantly 

higher accuracy scores when classifying left- and right-hand trials in both a motor execution and 

imagery task (average accuracy with 180 features – 54%, average accuracy with 18 features derived 

following CSP – 74%). 

Conversion of multi-channel FD measurements to haemodynamic parameters represents 

Δ[HbO] and Δ[HbR] within the region spanned by the optodes. Independently classifying each 

chromophore simply limits the feature space to two dimensions (a response within each hemisphere), 

however may not additionally separate the data into a form that can aid the classification of two classes. 

As such, classification performance excluding and including CSP-pre-processing was subsequently 

investigated for Δ[HbO] signals as this chromophore generally yields higher accuracy scores than 

Δ[HbR] for motor imagery (Fazli et al., 2012). 

Statistical features were subsequently extracted from the CSP-transformed windowed time 

series. Several statistical features have previously been used in the NIRS literature including signal 

mean (Holper and Wolf, 2011; Hong et al., 2015; Naseer and Hong, 2013), signal peak (Holper and 

Wolf, 2011), signal slope (Naseer and Hong, 2013), signal variance (Holper and Wolf, 2011), signal 

kurtosis (Holper and Wolf, 2011), and signal skewness (Holper and Wolf, 2011). Of these measures, 

signal means have been reported most and therefore this statistical feature was employed for the 

classification of the current dataset. 

Like the previous EEG study (Chapter 2.2.3), a support vector machine (SVM) classifier was 

used to classify the corresponding left- and right-hand features from each task. The calculated area-

under-the-curve (AUC) values for all time windows were used to draw temporal accuracy curves for 

each participant (subject-level analyses) and the group (when averaging across participants - group-

level analyses). 
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3.2.5. Statistical analysis 

 

 Group- and subject-level statistical analyses were performed using the cluster-based 

permutation test method described in Chapter 2.2.4. These tests were performed on the recorded (FD 

measured signals) and recovered (derived haemodynamic parameters) signals, and classification (AUC) 

results. Statistical analysis for the recorded and recovered signals included the identification of time 

windows within the action period where there were significant differences between left- and right-hand 

responses. FD signals at each of the three long range detectors are spatially connected due to the 

sampling of photons from a single light source that has penetrated a small region of brain tissue 

(Strangman et al., 2013). To account for this spatial connectivity in the test statistic and to gather spatio-

temporal clusters, the Matlab function ‘bwlabel.m’ was used with a pixel connectivity value of 4 to re-

assign edge connected pixels the same test result of 1. Temporal clusters identified following a two-

tailed Student’s t-test were then tested against a distribution derived from 1000 individual permutation 

runs for significance at an alpha value of 0.0125 (Bonferroni corrected due to the individual tests 

performed for each hemisphere). In contrast, when statistically testing haemodynamic responses (single 

channel information over the left- and right-hemispheres), temporal clusters were identified following 

a one-tailed Student’s t-test with the latter alpha value set to 0.025. This change in tail was performed 

due to previous findings in the literature demonstrating notable increases in Δ[HbO] and decreases in 

Δ[HbR] during both physical and imagined movements of the hand (Batula et al., 2017; Blokland et al., 

2014; Fazli et al., 2012). 

 Statistical analyses were additionally performed on the AUC scores obtained following left- 

and right-hand classification. At the group-level, group average AUC scores were shuffled with a 

chance AUC score of 0.5, whereas at the subject-level individual class labels were shuffled and a 

distribution of classification scores were drawn. These statistical tests were applied on the AUC scores 

obtained following SVM classification of FD-derived and chromophore-derived statistical features. For 

both group- and subject-level significance tests the alpha value was set to 0.05. Furthermore, correlation 

analyses were performed between the AUC scores from movement and imagery cues in order to identify 

an approach (e.g. measured or recovered signals, including CSP or excluding CSP) most consistent for 
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the physical movement and imagery tasks. A one-tailed (alpha value of 0.05) Spearman's rank 

correlation analysis was conducted using the Matlab function ‘corr.m’. 

 

3.3. Results 

 

3.3.1. Data quality analysis 

 

Three methods were employed to determine the quality of the data (section 3.2.2). The first 

method identified the two outputs of an FD-NIRS system (amplitude-modulated intensity and phase) to 

behave orthogonally at increasing source-detector separations (figure F3.2a). While the average decay 

in log-intensity was present for separations up to 45 mm, the average increase in phase shift was limited 

to only a distance of 35 mm. This lack of continuity for the fourth neighbourhood was perhaps likely 

due to poor phase SNR; detector sensitivity likely approached the noise floor for several participants 

thereby driving the greater deviation in phase shift from the mean. For the second method the metric 

previously demonstrated by Eggebrecht and colleagues was employed (Eggebrecht et al., 2014). It was 

found that, even though the maximum standard deviation change from baseline was 80% across all the 

measurements (figure F3.2b), a total of 7 participants fulfilled the criteria of having three (shortest 

channel) measurements on each hemisphere below the 7.5% standard deviation threshold (figure F3.2c). 
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Figure F3.2: Data quality screening based on the methods described in (Eggebrecht et al., 2014). (a) Light level 

fall-offs and shifts in phase for increasing source-detector separations. For each FD component, participant data 

from each experimental block were averaged across time and z-scored across the four distance measures. (b) 

Percentage standard deviation change from the ‘true’ baseline. The average IAC, 830 nm response across the three 

blocks was computed for each participant. The histogram was then drawn using the standard deviation percentages 

for all 8 channels (four channels across two hemispheres) and all 28 participants. Additionally, highlighted is the 

threshold used to determine measurements with relatively good SNR. (c) Standard deviation changes in the signals 

of each participant. Seven participants were identified with standard deviation percentages that were below the 

threshold for the first three source-detector distances. 

 

The third method involved obtaining the Fourier transform of the time series in order to detect 

the presence or absence of characteristic physiological peaks (figure F3.3). The intensity derived power 

spectrum for an individual (figure F3.3 left) highlights superficial peaks at ~1.25 Hz, corresponding to 

a heart rate of 75 beats per minute, and ~0.11 Hz for respiratory effects and slow blood pressure 

oscillations (Mayer waves). This is present across all four source-detector distances. In addition to these 

physiological peaks is another peak of high power at 0.02 Hz representing the frequency of the stimulus 

every 50 seconds. In contrast to the intensity data, phase measurements (figure F3.3 right) appear to be 
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less sensitive to the aforementioned superficial noises and uniquely sample the stimulus of interest. 

Like the intensity data however, the frequency response of the stimulus peak is of a much lower energy 

in the shortest channel, however increases in power and rises above the noise at more distant source-

detector separations. 

 

 

Figure F3.3: Intensity (left)- and phase (right)-derived Fourier spectrums for a single participant using the data 

from a single experimental block at all source-detector channels over the left hemisphere. For each parameter, the 

data were normalised across all four source-detector channels followed by the y-axis of each plot being scaled to 

the maximum power value of all channels. Highlighted are the frequency regions at which the stimulus peak and 

characteristic physiological peaks should be present. 

 

3.3.2. Analysis of frequency-domain time series 

 

Pre-processed time series for each of the four tasks are displayed in figure F3.4. For the majority 

of source-detector separations, the plots on the left (figure F3.4a) and right (figure F3.4b) hemispheres 
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highlight contralateral responses to be greater than ipsilateral responses during both physical and 

imagined tasks. In comparison to physical hand movement actions, responses to imagined hand 

movements were of a lower magnitude which was expected given the increased complexity of the task 

in the absence of any prior training or feedback. Interestingly, contralateral imagery responses for 

certain channels, for example the ΔIAC, 830 nm 45 mm channel and the ΔΘ830 nm 35 mm channel, peaked 

above the response created by the opposite hand when performing a physical movement. This 

demonstrates that on average imagery was performed well enough to generate localised contralateral 

activity patterns above that of any cross-talk. Generally, phase-shift measurements were weaker than 

log-intensity measurements, for example when comparing ΔIAC, 830 nm and ΔΘ830 nm 45 mm channel time 

series, thus reflecting the sensitivity of the parameter to noise at long range source-detector separations. 
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Figure F3.4: Blocked averaged and baseline corrected FD measured responses for each of the four task 

conditions. Log-intensity and phase shift profiles are shown for both left- (a) and right- (b) hemisphere channels. 

The data from the 15 mm channel was used to regress superficial noise from the three long-range channels and 

hence is not depicted. 
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Figure F3.5: Statistical comparisons between the left- and right-hand responses shown in figure F3.4. Using an 

alpha value of 0.0125, significance was determined between left (L)- and right (R)-hand physical (move) (a) and 

imagined (imag) (b) movements independently.  

 

 Considering both left- and right-hemisphere activity and excluding the 45 mm channel data, 

statistical group comparisons between the two physical hand movement signals (figure F3.5a) highlight 
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right-hand responses as being significantly different (p<0.001) from left-hand responses after 

presentation of the instruction. Interestingly, significant differences were found ~5 seconds after the 

action cue was presented demonstrating the potential delay in contralateral haemodynamic activity. For 

the physical movement task, significant clusters were identified for all log-intensity measurements 

however for phase-shift measurements this was primarily found on the left-hemisphere. These greater 

effects observed on the left-hemisphere are consistent with the cohort being predominantly right 

handed. In contrast, significantly different (p<0.001) imagined hand responses (figure F3.5b) were 

found on the left-hemisphere for all ΔIAC, 830 nm channel measurements only. Interestingly, although a 

large overlap was present between the 35 mm channel responses, a significant cluster was identified 

due to its spatially connected neighbours having significantly different left- and right-hand activity. 

FD-derived haemodynamic concentration changes are presented in figure F3.6. For both CWL 

(figure F3.6a) and FD (figure F3.6b) converted data, contralateral effects in Δ[HbO] and Δ[HbR] are 

present for both physical and imagined hand movements. The current tasks yielded an increase in 

Δ[HbO] and a decrease in Δ[HbR], with the latter being of a slightly lower magnitude. Interestingly, in 

the first 3 seconds post-stimulus, a characteristic undershoot (overshoot) is present for Δ[HbO] 

(Δ[HbR]), which increases in contrast for FD converted measurements. This profile is most prominent 

for left movement Δ[HbR] responses on the right hemisphere. The addition of the phase component 

also appears to reduce, to a small extent, the magnitude of the response otherwise generated by CWL 

measurements yet minimises the standard error about the mean (c.f. CWL (figure F3.6a) and FD (figure 

F3.6b) converted responses for the physical movement task) thereby further improving contrast between 

the recorded left- and right-hand signals. Statistical analysis of these signals identified all contralateral 

haemodynamic activity as significantly different (p≤0.01) from ipsilateral activity during physical 

movement tasks (figures F3.7a and 3.7b). For the imagery task however, contralateral Δ[HbO] 

responses on the left hemisphere were only found to be significantly different (p≤0.01) between the 

left- and right-hand responses (figures F3.7c and F3.7d). 
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Figure F3.6: Block averaged and baseline corrected Δ[HbO] and Δ[HbR] derived responses for each of the four 

task conditions. Δ[HbO] and Δ[HbR] profiles explain brain haemodynamics in the region directly under the three 

long-distant channels. The transformation from CWL/FD measurements to haemodynamic parameters was 

achieved by using a Jacobian matrix composed of CWL (a) or FD (b) computed signals. 
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Figure F3.7: Statistical comparisons between the left- and right-hand responses shown in figure F3.6. Using an 

alpha value of 0.025, significance was determined between left- and right-hand physical (a, b) and imagined (c, 

d) movements independently. 

 

Results from the subject-level statistical analysis are presented in table T3.1. Approximately 

seven times as many participants displayed at least one significant contralateral spatio-temporal cluster 

for physical movement responses than imagined responses at 830 nm. In contrast, approximately four 

times as many participants displayed at least one significant contralateral temporal cluster for CWL-

derived Δ[HbO] physical movement signals. This ratio was however halved when considering phase 

shift- and FD-derived Δ[HbO]. Interestingly, for the imagery condition no participants were identified 

with a significant cluster for both 690 nm and Δ[HbR] signals. Although conversion to haemodynamic 

activity reduced the percentage of participants displaying a significant cluster for physical hand 

responses, the addition of the phase component enabled identification of more participants with a 

significant cluster for Δ[HbO] imagery signals. 
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Table T3.1: Percentage of participants displaying at least one statistically significant temporal (p<0.025 for 

chromophore signals) or spatio-temporal (p<0.0125 for FD signals) cluster of points for each of the two command 

types. Significant differences were determined between the left- and right-hand responses for both physical and 

imagined movements independently. 

Percentage of participants with a significant cluster 
FD Output Move (%) Imagine (%) 

 

Chromophore Move (%) Imagine (%) 
830 nm (ΔIAC) 50.00 7.14 Δ[HbO] (ΔIAC) 39.29 10.71 
830 nm (ΔΘ) 50.00 7.14 Δ[HbO] (ΔΘ) 14.29 7.14 

- - - Δ[HbO] (ΔIACΔΘ) 32.14 14.29 
690 nm (ΔIAC) 17.86 0 Δ[HbR] (ΔIAC) 17.86 0.00 
690 nm (ΔΘ) 17.86 0 Δ[HbR] (ΔΘ) 3.57 0.00 

- - - Δ[HbR] (ΔIACΔΘ) 17.86 0.00 
 

3.3.3.  Total group classification 

 

 In order to extend this two-class problem as a BCI application, statistical features were 

classified using an SVM to yield accuracy scores summarised by the AUC. Group-level classification 

results following CSP-pre-processing of FD and derived-haemodynamic measurements are presented 

in figure F3.8. The results from the physical movement tasks (figures F3.8a and F3.8b upper left and 

right) highlight that ~4 seconds after the action cue, classification scores begin to rise above chance to 

a maximum, plateauing ~10-12 seconds after the action is begun. The peak classification scores 

achieved were 0.70 for FD830 nm, 0.62 for FD690 nm, 0.68 for FDΔ[HbO], and 0.64 for FDΔ[HbR], (p<0.05). 

These FD-derived scores were greater than (0.66 for CWL830 nm, 0.61 for CWL690 nm and 0.66 for 

CWLΔ[HbO]) or equal to (0.64 for CWLΔ[HbR]) the scores obtained from CWL measurements. This 

improvement in the positive prediction rate for FD measurements highlights the potential of additional 

phase signals in computing more separable classification features. In contrast however, classification 

results of the imagined hand responses (figures F3.8a and F3.8b lower left and right) remained close to 

chance reflecting an increased similarity between the left- and right-hand statistical features derived 

from these signals. 
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Figure F3.8: Group average classification scores for each sliding time window. SVM classification was 

performed between left- and right-hand responses for both physical movement and imagery tasks independently. 

Specifically, differences were studied in the classification results of CSP-pre-processed FD signals (830 nm and 

690 nm) (a) and CSP-pre-processed haemodynamic signals (Δ[HbO] and Δ[HbR]) (b). For the former, either a 

two (features from CWL data) or four (features from FD data) column feature matrix was used for classification, 

whereas for the latter only a two-column feature matrix was classified which incorporated information from either 

CWL or FD signals. The first score at time -4 s represents the average of a time window spanning -8-0 seconds.  

The light shaded time course represents the standard error in the AUC scores. Clusters of statistically significant 

time (window) points (p<0.05) are highlighted as blocked yellow regions. AUC scores in the action period of the 

task (i.e. from a mean time of 4 seconds in the above plots) were only compared to those of chance (an AUC score 

of 0.5) in the statistical test. 

 

Subject-level statistical analysis of calculated AUC scores were additionally performed in order 

to determine the suitability of this study’s methodology for future extension within the clinic. Table 3.2 

indicates that classification of 830 nm signals yielded the highest percentage of individuals with at least 

one significant AUC score. In comparison to the percentage of individuals obtained from Δ[HbO] signal 

classification, 830 nm results were greater for both physical movement and imagery tasks. The contrary 



 108 
 

was however true for Δ[HbR] and 690 nm signal classification (except for physical movement scores 

obtained from FD-derived Δ[HbR] responses which found one participant fewer with a significant 

cluster). As both 830 nm and Δ[HbO] signals were better for subject-level classification and statistical 

analysis, subsequently compared were the peak AUC scores obtained by each participant for both tasks 

(table T3.3). The average peak AUC scores highlight that Δ[HbO] and 830 nm signals from FD 

measurements were marginally better classified than Δ[HbO] and 830 nm signals from CWL data. 

Furthermore, they reiterate that optical signals in comparison to haemodynamic measurements were in 

general better for classification of the current dataset. This is likely due to the classifier having access 

to both log-intensity and phase-shift measurements as independent features, whereas when classifying 

chromophore responses, the classifier is limited to a single feature only. However, from the correlation 

analyses in table T3.3 it appears that moderate (i.e. 0.5 – 0.7 (Mukaka, 2012)) monotonic positive 

correlations were only present for 830 nm signals from CWL data, whereas the remaining approaches 

gave rise to low (i.e. 0.3 – 0.5 (Mukaka, 2012)) monotonic positive correlations between move and 

imagine tasks. Furthermore, improved positive monotonic correlation effects are present between AUC 

scores from both Δ[HbO] and 830 nm signals from CWL data in comparison to Δ[HbO] and 830 nm 

signals from FD data, suggesting a negative impact on classification performance when introducing 

potential noisy phase measurements (whether that be as an additional feature or when reconstructing 

haemodynamic responses). 

 

Table T3.2: Percentage of participants displaying at least one statistically significant (p<0.05) AUC score (or a 

cluster of scores at multiple time points) for each task and measured (FD)/derived (chromophore) signal. Unlike 

the group analysis in figure F3.8, statistical analysis was performed using the subject-level approach described in 

section 3.2.5. 

