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ABSTRACT Search trajectory networks (STNs) were proposed as a tool to analyze the behavior of
metaheuristics in relation to their exploration ability and the search space regions they traverse. The
technique derives from the study of fitness landscapes using local optima networks (LONs). STNs are
related to LONs in that both are built as graphs, modelling the transitions among solutions or group of
solutions in the search space. The key difference is that STN nodes can represent solutions or groups of
solutions that are not necessarily locally optimal. This work presents an STN-based study for a particular
combinatorial optimization problem, the cyclic bandwidth sum minimization. STNs were employed to
analyze the two leading algorithms for this problem: a memetic algorithm and a hyperheuristic memetic
algorithm. We also propose a novel grouping method for STNs that can be generally applied to both
continuous and combinatorial spaces.

INDEX TERMS Search trajectory networks, cyclic bandwidth sum problem, hyperheuristics, memetic
algorithms, hybridization.

I. INTRODUCTION
Observing the inner dynamics of metaheuristics is crucial
for a better understanding of how these algorithms differ-
entiate from each other on the way they explore the search
space, and how those differences relate to their performance
under specific scenarios. This is increasing in relevance,
as in recent years numerous novel metaheuristics have been
proposed. The metaphorical formulation of these algorithms
often takes inspiration from processes found in natural sys-
tems, physics [1]–[3], social behaviors of species like ants [4],
bees [5], fireflies [6], chaos and game theory [7]–[9], etc.
Furthermore, there is a tendency for metaheuristic hybridiza-
tion [10]–[12] and hyperheuristics [13], [14]. Very promising
results have been obtained by such proposals, causing a grow-
ing interest in extending their applications and also increasing
the need for analysis tools to effectively characterize their
behavior.

On this matter, search trajectory networks (STNs)
[15], [16] are a relatively novel analysis tool for gaining a bet-
ter perspective on the inner search dynamics ofmetaheuristics

The associate editor coordinating the review of this manuscript and

approving it for publication was Donghyun Kim .

in relation to how they explore the search space of a particular
problem instance. STNs allow to identify how the success of
a metaheuristic relates to the search process being conducted
through specific search regions. Therefore, STNs constitute
a metaphor-free attempt at profiling metaheuristics.

Both local optima networks (LONs) [15], [17] and STNs
represent, in the form of directed graphs, key structural fea-
tures of the search space and how the algorithms navigate
them. Both models are built as networks and analyzed using
network metrics to identify the paths conducting towards the
best search space regions, which areas are hard to escape
from, and how they are related. The key difference is that a
search trajectory network is created from trajectories between
solutions that are not necessarily locally optimal. In that way,
STNs overcome some limitations of LONs, opening their
applicability to contrast the behavior of a wider variety of
metaheuristics, such as population metaheuristics that do not
necessarily perform local search.

STNs were initially proposed to characterize differen-
tial evolution and particle swarm optimization [18] for sev-
eral classical continuous optimization benchmark functions
[19]–[21]. In this scenario the continuous search space was
partitioned into regular size hypercubes. STN analysis was
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later extended to cover not only population-based algorithms
but also stochastic local search methods, and both continu-
ous and combinatorial optimization problems [16]. However,
representative standard metaheuristics, as opposed to state-
of-the-art methods, were considered. As the combinatorial
case study, a classic facility location problem [22] (p-median)
encoded with binary strings was used. In the continuous
domain, search can be partitioned into discrete hypercubes
of a predefined length, thus defining the STN locations. This
cannot be done for discrete spaces. For discrete spaces, loca-
tions can be associated with individual solutions. However,
it is still desirable to coarsen the search space in order to
appreciate the trajectories at different levels of granularity.
Therefore, the authors proposed a partitioning scheme based
on the sampled solutions [16]. The idea was to group as a
single location all solutions sharing the same value in some
variables while ignoring (removing) other variables. This
method worked well for a binary representation, but it is not
suitable for a permutation encoding.

