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ABSTRACT

Part 1

A classical path method using hyperbolic orbits and
perturbation theory has been used to calculate rotational excitation
cross sections for polar-ion-electron collisions. Good agreement
with corresponding Coulomb-Born calculations is obtained close to
threshold. The focussing effect of the Coulomb field is shown to
be important for close collisions. Previous calculations including
the dipole potential only are shown to underestimate substantially the
AJ = +1 rotational cross section particularly for weak dipoles.
Calculations using the quadrupole interaction only are shown to be
unreliable. Cross sections including an empirical estimate of short-
range effects have been performed for HD+, CH+ and at electron

energies up to a few electron volts.

Part 2

The Strong Coupling Correspondence Principle (SCCP) method
is applied to rotationally inelastic HF-HF and HC1-HC1 collisions.
Transitions probabilities and cross sections have been calculated for
different transitions and energies. Good agreement with corresponding
quantum mechanical close coupling (CC) is found only for some
transitions. Comparison with other theories suggests ti.at all theories
are unreliable for adiabatic collisions. The first-order correspondence
principle (FOCP) is consistently unreliable, overestimating the
transition probability. The body-fixed correspondence principle
(BFCP) approximation, the M-conserving correspondence principle (MCCP)
and the decoupled-L-dominant correspondence principle (DLDCP)

approximation are derived and applied to the molecule-molecule collision.



Comparison with SCCP shows that MCCP is the better approximation.
BFCP is good for short-range adiabatic collisions while DLDCP is

good at large impact parameters only for some transitions.
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INTRODUCTION

The simplest energy-transfer collision process involves
rotationally inelastic scattering. The study of collision-induced
rotational transitions is useful because the knowledge of these
transitions is required to interpret phenomena such as ultrasonic
absorption and disperson (Herzfeld and Litovitz 1959, Cottrell and
McCoubrey 1961), pressure broadening of spectral lines (Birnbaum
1967, Rabitz 197%%), and various transport properties in gases (Levine
and Bernstein 197*0. Moreover, theory of rotational transitions
combined with appropriated experiments can provide us with a reliable
way to determine intermolecular potentials.

We are concerned here with semiclassical studies of rotationally
inelastic scattering. During the last decade, a considerable interest
has been shown in the development of semiclassical methods to treat
complex molecular collisions (Miller 197~, 1975; Clark et.al. 1977).
The term "semiclassical"™ is normally applied to two classes of methods :
D The most common is the 'classical path model". Here a
classical trajectory is assumed for the translational motion. Thus a
time-dependent perturbation is caused on the inte”.l degrees of freedom,
which are treated quantum mechanically. In this method the Schroedinger®s
equation reduces to a finite set of first-order differential equations
(Schiff 1955, p.196); Tfollowing Dickinson (1979a) we term them time-
dependent close coupling equations (TDCC). Any solution to the TDCC
equations which maintain the quantum mechanical treatment of the
internal degrees of freedom yields what we call a classical path

method.



2) The second class treats both the translational motion and
the internal degrees of freedom classically. The basic idea is
to use a quantum mechanical description of the collision process and
then classical mechanics is invoked to determine all dynamical
relationships. Thus an asymptotic solution of the Schroedinger’s
equation is obtained with the help of classical solutions of Hamilton"s
equations. Between the most successful of these methods are: the
Classical-S-Matrix introduced independently by Miller,and Marcus (1970)
(extensively reviewed by Miller 1977, 1975), and the Strong Coupling
Correspondence Principle (SCCP) of Percival and Richards (1970).
Excellent discussions of the SCCP approximation can be found in
Clark et.al. (1977), and Dickinson (1979b).

This thesis, exemplifies the use of a classical path
approximation, and the. SCCP method in rotational inelastic

scattering.

The first part of this work (Chapter*1»3) presents a study on
rotational excitation of polar molecular ions by slow electrons. This
process may play an important role in the understanding of the
constituents of the interestellar medium (Somerville 1977) = The knowledge
of the collisional excitation cross sections may facilitate the
detection of new molecular ions.

Previous work on linear ions (Boikova and Ob"edkov 1968, Chu
and Dalgarno 197~) has considered the transition as due solely to the
dipole potential, which has been treated in the Coulomb-Born approximation.
Following Faisal (1971) and Ray and Barua (1975), we use First-Order
Time-dependent Perturbation Theory (FOTDPT) with hyperbolic orbit for

the incident particle. The FOTDPT is perhaps one of the simplest



versions of a classical path approximation as it is obtained by
applying first-order perturbation theory to solve the TDCC equations.

Employing FOTDPT, we argue that, in this approach, unphysically
low values are used for the transition probability for close collisions.
In the absence of a detailed description of the short-ranged electronic
interactions, we assume a conservative value of the transition
probability in the strong coupling region. This shows that the
Coulomb-Born Approximation almost certainly underestimates significantly
the total rotational inelastic cross section.

For symmetric-top ions, we examine the contributions from the
quadrupolar interaction and we find that the regions for which
perturbation theory and the quadrupolar interaction are valid are very
limited. We compare also with the work of Ray and Barua (1975) on
the rotational excitation of HD+ by electrons and positrons. They
used at short range a truncated form of the long-range anisotropic
interaction. Since this modification takes little account of the
strong coupling occurring for electrons in close encounters their
results differ little from the Coulomb-Born values.

In chapter one, we examine the FOTDPT for the dipole and
quadrupole potentials using a hyperbolic classical path for the
incident electron. In chapter two we derive the dipolar probability
and cross section. Limiting forms for low and high velocities are
derived and comparison with the Coulomb-Born results confirm the
validity of the time-dependent approach. Our simple modification to
the short range contribution is made in chapter three, and compared
with other results. Our conclusions are presented at the end of

chapter three.



The second part of this thesis (Chapter ¥ - 8) presents a
study of rotational excitation in collisions between two linear
molecules. Information obtained from such a study can be useful to
determine the intermolecular potential. Some experiments like
optical flourescence (Oka 1973) and pressure broadening (Rabitz 197")
require detailed calculation of either collision cross sections or
rates for their interpretation in terms of molecular potential
parameters.

The quantal theory of scattering of two linear molecules has
been known for a number of years (reviewed by Takayanagi 1965).

However to the author knowledge only three quantal Close Coupling
Calculations (CC) have been reported (Green 1975, DePristo and
Alexander 1977, Alexander 1980). The major difficulty is the large
number of degenerate levels which must be included for each rotational
level, so that the problem becomes prohibitive whenever the number of
accessible molecule rotational levels is large. This has stimulated
the development and use of various approximations (Bhattacharayya et.al.
1977, Bhattacharayya and Saha 1978, Alper et.al. 1978, Alexander and
DePristo 197*1, Hashi et.al. 1978).

We concentrate in this work on the detailed application of the
SCCP method.

The SCCP approximates the solution of the TDCC equations
using a classical description of the internal degrees of freedom of
the molecules. Thus classical action-angle variables are used; the
rotational levels of energy are obtained by an appropriate quantization
of the action variables. The change in action of the system is now
determined using classical perturbation theory. The SCCP is expected
to be most successful for large quantum numbers but quite good accuracy

has in fact been obtained for transitions out of the ground level in H"-He



collisions (Clark 1977). It has been successfully applied to
rotational and rotational-vibrational excitation of molecules by atoms
(Dickinson and Richards 197~, Clark 1977)> and is the basis for some
current semiclassical approximations (Dickinson and Richards 1977, 1978).

Using SCCP we calculated dipole-dipole rotationally inelastic
transition probabilities and cross sections for HF-HF and HC1-HC1
collisions. A detailed study of the dependence of the transition
probability on the different collision parameters is presented. A
detailed comparison with other approximations has been done. We
examine the advantages of each method and attempt to determine ranges
of validity. We argue that none of the current calculations has
offered a consistent quantitative description of the collision.

Subsidiary correspondence principle approximations have been
derived and applied to the molecule-molecule collision problem.

Through comparison with SCCP we attempted to determine theilr accuracy
and feasibility. It is argued that a combination of these approximations
can prove to be efficient and accurate.

In chapter four we determine the parameters of the collision
and examine their dynamical relations. The general SCCP transition
probability is examined in Chapter 5. The first-order limit of our
approximation is derived and compared with other first-order models.

In Chapter 6 we derive the correspondence principle equations
for the dipole-dipole interaction. The transition amplitude is obtained
in closed form.

The corresponding first-order and straight-line (SL) limits are
examined. The numerical techniques used to evaluate transition

probabilities and cross sections are described.



Our numerical results are presented and discussed in Chapter
seven. The correspondence principle transition probabilities are
examined in detail. Our results are compared with other theories
and the range of validity of our approach is analysed.

In Chapter 8 we derive correspondence principle equivalents
of some of the current decoupling approximations. The simplifications
introduced are examined and some limiting forms are studied.

Numerical results are compared against SCCP.

The investigation presented in this work is a first attempt
to use the SCCP method in the study of rotational excitation of two
linear molecules. Work is already planned to study the scattering
of two rigid rotors, using SCCP and its subsidiary approximations
(Richards private communication). It is intended to assess the ranges
of validity and computational convenience of these approximations.

It is intendea«QB include in the computer program developed here

terms of interaction potential other than the dipole-dipole term.

The eventual aim of this study is to produce a general purpose computer
program for cross sections and rates.

We use aQ , e and m for the Bohr radius, electron charge and
mass respectively and we use Ry for meh/2ﬁ? = 13.6eV.

The first part of the work presented in this thesis has been

published by Dickinson and Munoz (1977).
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Rotational excitation of polar molecular

slow electrons
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CHAPTER 1

BASIC THEORY

1.1 First-order time-dependent perturbation theory (FOTDPT)

1.1.1 The molecular ion rotational state. The rotational state of

a symmetric-top molecular ion is characterised hy the three quantum
numbers J, M and K. The first two, J and M, represent the rotational
angular momentum and its Z-component in a space-fixed frame respectively,
and K is the angular momentum component directed along the symmetry

axis. The corresponding rotational eigen functions are given by

Edmonds (i960, p66):

a.n

where is the matrix element of the operator of finite
rotations, and Wi (, ¢3, ) are the Euler angles specifying the
orientation of the ion with respect to a space-fixed frame.

1.1.2

The interaction potential and motion of the incident electron. The
asymptotic interaction potential between the molecular ion and the

electron can be expanded in the form (Chu 1975)

(1.2)

where r is the electron distance from the centre of mass of the
molecular ion, (?1 ,“F ) specify the direction of the incident
electron with respect to the molecular ion-fixed co-ordinates, and

Y. . is the spherical harmonic (Edmonds i960). In symmetric-top



molecular ions with symmetry C~v the term vanishes unless
Ikl= 3n (n =0, 1, 2, ...)= In this work, we are particularly
interested in the first two non-vanishing terms. These are

(Itikawa 1971)

Vir) S ir ,,Cr ) =-(m, (1.3

where D and Q are the dipole and quadrupole moments respectively.

Transforming (1.2) into the space-fixed frame (Edmonds 1960, p5U)

we obtain

where (9, () specify the spherical polar angles of the incident
electron in the space-fixed frame.

We assume the incident electron moves on a classical trajectory
determined by the spherical part of the potential (1.2). The energy

E, on the trajectory, is taken to be

j- =1 ~0 ~ ; or =. (v* 1 (1.5)
where \A and are the initial and final speeds respectively of the
electron.

1.2 The first-order transition amplitude.
The first-order transition amplitude S(i-*-f;b), for a transition

between two states |i>=|jKM> and |f>=]j"K"M"> at impact parameter b

is given by (Landau and Lifshitz 1965, pl~0-Ul)

dt exp(cu)”t) <M 3 (1.6

-00



where = (&~ - BNV)/ii = A 1S, the electron co-ordinates have
been written explicitly as functions of the time, and E~(E ) is the

initial (Ffinal) translation energy of the dectron. The matrix

element <i|v|f>, is given by

<IKH [V[r(), allTK ri>=.| fRViXzj+)I*Noy(e.0

MK [J Jl Jm A
( M -[I1 K.

where the 3-J symbol is defined by Edmonds (i960, pb-6).

1.21

The first-order probability and cross section. The calculation of
the degeneracy-averaged probability ~p , for a transition from the

level JK to J"K" 1is straightforward:

O(jk->i'K; tje)= (2I'+iE ¢ ! *xn (1.8)
where is given by
VAE;b)=~n It expC”?™) - <1.9)

'J

For notational simplicity, we derive transition probabilities for
upward transitions only; probabilities for downward transitions are
derived using the detailed-balance relation.

The terms in the potential contributing in first-order to the

transition JK % J"K" are those with ( , K) satisfying

i — a - j +r , K-K?”- k

a.10)

a. >
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If K = K = 0, as occurs for a linear molecular ion, there is the

additional condition

@ .11)

Since we treat the target quantum-mechanically and the projectile
classically, the probability ( .8) does not satisfy the detailed-
balance relation. To enforce detailed-balance, we redefine our

first-order probability for initial translation energy EN as

where E is obtained from (1.5).
The first-order cross-section 0" ° is
(e0]
CrF°C3'K— Et) = 2TTI PF(jk —3'k"; b; E-) b d(j .

(o]

1.3 The V XQ integral

Since we consider the electron moving classically in a Coulomb
potential its trajectory is a hyperbola and we choose 9 = w/2. It
is convenient to treat the motion in terms of the parametric re-

presentation of the orbit given by (Landau and Lifshitz, 1960, p38 )

—a(Eat-) , t

.1*0
X = -cosk"t) , y =. O X— n/x'T



where , the eccentric anomaly, takes values from -00 to 00 CL is
given hy

a - eVzE = aQCKyZea) , (1.15)

and € , the eccentricity of the hyperbola, can be written as

e =0 +bVcO* . (1.16)

1.3.1

The 1 integral. We take V = CK/IT where is

a constant, see (1.3). Proceeding as for Coulomb excitation of

nuclei (Alder et al 1956) we find

@a-17)
where I ~ 1is given by
,00
J C6>])— exP £ (6sinAt - T)]
A
-3
[e-cask t + Ir
(1.18)
(ccosU-_)~n 7
with £, the adiabaticity parameter, defined by
£ - /tr (1.19)

The corresponding IAi> (€ ,0 integral for a repulsive Coulomb

11
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potential has been examined by Alder et al (1956). To transform
the attractive case into the repulsive case (and vice versa) we may

use the formal substitution (Biedenharn et al 1972):

which leads to the relation

(1.20y

1.3.2
Solution for X = 1. In the dipole case (A.= 1), it is easily

verified by direct integration of (1.18) that relation (1.20) is
satisfied. The 11+1(€. »?) integrals have been given explicitly by

Ter-Martirosyan (1952), and we obtain for 1 (£ ,?)

and its derivative respectively (Abramowitz and Stegun 1965, p358).

imaginary, while its derivative is real. The evaluation of the
corresponding V ~ is straightforward.

In the quadrupole case (A. = 2) the I”p integral cannot be
evaluated analytically but numerically, and as we show below, relation
(1.20) breaks down.

In the next chapters the theory presented above is used to
calculate rotational cross sections for HD+, CH+ and H"O+. The
values of the various molecular parameters needed are collected in

table 1.1



Table 1.1 Table of molecular data used in this work. A and B
are rotational constants. (All values in atomic units)

lon D Q A B
CH+ 0.67a - 6.U6 x 10 °C
a c
HD+ 0.3*b 1.578b 1.02 x 10
f f
H3%+ 0.22d -2.21*te 2.85 X 10-3 5.55 X 10~5
a Green (1973), unpublished work (quoted by Chu and
Dalgarno 197*0 based on the wave function given by
Green et.al. (1972)
b Ray and Barua (1975)
c Herzberg (1950)
d Moskowitz and Harrison (965)
e Chu (1975)
T Derived by Chu (1975) from OH distance and HOH angle

calculated by Moskowitz and Harrison (965).



CHAPTER 2

EVALUATION OF THE TRANSITION PROBABILITY AND CROSS SECTION

2.1 The Dipolar probability

From the condition (1.10), the dipole term V 10M of the

potential can produce only the transition |AJ|=1. Because of the
slow decrease of () with r it is the dominant term for distant

. - _ FO S
collisions. Making use of (1.21), we obtain for P~ , the probability

due to the dipole potential

FO
Po(JK->JK;b;E?) G-CUKXRv/e.)

7 (2.1
where G(J, J°, K) is given by
&(13'K) = Aol

We consider the probability (2.1) for b=0 (£ = 1), where the

probability takes its maximum value. Then

FO
P (GK->Jk :0; EE): 3 (vn (D/eo-0)2
lo -

«(Ry/E;) [ H° Ci8) 2.3)
L

ch

There are two natural energy regions: £>>1 and £<<1» The

transition between these two regions occurs at energy E where



E/Ry = (4E/ZRy)2S.

2.1.1
The low-energy limit. For small energies (?»1), we have (Landau

and Lifshitz 1971, pl85)

H (i8) = (1/r \B)G>/$) AP (2/3) . (2.5
<5

H-3)

and the probabilityVTn this limit is

PO

P (Jk =J'K; 0: E) S (Dlea,)i GCI,JK)

~(hfARy)V3) £.C<E, @ .5)

where C =(]]2/3 |H 2/3) |2 = 2.221.
For all realistic systems the probability in this limit is much less
than 1.

2.1.2
The high energy limit. For high energies (C«l), we have (Landau

and Lifshitz 1971, pl85)

H.Z)»Ui) = Ho>5C3.) EtVIre, . (2.6)

which, when substituted in (2.3), yields
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using E~E at high energies.
The energy Ec at which the sum of the upward and downward
transition probabilities at impact parameter b=0 is equal to one,

in the high energy limit (2.7) of first-order perturbation theory, Iis

2.8
where
Clearly for systems with D i leaO= 2.5b Debye and AE<0.1 eV,
E_>>E. As will be shown below, for head-on collisions the breakdown

of the assumption of a dipole potential is more significant than
the non-conservation of flux.

We note that in the time-dependent perturbation theory
approximation used in this work, departures from unitarity become
increasingly important as the energy increases - the reverse of the
situation for neutrals (Dickinson and Richards 1975). The difference

is caused by the strong acceleration of the electron by the attractive

Coullomb field.

2.2 The dipolar cross section

Substituting (2.1) in (1.13), we obtain for the cross section

(Landau and Lifshitz 1971, pl8U)
tFF(>K-*;rK ;) - (Z11\ai/3)(0/e*'f G-(3,J' k)

*QRy/E) N «$) HACBH)] , @.9)



- IT -

2.2.1
The low energy limit. The low-energy behaviour (E<<E;£»l) is

obtained from (2.9) using (.1*) and the relation (Landau and

Lifshitz 1971, pl85)
H%$> -(*./rn*3)U/8)"/3ro/s) , @.10)
yielding

a (8trir /3~)Y(D/ )1

<G(J,j:k) (Ry/Ei) , E«E. (2u)

This is identical with the threshold dipolar cross section in the

Coulomb-Born approximation (Chu 1975).

2.2.2
The high energy limit. For high energies (E>>E;£<<1) we have

(Landau and Lifshitz 1971, pl85)
aH. (¢08) = HOc*8) = (2/Tr)yjm(u22s/f) . (X2

Using (2.6) and (2.12) in (2.9) we obtain for the high-energy

cross section

0'fj k -.j%;ED » jliot (2D/ea.)1 Grh,15K)

« (Ry/EN)ILI[5.0f E/AE'Ry: , Be» E, (2.13)

recovering the usual Bethe limit for an optically allowed transition.

This high energy limit of the cross section does not appear to have



been derived previously. All the above equations hold for linear
polar ions when K=0.
2.2.3
Numerical results. To evaluate the Hankel functions used in (2.1)
and (2.9) we use the method of Goldstein and Thaler (1959) to compute
the Bessel functions Jy (O and Y™ (2). The calculation of the
Hankel function is then straightforward (Abramowitz and Stegun 1965,
pp 385 and 361).

In table 2.1 we compare our results for CH+ with the Coulomb-
Born results of Chu and Dalgarno (197*0 for the O+l transition. In
the energy range (0.0035»2.0*0 eV, the agreement is within b%. For
energies less than 0.007 eV Bessel functions of large imaginary
argument and order (?>" % 5) are required and the routine employed
suffered from rounding errors. The low-energy limit (2.11) agrees
within 10$ with the full result (2.9) for E~sE/2, while the high-
energy limit (2.13) agrees within 15% for ENGE. For this transition
E = 0.03*+8 eV. Thus the low-energy approximation (2.11) gives
acceptable accuracy in the region where our direct method of evaluating
the Bessel functions suffered numerical difficulties. Overall, the
agreement between the time-dependent and the time-independent

approximations 1is very satisfactory.

2.3 The quadrupolar contribution

To calculate the quadrupolar contribution (JAj]= 1 and
|[AJ]= 2) the Ig~integral (1.18) was evaluated numerically. For
small velocities (large £) and large £ , it is difficult to obtain
accurate values because of the fast oscillation of the integrand.
We have used a modified Simpson®s rule and tested our method by
comparing the results with: (I) the tabulated values of Alder et al

(1956) for the corresponding 1™~ iIntegral for a repulsive potential,
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(2 the analytical result for and (3) the analytical expressions
for Ig”~ in the case of a sudden collision (£ =0), given by

Biedenharn et al (1972)

= 17tIK®) > @AW

TI Ceo = J Ce o+ Zir/(.eK,fi) G

where y (£ , 0) has been given by Alder et al (1956). Equation
(2.1Ub) clearly shows that relation (1.20) breate down for the
quadrupole case.

In figure 2.1, we show the quadrupolar first-order probability

+
and HO". The probabilities do not satisfy unitarity, for small
- - —F8 -

impact parameters, Since Pg diverges strongly as b tends to
zero, the quadrupole contribution to the cross section will be
discussed below after we have considered a short-range cut-off.
0

No such cut-off was necessary for the dipole potential since Pio

was Finite for head-on collisions.