Percentage of participants with a significant AUC score 
FD Output Move (%) Imagine (%) 

 

Chromophore Move (%) Imagine (%) 
830 nm (ΔIAC) 53.57 21.43 Δ[HbO] (ΔIAC) 42.86 17.86 

830 nm (ΔIACΔΘ) 60.71 25.00 Δ[HbO] (ΔIACΔΘ) 46.43 17.86 
690 nm (ΔIAC) 42.86 7.14 Δ[HbR] (ΔIAC) 46.43 10.71 

690 nm (ΔIACΔΘ) 39.29 7.14 Δ[HbR] (ΔIACΔΘ) 35.71 14.29 
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Table T3.3: Peak classification AUC scores for each participant. Individual and average results are presented for 

physical movement and imagery tasks having classified left- and right-hand features derived from either 830 nm 

or Δ[HbO] signals. Additionally, presented are pairwise correlation coefficients (rs) obtained between movement 

and imagery tasks for each classification approach and the corresponding p-values (p). 

Peak AUC scores 

Participant 
830 nm (ΔIAC) 830 nm (ΔIACΔΘ) Δ[HbO] (ΔIAC) Δ[HbO] (ΔIACΔΘ) 

Move Imagine Move Imagine Move Imagine Move Imagine 
1 0.74* 0.65 0.71* 0.74 0.78* 0.40 0.75* 0.63 
2 0.67 0.63 0.61 0.59 0.67 0.73 0.81* 0.74* 
3 0.94* 0.80* 0.95* 0.77* 0.88* 0.77* 0.93 0.73* 
4 0.67 0.58 0.69 0.62 0.76* 0.74* 0.55 0.73 
5 0.66 0.62 0.70* 0.47 0.67 0.51 0.73 0.49 
6 0.79* 0.65 0.74 0.55 0.62 0.41 0.51 0.45 
7 0.61 0.48 0.59 0.40 0.72* 0.61 0.75* 0.52 
8 0.76* 0.49 0.73* 0.61 0.59 0.59 0.53 0.53 
9 0.81* 0.77* 0.84* 0.79* 0.70* 0.71 0.72 0.63 
10 0.87* 0.65 0.85* 0.58 0.93* 0.63 0.81* 0.65 
11 0.52 0.59 0.53 0.68 0.58 0.63 0.58 0.63 
12 0.73 0.61 0.71 0.61 0.74 0.70 0.56 0.69 
13 0.65 0.58 0.67 0.64 0.74 0.57 0.71 0.60 
14 0.68 0.69 0.73 0.62 0.52 0.61 0.58 0.58 
15 0.58 0.54 0.65 0.70 0.45 0.61 0.60 0.69 
16 0.81* 0.70 0.87* 0.65 0.89 0.76* 0.83* 0.79* 
17 0.80* 0.52 0.83* 0.44 0.95* 0.53 0.94* 0.57 
18 0.75* 0.79* 0.86* 0.83* 0.75 0.60 0.89* 0.72 
19 0.65 0.72 0.77* 0.79* 0.51 0.59 0.71* 0.63 
20 0.45 0.55 0.59 0.63 0.48 0.46 0.65 0.62 
21 1.00* 0.77* 1.00* 0.77* 1.00* 0.64 1.00* 0.73 
22 0.81* 0.74 0.87* 0.78 0.75* 0.65 0.83* 0.61 
23 0.84* 0.66 0.84* 0.72 0.61 0.30 0.77* 0.35 
24 0.87* 0.67 0.94* 0.67 0.90* 0.73 0.92* 0.68 
25 0.62 0.61 0.65 0.64 0.67 0.55 0.69 0.62 
26 0.66 0.59 0.77* 0.67 0.65 0.71 0.69 0.65 
27 0.81* 0.80* 0.80* 0.81* 0.79* 0.82* 0.78* 0.84* 
28 0.95* 0.79* 0.93* 0.77* 0.89* 0.88* 0.87 0.81* 

Average 0.74 0.65 0.77 0.66 0.72 0.62 0.74 0.64 
         

rs 0.67 0.49 0.45 0.37 
p <0.001 0.004 0.008 0.025 

* indicates a significant AUC score (p<0.05) established from an empirical null distribution of classification 

accuracies (AUC scores) derived from random observations (i.e. shuffled class labels). 
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So far, it has been assumed that the use of CSP has aided classification of haemodynamic 

parameters, whereby like EEG, multivariate data are separated into spatial subcomponents that have 

maximum differences in their variances. In order to determine whether CSP-pre-processing was 

beneficial or detrimental to the classification of Δ[HbO] signals, classification of Δ[HbO] data was 

repeated in the absence of any CSP-pre-processing. The results in table T3.4 present there to be no 

significant differences (p>0.05) between the percentage of participants displaying a significant score 

having excluded or included CSP-pre-processing. Furthermore, the average peak AUC scores in table 

T3.5 are identical for both CSP excluded and included classification. The exactness of these values 

additionally mirrored the group level classification curves (see appendix figure AF3.1). Nevertheless, 

in table T3.4 there appears to be a minor loss in motor imagery classification performance when 

applying the additional filtering. Specifically, when excluding CSP, six participants were found to have 

at least one significant AUC score, however this decreased to five participants when including CSP. 

Examining the peak AUC scores for this individual (participant 18 in table T3.5) revealed them to be 

identical (both excluding and including CSP scores are 0.72). It is possible that additional 

randomisations during the statistical test may either find this value significant or the value generated by 

excluding CSP non-significant. This pattern is also present for peak scores obtained following 

classification of physical hand movements (participants 1 and 28), highlighting limitations of the 

statistical method to arbitrary thresholds. This similarity between CSP-present and -absent approaches 

for both physical movement and imagery AUC scores is likewise reflected by the closeness of the 

correlation coefficients in table T3.4 which both represent low (i.e. 0.3 – 0.5 (Mukaka, 2012)) 

monotonic positive trends. Nevertheless, it is clear from this correlation analysis and peak AUC scores 

that the addition of CSP-pre-processing to such a dataset does not negatively impact its classification 

performance for both movement and imagery tasks. 
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Table T3.4: Percentage of participants displaying at least one statistically significant (p<0.05) AUC score (or a 

cluster of scores at multiple time points) for each task having excluded or included CSP-pre-processing as part of 

the feature extraction process. Results are obtained from Δ[HbO] classification features derived using FD 

measurements. In order to determine whether a significant difference was present between the excluding/including 

CSP percentages for each task, a McNemar statistical test (Cardillo, 2007) was performed using an alpha value of 

0.05. Additionally, presented are pairwise correlation coefficients (rs) obtained between the AUC scores from 

movement and imagery tasks for each classification approach and the corresponding p-values (p). 

Percentage of participants with a significant AUC score  Correlation of AUC scores 
Method Move (%) Imagine (%)  rs p 

Excluding CSP 46.43 21.43  0.35 0.035 
Including CSP 46.43 17.86  0.37 0.025 

      
p >0.050 >0.050   
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Table T3.5: Peak classification AUC scores for each participant having excluded or included CSP-pre-processing 

as part of the feature extraction process. Individual and average results are presented for physical movement and 

imagery tasks having classified left- and right-hand statistical features from Δ[HbO] signals derived using FD 

measurements. 

Peak AUC scores 

Participant 
Move Imagine 

Excluding CSP Including CSP Excluding CSP Including CSP 
1 0.75 0.75* 0.64 0.63 
2 0.81* 0.81* 0.74* 0.74* 
3 0.93 0.93 0.73* 0.73* 
4 0.56 0.55 0.73 0.73 
5 0.73 0.73 0.49 0.49 
6 0.49 0.51 0.45 0.45 
7 0.75* 0.75* 0.52 0.52 
8 0.53 0.53 0.54 0.53 
9 0.72 0.72 0.62 0.63 

10 0.80* 0.81* 0.65 0.65 
11 0.59 0.58 0.63 0.63 
12 0.55 0.56 0.69 0.69 
13 0.71 0.71 0.60 0.60 
14 0.58 0.58 0.57 0.58 
15 0.59 0.60 0.69 0.69 
16 0.83* 0.83* 0.78* 0.79* 
17 0.94* 0.94* 0.57 0.57 
18 0.89* 0.89* 0.72* 0.72 
19 0.72* 0.71* 0.63 0.63 
20 0.65 0.65 0.62 0.62 
21 1.00* 1.00* 0.73 0.73 
22 0.83* 0.83* 0.57 0.61 
23 0.77* 0.77* 0.36 0.35 
24 0.92* 0.92* 0.68 0.68 
25 0.69 0.69 0.62 0.62 
26 0.69 0.69 0.65 0.65 
27 0.78* 0.78* 0.84* 0.84* 
28 0.86* 0.87 0.81* 0.81* 

Average 0.74 0.74 0.64 0.64 
* indicates a significant AUC score (p<0.05) established from an empirical null distribution of classification 

accuracies (AUC scores) derived from random observations (i.e. shuffled class labels). 
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3.3.4. Reduced group classification 

 

 The large participant number in this study tightened the standard error about the mean AUC in 

the group classification plots (figure F3.8), yet the maximum scores achieved were only 70% (FD830 nm, 

p<0.05) for physical movement and 56% for imagery (FD830 nm and FDΔ[HbO]). From the peak AUC 

scores for each individual however (table T3.3), it is evident that a select few participants with good 

data separation (i.e. highly distinct left- and right-hand features) positively drove the average 

classification score for the entire group. The data quality screening results in section 3.3.1 (figure F3.2) 

identified seven participants as having relatively noise free intensity measurements at source-detector 

separations of 25 and 35 mm. Group classification scores for these seven individuals with respect to the 

AUC curves generated by the remaining 21 participants are displayed in figure F3.9. These highlight 

the smaller cohort as generating better group classification scores than the larger cohort for both FD-

optical and FD-haemodynamic data. Maximum group classification scores for the larger cohort were 

69% (FD830 nm, p<0.05) for physical movement and 55% for imagery (FD830 nm), whereas for the smaller 

cohort, maximum results were 79% (FDΔ[HbO], p<0.05) for physical movement and 64% (FDΔ[HbO], 

p<0.05) for imagery with the peak AUC scores of FDΔ[HbO]/Δ[HbR] being greater than those of FD830/690 

nm. Overall these plots highlight that this small cohort with relatively good SNR were able to yield 

responses during left- and right-hand imagery commands that could be separated by a classifier to a 

significantly good degree of accuracy. 
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Figure F3.9: Average classification scores for a group of 21 participants with relatively low SNR and a group of 

7 participants with a relatively high SNR. Classification was performed between left- and right-hand responses 

for both physical movement and imagery tasks independently. Specifically, differences were studied in the 

classification results of CSP-pre-processed 830 nm signals (a) and CSP-pre-processed Δ[HbO] signals (b) using 

FD measurements. Further details of these plots have previously been described in figure F3.8. 

 

When considering the peak AUC scores achieved by each of these seven participants (table 

T3.6), the highest average score of 82% was obtained for classification of physical movement Δ[HbO] 

signals, whereas that of 72% was achieved for the classification of imagery Δ[HbO] and FD830 nm 

signals. Interestingly, a difference between Δ[HbO] and FD830 nm average peak scores was only 

identified for the physical movement condition. The average score of Δ[HbO] was 4% greater than that 

of FD830 nm, whereas no differences were observed between the average scores of Δ[HbR] and FD690 nm 

for both types of command following. In comparison to the average peak scores obtained by the N=21 

group (consisting of participants with a relatively low SNR), average scores were greater for the smaller 

cohort for both physical movement and imagery conditions. Statistical comparisons of these averages 

highlighted all but the FD830 nm signals to be significantly different (p<0.05). This is reflective within 
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figure F3.9 whereby overlaps are present between the N=7 and N=21 groups when classifying FD830 nm 

signals. For the physical movement condition, the overlap is quite extensive resulting in a large non-

significant difference (p>0.20) between the average peak scores for the two cohorts. In contrast, the 

mild overlap for the imagery condition results in a non-significant p-value between the two average 

peak scores that is close to the 0.05 threshold. 

 

Table T3.6: Peak classification AUC scores for each of the 7 participants with relatively high SNR. Individual 

and average results are presented for physical movement and imagery tasks having classified left- and right-hand 

statistical features from 830 nm and Δ[HbO] signals using FD measurements. Also presented are the average peak 

scores for the 21 participants with relatively low SNR. In order to statistically compare these averages, a subset 

of 7 participants were randomly selected from the N=21 group (with replacement) and their average peak AUC 

scores were calculated for each task and 830 nm/Δ[HbO] signal. This was repeated 1000 times to generate a 

distribution that could be used to test whether the average peak AUC scores from the 7 best participants were 

significantly different indeed (p<0.05). 

Peak AUC scores 

Participant 
Move Imagine 

830 nm Δ[HbO] 690 nm Δ[HbR] 830 nm Δ[HbO] 690 nm Δ[HbR] 
1 0.71* 0.75* 0.51 0.64 0.74 0.63 0.60 0.54 
2 0.61 0.81* 0.55 0.66 0.59 0.74* 0.64 0.68 
11 0.53 0.58 0.63 0.61 0.68 0.63 0.66 0.63 
16 0.87* 0.83* 0.94* 0.93* 0.65 0.79* 0.59 0.69 
18 0.86* 0.89* 0.89* 0.89* 0.83* 0.72 0.81* 0.65 
21 1.00* 1.00* 1.00* 1.00* 0.77* 0.73 0.66 0.70* 
28 0.93* 0.87 0.85* 0.69 0.77* 0.81* 0.68 0.75* 

Average 
(N=7) 

0.79 0.82 0.77 0.77 0.72 0.72 0.66 0.66 

 
Average 
(N=21) 

0.76 0.71 0.68 0.68 0.64 0.61 0.59 0.60 

 
p 0.241 0.012 0.001 0.007 0.076 0.007 0.007 0.006 

* indicates a significant AUC score (p<0.05) established from an empirical null distribution of classification 

accuracies (AUC scores) derived from random observations (i.e. shuffled class labels). 
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3.4. Discussion 

 

 Using a FD-NIRS imaging system, physiologically expected contralateral effects were 

observed during physical gripping of the left- and right-hands. Furthermore, similar contralateral effects 

were identified during imagined hand movements, however these were of a lower magnitude. These 

patterns were identified in both measured FD (log-intensity and phase shift) and derived haemodynamic 

(Δ[HbO] and Δ[HbR]) signals. Haemodynamic responses across each hemisphere were derived from 

multi-channel FD scalp measurements using methods of functional diffuse optical topography. With 

respect to the classification of left- and right-hand signals, this study reported improved scores for 

feature matrices incorporating FD (over CWL) information. This was further enhanced in participants 

where these measurements had a relatively high SNR. The improved classification results obtained from 

different imagery responses indicate the potential of this technology for BCI application within the 

clinic in patients that show minimal or inconsistent physical behaviours. 

 

3.4.1. Frequency-domain signal analysis 

 

 The benefits of FD data over continuous-wave signals have been recently evaluated by 

Doulgerakis and colleagues (Doulgerakis et al., 2019b, 2019a). In their first publication, the authors 

studied Fourier spectrums derived from log-intensity and phase-shift measurements at source-detector 

distances ranging between 13-48 mm (Doulgerakis et al., 2019b). They observed a peak corresponding 

to the frequency of the stimulus at all channels for phase but only for distances of 30 mm and above for 

intensity. Peaks for breathing and cardiac pulses were evident at all separations for intensity 

measurements, however these were much smaller and diminished at the second and third 

neighbourhoods for phase. This demonstrated a lack of sensitivity to signal contamination from the 

superficial tissues by the latter component. These results were likewise observed in the current study, 

whereby the Fourier spectrum of intensity data depicted peaks corresponding to cardiac, breathing and 

blood pressure that were present at all separations demonstrating the “hypersensitivity” of intensity 

measurements to superficial noise. However, unlike the intensity results presented by Doulgerakis and 
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colleagues, the current study observed a stimulus peak at all channels for a few participants. For the 

phase data, the present study similarly found this parameter to be less sensitive to physiological noises 

at all source-detector separations, however these measurements were generally noisier at longer 

channels due to strong signal attenuations. Furthermore, as the sampling distance increased the peak 

corresponding to the task frequency rapidly increased in power reaching a maximum at the third 

neighbourhood. The lack of a further increase in power at the fourth neighbourhood (which was also 

observed by Doulgerakis and colleagues for neighbourhoods greater than 48 mm (Doulgerakis et al., 

2019b)) is expected given the poor SNR identified from the shifts in phase in figure F3.2a and could 

perhaps be improved by increasing the systems modulation frequency beyond the 140 MHz used in the 

current study. 

In a second publication by Doulgerakis and colleagues, the authors identified the effective 

image resolution to improve by 21% with FD measurements as opposed to with CWL measurements 

(Doulgerakis et al., 2019a). This was a result of the phase-derived Jacobian having increased 

homogeneous sensitivity for deeper tissue regions and reduced sensitivity to physiological noises in the 

superficial layers. These authors’ in-vivo studies on healthy participants performing a visual stimulus 

task gave rise to FD reconstructions showing activations overlapping the cortex of the brain and CWL 

reconstructions highlighting activations primarily in the superficial tissues. With respect to these 

findings, in the current study haemodynamic reconstructions from FD data (in comparison to 

reconstructions from CWL data) improved contrast between the two opposing hand responses for both 

physical and imagined movements. For the contralateral hand, increased contrast was present at the 

initial dip following presentation of the action cue whereas for the ipsilateral hand there was a more 

rapid recovery to baseline following an initial brief change in the haemodynamic response. This initial 

response for the ipsilateral hand was most likely due to the bilateral electrical response of hand 

movements (Yi et al., 2013). These left- and right-hand profiles at each hemisphere were found to be 

significantly different for a larger percentage of individuals for the 830 nm source. This percentage 

however decreased following Δ[HbO] signal reconstruction and is likely due to the incorporation of 

noisy channel (fourth neighbourhood) measurements into the model. 
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 The observed group haemodynamic changes seen in the current study correspond well with the 

observations made by Batula and colleagues during motor execution and imagery of left- and right-

hand taps (Batula et al., 2017). Using a continuous wave fNIRS device, they demonstrated stronger 

contralateral responses in Δ[HbO] to right-hand movements by thirteen right-handed participants. The 

increased ratio of right-handed participants in the current study may have driven a similar pattern to be 

observed. Specifically, contralateral responses to right-hand physical movements plateaued when 

reaching a maximum 8 seconds after action cue presentation, whereas contralateral responses to left-

hand physical movements diminished after the first 15 seconds. Such early decreases in contralateral 

activity were however accompanied by an increase in the ipsilateral response. The present study’s 

haemodynamic profiles therefore portray that constant physical activity with the dominant hand 

sustained increases in oxygenation to contralateral brain regions, whereas for the non-dominant hand 

activity was more bilateral therefore limiting the extent to which increased oxygenation was sustained 

in one region. Lateralisation differences such as these have also been observed during complex motor 

tasks (Lee et al., 2019a) and this is likely associated with the contralateral hemisphere for the dominant 

hand playing an important role in muscle contraction and relaxation (Yokoyama et al., 2019). During 

motor imagery, Batula and colleagues demonstrated a delayed and weakened contralateral response to 

hand taps. Whilst such a weakened haemodynamic response profile was likewise observed for the 

current imagery task, these responses however reached their maximums in the same interval as the 

responses for the physical movement task. This emphasises previous discussions in that FD systems 

enable better noise-free sampling of cortical tissues thereby allowing more accurate detection of 

imagined responses. 