In this work we report a STN-based analysis of a com-
binatorial optimization problem, the cyclic bandwidth sum
problem (CBSP) [23]. Our goal is to gain a new perspective
on how the two state-of-the-art metaheuristics proposed for
the CBSP behave, why are they successful, why some type
of instances seem more challenging, as well as obtaining
new insights of the underlying fitness landscapes. These
algorithms are interesting subjects for STN analysis because
their design features differ from the classical memetic algo-
rithm they were originally based on. The first algorithm is
a memetic algorithm (MA) that employs a non-intensive
local search approach [24], the second one is a hyper-
heuristic approach [25] using a dynamic multi-armed bandit
(DMAB) [26] to automate the selection of the genetic opera-
tors and the fitness function [27] within a MA.

Another contribution of this work is the proposal of a
search space partitioning method based on reducing the
solutions dimensions while preserving their distances using
multidimensional scaling [28]–[30]. This approach to search
space partitioning is more general than those previously used
for STN analysis [15], [16], as it can be applied to any form
of solution encoding (discrete and continuous) as soon as a
suitable distance metric between solutions can be devised.

The remaining sections are organized as follows. Section II
provides a brief introduction to graph embedding prob-
lems and in particular to the CBSP. Section III describes
the methodology for the creation and analysis of STNs.
Section IV introduces the two studied algorithms. The exper-
imental results are presented and discussed in Section V.
Finally, Section VI presents our conclusions.

II. THE CYCLIC BANDWIDTH SUM PROBLEM
Graph embedding problems (GEPs) [31] are a family of
combinatorial optimization problems focused on the rear-
rangement of graphs to fit a certain new layout. These type
of problems are commonly defined in terms of a guest graph
and a host graph. The guest graph describes the original

relationships among whichever objects the graph represents,
for example, a virtual computer network or a set of related
facilities. Meanwhile, the host graph describes the new layout
to rearrange the guest graph, for example, a network infras-
tructure architecture, or a set of connected physical locations
for facilities. Therefore, graph embeddings are equivalent to
mappings that assign guest nodes to host nodes, and guest
edges to paths in the host. The embeddings are often repre-
sented as labelings [32], assigning to each guest node a host
node represented by using its label.

GEPs arise in areas such as VLSI design [33], automatic
graph drawing [34], [35], codes for error detection and cor-
rection [36], network virtualization [37], parallel virtual com-
puting [38], scheduling [39], [40] or facility allocation [39].

Commonly, a GEP’s objective is to find an embedding
that optimizes a certain measure, defined with respect to the
topological structure of the host graph. The generalized clas-
sification of GEPs [32] includes three groups characterized
by the nature of what are they trying to optimize: a) the
distance among guest nodes when embedded in host nodes,
b) the sum of distances among guest nodes when embedded
in host nodes, and c) the cutting of host edges embedded in
host paths.

One of the best-known and widely studied GEP is the
bandwidth problem [41], consisting in rearranging a graph
into a linear layout, i.e, embedding a guest graph of order n
into the path graph Pn in such a way that the linear distance
among adjacent guest nodes, i.e., the bandwidth, is mini-
mized. The bandwidth problem belongs to the first group
mentioned above. The bandwidth sum problem [42]–[44] is
then the GEP consisting on minimizing the sum of the linear
distances. Now, consider how a cut on a particular edge of the
host graph will disrupt the embedded guest edges that cross
through it. The cutwidth problem [32], [45], [46] consists in
minimizing the number of disrupted guest edges affected by
a cut on any host edge.

Particular GEPs are also defined by the topology of the host
graph. The examples mentioned above involve only linear
topologies in the form of path graphs as hosts. When the
guest graph topology is instead circular, denoted by the cycle
graph, the arising problems are the cyclic bandwidth [47],
the cyclic bandwidth sum [48], and the cyclic cutwidth [49],
respectively.

This paper deals with the cyclic bandwidth sum problem
(CBSP) [48], where the objective is to find the optimal way
to embed a graph into a circular layout while minimizing the
sum of cyclic distances between adjacent guest nodes.