CAPTION TO FIGURE 2.1

First order quadrupclar probabilities as a function of
parameter.
FO +

A: P20 (6,6-»7,6; Ei=leV) for ;
FO +

B: P2Q (0+2; E.=leVv) for HD ;

C: as B except EN=0.1leV;

D: as B except EN=0.06eV.

the

impact
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CHAPTER 3

THE SHORT RANGE MODIFICATIONS

3.1 The short range contribution
The theory presented above may become invalid at small impact
parameters for the following reasons:
(O) the incident electron must have an orbital angular momentum
of at least sft to excite the molecular ion by an amount
Ad=s;
(ii) the interaction potential ( .2) is not valid for small r;
(iii) the transition probability for an anisotropic term with

is greater than unity for small iImpact parameters.

To allow for (i) we define

b = Am ir G.D
and we assume a probability (Dickinson and Richards 1975)
P(JK. ->T4sK;1?5Ei) =0 > b<b, . (3.2
To correct for (ii) it is necessary to estimate the region where
the potential (1.2) is reliable. We suppose that this is for
electron-molecular-ion separations larger than the charge-cloud size,
rc , of the molecular ion. Thus we define b~ as the impact parameter
at which the Coulomb field focuses the incident electron to the edge

of the charge cloud rc
k “ + e* rc/E.)V\ (3-3)

when the incident electron penetrates the core region, r<rc, it has
considerable kinetic energy from the Coulomb field and can easily
excite the high rotational levels of the ion, so becoming captured
temporarily. Subsequent collisions will then occur. While our
knowledge of the details of this process is limited, we consider

it likely and it certainly should not be excluded until detailed



calculations with a realistic short-range potential have been made.
To give a plausible estimate of the likely contribution from this

mechanism, we assume a short-range probability

r

PIK >Jk jk; EJ = 1

G-V

where ~ is a parameter. This form has been adopted so that

the probability first increases due to the stronger collisions
occurring as b decreases to b™. There we assume that the unitarity
requirement causes P to decrease in the strong-coupling regions
b~r<b<bm> A similar model for the strong-coupling probability in
electron-polar-molecule collisions (Dickinson and Richards 1975)
yielded cross sections in good agreement with those obtained using
close-coupling calculations. Strictly, Pib") = PFO(b,A would
preserve continuity but PFO(bA) is generally small so such a
modification makes negligible difference to the cross sections.

The existence of strong rotational coupling in the interaction of
slow electrons with Ht is shown by the mixing observed by Herzberg
(1970) between two Rydberg series of terminating on the J=0 and
J=2 levels of the ground vibrational state of HE. Fano (1970) has
argued that this situation should be general in electron-molecular-

ion-collisions. Thus we can write the cross section C as

where

C T " 3K ED)*Z2IL P(tk >3K;b; E) b dk
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and
,00

cr JK ->3'KjEi) - Zir p (yk->j "« mb; E) b dt> . .50

For simplicity we take

b -@+ >

obtaining for crsh

=h
CT CjK~>j"K;Ec) =CA/6K-)7TT 7

For the dipole case CT can be obtained by a minor modification to

@9

<T(JK- >3"K; Ei) = (@7rba*/3)(D/eo.; T

x (Ry/Ec) [i~ HyCijr) 2 (3,8)

where is obtained from b~ using (1.16).

We have estimated the charge-cloud size, it , as twice the
equilibrium internuclear distance, Rg, in diatomic ions, and twice
the OH distance in the HMO+ ion. We have taken ~ m 0.2, which should

give a conservative estimate of the short-range contribution.

3.2 Results and discussion for dipole interaction

The effect of the short-range modification is shown for CH+ in
figure 3.1 The increase in the cross section falls smoothly from
about 30$ at threshold to 10$ at 2ev.

An interesting comparison may be made with the results of Ray

and Barua (1975) for rotational excitation of by electron impact.
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They have used time-dependent perturbation theory with the long-
range potential given by ( .2) and ( .3) with an additional

polarisability term. Their short-range potential is given by

where o." is the non-spherical part of the polarisability and rO is
a cut-off parameter. They assume roq

In figure 3.2, we present a comparison for the 0+1 transition
between our results from (2.9), their results, and our modified
result (3.5a) for the dipolar contribution. The agreement between
their results and FOTDPT at low energies shows that the modified
potential (3.9) yields small probabilities for close collisions.
Since they use a straight-line trajectory inside the core, comparison
with the case of neutral molecules suggests that this straight-line
part will lead to higher probabilities, thus enhancing the cross
section, as shown in figure 3.2. At higher energies, the effect
of the straight-line trajectory is less marked and their use of a
weaker short-range interaction (3.9) leads to smaller cross sections.
Again, the effect of the modified probability (3.U) is to increase
the cross section above the pure dipole value, in this case more
than doubling the cross section at threshold.

Since <li0 (JK*J"K;Ei) depends mainly on the value of the
dipole moment, for small dipole moments, such as HD+ , the short-
range cross section g§h becomes relatively more important. This
is illustrated in table 3.1» where we compare the dipolar c?h and

CT'-B fo:)r H_0+ (D = 0.22 eao).
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3.3 Results and discussion for quadrupolar interactions

As discussed in section 2.3, there is a singularity at b=0
in the quadrupolar transition probability. To avoid this, we have
obtained cross sections for the quadrupole interaction using (3.1)
and (3.2) for close encounters and FOTDPT otherwise. The integration
over impact parameter has been done using Simpson®s rule. Almost
all the contribution comes from small impact parameters and the
effective upper limit of the integral is always less than 130 0.2
while for the dipole case this limit was about 103 QD.

Comparison with the quadrupolar Coulomb-Born results of Chu
(1975) for the (5,2 m6,2) transition in H"0+ (an example with an
intermediate K value) shows differences of less than 3% for
0.1 eV <E~X<l._l+eV. This suggests that our cut-off procedure is
reasonable. Since the transition probabilities at the cut-off
increased from 1.1+5 to 1.61 as the energy increased, it appears
unlikely that the Coulomb-Born approximation satisfies unitarity
for close collisions even at electron energies of several electron
volts.

The arguments presented above for the effect of Coulomb
focusing for close collisions should be equally valid for the
quadrupolar interaction. Thus the use of the quadrupole interaction
for these collisions is unreliable. Since any cross section
derived using approximations similar to (3.3) and (3.1+) would be
dominated by the assumed short-range contribution, we have not
thought it worth-while to make such a calculation. However, any
cross section derived using a first-order perturbation theory and
the quadrupole interaction is likely to exceed the true cross section

considerably.
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3.¥ Conclusions

For electron-polar-molecular-ion collisions, we have used an
impact-parameter method to investigate the reliability of the usual
approximation of combining the Coulomb-Born approximation with the
dipole and quadrupole anisotropic potentials. We Find that for a
dipole potential, this method underestimates the cross section,
particularly for weak dipoles. A modified expression for the
cross section has been presented. By contrast, for collisions of
electrons with neutral polar molecules, the use of the Born
approximation and the dipole potential is more reliable, overestimating
the cross section for large dipole moments (Dickinson and Richards
1975). In collisions where the long-range interaction is the
quadrupole, the full short-range interaction must be included to
obtain reliable results.

Clearly there is a need for an accurate calculation including
the detailed electronic structure of the target, similar to those
already performed for electron scattering by H", and CO

(Temkin 1976).



Table 3.1: Rotational-excitation cross section of H"0+ by electron

impact for the (5,0 ->6,0) transition.

Q-CS,0->6,0)

E.(eV) Equation
G.7ND
0.1 89
0.2 A5
0.A 23
0.6 16
0.8 12
1.0 10
1.2 8.4
1.A 7.4
1.6 6.6
1.8 6

Equation

@G-8

19
10.4

4.4
3.6

2.6
2.3
2.1
1.9

29 .



CAPTIONS TO FIGURES 3.1 - 3.2

Figure 3.1:

Figure 3.2:

Graph of E~CT(0-*1) for CH plotted against energy.
Curve A shows the pure dipole potential result, equation

(2.27) and curve B shows the modified results (3.5a)

Graph of E~CTiO-»!) for HD plotted against energy.
Curve A shows the pure dipole results (2.27), curve
B shows the results of Ray and Barua (1975) and curve

C shows the modified results (3.5a).



e “---

ot

»0T

. 0T



(o) (1-0)J13

32 .

Ei (eV)






CHAPTER U

DYNAMICS OF THE COLLISION

Nel The Strong-Coupling Correspondence Principle (SCCP)

Consider a collision whose classical model is described in
terms of the action-angle variables (Landau and Lifshitz 1960, pl57).
I=(tl>t2>-—-5Tn) and 9=(0~,02,...,9") respectively. The SCCP
transition amplitude Sfn~hl) between two states n=(n”~,ng, ===,nn) and
n*s(n®",n” _._.,n") is given by Clark et.al. (1977):

+ d ni -
5CM,n") =i?V)NJ ¢e exp[t[ emCn-n7)_ ACO)]} , (*D
where A(0) is (I/1i) times the first term of the classical
perturbation expansion of the change of the action of the system,
given by

fyeey =or bid VO(L, lo+¥ Ct:b) > o

with JwA, _oo W) the fundamental frequency vector of the
system, and VC(_,9" + WCt;t) the interaction potential between the
partners of the collision. To obtain approximately the quantal
energy levels the system is quantized using the Bohr-Sommerfeld
quantisation rule .

When the potential is weak we can approximate .

op[fen = I t ()
obtaining ,2tr

k.K)

which is the first-order correspondence principle (FOCP) (Percival
and Richards 1970). In the next section, we describe the parameters
of the collision between two linear molecules as required by the

SCCP to obtain the rotationally inelastic transition amplitude.
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.2 Description of the collision

The process we study is that of two linear molecules
(1 and 2 respectively), in initial quantum states given by the
action variables and T~, which collide and change their guantum
state to and TN respectively. The usual rigid-rotor model is
assumed, and the action variables T~(i=1,2) describe the rotational
motion of isolated rotors.

The configuration of the system is classically described
relative to an inertial coordinate system OXYZ and we consider the
relative motion of the two rotors as indicated in figure h.l.
Following Dickinson and Richards (197*0 we take a coordinate system

fixed to the i-th rotor as shown in figure *4.2. The
rotational angular momentum vector, ,is taken perpendicular to
the CL\ \ plane andthe molecular axisis along the CL" axis so

that the polar angles of the rotor in the CLM A system are

i = , ft = v/z ,
The Euler angles(fijei ,2T (Edmonds 1960,p7) describe the
orientation of the i-th rotor in the OXYZ frame as follows:
is the aximuthal angle of the rotational angular momentum
vector J;. , of the rotor in the OXY plane

(@ is the anglebetween J;, and the quantization axis OZ.

- N is the angleof rotation of the rotor given by
£ a ; Wt s 371t # ae.5)
where t 1is a time, is the frequency of rotation of the rotor,
= |Ji] > and 1™ the rotor"s moment of inertia. Then the action-

angle variables which describe the rotational motion of our system

are



Action variables Angle variables

= rotational angular .
momentum of the molecule 1 r]t + lr

Jrcos /3] = Z-component of J ,

1.
J2 = rotational angular momentum
of the molecule 2,
J~cos/” = Z-component of J©, oi-"

The Jv are quantized as (Dickinson and Richards 197H

1 N\ N 1 !

| g. +'A , (89)
where J- are the rotational quantum numbers. The frequency of

rotation is then

W = * g +\%)/. . un

u.3 The interaction potential

For two molecules in a X electronic state the long-range
electrostatic potential is expressed, in a space-fixed system, by
an expansion in a triple series of spherical harmonics as Tfollows

(Gray 1968)

XFj ~0 Mi~"XF

x (v - 1. @y

yeclB,,n,n) -y ~ vy . "~y <m»)
.9



and

M W (g”~+0 1! \,zQ> a U

Cav)J (*VoOl! rnT

where R = (R,fl) is the vector joining the centre of masses G" and G2
of the molecules, 0.- (&,V) is the orientations of R,JI® = (@, Vi )
is the orientation of the i-th rotor, ( X, J& XX XX X X ju,x )
is a Clebsch-Gordan coefficient (Edmonds i960,p.37), and the restriction
A,x - A] + Xx means that (&.8) is valid when the two molecular charge
clouds do not overlap significantly. The Q?”~ are the scalar magnitudes
of the multipole moments of order X ~ for an axially symmetric charge

distribution, and are given by

Glk. = Z e rXA (I (cos 90

Physically V(R, ,-Q) 1is symmetric under a coordinate inversion
-1 72 1 » 2=7-i beine the internuclear vector of the i-th molecule.
For two identical molecules VFfRjn"jflg) is symmetric with respect to
a coordinate interchange RM"jJRMR""RgjR™MR.

The short-range potential can also be expressed by an expansion
in a triple series of spherical harmonics (Bhattacharyya et.al., 1977)
and then the whole interaction potential is obtained from (*.8) on just

replacing Cx,Xx (R) by

where C (R) is the short-range contribution.

Since obtained from OXYZ by the rotation (0,~/ 3 )
in the notation of Wolf (1969), we expand the spherical harmonics in

(b.8) as (Wolf 1969, eq.8)

@at11)
system has

been written explicitly, and



of a finite rotation (Edmonds 1960, p55). Replacing (@+.11) in
(U.8) we obtain the potential in terms of the action-angle variables

and relative coordinates as

where XI. - (0; ; (i{ -

We present calculations on HF-HF and HC1-HC1l collisions.
To compare with previous alternative approximations (DePristo and
Alexander 1977, Bhattacharyya et.al. 1977 respectively) we use the
same potential surfaces as these authors:
HF-HF intermolecular potential

This potential is Alexander and DePristo"s fit (1976) to
the "ab initio" points of larkony et.al. (197*0. In this work only
the first two terms corresponding to the spherically symmetric part
Coq(R), and the first anisotropic interaction C~N(R) are retained.

They are given by (De Pristo and Alexander 1977)

( 13a)

1-831 x_106  (u.13b)
R3

where the energy has been expressed in cm_l and the distance in aQ.
The third term in (U.13b) corresponds to the asymptotic dipole-dipole

form CNiR), obtained from (©.10) using a dipole moment value D=1.82 Debye.
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HC1-HC1 intermolecular potential

This potential was determined, by Bhattacharyya et.al, (1977).
The C. ~ (R) terms were obtained assuming a repulsive central force
acting between different pairs of atoms in the molecules (Takayanagi
195%). The long-range spherically symmetric part cOQ(R) was

assumed to he

r (o\ --L &p Z. D, 3 GJ- (h.ih)

00 q< o8 z

where the first two terms correspond to the dipole-dipole dispersion
and induction interactions respectively, and the third to the
dipole-quadrupole interaction (Hirschfelder et.al. 1966); oC is the
average polarizability, D and Q the dipole and quadrupole moments

©)

respectively, and is given approximately by (Hirschfelder

et.al. 1966)

Only the first two terms of (U.IU) are used in this work.

Again only the first two terms Cqo (R) and C~iR) of the
potential are retained. Using the same units as for HF-HF they
can be written as

(6.108 x 106 - 5.259 x 106/R)exp(-2.06R)

c ®
oo
+ (5.571 x 10T - 1396 x 107/R)exp(-1.99R)

+ (5.202 x 10T - 2.961» x 105/R)exp(-1.92R) - 3763~ X-— - (**.153)

C (B) =-(8.8105x 10T + 277 x 107/R)exp(-2.06R)

+

(U.0U3 x 107 + 2.032 x 107/R)exp(-1.99R)

(It628 x 106 + 2.0 x 106/R)exp(-1.92R) - 6781~ x-— (1t.15b)

where the exponentials in both equations correspond to the
short-range overlap interaction. The fourth term in (It.15b)
corresponds to the asymptotic dipole-dipole term Gg (R) 1ior

a dipole moment value D*I.11 Debye.
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u.u The relative motion

As seen in sections U.l and b.2 the SCCP considers the
dynamics of the system described by classical mechanics. We assume
that the relative motion is on a classical trajectory determined by
the spherical part of the potential C (R). The energy E, on the

trayectory, is taken to be

(k-16)
where yU, is the reduced mass of the system, and (VF) is the
initial (final) relative speed. Then the relative motion is on a
plane. We show below that a suitable choice of axis relative to

this plane can lead to further useful approximations in the calculation.
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CAPTIONS TO FIGURES 4.1 - 4.2

Figure 4.1;

Figure 4.2:

Inertial coordinate system OXYZ where the relative motion
of the rotors is described. and are the centre
of mass of rotor 1 and rotor 2, respectively, r”» and

are their corresponding position vectors, and R is

the relative position vector.

Euler angles oi: A" and Ji as used in this work.
AB is the i-th rotor and O its centre of mass. The
system S rotates fixed to the rotor respect
to the inertial system CKXYZ. The angles given the

orientation of the rotor in @5 " are = =
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CHAPTER 5

GENERAL PROPERTIES OF THE TRANSITION PROBABILITY

5-1 The transition probability

In terms of the variables defined in sections k.l and 1*.2

the transition amplitude S( , between two rotational

states |jImlj2m2> and | > is
A

\mnm

AI AFdE F*  expi>{43,~+434f

~  an- ACA )Y,

where Aj .i=j 1 —Ij 2 and Am.izm.I —Iml are the changes in the rotational
quantum number and the proyection quantum numbers of the molecule
respectively. In this case the energy levels of the target and
incident molecule are degenerate and we are concerned, in this work,
in calculating the transition probability between levels(J”",j2)

rather than states. We therefore require the degeneracy-averaged

probability * jJjgiE) given by

Replacing the sum (56.2) by a sum over m",m2,Am andAm,,, and using

the relations (Clark et.al. 1977)

d(-Cos(3®)
d<rnr-c rms-j

we obtain
w rlv r\ 1

_ i 9 dF dGE,) decowsta) st i I,
1

A€
(Wait

3QJtp~  Jld/teppd, AN AQLATI.

o Jo

11

G-D

G-2

G-3

G-V

G-5



The sums over degenerate states have been replaced by two integrals

over a microcanonical ensemble of target and projectile molecules.

5*2 The change of the action

Substituting the potential (U.12) into (1*.2) we obtain

h(=C. rRAtii / 7

A*>*»_*» AN AN
where

= (a AAf/iAAajAa) Y [

= wn > AN

b5

(5.6)

and the relative coordinates have been written explicitly as functions

of time. We consider the plane of the trajectory as the OXY plane,

and take the incident velocity Vi in the direction of the OY axis.

With this choice (56-6) becomes

Acs,A) *zL zL zL N w jn (v -VxaaVs)

¥, %< Ml I
v " (w a0 £ f b ))

pn A M
= £ cltQjiR) Qxpi[(m+ ~«”)t “0OvA~rf-l

E s given by (U.16), b is the impact parameter and =N C ti4A Pt

Following Dickinson and Richards (197*0 we define

t tt) = + /R
where X is the deflection angle. Taking t=0 at the classical
distance of closest approach rO, we have that | (-t) = -"f> (), and

since R (® = R(-t) the integral (5.10 can be written as

I).I,/AAXU,t) - e vV, (e»

I 5

(59)

(-.10)

(5.11)

G.12)
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where 1o
VUOED =T W 1 519
The motion of both rotors is contained in the WAt terms. Each

(E,b) determine a function R(t)="?(t) ,~F(®)1 which describes the

relative motion in the field C (R). In this way the dynamical

factors, which are contained ;n the iVI integrals have
“TreMi-

been separated from the orientation dependent factors of the rotors,

which are contained in the functions. This simplification is

due to the use of classical perturbation theory in evaluating

A('I’Zi 8—) and it is independent of the form of COO (R (Clark et.al.

1977).

Substituting (5.12) in (5-9) we obtain

* 5.1*0
a o ¢
where we have made the transformations (Dickinson and Richards
197*0 +Va. - 2t. , + X/z -> a(i, for only the average
over these variables is required in evaluating (56.*0> The
classical changes AjC and AVnc are obtained from (5.1*0 using
(Clark et.al. 1977).
~ VAR 2 B.
2 A a - ; (5-15)
X 9ii Qo(i

where Anf a J. CoS Oi .

It is important, as we will see below, to point out that with

our choice of the plane of the classical trajectory we have

AL =X = - Annal- - Ahryn (5.16)
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where A is the orbital angular momentum quantum number of the system.

5-3 The real form of the change of the action
To evaluate (5.1) it proves convenient to express
in real form. Using the symmetry properties of the Clebsch-Gordan

coefficients, the spherical harmonics and the rotation matrices we

find that
G171
so that the sums over jt-, in (5-6) are written in the form
f _ 1L c.= = rfa =
Mr ™ x. Wi n n
Xa.
aR«z z Lc s b L0
v oo — UMM o1 TD**MV y»
G 18)
where

~"N Al ) + A<AX* A, AX

AAAA AANCA A

A*AXAK' A AXA +3z2A>A AXAt ?

v ~ AKX A AKX A

= lmi* 4> " <£*+ A Ax +iw, A FA xA 1 ,

~ A AL ~PAA A

1~A, > ~ 1-A, *
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substituting (56.18) in (6 .6) we obtain
Ai At

Am A a,MNiC:

W k:scC 4(-,!" scscC,

tc-o™R 5)a0 f<w ifw w*r &>\
n W (} m% ~ V w t)

*«(<>" v Msacu,

b; , C '« c c
5.19
*rfe, .O0;.CCO )1, -1
where ~ NN ,& ,<0 and
is given by (5.10). Choosing again the OXY plaine as the plane

of the trajectory we can write the change of the action in real

form as

A(s,a ) =~ Z 1L zMim[n\./_.n\,/i( |1C'u

\Xx Mnt'O L k-'M> Mt

*( BBMM O *0 COsU”"M "M wO
+ C'AN LIV X c ™k w w o
+C OB, GIE@ 4F*C csT./ - M +AN)
fcn 4*/-+tn CoS (-~ A 4A*i +AN))

+C . eu 4 > C « C “ W «



+ C°Z COS M + -~*0

+ @) °CiLA (V3 -I‘V\—A)

+& <FW>U+M-*«0)]]

where the rotation matrix CLU")”')\ is defined by Edmonds (i960,

p55) and \V4

1"Ip/*i is given by (56.13). The general analysis

cannot be taken further. We have now to determine Aifi*fi) for

particular interactions (R), and then evaluate the transition
amplitude (6*5). We concentrate in this work on the dipole-dipole
interaction ( 1), and we shall show in the next chapter that

in this case we can express (6*5) analytically.