 

3.4.2. Classification  

 

 Due to the small number of trials performed for each task, a single statistical feature was derived 

from the data to prevent classifier overfitting. Calculating the mean over short (8 second) Δ[HbO] data 

segments gave rise to average peak accuracies of 74 and 64% for physical movement and imagery tasks 

respectively. However, a post-hoc analysis of the results revealed both the mean and peak statistical 
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features to yield equal peak accuracies for time window spanning 5-9 seconds (see appendix AT3.1). 

Several research groups have however demonstrated that using a combination of statistical features can 

further improve classification performance. Naseer and colleagues classified mental imagery stimuli 

using paired combinations of six statistical features (mean, variance, peak, slope, skewness and 

kurtosis) and found the mean and peak of the Δ[HbO] signal to yield an average SVM accuracy of 98% 

across a group of 7 participants (Naseer et al., 2016b). Qureshi and colleagues alternatively 

demonstrated classification performance using feature combinations extracted from estimated 

coefficients (beta values) of the general linear model (Qureshi et al., 2017). Classification of rest versus 

right-hand imagery Δ[HbO] signals from a group of 10 healthy participants resulted in accuracies above 

80% for combinations that included the mean and skewness (82%), peak and skewness (81%), and 

mean and peak (81%). In comparison to two-dimensional combinations of features, Naseer and 

colleagues highlighted three-dimensional features to further improve accuracies for a number of 

different classifiers (Naseer et al., 2016b). Naseer and colleagues however in a second publication 

attributed this increase to the signal mean and peak, which as a pair yielded accuracies of 93 and 90% 

for Δ[HbO] and Δ[HbR] respectively, improving to 94 and 92% when combined with signal skewness 

(Naseer et al., 2016a). 

The time segments that yielded each individual's peak response were primarily five seconds 

after the action cue was presented on the screen. This delay in classification performance corresponds 

well with the few second delay in the haemodynamic response (Liao et al., 2002; Logothetis et al., 

2001). Optimal classification window lengths have been previously investigated for motor imagery 

tasks involving simple and complex finger taps (Holper and Wolf, 2011). For a single participant, 

Holper and Wolf recorded an accuracy of 75% for Δ[HbO] signal mean with a window length spanning 

6 seconds (9-15 seconds post-stimulus). Maximum scores of 92% were however achieved for two 

participants with window lengths spanning 6 and 9 seconds and features of 3 and 4 dimensions 

respectively. The score of 75% achieved by these authors was lower than the peak score obtained for 

Δ[HbO] in the current study (88%- participant 28, table T3.3). Furthermore, the author's maximum 

score recorded is likely a result of overfitting having only performed 12 trials for each type of motor 

imagery stimulus. 
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Prior to statistical feature calculation, the data were pre-processed using the CSP algorithm in 

order to maximise the variance between left- and right-hand class labels. This algorithm is frequently 

applied in EEG-based motor imagery BCI applications (see chapter 2 for further details) (Blankertz et 

al., 2008; Ramoser et al., 2000; Wang et al., 2005). The CSP algorithm effectively projects multi-

channel data into a lower dimensional spatial subspace (if possible) and dissociates signals into spatially 

separable task-common and task-specific components (Blankertz et al., 2008). Previously, classification 

of CSP-pre-processed fNIRS signals following a physical finger/thumb movement task yielded a 5% 

average increase in accuracy for a group of three participants (Jin et al., 2015). Zhang and colleagues 

however compared the impact of excluding and including CSP-pre-processing for classification of left- 

and right-finger physical and imagined taps (Zhang et al., 2017a). Having recorded haemodynamic 

signals over the C3 and C4 brain regions, for the motor imagery task the authors recorded a 15% (14%) 

increase in classification accuracy for a three-dimensional feature set (mean, slope, and variance) 

derived from Δ[HbO] (Δ[HbR]) CSP filtered signals. 

When comparing the CSP-included Δ[HbO] classification scores for the current study with 

those obtained by Zhang and colleagues (Zhang et al., 2017a), differences were only found for the 

imagery condition (current study - 64%, Zhang and colleagues - 75%). Interestingly, even with two 

additional statistical features, Zhang and colleagues achieved a classification score for the physical 

movement task that closely matched the results of the current study (current study - 74%, Zhang and 

colleagues - 75%). This could perhaps reflect the improved cortical sampling of brain tissue and higher 

SNR provided by FD-NIRS imaging systems. Whilst Zhang and colleagues demonstrated positive 

differences between CSP-excluded and CSP-included classification methods, no such evidence 

consistent with this was found from the average peak AUC scores obtained in the present study for 

Δ[HbO] signal classification (however a marginally greater monotonic positive correlation was present 

for the CSP-including over the CSP-excluding classification method), and this is possibly due to the 

lack of multi-channel haemodynamic data available. Unlike multi-channel 830 nm signals (which 

yielded a CSP-included accuracy of 77%), spatial information was well accounted for within the two 

Δ[HbO] channels through the reconstruction of haemodynamic parameters, thereby limiting the 
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potential of the CSP algorithm to further maximise the variance between the left- and right-hand 

responses. 

In comparison to the current study, the vast amount of NIRS motor imagery research for BCI 

applications have been performed on fewer healthy individuals (Chiarelli et al., 2018; Holper and Wolf, 

2011; Khan et al., 2018; Shin et al., 2018; Zhang et al., 2017a) with equally low patient numbers 

examined (Rupawala et al., 2018). Classification performances were therefore additionally studied from 

a subset of seven participants with relatively high SNR. These individuals yielded an average peak 

Δ[HbO] accuracy markedly greater than the result obtained by Zhang and colleagues during physical 

movement (current study - 82%, Zhang and colleagues - 74%) (Zhang et al., 2017a). Additionally, AUC 

scores obtained for the imagery task were much improved yet marginally lower than the accuracy 

achieved by Zhang and colleagues (current study - 72%, Zhang and colleagues - 75%). Generally, 

average optical and haemodynamic peak scores for this reduced cohort were markedly greater than the 

average peak scores obtained by the remaining group. Interestingly however, despite these select 

participants displaying relatively noise-free data, not all these individuals were able to generate left- 

and right-hand responses that could be highly classified (c.f. participant 11 in table T3.6). This perhaps 

correlates with a lack of a strong contralateral response or a prominent bilateral response by these 

individuals or a suboptimal time segment for feature extraction. 

From the results and discussions thus far, it can be summarised that classification of left- and 

right-hand physical/imagined movements is optimally performed (i.e. the SVM classifier can 

maximally separate classes in a manner that allows test data to be classified to a high accuracy) when 

using statistical feature means (derived from an 8 s time window length, 8 s after the action cue) 

obtained from FD-derived Δ[HbO] data that has undergone CSP-pre-processing. In order to achieve 

this finding, several classification assessments were performed on the entire dataset using a k-fold cross-

validation approach. Cross validation is a technique that can be used to evaluate the performance of a 

classification model where there is limited data (Lemm et al., 2011). Through subsampling of the data 

(as in the k-fold scheme) the average error of a classifier can be computed when each k model is 

evaluated separately on its corresponding validation dataset (Lemm et al., 2011). When the processing 

is performed on training data within the cross-validation loop using methods from prior knowledge (e.g. 
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optimal data pre-processing steps, feature extraction and selection methods, and classifier 

hyperparameters) then the results can to some extent generalise well. However, in the case of the current 

study, multiple classification assessments were performed outside this cross-validation loop (e.g. effects 

of CSP-pre-processing, effects of different statistical features) using the data from all participants 

thereby limiting the significance of the final accuracies (AUC scores) obtained for the most optimal 

classification approach. Whilst others have taken a similar approach as this study and demonstrated best 

classification results for different analysis methods (Holper and Wolf, 2011; Zhang et al., 2017a), a 

better methodology would be to divide participant data into a training and validation cohort (which can 

be used to perform several cross-validation classifications) and a testing cohort whereby the unseen 

data are used to gather a true generalisation of the final classification approach (Coyle et al., 2008; Fazli 

et al., 2012; Koo et al., 2015; Lemm et al., 2011). Such well generalised accuracies could have been 

calculated by leaving out the participants with relatively good SNR for testing of the final optimal 

classification approach. 

 

3.4.3. Summary 

 

 This study has extensively investigated both the amplitude-modulated intensity and phase 

parameters of a FD-NIRS system for brain imaging. Specifically, system capabilities were tested to 

measure motor activity in response to physical and imagined movements of the hand. In comparison to 

continuous-wave systems that output intensity measurements only, the additional phase component of 

FD systems was found to increase contrast between right- and left-hand movement profiles in the 

reconstructed haemodynamic response (i.e. a small 1% perturbation in attenuation caused large changes 

in the haemodynamic signals). Although this parameter is more sensitive to noise at longer range 

channels, it is however less sensitive to signal contamination from the superficial tissues (physiological 

noise) and can provide good depth selective information by primarily sampling cortical activity. 

Classification of CSP spatially filtered FD and haemodynamic motor imagery signals yielded average 

peak scores of 66% (830 nm) and 64% (Δ[HbO]) for the entire group and 72% (830 nm and Δ[HbO]) 

for a subset of participants with relativity high SNR. CSP spatial filtering was most effective on multi-
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channel measurements (in this case multi-channel FD signals) and as such did not improve the 

classification scores of two-channel hemodynamic signals. 

Overall, the findings from this chapter have presented good evidence for a FD-NIRS imaging 

system to be tested within the clinic, specifically for brain imaging in response to covert commands. 

However, it is recommended that data quality should be frequently checked each time either the 

source/detector positions or light levels are altered, or participants move their head, in order to maximise 

the spatial sensitivity of the instrument. Furthermore, when classifying multi-channel responses, the 

CSP algorithm should be used to reduce the dimensionality of the data and maximise class differences. 

Nevertheless, in order to further improve the classification success rate, the use of multiple statistical 

features and additional temporal sensitivity may be of benefit. One such inexpensive way both spatial 

and temporal sensitivity could be maximised is through recording simultaneous EEG-fNIRS 

measurements. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 124 
 

Chapter 4 

 

Motor imagery detection using simultaneous EEG-fNIRS 

 

4.1. Introduction 

 

 The brain dynamics captured by EEG and NIRS systems in response to covert command-

following have been previously explored in chapters 2 and 3 respectively. As relatively inexpensive 

portable devices they offer a potential means to continually assess patient’s brain function at the bedside 

for whom imaging methods such as fMRI are either inaccessible or inapplicable. Nevertheless, each 

technology is limited in their image resolution capacity: EEG can sample electrical neural activity at a 

millisecond time frame however offers poor spatial resolution due to volume conduction effects, 

whereas NIRS indirectly measures the slow haemodynamic changes in the brain to a relatively good 

spatial resolution only. Naturally, neural activity increases oxygen demands which in turn increases 

cerebral blood flow due to neurovascular coupling. The interrogation of this interconnected biology 

using simultaneous EEG-fNIRS measurements therefore has the capacity to yield a continuous time 

course into the changes in brain function and health in response to tasks (Blokland et al., 2014) or 

treatments (Jindal et al., 2015). Furthermore, as a hybrid technique, the overall increase in information 

content has the means of advancing the development of brain computer interface (BCI) applications 

utilising such covert command-following paradigms (Khan et al., 2014, 2018). 

 Previous literature has demonstrated an EEG-fNIRS bimodal system to better classify two 

classes of motor imagery than either system alone (Blokland et al., 2014; Ge et al., 2017; Khan et al., 

2015; Shin et al., 2017). Whilst some bimodal BCI studies are based on multi-channel data (Fazli et al., 

2012; Khan et al., 2014, 2015; Koo et al., 2015), there is a growing interest for the use of fewer channels 

to improve the portability and comfort of the BCI, and to reduce cost and preparation time. Ge at al. 

presented average hybrid classification accuracies of 81% (EEG alone: 75% and fNIRS alone: 57%) 

following a left- and right-hand motor imagery paradigm when analysing the data from three electrodes 
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and six optodes around the C3 and C4 regions (Ge et al., 2017). Whilst these accuracies were 

significantly greater than chance and have been obtained by others (Tam et al., 2011), the need for the 

authors to perform a preliminary multi-channel analysis to identify optimum BCI channels limits the 

scope of such methods as a fully few-channel hybrid system.  

 Khan and colleagues on the other hand demonstrated classification results between left-arm 

imagery and rest having used a six-channel hybrid EEG-fNIRS setup, primarily across the right 

hemisphere of the brain for the entire study (Khan et al., 2015). The authors observed that prior to 

training, the average motor imagery performance across five healthy participants was 66%. Once the 

right-handed participants were trained to physically perform the “adaptive reach” protocol with the 

assistance of a rehabilitation robot, average motor imagery classification scores increased to 94%. A 

key aim of this publication was to investigate the effects of both training and EEG-fNIRS in the 

classification of motor imagery signals. Similar to training, the addition of feedback can encourage, 

motivate and improve an individual's BCI skill development (and thus classification accuracy) by 

maintaining their interest (Guger et al., 2003; Neuper et al., 1999), however it can also impair 

performance due to diminished attention to the task or frustration caused by incorrect feedback. Studies 

that have presented individuals (naïve to motor imagery) positive and negative feedbacks have shown 

negative feedback to accelerate learning effects (González-Franco et al., 2011; Holper and Wolf, 2010). 

It is therefore suggested that the frustration primarily develops following multiple BCI sessions where 

either no such learning has taken place by the participant or when the paradigm, setup or classification 

models are not optimal to accurately measure the learnt effects. Training may not however be feasible 

in all patients depending on the severity of their brain injury, treatment course, and the need for long 

durations of engagement with the task. In contrast, Coyle and colleagues successfully demonstrated that 

after an initial BCI assessment, patients in a minimally conscious state could modulate their 

sensorimotor rhythms when provided with visual or auditory feedback (Coyle et al., 2012, 2015). This 

was because patients became aware that the motor imagery task could alone (i.e. without the need for 

any physical movement) affect the position of a sound or visual object on the screen thereby allowing 

them to learn to control their mental activity in order to achieve the best possible control of the interface 

(Coyle et al., 2012). From a clinical standpoint, an initial successful motor imagery BCI session can 
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therefore complement current awareness detection protocols as they can demonstrate the capacity for a 

patient to remain attentive, their working memory function, language comprehension skills and visual 

or auditory acuity. Furthermore, subsequent feedback BCI sessions can allow clinicians to monitor 

consciousness recovery due to the associated brain plasticity that occurs with increased mental practice 

of an overt movement. 

Nevertheless, Blokland and colleagues demonstrated BCI performance of a few-channel EEG-

fNIRS setup in the absence of any feedback or training in both healthy individuals and patients using a 

finger tapping motor execution and imagery paradigm (Blokland et al., 2014). Eight electrodes and two 

optodes were positioned around C3 and C4 scalp electrode locations on eight healthy participants and 

seven patients diagnosed with tetraplegia. Time-frequency analysis of EEG spectral features revealed 

that immediately following the executed finger tapping cue, healthy participants displayed a strong 

contralateral event-related desynchronisation (ERD) within the alpha (8-13 Hz) and beta (13-22 Hz) 

frequency bands demonstrating sensorimotor activation which lasted for the full 15 second task period. 

This was subsequently followed by a rest cue which resulted in a strong contralateral event-related 

synchronisation (ERS) within the 8-20 Hz frequency window highlighting sensorimotor inhibition. In 

contrast, healthy individuals displayed a strong contralateral ERD that lasted for only three seconds 

following the imagine finger tapping cue, and a weak contralateral ERS following the rest cue. Patients 

however only displayed weak contralateral ERDs following both executed and imagined finger tapping 

cues and no ERS following the rest cues. With respect to haemodynamic responses, both healthy 

controls and patients displayed increases in oxygenated haemoglobin from baseline on the contralateral 

hemisphere during both physical and imagined finger tapping cues which subsequently decreased 

towards baseline following the rest cue. The deoxygenated haemoglobin response, which was absent in 

patients during the executed finger tapping cue only, was characterised by a decrease from baseline 

during the action cue that recovered to baseline following the rest cue. The lack of significant electrical 

and haemodynamic responses to physical movement in patients is in agreement with their diagnosis, 

which prevents them from truly executing any such muscle activity. Classification of movement- verses 

rest-derived features resulted in improved average accuracy scores when simultaneously using both 

EEG and NIRS data. Furthermore, the average results were higher for actual (control: 87%, patients: 
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79%) compared to imagined (control: 79%, patients: 70%) movement with better scores overall 

achieved by healthy participants than patients. 

Such progress in research highlights that both improved technology and advanced analysis 

methods can positively assess covert paradigm performance in the clinic without the need for extensive 

brain coverage and a large number of trials. Nevertheless, such research efforts are reliant on prior 

literature to guide scalp positions of electrodes and optodes to correctly sample underlying brain tissue 

activated in response to the task. With this knowledge, the study presented in this chapter similarly 

investigated simultaneous EEG-fNIRS BCI performance using a few EEG electrodes and frequency-

domain (FD) derived hemodynamic responses from the NIRS montage presented in chapter 3. Findings 

of chapter 3 specifically demonstrated improved classification scores provided by haemodynamic 

parameters derived using both log-intensity and phase-shift components of an FD system. As this has 

not yet been explored in the literature (similar studies have used either a continuous-wave NIRS system 

(Blokland et al., 2014; Shin et al., 2017) or have limited their analysis to intensity measurements alone 

when using a FD NIRS device (Khan et al., 2018)), the aim of this chapter is to highlight that the 

addition of EEG measurements can benefit overt and covert command-following classification beyond 

that achieved using NIRS data alone. To align comparisons with previous studies, a similar left- and 

right-hand experimental paradigm to that presented in chapter 3 was used, as was an analysis pipeline 

featuring common spatial pattern (CSP)-pre-processing. Furthermore, having in-depth discussed the 

NIRS output to this paradigm in chapter 3, here the focus is on unimodal EEG and bimodal EEG-fNIRS 

classification performances. 