Formally, the CBSP is defined as follows. Let G = (V ,E)
be a finite undirected graph (the guest) of order n = |V | and
Cn a cycle graph (the host) with vertex set |VH | = n and edge
set EH . Given an injection ϕ : V → VH , representing an
embedding of G into Cn, the cyclic bandwidth sum (the cost)
for G with respect to ϕ is defined as:

Cbs(G, ϕ) =
∑

(u,v)∈E

|ϕ(u)− ϕ(v)|n , (1)
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where |x|n = min{ |x|, n − |x| } (with 1 ≤ |x| ≤ n − 1) is
called the cyclic distance, and the label associated to vertex
u is denoted ϕ(u). The CBSP consists in finding the optimal
embedding ϕ∗, such that Cbs(G, ϕ∗) is minimum, i.e., ϕ∗ =
arg minϕ∈8{Cbs(G, ϕ)} with 8 denoting the set of all the
potential embeddings.

The value of the optimum can be calculated in an exact
way for the following graph topologies: path, cycle, complete
bipartite graph,wheel, and power of cycles [23]. Approxima-
tions of the optimal value were reported for Cartesian prod-
ucts of two graphs (paths, cycles, and complete graphs) [50].
Regarding heuristic solution proposals, the problem has been
approached by general variable neighborhood search [51],
a constructive greedy heuristic [52], as well as the MA [24],
and DMAB+MA [25] algorithms analyzed in this work.

III. BUILDING SEARCH TRAJECTORY NETWORKS
Given a metaheuristic algorithm A, an STN is built as a
weighted, directed graph STNA(VA,EA) where:

• VA is the set of search space locations visited by the
algorithm.

• EA is the set of directed edges, such that two nodes
a, b ∈ VA are adjacent if the algorithm A performed a
transition between solutions in the respective locations.
The weight of the edge represents the number of times
the transition from a to b occurred during the search.

A location is a search space region that contains at least
one representative solution. Each representative solution
was the current best solution during an iteration of the algo-
rithm, corresponding to the best solution in the population for
multi-trajectory metaheuristics or the incumbent solution for
single-trajectory metaheuristics.

In order to compare the search dynamics of two or more
metaheuristics, the STN models for two or more metaheuris-
tics, under the same problem instance can be merged. This
idea of merging the trajectories of two algorithms in a single
network model was first proposed and implemented for local
optima networks in [53], and later adapted to STNs [15], [16].

More formally, the merged STN for two metaheuristic
algorithms Ai and Aj is the union of the STN graphs STNAi
and STNAj as STNAi,Aj = (VAi ∪ VAj ,EAi ∪ EAj ). The weight
of each edge in the merged STN is equal to the sum of the
number of times algorithmsAi andAj performed the transition
represented by the edge.

A. SAMPLING, MODELING AND PARTITIONING
The first step for creating an STN is to record an aggregated
sample of the transitions between representative solutions
that occurred during independent executions of the stud-
ied metaheuristic for a problem instance. A parameter is
employed to control the frequency of recording those tran-
sitions. This process is quite simple to implement, it has no
effect on the metaheuristic search process, and it does not
represent a significant overhead.

The STN modeling is the process of turning the sampled
trajectories into a network of locations, under the previous
definition of nodes, edges and weights. An important part
of this process is to establishing a mapping between single
solutions and locations. By definition, a location can be a
subregion as small as containing only one single solution.
However, the STN can result more informative if locations
represent instead subregions of the search space. The defini-
tion of which solutions are mapped to the same location can
vary. In general, it should be linked to a notion of closeness
among solutions. For example, for continuous optimization
problems, a partitioning of the search space into hypercubes
of regular size has been induced by adjusting the precision of
the solution encoding [15].

Since the quality of each location is represented by the
fitness of the best solution that belongs to it, it is implied
that, if the metaheuristic can reach a solution within the corre-
sponding subregion, it is likely that it could as well reach the
best solution from it. Grouping solutions into STN locations
also provides a globalized perspective on the overall search
dynamics. For example, by making it possible to identify if
an algorithm is recurrently visiting some specific regions, and
to detect regions that act like hubs, even if the algorithm does
not revisit the exact same solutions.

The partitioning method employed in this work is based
on the classical multidimensional scaling [28], [29]. The
idea is to reduce a set of solutions from a representation
in n dimensions to the Euclidean space, while minimizing
the distortion of the pair-wise distances among them. The
solutions we dealt with in both algorithms were encoded as
permutations of n elements. Under the problem definition,
they are circular permutations. Therefore, we employed the
interchange distance [54] to evaluate the pair-wise distances
between unique solutions in the sample. The interchange
distance measures the number of cycles between two per-
mutations, therefore it is suitable to reflect the swap-based
edition distance for CBSP potential solutions. Then, each
solution was mapped to a 3-tuple (three dimensional coor-
dinates) by using classical multidimensional scaling. At that
moment, the obtained coordinate values are rounded up to
integers for grouping solutions sharing the same resulting
integer 3-tuples. Multidimensional scaling has been previ-
ously employed in the creation of visual representations of the
distribution of solutions to analyze the cartography of search
spaces [30], [55].