5.~ The detailed-balance relation

To evaluate the transition amplitude (5-5) we have to employ
a suitable frequency WM of the i-th rotor. Following Dickinson and
Richards (197*0 we define WM as the arithmetic mean of the initial
and final values, and NI () respectively. With this

definition we have

W=*[i- +Nc +)A]/I- .

Using the translational energy given by (U.16) and the above rotor
frequency the probability (5*M is the same for both forward and
backward transitions, and we have to correct it in order to obtain a

probability satisfying the detailed-balance relation
E*(2],+,X U +l) Pcjr-U'j* ;b;e)- Ei(*jEO(ag+i)P o X -jjn)

where E is the total energy and E~(E®) is the initial (final)

translational energy. We define the corrected probability as

_kg_

( 20)

5.21)

5.22)



JXKLIHY)WQJjt-jX; E ) (5.23)
where

cuy+ouji-H)

Cajlti)(2j1+0 (5-2b)

For large (J7jg) andAji«ji (i=1,2) the correction (56.2*0 is
approximately 1. The cross section is obtained

integrating (56.23) over all impact parameters

PleMi *J|J% ;b E) t cit

b (5.25)

oU u ->jiix)

5e5 The first-order transition probability

We have seen in section 5-3 that to evaluate the transition
amplitude (5.5) we have to consider particular interactions. In
evaluating the FOCP however we can obtain a closed form for the
transition amplitude and probability for the general potential.

We require the degeneracy-averaged FOCP transition probability

f0 o y Mmor
P b;E) =(Ele") C(i,id/J0 urrllad, d<0 d (cosfi,)
Tt o<ty

| dcos@ [9 (i )] (5.26)
5 ro0
Cj.Ji L,3,30) is given by

SKU,K,U) - -4-vr ¢ «is AcA,-5)«p[>0.»r**ii], (527)
~

where we have put ST#U.F. Substituting (5.1*0 in (5.27) we

obtain

dvip - HE.ZL AN o

Mim\

(5.28)
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FO
The calculation of P ( ;b;E) yields

Comparison of the FOCP with other first-order models

It is interesting for the understanding of the main features
of the FOCP to compare (5-29) with other similar models. Consider
first the first-order time-dependent perturbation theory (FOTDPT).

The FOTDPT formulae for the transition probability has been
derived previously in the literature (Cross and Gordon 1966, Rabitz
and Gordon 1970). Considering the relative motion as a linear
trajectory contained in the OXZ plane they obtained a general expression
for the probability in terms of modified Bessel functions, Kj(2)
(Abramowitz and Stegun 1965,p37*0« To compare with our FOCP we
rederived the FOTDPT equations considering the classical trajectory
on the OXY pla”~ne and determined by the Cqo (R) potential.

For the FOTDPT transitions amplitude SFOﬂ%ﬁijii»thﬂmmunn

states |i)=]jImij2m2~ &nd [F)=|jIm]j m”~ we obtained

where (11!) is a 3-j symbol (Edmonds 1960,pl46),



given by
P r j ifKFft -i1A*_+Wi0]
\ s Cl%At M € A (5.31)
with
~a (EY H(- Ej; Eji)=AEJA .20
where Ej” is the rotational energy of the i-th rotor. The degeneracy

averaged transition probability is

Pf" W ) 0 o)to c 07

X . i 63

which is similar to (56.29). Using the quantal relation for the
rotational energy Ej:Bj(j+I), in (5.32) we have that for any

transition st +

% —sW + A,

(G.31h)
where W. (i=1,2) is given by (5.21);
then V, . (E,b) =Vv~~1u (E,b). Using the expansion
(Dickinson and Richards 1971+)
- Nis jJl1AV _ W M» r. . _5 *(*+»)- Zs*
Uj+1)Vo 0 0/ ~2A+t1 l'asl 1 cij+i) (Caj +)A + (5.35)
and assuming that and y¥ are large compared with ~ we obtain
- POTP L TEA n
P U->y/4;t)"Z_ ea+puenZLl /AA> 1, A1
AN JU,N

(-39



which, except for the term (E~E”~-7~ (( Jg j'Jj£), is identical
with (5.29). For a linear trajectory the V. (*™®) integrals can he
expressed in terms of modified Bessel functions recovering the
usual Rabitz and Gordon result (1970). It has been shown (Cross
and Gordon 1966) that, for the dipole-dipole interaction, the
straight-line (SL) trajectory limit of FOTDPT at relative initial
translational energy E.»AE- gives the same cross section as the
time-independent first-order Born approximation (8A).

Another first-order limit which has been applied to the
problem studied here is the distorted-wave Born approximation
(DWBA) . Davidson (1962) has derived the DWBA expression for the
rotational inelastic cross-section and used it for coll:*sionse
Following Miller and Smith (1978) we can write the semiclassical
DWBA transition amplitude, SA(QLE;) between two states pz(n,in

AR

and n*~Min™MjnN, ... ,n) as

S (h,n)--~yT d®e [I—AC@)J ? (.37

where

$ - N itm C KR +I}/OO(R[V {E-\0m3 D, 5.38)

with k the wave number corresponding to a translational energy
E:n2k2/2yU,/A is the reduced mass of the system and Vq (R) the spherical
potential. Apart from the phases $ ($7), (5.37) is identical to
(@+.1r) and when applied to rotor-rotor collision it yields (5.29).

In general the first-order models do not satisfy unitarity
for close collisions, and for small impact parameters some kind of
unitarization is required. Our numerical results, presented in
Chapter 7, show that with the interactions of interest here the
SCCP converges into the FOCP only at very small values of the

probability.
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5.7 General remarks

The accuracy of the model presented here is dependent on the
validity of classical perturbation theory (CPT) to describe the
coupling between the rotors and the relative motion. We have not
attempted here to investigate the validity of CPT, as we expect
that the general conclusions of Cohen and Marcus (1970) for atom-
rotor collisions are valid for rotor-rotor collision. Thus the
change of the action as given by (6*20) is expected to be
valid within 10%, tending to be better for large incident energies,
large rotational energies, and for rotors with large moment of
inertia. A higher accuracy can be expected for the probabilities
(5.23) and (5.29) and the cross section (5-25) as they are averages
over the orientation and impact parameter respectively; it has
been argued by Dickinson and Richards (1976) and Clark et.al. (1977)
that CPT could be more accurate in predicting averaged quantities
rather than individual orbits.

17 (Ai0O

Central to CPT are the trajectory integrals V. ,
defined by (56.12). Since for a given orientation of the system
they determine the value of the change of the action AifINjfig),
their absolute value can be considered as a measure of the strength
of the collision. It is interesting at this point to introduce the
relation (Dickinson and Richards 197*0

e * (kkf*
ctR Vty(k") CAXtt)W ; (Ic)

r« + XVt (M. +70tCt)]

It e
-00

(5.39)



where Wj(k) is the wave function for a particle of orbital angular
momentum tl and wave number k in the potential

is the classical orbit followed by the particle in the same potential.
The prime (%) indicates final state.

From (5.39) and (5.29) we can see that the only V»i Vi
integrals appearing in the FOCP result are those associated with a net
change in the rotational energy of the moleculesAEjzfe(s-_,l\Av(’I, +&32w2
equal in absolute value to the translational-rotational (T-R) energy
transfer AE=Ef-E., during the collision. This iIs equivalent to
the first-order quantal description where the only matrix element
determining the transition between two states, is the one coupling
those states.

We point out one difference between the FOCP and the SCCP.

In the latter the V ., 1 integrals appearing in the change of
13im Iwx.
the action (5*20) do not necessarily correspond toAE.=AE. Although

complex we interpret this as the way in which the SCCP considers the
effect of the transitions between intermediates channels, and then

\ -Aj; >Mi would indicate the way in which these transitions
are most likely to occur. So, the V integrals contain
information about the form in which the couplings between intermediate
levels take place. This will be clearly seen in Chapter 8, where

we present the correspondence principle version of some quantal

decoupling schemes ; in all the cases the decoupling takes the form

of the conditions on the V ’s
““n tM™Mi
The value of the V ) integrals depends on the
>* M Mi.
four parameters, E, b, and W = DW, To give

the effects of the variation of these parameters is not simple
as there are no analytic approximations uniform in all the four

parameters. Dickinson and Richards (1976, 1977, 1978) have



extensively studied these trajectory integrals, and from these works

we can summarize the general properties:

A) In general the value of v/ f depends strongly on the
value of the potential (R) at the distance of closest approach
rQ . So, as a function of the impact parameter it varies slowly

for b £Rn, where Pm is the position of the minimum, of Cqo(R); for

larger values of b it converges rapidly to zero. IT there is

orbiting and bQ is the impact parameter at which this

orbiting occurs, the absolute value of V falls sharply
M>Aid

when b becomes larger than b . This is because the only R"s

classically accessible are those larger than or equal to the largest

of the three turning points occuring at these b"s.

B) The absolute value of v HiMi is a decreasing function of
the frequency W = So, for a given E and b, the largest
\J _ _ 1 is associated with a resonant transition
0, = MiHr
( -0)w; =0 1,1). For this resonant integral the integrand
is dominated by C~ ™~ (R) since cos is relatively slowly

varying; for WMO but small the behaviour is similar to the W=0 case.

When W is large the oscillations of the cosine term are dominant and

for large impact parameters the integral converges rapidly to zero.

©) The \J integral is a slowly varying function of E.
Vivz"™ iMi.

It will be shown in Chapter 7 that the behaviour of the transition

probability P(J”jg~jjjgibjE) is largely determined by the above

properties of the integrals.
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CHAPTER 6

THE CORRESPONDENCE PRINCIPLE EQUATIONS FOR THE
DIPOLE-DIPOLE INTERACTION

6.1 The dipole-dipole change of the action
Consider the dipole-dipole interaction (A, = A= 1) as the
only anisotropic term of the potential (h.12)- In this case (5.1h)

becomes

'CO
(6.1)

iy (NF BERS * o
f tos(t Hr) G (i) { (a3 /2ecd (farz)t \/ ((Srd(R/2sihvAd)
~btnU+i-) sin™+tfa) { 1c 08 Y 3/*) cosY A)- I/ (~in (8>Jisin*(fal2)}
~QeE) a(Wa {/ "dn(@us@D)+  a(¥svTi/2)}

+ON (@A™ { (Aol (<ty1)- y Nos(AVZ) anY™)]
~Joos(lIH" ) cos(@A ) | \I' AcosYViivx (Rilo) sinA/s)cos™t/i)}

+3 sih(/,+")sm 008l (0'A) sm(Birz) - \/ sirffaiz) cos(Rt/i)\

+3 coslA-~,ws(ar L y- ! \B(C12x00i(Bi/z)~y  Ast\(B,/2)Rin (ft/z)}

tis i ns i n Y)oiti/t) cos(fit/z)~~y" 6-2)



We notice that the v/ Y integrals appearing in A(551 have

vAi

1 ]=1 and 1*" =0>1. As discussed in section (5.7) this would

correspond to intermediate transitions with |AJJ =1 and |AmJ =0,1,

.e. dipole-dipole first-order transitions. So, CPT predicts that

the coupling between two given states occur through successive

first-order couplings between intermediate channels.

It proves convenient in evaluating the transitions amplitude

SsGg j g 2» exPress A(R_ in terms of the variables

oc+ - 0Oi, + cCz m Oi_ =cC"-°cCt "

Using the relation

W =W =VW
Y,Ui i/+1 V\),Jl 00 -»,-¢*00 7

the change of the action is written as

A

+

]

(*V, ai) = wr "3 »»t& oeldfa { ~ 00cos £ + t 0 cos™l

cost+ cos dt {t cos (ft/z) cosy~A) F 17.msinl (&K) sinz(fa/z)}
6 in<+ sin oi+ Cos' (P'/i) cos\(at/2) -y iti usin (fl,A) sin(ih/z)\
Cost coso ( L Sir*-(&A) cos(tvi) +\Q oos(fl/z) sim@37/2)]

sintf; sin < cin siri(fr/z) COSY<VO " Mo\ COSI(/3/2) sih (W/<)]

" 5-008Vj. cos«(g nq1gg | cosl(Pi/z) sinl(aA) + Ninl(&/z) co$l (fa/z) }

sinj. sMio(yy o | cos*(/Vi) sin (fah) ~ sin (Vi) ¢°s

6.3

(6.10



+3 co™ - cosat_ I (100 [cos*(AA) COS>aA) + SIVpA) S/nY/V*)}

t 3 Siaf sin_ I/_Jo | as*P'A) tosz(fii/d) - sia (&A) sin (fa/2)dj ;

reducing the number of V ~ to six, and where we have put fit. =
( 73 /c+)> = CC/\ ,L. )= Here, and henceforth we drop the

superscript 2.

6.2 The transition amplitude

In eq. (6.5) we define

Reos € = cos** (Min GZ([B/2) Q3ABI/Z) +  Heu(/3/2)sin (fi/i)),
Ksivi€ = s\n d+ { ¥ cos\Mz) cox(Hziz) -~ fusiti (5/i"
RoosCl - @5ej \NHstn(fi/2) cos(fiitz) +\Hitas (V2 sirifa/zi
R Siti€l~sind+[y A~ A /2 ) das((x2) - I/ (wl(Falz) s Gii/i)\}

Pasf =} VID{cos™A) FaY/38)  +9r7(0/2) COSColU
+sin/f3( sin/3t

P*i? =I\(IB* < { (AR sr(Q) - s (i) ad @)} »

P-2'4\U axdi/)cospiva) as™ + srifi) snfvi) s

- sinfa sia/3j.

PSIS>=" \DsMi. (s (M) o (37 - Se2(84) sl BA)™
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(6-5)

(6.6)
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in term of* which the change of the action is expressed as
A , =) = sin (Y+ + <) + R_ $in (£ +£.) 7 6-7)
where

R+ =3zrr (an-) { ( Ros€ - pcos?)*+ (P sinS ~Rsit\€) ) * (6-8a)

R 32ir Gir) { (P cosS - RauE) +(R'sin£+He<0S)ij * (6.8b)

€ maw i R"56-p“s« ) (6.8¢c)
| PsinS - Rsin€

= tnr{" P’cosS’-R'cose’

Risin€. +p'sin? (6.8d)

Replacing (6.7) in (5*5) and changing the integration variables

to ~ and we obtain for the transition amplitude

sin (E+<€1)]

ftE - R sin& mT)}
- > (6.9)

where

a + 32 (6.10)

For n+(n)) half integral we have S ( j j p BO. For n+(n) integer
we use the integral representation of the Bessel function (Abramowitz

and Stegun 196 5 , p.360) obtaining

(6.11)



Because of the integer condition for (6.10) we have the selection
rules:

if s® odd, then s™ odd,

(6-11a)

if s™ even, then s™ even or zero or vice versa.
These selection rules are the same as those in the quantum treatment
of this problem. It is interesting to note that the above selection
rules are independent of whether or not the colliding molecules are
identical.

The transition probability is

sir
pG.jt t;E) G Iwij*)¢j* - ddi
difosfi’y ¢l (cosfa)y J ("R*T1(R)
“—hi- ") 6.12)

a

where the average on the *m S and fi s must be performed numerically.

We can see that the phases (@ and <f_ play no role in determining

the probability. In contrast to the atom-homonuclear rotor case
(Dickinson and Richards 197*+) the integrand in (6.12) has no symmetry
property which permits us to simplify the four-dimensional integral;
nevertheless its complexity is substantially reduced for /3--0 ot fIj
in which case 1S (¢ n independent of " . This 1is because
for /L =0 or Tf the angular momentum vector of the ith rotor is
perpendicular to the OXY plane (see section *+.2).

For a given orientation of the rotors the variations of

R and R depend only on the variations of the V , integrals.

It is interesting to note that the frequencies H , in the - . ’s
YIVIFI=X.

determining R+ and R_ are W+ = and W_ = WA-W~ respectively.

As seen in section (G-7) V ., decreases as W increases, and
G0V 5 A

then we have that in general, for a given E and b, R+<R_-« This



difference in the values of R+ and R_ explains some features of the
first-order allowed transitions which will he discussed in the next

section.

6.3 The first-order result

From (5.29) we obtain for the dipole-dipole FOCP probability

P CU-UJ; M) “ (/)i tftoi'd;)T wi,

where the N (3. give the selection rule |SM = | | =1. Expanding

the s\im inyH "s we obtain

P (ja->ux :PH"(fr/O *" 08),jO 1.y i

which 1is proportional to the FOTDPT result, the proportionality

constant K, being

K = _ " Co o J;l{o o K
wulmual

with [j.1= ji+D)

6.3.1 The straight-line limit
Among the semi-classical models, the straight-line (SL)
has been the most widely used approximation to the relative motion

(Cross and Gordon 1966, Rabitz and Gordon 1970a, 1970b, Mehrotra and
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(6.13)

(6.10)



Boggs 1975» Hashi et.al., 1978, are some examples in dipole-dipole
collision). We present here the results of the SL approximation
for the dipole-dipole FOCP as an example where the probability and
the cross-section can be expressed analytically, providing a better
understanding of some features of the long-range collisions.

For W= ~0 the integrals can be

expressed as (Dickinson and Richards 1977).

where C= (U"I'T'ﬁS)("OTf/3)1{? DAD™, Di the dipole moment of the i-th
rotor, K™N(Z) is a modified Bessel function (Abramowitz. and Stegun
196 5, p.37¥), iris the relative speed, and Z=Wb/o" is a measure of
the adiabaticity of the collision; for Z<<l1l the collision is sudden,
while for Z»1 it is adiabatic. Replacing (6.-15) in (6.1U) and
using recurrence relations for the K~Z) functions (Abramowitz and

Stegun 1965, p.376) we obtain for the SL limit of the FOCP probability

where

(6.15a)

(6.15b)



For a resonant transition (AEjEtiW:O,W.*O,i:I,Z) the V , .
i

integrals are

ZC

Voooo % 0"yl (6-17a)
'oon 3 9iTbz (6.17b)
where we have put S = vVoou,u~ for the resonant integrals.
For the SL limit of the resonant FOCP probability P;ER we obtain
Psir CjIx->4J1; b; E) = J- ( D/ttao)” () AN 3 = 1J (6.18)

where we put D~sDg=D, since a resonant transition occur in a collision
between identical molecules.

For small values of the impact parameter the FOCP probability
does not satisfy unitarity and modifications to enforce it are
necessary. Hence a cut-off b* is defined so that for b>b* the
first-order model 1is valid (see section 3.1). Once b* is defined
the contribution to the cross-section from the long-range region b>b* is
calculated using (3.5c), where b” is replaced by b*. For the general
case of the probability (6.1it), the integral over impact parameters
must be performed numerically. However, for the SL limit the
integration is analytic, and we obtain for the non-resonant long-range

FOCP cross section Q'éﬁ

JN;E) =(E*/EPH)/~ C (Lii"j"x) T (o,/eaofCDi /en ©.19)

f 1 r [* kwK,c*)*

FO

and for the resonant cross-section SLR

C wvi.>U > * i €dl ¢ (6.20)



FO
We use b# so that P(b*)=P (b*), where P(b) is given by (6.12)

6.3.2. Convergence of the SCCP to the first-order result
Our numerical results presented in the next chapter, show tha-

the SCCP converges into the FOCP at very low values of the probabilit;
This slow convergence can be understood through the occurrence of the
two different frequencies, W+ and W_, in the integrals,
which produce the inequality R+<R_, for any E and b. To see the
physics implicit in this inequality we consider here two cases where
| R+-R_ I becomes large. In what follows we consider a collision
between two identical molecules, and a range of impact parameters

for which the dominant term of the anisotropic potential is the
asymptotic term C~iR), given by (U.10), so that R+ and R_ are

monotonic decreasing functions of b.

A) The(J.J) g+1jj+1) transition. In this case we have for

the integrand of (6.12)

Since the integrals determining R are resonant,
and so R_ decreases with b more slowly than R+ . Then there exists
a large impact parameter b <b*, for which R+ becomes small enough
to make the small argument limit for J (R+) valid (Abramowitz and
Stegun 1965, p.360), while R_ is still large. In this case we can

write (6.21) as

(6.21)

(6.22)



It is easy to show that the FOCP transition probability for this
transition can be obtained from (6.22) by applying the small argument
limit to J_R_ ) (lim JO(R:)=I), and performing the average over the
cClS and /3"s . Since the actual limit is reached at b=b*, usually
much larger than b , the value of the FOCP probability is too large
in the region b <b<b* since |30C*)I ~ I - Clearly this
overestimation arises because by making Jq (R_)=1 we are neglecting
the resonant integrals Va0/*/Jix , which may be significant even at

very large impact parameters.

B) The resonant (J”jg) - (Jg.”) transition, wj —j | =1. In

this case we have

| IX) IjV).

Again the V, , .U integrals determining R are resonant, and in

the region b <b<b* (6.23) becomes

In contrast to (A) in this region the transition is determined only
by the resonant integrals \oojk, ~ . This is equivalent to the
quantal description where at large impact parameters the matrix
elements corresponding to non-resonant channels become negligible
(Bhattacharyya et.al. 1977).

As In (A) to obtain the FOCP probability for this transition,

we apply the small argument limit to in (6.21*), yielding

I S U j, ,j-j)HIT - .

and then we perform the average over orientations. As before in

(6.23)

(6.21%

(6.25)



the region b <b<b* the value of the FOCP probability is overestimated.
From comparison between (6.2b) and (6.25) it is clear that the
overestimation is because iIn this region |RI>2]j1(QR )|, which indicates
that the resonant trajectory integrals, Voo/m.,~ , are significant

at large impact parameters.

It is clear that for the transitions discussed above the
resonant trajectory integrals are dominant in determining the transition
amplitude, S(J”JjJijj-.). Iin the region b <b<b*. This dominance
indicates that the SCCP treats the collisions as being sudden. In
Chapter 7 (section 7.2) we present a numerical study of the adiabaticity
parameter, Z=wt>/VI"' , which shows that, for the energies and transitions
studied in this work HC1-HC1l and HF-HF collisions are adiabatic rather than
sudden. This suggests that the slow convergence of the SCCP to the
FOCP 1is due to the adiabatic nature of the collision. It is
interesting to notice that large values of the VOONpI 3 indicates
a large dipole-dipole coupling potential. Clearly the FOCP should
be more accurate, in the region b <b<b*, for non-adiabatic collisions
between molecules with a small anisotropy in the potential surface.