 

4.2. Methods 

 

4.2.1. Experimental setup and paradigm 

 

Five healthy participants (four male and one female, aged between 20-30 years) volunteered to 

take part in this pilot study by providing their written and informed consent. This simultaneous EEG 

and FD-NIRS study had ethical permission obtained from the University of Birmingham STEM ethics 
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board. A limited number of participants were selected for this study (in comparison to the number of 

participants recruited for studies in chapters 2 and 3) in order to determine the effectiveness of a highly 

reduced EEG setup (with respect to the number of electrodes used and their scalp positions) alongside 

the NIRS setup used in chapter 3, and to identify an optimal processing/classification approach that 

could be directly tested on a larger cohort (as discussed within chapter 3, i.e. the need for training, 

validation and testing datasets). NIRS measurements were obtained using an FD-NIRS device 

(IMAGENTTM, ISS Inc., Illinois) previously described in chapter 3.2.1, whereas EEG measurements 

were gathered using an ANT Neuro acquisition system (eegoTM mylab, Hengelo, Netherlands). Eight 

NIRS channels consisting of eight detectors and two sources were positioned over the central 

hemisphere spanning the C3 and C4 regions as previously detailed in chapter 3.2.1. Due to the success 

of previous studies utilising a sparse electrode montage scheme and the expected laterality of EEG 

responses (Cruse et al., 2012; Guger et al., 2003), four passive electrodes were positioned approximately 

2.5 cm anterior (at locations of FC3 and FC4) and 2.5 cm posterior (at locations of CP3 and CP4) to 

electrode positions C3 and C4 of the international 10/20 electrode system (see schematic in figure 

F4.1a). Additionally, reference and ground electrodes were placed on the right- and left-mastoids 

respectively. The scalp was prepared for EEG recording using Nuprep® skin preparation gel and Ten20® 

conductive paste to improve the transmittance of electrical signals to the electrode. Data were sampled 

at 512 Hz and impedances were kept below 10 kohms. 
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Figure F4.1: (a) Layout of NIRS optodes and EEG electrodes on the scalp. For each participant the intersection 

between the nasion-inion and left-right preauricular points was marked to reference the Cz location. The NIRS 

imaging pad was positioned on the scalp using the methodology described in chapter 3.2.1. In addition, EEG 

recording electrodes were positioned at locations FC3, FC4, CP3 and CP4. These were referenced online to the 

reference electrode positioned on the right-mastoid. The circuit was completed using a ground electrode 

positioned on the left-mastoid. (b) Experimental paradigm. The task performed was similar to that described in 

chapter 3.2.1. Differences between the current experimental paradigm and that used in chapter 3.2.1 were that (1) 

an initial fixation cross of ~20 s was presented at the start of the experiment to record baseline activity, (2) twenty-

eight cycles of paired rest (~20 s) and action (~15 s) commands followed, and (3) a final rest command and 

fixation cross of ~20 s duration was presented to once again record baseline activity. 

 

The instruction protocol provided to each participant was identical to that described in chapter 

3.2.1. Participants performed four actions corresponding to right-hand gripping (“Right Move”), left 

hand gripping (“Left Move”), right hand imagined gripping (“Right Imagine”) and left hand imagined 

gripping (“Left Imagine”) that were randomised to ensure that no more than two of the same action 

were presented in a row. In comparison to the experimental protocol described in chapter 3.2.1., the 

duration of each rest and action cue was reduced (figure F4.1b, for a comparison please refer to figure 

F3.1b in chapter 3). Taking into account the high temporal resolution of EEG recordings and the large 

number of trials usually performed as a result, the left- and right-hand execution/imagery paradigm in 

chapter 3.2.1 was adjusted so that each rest period lasted 20 s whilst each action period was limited to 

15 s. Based on the findings in chapter 3, a 15 s action period was sufficient to capture each 
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haemodynamic response’s change to its maximum. With this reduced trial length, a total of 84 trials 

were conducted across the three rounds (21 of each of the four different action commands) with a total 

round duration of 20 minutes. 

 

4.2.2. Data pre-processing 

 

Using both log-intensity and phase-shift parameters of the FD-fNIRS system, changes in oxy- 

(Δ[HbO]) and deoxy- (Δ[HbR]) haemoglobin were recovered using the pre-processing methodology 

described previously in chapter 3.2.2. Due to a change in the duration of the rest period of the task, a 

10 s period immediately prior to the action cue was used as the baseline for both pre-processing and 

analysis of the haemodynamic responses. However, for the action period of the task, the entire 15 s 

recording window was examined due to the slow development of the haemodynamic response (Batula 

et al., 2017). 

EEG data were firstly re-referenced offline to form two bipolar channels (FC3-CP3, FC4-CP4) 

that shall be referred to as C3’ and C4’, respectively. In comparison to unipolar and common average 

referencing methods, a bipolar approach was chosen as it is known to detect sensorimotor mu and beta 

modulations with a high level of accuracy across a large proportion of healthy individuals, due to the 

larger contribution of localised EEG sources (within the premotor cortex, supplementary motor area, 

primary motor cortex and somatosensory cortex) to the bipolar signal (Cruse et al., 2012; Guger et al., 

2003; Ramoser et al., 2000). The data at C3’ and C4’ were subsequently filtered between 0.5-40 Hz, 

segmented into 8 s epochs time-locked to the onset of each instruction (3 s prior to and 5 s following 

the cue), and baseline corrected using functions from the EEGLAB (version 14.1.1b, Swartz Center for 

Computational Neuroscience, UC San Diego) toolbox. Following data pre-processing, time-frequency 

analysis was performed on the epochs from each of the four independent conditions using a fifth-order 

Butterworth filter and the Hilbert transformation to yield the envelopes corresponding to the activities 

within the alpha (8-13 Hz) and beta (13-30 Hz) frequency bands (refer to chapter 2.2.2 on details of 

how this was achieved). The resulting averaged power series for each task was decibel baseline 

normalised to allow effective comparisons. 
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4.2.3. Classification 

 

In this subsection a description is provided of the methodologies used for the classification of 

opposing executed/imagined hand commands from each of the three recorded measurements: EEG, 

fNIRS and EEG-fNIRS. 

 

● EEG 

 

Two methods were investigated for classifying the raw EEG signals from right- and left-hand 

physical/imagined movements. Based on the methodology described by Cruse and colleagues (Cruse 

et al., 2012), the first feature extraction technique estimated spectral power of each of the two frequency 

bands using a short-time Fourier transform (STFT) (Matlab function ‘spectrogram.m’) with a sliding 

window of 1000 ms moving in 125 ms steps (representing an 80% overlap). Having set the number of 

discrete Fourier transform points to four times the sampling rate, the output of the ‘spectrogram.m’ 

function for each time window yielded 89 equally spaced spectral values between 8 and 30 Hz. These 

spectral values at C3’ and C4’ were averaged within the alpha and beta windows and together used as 

individual features for classification. 

The second feature extraction method employed was the CSP algorithm as a means of spatial 

filtering the time series of each opposing hand condition such that their variances were optimal (in the 

least squares sense) for discrimination (refer to chapter 2.2.3 for a detailed methodology). Each of the 

four time series (right move, left move, right imagine, left imagine) were filtered using a fifth-order 

Butterworth filter into the respective alpha and beta frequency bands, centred and scaled prior to being 

subjected to CSP-based spatial filtering. The algorithm was only applied on the training dataset yielding 

two filter components that were used to transform the training and testing time series for discrimination. 

Obtaining the log variance provided the four individual features (two filter components x two frequency 

bands) for classification. 

Using a seven-fold cross validation scheme, the data within each condition were divided into 

even blocks such that each fold contained 18 trials for training and 3 trials for testing. Classification 
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was performed using a support vector machine (SVM) with four features (two frequency band x two 

channels/filter components). As previously demonstrated in chapter 2 and 3, classification scores were 

estimated with an empirical receiver-operating curve (ROC) analysis applied on trials’ predicted 

probabilities and the results of this analysis were summarised by the area under the curve (AUC). 

 

● fNIRS 

 

 Classification of haemodynamic parameters were independently performed using a 

methodology similar to that described in chapter 3.2.4. To corroborate with the two EEG feature 

selection methods previously described, a non-CSP and CSP-based methodology were likewise 

constructed for Δ[HbO] and Δ[HbR] classification. Haemodynamic responses over the right (C3) and 

left (C4) motor regions were divided into short 6 s segments (as recommended by (Holper and Wolf, 

2011)) with a 5 s overlap. Previously discussed in chapter 3.4.2 were the results from several 

publications reporting improved classification performances with a combination of statistical features. 

Specifically, for these studies, the mean and peak were found to be most effective (Naseer et al., 2016b, 

2016a; Qureshi et al., 2017). These two statistics were therefore computed for each sliding time window 

and used as individual features (two data statistics x two channels/filter components) for SVM 

classification of Δ[HbO] and Δ[HbR] signals. 

 

● EEG-fNIRS 

 

 In chapter 3, it was demonstrated how well Δ[HbO] and Δ[HbR] signals corresponding to right- 

and left-hand execution/imagery could be discriminated using an SVM classifier. In this study, having 

simultaneously measured these same motor responses using EEG and FD-fNIRS, the aim was to 

determine whether the addition of high temporally resolved EEG measurements further improved 

classification performance beyond that achieved by fNIRS alone. In order to resolve this for both 

(previously discussed) CSP present and absent classification schemes, the four features obtained from 

each EEG time window (two frequency band x two channels/filter components) were in turn classified 
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alongside the four features derived from each NIRS time window (two data statistics x two 

channels/filter components) using SVM. Percentage AUC changes were then determined between the 

resulting EEG+Δ[HbO]/EEG+Δ[HbR] matrix of AUC scores and those derived solely from NIRS 

(Δ[HbO]/Δ[HbR]) classification. 

 Joint classification was additionally performed between a single AUC scoring EEG time 

window and every 6 s sliding NIRS period. To determine this EEG time window for each participant, 

the following four steps were applied: 

1. Select a single participant, for example participant 1. 

2. Obtain the AUC scores calculated for the other four participants (in this example participants 

2-5) for each EEG time window. 

3. Average these scores across the group. 

4. The window containing the maximum average score is assigned as the optimal window for the 

selected participant in step 1. 

The selected EEG window for each participant was subsequently used to derive EEG-related features 

that were classified alongside NIRS statistical features. This process yielded an unbiased group EEG-

fNIRS AUC score that would emphasise either the benefits or drawbacks of including EEG 

measurements on Δ[HbO] and Δ[HbR] classification of right- and left-hand executed/imagined 

movements. 

 

4.2.4. Statistical analysis 

 

Statistical analysis was performed on both pre-processed EEG and NIRS data sets and 

classification results using the cluster-based permutation test described in chapters 2.2.4 and 3.2.5. For 

both haemodynamic responses and EEG frequency band measurements, a one-tailed Student’s t-test 

was performed between the left- and right-hand responses and the resulting temporal clusters were 

tested for significance (p<0.025, Bonferroni corrected) against a set of 1000 largest clusters obtained 

through randomisation runs. At the group level this randomised shuffling involved all trials from 
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individual participants, whereas at the subject-level this randomised shuffling took place between 

individuals trials pertaining to left- and right-hand commands for execution/imagery. 

Similarly, statistical analysis of subject-level classification scores was performed by testing 

time-window clusters derived using the Mann-Whitney U-test statistic against the biggest clusters 

obtained following 200 randomisation tests (p<0.05). This reduced number of randomisations runs was 

once again due to extensive computational demands. Cohort level AUC scores however were compared 

against a 50% chance level of accuracy by using a one-tailed Student’s t-test. The resulting temporal 

clusters were tested for significance (p<0.05) against 1000 largest clusters obtained by randomly 

shuffling a participants’ AUC score with a score of 0.5. 

In addition to this, statistical testing was also performed between the AUC scores obtained from 

joint EEG-fNIRS classification and that of Δ[HbO] and Δ[HbR] classification alone. Each row of the 

EEG-fNIRS AUC matrix (where each row pertains to a single EEG time window) was randomly 

shuffled with the vector of AUC scores obtained from sole NIRS classification, following which 

percentage changes were computed. The true percentage AUC changes for joint EEG-fNIRS 

classification were subsequently tested for significance against this randomised set at the alpha value 

of 0.05 for each condition type (physical movement/imagery). As such, the impact of this test was to 

statistically demonstrate the effect of additional EEG features on NIRS classification performance.  

 

4.3. Results 

 

4.3.1. Time-frequency analysis 

 

Average group haemodynamic responses and EEG frequency band profiles are presented in 

figures F4.2 and F4.3 respectively. Similar to the Δ[HbO] and Δ[HbR] figures shown in chapter 3.3.2, 

the concentration curves in this study for both left- and right-hand execution/imagery, as derived using 

FD measurements (amplitude-modulated intensity and phase), demonstrate a large increase (decrease) 

in contralateral oxygenation (deoxygenation) changes that plateaus to a maximum (minimum) ~8 

seconds after the action cue is presented. This is additionally accompanied by a relatively small increase 
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(decrease) in ipsilateral oxygenation (deoxygenation) change that much rapidly returns to baseline. 

Figure F4.2 qualitatively highlights both physical and imagined responses to be similar, however with 

the latter being much noisier across the group. Executed movement of the instructed hand generates a 

response approximately two (at C3) to three (at C4) times greater in strength to that of imagined 

movements. Furthermore, there is much greater separation of the contralateral and ipsilateral profiles 

for physical than imagined movement. Statistical analysis of these left- and right-hand average 

responses using the cluster-based permutation test method identified significant differences (p<0.025, 

Bonferroni corrected) at C4 and C3 positions for Δ[HbO] and Δ[HbR] respectively during physical 

movement only. These statistically significant differences are due to the large separation between left- 

and right-hand standard deviation curves, which are otherwise lacking in some movement (C3-Δ[HbO] 

and C4-Δ[HbR]) and all imagery responses. In addition to group level statistical testing, significance 

analysis was also performed at the subject level by randomizing individual left- and right-hand trials 

during the cluster-based permutation test. Across the five participants, 80% displayed a significant 

cluster at either C3 or C4 positions for the Δ[HbO] response to physical movement (p<0.025) whereas 

20% generated a significant cluster for the Δ[HbR] response to physical movement and both Δ[HbO] 

and Δ[HbR] responses for imagery (p<0.025). 
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Figure F4.2: Block averaged and baseline corrected Δ[HbO] and Δ[HbR] responses for each of the four task 

conditions. Δ[HbO] and Δ[HbR] signals were derived using both log-intensity and phase-shift components and as 

such explain brain haemodynamics in the region directly under the three long-distant channels. Using an alpha 

value of 0.025, statistical significance was tested between left- and right-hand physical movement (a) and 

imagined (b) responses independently at both C3 and C4 regions. 

 

 In comparison to the haemodynamic responses to left- and right-hand physical 

movement/imagery, the group average alpha and beta band EEG profiles (figure F4.3) appear much 

more closely overlapped. Generally, immediately following the action cue a bilateral desynchronisation 

appears to occur for each type of hand command with somewhat greater contralateral signatures present 
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for imagery. These desynchronisations tend to last ~2 seconds before recovering towards baseline. Such 

profiles are in agreement with the right-hand alpha responses presented in chapter 2.3.1, which 

displayed a much stronger bilateral event related desynchronisation at both C3 and C4 electrodes during 

physical movement than imagery. The increasing similarity of the left- and right-hand responses at C3’ 

and C4’ electrode locations resulted in no significant clusters (at the p<0.025 confidence level) being 

identified for both group and single subject statistical analyses during both motor execution and 

imagery. 
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Figure F4.3: Block averaged and decibel baseline corrected EEG power signals for each of the four task 

conditions. EEG signals were filtered into alpha (8-13 Hz) and beta (13-30 Hz) band frequencies using a fifth-

order Butterworth filter. These were then Hilbert transformed to extract the envelope of the signal. Using a 

statistical alpha value of 0.025, significance was determined between left- and right-hand physical movement (a) 

and imagined (b) responses independently at both C3’ and C4’ regions. 

 

4.3.2. Classification 

 

 Classification of simultaneous EEG-fNIRS measurements was achieved by the joint use of 

frequency band EEG and statistical fNIRS features for each sliding time window. Two methods of 

feature extraction were investigated that either utilised the CSP algorithm as a prior to filter the data 
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into spatial subcomponents or directly selected features from pre-processed measurements. The 

resulting AUC scores were compared to those obtained by sole NIRS data classification yielding the 

percentage AUC change matrix presented in figure F4.4. In the absence of CSP-pre-processing, the 

addition of EEG features appears to improve NIRS classification performance for time windows 

spanning 0-6 and 1-7 seconds (mean of 3 and 4 seconds respectively). These percentage changes in 

AUC are much greater for imagery (EEG+Δ[HbO]: 17.37%, EEG+Δ[HbR]: 27.29%) than physical 

movement (EEG+Δ[HbO]: 10.46%, EEG+Δ[HbR]: 9.35%) and generally appear for mean EEG time 

windows 3 seconds after the action cue (except EEG+Δ[HbR], where the maximum changes were 

recorded for mean EEG windows at 1.5 and 2 seconds after the action cue). Interestingly, the addition 

of EEG features between time windows 1.5 and 2.5 seconds appear to also substantially decrease 

haemodynamic response classification performance. For physical movement this appears 

predominantly when the Δ[HbO] curve climbs and plateaus at its maximum response (EEG+Δ[HbO]: 

-12.81%), whereas for imagery the decrease is across the entire NIRS profile (EEG+Δ[HbO]: -22.71%, 

EEG+Δ[HbR]: -17.3%). Statistical analysis of these percentage AUC changes highlighted that whilst 

no significant time windows were found for physical movement, for imagery however, EEG features 

significantly (p<0.05) improved Δ[HbO] and Δ[HbR] classification performance between 0-9 seconds. 