B. ANALYZING STNs
The analysis of STNs has two complementary components:
a set of network metrics and a visual representation. The
metrics capture relevant features of the merged networks
and their structure, while the visual representation provides
a better idea of how the trajectories intersect and allows to
observe relevant locations.

The set of network metrics evaluated in this work are the
following:
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• nodes: Number of nodes
• edges: Number of edges
• end nodes: The number of unique nodes without any
edge going out from them. Each end node corresponds
to the end of a trajectory.

• best nodes: The number of unique nodes with a fitness
equal to the best found during the trajectory.

• in-strength: Evaluated for the best nodes and end nodes,
it is the ratio between the sum of their weighted incom-
ing degree and the sum of weighed incoming degrees for
all end nodes.

• shared nodes: Number of nodes visited by more than
one algorithm.

• visited nodes (v. nodes): Number of nodes visited by
algorithm Ai.

• shortest path length (s. path): Length of the shortest
path to best node visited by algorithm Ai.

• number of shortest paths (n. paths): Number of short-
est paths to the closest best node visited by algorithm Ai.

The STNswere plotted in R by employing the igraph pack-
age [56] and the force-directed layout algorithms Kamada-
Kawai [57] and Fruchterman-Reingold [58]. Both layout
algorithms try to create displays of the network that have:

• a roughly even distribution of vertices
• minimized crossings of edges
• approximately uniform length edges
• preservation of inherent symmetries, in such a way that
similar subnetworks are depicted similarly as well.

IV. THE HYBRID ALGORITHMS
The algorithms considered in this study are a memetic algo-
rithm (MA) [24], and DMAB+MA [25], a technique that
employs a dynamic multi-armed bandit [26] as a hyperheuris-
tic approach to adaptive operator selection (AOS) [59] within
a MA. DMAB+MA can be considered also as an adaptive
memetic algorithm. Both are hybrid population-based algo-
rithms, and to the best of our knowledge, they are the top
state-of-the-art methods regarding solution quality for the
CBSP. These algorithms are the result of prior research on
the interplay of different configurations of genetic operators
within a MA, extending to the selection, crossover, fitness
function, mutation and survival strategy, and how the strength
of individual configurations can be combined in an AOS
approach.

A. MEMETIC ALGORITHM
The MA structure is described in Algorithm 1. The MA
begins with a population P of µ permutation encoded ran-
domly generated parents. Throughout the generations, pairs
of parents are selected using binary tournament. Each pair of
parents produces one offspring individual o with probability
pc, by using cyclic crossover. Alternatively, with probability
1 − pc, individual o is instead a copy of the fittest parent
in the pair. Individual o is mutated with probability pm. The
mutation operator is a fitness oriented reduced 3-swap that

Algorithm 1 Memetic Algorithm
1: input Guest graph G
2: output Best-found solution g
3: P← initializePopulation(P)
4: O← ∅
5: g← Pbest
6: repeat
7: for j← 1 to µ do
8: Pa,Pb← selection(P)
9: o← crossover(Pa, Pb, pc)
10: o′← mutation(o, pm)
11: o′′← inversion(o′, pi)
12: O← O ∪ o′′

13: g← fittest individual among g, o, o′, and o′′

14: end for
15: P← survival(P, O)
16: O← ∅
17: Pbest ← localsearch(Pbest , ls)
18: g← fitter individual among current g and Pbest
19: until stop criterion is met
20: return g

works as follows. Three random distinct genes are chosen,
then the impact over the fitness of the six different ways on
which those genes can be swapped in pairs are calculated.
The mutated individual o′ results from performing the swap
that result on the best fitness improvement, or the one that
deteriorate the fitness the least (if there is not an improv-
ing swap). After this, an inversion operator is applied with
an independent probability pi, producing a further mutated
individual o′′.
Together, the reduced 3-swap and insertion operators can

be seen as a two phase mutation in which each phase is
independent. The first phase is oriented to seek good fitness
mutations, while the second has a random nature. While
only individual o′′ joins the offspring population O, possible
improvements on the best-so-far solution achieved by indi-
viduals o and o′ are still recorded. This MA uses the (µ, λ)
type survival, directly replacing the parent population P by
the offspring population O.