Although the two transitions discussed above are just special
cases of the transitions (7jg) == (™ .jg+1) and (J2jg) == (gx+ 1,~+1)
respectively the conclusions are expected to be general for every
first-order allowed transitions with W_<<W+, provided they are not

both sufficiently small for the sudden approximation to be valid.

I* Numerical Techniques
To calculate the cross-section at a given energy we have to
evaluate the integral (5*25) of the transitions probability
over impact parameters, where the probability itself

is the four-dimensional integral (6.12) of the modulus squared of

the transition amplitude S(J"JgTjjijg)= The transition amplitude



is obtained evaluating (6.11) for each R+ and R_ which, for each

value of b, require the evaluation of the V , , ,, .,

6.1+.1 Evaluation of the V.., ,,

————————————————————— A AT
The integrals n depend on the classical trajectory
followed by the incident molecule relative to the target. As seen

in section K.k this is determined by the spherical part of the
potential Coe (R). Taking the well depth of the potential E, and
its position R™ as units of energy and length respectively we write

the reduced variables as

= R/Rm , b- IRV ; £ -FE/es

Q0- CJt 7 t =zst/a )} Bz=£/*-ERmAJ

in term of which the classical equations of motion are

where the reduced distance of closest approach YO, is the largest

root of the right-hand side of (6.27a). The integration of equations
(6.27) is carried out using an algorithm of fourth-order predictor-
corrector type based on the Adams-Bashforth predictor and Adams-Moulton

corrector (Hamming 1962, p.192)j Crane and Klopfenstein 1965)* To

start the procedure the routine employed requires that i-i'm (dr/ct?)#0

T >0
This is obtained using the substitution 6 (A.P. Clark,

private communication), so that |t'f0 Ua/dt) *O .

(6.26)



The are integrated using Clenshaw-Curtis
quadrature with reliable error estimates (O"Hara and Smith 1968).
The routine was checked by comparing the results at large impact
parameters with those given by the SL limit (6.15). The agreement
was within the expected accuracy.

To evaluate the modified Bessel functions in (6.15) we use
polynomial approximations for and Kg (Abramowitz and Stegun 1965 ,
P-379), and then is obtained using recurrence relation (above

reference, p .376).

6.1*.2 Evaluation of the transition amplitude

Given the /*,APh the calculation of R+ and R_ for
specified values of Tiand T is straightforward.

To evaluate the Bessel functions of the first kind JN(X),
we use polynomial approximations for JO and (Abramowitz and Stegun
1965 , pp-369 and 370), and then other orders are obtained using
either recurrence relations or ascending series (above reference,
pp-361 and 360 respectively) depending on 11Xl being larger or

smaller than P)| respectively.

6.1*.3 Evaluation of the transition probability
The rapid evaluation of cross-sections using SCCP depends

strongly on the efficient evaluation of the integral (6.12).

Accordingly, most of the effort in the implementation of the computing

program has been spent in doing this integration. We found that
Clenshaw-Curtis quadratures reconcile speed and accuracy.

The integration overot®"s is carried out first making full use
of the simplification for /3 -0 ch 17 (see section 6.2). The

integration over /3°s is performed on the variable cos /3( which gave

69
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a smoother integrand. Typically the number of points in each
integrand gradually decreases from 33 in the inner integral to 5 or

9 in the outer, to give results accurate to 1%. The accuracy of

the integration was checked by doing the FOCP calculation numerically
and comparing with the closed form results (6.13) for the full curved

trajectory, and (6.16) for the SL approximation.

6.U.U Evaluation of the cross-section

The evaluation of the integral (5.25) is performed using,
again, Clenshaw-Curtis quadratures. The upper limit of the integration
was taken at a cut-off b defined by P(b )b <10 The

max max “ max

contribution from impact parameters beyond this value is completely
negligible. For resonant collisions we found that at b*<b<bmax the
contribution to the integral was still considerable, and the trajectory

was well approximated by a straight line; in this case we put our

upper cut-off bmaxzb* and the cross-section was calculated as

Some cross-sections have been calculated using the SL limit for the
relative motion. Since in this case there are unphysical small values
of R we have introduced in the integral (5*25) a lower limit
bmfn:ro:Rmro(bzo)'

Much of the computing time is spent in the four-dimensional
integral (6.12), and we feel that any attempt to reduce the computing
time should concentrate on this integral. In evaluating the V __ __ _

9 9 KKIpJE.
we have sacrificed generality for speed, and to make the computing
program applicable to any transition and system, an integration

routine "tailor-made" for rapidly oscillating functions could be more

desirable.



The precision of the calculations we present in the next
chapters is estimated to be about 31. The program was run in the
University of Manchester CDC 7600 computer through the Stirling
University link. The SCCP cross-sections presented in this thesis
required about 36 minutes CPU time. An average cross-section required

about 55 seconds CPU time.
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CHAPTER 7

RESULTS AND DISCUSSION

7.1 Introduction

Probabilities and cross-sections for rotational transitions
in HF-HF and HC1-HC1 collisions have been calculated for different
levels of the molecules at different initial relative energies E/.
Our goal was to investigate the features of the rotationally inelastic
transitions for different collisional parameters. To allow comparison
with earlier studies, we discuss here some examples of transitions out
of low rotational levels (J”j”), for which there is no formal
jJjustification for using the SCCP; however, quite good accuracy has
in fact been obtained for the j=0 “mj’=2 transition in H"-He collisions
(Clark 1977)> and although the reasons for this are not clear we expect

our predictions to be reasonably accurate.

7.2 The adiabaticity of the collision

It proves convenient to facilitate our discussion by examining
the adiabaticity of the collision. The adiabaticity parameter is
usually defined as the ratio between the collision time, T, and
the transition time, W \ for the rotational motion of the system.
As seen iIn sub-section 6.3.1 for the SL limit this ratio is conveniently

taken as

where "KW/ is the change in rotational energy of the system. When
Z»1 the collision is adiabatic and the molecules rotate a great deal
during the collision; when Z<<1l the collision is sudden and we may

consider that the molecules do not rotate during the collision.
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A numerical estimate of the adiahaticity for the systems
studied in this work is obtained by examining the (1,1)->-(0,2)
transition. Using V as given by (U.16) we obtain, in HF-HF
collisions, z=0.itb/aQ and Z=0.1b/aQ at initial energies E”=500 and
8000cm respectively; for HC1-HC1 collisons we have z =0.Vb/ao and

Z. =O.26b/aO at E,=201.71 and 500cm ~ respectively. These results

1
show that in both cases the collision cannot be considered as sudden,

as even for HF-HF at E”~=8000cm ™ Z is small only for the smaller

impact parameters. This large adiabaticity is characteristic of heavy-
particle collisions involving hydrides.

At small impact parameters the relative motion is not well

represented by a straight line. For the curved trajectories at

small b however, there is no comparable ratio to (7-1)- Based on
the strong dependence of the V _, integrals on the value of the

potential at the distance of closest approach, rQ, we define a

characteristic adiabaticity parameter Z as

v_ Jb 7-2)

where V is some typical speed. Clearly this would be the adiabaticity
parameter if we approximate the curved trajectory by a SL with impact
parameter b=rQ and speed V.

The evaluation of (7.2) involves the choice of a physically
convenient V, which is not unique. Using the simplest cases we have

calculated Z for the following three choices of V:

(i) ) v - v = f (3) y - (i r + * ) A H (T.3)
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where V is given by (It.16) and VO is the actual relative speed of
the molecules at the distance of closest approach. For distant
collisions, where the curved trajectory converges to a SL, Z=Z. On
physical grounds the third V in (7.3) should be the best of xnese
approximations.

We present in table 7.1 our results for Z for the (1,1)-+(0,2)
transition at E~=8000cm . We notice that for the smaller impact
parameters Z>Z. This is because at these values of b the repulsive
part of the potential is dominant, making the relative motion at r”

slower and keeping the molecules apart. No significant difference

between Z and Z appears at larger b, and they become equal at b=12aQ
where b= ro.

The results discussed above predict, for the systems studied
in this work, a breakdown of the time dependent sudden approximation
(TDS A). This has been shown by Alexander and DePristo (1979),
who have calculated sudden transition probabilities and cross sections
for the (0,0)-*(1,1),(0,2) ,(2,2) and (1,)-*~(0,2) transitions in HF-HF
collisions at a total energy E=8000cm ~. Their results (presented
below) show that the main contribution to the cross section comes from
distant adiabatic collisions, giving cross sections which can be
overestimated greatly in the sudden approximation. This can also
be noticed from our discussion in sub-section 6.3.2, as the TDSA in
the SCCP framework puts V , fﬂ}li :Vvur‘rL ; from eqs. (6-13) and
(6.1 1) it is clear that at large impact parameters the sudden approximation

overestimates a non-resonant transition, while it is exact for a

resonant one.



7-3 The correspondence principle transition probability
7.3.1 The function P(b)

We discuss first the behaviour of the transition probability
as a function of the impact parameter b. To investigate the
importance of curved orbits we have calculated the SCCP probabilities
using both, a straight line (SL) and curved trajectory under the
spherically symmetric potential g,, (¢ ) - the latter being termed the
full SCCP result.

We present the function P(b) for the (0,0)->-(1,1) transition
at energies E”=1000 and 8000cm ~ in figures 7-1 and 7.2 for HF-HF
collisions. Since the lowest energy is much smaller than the well
of the potential, £, orbiting occurs at L)Fp. When b becomes just
larger than bQ three turning points exist, and bQ marks a jump in the
classical distance of closest approach (from r0<Rm to r0>>Rm). The
trajectory integrals, Vj~ fAjIX » are not defined at b=bQ but the integral
over b for the cross section exists.

The results in figures 7-1 and 7*2 show that at small impact
parameters in the SL limit the SCCP probability is negligible. This
is because at these impact parameters the trajectory integrals are
extremely large, being roughly proportional to the value of the
potential C~(R) at R=b. Here we expect for the rotor-rotor probability
a behaviour similar to the strong-collision limit of the atom-rotor
probability (Dickinson and Richards 1978), so that a statistical limit
P(bK Mi/,j is likely to be valid (Bfnstein et.al., 1963). There the
number of strongly coupled levels, N, is proportional to vooll (Dickinson
and Richards 1976); if C~(R) increases, N increases and more levels
are classically accessible. Thus, to conserve probability, the flux
to a particular level must decrease. When b increases the SL
probability increases, reaches a maximum and decreases to become

negligible again at large b.
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For the full SCCP the picture is slightly different. At
the low Impact parameters the distance of closest approach rQ changes
very slowly, and the strength of the collision, as measured by the
Vv .,, - integrals, is almost constant. As b increases the change
in rQ is more noticeable and the probability increases, reaches a
maximum and decreases becoming negligible at large impact parameters.
This shows the dependence of the probability on the dynamics of the
relative motion. The same shape occurs in the calculations of
Bhattacharyya et.al. (1977) for rotor-rotor collisions.

While at the lower energy most of the probability arises
from impact parameters where the effect of the spherical potential
on the trajectory is still noticeable, at the higher energy the
contribution to P(b) comes mainly from b"s where the trayectory is
very well represented by a SL. These represent what we have termed
short and long-range transitions respectively. In the short-range
transitions we notice that after the maximum is reached the probability
falls sharply to a very low value. This is because the collision is
very adiabatic, and at these iImpact parameters the transition probability
decreases as square of K Bessel functions (Abramowitz and Stegun 1965,
p-371+). The physical factors that make a transition short or long-

ranged are discussed below.

7.3.2 The FOCP probability
The transitions presented in figures 7-1 and 7-2 are first-
order allowed. In all these cases the FOCP transition probability
does not satisfy unitarity at small impact parameters, and becomes
s

less than 1 at b£b_ for both the short and long-range transitions.

Some FOCP probabilities are presented in figures 7.1 and 7-2 for large

*) muox PCb) “ PCtw) .



impact parameters, with the same qualitative picture in both cases:
the FOCP overestimates the transition probability, which deviates

from the correct value even at impact parameters where the value of the
probability is very small (figure 7.1)* Eventually, the SCCP
probability converges to the FOCP value, but this convergence usually
occurs when the probability is negligible.

The FOCP probability has also been calculated using both curved
and SL trayectories. The comparison between them (not shown) showed
that iIn the region where the repulsive part of the potential Cao (R) is
dominant (very low impact parameters), the SL limit gives results very
much larger than the curved orbit result, while when the attractive
part of the potential dominates the SL limit result becomes smaller.
This is consistent with the fact that the distance of closest approach

is a dominant effect in evaluating the V integrals. The

YM”
impact parameters for which both probabilities become less than 1 are
approximately the same, so in our approach the SL limit of the first-
order result is not improved by the curved trayectory version. This
result is a semiclassical confirmation of the prediction of DePristo
and Alexander (1977) that the DWBA treatment of the collision would not
remedy the failure of the BA. As seen in sub-section 6.3.2 the failure

of the FOCP model is mainly because of the adiabatic nature of the

collision.

7.3.3 The change of the probability with Ei

We now study the transition probability as a function of the
initial relative energy - The impact parameter b, and the net
change of rotational energy of the system,A.Ej:A.Ed +A E\ > are

considered constant. It is important in the following discussion to
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separate the transitions into resonant (A.E.=0,AE. =-AE. ~0) and
J Ji J*
non-resonant (A.ngO) cases.

Consider first a non-resonant transition. It is clear from
figures 7>1 and 7.2 that when E.1 increases the transition probability
also increases. This 1is generally valid for large impact parameters,
and so a transition which is short-ranged at low energies can become
long-ranged when the energy increases. Another example is presented
in figure 7-3 where we show the probabilities for the (1,1)->-(0,2)
transition at E|:1000 and 8000cm ~. Note here that the difference in
the range of the transition at the two energies is not as marked as for
the (0,0)-*-(1,I) transition (see figures 7-1 and 7-2). This 1is because,
although E® has been increased by the same amount for the two cases,
the (1,1)-*(0,2) transition is less adiabatic. The fact that at E~=1000cm
the (1,)->-(0,2) transition is longer-ranged than the (0,0)-*-(l1,1),
indicates that a low E.I is not sufficient for a non-resonant transition
being short-ranged; the collision should also be adiabatic.

In the FOCP result at large impact parameters, the non-
resonant transition probability increases as EM iIncreases; this is
because at large b the trajectory integrals are increasing functions
of the speed. Since the FOCP is invalid at small impact parameters we
do not consider it further.

For a resonant transition the dependence of the probability on
EN is different. At large impact parameters, where the trajectory is
well represented by a SL, an increase in the energy E” produces a
decrease in the transition probability. This 1is because here FOCP is
valid and the resonant trayectory integrals are decreasing functions of

the speed (see ed. 6.17). At small iImpact parameters there is strong

coupling and the probability behaves more like a non-resonant transition
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probability; this is illustrated in figure 7-~ where we present the
probability for the resonant transition (O,D->-(1,0) at E~=1000 and 8000cm ~
in HF-HF collisions.

In contrast to the non-resonant case, a resonant transition is
longer ranged at smaller energies, which is a feature of sudden collisions.
Overall, a resonant transition cross section is mainly determined by
the long-range contribution and we shall see below that the resonant

cross section is a decreasing function of the energy ,

7.3.1+ The variation of the probability with AE..
Z

0

We now consider the transition probability as a function of

the net change iIn the rotational energy AE.O(I> and E.+ constants), which
is equivalent to studying the probability as a function of the
frequency W.

It proves convenient to consider first the FOCP result, as
it is directly proportional to the squares of the trayectory integrals

Vs, As shown by Dickinson and Richards (1977) these integrals

Lifix -
decrease rapidly as W increases for curved orbits, and so the first-
order result increases when W decreases.

For the SCCP result the extension of above picture to the
region where the coupling is weak is straightforward, and at large
impact parameters an increase in V produces a decrease in the transition
probability. This means that at a given energy E®, the transition is
shorter-ranged as the collision is more adiabatic. This is clearly
shown in figure 7.5, where we present the probability for the (0,0WIl,1I)
and (1,DD-+-(0,2) transitions in HF-HF collisions at E~=8000em , and
in figure 7.6, where we present results for the (0,0)-*"(0,2), 2,2-*-(3,3)

and (G,D-*-(2,2) transitions, for the same system at the same energy.



At large impact parameters the larger probabilities correspond to
the smaller A—E6As associated with the transitions.

In the strong-coupling region however, the situation is
different and complex. While in figure 7.5 the largest probability
is associated with the smallest change in rotational energy, in figure
7.6 there is not a clear pattern associated with the variation of AE..
This iIs because the probability is not a single valued function of
the collision strength. In our picture the form of this dependence
is non-linear and it does not seem possible to give a simple account
of its effects on the probability.

It is interesting to note that in collisions between identical
molecules, for the (J”jg) ”7Sjjg+s) transitions there are sets
] »j2)j, of initial rotational quantum numbers for which, for a
given s, the value 01=AE3 associated with the transition is the same
for any element (j{fjﬂ) of a particular set. So for instance,AEj:O
for all such that j~jg+s, and A E’\:ZBS2 for all ("™ ,jg) such
that j~=jg, B being the rotational constant of the molecules. Clearly
for distant collisions the transition probabilities for such a transition
are equal for any element (J”jjg) of a given set. In the strong-
coupling region however, the probabilities are different for different
initial quantum numbers, as at a given collision energy E~, the number
of accessible channels changes for different initial (ol.,jg) = As an
example we show in figure 7-7 probabilities for the resonant transitions
@,D-*-1,2) and 1,0)—>-(,I) for HF-HF collisions at E~=8000cm 1. We
notice that in this case the probability for the larger initial (”,jg9)
is the larger, and this is so even at b"s where the trayectory is a SL

(rO:b at bitlZaO), showing that the coupling is still strong when the



- 81 -

spherically symmetric potential is negligible. This dependence of

the rotor-rotor probability on the initial quantum numbers highlights
an important difference with the atom-rotor case, where a large initial
quantum number has associated a large AE:j In the rotor-rotor case
transitions with very small AC)U can occur in collisions between highly

excited molecules.

7.U Comparison of the SCCP probability with that obtained in

other theories
7.M1 Introduction

In the last section we have discussed different features of
the SCCP transition probability, and how these depend on the different
parameters of the collision. Since our discussion has not delimited
the validity of our calculations, we aim in this section to investigate
the usefulness of our model. To do so we compare here with the Close-
Coupling calculations (CC) of DePristo and Alexander (1977), the
Perturbed Rotational States calculations (PRS) of Hashi et.al. (1978),
the Classical Trayectory calculations (CT) of Alper et.al. (1978), and
the Adiabatically-Corrected-Sudden calculations (ACS) of Alexander
and DePristo (1979).

Despite the CC and PRS calculations should, in principle,
provide accurate results we feel that there is not, so far, a
dipole-dipole rotationally inelastic calculation we can consider a yardstick
against which to test our approximation. Hence, here we discuss not
only the validity of the SCCP results but also the validity of the
results we compare with. However, after this work was substantially
completed we received a preprint from Alexander (i960) describing a
more extensive close-coupling study which may well be almost converged.

Comparison with these Alexander results are presented in section 7.5.



Inadvertantly the SCCP calculations were performed with a
spherically symmetric potential which was CIYtr) times too strong.
Thus comparisons with other works in regions where curvature of the
orbit is important can only be qualitative. We have obtained a
numerical estimate of such a region looking into the deflection angle,

© , as given by the first-order momentum approximation (Pauly 1979,
p-11*0). For HF-HF collisions at E”=500,1000 and 8000cm ~ the
trajectory is well represented by a SL at impact parameters bAt)SL:Q,B
and 5.5aQ respectively.

We include in the comparison SCCP results using a SL trajectory
for the relative motion - henceforth termed the straight line
correspondence principle (SLCP). At bf£bg” the effect, on the
probability, of using a stronger spherical potential is shown by the
difference between SLCP and SCCP. For b<bbE it is difficult to
estimate such effect; however, it is likely that for those b where

the trayectory is dominated by the repulsive core of the potential,

the transition probability is underestimated.

J.k.2 Comparison with Close Coupling calculations

To test the adequacy of our approach we compare here with the
close coupling theory (CC) which, in principle, can give exact results
for this problem. The application of the CC theory to the collision
of two rotors has been presented by Takayanagi (965), see for example
Green (1975) for collisions, and DePristo and Alexander (1977)
for HF-HF collisions.

The CC theory exploits conservation of the total angular
momentum of the system. Consequently, basis functions in the total

angular momentum representation I Cj,jJt ;_n, QtXl) ” formed from

the internal wave functions of the separated molecules - are introduced



(Takayanagi 1965, e<*. 6). Here J and M are the total angular
momentum and its projection quantum number respectively, Z is the

orbital quantum number, and j is the quantum number corresponding to

the vector sum of 31 and %i. ji’ O'I (i=1,2) and Tl are the same as
used in this work. The wave function for the rotor-rotor system

r ) is expanded in terms of the 1*» functions, and, when
substituted In the time independent Schrodinger equation, the usual
CC equations for the coefficients of the expansion for each J,M are
obtained (Takayanagi 1965, e<*,9). A major difficulty with the CC
calculations is the (@j™+1) degenerate levels which must be included
for each rotational level, j» of each molecule, making the calculations

prohibitively long when the number of levels increases.

is the usual S-matrix; the + sign indicates that, since we consider
collisions between identical molecules, properly symmetrized functions,
1" — , are used. We compare with the results of DePristo and Alexander
(1977) who studied HF-HF collisions at total energies E=500,1000 and 8000cm
These CC calculations have been done mostly using a basis B3 containing
the (0,0), (1,1), (0,2), and (2,2) rotational levels and correspond
to both interchange symmetries.

In figures 7.8 and 7.9 we show weighted probabilities for
the (0,0)-*-(l,I) transition at E~=1000 and 8000cm 1 respectively. At
the larger energy we notice that for distant collisions (b>18a0), the

SCCP agrees well (error”™ 15%) with the CC results. There is also
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good agreement between FOCP and BA at both energies. This is
significant as it shows that the quantization of the internal rotational
states (gj,- 1*.6) is not producing serious errors, even for this
transition out of the ground rotational level. It is interesting to
point out that at E~=8000cm ~ the CC probability converges to the
first-order result faster than the SCCP. This suggests that the
SCCP considers the collision as less adiabatic and converges to the
FOCP slower than expected. A further discussion on this point is
presented below.