For Δ[HbO], these EEG features corresponded to mean time windows of 3.75 and 3.875 seconds 

whereas for Δ[HbR] these were in the first 1.5 seconds or after 3.5 seconds. In the presence of CSP 

similar AUC change matrices are found with percentage increases predominantly occurring within the 

first two NIRS windows. In contrast however, the actual maximum value of the change appears to be 

greater for both physical movement (EEG+Δ[HbO]: 13.14%, EEG+Δ[HbR]: 14.31%) and imagery 

(EEG+Δ[HbO]: 22.84%, EEG+Δ[HbR]: 37.91%). In the case of the imagery paradigm, unlike a 

widespread increase in classification performance along the NIRS and EEG axes for non-CSP 

EEG+Δ[HbO] and EEG+Δ[HbR] respectively, the CSP algorithm transforms the data in a manner that 

results in classification improvements principally localised across EEG windows 3 seconds after the 

action cue. Similarly, this is accompanied by a greater number of statistically significant (p<0.05) 

clusters within the region in comparison to the non-CSP case. 
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Figure F4.4: Group average percentage change in the AUC scores for each EEG and NIRS sliding time windows. 

SVM classification was performed between left- and right-hand responses for both physical movement and 

imagery tasks independently. Specifically, differences were studied in the classification results of (a) non-CSP 

and (b) CSP-pre-processed Δ[HbO], Δ[HbR] and EEG signals. AUC scores were computed from the classification 

of Δ[HbO] and Δ[HbR] statistical features with the addition of EEG frequency-band-derived features for all 

combinations of time windows. Presented in (a) and (b) are percentage AUC score changes between the 

classification of EEG+NIRS features and that of NIRS features alone. These were then statistically compared to 

determine whether EEG+NIRS classification was significantly different (p<0.05) from that of NIRS alone 

classification in (c) and (d). This was performed by computing a distribution from 1000 permutation runs where 

the AUC data from the simultaneous group was randomised with that of the NIRS. The simultaneous data were 

then tested against this distribution for significance (see section 4.2.4 for further details). The first EEG score at 

time 0.5 seconds represents the average of a time window spanning 0-1 seconds, whereas the first NIRS score at 

time 3 seconds represents the average of a time window spanning 0-6 seconds. The colour bar and scale presented 

in (a) and (b) represent percentage change in the AUC score whereas the colour bar and scale presented in (c) and 

(d) represent p-values less than the alpha value of 0.05.  
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Such added benefits of EEG features on NIRS classification performance can be better 

understood when studying the EEG classification time course alone. Figure F4.5 highlights that across 

the group, statistically significant clusters above chance (p<0.05) can be found at mean time windows 

of 3.375-4.375 seconds after stimulus onset for the imagery paradigm and 3.375-3.625 seconds for the 

physical movement data transformed using CSP. In these statistically significant regions, the standard 

deviation across the group is tightened and peak AUC scores are 0.58 for execution+CSP, 0.66 for 

imagery+STFT and 0.68 for imagery+CSP. For imagined movements in the latter EEG time windows, 

the good separation of left- and right-hand conditions by the SVM classifier therefore drives an 

improvement in the AUC scores that is statistically significant when the EEG data is jointly classified 

with features derived from Δ[HbO] and Δ[HbR] (figures F4.4c and F4.4d).  

 

 

Figure F4.5: Group average classification scores for each EEG sliding time window. SVM classification was 

performed between left- and right-hand responses for both physical movement and imagery tasks independently. 

Specifically, differences were studied in the classification results of (a) short-time Fourier transformed (STFT) 

and (b) CSP-pre-processed EEG signals. AUC scores were computed from the classification of EEG features 

derived from alpha and beta frequency band filtered signals. The first score at time 0.5 seconds represents the 

average of a time window spanning 0-1 seconds. The light shaded time course represents the standard error in the 

AUC scores. Clusters of statistically significant time (window) points (p<0.05) are highlighted as blocked yellow 

regions. AUC scores in this command-following period were compared to those of chance (an AUC score of 0.5) 

in the statistical test. 
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Another important characteristic identified from the simultaneous EEG-fNIRS classification 

matrix (figure F4.4) was that the EEG feature vectors primarily improved Δ[HbO] and Δ[HbR] 

classification performance in the first two time windows spanning 0-6 and 1-7 seconds. By solely 

studying group Δ[HbO] and Δ[HbR] AUC scores (figure F4.6), this effect becomes clear as these 

portray that in the first two time windows classification scores ranged between 0.46 (non-CSP, imagery, 

Δ[HbR], mean time of 3 s) and 0.64 (CSP, execution, Δ[HbO], mean time of 4 s) whilst peak AUC 

scores ranged between 0.62 (imagery, Δ[HbO]) and 0.86 (execution, Δ[HbO]) as the haemodynamic 

response increased over time. Furthermore, for most haemodynamic group analyses in figure F4.6, the 

low scores of the early time windows were found to be statistically insignificant (p>0.05) from chance, 

except the CSP classified Δ[HbO] response to physical movement that yielded an AUC result of 0.64 

at the 4 s mean time point. 
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Figure F4.6: Group average classification scores for each NIRS sliding time window. SVM classification was 

performed between left- and right-hand responses for both physical movement and imagery tasks independently. 

Specifically, differences were studied in the classification results of (a) non-CSP and (b) CSP-pre-processed 

Δ[HbO], Δ[HbR] and EEG signals. AUC scores were computed from the classification of Δ[HbO] and Δ[HbR] 

statistical features. Additionally, presented above are the scores from the joint classification of Δ[HbO]/Δ[HbR] 

statistical features alongside EEG frequency-band-derived features. Here the EEG features for each participant 

were derived from an optimal sliding window that was computed using the method described in section 4.2.3. The 

first score at time 3 seconds represents the average of a time window spanning 0-6 seconds. The light shaded time 

course represents the standard error in the AUC scores. Clusters of statistically significant time (window) points 

(p<0.05) are highlighted as blocked yellow regions. AUC scores in this command-following period were 

compared to those of chance (an AUC score of 0.5) in the statistical test. 

 

 Figure F4.6 additionally highlights group AUC performance having used both EEG and fNIRS 

features for classification. Unlike the matrix in figure F4.4, here EEG features for each participant were 

obtained from the most optimal EEG time window (see section 4.2.3. for further details). Interestingly, 

the plots highlight that CSP filtering, in comparison to no CSP transformation, marginally improves 
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classification performance, evident by the fact that, for EEG+Δ[HbO] motor imagery classification, 

statistical significance (p<0.05) was found for the entire mean time series. Furthermore, for CSP filtered 

data, simultaneous EEG-fNIRS, in contrast to NIRS alone classification, improves AUC scores for the 

imagery data by approximately 15% (EEG+Δ[HbR]) however decreases accuracy by approximately 

13% (EEG+Δ[HbO]) for physical movement data. This decrease is likely due to the low classification 

performance of EEG execution data thus negatively impacting the feature plane that would otherwise 

be derived using only NIRS-based statistical features. 

 

Table T4.1: Peak classification AUC scores for each participant for the physical movement task. Individual and 

average results are presented following classification of features derived from EEG and haemodynamic signals 

independently and simultaneously. These features were extracted using a methodology that either excluded or 

included CSP-pre-processing. The p-values on the bottom row of the table represent the results of a one-tailed 

Student’s t-test (p<0.05) between the peak scores of the two feature selection methods. 

Peak AUC score during physical movement 
 

Non-CSP 
Participant EEG Δ[HbO] Δ[HbR] EEG+Δ[HbO] EEG+Δ[HbR] 

1 0.76* 0.84* 0.82* 0.81* 0.87* 
2 0.71 0.90* 0.72* 0.90* 0.75* 
3 0.76* 0.82* 0.78* 0.79* 0.74* 
4 0.62 0.96* 0.90* 0.92* 0.88* 
5 0.81* 0.90* 0.86* 0.85* 0.77* 

Average 0.73 0.88 0.82 0.85 0.80 
 

CSP 
Participant EEG Δ[HbO] Δ[HbR] EEG+Δ[HbO] EEG+Δ[HbR] 

1 0.66 0.85* 0.81* 0.75* 0.76* 
2 0.63 0.90* 0.74 0.88* 0.70* 
3 0.63 0.84* 0.80* 0.77* 0.78* 
4 0.65 0.96* 0.92* 0.87* 0.92* 
5 0.83* 0.89* 0.85* 0.81* 0.78* 

Average 0.68 0.89 0.82 0.82 0.79 
 

p >0.05 >0.05 >0.05 0.008 >0.05 
* indicates a significant AUC score (p<0.05) established from an empirical null distribution of classification 

accuracies (AUC scores) derived from random observations (i.e. shuffled class labels). 
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In addition to group analyses, statistical analyses were also performed at the subject-level by 

randomising individual trials corresponding to the two opposing hand conditions. Peak AUC score for 

each participant along with those participants that displayed significant clusters are reflected in Table 

T4.1 for physical movement and Table T4.2 for imagery. For executed movements, nearly all 

participants (except CSP-filtered, Δ[HbR], participant 2) were found to have at least one statistically 

significant cluster when classification was performed using only haemodynamic responses or 

simultaneous EEG-fNIRS features. In contrast, whilst 60% of participants were found to have a 

significant EEG cluster using a non-CSP method, this reduced to a single participant when CSP was 

used. Furthermore, EEG classification yielded an average peak AUC score below 75%, whereas NIRS 

alone and joint EEG+NIRS yielded an average peak AUC score above this value. It is likely that the 

high peak AUC scores for simultaneous EEG+NIRS classification is primarily driven by the separation 

of Δ[HbO] and Δ[HbR] statistical features. For most measures, both CSP and non-CSP methods yielded 

peak AUC scores that were similar or equal. However, for EEG and EEG+Δ[HbO] classification, non-

CSP methods performed better with that of joint classification being found to be significant (p<0.05).   
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Table T4.2: Peak classification AUC scores for each participant for the imagery task. See table T4.1 for further 

details. 

Peak AUC score during imagery 
 

Non-CSP 
Participant EEG Δ[HbO] Δ[HbR] EEG+Δ[HbO] EEG+Δ[HbR] 

1 0.65 0.64 0.51 0.64 0.58 
2 0.80* 0.76* 0.87* 0.74* 0.83* 
3 0.68 0.71* 0.70* 0.65 0.62 
4 0.78* 0.75* 0.78* 0.79* 0.81* 
5 0.71 0.56 0.57 0.51 0.56 

Average 0.72 0.68 0.69 0.67 0.68 
 

CSP 
Participant EEG Δ[HbO] Δ[HbR] EEG+Δ[HbO] EEG+Δ[HbR] 

1 0.70* 0.59 0.49 0.73* 0.59 
2 0.83* 0.74* 0.87* 0.82* 0.82* 
3 0.68 0.71* 0.75* 0.63 0.69* 
4 0.72* 0.75* 0.80* 0.78* 0.86* 
5 0.70* 0.58 0.58 0.60 0.63 

Average 0.73 0.67 0.70 0.71 0.72 
 

p >0.05 >0.05 >0.05 >0.05 0.037 
* indicates a significant AUC score (p<0.05) established from an empirical null distribution of classification 

accuracies (AUC scores) derived from random observations (i.e. shuffled class labels). 

 

In contrast to physical movement, classification of left- and right-hand imagined responses 

yielded similar average peak accuracies for all three classification methods, with those of EEG alone 

performing best. Furthermore, whilst CSP and non-CSP techniques generated similar average peak 

scores for EEG alone and NIRS alone classification, CSP filtering however better aided EEG+Δ[HbO] 

and EEG+Δ[HbR] classification resulting in the latter to be statistically significant (p<0.05). Unlike 

executed movements, classification of imagined haemodynamic responses in the presence and absence 

of EEG yielded fewer peak AUC scores that were significant (p<0.05). However, when comparing CSP 

filtered EEG accuracies between physical movement and imagery tasks, there was a large improvement 

in the peak AUC scores of 80% of participants. Overall, the group classification results highlighted that, 

(1) hybrid physical and imagined movement scores were worse off than those of NIRS and EEG alone 
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scores respectively, and (2) hybrid feature classification of imagined responses yielded better average 

scores than those of NIRS feature classification when applying a CSP transformation. 

 

4.4. Discussion 

 

 Having previously demonstrated the effectiveness of unimodal EEG (chapter 2) and NIRS 

(chapter 3) for motor imagery detection and classification, this study aimed to demonstrate the added 

benefits of a hybrid approach (simultaneous EEG-fNIRS) on the classification of right- and left-hand 

executed and imagined movements. The results identified that the combination of EEG and NIRS 

features compensated the low performing time windows of each device. Specifically, bilateral EEG 

responses at C3’ and C4’ improved NIRS data classification in the early time windows where a limited 

separable NIRS response was observed between the two hand actions. The addition of CSP pre-

processing primarily aided the classification of imagined responses, whereas a non-CSP method was 

better for physically executed actions. For the former, this only resulted in average peak accuracies for 

the hybrid approach (EEG+Δ[HbO] and EEG+Δ[HbR]) being greater than the unimodal NIRS approach 

(Δ[HbO] and Δ[HbR]), whereas for the latter, hybrid peak classification results were only better than 

EEG peak classification scores. 

 In this study a bipolar re-referencing scheme was applied to the EEG measurements in the data 

pre-processing stage. For portable BCI applications, bipolar recording a few electrodes positioned 

around the task-relevant sensorimotor areas are recommended as they reduce the need for a multi-

channel electrode setup (Leeb et al., 2007; Lou et al., 2008). Furthermore, as bipolar recordings derive 

potential differences between two monopolar electrodes, this can improve the signal-to-noise ratio 

(SNR) by eliminating shared artifacts of both electrodes (Leeb et al., 2007; Lou et al., 2008). As such, 

bipolar recording can be considered as the simplest form of a spatial filter. The first use of a bipolar 

montage setup for hand motor imagery classification was presented by Pfurtscheller and colleagues 

(Pfurtscheller et al., 1997). Six electrodes attached at a distance of 2.5 cm anterior to and posterior to 

C3, C4 and Cz were used to form the three bipolar channels. Three participants that were asked to 

imagine moving their left- or right-hand presented different ERD/ERS time courses. Whilst one 
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displayed a contralateral transient desynchronisation for both mu and beta rhythms, another showed a 

bilateral desynchronisation in the alpha band but an ERD followed by ERS in the beta band. Having 

provided feedback to these three participants, classification accuracy scores ranged between 68-92%.  

A later study by Ramoser and colleagues compared CSP-transformed spatial patterns and 

classification scores of differently referenced EEG data following left and right imagined hand 

movements (Ramoser et al., 2000). Across three participants the authors compared referential, bipolar, 

Laplacian and common average referencing methods. They observed that the spatial patterns for all 

referencing schemes were very similar with that of the Laplacian showing more distinct spatial 

differences. However, in terms of classification accuracy, the highest scoring reference methods for 

each of the three participants were a 56-channel referential (100%), 34-channel bipolar (93%) and 18-

channel common average reference (91%) scheme. Interestingly, the authors noted that the patterns for 

left- and right-hand imagery were not centered exactly at C3 and C4 electrode positions. Instead as the 

electrode with the maximum discriminatory power was either anterior or posterior to these fundamental 

electrodes, this justified the need for multiple channels (over a two-channel montage) to improve 

classification accuracy. Similar findings and discussions to these arguments have also been presented 

in several other publications (Cruse et al., 2012; Guger et al., 2003; Kalcher et al., 1996; Lou et al., 

2008; Pfurtscheller et al., 2006a; Yang et al., 2014; Yi et al., 2013). 

Putting these arguments together explains the EEG time frequency course observed in this 

study. The group average neural response to both right- and left-hand physical/imagined movement was 

predominantly bilateral. Following presentation of the action instruction, the average immediate 

response in the alpha frequency band was a desynchronisation in energy that lasted approximately 1.5 

seconds before recovering to baseline. Akin to an individual's profile shown by Pfurtscheller and 

colleagues (Pfurtscheller et al., 1997), in the current study separable energy distributions were likewise 

observed following these initial desynchronisations for right- and left-hand imagery. At C3’ right-hand 

electrical responses were of lower energy to left-hand responses 3 seconds after the action cue whereas 

at C4’ this profile was evident at the start of baseline recovery. In the beta frequency band similar 

profiles were also seen at specific time points after participants began performing the action. However, 

the lack of a prominent group beta ERD after the action cue in this study (which is commonly observed 
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during right- and left-hand movements (McFarland et al., 2000; Pfurtscheller et al., 1997)) can be 

largely attributed to the broad beta frequency window averaged for each individual. As shown by 

Pfurtscheller and colleagues, each of the three participants in their study displayed a strong contralateral 

ERD in a narrow beta window following the left-/right-hand motor imagery cue (e.g. 18-26 and 20-23 

Hz) (Pfurtscheller et al., 1997). As such, harnessing these narrow windows within the current study for 

each participant would have perhaps revealed contralateral statistically significant differences between 

right- and left-hand movements (at the alpha value of 0.05). Another reason for the lack of a prominent 

group beta ERD is possibly due to differences in the shape and position of M1 for each individual with 

respect to their skull (Morash et al., 2008). Such differences would inherently change the relationship 

between scalp channel locations and M1 thereby limiting such a simple setup from effectively sampling 

motor activity. Given the broad activation field of the task (Dechent et al., 2004; Kim et al., 2018; 

Morash et al., 2008; Pfurtscheller and Neuper, 1997), it is possible that with a larger EEG array more 

separable hand responses could be detected around C3 and C4 electrode positions through greater 

sampling of the motor cortex (which includes the primary somatosensory cortex, primary motor cortex, 

supplementary motor area, premotor cortex and posterior parietal cortex). 