The local search phase occurs after the survival. Under this
MA approach, the local search is non-intensive, in the sense
that a) it is not applied to each individual in the population,
but rather only to the fittest individual in it, and b) it is not
carried on until a local optimum is reached, but instead only
for a reduced number ls of iterations. These particularities
are intended to prevent the population from becoming rapidly
overtaken by locally optimal individuals, whose genes could
proliferate excessively and cause premature convergence.
Notice that the local search can resume its process where it
was left if the best individual in the population remains the
same for more than one generation (i.e., Pbest,t = Pbest,t+1),
but also it can be restarted from similar fitness value individ-
uals (i.e., f (Pbest,t ) = f (Pbest,t+1) and Pbest,t 6= Pbest,t+1).
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B. DMAB+MA
The multi-armed bandit (MAB) [60]–[62], is an effective
way to approach the problem of choosing the best among k
alternatives. The MAB is traditionally modeled as k casino
bandit machines, each with an underlying unknown reward
probability of yielding a reward, where the objective is to
pick whose machine’s arm to play in order to maximize the
accumulated reward over time. The dynamic multi-armed
bandit (DMAB) [26] is the version of the MAB for dynamic
scenarios, where the arm’s reward probabilities can drift.

In the DMAB+MA, described in Algorithm 2, the DMAB
was implemented as an adaptive operator selection approach
to determine the best configuration of operators for a MA,
that otherwise, follows the structure previously described in
Section IV-A. The pool of MA operators [25] consists of four
selection operators (stochastic, roulette, random and binary
tournament), two operators for crossover (cyclic and order-
based), three mutation operators (insertion, reduced 3-swap
and cumulative swap) and two survival strategies ((µ, λ) and
(µ+ λ)). Additionally, there are two fitness evaluation func-
tions: the conventional function depicted in (1) and an alter-
native fitness function f ′, designed to deal with the intrinsic
high neutrality of the CBSP which was previously reported

Algorithm 2 DMAB Algorithm
1: input Guest graph G
2: output Best-found solution g
3: P← initializePopulation(P)
4: Pbest ← best individual in P
5: g← Pbest
6: Set confidence and number of times arms have been

played to zero
7: for i← 1 to k do
8: P′← playArm(ai, P)
9: Assign initial reward to ai
10: end for
11: repeat
12: Compute confidence for all arms
13: as← selectArm()
14: P← playArm(as, P)
15: Update as reward and increase the number of

times it has been played
16: if PH-test is triggered then
17: Set confidence and number of times arms have been

played to zero
18: for i← 1 to k do
19: P′← playArm(ai, P)
20: Assign initial reward to ai
21: end for
22: end if
23: Pbest ← best individual in P
24: g← fitter individual among current g and Pbest
25: until stop criterion is met
26: return g

in [27]. Each operator configuration is equivalent to a DMAB
arm ai.
The DMAB+MA has been proven to be very effective,

when compared with the MA and other existing reference
algorithms from the CBSP literature [25]. The DMAB begins
by playing all arms and assigning them initial reward val-
ues. It employs the upper confidence bound (UCB1) [62] to
assign to each arm ai a confidence estimation based on its
historical rewards and the number of times they have been
used. This allows to balance the choice between arms that
produced good results and those that have been underused.
At each iteration the arm with the highest confidence is
played and a reward on function of the fitness improvement
it was able to achieve is assigned to it. The Page-Hinkley test
(PH-Test) [63] is implemented to help the DMAB algorithms
to adjust to scenarios were the most suitable arm to play can
change over the time. When this occurs, the PH-Test triggers
and all the existing arms are restarted.