From the results presented above it seems clear that the
SCCP provides a reasonably good description of distant collisions.
At small impact parameters the correspondence principle results
(SCCP and SLCP) are inaccurate, and we cannot estimate the error
because the CC results are unconverged. It is likely that a basis
containing more rotational levels than B3 is necessary to assure
convergence (DePristo and Alexander 1977, Alexander and DePristo 1979)e
Close coupling calculations using an extended basis Bl*={b3, (I,3),(3,3)J,
have been performed for the (0,0) (l1,I) transition at E”=1000cm 1 at
J=1+0, 60 and 80 (DePristo and Alexander 1977). The results, presented
in figure 7.8, show that at J=UO the CC probability using Br* is
smaller than the result using B3, while no change occurs at J=60.
The result at J=80 is unexpected, as the CC probability using B*
becomes so large that it is off the scale of figure 7.8 ( Eftﬁ 18.2)
Although just a few, these results suggest that to achieve convergence
at small J, the CC calculations need a basis containing more states

than Bb.



It is interesting at this point to reexamine CPT. Using
(5.15) in (6.7) we obtain for the classical change in the rotor angular
momentum

Aj a Aj, + Aji =- 2. K+cos +<0J .
(7.5

From (6.8a) and (6.6) we can see that there is at least one (/3,,3%)

for which Aj is given by

(7.6)
It is clear from (7-6) that the maximum Aj allowed classically in

CPT is

@D

We show in table 7.2 values of max(Aj) for different b"s in HF-HF
collisions at E~=500, 1000 and 8000cm \ using the parameters for

the (0,0)-?(1,I) transition and assuming a straight line trajectory

for the relative motion. We present also the highest level (2j1j™NI™),
satisfying max(Aj) which is classically accessible. Clearly from
table 7.2, the SLCP has probability flux in energetically forbidden
channels. This is likely to make the SLCP underestimate the
transition probability (Clark et.al., 1977).

At small impact parameters the collision is very strong, and
the change of the action /( 3, “\)> is unlikely to be small compared
with the action associated with the isotropic potential. From table
7.2 we see that in these very strong collisions CPT may produce
transitions up to A j=50. It is our feeling that CPT cannot cope
accurately with these strong-coupling collisions, and A( £l1, , ) does
not describe precisely the coupling between the two rotors. While
this produces errors in the cross sections for short-ranged collisions

at the smaller energies, it is almost unnoticed for long-range



collisions.

Overall the SCCP should provide an accurate description of
long-range collisions, with errors which, due to averaging, may he
smaller than the possible CPT errors in determining the change of the

action AC U, , .

7.%+.3 Comparison with Perturbed Rotational State calculations

We have seen above that both the FOCP and BA are in good
agreement and give overestimated transition probabilities. We have
also shown in subsection 6.3.2 that this is due to the size of the
dipole-dipole coupling potential and the non-sudden nature of the
collision. In adiabatic collisions it is likely that the coupling
potential will affect strongly the phase of the rotational motion of
the molecules, and, to describe this, CC will require a large number
of rotational states. To take this perturbation into account it is

M

convenient to use an adiabatic formulation in which X ainx)
functions are replaced by the adiabatic internal states

J
These are eigenfunctions of the full internal part of the Hamiltonian

(Child 197*1, pp.87-88):

[HUCO+ Hjji) +VCslo  [C(r:  =K/(r)7°C (R at)

7.8
where Hoi (J°) (i=1,2) is the Hamiltonian for a free rotor in the
rotational level j).(, and \G\I.(R) & @ Ej t E- , the rotational energy

of the non-interacting rotors.

This method has been used in rotationally inelastic collisions
between two diatomic molecules by Hashi et.al. (1978), and been termed
Perturbed Rotational States (PRS). Expanding the wave function of
the system in terms of the W%, they solved the time-dependent

Schrodinger equation obtained assuming a SL trajectory with constant



speed, both numerically and using a first-order approach. This latter

approximation can be termed the first-order perturbed rotational state
(FOPRS) . SCCP, SLCP, PRS and FOPRS results are compared in figure
7.10, where we present probabilities for the (0,0)-*(1,1) transition at
~A=500cm "W in HF-HF collisions as a function of the reduced impact
parameter p:b/(D2/B)l (Hashi et.al., 1978).

The marked difference in the form of the PRS and the
correspondence principle probabilities (SCCP and SLCP) indicates
that the distortion of the rotational states by the coupling potential

during the collision is strong, and affects the dynamics of the
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transfer of rotational energy. This is very important at small energies

since, as shown in figure 7-10, most of the cross section arises

from the region where the distortion of the rotational states is

noticeable. The good agreement between PRS and FOPRS suggests that

the PRS results are converged, and that a major source of error in
(or

the usual first-order perturbation calculations (BA,FOTDPT)Vadiabatic

collisions is the failure to take into account the distortion of the

rotational states by the coupling potential.

In principle the PRS treats the coupling between rotational
states exactly, and should provide a very convenient description of
the dynamics of near-adiabatic rotational energy transfer. As the
energy increases the use of theBCa's offers little advantage. From

the above comparison it is clear that the SCCP does not describe

accurately adiabatic collisions.

7,U,U Comparison with Classical Trajectory calculations

Here we compare with results obtained from completely classical

calculations. The method is usually termed Classical Trajectory (CT)



calculations as it involves the study of the trajectories followed
hy the collision partners.
These are determined by solving the classical equations of

motion

-9
where H is the classical Hamiltonian of the system, g a coordinate
variable and p.. its conjugate momentum. The detailed methodology
of trajectory calculations has been recently reviewed by Pattengill
1979), and some details of the basic concepts of the classical
collision theory, as applied to rotationally inelastic collisions,
have been given by Clark et.al., (1977), Dicinson (1979b) and
Pattengill (1979)-

A major problem of the CT calculations is the procedure to be
used to quantize the continuous classical variables such as angular
momentum. In the context of the problem studied here this produces
ambiguities in:

A the method to assign a classical rotational energy E. , to

a given initial quantum level j», of the i-th molecule, and
B) the method to assign a rotational quantum number j”, to the

final rotational energy E.), of the i-th molecule, determined

by the trajectory calculations.
The most common technique for (A) is to assign a classical rotational
energy to a molecule using either the standard quantum-mechanical

formula

§ - Bi(+) (7.4

or to employ the usual semiclassical correction

E - BO'/OI . (7.105)
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For each set of initial conditions trajectories are computed, and
the final relative translational energy and final rotational energy
of each molecule are determined. To find j° one uses (7.10) to
determine the classical j corresponding to the final rotational

energy, and then associates j" with j by (Dickinson 1979a)

J (7.1
So, a trajectory is said to result in the ! transition.

We compare here with the CT results of Alper et.al. (1978) on
HF-HF collisions, which have been obtained using both (7.10a) and
(7.10b); we have termed them CT1l and CT2 respectively. They also
used a third procedure in which a set of rotational energies, chosen
randomly from a given uniform distribution, was taken to correspond
to an initial j. This technique appeared to be much less accurate
than CT1 and CT2 (Alper et.al. 1978), and we do not compare with it.

In figure 7.11 we present éiﬂh SLOP and CT weighted probabilities
bP(00-»02 ;b) as function of the iImpact parameter at E~=8000cm ~. We
also include the corresponding CC results (DePristo and Alexander 1977).
At b>5_.5aQ (SLCP exact) the agreement between SCCP and CT results is
poor. Quantitatively the CT probabilities are consistenly smaller
than the SCCP, with CT2 closer. At close collisions the CT results
show the peak arising in the quantal results, although its value is

very much smaller than the quantal. It is interesting to point out
that CT1l and CT2 have differences between them of the order of the
probability. Also interesting is to notice that the agreement

between SCCP and CC is better than for the (0,0)-»(1,1) transition.



In figure 7.12 we show bP(11-»02;b) at E.=1000cm \ In the
region where the probability maximum occurs the SCCP results are
very much larger than CT, while at very large impact parameters (b Z 18a)
the CT probabilities are larger than the SCCP results. Since at this
large impact parameters the transition is classically forbidden it is
clear that CT overestimates greatly the probability.

To draw any conclusions from the above comparison is difficult.
The main difficulty is the inherent ambiguity of quantization in CT
calculations. Despite the apparently small difference between (7.10a)
and (7.10b) the quantitative difference between the predictions of
CT1l and CT2 is large, and we shall see below that cross sections
differing by more than a factor of two arise; this suggests that any
quantization procedure used has inaccuracies of this order, which
makes comparison difficult. Another problem is the neglect, by CT,

of quantal interference and quantal tunnelling,

7.U.5 Comparison with Adiabatically Corrected Sudden calculations

It was predicted in section 7*2 that the time-dependent sudden
approximation (TDSA) would break down and overestimate transition
probabilities, This has been confirmed by Alexander and DePristo
(1979) who, using a SL for the relative motion, have calculated TDSA
probabilities and cross sections for HF-HF collisions at E~=8000cm *;
their results are very much larger than CC and CT results. In figure
7,13 we can see that, for the (0,0)-*(I,1) transition the TDSA
probabilities at b Z 1°a0 are several times larger than those of
SCCP, Clearly, from our earlier discussion (section 7,2), the TDSA
becomes invalid because most of the contribution to the probability

comes from impact parameters giving Z»l,
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To correct for the adiabatic character of the collision
Alexander and DePristo (1979) introduced the "dephasing factor"
exp(iwt) into the sudden action, AS, so that the trajectory integrals,

I2m’ whfbh determine As become

L") = met)] axp(itft) y (¢]) alt
=D J (7.12)

where I\W is an "effective" energy gap. This adiabatic correction
to the TDSA has been termed adiabatically corrected sudden approximation
(ACS). It is important to point out that this is inconsistent with the
non-sudden classical action (5.1U).

Clearly the above adiabatic correction makes the evaluation

R Acs _ _ .
of the ACS action A , and the derivation of the ACS transition
- ACS R - - -

amplitude S , very much more difficult than in TDSA. To avoid this
difficulty and as a first test of ACS Alexander and DePristo (1979)

introduced an extra approximation neglecting 1™iw) and Ig+ "(W):
* 1
I,W 5 !«,( > 0 (7.13a)

(7.13b)

where

oy - F x1LK.M
R.C*) (7.13c)

with KO(Z) the usual modified Bessel function (Abramowitz and Stegun
196U, p.-37*%+)> Defining the scaled impact parameter (Alexander and

DePristo 1979)

b =~ \ (i?&N\)] ? (7.1*0



and substituting this in (7.13) we have

b in TDSA. Thus the ACS action satisfies
_ Acs, _
AACS(W,b) = b)
so that the ACS degeneracy-averaged transi

ftCS B i A ]
S OB SINW)L)E a4 lfA

z |G:D)(h)t'vw

where formally given by

(61,™) e

AU m

To complete the above theoretical picture

physically realistic W. Alexander and De

i.e. I"tW) depends on b in the same form as I~(W=0) depends on
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(7,15)

(7.16)
tion probability is

(7.17)
* de6 df, ¢l cin (7.18)

it Is necessary to choose a

Pristo (1979) based their

choice on the dipole-dipole first-order selection rule, and consider

a multiple quantum transition as occuring
order jumps - which is predicted by CPT;

Thus they define

through a series of first-

see paragraph following eq.

6.2).

(7.19(0



where

<AF.) ~ Bf tW +i) -jiCIf+)]/LiE I, 7195

We notice that W is related to the W"s determining the trajectory-

integrals in the SCCP action A, as
W “ WF Lf @, =SsK™4) (7.20)
w = W _ ¢ 1 «gn. (AM = s (7.20h)

where

We = KF x A (7.20c)

and W. (i=1,2) is given by (5.21).

In figure 7*13 we compare TDSA and ACS weighted transition
probabilities (Alexander and DePristo 1979) with the corresponding
SCCP result for the (0,0)-*(1,1) transition at E~=8000cm \ The
effects of the adiabatic correction are: (I) to reduce the TDSA
transition probability at large impact parameters, where the collision
becomes very adiabatic, and (2) to shift to position of the maximum
of the TDSA probability to smaller impact parameters. These effects
are general for all transitions studied by Alexander and DePristo (1979).

Since ACS has no rigorous theoretical justification and
contains some subsidiary approximations (egs. 7.13a and 7.19b), we
would not necessarily expect it to agree closely with SCCP.

Qualitatively its behaviour is consistent with our model of the collision
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as the position of both probability maxima in figure 7.13 almost
coincide. Quantitatively however, the agreement is not good, and
despite the large correction introduced by ACS to the sudden approximation,
it still gives probabilities much larger than SCCP. This is because of
the large difference between A and A, as the ACS action is a function
only of W+ or W_, and it fails to describe the coupling properly.
S _ ACS

There are some transitions for which A and A compare well and the
quantitative agreement between ACS and SCCP improves, for example the
single-molecule transition , Where /w/I — 1W+1- I |.
For multiple transitions however, good agreement is somewhat fortuitous
and it cannot justify the application of ACS. In general for rotor-

o - ACS . - -
rotor collisions A is not well founded and it is unlikely that ACS
provides an accurate description of such collisions, in particular
those involving hydrides. For heavier molecules the TDSA becomes

less inaccurate and, consequently, the ACS modification could provide

a more accurate description of the collision.

7.5 The cross section
7.5.1 Introduction

In this section we discuss the SCCP results for the integral
dipole-dipole rotationally inelastic cross sections. Our detailed
discussion in sections 7.3 and 7.~ has examined the main physical
features of the transition, and in the first part of this section
(subsection 7*5.2) we show how these features are reflected in the
cross section. In the second part (subsection 7.5.3) we compare our

results with the other theories discussed in section L.k, and the most



recent results of Alexander 1980. As with all semi”~classical
approximations in the SCCP cross sections, as given by (5.25), the
integration over impact parameters can allow the cancellation of

errors in different impact parameter ranges (Dickinson and Richards
19T7)5 and the SCCP cross section can compare better with other theories

than the SCCP probabilities.

7.5*2 The SCCP cross section

Cross sections for the (5,D-*(Q,2), (2,2-*@,3), O,00-*-.,D
and (I*,2)->-(3,3) transitions at energies E”="000, 6000, 8000 and 10000cm
in HF-HF collisions are shown in table 7.3 The corresponding |AEj|
for each of the above transitions are 20B, 12B, Ub and 2B respectively,
where B=20.939cm ™ (Herzberg 1950,p.536). The energy E~=1+000cm ~
is greater than the energy E above which no orbiting takes place
and thus quantum barrier penetration effects cannot occur.

From our discussion in subsections 7.3.3 and 7.3.Fwe expect
that, for a given transition, the cross section increases when the
energy EM increases; as the collision becomes sudden the cross section
reaches a maximum and then decreases. Of the results in table 7*3
only for the (K,2)->(3,3) transition does the cross section show this
form. For the (0,0)->(1,1) and (2,2)-»(3,3) transitions the cross
section increases with the energy, although we have shown that the
former starts decreasing at E~=20000cm ; since the U ,2)»@,3)
transition has the smallest |AE3; the collision becomes sudden at E1
smaller than for the other two transitions. The cross section
0"(51->22;E”) on the other hand, shows a different form, as it
decreases at the lower energies, to start increasing at E~=10000cm ~.
The transition at these energies is very short-ranged and most of

the cross section arises from the strong-coupling region. It is



likely that for these strong, short-range, collisions the SCCP cross
section decreases as the energy increases because the transition

p robability is statistical: an energy increase allows more transitions
and the probability becomes smaller. As the energy is further
increased the contribution from distant collisions becomes more
significant, since they are less adiabatic, and the cross section will
recover its usual dependence on E™.

For a given energy E™ we can see that, as predicted in sub-
section 7*3.7~, the cross section is a decreasing function of |JAEy]|
Note that for the energies and transitions presented in table 7*3, when

1AEjl decreases from 20B to 2Bthe cross section increases by almost
two orders of magnitude.

In table 7.% we present cross sections for the (0,0)-«(2,2),
(0,0)->(1,) and the resonant (0,1)-»(1,0) transitions at different
energies in HC1-HC1 collisions. We notice that the resonant cross
section is two orders of magnitude larger than the other rotationally
inelastic cross sections, and as predicted at the end of sub-section
7.3.1+, is a decreasing function of the energy. The dependence of
the other cross sections on E., and IAEJ is consistent with the

1

behaviour discussed above.

7.5.3 Comparison with other theories

Figure 7-1** shows SCCP, PRS, CC, CT and ACS rotationally
inelastic cross sections as functions of the initial relative speed
for the (0,0)-»(l1,1) transition in HF-HF collisions. At the lower
speeds, where PRS is reliable, we notice that the PRS cross sections
are much larger than all the other theories results, except CT2, which

is more than 3.5 times the CT1 result. At the higher speeds, where
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CC is reliable ( V- > >t/ I0* c1.u1. ), the SCCP consistently
underestimates the cross section. Note that at the highest speed
ACS and CT2 overestimate the cross section about as much as SCCP
underestimates it. No PRS results are available at these larger
speeds. Since SLCP and SCCP results differ only slightly for
E~>1000cm CV\>7/-0 a.u.) our conclusions could not be significantly
altered i1f the correct spherical potential were employed.

Also in figure 7.1 we compare SCCP and PRS cross sections
for the (0,0)-»(1,1) transition in HC1-HCl1l collisions, and for the
1,1)-?@,2) transition in HF-HF collisions. While for HC1-HCl1l the
picture is similar to the one shown for the same transition in HF-HF
the agreement for the (1,1)-»(0,2) transition is good. This suggests
that SCCP underestimates particularly the (0,0)-*(1,1) transition.

The underestimation arises from the SCCP description of the coupling,
as the dependence of the action A on W_ indicates that SCCP considers
a de-excitation in one of the molecules, which is unphysical for

this directly coupled (0,0)-»(l,I) transition. This is basically a
consequence of the use of CPT for such low initial quantum numbers,
and it would be expected to be much less important for higher initial
J values.

The most recent CC results (Alexander 1980), as shown in
figure 71U, indicates that at large speeds the SCCP and CC results
for the (0,0)-i>(1,I) transition have started to converge. At the
highest energy for which CC results are available (12500cm 1; not shown
here) SCCP results are about 20$ below the CC values. This shows
that at this very high energies the dependence of the action A on W-

becomes less important in determining the cross section, i.e. a Ffirst-
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order description of the collision becomes more accurate. Note that
for the lower speeds the CC cross sections obtained using a B3 basis
are smaller than those obtained with a basis B5=[b3;(1,3);(3,3);(0,U);(2,01)J,
although normally the cross section would be expected to decrease as
the basis size is increased.

In table 7-5 we compare the SCCP and SLCP cross sections with
CC, CT, ACS and TDSA results for the (0,0)>»(2,2), (0,0)-?(0,2), (0,0)—>(l,D
and (1,1)->{0,2) transitions at E~=500, 1000 and 8000cm \ The CC
results at E~=8000cm ~ contain two entries, corresponding to the
results of Alexander (1980) using a BU and B5 basis; they will be
referred to as CCU and CC5 respectively. The CC results at E”~=500
and 1000cm 1 are those of DePristo and Alexander (1977). For the
a,D->(,2) transition the CC, ACS and TDSA calculations were performed
at a total energy of E=1000 and 8000cm \ To compare with the CC
results we need the symmetrized correspondence principle cross

section cr (

(7.21a)
where

(7-21b)
and CT(C jjJ”™Jg) is the unsymmetrized cross section (5-25). The

cross section (7.21a) refers to a collision in which two molecules
with initial levels ( ,jg) are finally in levels (J.J£), either the
transition j —> , jgp-jg or the transition having

occurred. For the special case we have
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Below we discuss each of the transitions in turn.

A) The (0,0)-»(2,2) transition

At E~=500 and 1000cm ~ the transition is short-ranged and Both
the SCCP and SLOP cross sections are unreliable. On the other hand,
the CC results are far from being converged (DePristo and Alexander
1977) and the CT cross sections are not reliable at these low energies
(Alper et.al., 1978). So, no definitive conclusion on the accuracy
of the correspondence principle methods is attempted.

At E~=8000cm 1 the agreement between SCCP and SLCP is within
. This suggests that, at this energy, the use of a stronger spherical
potential does not introduce large errors in the SCCP cross section.
The agreement between SCCP and CCIt is within 30%, while the CC5 cross
section is more than twice the SCCP result. The large increase of
the CC cross section when the basis is enlarged suggests that the CC
results are not converged. The CT cross sections are also larger
than SCCP"s, CT2 being the larger. As expected the ACS cross section
is larger than the SCCP, CC and CT results, despite it is less than
a half of the TDSA result. Again the uncertain convergence of the CC
makes it difficult to reach a definitive conclusion, although the

comparison suggests the SCCP cross section may be somewhat underestimated.

B) The (0,0)-»(0,2) transition
At E”=500 and 1000cm 1 we have a similar situation as for the

(0,0)-+(2,2) transition and no definitive conclusion is attempted.



At E”~=8000cm ~ the SCCP and SLOP give the largest cross
sections and agree with CC5 within bO% and b2% respectively. The
CT gives small cross sections, and CT2 is more than two times larger
than CT1. The ASC and TDSA are smaller than expected, and agree with
CC5 within 30% and 12% respectively. We point out that, in contrast
to SCCP, the CT, ACS and TDSA cross sections do not appear to he
properly symmetrized, and it is likely that their values in table 7-5
should be doubled. So, ACS and SCCP would be in good agreement, which
is what we would expect for this single-molecule transition (see
sub-section 7.1*.5). As for the (0,0)->-(2,2) transition the convergence
of CC is uncertain and it is difficult to reach a conclusion. However,
for this transition, we would expect the error in the rotor-rotor SCCP

cross section being similar to the SCCP error for atom-rotor collisions.

9] The (0,0)—>-(1,1) transition

From the results shown in figure 7.1" we have already shown
that the SCCP cross sections for this transition are likely to be
underestimated. The results shown in figure 7*1" also suggest that
at E~=500 and 1000cm 1 only CT2 gives accurate results, and not only
SCCP but also CC and CT1l underestimate the cross section.