 Despite the suggestion for an increased number of electrodes to improve neural signal 

localisation and to better BCI development, this may not always be applicable in the instance of patient, 

infant and multi-modality brain recording. In this study, the size of the NIRS imaging pad eliminated 

the possibility of attaching electrodes directly over the left- (C3) and right- (C4) hand brain activation 

regions. Cruse and colleagues used a similar bipolar electrode montage to measure left- and right-hand 

movements in six healthy individuals and a single patient diagnosed with a Prolonged Disorder of 

Consciousness (PDOC) (Cruse et al., 2012). Of the six healthy participants, three displayed a bilateral 

time-frequency response to each hand movement, however, unlike these individuals, the patient 

presented only a significant ipsilateral response in the late beta frequency window. Using a short time 

Fourier transformation and sliding window approach, 7-30 Hz spectral responses were divided into four 

small frequency band features that could be used together to classify single action and rest activity trials. 

Using a naïve Bayes classifier, the authors presented accuracy scores between 61-80% across the 

healthy group, whereas for the patient, a maximum score of approximately 68% was achieved 1-1.5 
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seconds after the instruction when classifying left-hand to rest response trials. Using a similar 

methodology but classifying the features of two motor responses (rather than the features of one motor 

response to rest), the current study yielded peak EEG accuracy scores between 62-81% for execution 

and 65-80% for imagery. The closeness of these scores to those achieved by Cruse and colleagues 

(Cruse et al., 2012) extends their work by highlighting the potential of a two-class motor imagery 

paradigm as a means of BCI communication.  

 Having simultaneously recorded both electrical and haemodynamic brain responses, the joint 

classification of EEG and NIRS features resulted in group average classification scores upwards of 75% 

for physical movement and 60% for imagery. Interestingly however, when compared to the AUC scores 

obtained from NIRS data classification, the addition of EEG features generally gave rise to an AUC 

time course that was lower for physical movement but greater for imagery. This increase in imagery 

data classification performance was primarily driven by significant EEG accuracy scores three seconds 

after the action cue. In both the alpha and beta band filtered EEG response, this period was 

predominantly characterised by a slower contralateral recovery to baseline from the initial ERD 

following the stimulus. Furthermore, this improvement to NIRS data classification was observed in 

early time windows where changes in haemodynamic responses between tasks were relatively small 

and reflected characteristic under/over-shoots of the haemodynamic response function. A recent 

EEG+NIRS motor imagery study by Shin and colleagues similarly reflected hybrid classification scores 

in comparison to those achieved by each modality individually (Shin et al., 2017). In their study, a 

sparse EEG electrode and NIRS optode setup was used to record 29 participants performing left- and 

right-hand motor imagery by imagining opening and closing the corresponding hand as they grabbed a 

ball. EEG data were pre-processed into mu and beta frequency band content and these were spatially 

filtered using CSP. Using the first and last three CSP components yielded a maximum group average 

classification score of 66%. In contrast, Δ[HbO] and Δ[HbR] classification using mean and slope 

features resulted in maximum accuracy scores of 59% and 61% respectively. These scores are in line 

with the maximum group average scores obtained in this study, with a similar EEG maximum being 

obtained 3 seconds after presentation of the instruction. Interestingly, Shin and colleagues observed that 

joint classification using both EEG and NIRS features resulted in average maximum accuracy scores 
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increasing to 64% and 67% for EEG+Δ[HbO] and EEG+Δ[HbR] respectively. The improved 

classification scores obtained by the researchers using a hybrid feature set primarily mirrored the EEG 

accuracy time course. NIRS features whilst mildly augmenting EEG scores in the first 5 seconds after 

the action cue, prominently improved the accuracy of the latter time windows at which the delayed 

NIRS signal was fully developed. As a similar but opposing profile was likewise reflected in the current 

study, it is clear that a hybrid BCI has an overall benefit of improving classification of covert actions 

by compensating the inferior temporal/spatial responsiveness of NIRS/EEG. 

Another aspect compared in this study was the classification results of a CSP inclusive and 

exclusive methodology. In the hybrid BCI model, overall it was observed that CSP transformation aided 

classification of left- and right-hand imagined actions, whereas diminished the subject maximum 

accuracy scores of physical movements. The effects of the CSP method on EEG and NIRS classification 

have previously been detailed in chapters 2 and 3 respectively. However, in contrast to the study in 

chapter 2 where the EEG electrode montage covered the entire head, here the bipolar layout eliminated 

a key function of the algorithm to reduce channel dimensionality and it simply purposed as a spatial 

filter. The effects of CSP in a few-channel BCI have been previously explored by Tam and colleagues 

and Górski (Górski, 2014; Tam et al., 2011). In the former study, a CSP-rank method was used to order 

64 electrodes based on CSP filter coefficients following a motor imagery paradigm performed by five 

patients with a chronic stroke condition. Across subsequent recording sessions, the data from the first 

N channels (where N ranged between 2 to 50 electrodes as previously ranked) were CSP filtered and 

classified using SVM yielding an accuracy curve that began at 75% (for a two-electrode analysis) and 

plateaued slightly above 90% for an analysis that utilised between 8-38 electrodes. From their results it 

is clear that CSP does not require a large electrode setup to be effective (refer to the publication by Ge 

and colleagues however for a contradictory argument (Ge et al., 2014)), and can deliver accuracy scores 

significantly above chance for simple montages limiting the time spent in channel preparation or the 

cost of a BCI system (where more amplifiers are required). Nevertheless, such a publication is 

somewhat biased to its findings having obtained its accuracy scores for each set of electrodes using 

prior CSP-rank analysed whole head data on the same cohort. 
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 However, a later study by Górski compared classification performances of left- and right-hand 

imagined actions in the presence and absence of CSP pre-processing (Górski, 2014). In a single 

participant, three bipolar EEG channels (C3, Cz and C4) were used to record the electrical activity 

during the task and classification accuracies were obtained using the data from one, two and three sets 

of electrodes. Using both C3 and C4 data for classification, a mean accuracy of 91% was achieved on 

the raw signal, which decreased to 87% when an additional CSP-transformation was applied. Having 

observed better classification results on raw signals, the author concluded by emphasizing the use of a 

multi-channel system when applying the CSP algorithm. However, the strength of this argument is 

limited given that the study was only performed on a single participant. With respect to the current 

study, whether application of CSP pre-processing can benefit classification performance requires a 

more large-scale experiment to be performed given that it only elevated the results of the imagery 

dataset. Nevertheless, like the results of Górski (Górski, 2014), the general closeness of the average 

maximum scores for CSP and non-CSP methods (despite there being significant differences for 

EEG+Δ[HbO] during physical movement and EEG+Δ[HbR] during imagery) suggests that a simple 

hybrid approach has significant information content to drive classification scores of either 

haemodynamic or electrical responses without the added processing provided by CSP. It can however 

be hypothesised that, where 4-8 bipolar EEG electrodes are used in combination with NIRS optodes for 

BCI development of a similar paradigm, the addition of CSP pre-processing may prove to better 

enhance hybrid classification performances as suggested by Ramoser and colleagues and Tam and 

colleagues (Ramoser et al., 2000; Tam et al., 2011).  

 Alternatively, a more computational approach for improving CSP-based classification of two-

channel montages following left and right-hand imagery trials was presented by Coyle and colleagues 

(Coyle, 2009; Coyle et al., 2008). In their study the authors highlighted that a joint neural-time-series-

prediction-preprocessing and CSP (2-components) classification approach using an SVM classifier 

yielded significantly higher accuracies in comparison to a classification approach that only included 

CSP (2-components) (Coyle et al., 2008). Their results from a two-channel montage (one channel 

adjacent to C3 and another adjacent to C4) were comparable to the accuracies obtained following 

classification of three CSP components from a sixty-channel montage in the absence of neural-time-
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series-prediction-preprocessing. The neural-time-series-prediction-preprocessing method maps and 

filters the original time series into a higher dimensional space using prediction/regression models 

(Coyle, 2009; Coyle et al., 2005b, 2006, 2008). In the two-channel montage case, this mapping results 

in a higher number of signals from which extracted features are more separable with respect to intra-

class variance. As such, the additional CSP filtering is more effective at maximising differences in 

variance between classes as a lower data dimensionality can be reached. Such an approach may 

therefore facilitate motor imagery BCI in patients where extensive brain damage hinders the possibility 

of greater electrode scalp coverage (i.e. greater than eight electrodes) or where the signal-to-noise ratio 

of several recording channels is extremely low thereby limiting the analysis to be performed on as few 

as two recording channels. 

 The present discussion has so far largely been biased towards hybrid features facilitating the 

classification of unimodal EEG/NIRS features in the regions where the temporal/spatial responsiveness 

was low. By this notion however, it is acknowledged that average peak hybrid scores were worse off 

than those of NIRS and EEG alone for physical movement and imagery respectively in the CSP 

inclusive case. Although this may indicate that hybrid (in comparison to unimodal) feature classification 

is less successful than first thought, this effect is likely due to the low number of participants that took 

part in this study, the compactness of the current montage used, and the simplicity of the hybrid 

classification approach utilised for this study. Several publications have previously addressed hybrid 

EEG-NIRS classification of motor imagery tasks using either shrinkage classifiers (Blokland et al., 

2014), meta-classifiers (Fazli et al., 2012), or both (Kwon et al., 2020; Shin et al., 2017, 2018). 

Shrinkage regularised classifiers effectively mitigate the negative effects (reduced predictive power of 

a model) of using high-dimensional feature vectors (i.e. they improve the estimation of covariance 

matrices when the trials-to-features ratio is low) and can be used in addition to CSP pre-processing. The 

shrinkage regularised linear discriminant analysis (LDA) classifier has been compared with other LDA 

variants and SVM classification by Bauernfeind and colleagues (Bauernfeind et al., 2014). Eight 

participants performed 18-24 trials of mental arithmetic during which haemodynamic responses 

(Δ[HbO] and Δ[HbR]) were measured using fNIRS. The authors identified that classification between 

mental arithmetic and rest Δ[HbO] responses using shrinkage regularised LDA yielded accuracies 
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significantly different from LDA with no regularisation (shrinkage regularised LDA: 86.3%, LDA with 

no regularisation: 69.2%), yet not statistically different from linear SVM (86.6%). The lack of a 

significant difference between shrinkage regularised LDA and linear SVM accuracies has likewise been 

found by another publication where the paradigm involved mental arithmetic (Shin et al., 2016). Whilst 

this may suggest that linear SVM (as used in the current study), like shrinkage regularised LDA, is able 

to deal with a low trial-to-feature ratio, these classifiers need to be compared on motor task data in order 

for a general statement on classifier suitability to be made. In comparison to shrinkage classifiers, meta-

classifiers classify a stack of trained weak learner models, i.e. predictions of multiple classifiers are 

used as new features to train a meta-classifier. Using a meta-classifier to classify EEG, Δ[HbO] and 

Δ[HbR] trained models, Fazli and colleagues demonstrated that hybrid classification of left- and right-

hand imagined actions yielded better average accuracy scores than either unimodal analysis (Fazli et 

al., 2012). Based on the successes of these publications it is clear that the future of covert command-

following BCI will benefit from hybrid measurements.  

 The lack of a clear positive improvement of hybrid classification is one limitation of the current 

study. Other limitations include the low chance level used to determine statistically significant AUC 

scores and the absence of any electromyography (EMG) measurements. Like in previous studies 

(chapters 2 and 3), the chance level used in the current study for group-level statistical analysis of 

classification scores was 50% (i.e. an AUC score of 0.5). However, the theoretical chance level (as 

calculated using the Matlab function ‘binoinv.m’, see Chapter 2.4) for the number of trials used for 

physical movement/imagery tasks and an alpha value of 0.05 was 62%. It would therefore appear that 

for the motor imagery task, time windows which gave rise to significant group AUC scores for hybrid 

classification at the 0.50 chance level would no longer be significant at the 0.62 theoretical chance level 

due to group average accuracies ranging close to this value between 0.62-0.69 (figure F4.6). Such low 

group average performances were predominantly driven by a subset of participants (1, 3 and 5 in table 

T4.2) that generally had peak classification scores below 70% for the motor imagery task. The use of 

the theoretical chance level is therefore recommended in order to confirm many of these assumptions 

and to accurately determine a classifier’s performance. 
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Surface EMG like EEG is a non-invasive technique that can measure electrical currents 

generated by muscle fibres prior to the production of a muscle force using electrodes that are placed on 

the surface of the skin (Drost et al., 2006). Guillot and colleagues have shown motor imagery to initiate 

small muscular contractions that can be detected by surface EMG (Guillot et al., 2007). Thirty healthy 

participants performed motor imagery and actual movements of lifting a dumbbell with surface EMG 

electrodes placed on the right biceps and triceps. The authors identified that the changes in the EMG 

pattern recorded during motor imagery mirrored the pattern recorded during physical movement. 

However, the magnitude of the muscular activity observed during motor imagery was a fraction of that 

observed during physical movement. Nevertheless, the EMG activity pattern recorded during motor 

imagery was significantly greater than that during rest with goniometric data revealing no such physical 

movements. Such muscle activity during motor imagery is thought to be a result of an incomplete 

inhibition of motor output which involves the cerebellum (Bonnet et al., 1997; Lotze et al., 1999). The 

addition of surface EMG would therefore benefit a simultaneous EEG-fNIRS setup as it would allow 

confirmation that the regions of the body involved in the task were not moved during a motor imagery 

cue and that a kinaesthetic motor imagery was indeed performed. 

 

4.4.1. Summary  

 

This study has partially proved simultaneous EEG-fNIRS to enhance motor execution and 

imagery detection in healthy individuals. fNIRS measurements highlighted clear contralateral changes 

in the haemodynamic response from baseline following right- and left-hand physical and imagined 

movement cues. This signified potential command following even though clear contralateral ERDs 

were not present in the EEG signal. Nevertheless, joint classification of these signals identified NIRS-

derived features to aid EEG signal classification only, resulting in accuracy scores that were greater 

than the scores obtained following NIRS signal classification alone. In addition, the few EEG bipolar 

channel approach combined with CSP pre-processing only aided classification of motor imagery left- 

and right-hand responses and not physical movement responses of the hand. This is likely due to 

limitations of the current setup which prevented the CSP algorithm from filtering the data into lower 
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channel dimensions that contained condition specific variances. It is therefore possible that with 

advanced data processing (e.g. joint neural-time-series-prediction-preprocessing and CSP pre-

processing) and classification (e.g. meta-classifiers) methods, simultaneous EEG and FD-fNIRS could 

better classify motor imagery responses beyond that achieved using EEG and continuous-wave fNIRS 

hybrid systems. 
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Chapter 5 

 

Conclusions 

 

5.1. Contributions of chapters 

 

Improving diagnostic accuracy and establishing a means of communication between clinicians 

and patients has been a significant goal of the field of Prolonged Disorders of Consciousness (PDOC) 

over the last two decades. A fundamental aim of this thesis was therefore to contribute to this research 

effort by demonstrating the potential of simultaneous EEG-fNIRS and its scope for clinical utility in 

patients diagnosed with unresponsive wakefulness syndrome (UWS). Using this method, the chapters 

within this thesis specifically aimed to improve the accuracy of detecting covert command-following 

as a means of overcoming the need to observe physical behaviours, which in such patients can be both 

minimal and inconsistent. Relatively inexpensive and portable EEG and NIRS devices are widely used 

biomedical research tools aided additionally by the reduced costs in computation and the availability of 

free and user-friendly analysis software. However, the technology’s underlying limitations (EEG: 

spatial resolution, fNIRS: temporal resolution) have resulted in the increased exploration of hybrid 

techniques in recent years. The breadth of this avenue and the drive to achieve clinical success has 

revealed several gaps within the literature requiring further examination.  

Taking a bottom-up approach, both EEG and NIRS systems were re-evaluated using novel 

experimental paradigms and state-of-the-art technology prior to demonstrating the potential of a 

simultaneous EEG-fNIRS protocol in healthy participants. Across the three experimental studies 

different analysis techniques were implemented to showcase the varying results brought about by each 

method and thus its ultimate impact on brain computer interface (BCI) performance. Specifically 

examined were different EEG re-referencing methods (mean mastoids: chapter 2, current source 

density: chapter 2 and bipolar: chapter 4), spatial filtering approaches (current source density: chapter 

2, and common spatial patterns: chapters 2 to 4); time-frequency signal analysis tools (wavelet 
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transform: chapter 2, Hilbert transform: chapters 2 and 4, and short time Fourier transform: chapter 4) 

and a widely used BCI channel reduction technique, common spatial patterns (CSP) (chapters 2 and 3). 

 

5.1.1. Experiment 1 - Chapter 2 

 

This first study explored the potential of goal-oriented tasks to guide covert command-

following. Specifically, it was hypothesised that EEG sampled object-oriented motor imagery responses 

could yield better classification results than simple limb (non-object-based) motor imagery actions. 

Recent functional magnetic resonance imaging (fMRI) evidence indicates a higher level of brain 

activation when individuals are asked to perform a complex motor imagery task in the presence of a 

task-related object (Mizuguchi et al., 2013). This variant of motor imagery is known to produce long-

lasting cortical reorganisation (Hubbard et al., 2009; Krebs et al., 2009) and is better for achieving 

higher EEG control accuracy when classifying non-goal- and goal-oriented imagery movements (Yong 

and Menon, 2015). Furthermore, as the performance of covert command-following varies across 

participants and is dependent on their mental imagery ability, such object-oriented motor imagery 

paradigms have shown to capture the attention of the participant better (Li et al., 2015; Perry et al., 

2011). 

EEG measured responses to ‘cup’ and ‘comb’ imagined movements generated a beta 

frequency-band topography representing predominant event-related desynchronisation (ERDs) over the 

contralateral centro-parietal brain regions. Furthermore, these profiles were in line with those generated 

following non-object-oriented hand imagery and physical hand movements. Unlike physical movement 

responses however, imagined movement topographies were of a lower power and more wide spread 

across the supplementary motor and premotor areas. Having experimented with different filters and 

frequency envelope extraction tools, it was generally observed that both the Morlet-wavelet and Hilbert 

methods yielded similar topographic results owing to their mathematical equivalence (Bruns, 2004). 