V. EXPERIMENTAL RESULTS
A. EXPERIMENTAL SETTINGS
A set of 23 well-studied CBSP instances, listed in Table 2,
was selected. The set contains topologically diverse, and
representative graphs of order 24 ≤ n ≤ 200, with a number
of edges ranging from 68 to 2000. The topologies included in
this set are: 2 paths, 2 cycles, 2 wheels, 6 Cartesian products,
4 power of cycles, and 7 Harwell-Boeing graphs.
For constructing the STNs, we record the transitions

between representative solutions that occur when theMA and
DMAB+MA algorithms, described in Section IV, are used
for solving the selected CBSP instances. To this end, MA and
DMAB+MA were coded in C language and compiled in
gcc 4.4.7 using an Intel Xeon CPU X5550 at 2.67 GHz
with 16 GB in RAM. Ten independent executions, over
every instance, were sampled at a 5 · |V | frequency to pro-
duce the corresponding STNs. The two analyzed algorithms
stop either after completing 50,000 generations or when the
instance optimal/best-known solution value reported in the
literature is attained [25]. Table 1 depicts the rest of the algo-
rithms configuration parameter values, which were estab-
lished by using the iraceR package for automatic tuning [64].

TABLE 1. Parameter settings for the MA and DMAB+MA algorithms.
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TABLE 2. Size and order of graphs in the instance set.

B. MULTIDIMENSIONAL SCALING VISUALIZATION
After obtaining the samples from the MA and DMAB+MA
algorithms, the pair-wise interchange distances [54] between
unique solutions are computed and recorded in a distance
matrix D. Then, our proposed partitioning method, based
on multidimensional scaling [28], [29], maps the sampled
solutions (in n dimensions) to 3-tuples in the Euclidean 3D
space represented with an n × 3 matrix, called X . This is
done by employing double centering and eigenvalue decom-
position over the matrix D. The resulting coordinate matrix
configuration X minimizes a loss function, called strain,
which warranties to find a mapping respecting as much as
possible (i.e., with the smallest error rate) the inter-location
distances stored inD. All along this procedure, we keep track
of the algorithm that produced each solution.

Figures 1 and 2 present the results obtained by our model-
ing and partitioning steps, based onmultidimensional scaling,
when applied to two representative instances: can144 and
path200 (similar results are obtainedwith the rest of the tested
graphs). The fitness of each point in these plots corresponds
to the average of the fitness values for all the solutions that
share the same Euclidean position. A color map is used to
represent with dark violet, solutionswith small (better) fitness
values, and with light yellow tones those having large fitness
costs. This kind of visualization, previously used in [30],
[55], is useful to reveal the fitness variations around specific
known solutions, such as the best-found. However, they lack
the trajectory component to reveal how the transitions among
solutions occurred through the search process.

For instance, in Figure 2 we clearly observe at right hand
different zones of the search space which concentrate reduced
groups of solutions with small fitness values (dark violet

FIGURE 1. Sampled solutions obtained by executing the MA and
DMAB+MA algorithms over the instance can144, and mapped to the
Euclidean 3D space by applying multidimensional scaling. Solutions with
small (better) fitness values are represented with dark violet points in the
plot.

FIGURE 2. Sampled solutions obtained by executing the MA and
DMAB+MA algorithms over the instance path200, and mapped to the
Euclidean 3D space by applying multidimensional scaling. Solutions with
small (better) fitness values are represented with dark violet points in the
plot.

points), while at left hand a cluster of yellow points (i.e., large
fitness cost points) is surrounded by medium fitness cost
points. The former represent a zone of the search space less
frequently visited by the algorithm, while the latter one seems
to be a more accessible region for the algorithms. From
these plots, nonetheless, it is not possible to identify if the
analyzed algorithm has followed a particular search trajectory
connecting these two distant zones of the space. As we will
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FIGURE 3. Merged STNs constructed for comparing the search dynamics of the two state-of-the-art algorithms for the CBSP over
the instances ibm32 and can144.

see the STNs, presented next, represent a better alternative
visualization that overcomes this drawback.

C. STN ANALYSIS
The following step in constructing the STNs consist in recov-
ering the set of search space sites visited by each algorithm
(i.e., the nodes of the STN) from the coordinate matrix X .
Next, the obtained coordinate values are rounded up to inte-
gers, and those sites having exactly the same resulting 3D
coordinates are grouped to become a location of the STN
under construction. At that point, these locations are used to
produce two single STNs: STNi(Vi,Ei) and STNj(Vj,Ej), one
for each analyzed algorithm. Both single STNs are combined
to produce a merged STN STNAi,Aj = (VAi ∪ VAj ,EAi ∪ EAj ),

which allow us to compare the search dynamics of the two
best-known algorithms for solving the CBSP.