At E~=8000cm ~ CCU and CC5 results agree within 1$. As
before CC5 gives a cross section larger than CCI*, but as the difference
is smaller than the error of the calculations the CC cross section can
be considered as fully converged. The SCCP agrees with SLCP within

6% and differs from the CC result in a j+%.

D) The (I-INb-Z) transition

This is the less adiabatic and longer-ranged transition studied
here and we expect our approach to become more accurate at the lower

energies.
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At E~-1000cm SCCP and SLCP cross sections agree within 15%,
and are several times larger than the CC result. The CT1 and CT2
results agree within 37% and are also larger than the CC cross section.
As in the (0,0)-»(0,2) transition the CT results should he symmetrized,
which makes the CT1l and CT2 cross sections become closer to the
correspondence principle cross sections. These results suggest that
the CC cross section is greatly underestimated. This underestimation
was First suggested by DePristo and Alexander (1977), and explicitly
pointed out by Hashi et.al. (1978).

At E~=8000cm ~ the SCCP and SLCP cross sections agree within
6%. They are larger than the CC results, and the SCCP cross section
agrees with the CCU and CC5 results within 7$ and 11$ respectively.

The ACS and TDSA cross sections are smaller than the CC results, which
suggests that, as in the (0,0) (0,2) transition, these cross sections
are not properly symmetrized and should be doubled. In this case
TDSA overestimates the cross section, while the agreement between the
ACS and CC results is excellent, with a difference of less than 2%.

From the above discussion, we infer that much work is still
needed to establish the accuracy of the various methods, especially for
adiabatic collisions. It is clear from table 7-5 that the ambiguities
inherent iIn the CT description (see subsection 7-~*M can introduce
errors of the order of magnitude of the cross sections. It is also
clear that while TDSA overestimates the cross section, the "ad hoc"
character of the corrections introduced by ACS still makes its accuracy
uncertain. On the other hand, the inaccuracies of the SCCP depend
on the validity of CPT. At the smaller incident energies, the
transitions discussed above cannot be considered favourable cases for

the application of CPT, and errors should be expected in the SCCP
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Ccross sections. A better accuracy should be obtained at larger
incident and rotational energies. Among the SCCP results presented
in table 7-5 we consider the cross section for the (1,1)-*(0,2)
transition at E~=8000cm ~ the more accurate, and, despite the use of

a stronger potential, the error is less than 15%.

7.6 Concluding remarks

We have applied the Strong Coupling Correspondence Principle
to rotational excitation in collisions between two diatomic molecules.
Only the dipole-dipole anisotropic potential is considered, and it is
shown that in this case the transition amplitude is obtained in closed
form. Transition probabilities and cross sections for HF-HF and HC1-HC1
collisions were calculated, and where possible, compared with other
theories.

As in earlier work the SCCP shows that a first-order description
of the collision is inadequate, as It grossly overestimates the
transition probabilities. It was also shown that this overestimation
is mainly because of the adiabatic nature of the collisions studied
here. This large adiabaticity is characteristic of collisions involving
hydrides, and for heavier molecules the first-order theories are
expected to become more adequate to describe long distance collisions -
at the same incident energies considered here.

Comparison with quantal results shows that satisfactory
agreement is obtained for some transitions, although it is difficult
to reach a definitive conclusion on the validity and accuracy of the
SCCP results. However, the comparison is encouraging as for many of
the transitions studied here the application of SCCP is not formally

Justified. For transitions between excited levels CC becomes increasingly
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impractical while the other approximations discussed here become no
more accurate-(p At present, collisions between heavier rotors at
higher incident and rotational energies appear beyond the grasp of the
current quantal and classical theories. In this case, the SCCP
becomes of great value in the calculation of rotationally inelastic
cross sections for such collisions.

More work needs to be done to determine the range of applicability
of SCCP. The latest results of Alexander (980) provide a first
benchmark for assessing the validity of our approach. Calculations
to compare with Alexander®s results are currently in progress (Richards,
private communication). A future publication will also contain reviewed
calculations of the SCCP cross sections discussed here, using the
correct spherical symmetric potential. As in atom-rotor collisions
the use of SCCP for low rotational quantum numbers has not been

theoretically justified. This still remains a challenge.1

() (Ph the other- hand. SCCP Oxn. be expectecL io he. moi-t accurate..
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CAPTIONS TO TABLES 7.1 - 7.5

Table 7.1: Adiabaticity parameter Z, as defined by (7.2). The
parameters correspond to the (1,1)-*(0,2) transition in
HF-HF collisions at E£=8000cm 1.
Z~jZg and Z™ correspond to values of Z calculated using

speeds (1), (@ and (3), respectively, as defined by (7-3).

Table 7.2: Maximum change in the quantum number as defined
by (7.7), and highest level (1 ,J2=01) satisfying max (A j)
which is classically accessible. The parameters correspond

to the (0,0)—>(l,1) transition in HF-HF collisions.

- - . p . .2
Table 7.3: SCCP rotationaily inelastic cross sections in A~ , for

different transitions and energies in HF-HF collisions.

Table 7.**: SCCP rotationaily inelastic cross sections in A , for

different transitions and energies in HC1-HC1 collisions.

Table 7.5m Rotationaily inelastic cross sections in *
CC at 500 and 1000cm ~ from DePristo and Alexander (1977)-
CC at 8000cm ~ from Alexander (1980).
CT from Alper et.al. (1978).
ACS and TDSA from Alexander and DePristo (1979).
a: the Tfirst and second entry were obtained using a
and B5 bases, respectively.
b: the first and second entry correspond to CT1l and CT2
respectively. *
c: obtained using BF* basis at J=U0,60,80 and B3 at all other
J values.

SCCP and SLCP values for (0,0)->(2,2) and (1,1)-»(0,2) correspond

to symmetrized cross sections as given by (7.22).



Table 7.1
b 0 2
Z1 0.493 0.496
2 1.291
Z3 0.987 0.717
Table 7.2
b/ac Elcm w8
6 500
8
10
12
6 1000
8
10
12
6 8000
8
10
12

14

4

0.506
0.671
0.577

6

0.530
0.489
0.509

mex (A j)

28.1
4.8
0.87
0.086

50.8
14.2
41
1.2

38.4
21.0
12.2
7.4
4.5

8

0.645
0.544
0.590

10

0.947
0.939
0.943

(14,14)
(2,2)
(0,0)
(0,0)

(25,25)
(7.7)
(2,2)
(0,0)

(19,19)
(10,10)
(6,6)
(3,3)
(2,2)

- 105

1.147
1.147
1.147



Table 7.3

o-cu-"j;) (A% 4000
(51 —>22) 7.9-1
(22 ->33) 7.4-1
(00 ->11) 14.3
(42 —>33) 45.1

Table 7.4

qWi-0iy @& 20471
(00 —>22) 8.5-1
(00 -*11) 9.6-1

(1 »10) 245.9

(cm X)

7.5-1

7.9-1
23.8
53.8

ENcm ma
500
13

2.2
156.8

- 6

8000 10000
6.1-1 7.9-1
1.2 1.8
31.0 38.5
53.0 50.7
1000
98.6
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CAPTIOUS TO FIGURES 7.1 - 7.lU

Figure 7-1: Strong Coupling Correspondence Principle (SCCP) transition
probabilities as a function of the impact parameter, b,
for the (0,0)->(l1,1) transition in HF-HF collisions at
E~=1000cm \ Along the top we show the classical distance
of closest approach,
A: using curved trajectory determined by COO(R).
B: using a Straight Line (SL) trajectory.

C: First-order Correspondence principle (FOCP).
Figure 7.2: As in 7.1 for HF-HF collisions at E~=8000cm \

Figure 7-3: SCCP transition probabilities as a function of the impact
parameter, b, for the (I,1)-i>(0,2) transition in HF-HF
collisions,

Az E1=1000cm-1
B: E1f8000cm_1

Figure 7.**: As 7*3 for the resonant (0,1)-»(l,0) transition
A: E1:1000cm_1.

B: Ei=8000cm_1.

Figure 7-5: SCCP transition probabilities as a function of the impact
parameter, b, for HF-HF collisions at E”~=8000cm \

A: (0,0)->(l1,1) transition.

B: (1,1)->(0,2) transition.

Figure 7.6: As 7.5
A: (0,0)-7(0,2) transition.
B: (2,2)-*(3,3) transition.

C: (5,1)-?(2,2) transition.



Figure J.J:

Figure 7.8:

Figure 7.9:

Figure 7-10:

Figure 7.11:
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As 7.5
A: resonant (0,D)-?(1,0) transition

B: resonant (2,1)-">(1,2) transition

Weighted correspondnece principle transition probabilities

b P(b) as a function of the impact parameter b, for the

(0,0) ->(1,1) transition in HF-HF collisions at E”~=1000cm 1.
CC and BA from DePristo and Alexander (1977)»

«: FOCP,

Along the top we show the rotational quantum number J 5 W/ffe,
where k is the wave number. The values of J indicated

in the graph correspond to the actual values at which the

CC calculations were performed. The right hand scale shows

(23+I)PEC. Abbreviations are explained in the text.
As 7.8 for E~=8000cm \

Transition probabilities for the (0,0)->(l,1) transition

at E~=500cm ~ for HC1-HC1 collisions, as a function of the
reduced impact parameter p.

The broken curve shows the first-order approximation of the
PRS results, and < corresponds to the full PRS results
(Hashi et.al., 1978).

At the top of the graph we show the corresponding impact
parameters in aQ .

Abbreviations are explained in the text.

Weighted transition probabilities as a function of the impact
parameter b, for the (0,0)-*(0,2) transition at E~=8000cm 1
for HF-HF collisions.

Abbreviations are explained in the text.

CT1l and CT2 from Alper et.al. (1978)

CC from DePristo and Alexander (1977).



Figure

Figure

Figure

7-12:

7-13:

7.17:

As 7.11 for the (1,1)-?(0,2) transition at E~=1000cm 1.

Weighted transition probabilities as a function of the impact
parameter b, for the (0,0)-»(l1,1) transition at Ei=8000cm”’l
for HF-HF collisions.

Abbreviations are explained in the text.

ACS and TDSA from Alexander and DePristo (1979)e

Rotational inelastic cross sections (a.u.) as a function

of the initial relative velocity \T .

- SCCP for HC1-HC1 collisions,

o) SCCP for HF-HF collisions.

a PRS for HC1-HC1 collisions, Hashi et.al. (1978).

A PRS for HF-HF collisions, Hashi et.al. (1978).

0 CC for HF-HF collisions using basis B3, Alexander (1980),
(Note: values at S and 7x10b (a- u. ) from DePristo
and Alexander 1977)e

B CC for HF-HF collisions using basis B5, Alexander (980),
(Note: value at v = 7x10F(a. a* ) from DePristo and
Alexander (1977) using basis Bib).

6 CT1,Alder et.al. (1978)

8 CT2, Alder et.al. (1978).

] ACS, Alexander and DePristo (1979).

correspond to the (0,0)->(1,1) transition

-—- correspond to the (1,D-> (0,2) transition.

Basis Rotor levels
B3 (0,0); (1.,1); (0,2); (2,2)
Bit (0,0); (1,1); (0,2); (2,2); (1,3); (3,3)

B5 (0,0); (1,1); (0,2); (2,2); (1,3); (3,3); (O,U); (2,1
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Figure 7.5



Figure 7.6
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CHAPTER 8
CORRESPONDENCE PRINCIPLE EQUIVALENTS OF SOME

DECOUPLING APPROXIMATIONS

8.1 Introduction

Although in the SCCP the computational effort is largely
independent of the excitation of the rotors, the multidimensional
character of the average in eq. (6.12) can make the calculation of
rotationally inelastic cross sections very expensive. Consequently,
it is important to look for further approximations, which maintain
the basic SCCP assumptions while easing the computational effort.
This is normally done by making, within the framework of SCCP,
approximations similar to those made in deriving some of the current
decoupling approximations (Dickinson and Richards 1977, 1978).

In this chapter we investigate three different approximations
as applied to the problem studied in this work: the body-fixed
correspondence principle (BFCP) and M-conserving correspondence
principle (MCCP) of Dickinson and Richards (1977 and 1978 respectively),
and the decoupled L-dominant correspondence principle (DLDCP). The
latter makes approximations similar to the decoupled L-dominant
approximation (DLD) of DePristo and Alexander (1976), and it has been
developed in this work for the first time.

In sections 8.2, 8.3 and 8.1* we present the BFCP, MCCP and
DLDCP approximations respectively. In section 8.5 we discuss
briefly modifications to the numerical techniques employed for the

full problem. Our results and discussion are presented in section 8.6.
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8.2 The Body-fixed correspondence principle
8.2.1 Theory

To obtain the body-fixed correspondence principle (BFCP)
we derive the SCCP equations in a rotating frame of reference 0X"Y"Z",
with origin O in the centre of mass of molecule 1, and in which the 0z*
axis always lies along R, the vector joining the centre of masses of
the colliding molecules (Dickinson and Richards 1977). The
orientation of the i-th rotor in the OX"Y"Z" frame is described by

L d » I

the Euler angles <(;/A4A"/ o7 (Edmonds 1960,p.7), which have the same

significance as in section h.2. Since 0Z°Y"Z" 1is rotating, Coriolis
and centrifugal terms arise. The BFCP retains only the centrifugal
terms for the relative motion. The approximate body-fixed Hamiltonian

H3", is now written as:

where H ol 1is the Hamiltonian for a free rotor, P~ is the momentum
of the relative motion, and fl- = (0. (AAto(G) with Q&= ~ 1
The interaction potential V( R 7/ , XI™A ) 1In OX"Y®"Z" is expanded

as

From the properties of the Clebsh-Gordan coefficients (Edmonds 1960,
P.38), one sees that /a,=- , and from the definition of the
matrix elements (Edmonds 1960, p.-55), one sees that the

potential (8.2) depends only on the difference 3 q ~



Proceeding as in section 5.2 we obtain the BFCP change of the action

ab¥f.
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@-3

where

@

The action (8.3) yields the BFCP approximation to the transition

amplitude from levels (J, ,Ji ) to levels (J/ ( ):

(o]

and the degeneracy-averaged BFCP transition probability is

Clearly, the BFCP approximation yields two major simplifications.
Firstly, the average over orientation (8.6) is now three-dimensional
rather than four-dimensional, and secondly, the number of
trajectory integrals 1is greatly reduced. Each trajectory integral
is itself simpler to calculate since only the relative radial motion

is required.

8.2.2 The body-fixed correspondence principle error

The BFCP action (8.3) can also be obtained by making the

approximation Vv * U \ in the space fixed action (5.1%),
*\00

and then making =q - one sees directly that

the BFCP is valid when the V integrals are independent

V.



of juu =M, + XX = Consequently, we define the relative

percentage error:

BB u.oy, =10 f 1= VUI) (K/B/VAOW b 1

Vi/*.1 @.7)
where VJ = DM, + ~ K/t . Equation (8.7) is a measure of the BFCP
error. For h=0 the BFCP principle is exact since ret) = o0 (see

eqg. (5.11)), hut as the impact parameter increases so does the body-
fixed error (8.7). Thus the BFCP approximation is expected to he

accurate for short range collisions.

8.2.3 The body-fixed correspondence principle equations for the
dipole-dipole interaction

BF
Proceeding as in section 6.2 we obtain for K

A (tf, Alia, K, oil) tit) + R sin(E'+ S.) t

(8.8a)
with
* *
R*SffGI)*P , R--© (£)V
(8-8b)
fl =.f -1 ($£x1\ cC _L -l
o+ toh. J o_ tan. VsinS"/
> } (8.8c)
where P and P1 are defined by equation (6.6) and 5~ ~ are
the primed equivalents of (6.3). The BFCP transition amplitude,
SBFCP' is
<1BFC/™ .\ -1 («t+.<E£ # n_o_j t -r
N Cl e ~ G -,.(0 (8.9)
where n+ and n_ are given by (6.10). From the integer condition

for n+,n_ one sees that BFCP gives the same selection rules (6.11a).

The BFCP transition probability (8.6) must be evaluated numerically.

128
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As in the SCCP, the first-order BFCP probability, PFOBF, ¢s

obtained in closed form:

where st= Ajh .

For a resonant transition, the straight-line approximation
is valid for large impact parameters. In this case we obtain
E , (o,b) = 66.6, and the relation between the full and body-fixed

correspondence principle first-order probabilities is obtained using

6.17) and (6.18):

8.11,
Thus for a resonant transition in the straight-line limit the BFCP
is significantly in error. The relation (8.11) is also valid for

sudden collisions at large impact parameters.

8.3 The M-conserving correspondence principle
8.3.1 Theory

Let us consider the collision being described in a space-fixed
frame OXYZ, with origin O in the centre of mass of the molecule 1,
the 0Z axis lying in the plane of the orbit followed by molecule 2
and passing through the point of closest approach. The X and Y axes
are arbitrary. The M-conserving approximation (MC) of Dickinson and
Richards (1978) is obtained when the coupling is described in this
frame, under the condition that the Z component of the rotational
angular momentum, M, is conserved. The basis of MC was suggested by
Takayanagi (1959)* and it has been applied in the TDCC framework to

atom-molecule (Saha and Guha 1975)* and molecule-molecule (Bhattacharyya

and Saha 1978) collisions.



- 130

For convenience we express the change of the action in OXYZ in
terms of the variables 2~ 7 yoL_as given by (6.3). Proceeding

as In section 5.2 we obtain

A(Ca a , a ) z _ Y - Nv AA/ta)
Hi n
hp T/ J  HKifNj.
where
rc
i/(An) _ J

dt C "o(dj 'Vt
V « ' * Aﬁir) &uMn( 1) e

with V= dt(+DtW,. and JWd - /a,+ /ax - Taking the trajectory

(8.13)

in the OXZ plane along the OX axis the trajectory integral (8.13) is

written as

r0 [ ({9)
CA.O

_x * *%
. . dtCAX(RY Cefme* + let(“Ala(r)Y (e, 0el™ (8.10)

0

IT "h"mj 1is the Z component of the i-th rotor angular

momentum, we can express the M-conserving condition

= tn[~, + -<mt = A'wvn,+ Ahl =0 .

(8.15)
Using (5.15) we obtain for the change in the Z component of the
rotational angular momentum, ~”~ M , due to the collision

(8.16)
Thus to obtain an approximation in which M is conserved we must

MC

approximate the action (8.13) by an action independent of /\

,MC
X% Ni412(N¥D

(8.17)
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where

VT dt CaxGoOP @use) €
D0 CapdOR, ®18)
Here is a Legendre polynomial (Edmonds 1960, p,22). The

action (8.18), when used in (5.5), yields the M-conserving
correspondence principle approximation (MCCP) to the transition
amplitude, gMCCP, The MCCP transition probability, pMCCP5 is now
obtained averaging over A&/ /3 &noL .oc_ ,

n ri

PTijwiiritd = (8.19)
4 | I

As the BFCP approximation, the MO reduces the dimension

of the average over orientation by one degree of freedom , and requires

many fewer trajectory integrals V. This approximation is exact only
if v+*“' =0, U;’O
Adi/** “

A subsidiary approximation in the same idea of the MJCP has

been studied by Bhattacharyya et.al., (1977). They imposed the

condition that ~Yn- a-- ™2- , 1Us iIndividually conserved, 1i.e.
Avn, * AYnA a O - Since the change in "™ vyi,; due to the
collision is - ™/"daCi (see eq. 5.15), to obtain an approximation

in which vn; is conserved we must approximate the action (8.13) by an

- - , MCI
action independent of &~ ( A t

@.20)
A, AIK!
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The action (8.2) yields what we have termed the subsidiary M—conserving
correspondence principle (MXP) to the transition amplitude, SSMCCP.

The SMCCP transition probability, P , s now

b G =iviv) = (ot) BUKISj\E iz,)‘jmstyfé‘ ")

Thus the SMCCP introduces a further reduction in the dimension of the

average over orientation (8.19). This approximation is exact only

A I ST

8.3.2 The M-conserving correspondence principle error
From the discussion above one sees that the action (8.17) is
obtained directly from (8.12) by making

-MC
Thus we define t. , as a measure of the MCCP error:

Jinox
» MC
E. = (8.22)
where
_ H 13
V o ) E(»UI_OAr] . (8.23)
For b=0 we have 0=0 and =0"~~the MCCP approximation is
then expected to be good for small impact parameters. In general by

setting 0=0 one sees that MCCP reduces to the BFCP approximation.
Thus we expect the domain of validity of the M-conserving approximation
to include that of the BFCP approximation. However, when O # 0 , the
M-conserving approximation to the action is different, as it takes
some account of the curvature of the orbit, through \\// .

i

An error similar to (8.22) can be defined for the SMCCP

approximation by imposing the condition w, oOr jxt 0 - In general
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we do not expect the accuracy of this approximation to be good because
the terms of the action (8.17) which are eliminated to obtain (8.20)

are of the same order as those retained.