An addition to the EEG data pre-processing pipeline was to spatially filter the signals. The choice of 

spatial filter is highly dependent on the electrode montage and if applied correctly can improve the 

signal-to-noise ratio (SNR) at each electrode. EEGs are measured by calculating the difference in 
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electrical potentials between a reference electrode and recording electrodes. As these reference sites 

can have varying electrical potentials (Junghöfer et al., 1999), spatial filters can correct any skewed 

characteristics. The Laplacian spatial filter has been shown in the literature to outperform other spatial 

filtering techniques such as common average referencing (Syam et al., 2017). Application of this filter 

on the 64 EEG channel dataset improved the localisation of right-hand and toe activation around the C3 

and Cz/CPz electrode locations respectively. As a reference free method that estimates current flow 

through the scalp surface, it effectively filtered shallow broadband volume conduction noises to localise 

electrode specific brain activity (Yao et al., 2019). 

Classification of right-hand versus toes and cup versus comb responses were performed on CSP 

filtered data. The CSP algorithm is a spatial filtering and channel reduction technique commonly 

applied in EEG BCI research (Alotaiby et al., 2015; Padfield et al., 2019). The basis of this algorithm 

is to linearly project multi-channel data into a lower-dimensional spatial subspace that maximises the 

variances of two-class conditions (Wang et al., 2005). To focus the algorithm to maximise spatial 

variances within task-related brain regions, the computation was applied on a subset of scalp electrodes 

as frequently conducted in the literature (Wang et al., 2004). It was found that a subset of 35 pre-

processed EEG channels centered around the centro-frontal and centro-parietal regions could be 

reduced to just two components that maximally separated the variances of the two conditions in each 

of the three tasks (physically executed, non-object-oriented imagined and object-oriented imagined 

movements). Classification of traditional (hand vs. toes) and object-oriented (cup vs. comb) imagery 

tasks using data from these two filter components revealed improved accuracy scores for the former. 

With respect to this chapter’s hypothesis, no further motor imagery classification improvements were 

found with the addition of an object. Previous research has equally reported low success rates when 

classifying multiple object-oriented imagery responses, highlighting the difficulty in discriminating 

motor imagery of different movements within the same limb (Zhang et al., 2017b). Nevertheless, Zhang 

and colleagues concluded that sufficient EEG control accuracy could be achieved by training a classifier 

on simple one-joint imagined movements (e.g. “imagine opening and closing a drawer with the 

dominant hand”) and then testing multiple goal-oriented motor imagery tasks which require multi-joint 

synergy and trajectory planning (e.g. “imagine cutting a pizza with a pizza cutter with the dominant 
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hand”) (Zhang et al., 2017b). A fundamental limitation of this chapters objected-oriented task was the 

lack of detail provided within the instructions for comb imagery. Whereas Zhang and colleagues 

instructed their participants to “imagine combing hair with the dominant hand”, the current instructions 

to participants were to simply to imagine “combing” when presented with the comb cue. The ambiguity 

associated with this instruction would have increased the complexity of the task in a population that 

was provided with no feedback or lacked prior mental imagery training. This was evident in the alpha 

frequency-band topographies that were far different from those of simple hand imagery and cup imagery 

and those presented by Zhang and colleagues. Despite this, a goal-based motor imagery paradigm 

utilising objects activating different limbs or joints (such as a cup for “drinking” and a ball for “kicking 

into a goal”) has the potential to improve a patient’s mental imagery ability and attentional focus, and 

the clinician’s ability to conclude the true presence or absence of command following or initialise a 

means of ‘yes’ and ‘no’ based communication. 

 

5.1.2. Experiment 2 - Chapter 3 

 

A novelty of the NIRS research within this thesis was the use of a frequency-domain (FD) 

imaging system. Currently, very few researchers performing NIRS motor imagery studies make use of 

such a device (Chiarelli et al., 2018; Khan et al., 2018; Koo et al., 2015). The majority present findings 

from relatively simpler continuous-wave technology (Rupawala et al., 2018) that lacks the spatial 

resolution and penetration depth that can otherwise be achieved with advanced frequency- and time-

domain fNIRS systems. Unfortunately, those studies utilising a FD-fNIRS system in the field fail to 

evaluate the phase component (known to sample deeper tissues and to be less sensitive to superficial 

contamination (Doulgerakis et al., 2019b, 2019a)), either due to a reduced understanding of the 

parameter, or a lack of standardisation in the NIRS research community for reconstructing 

haemodynamic concentration changes from raw measurements. Nevertheless, chapter 3 was 

specifically designed to interrogate each component of the system and evaluate the device's overall 

utility for motor imagery detection. It was hypothesised that the additional phase component would 

more sensitively sample the underlying brain tissue, thereby enhancing the classification of multiple 
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motor imagery actions in comparison to intensity measurements alone. During the data quality analysis, 

the Fourier spectrum of phase-shift measurements from individual participants highlighted this 

component to have increasing sensitivity for the frequency of the stimulus and less to superficial 

physiological noises. This was highlighted by an increasing power to the stimulus frequency at longer 

separation channels (between 25-45 mm), and significantly diminished power responses to 

physiological signals at all separation channels. These results were in-line with previously published 

results (Doulgerakis et al., 2019b, 2019a). At these longer separation channels, both log-intensity and 

phase-shift components demonstrated contralateral activity on average for physical/imagined left- and 

right-hand movements. Such contralateral responses were however much greater and statistically 

significant with the 830 nm source. Similar strong contralateral effects were observed when comparing 

left- and right-hand changes in the concentration of oxy- (Δ[HbO]) and deoxy- (Δ[HbR]) haemoglobin 

signals. Reconstruction of these biological chromophores using FD (log-intensity and phase-shift) 

measurements improved signal contrast over reconstructions using continuous-wave-like (CWL) (log-

intensity) data. It is therefore clear that phase measurements should be studied where available and 

where the data is of sufficient good quality. This is because the parameter’s high sensitivity to cortical 

tissue sampling (increased depth penetration) can enable differences between motor imagery responses 

to be better observed in the absence of superficial noise contamination. However, at longer source-

detector separations (up to approximately 50 mm (Doulgerakis et al., 2019a)), a reduction in the phase 

shift profile may suggest the need for increasing the systems modulation frequency in order to improve 

the SNR. 

Classification of FD data overall yielded greater accuracies than classification of CWL data. In 

chapter 3.3.3 it was demonstrated that higher group area-under-the-curve (AUC) scores were achieved 

when classifying both raw (830 nm) and haemodynamic (Δ[HbO]) signals in the presence of phase 

information. Physically executed and imagined hand stimuli classification scores using raw 

measurements were however only slightly better than haemodynamic responses due to the addition of 

a second feature vector. The added impact of reconstructing and classifying FD-derived haemodynamic 

components (in comparison to raw signal classification) was later shown in chapter 3.3.4 in a subset of 

participants with relatively good SNR. For these participants, the improved Δ[HbO]/Δ[HbR] contrast 
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between the two hand cues outweighed the loss of a second feature vector and as such resulted in higher 

group AUC scores over a longer duration for both physical movement and imagery tasks.  

Like the EEG study (chapter 2), the impact of the CSP algorithm on NIRS data classification 

performance was also investigated. Only one publication to date has applied this signal spatial filtering 

and channel dimensionality reduction technique to fNIRS measurements (Zhang et al., 2017a). 

Application of this algorithm on multi-channel 830 nm FD measurements and two-channel Δ[HbO] 

profiles (chapter 3.3) resulted in average classification accuracies of 79% (82%) and 72% (72%) 

respectively for the physical movement (imagined movement) task. Although in this chapter the 

haemodynamic classification scores for the motor imagery task were slightly lower than the accuracies 

achieved by Zhang and colleagues, the results obtained following physical left- and right-hand 

movement classification were found to be significantly greater (Zhang et al., 2017a). The CSP algorithm 

was an effective tool for pre-processing multi-channel FD signals because a dimensionality lower than 

the measured six-channel data space could be achieved that better explained task-specific effects and 

additionally prevented classifier overfitting (Zhang et al., 2017a). By additionally investigating the 

effects of the CSP algorithm on two-channel Δ[HbO] signals, it was identified that this spatial filtering 

tool did not yield any significant improvement in classification performance. Potential reasons for this 

include not being able to extract a lower dimensional filter space that can maximise task differences, or 

not computing the variance statistical feature from CSP filter results as suggested by Zhang and 

colleagues (Zhang et al., 2017a). Alternatively, during the construction of two-channel Δ[HbO] profiles, 

the inverse model itself maximises multi-channel spatial effects each time the system is perturbed and 

an update for the change in the absorption coefficient is computed, resulting in little or no added effect 

of the CSP algorithm. Nevertheless, as the algorithm did not negatively impact the classification results 

of this few-channel dataset, it can be suggested that even where a lower dimensional space cannot be 

found, the CSP calculation can potentially be a good NIRS pre-processing step for BCI development 

with a minimal computation cost. With respect to the hypothesis for this chapter, the results presented 

have demonstrated that the phase parameter is a fundamental component for aiding classification of 

motor imagery signals. Whether classifying raw or haemodynamic signals, phase data transforms either 
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the feature space or the reconstruction of the haemodynamic response in a manner that can benefit a 

classifier in separating two-class features. 

 

5.1.3. Experiment 3 - Chapter 4 

 

In the final study of this thesis, the methods of EEG (chapter 2) and NIRS (chapter 3) were 

extended to observe and classify motor imagery responses obtained using simultaneous EEG-fNIRS 

measurements. It was specifically hypothesised that the simultaneous recording of EEG and FD fNIRS 

signals could improve the classification of imagined actions beyond that achieved by a FD fNIRS 

system alone. In fitting with the overall thesis aim to develop a multi-modal imaging system for 

applicability within the clinic, electrical activity was measured using only a four-channel EEG setup 

(previously used in (Cruse et al., 2012)) that sampled the C3’ and C4’ regions. These few electrodes 

positioned around the task-relevant sensorimotor areas were bipolar re-referenced in order to improve 

the SNR by eliminating shared artifacts of two monopolar electrodes (Leeb et al., 2007; Lou et al., 

2008; Yao et al., 2019). Immediately after the action cue, both left- and right-hand imagined movements 

generated a predominant EEG bilateral response in the alpha and beta frequency band envelopes. 

Nevertheless, contralateral effects were present on average across the group approximately 1500 ms 

onwards. These results were in-line with previous research (Cruse et al., 2012; Yang et al., 2014). 

Joint classification of EEG and NIRS features compensated the low performing time windows 

of each device, thus improving single trial classification accuracies across the group. These findings 

were in agreement with previous research conducted by Shin and colleagues (Shin et al., 2017). Based 

on the concept of neurovascular coupling, the delayed haemodynamic response is secondary to the 

immediate electrical burst of activity that can be measured in the first few seconds following a stimulus 

using EEG (Huneau et al., 2015). As such, contralateral EEG responses between 1500-4000 ms 

primarily improved NIRS data classification in the early time windows (0-5000 ms), where a limited 

separable NIRS response was observed between the two tasks. With respect to this chapter’s hypothesis, 

simultaneous EEG and FD-fNIRS measurements did further enhance NIRS motor imagery scores. 

Nevertheless, hybrid classification was neither better than EEG motor imagery scores nor NIRS 
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physical movement scores. One explanation for this can be related to the small study cohort of five 

participants on which these results were obtained. Given that others have reported increased 

classification success with this hybrid imaging method (Fazli et al., 2012), a larger scale study would 

confirm whether these additional findings were chance related or true effects of the current 

methodology. Another reason for this is possibly related to the sparseness of the EEG montage used 

and the effectiveness of CSP spatial filtering. In this bipolar channel setup, the CSP algorithm could 

not generate more than two spatial filter components and therefore could not project the data to a lower 

dimensional space that maximised class variances. Where a higher electrode montage is used, such as 

that in chapter 2, such dimensionality reduction and maximisation of class variances eliminates strong 

bilateral features inherently captured by poor spatial resolution EEG measurements. In the absence of 

this additional pre-processing, short-time Fourier transform filtered EEG signals were classified better 

for the physical movement task, however the CSP transformation provided minor improvements in the 

average peak AUC scores for the imagery task. To optimise hybrid classification, one could perhaps 

use more than two bipolar channels in order to better localise contralateral responses following CSP 

pre-processing. A final explanation for the findings of this study can be related to the high 

dimensionality of the classification feature space, given that the impact of multiple NIRS statistical 

features on classification performance was explored here in comparison to methodology used in chapter 

3. Despite having increased the number of trials within the study, it is possible that classification of 

hybrid features (eight-dimensional feature space) would have yielded greater results with the inclusion 

of a shrinkage- (Shin et al., 2018) or meta-classifier (Fazli et al., 2012). 

Overall these experimental chapters have formed the fundamental building blocks to guide 

future simultaneous EEG and FD-fNIRS research. As represented in chapter 4 and several referenced 

publications, hybrid technologies such as these can be a relatively inexpensive and portable means of 

examining the complete underlying pattern of brain activation in response to a task. With respect to 

covert command-following, the work presented within this thesis demonstrated that both electrical and 

haemodynamic signals complement each other to further improve the localisation and strength of a 

response due to the reduced sampling of noise (as provided by phase measurements). This inherently 

improved the BCI classification of imagined actions in the absence of any training or feedback. 
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Provided that a sufficient area of the scalp is sampled and an attention demanding paradigm is selected, 

simultaneous EEG and FD-fNIRS has much potential in the research community to be eventually 

extended into the clinic for either patient communication or bedside examination of awareness. 

 

5.1.4. Limitations of experiments 

 

Discussions across each of the three experimental chapters have nevertheless highlighted three 

fundamental limitations of the work presented within this thesis. These include, the chance level used 

for significance testing of classification accuracies, the lack of a testing set used to validate classification 

performance for an optimal data processing, feature extraction and classifier approach, and the absence 

of any electromyography (EMG) measurements.  

Group-level significance testing of AUC scores was performed using a permutation approach 

where subject accuracies were randomly shuffled with a chance score of 0.5 (i.e. 50%). At this level, 

classification accuracies significantly different (in the statistical sense) from a theoretical chance level 

(based on the number of classes) were determined. Subject-level significance testing of AUC scores 

was likewise performed using a permutation approach however class labels were shuffled, and the 

classifier performance was re-estimated for each permutation. Statistical significance at this level was 

therefore established from an empirical null distribution of classification accuracies using an alpha 

value of 0.05. Permutation tests as used for subject-level statistical analyses provide a reliable and data-

driven approach to estimating the significance boundary for classifier performance whilst not making 

any assumptions about the distribution of the data (Combrisson and Jerbi, 2015). However, the low 

number of permutations computed for the subject-level statistical analyses (200 permutations) highlight 

the computational burden of such a method. This cost increases further when there is a greater sample 

size and when a lower statistical significance level is required (Combrisson and Jerbi, 2015). In 

comparison to the permutation approach, the theoretical chance level used for the group-level analyses 

was suboptimal given that the 50% accuracy assumption (which is based on 2-class decoding) holds 

true only for infinite sample sizes. As discussed in chapter 2, for a 2-class paradigm, the chance level 

is 50% with a confidence interval that is dependent of the critical alpha value and the sample size 
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(Müller-Putz et al., 2008). By assuming that classifier prediction error is binomially distributed (Kohavi, 

1995), the upper confidence interval can be derived from the binomial cumulative distribution function. 

For smaller sample sizes the derived chance level therefore dramatically increases in order to reflect 

how little such a limited number of trials reflect true randomness. Furthermore, it has been shown that 

the small sample size problem cannot be circumvented by changing classifiers or the number of cross-

validation folds (Combrisson and Jerbi, 2015). In order to prevent erroneous interpretation of 

classification results, future statistical group analyses should therefore make use of the binomial 

formula to estimate chance level accuracies, as on reflection of the group-level accuracies presented in 

the three experimental chapters it would appear that many of the scores are non-significant at the derived 

chance level. 

With respect to the second limitation, data within each of the studies was divided into a training 

and validation set on which k-fold cross-validation classification was performed. Such a division was 

used for all classification approaches examined with the accuracy scores reported reflecting the best 

possible outcome for the group. In the absence of an unseen (testing) dataset, the true generalisability 

of the optimally suggested classification approach could not be determined. This argument was 

presented in chapter 3 where an optimal fNIRS classification approach to left- and right-hand 

physical/imagined movements was suggested to include CSP-pre-processing of oxygenated 

haemoglobin responses (derived using amplitude-modulated intensity and phase measurements), 

extraction of the signal mean within an 8 second time window and linear SVM classification. 

Nevertheless, having identified an optimal method, a future large scale simultaneous EEG-fNIRS study 

could adopt these processes and parameters in order to gather the classification performances that would 

determine the effectiveness of such an approach for awareness detection and/or communication. 