The set of steps described previously, to produce merged
STNs, were applied to each one of the 23 selected CBSP
instances in this experiment. Figures 3 and 4 present the
resulting STNs for four representative host graphs: ibm32,
can144, p9c9, and path200. In these figures we can observe
at right hand merged STNs produced by employing our pro-
posed partitioning method. In contrast, those STNs depicted
at left hand were built up without mapping single solutions to
locations in the search space, i.e., without applying our mul-
tidimensional scaling based partitioning method. The subnet-
works colored in blue correspond to the MA algorithm, while
those in orange belong to the DMAB+MA algorithm. The
first nodes in the search trajectories are marked in yellow,
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FIGURE 4. Merged STNs constructed for comparing the search dynamics of the two state-of-the-art algorithms for the CBSP over
the instances p9c9 and path200.

the best ones in red, and those visited by both analyzed
algorithms (shared nodes) in light gray. The size of the nodes
is proportional to the number of times it was visited. Addi-
tionally, the end nodeswithworse fitness value than the one of
optimal/best-known solutions are depicted in dark gray color
to identify them.

Table 3 presents the set of test instances we employed in
this experimentation, including the name, order, size, and
value of the optimum/best-known solution [24], [25] for each
one of them. It continues by presenting network metrics eval-
uated for the single STNs of each algorithm analyzed (MA,
and DMAB+MA), regarding their number of nodes, length
of the shortest path to the closest end node/best node, and
the number of paths of such length. Shortest paths of length
zero correspond to cases where the initial solution and the
optimal/best-know solution were close enough to be mapped

into the same network location by our search space parti-
tioning method. The structural metrics for the merged STNs
are introduced in Table 4. It displays the number of nodes
and edges, the number of shared nodes, best nodes, and end
nodes. The in-strength for end nodes is marked in bold when
it is equal or larger than the in-strength of the best nodes.
Problem instances where this occurs can be considered quite
hard to solve, since it indicates that the search trajectories can
be deviated to locations of inferior fitness quality.

One of the first noticeable aspects in the STNs produced is
that the trajectories of the DMAB+MA algorithm are shorter
and less likely to visit previously encountered solutions (to
produce search cycles). They finish more frequently in best
nodes and the DMAB+MA subnetworks, in the merged
STNs, have fewer nodes as well as shorter paths. This sup-
ports previous claims for DMAB+MA to be the best from
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TABLE 3. STN metrics produced individually by the MA [24] and DMAB+MA [25] algorithms over the complete set of selected instances.

the two studied metaheuristics, as it clearly demonstrates that
the algorithm can obtain better results, in terms of solution
quality, than MA while offering more efficient search space
exploring capabilities.

Our STN analysis also shows that the trajectories for both
analyzed algorithms tend to finish in very different regions
of the search space. For example, in the STN constructed
for instance can144, shown in Figure 3(c), there are eleven
unique locations corresponding to optimal/best-known solu-
tions (red nodes), and nine other that are end nodes of worse
quality (dark gray nodes). In general, the end and best nodes
tend to not be shared and to belong to distinct regions of
the search space, even after applying the partitioning process
as it can be seen in Figure 3(d). This is an indicator of
a multimodal fitness landscape with high quality solutions
scattered across it.

The shared nodes in the STNs provide interesting informa-
tion, since they represent regions explored by both algorithms
and the ways on which they diverted from there. A high num-
ber of shared nodes could be associated to the existence of
narrow funnel structures in the underlying fitness landscape.
In Figures 3(b), 3(d), 4(b), and 4(d) it was observed that
shared nodes tend to be close to the best and end locations.
In several cases, only the DMAB+MA algorithm is able
to reach the best nodes after passing from a shared node.
Furthermore, DMAB+MA is able to accomplish this task
employing fewer transitions.