8.3.3 The M-eonserving correspondence principle equations for the
dipole-dipole interaction
Proceeding as in sections (6.1) and (6.2), the application

of MCCP to the dipole-dipole interaction leads to the equations:

pGs| =~ [ooso| sinfa/n)cos (ft'/z) + sinft"/:Cjj +s/h/3sm/3™ }
P 5VI? =/~  Sin sin(r3,/2)COSA(fc/l)+ U>s(/3'/ty sih (Fr/i)jn

p'cosS'= y  [cosit_ | QS (ft/a) @s(fa/z) +sin (ft'/2) - sin/3,sinfit ]~
piin f =~ SNoL_ C0S (Q2h)

The change of the action is

A" P=A~ Posin (tfi)+ 0 Plsln + ) (8-25)

which yields the MCCP transition amplitude

<-MCcP ; -
(oM +M™)
n Ci@; ,j:J) * e J(tl’ Fb\] GVP) (8.26)
As the BFCP approximation, the MCCP satisfies the selection rules
S . MCCP
(6.11a). The transition probability P , must be evaluated

numerically.
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For the SMCCP the action (8.25) reduces to

SM CCp _
= R as t R as
(8.27a)
where
oAk MOG 2 e L R -8 35 wwsains
= ffir in A sin/» ; . =4ir -yj si'n/3,&in[3z (8.27b)

The SMCCP transition probability is now

J (a) th_Cr’) : @ 28)

The first-order MCCP transition probability, pFOMC

Isil3 155 1=1 (8.29)

where 0 is given by (8.23). It is convenient, to compare
with the full first-order correspondence principle, to express the
trajectory integrals (8.13) in terms of the V/\ < pi given by
G 13). From (8.13) we obtain: -

' - 8.30
Yo b vir- ry. + Y, n *l5 %n 00, ’ (8-302)
- - 8.30b
« Zvi,\}(oo Vi = V 3, (8.30b)
L/isvi vV
v , "8 [wJ W g - VU, 1 . (8.30c)

It is interesting to notice that when the BFCP approximation is

valid V,. .. .,, = \/ . =0 ; and MCCP is exact.
>Witxa V ta
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8%+ The decoupled-L-dominant correspondence principle
8.U.1 Theory

In this section we derive modified SCCP equations using
approximations similar to those made in the quantal dominant-L-decoupling
approximation (DLD) (DePristo and Alexander 1976). Consequently, the
frame of reference is the usual space-fixed frame as described in
section *+.2

The DID approximation of DePristo and Alexander (1976) is based

on the observation that at large J, the quantum number of the total

angular momentum, the matrix elements, vV~ (Si ,j"i”; J) , of

standard close coupling are dominated by terms with },11<J . Here
represents the triple index A,AiAJt@JiJtJii) . For the

molecule-molecule case the index A = is introduced, with

0~A ~2 - From the asymptotic behaviour of the product of a
3-J and 6-j symbols (Edmonds 1960, p.*#6 and p.92 respectively), a

decoupling in A is found. Thus DLD makes A - A , which yields
Ajia = AjJ(+ Ajt = ~ - (8.3*0

Using (5.16) i1n (8.3*+) we have that the DLD condition in our approach

can be written as

Am, + A = Aj( + AA
@ .35)

To see the impact of (8.23) in the SCCP equations we write the

transition amplitude (56>1) as
riv

citcU.cU”cU. +

+ SAUX,* ./ <0|]:

8 363)
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where Aj+ = + £j§ Aryi+ = & w\ = A (8.36b)
From (8.36a) one sees that to satisfy (8.35) we must have
A * A + - i/, <) . Thus we define
OoLD -
A(**,ax, *tkgs2. Z N N f
A Xa M  >«w2 M i 1 " "

’{ . JM o /._ 83>

; v 4. 7
where - D+ and
[00}
VVa™ - A atC CR)cos[(®i<(W1r ) t-~1171] (8.38)
UK On " AR* ! I

The action (8.37) yields the decoupled-L-dominant correspondence

S - - S _ DLDCP
principle approximation (DLDCP) to the transition amplitude, S
Using (8.37) in (8.36a) one notices that the o(+ dependence of i/ji)

is simply an overall phase, so it can be ignored, Then we define

DLD
A = A (@H*1,0,/30.).

8-39
S . DLDCP ) )
The DLDCP transition probability, P , Is now obtained averaging
in < ,/3 avoi. fix
j <
l f A
n ) “(e.) g~ OU0/3) ceoss,) |5 cLbe,, | (8 .U0)

J

where

ST

6P = cK e*p[r{atvt +ij/-4“"]. (8 .Lob)



Thus the DLDCP reduces the average over orientation by one degree

of freedom and requires fewer V CAlI) integrals. This
N |
approximation is exact only if V (An =0 h = Ak,tu ,4 "= .
(1 JJ, Ut 11 z
Here V (AltH) is defined by (5.13).

8.1*.2 The decoupled-L-dominant correspondence principle error

The action (8.37) can also he obtained by making, in the

action G.IIY), V AI*™ —-—q u i1 J - Thus the quantity
E ~ 0.b) = 100 V u,z)C~b) /v A1) W,b)
(8.11)
is a measure of the DLDCP error. Here we put V iAll) - N/7MA|D)
For b=0 we have V CAl,)- \JAl® ; since in this limit DLDCP
»AMIt "A o
retains only V~A"0 we expect this approximation to be largely
in error. In general the DLDCP approximation is not good for small
impact parameters. As b increases DLDCP should improve. However,

this improvement is not general, and we show below that it depends

on the nature of the transition.

8.1*.3 The decoupled-L-dominant correspondence principle equations
for the dipole-dipole interaction

Proceeding as in sections (6.1) and (6.-2) we obtain the

\ﬁcosz«s,/z) @9l (ftzlz)

Pcos % = £cosn | cos(4/z) cos(fa/z)+W (Mysin (fafyj- smfl, SV*J }

equations

Rsih €

fsm? =~ sin< { cosl (ft/z) (Ca)
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which yield the action:

A<A, if',fi. A, <) 'Jfl (if-)'4 [R@A‘+FEB</_’N_ 6.1"3)

The DLDCP transition amplitude is now

< DLDtp t T
cJ = e" J Cr0 J (
@.1*1"3)
where
= _ .. A = i *
P30t asTry B BTSN ARYT 5 ©. 1)

As the other approximations presented above, the DLDCP approximation
satisfies the selection rules (6.11a). The DLDCP transition
probability must be evaluated numerically.

FODT
The first-order DLDCP transition probability, P D, is

S ([ =y @) L @aoeue) I0ZV T~ Chi/S») ~ 7S,Sj Sii ™ ; (8.1*5a)
is, 1= is»1 =/
where Su ~ s, + sz , and
Su, si) - f Sgh (S| + Sgl(si)
, < N seh (3 - (sa)
(8.1*5b)
For a resonant transition in the straight-line limit we obtain
DLD _ -
W 47 =33.3, and the relation between the FODLD and FOCP is
pPOP*-P _ p FOCP
T MNi4t f °  tJisx (8.16)
Thus for a resonant transition in the straight-line limit DLDCP
gives the same first-order result as the MCCP approximation. This

can be obtained directly by just applying the MCCP and DLDCP conditions

to the trajectory integrals in the FOCP probability (6.1%).
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In contrast to the MCCP approximation the relation (8.U6)
is valid for distant sudden collisions only when sgn(s™)isgn(sr,).
For transitions where sgnis”™"sgnisg) the FODLD approximation retains
only +] ¢ 2, * and the relation between FOCP and FODLD for sudden

collisions in the straight-line limit is

(8.1%7)
which shows that the FODLD is largely in error.
For adiabatic collisions we must also consider two types
of transition:
A) when sgnis”™sgnfsg) FODLD retains only Vil 10 » ant
the error (8.1*1), in the straight-line limit Iis,
where Z is the adiabaticity parameter. Clearly the elimination
of V1'JXI‘B produces large errors, and FODLD is not good.
B) when sgn(sl)=sgn(s2) FODLD retains only V+] +j
and the error (8.1*1), in the straight-line limit, is now
(8.1¥9)
Since for adiabatic collisions Z » 1 the errors are small. Thus

for adiabatic collisions in the straight-line limit FODLD should
be accurate.

From our discussion above we infer that for distant collisions
DLDCP is reasonable accurate to describe: 1) a first-order Allowed
resonant transition, and 2) a first-order allowed transition with

a < However, DLDCP is largely in error to describe:



3) a First-order allowed transition with Aj (=- ;w =£0 .
The larger error in 3) is because DLDCP retains only the trajectory
integral VAH “AJ1 O
8.5 Numerical techniques

The main computational feature of all the approximations
presented above, is that they reduce the dimension of the average
to obtain the transition probability. To make full use of this
feature it is then necessary to modify the computer program used to
evaluate SCCP probabilities and cross sections. In this section we
discuss the main changes to the numerical techniques described in
section 6.1*. First, we describe the numerical techniques used to

make MCCP and SMCCP calculations.

8.5.1 Evaluation of the V._.
vi Mu-

No attempt was made to evaluate directly the V,
vt/Uiv
integrals. Thus the usual integrals (5.13) are evaluated, and

the V, are obtained using equations (8.30).

8.5.2 Evaluation of the transition amplitude

Ui

, i.e. it considers the collision with 4w ;—Amﬁzzo

Given the Vvi' the calculation of P and P* for specified

A,
values of oi_ and /2 (i=1,2) is straightforward. The X\, Bessel

functions are evaluated as described in subsection 6.1*.2.

8.5.3 Evaluation of the transition probability
Since the transition amplitude is now evaluated in terms of
¢ and , the integrations over olx and oLt was replaced by

an integral over d. . As before Clenshaw-Curtis quadratures were

used. The accuracy of the integration was checked by using the
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approximation V , for which MCCP reduces to the

wis b T /00
BFCP approximation; then we compare with BFCP results performed

with the SCCP program described in section 6.1*. The differences
were less than 0.5%e Since during tests the program described here
run much faster than the SCCP program, it was also used to perform

the BFCP calculations. When performing SMCCP calculations a

flag was set to save the integration over ,

8.5.1* Evaluation of the cross section

To evaluate the cross sections we use the same techniques
described in subsection 6.U.U.

The program implemented using the techniques described above
was used to evaluate MCCP, SMCCP and BFCP rotationally inelastic
Cross sections. The savings in CPU time were dramatic, and the
program proved to be up to four times faster - for MCCP calculations -
and up to five times faster - for SMCCP and BFCP calculations - than
equivalent SCCP calculations.

No special program was implemented to evaluate DLDCP cross
sections. The calculations were performed with the SCCP program,
=where we made V . -0 w tJ - Since the DLDCP transition
amplitude is independent of 0 C , the integrand in (6.12) is smoother
and there is some savings of CPU time. For some DLDCP calculations
the program run up to 1.5 times faster than for the equivalent SCCP

calculations.

8.6 Numerical results and discussion
In this section we present numerical results obtained using
the BFCP, MCCP, SMCCP and DLDCP approximations. Our aim is to study

the accuracy of above approximations and consequently we compare with



the SCCP.  Since our results were obtained using a spherical

potential which was too strong, we do not compare with the quantal

coupled states (CS) and DLD results for HF-HF collisions presented by
CMif)

DePristo and Alexander* As before only the dipole-dipole interaction

is considered.

8.6.1 The error terms

Before we discuss the transition probabilities,it is convenient

to compare some numerical values of the errors E %F. , E me
"WxMn- 1 Mit
o ~ BF LD
and E - In table 8.1 we show the behaviour of E and E

for various impact parameters; the transition is (0,0)-»(I,I) in
HF-HF collisions.
The results confirm our earlier predictions. For b=0 the

BFCP approximation is exact, but as the impact parameter increases

BF
so does E . On the other hand DLDCP has the largest error at b=0,
_ _ BF BF
and decreases as b increases. We notice that E, and E, ™ have

opposite signs. As pointed out by Clark et.al. (1977), this suggests
that some cancellation of the errors due to the BFCP approximation is
likely in calculating orientation-averaged transition probabilities.

In table 8.1 we also show the effects of varying the energy.

- _ BF . _ DLD

We notice that as the energy increases E increases, while E
decreases. The decrease of E~” is valid for adiabatic collisions
only; 1f the energy increase makes the collision to become sudden,

- DLD DLD
at large iImpact parameters E,,_a>100 and Ee[— > 300. For the same
limit we have that El?iﬁ > 66.6 (see section 8.2.3).

n BF mC DLD _ _

In table 8.2 we show E , E and E for various impact
/
(

P . N\ /_ N\ DLD
parameters; the transition i1s (1,1)->(0,2). As expected E

large showing that for this transition DLDCP is largely in error.
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We notice that c and E)ta have opposite signs, suggesting as before
- _ _ _ - BF BF
cancellation of errors. The situation is similar for E 3 and EI Lt

The comparison in table 8.2 suggests that almost everywhere the MCCP

is better than the BFCP.

8.6.2. The transition probability

In table 8.3 we show SCCP, BFCP, and MCCP transition
probabilities for various impact parameters; the transitions are
(0,0)-7(1,1) at Ei=500cm*“1 and (0,0) (0,2) at Ei=8000cm 1 in HF-HF
collisions. For b=0 both BFCP and MCCP are exact, but as the
impact parameter increases they deviate from the exact result.
Overall the MCCP approximation is better than BFCP, and maintains a
better agreement with SCCP in the whole range of impact parameters.

In table 8.U we show SCCP, MCCP and DLDCP transition probabilities
for the (1,1)->(0,2) and (0,0)—>(l,1) transitions at E”=8000cm .
For the (1,1)->(0,2) transition the MCCP approximation is much better
than DLDCP. For the smaller impact parameters DLDCP overestimates
the transition probability by one order of magnitude; as the impact
parameter iIncreases the agreement between SCCP and DLDCP becomes better
but still DLDCP is largely in error. For the (0,0)->(1,1) transition
at small impact parameters MCCP is better than DLDCP, which gives
probabilities largely overestimated. As the impact parameter increases
DLDCP improves dramatically and at the larger impact parameters
becomes more accurate than MCCP, with errors smaller than 7%. These
results confirm our earlier predictions that DLDCP fails to describe
properly a collision where an excitation-deexcitation occurs, while
is good for collisions in which the two molecules are excited or

deexcited.
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An iInteresting comparison is presented in figure 8.1. There
we show SCCP, MCCP, SMCCP and the classical path results of
Bhattacharyya et.al., (1977), for the (0,1)-»(l1,0) resonant transition
in HC1-HC1 collisions at E”=201.71cm 1. The results of
Bhattacharyya et.al., correspond to a subsidiary M-conserving
calculation in the time-dependent close coupling framework (TDCC).
The comparison shows that at large impact parameters the shape of
their probability is similar to the shape of the correspondence
principle probability, although it decreases faster than the SCCP,
MCCP and SMCCP probabilities. The comparison for small impact
parameters is not valid as the potential used by Bhattacharyya et.al.
(1977) included the quadrupolar interaction.

We also show in figure 8.1 the results, at large impact
parameters, of Bhattacharyya and Saha (1978). These results
correspond to a M-conserving calculation in the TDCC framework.
Although for most of the impact parameters these M-conserving
probabilities are larger than the correspondence principle results,

they decrease to become smaller than MCCP.

8.6.3 The cross section

In table 8.5 we show SCCP, BFCP, MCCP, SMCCP and DLDCP
rotationally inelastic cross sections for the (2,2)-»(3,3), (0,0)->(l,D)
and (H,2)->(3,3) transitions, at initial energies E"=1+000 - 10000cm 1,
in HF-HF collisions. For the more adiabatic collisions we notice that
the BFCP approximation agrees with SCCP within 10$. As the energy
increases, or W decreases, BFCP becomes less accurate and consistently
underestimates the cross section. These results are consistent with
our earlier predictions on BFCP being accurate for short-range collisions

since the more adiabatic collisions are the shorter-ranged.



The SMCCP approximation overestimates the cross sections for
the (2,2)-?(3,3) transition at E~=HOO0O — 8000cm , As the collisions
become less adiabatic SMCCP consistently underestimates the cross
sections. In general, for the transitions presented in table 8.5,
the SMCCP is better than the BFCP approximation.

The DLDCP approximation underestimates the cross section for
the (2,2)—>(3,3) transition at EMOOOcm 1 by more than a factor of 2.
For the other energies DLDCP agrees well with SCCP, giving errors of
less than 10$%$. For the (0,0)—>(l,I) transition the errors of
DLDCP, for all the energies considered here, are less than 6%. For
the (U,2)->(3,3) transition however, the DLDCP approximation consistently
underestimates the cross section, and give errors of more than 50%.

The more consistent approximation presented in table 8.5 is
the MCCP approximation. For the (2,2)-*(3,3) and (0,0)->(I,1)
transitions MCCP consistently gives errors smaller than 6%. while for
the (U,2)—(3,3) transition agrees with SCCP within 15%.

In table 8.6 we show cross sections for HC1-HC1 collisions at
E.=201.71 and 500cm 1; the transitions are (0,0)-?(2,2) and (0,0)-»(l,I)
For the (0,0)->(2,2) transition the BFCP approximation is the better of
all the approximations, while SMCCP is the worst. The MCCP approximation
overestimates the cross section and gives errors between 25% and 30%$.

The DLDCP approximation is better than MCCP at the larger energy,
but MCCP is better for the smaller -

For the (0,0)-»(1,1) transition the body-fixed approximation
is good at 201.71cm"1, but underestimates by more than a factor of
two the cross section at E£=500cm 1. In general MCCP and DLDCP
give errors smaller than 30%, and SMCCP has errors of 36% and 12%

for E~=201.71 and 500 respectively.



In table 8.6 we also show the cross sections for the resonant
transition (0,1)-» (1,0) at E. = 201.71,500 and 1000 cm"1. For this
sudden like transition the BFCP overestimates the cross section, and
this overestimation increases as the energy increases. As we showed
in subsection 8.2.3 in the sudden limit for distant collisions the
FOBF probability is three times the FOCP probability. The MCCP and
DLD, at B = 201.71 and 500 cm 1, agree between them within 194) At
E* = 1000 cm 1 the MCCP has the better agreement with SCCP. The
SMCCP approximation underestimates the cross sections and gives errors

up to 3bh.

8.6.1t Conclusions
In earlier sections we have derived the body-fixed, the

M-conserving and the decoupled-L-dominant versions of the strong
coupling correspondence principle. We have termed them BFCP, MCCP
and DLDCP respectively. A subsidiary approximation in the spirit of
the MCCP has also been derived; we termed it SMCCP. These
correspondence principle decoupling approximations have been applied
to the rotational excitation of two linear molecules. The equations
for the dipole-dipole interaction were obtained for each of above
approximations and some interesting limits were studied. In
particular we showed the relation between the BFCP and MCCP
approximations, and the first-order result for each approximation was
studied. Finally we presented, earlier in this section, some numerical
results for rotationally inelastic transition probabilities and cross
sections in rotor-rotor collisions.

The goal of this work was not to make a detailed study on the
validity of the above approximations, but to show how they can be
extended to the rotor-rotor collision problem, and make preliminary

findings on the deviation of these approximations from the full SCCP

7
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result. Another of our aims was also to look for feasible ways of
easing the computational effort of the SCCP approximation,

Our findings were both encouraging and rewarding. We found
that the BFCP approximation is accurate within 10# to describe short-
range adiabatic collisions. This suggests that, as in the atom-
rotor case (Dickinson and Richards 1977), the BFCP is adequate to
describe rotor-rotor collisions dominated by a strong short-range
inisotropy. We have also found that in general the MCCP approximation
is valid wherever the BFCP is valid, but that MCCP is significantly
better for distant adiabatic, as well as sudden collisions. Our results
show that the MCCP produces significant savings in computations of
probabilities and cross sections with little loss of accuracy. Some
MCCP cross sections, with deviations from the exact SCCP result of less
than 10#, were obtained in up to a fourth the CPU time spent to calculate
the corresponding SCCP cross section.

The DLDCP results show that for close collisions (small b) this
approximation is largely in error. This suggests that, in contrast to
the BFCP, the DLDCP approximation is not adequate for collisions
dominated by a strong short-range anisotropy. For distant collisions
the situation tends to improve, and reasonably good agreement with the
exact SCCP result was obtained for a resonant transition, and for
transitions satisfying sgn(A™) = sgn(a®) . There is however,
one non-resonant transition for which the DLD approximation has proved
to be grossly in error: ( n +
The large error arises from the DLD condition (8.35)» which, for this
transition, makes A m , . Consequently, for long distance
collisions DLD retains only trajectory integrals associated with
AN, + (wl=0  transitions. Since these integrals are exact for head-

on collisions, the DLDCP at large b is largely in error.



Clearly, much more work needs to be done on assessing the
validity of the semiclassical approximations presented here in rotor-
rotor collisions. Since the domain of validity of the SCCP should
include those of the BFCP, MCCP, SVIOCP and DLDCP approximations, it
seems necessary, as a first stage, to determine such a domain. Then
a study of rotor-rotor collisions using the SCCP and these corres-
pondence principle decoupling approximations (CPD) can prove
convenient to assess the ranges of validity and computational
convenience of the CPD approximations. The different ranges of
validity and computational conveniences suggest that a combination of
some of the CPD approximations can provide a useful tool to calculate
rotationally inelastic cross sections and rates. Surely, such a tool
may be appreciated by some theoretiti&ns and experimentalists. There

is much to be done. ..
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CAPTIONS TO TABLES 8.1 - 8.6

TABLE 8.1
Percentage error as defined in the text. The parameters
correspond to the (0,0)-» (1,I) transition in HF - HF

collisions.

TABLE 8.2
As table 8.1 for the (1,1)-> (0,2) transition at

E.I = 8000 cm“l.

TABLE 8.3
SCCP, BFCP and MCCP transition probabilities for

HF - HF collisions.

TABLE 8.U
SCCP, MCCP and DLDCP transition probabilities in

HF - HF collisions at E.I = 8000 cm 1.

TABLE 8.5

SCCP, BFCP, MCCP, SMCCP and DLDCP cross sections for

HF - HF collisions.

TABLE 8.6

As table 8.5 for HC1 - HC1 collisions.
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Table 8.3
b(ao) Fz(cm (i a2 pSCcP pBFCP pMCCP
0 500 (0,00 -> (1,1) 4.9-3 4.9-3 4.9-3
2 5.1-3 4.9-3 4.8-3
4 5.3-3 4.9-3 5.2-3
6 6.1-3 5.0-3 5.7-3
8 9.1-3 7.2-3 1.0-2
10 1.2-2 9.3-3 1.5-2
1 1.3-2 9.5-3 1.6-2
0 8000 (0,0) (0,2) 1.1-2 1.1-2 1.1-2
2 1.05-2 1.08-2 1.09-2
4 1.1-2 9.8-3 1.1-2
6 1.4-2 9.3-3 1.3-2
8 2.0-2 9.6-3 1.97-2
10 55-2 9.1-2 9.2-2
12 5.6-2 3.5-2 5.8-2
14 3.1-2 6.7-3 1.7-2

16 1.0-2 1.1-3 4.1-3
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Table 8.6
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CAPTION TO FIGURE 8.1

Correspondence principle transition probabilities as functions
of the impact parameter b, for the resonant (0,D)-*(1,0) transition

in HC1-HC1 collisions at E.=201.71 cm

- SCCP
_________________ . MCCP
---------- ; SMCCP
............ : Subsidiary M-conserving approximation in the TDDC
framework, Battacharayya et.al. (977).
000000000000: M-conserving approximation in the TDCC framework,

Bhattacharayya and Saha (1978).
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Rotational excitation of polar molecular ions by
slow electrons

A S Dickirsoit and JM Munczj -
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Asstract. An InpectEaeter netihad Lsig hypartolic s ad partutstion teay
Fes been Leed ol e Idatiodl-e ditetin atss stio's Tarpola-in dearonadliv-
S8, Good agregrent with aorregaooiirg Coulanb-Bom e iAtio's Bdotaired ean
dee o theddd The dietdftte Coularb fisbl Bshon 1 e inportant
Trdeedi=ns Reios rdudiy tre diole poiatiEl oly ae don
outhestinaesisatEly te. ) = +1 roatiod acssation, Ertic iy ek

apir
D, CH* adH® ‘atd&hmeugi&mbafaveh‘hmm

1 Introduction

Despite a ratt ineese intreaetical work on the rotatiael ecitation ofrolecullar
ias by slow electras, tis proess hes attractad relatively littke attentian compared
o tre analogous process in reutral noleaules. The measurement of ecitatian atss
sotias far mleaular 10s B difficdt, but sudh aoss ssctias ae of naest far
stidies of lov-tarperature partial y-ionisd gsss.