Despite having reported the best accuracies for simultaneous EEG-fNIRS classification of 

motor imagery signals (i.e. using a tuning dataset that underwent cross-validation classification), the 

group average accuracies remained below 75% suggesting that alternative data processing and 

classification approaches need to be investigated before the method can be claimed to be clinically 

viable. Indeed, whilst several motor imagery studies concluding clinical potential of their methods have 

reported classification accuracies upwards of 80% in healthy participants (Abdalmalak et al., 2020; 
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Fazli et al., 2012; Guger et al., 2017), others have reported average accuracies below this threshold 

(Blokland et al., 2014; Cruse et al., 2012). In particular Cruse and colleagues presented average 

accuracies following classification of right-/left-hand motor imagery and rest signals for a single patient 

in a vegetative state and six healthy controls to be below 70% (Cruse et al., 2012). The threshold for 

effective BCI communication and control is highly variable and dependent upon factors including the 

application. Furthermore, a direct comparison of final accuracies achieved across different studies is 

limited due to variability in the number of participants, number of trials, number of sessions, presence 

or absence of feedback/training, complexity of paradigm and differences in analysis and classification 

methods. Nevertheless, it has been evaluated that the majority of healthy participants (92 out of 99 

participants in (Guger et al., 2003) and 19 out of 20 participants in (Ortner et al., 2015)) are able to 

control a two-class motor imagery BCI, achieving classification accuracies above 60% which has 

likewise been shown in our case. Interestingly, the majority of these BCI studies report final 

classification accuracies following multiple motor imagery sessions. Despite a multisession paradigm 

not being explored in this thesis, it is likely that data from the same experimental paradigm recorded on 

different days or at different times on the same day would exhibit some variation due to shifts in 

EEG/NIRS channel positions and changes in electrical impedances/detector signal gains which will 

alter how accurately (i.e. whether task specific brain regions are probed) and how sensitively (i.e. signal-

to-noise ratio) cortical activity is sampled at the level of the scalp. In addition, the participants mental 

state, for example if they are stressed, may impact their ability to remain focussed on the task and 

generate specific mental events. Whilst commonly performed simple and complex (i.e. goal-oriented) 

motor imageries (e.g. hand/feet movements, tennis playing, spatial navigation) are known to map onto 

the same homuncular organisation in the sensorimotor network as the physical movement (Ehrsson et 

al., 2003; Stippich et al., 2002), the added workload of using motor imagery to communicate or to 

control an on-screen game can overwhelm naïve BCI study participants resulting in low classification 

performances (Guger et al., 2003). Nevertheless, it is more often the case that multiple sessions 

combined with feedback can improve motor imagery BCI performance as participants become more 

attentive to the task, show further interest and become skilled at adapting their mental performance 

(Bigirimana et al., 2020; Coyle et al., 2015; Guger et al., 2017). This together with EMG measurements 
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can indicate how reliable the final classification accuracy scores are because correctly performed motor 

imagery is known to initiate weak muscular activity patterns at the targeted limb that can be detected 

by surface EMG electrodes (Guillot et al., 2007). 

Another reason for the need for multiple simultaneous EEG-fNIRS motor imagery sessions 

relates to the non-stationarity of EEG signals. The signals have task related information encoded in both 

the time and frequency domains. Planning and execution of kinaesthetic motor imagery results in 

changes in brain frequency rhythms over the motor cortex; specifically, in the mu and beta frequency 

bands the typical initial response is an event-related desynchronisation where there is a suppression in 

synchronisation of frequency rhythms (decrease in frequency band power) followed by an event-related 

synchronisation (increase in frequency band power) corresponding to the termination of the imagined 

movement (Pfurtscheller and Lopes da Silva, 1999; Rao and Scherer, 2010). Time-frequency domain 

analysis can capture sudden temporal variations with respect to each frequency component however 

these signals are known to fluctuate with mental states, such as when an individual is stressed, anxious 

or attentive (Shen and Lin, 2019), and with age (Matoušek et al., 1967). A paradigm that is repeatedly 

performed over multiple sessions would therefore allow for such oscillatory changes to be tracked and 

the BCI to be regularly updated thereby yielding a model that can more accurately detect (i.e. with a 

lower false positive rate) covert commanding-following which in turn can be used as a proxy for 

communication. 

 Taking into consideration each of these limitations would allow future work to better realise 

the true potential of the experiment and its effectiveness within the clinic. Indeed, the results and 

discussions presented within this thesis demonstrate that simultaneous EEG-fNIRS can be used to detect 

covert command-following using motor imagery in healthy individuals. With further research the 

improved technology and methodology shall ultimately prove to be sufficiently reliable for use in the 

bedside examination of awareness in patients with PDOC. 
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5.2. Clinical potential and future perspective 

 

When considering the field of PDOC, EEG has a large and ever-growing community of 

researchers dedicated to studying and developing the technology for bedside applications in the clinic, 

whereas fNIRS can be considered to be in its infancy with only a few publications to date demonstrating 

the instrument’s applicability in such patients (table T5.1). Nevertheless, the coupled advantages of the 

two devices and their complementing information content has sparked a new research avenue, 

specifically simultaneous or hybrid EEG-fNIRS, as a potential means to better assist clinicians in 

diagnosing and communicating with patients beyond the level of accuracy achieved using fMRI, MEG, 

EEG or fNIRS alone. The ongoing clinical challenge in the PDOC field is to quantitatively estimate a 

patient's brain state in order to more accurately detect awareness, if present, in those diagnosed with 

UWS. The hope from such dual imaging systems is therefore better diagnostic utility in probing brain 

activity to differentiate between unresponsive wakefulness and minimally conscious states. The major 

aim of this thesis was therefore to develop the simultaneous EEG-fNIRS technology in a manner that 

would assist future investigators to translate this research into the clinic and address these fundamental 

questions. 
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Table T5.1: Summary of the current literature using fNIRS in patients with PDOC or LiS. 

Diagnosis 
Number of 

patients Overview of main results References 

PDOC 2 – MCS 

● Functional activation (i.e. Δ[HbO] and Δ[HbR]) 
during passive and somatosensory stimulation. 

● Weak brain activations during active hand opening and 
closing. 

(Molteni et 
al., 2013) 

PDOC 5 – UWS 
11 – MCS 

● Hemispheric differences during motor imagery of 
squeezing a ball with the right-hand. 

● Patients in a minimally conscious state shared fNIRS 
profiles similar to healthy participants. 

(Kempny et 
al., 2016) 

PDOC 
7 – UWS 
2 – MCS 

● In eight of the nine patients, spinal cord stimulation for 
30 seconds induced sustained cerebral blood volume 
changes in the prefrontal cortex (an area important in 
the consciousness system; measured through an 
increase in total haemoglobin concentration). 

● An inter-stimulus interval of two minutes significantly 
improved amplitudes of the total haemoglobin 
concentration across blocks. 

(Zhang et al., 
2018b) 

LiS 40 
● The intentions of 23 patients were successfully 

detected (80% correctly identified) by assigning 
different mental tasks to ‘yes’ and ‘no’ responses. 

(Naito et al., 
2007) 

LiS 1 

● The responses to open sentences were detected by 
instructing the patient to think ‘yes’ and ‘no’ to several 
questions. 

● 72% of responses were correctly identified at the 
bedside. 

(Gallegos-
Ayala et al., 

2014) 

LiS 1 

● Without any prior training, tennis playing motor 
imagery was used successfully by a patient as a proxy 
to communicate responses to three questions. 

● Results were confirmed by the patient’s residual eye-
movement communication channel. 

(Abdalmalak 
et al., 2017b) 

PDOC: prolonged disorders of consciousness; LiS: locked in syndrome; UWS: unresponsive wakefulness 

syndrome; MCS: minimally conscious state 

 

The research within this thesis serves much prospect for future clinical investigation provided 

that fundamental studies are conducted on healthy participants, such as demonstrating object-oriented 

imagery performance using a simultaneous EEG and FD-fNIRS setup. Whilst the EEG research 

presented in chapter 2 extended basic covert command-following studies to explore motor imagery 
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performance with the aid of an object, a substantial portion of this thesis was dedicated to probing a 

highly complex FD-fNIRS system for motor imagery detection alone and in combination with EEG. 

The novelty of this system was primarily the output of a phase component that has the potential to assist 

clinicians in detecting sufficiently sensitive task-relevant cortical activations in a single-subject by 

measuring physiological noise-free brain responses. Furthermore, in the face of BCI development, such 

dual instrumentation can also enable neural features of multiple tasks to be classified to a higher 

accuracy. When comparing the classification accuracies presented in this thesis by healthy participants 

following motor imagery movements with those yielded by patients with a PDOC (Coyle et al., 2015; 

Cruse et al., 2011), from a BCI standpoint it would be considered that several of these participants were 

unaware. On the contrary, these healthy participants were in fact aware, yet the current BCI model 

failed to dissociate their task responses to a significant degree above chance (where chance is 50% with 

an upper confidence limit) that would reflect their mental state. This was primarily due to a single 

session of motor imagery being performed in the absence of any feedback. As discussed in section 

5.1.4, a single BCI session has limited scope in capturing variability within EEG rhythms particularly 

because the first motor imagery session is influenced by brain states corresponding to fatigue 

(depending on the time of day the study is performed), anxiety (having to perform a novel complex 

paradigm) and stress levels (external factors that may initiate mind wandering), which will inevitably 

vary on a day to day basis. It is therefore unlikely that a single session of covert command-following 

would be effective for confirming the brain state of a patient in a PDOC. However, the data from a 

single session of a few motor imagery trials was investigated here to demonstrate performances of an 

array of analysis and classification methods with discussions surrounding how these could translate to 

a patient population where each recording session could be of variable durations and spread across 

several months depending on the severity of the patient’s injury. Whilst fundamental methods and 

results have been presented here, it is acknowledged that there remains significant work in terms of 

signal processing and analyses especially for those researchers and clinicians who are not experts in 

electrical and optical imaging. 

According to a recent investigation by Pfeifer and colleagues, the lack of standardised signal 

processing methods or guidelines for fNIRS data is likely to cause novice users to employ data analysis 
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tools provided by commercial companies (i.e. a “black box”), which are unlikely to take into account 

the parameters of the study (Pfeifer et al., 2018) and may increase false positives or false negatives in 

the final published results (Tachtsidis and Scholkmann, 2016). Indeed, Pfeifer and colleagues 

demonstrated statistical discrepancies between a “black box” signal processing stream, and that of a 

relatively simple self-implemented signal processing stream that involved motion artifact removal and 

band-pass filtering of haemodynamic data (Pfeifer et al., 2018). With the increasingly widespread use 

of NIRS devices across biomedical research, the field will clearly benefit from standardisation, as 

adopted in much of fMRI (e.g. FMRIB Software Library; FSL and Statistical Parametric Mapping; 

SPM) (Caballero-Gaudes and Reynolds, 2017; Frackowiak et al., 2004; Fristen, 1997; Jenkinson et al., 

2012; Smith et al., 2004; Strother, 2006) and EEG research (e.g. EEGLAB and FieldTrip) (Delorme 

and Makeig, 2004; Oostenveld et al., 2011). Nevertheless, there are increasing signs towards this given 

that, for example, the modified Beer Lambert's law is a widely accepted means for recovering 

haemodynamic parameters from continuous-wave data. This however results in research groups less 

frequently progressing to advanced systems (i.e. FD and time-domain NIRS) or opting to only 

investigate intensity outputs when imaging from FD devices. When using signal processing methods as 

provided by manufactures, it is however paramount that the research team have an advanced 

understanding of every step to ensure that the data and conclusions are valid, reliable and interpretable.  

Another future consideration is the optimal number of EEG and NIRS channels during 

simultaneous EEG-fNIRS acquisition. A large number can in some cases be suboptimal due to an 

elevation in patient discomfort, increase in preparation time, added expenses of purchasing more 

amplifiers, reduced portability, high dimensionality of the data, and associated computational costs 

during classification. A high feature dimension space requires more trials and a longer time to train the 

classifier – first introduced by Bellman as the “curse of dimensionality” (Bellman, 1957). Furthermore, 

a large number of predictor variables may increase the complexity and instability of the classifier 

resulting in the overall degradation of classification accuracy scores. A benefit of high density EEG 

however is that whole head coverage allows the researcher to confirm the physiological plausibility of 

the spatial pattern maps associated with each task - i.e. is the activity restricted to electrodes over 

contralateral sensorimotor cortices for hand imagery? While focusing on a small area of the scalp is 
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beneficial from the perspectives of statistical multiple-comparisons, data dimensionality, and where a 

patient has sustained extensive brain damage, it is not possible to however ensure that the recorded 

electrical and haemodynamic changes are physiologically plausible, or whether they reflect a global 

amplification in neural activity and blood flow across the entire brain. Therefore, in order to balance 

these fundamental issues, future research could extend towards moderately increasing scalp coverage 

(beyond that presented in chapter 4) to better sample the underlying brain activity and in turn utilise 

spatial filters, such as the Laplacian, data pre-processing methods such as neural-time-series-prediction-

preprocessing (Coyle et al., 2008) and dimensionality reduction techniques, such as common spatial 

patterns, to aid in the classification of the signals. Furthermore, with respect to hybrid data 

classification, promising methods for limiting the dimensionality of the feature space, in addition to the 

method depicted in chapter 4, include the use of shrinkage- (Shin et al., 2018) and meta-classifiers 

(Fazli et al., 2012).  

One final future directive considers the applicability of patient training or feedback as part of 

the experimental protocol. Whilst motor or mental imagery is an effective noise-limiting tool for 

assessing command following, the absence of these fundamental elements can cause difficulties in 

ensuring that the individual remains engaged with the task and that novice imagers refrain from 

performing a third person covert response. Furthermore, given the need to perform tens of trials in order 

to accurately classify the responses, this can be an exhaustive repetitive task. The benefits of training 

and feedback on BCI performance have been widely explored in healthy individuals (Guger et al., 

2003), with recent evidence of its effectiveness in patients diagnosed with MCS (Coyle et al., 2012, 

2013, 2015; Dayan et al., 2019) and UWS (see chapter 1.2. for further details) (Dayan et al., 2019). 

Coyle and colleagues for example performed an EEG-based assessment of awareness in four patients 

with MSC and determined whether control of an EEG-based BCI could be improved with the addition 

of visual and/or auditory feedback during a motor imagery task (Coyle et al., 2015). The authors 

reported peak classification accuracies to be greater during feedback assessments (>70%) as patients 

realised they could modulate their brain activity and also appeared to be more attentive with the task. 

The authors also found patients to be more alert during audio than visual feedback assessments with the 

former increasing sensorimotor rhythm BCI control. Although this can be attributed to the large palette 
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of musical genres presented to the patients, auditory feedback is feasible for patients with UWS or MCS 

that have limited gaze control or visual acuity (Coyle et al., 2015; Giacino et al., 2004). Nevertheless, 

as such training and feedback can have limited scope in many of these patients, as an alternative this 

thesis took the approach of concretely improving both the analysis pipeline and technology to ensure 

that single subject responses are reliable from as few trials as possible. However, it is necessary to 

emphasise that where possible, for example if the patient is showing signs of compliance, training and 

feedback should be used to maximise the accuracy of the BCI system. 

It is clear that for simultaneous EEG-fNIRS to realise its potential in PDOC assessment, 

research teams must incorporate multidisciplinary expertise in cognition, clinical practice, physical 

sciences, and computational sciences. With principled paradigms for diagnosing covert awareness in 

combination with state-of-the-art devices and algorithms for data processing, modelling, and feature 

extraction/classification, EEG-fNIRS has great potential to improve diagnostic accuracy in PDOC and 

enable patients to communicate their true mental state to the outside world. 
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Appendix 

 

 

Figure AF2.1: Effect of complex Morlet wavelet cycle number on time series signal convolution. Convolution 

of the time series signal with the complex Morlet wavelet yields a complex-valued signal from which 

instantaneous power can be extracted at each time point. Presented here are examples of 10 and 15 Hz centered 

wavelets and their corresponding power spectral densities. The number of cycles, which defines the width of the 

Gaussian taper has significant importance for controlling the trade-off between temporal and frequency precision. 

A narrow Gaussian (small number of cycles) leads to an increased temporal precision at the cost of decreased 

spectral precision, and vice versa for a wider Gaussian. Here the three-cycle wavelet is more sensitive to transient 

activations whereas the fourteen-cycle wavelet is more sensitive to longer activations at specific frequencies. 
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Figure AF2.2: Power spectral density of different finite impulse response (FIR) and infinite impulse response 

(IIR) filters. A systems impulse response is the output signal that results from input of an impulse, i.e. a short 

duration time domain signal. An IIR filters response is a slow and infinitely decays towards zero, whereas a FIR 

filters response is a settling to zero in finite time (top plot). The termination of the FIR filter kernels response (and 

a decay to zero amplitude in the time domain) is marked by an oscillatory component in the stop band. FIR (e.g. 

windowed linear phase) and IIR (e.g. Butterworth, Chebyshev and Elliptic) filters are suggested to provide extra 

frequency specificity by plateauing maximally in the desired pass band (top plot). However, a detailed inspection 

of these responses reveals (bottom plot) that only the window-based FIR and Butterworth IIR filters are maximally 

flat in the passband whereas the others generate ripple artifacts in the frequency response. Of both the window-

based FIR and Butterworth IIR filters, the latter is preferred as it allows for a sharper transition zone in the 

frequency response without introducing ringing artifacts in the time domain. 
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Figure AF2.3: Effect of order number on the Butterworth filters response. The quality of a Butterworth filters 

response is dependent on its order which governs its frequency precision. Very low filter orders (1-3) attenuate 

much more of the desired alpha band whereas at higher orders (7-10) breaks and ripples are more prominent in 

both the pass and stop bands. 
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Figure AF3.1: Group average classification scores for each sliding time window having excluded or included 

CSP-pre-processing as part of the feature extraction process. Results are presented for physical movement and 

imagery tasks having classified left- and right-hand statistical features from Δ[HbO] signals derived using 

frequency domain measurements. These plots demonstrate identical maximum AUC values for CSP-excluding 

and -including classification during physical movement (peak AUC of 0.68, p<0.05) and imagery (peak AUC of 

0.56) tasks. 

 

 

 

 

 

 

 

 

 

 



 219 
 

Table AT3.1: Group average maximum classification scores for different statistical features and sliding window 

lengths. Presented here are group average maximum AUC scores that have additionally been averaged between 

the results obtained from both the physical movement and imagery tasks. A sliding window length between 5-9 s 

appears to be most effective. Furthermore, of the six statistical features tested, both the mean and the peak appear 

to generate the highest classification scores with AUC values greater than 60%. 

Sliding window 
length (s) 

Average peak AUC 
Mean Variance Slope Peak Skewness Kurtosis 

1 0.61 0.53 0.60 0.60 0.54 0.54 
2 0.62 0.53 0.54 0.61 0.54 0.54 
3 0.62 0.53 0.59 0.61 0.52 0.52 
4 0.62 0.53 0.55 0.62 0.53 0.53 
5 0.63 0.53 0.59 0.62 0.52 0.53 
6 0.63 0.55 0.54 0.62 0.54 0.54 
7 0.63 0.54 0.60 0.63 0.54 0.52 
8 0.63 0.54 0.57 0.63 0.54 0.53 
9 0.63 0.55 0.60 0.62 0.53 0.52 

10 0.63 0.55 0.59 0.63 0.53 0.52 
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