The problem instances constructed as the Cartesian prod-
uct of two graphs (p9p9, c9c9, k9k9, p9c9, p9k9, and c9k9)
usually have a higher number of shared nodes in proportion to
the total number of nodes in the corresponding STN (compare

columns 2 and 4 in Table 4). This could signal that the fitness
landscapes of these problem instances have structures that
conduct to different high quality areas.

The results of the STN analysis using graph metrics,
reported in Tables 3 and 4, reveal interesting information
related to the structure of the networks and the differences
in difficulty of the graph topologies tested. The instances of
the path, cycle, and power of cycle topologies had a single
best node regardless of their size (see column 5 in Table 4).
Since the value of the optimum is known for these topologies,
we know that the network locations corresponding to those
best nodes contain in fact optimal solutions.

In the path and cycle topologies, the in-strength of the
best node becomes smaller than that of the end nodes for
the larger instances (see columns 7 and 8 in Table 4). This
suggests that the search space for the path and cycle graphs
contains very few optimal solutions. Finding the optimum
then becomes harder because it seems to be also larger areas
of suboptimal solutions that result difficult to escape from,
specially for theMA. In this sense, these two topologies could
be considered harder to solve than the power of cycle one,
since the in-strength for the best nodes was always higher
than for the end nodes. In fact, their in-strength of the best
node increased for those instances with power k = 10, which
have a larger number of edges. The wheel graphs had smaller
in-strength for the best nodes when the instance size increases
as well, however their number of different best nodes is
larger. They present also more paths leading to them, which
would imply that this topology is easier to tackle, because the
optimal solutions are not as isolated as in the case of the cycle
and path graphs.
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TABLE 4. Structural metrics for merged STNs produced for the complete set of selected instances by two state-of-the-art metaheuristics for the cyclic
bandwidth sum minimization problem: MA [24] and DMAB+MA [25].

The group of the Cartesian products (p9p9, c9c9, k9k9,
etc.) presented some of the highest numbers of best nodes,
generally in combination with numerous shortest paths
towards them and a small number of end nodes. While this
was also the case for some of the Harwell-Boeing graphs,
like can24 and nos4, this subset of instances is not as homo-
geneous as the other ones, since it contains problems from
diverse engineering areas. Therefore, we observed more vari-
ation in the structures of their STNs, for example, curtis54
and will57 both had very small in-strength for the best nodes
and for can144 it was equal to that of the end nodes.

VI. CONCLUSION
This work presented an analysis, based on search trajectory
networks (STNs), of two state-of-the-art metaheuristics for
the cyclic bandwidth sum minimization problem (CBSP):
MA [24] and DMAB+MA [25].

Search space partitioning is an essential step during
the construction of STNs models, which consists in mapping
the solution sampled by the studied algorithms to locations
in the search space. We introduced a novel search space
partitioning method based on the classical multidimensional
scaling [28], [29] for reducing solutions (in n dimensions)
to 3-tuples in the Euclidean 3D space, while preserving their
distances. This partitioning method is more generally appli-
cable than the previously proposed methods [15], [16], as it
can be applied to any solution representation, either discrete
or continuous, as soon as a suitable distance function between
solutions is available.

The STN analysis carried out helped us to infer different
important characteristics of the fitness landscape associated
to the problem of study. For some of the CBSP instances we
considered (wheel, Cartesian product, and Harwell-Boeing
graphs), their search space contains multiple optimal/best-
known solutions that are sparsely distributed across the fit-
ness landscape. Meanwhile, for other graph topologies (path,
cycle, powers of cycle), there seem to be specific regions
containing the optimum. It also allowed us to identify that
certain regions traversed by both studied algorithms are close
to high quality areas, but it is usual that only the DMAB+MA
algorithm has the ability to reach them, while the MA instead
gets to worse quality end nodes.

The evidence from this STN-based study helps to demon-
strate that DMAB+MA is more efficient for conducting the
search process, as observed in its shorter trajectories, avoid-
ance of areas where the MA gets trapped, shorter paths to the
optimal/best-known, and higher success rates.

Further work would include: a) refining and further testing
the partitioning method for other combinatorial problems,
b) using STNs to analyze how the change in the fitness
function [27] component alone helps to shape the search tra-
jectories, and c) researching the correlation (if any) between
the STN measurements and the actual size of the attraction
basins.
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