We aooatrate here on tre ecitation of polar noleaular 0s. Previas work
on lrer ia0s (Boikova and Ob"edkov 198, Chu and Dalgarmo 1974) hes aosicered
tre trarsitin as due lely o tte dipole potential, which hes been treated in tre
Coulomb-Bom ggoraximatian. Folloving Faisal (1971) ad Ray and Barua (195),
we e a timne-dgpadant method besed on a dassial trggectay far tre icidat
prtide. Eploying firstada perturbation theary (vedpt), we show ttet, in tis
goproadh, uphysically lov valles are usd far the trasition prdebillity far dose
allisios. The edstae of stray roatiael apling in tre interactian of slow ellec-
tras with Hi  isshown by tre mixing dssenved by Herzoerg (19/0) betnween two
Rydberg saies of H 2 temiretirgon ttey = 0ands = 2 leds of tte ground vibra-
tiael stale of H2.;  beirg tre rotor quartum nurber. Fano (29/0) hes argued
thet this sitatian shauld ke gaeral in electran molecular—ion dllisios.

In tre dmsace of a detailed desription of the Sort+ae electrnic INeratio s,
we assure a areenative \alle of tre trasitin prahility in tre strag-aoplirg
regian. Thiis shoas thet tte Coullomb Borm gopraxination alnost cartainly utaresti-
mates sigiificntly tre ol AJ = + 1 atss ssotion.
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For symetric-top i0s, we exanine the aotributias from the quedrypollar inter-
actian and we fird thet the regians farwhich perturbation theory and tre quadrupo-
b inleraction are \alid are very limitel. We conpare also with the work of Ray
ad Barua (19/5) on tte rotaticel ecitation of HD + by electros ad positlos.
They wsed at dort rage a trucated form of the lagHae anisobrgpic intaraction.
Sinee this nadification takes little acoount: of the strag aoypling coounring far elec-
trus I doe enounters teir rests diffar littke fron tre Coulomb-Bom \alles.

In &, we examine time-dgpendent perturbation theory far the dipolle and quadru-
ple potentiaks wsing a hypertolic dessial path far the ircidant election. Limiting
forms far low and high velacities are derived and conparrison wirth the Coulomb-Bom
resits anfims tre \alidity of the time-dgpendentt ggorcech. Our sinplle nodificataan
o tre dortyae antribution Bmade I 83 and compared with other resilts. Our
axclsios ae presated in 8

The values of tre variass molecular parareters needed are dllected in Bole
1 We uea, ¢ adm far the Bohr radics, electran darge and mass  regectinely
ad we iRy Trme*/2n22= 1366€V.

Table 1. Teble ofttenolealar ciiaussd nttsvak. » ads ae iaiod aosats.
@Ak es inatonic uits)

k:n D Q A B

ctr @B~ — — 66x 10
HD* a3t 15 - 1P x 10
Hjo* 224" 25X KT 55x 105"

Jreen (99), upblied vork (@oted by Chu - ditskonitz ard Harrison (969,

ad Dalgao 199) sl an tre vaefirctin  “Chu (95).

B s LD
chzEy QK). .

2 Theory

2.1. First-order time-dependent perturbation theory
The rotatio sl state of a symetric-top molecular in B darecterisd by e three
quarttum nunbers ;. M and . which have treir iaal significae (Herzoerg 1989)).
The cormrespoding rotatiael eigafuctias are given by Edmonds  (1980):

Vijkm = [@ + D/S(Z]l' A«) (21)

where 7 B tte matrix elerent of tte goerator of firie rotatias and ftm (a fly)
are tre Hiler agles gcifyirg the anentataan of tre ian with regpect o a see-foad
frae

ﬂ;easyrrptotichﬂmmﬁaleWMﬂemImjlar ian ad the electrin
can be expanded N tte form (Chu 195)

yir.x, ) = -e 1/r + EW)WE) @
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where r Bthe electran distae from tre aantre of mass  of tre molecular 1, )
gecify tre direction of e inrcidat electron with repct © tte symetry ads of
thenoleaular inand vk Btre gterical harmonic (Edmonds 1960). In symetric-top
noleaular ioewithsymetry C3/thetemvik vanidesulesswa = 3 (n =0, 1,2,.. )
In tis work, we ae pprticlady inasstad in tte fast o noHvenishing tamns.
These are (Iavdka 1971)

BOp = 4nv3X’°  ddn= —(@uwHY @3

where b and @ are the dipole and quedrypole moments resctively. Transforming
(22 i tre gae-foed frare, we diotain (Edmonds 1980)

M1, 6 $il) = -e 2/r+ X ifo()IRE-t{nUMQ < 24

where Q,4» gEcify the directian of the icidet electran in tte see-foad fiae.
We assume tre ircidat electran moves on a diessical trgjectory determined by
tre gieical @t of te polengal @2). The eargy £, on te trgectay, B E@en
tobke
E = |mv2 v = G2 @
where u, ad v, ae tte il and fird gk regEctively of tte dlecion. Thus,
tre firstady trasition aplitude s(i—f,b), far a trasitin between two StEles
[i>= jxkm >ad |/5= Jk'm '} & inpect parareter b Bgiven by

S(i—f,b) 1 dtexp(ito|ft)</|K[r(t)fl]|f> (26)
where (% = (e, - £)/h = AR, the electran coordirates have been wriltien eplicitly
as fuctias of tre tire and £, (&) i te nitel @@el) tasktical eeryy of te
electron. For rotatiaal siplicity, we darive trarsition prdebilies far upnard tran-
sitios aly; pdxoilities far dowmward trasitios are derivad wsing the detailed-
balance relation.

The cladlation of the degereracy-averaged prdebility 45 far a trasition fram
te kbd ik Ik BStraigitfovard:

sk - JKNDey = @ + DX ~-rr ’|‘(| S'e (2]
where tte 3j symbol Bdsfined by Edmonds (1950) and viy isgiven by
vy = J" diep@wiggrO VoD, a0l- @8
The terms in the oiental aontributing in fist order © the trasitian ik —»'k

are those wwith ¢0) satisfyay
\J - 1+ K-K"'-k. (vde))
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Folloving Ter-Martirosyan (1982), we dotain far r\», the prdsbility due to tte
dipole potental
P\ (JK—1'K\b \E)

= ${nPaQ/a)2(D/ea0)2G (J ', K)(Ry/E P
l -
* Hv'/mv) @)

where H[\z) and H\2\z) are the Hankel fuction of tre fastkind and s carnatie
resectively (Abramowitz and Stegun 195, p ) and 6 {1,0.k ) Bgiven by

G{IJ\K) = (20 +1)(k _k 1. (ek®)]

For vand : imgirary tre Hankel fuction H["(z) Bpuely ineginary, vhile is
crivative Brel.

We axsider the prdxbility @18) farn = 0 @= 1), where tre prdxbility Hes
s maximum \ale. Then

PIT(JK-+1'KfI;Ei) = M a 0/a)2(D/ea0)26 (J,\K)(RY/Ei)\_HA\im2.  €20)
There are two retural eergy regias: P » land e « 1 The trasition betveen trese
two regias coours adearyy & wherep — 1, ie
E/Ry = (AE/RY)23.
For high eargies @« D, we have (Landau and Lifghitz 1971, p 1)
H\ym Snnip)zzlnp Qﬂ)
which, when substituted in ), yields

P\o(JK— J'K;0;Ei) S $D/ea0)26 (JI'K)EIRY E,» E 2

wing £] s £ a high eaages.

The energy e ¢ atwhiich the sum of tte upnard and dowrward trarsition prdaebili-
s at inpect parareter b = 0 Beqal o ae, n te higraagy Init 2) of
firstaty perturbation treary, B

EJRyYy = %ea0/2D)2/g{lK) ()]
where

= I-xz2n0+ D )
Claarly o systars with 1) 2 lesD= 254 Debye and Ae $ 01 eV, £c» £ As
will be shown kelov, far head-on cllisios tte breakdown of the assunption of
a dipole potetial Bmore sigificatt then the non-aonsenatian of flk
For sl eagies @A» D, we have (Landau and Lifshitz 1971, p 1%)
Hyym a (/Bv/aii/fimi) € 25)
and tte pdedility nts Init B
PI8(IK-./X;0;£,) a QU UD@/eEO)I(7,J" ./DE/R)I] £« £ (W)
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where
c = (MI3r(8)]2= 2221 (2.266)

For dl redlistic systars tre prdebility in this Iimit Bmuch kessthen 1

We rote tret in the time-cgpendent. perturation theory goproximattion used In
this work, dgoartures fran wnitarnity become imaessirgly inportant s tre eaargy
imess- tte rea<=e of tre sittation fa- rutrals Qidinsm and Rideards  195).
The diffae®e s by tte stray aceleration of e electran by te attradtive
Coullomb il

2.3.2. Cross section. Usirg Q_‘l& n Q_'@, we dotain for the atss ssctian (Lancbu
and Lifdhitz 1971, p 189

- 1k )= @EFRIBYOENU,IK)Ry/ENVAIHES)]- )

The lovaaryy bereviar E« £; it » D) 5 dotained from Q2) wsirg 25) ad
tre relatin (Landau and Lifghitz 1971, p 1)

H"\iP) S W AE/DAO) B
yieldirg
0% (JK — 1K E)s @/3vAVee0J,J" ,R7ED £, « £ (b))

This B il with the thresold dipolar atss sectin in tte Coulomb-Bom
goproximation (Chu 195).
For hich e|mgies E» £; £« Dwe have (Landau and Lifshitz 1971, p 1%H)

z iHU'W) z (2/n) ING2ZY))). ()]
Using 2D and 23) N 2) we datain far tre hich-aergy atss ssotin

0"(IK — I'K ; E) = JVo(@Veen)2XJ,J™ ,RVEDIN [H-MEYAER] E,» E
@3D)

renwerirg the Laal Bette Iimit far an qotically allloned trarsition. This hich-aergy
Iinit of the atss ssotian does ot gpear © have been darived previasly. Alll tte
aove enatias hold far lirer polar iaswhen k = Q

To ewalate tre Hankel fuctios used N 18) ad @Q2) we = tre method
of Goldstein and Thaler (199) to compute tre Bessel fuctias d\@ and F.Q. The
clailation of the Hankel fuctian B then straigitforvard (Rbramowitz and Stegn
19%, pp 38 and 3.

in ele 2 we corpare aur reults far CH+ with the Coullomb-Bom reslits
of Chu and Dalgamo (194) far tte 0—*1 trasitio. In tre eergy rae [0007,
204] eV, tte agreamenit Bwithin 4%. For aamies ks then 0007 eV B==el furctias
of lage imginary argument and ader A£ 45) ae required and tre rautire
employed auffarad fran rounding enas. The lovenargy limit @29) agrass within
10% with tre Tl ezt Q20) far £ < B2 whille tre high-aargy linit @3D) agees
within 15% for £ ™ 6E For this trarsitin E — 0-B48¢eV. Thus tre love|ryy
goproximation (229) gives aocepteblle aocouracy In the ragion where our direct method
of ealating tte Bl fuctios siffaed nuerical diffelts. Oadll, te
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Teble 2 Gorparison of tre0—>1 ioativel-editatinats o s ofCH ™ by detran
nEcL

O-DED 0O 1D
Epetian Coulanb- Epetian Coulab-
£@) (v Borb e, @) Q) Borb
4B’ 4“0 0D P25 20
0805 - visee] 03 1A 13
08074 BB IF 0D %5) w
Q010 218 A9 00 m n
(0014 j(G5e) 165 6L e B
0aB 102 01 05 B a
006 719 ™ 0 B B
Q2 16 K o] vl 3
(01(0] A 30
1Fran @D).
KChu ad Dallgarmo @4).

agreaent betvween tre time-cependent and the tine-incependent: goroxinetions B
\ary satisfedary.

2.4. The quadrupolar contribution

To claiae tre quedryolar antrituaan (AT] = 1 ad JAJ] = 2) it Bres=ssay
eadlse te 12y inegal @15) nurerically. For srall \daitiss age Aad lage
e, Kk sdifficit to ditain acorate \vales because of the £t axdillation of tte Nnie-
gad. We have ussd anodified Sinpsmn”™s rukeand tested aur methods by conparing
aur readts with: te taulated values of Alder et a1 (1956) for tte conresponding
/% ingyal for a riulsive poiential; tre aelvtical et for 1v; ad firdly te
aslytical eqressias for 12y in tte e of a sudden dllision @= 0. In tet limit

/26,0 = il+ fit- =" "@- D, M- DI}
7220 = 2/38.

In figure 1, we show tre quedrupolar firstada prdebility » 27 as a fuction of
tre inpect parareter far cllisios with H)0* and HD +.The pdzbilities do rot
sty unitarity far siall inpect praneters. Sinee P2 divargess stragly ash taths
t za0, tte quadryole antribution t© tte atss sectian will be disassed bellow
dia we have arsicdared a dortyate akdf. No suth akoff wes recesssary far
tre dipole potiendial site wes finiie far head-on dllisios.

)

3 The dortyae antriuian

The theory presanted above may become inalid at srall inpect paraneters far
tre folloMrg reesos:

@® te imdt dectron nust have an abital agular momentum of at ket sh
to edte te moleaular i by an anount &1 = %;
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Agure L Arstadag eoryolarpdailitissP)° ssafirdtindftte inpect: parareter
A RbE676; £ = 18) frH,0%; B: P90- 2 = 18)) fIr HD+;C: &sB
eayke, =0l eV; D: ssBeagt:, = 006a/.

@) tre interaction poiendal @2) ot \alid for sl r;

@) tre trasitin prdxbility fa- an anisotrgpic term with /7 2 B greater then
ity far srell inpect parareters.

To allovfar @we cefire

b, = sh/mv @D
ad we assure a prdebility Qidkinen and Ridards 195)
AKFI+: Kpe)-0  b<bt Q2

To anect for @) i B necesssay 1 estingte tte region where tre potetial @)
sk, We syppose et this sfarelectrayolecular—ion sgaratios lager ten
tte dargeclad g, 1T, of tre noleaular 10 Thus, we defire tgasﬁe inpect
parareter at which the Coullomb fisd fooess tre icidat electran 1o the edge of
tredargeclodrc

b2 = @@+ e1riE )t (%))

When tre ircidat electron peretrates te core regian, r < r,, iEhes aosiderable
I«H]ceerg,/ﬁunﬂeCoulmbﬁsHard(r:neﬂlyedleﬂehigﬂaaﬁaal bds
of tre 1. 0 becoming captured teporarily. Subseguent cllisios villl then coar.
\Whille our knovledge of tre ditails of this process B Iiniited, we aosider it lidy
ad ikatainly suld ot ke ecluld util detailed caladatios with a relidic



Rotational excitation of polar molecular ions 3159

dortrae potentdal have been mece. To give a plasible estinate of tte lidy
antributian fram this mechaniam, we assute a sorttage prdebility

v, b
bi ~ b~ bM

@

bM Sib A b 2

where p Baparareter. Sridly, P(2)= Pro(@)would preserve atdruity but P °(@2)
B grerally sll 0 sucth a nodification makes regligile differae o te ats
stios. This form hes been adopted 0 ttet the prdebillity fast inoeesss de ©
tte stroger dlllisias coouring as b deaeesss to bV . There we assume ttet tre
unitarity requirarent causes P to deoreese intte strag-aapling region bM ~ b> 6,
A similar mocel far tre strog-aapling prdxebility in elecranolar-oleaule olli-
sias Qidkirnsm and Ridards 19/5) vieldd atss sectias ingood agreament with
those dotainaed wsing close-copling aladkatias. Thus we can wrilte the atss ssctian
>

or(JK —1'K ED= a1k —=>JK; D+ oL(JK 2 I'K \ E i) GH)
where
ad
(€1:0)
For siplicity we take
bM = (bi + bi)R (€1)
dotaining far ah

o' K — 'K Eiy) = QFD)ARGER + 1) - 8D, + b2)1 (<¥)]
For tre dipole a2 0" can ke dotainaed by a minor modification © Q27):
ojoik — 1k ;e = (23IABDE0ZJI, IK)Ry/ENie/MAWii, (iN,)] B
where €2 Bdotained firom b2 Wsirg @I).
We have estinated the darge-clad &, re, as tice tre equillibriun intamuciar
distee, r,, N diatonic o, ad tce tte OH distere ntte H3D + 1L We
have Een o = 02, which suld gihe a aareenative estinate of the dortHae

3.1. Results ami discussion for dipole interactions

The efiect of tre dortvae nadification Bshownn frCH+ nfigue 2 The imesse
in tre atss seotian Hk soothly fran doout 305, a thredold o 10% & 2eV.
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Fgre 2 Grgh d‘£|0(0—>1)frCH* potied apret eagy. e A dons te
purediole pietE resit, e st @) ad ane B dois trenoified res s Q1)

An infarestirg conparison may  be made with the resulits of Ray and Barual (195)
far electran ecitation ofF HD +. They have usad time-dgpendent perturbation theary
with the lag+ae potataal given by @2) and @3) with an additiael polarisshility
tam. Their Sortvae potendal sBgnen by
V(rX) = ~(e2/r0) - (EDAYP, (@Y - (eq/r1 + AEASPACSY) r<ro @9
where & Bﬂerm—qj"erlcal part of tre polarissbility and o Ba aoff parareter.
They assume 1, =

Ague 3 Grgoh of £,00->0) fr HD* mmBmmm(}eAslmste
mﬁ;fmcm“mﬁ@,m ey ard
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In figue 3 we presait a conparison far the 0—*1 trasitian between aur reslits
fram @Q2), treir resdits, and our nodified resdt @Q5) for the dipolar antritution.
The agreanent between teir reslts and rorape at lov e|rgies shows tet te
modified potenaal @9) yields srall prdedilities far doe dllisios. Sine tey e
a sragtire trgjectay irsick tre ae, conparison with the case of reutral mole-
aldes agrsts tet this straigire part willl leed © higher pdsiilites, ths
ethacing tte ats sctian, as shon in figue 3 At higer aagses, tte effet of
tre straig e trigjectary B kessmarked and treir use of avweaker dortvae na—
actin Q9 less o sraller atss s s. Again, tre effectof the nodified prdxbility
B9 B Imese tte atss sotian above tre pure dipole \alle, in this = more
then doubling the atss ssction &t thresold.

Sine <no(Jk —>1'k £, depends mainly on the \alle of the dipole moment, far
sall dipole moments, such as HD +, tte dortHae atss sectian <& becomes
reltivelymore inportant. This sillstraied in t2ble 3, where we carpare the dipolar
Fhand (OfarH D + O = 0-2ea0).

Table 3 Rostiodledtstin aos stios dF H,0 “ by detron inpect: 1 te

G060 tadtin

E6--60R)

Eqatian

B @) (<Y (S5
1 & D
02 5H D4
04 3 6
06 B 44
08 » 36
10 0 3
r 84 26
H s 23
16 &6 2
18 6 19

32. Results and discussion for quadrupolar interactions

As disossd N 84, ttee B a sigllaity at b = 0 in tte quedryoolar trasitin
prdzbility. To aoid s, we have dotained atss sectios Tar the quedryole interac-
o wsing @D and @2 far dioe eooutters and rotdpt OtEMise. The integratian
oer inpect parareter hes been dore wsirg Simpson’s rde. Alnost dll the aontribu-
tian cames fram siall inpect parareters and tre effective ypper Iimit of e integyal
B alays ks then 130a0, while far tre dipole e this limit wes about 10Buwo.

Carparison with the gquadruypolar Coulomb-Borm results of Chu (195) far tte
G2-* 62 ttasitin nH O + @ eaple with an intemediate k \valle) shons diffa~
axss of s then 5% far 01 eV < £, ™ 14éV. This sugests tet our aeoff pro-
odure B rasaeble. Since tre trasition pdxebilites at tre akoff inoeesd fran
145 o 14l s tte |y i, it gopears ulikely ttat tre Coulomb-Bom
gopraximation stifies unitarity for doe ollisios een a electrn aargies of
ad et dits. -
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The arguments presated above far tre effect of Coul omb foasing far dice clli-
sias shauld be eqally \alid far tre quedrypolar interactio. Thus tre uee of tte
q)aerpole interaction far trese dllisios B utElicble. Sine ay atss ssctian de-
el wsing gooraxinatias similar © G3) and @4 woulld be daminated by tre
assuned dortHae antriludan, we have ot thought ibvorthuhille to make such
a aladation. Hovever, any atss ssotian cerinved Lsing a firstada perturbatian
theary and tre quedrypolle interactin 6 liely 1o excead the e atss section co-
sichrably.

4. Gaclusias

For electraolar-nolealla—ian dllisios, we have Ed an  inpect{araeter
method 0 inesticaie tre Eality of te uisal goproximation of conbining tre
Coullorb- Bom gopraxination with the dipolle and quedirupole anisoropic potatiaks.
We fird tet far a dipole poientaal, this method uterestimates the atss s,
particilarly o weak dipoles. A nodiffied eqression far tte atss ssctian hes ben
presmited. By antrast, far allisios of electras with restral polar molecules, tte
Lee of tre Bom gopraxination and the dipole potantial smore lidde, oeresting-
tig tte atss seotin T lage dipole moments Qidkinson and Ridarts 195). In
allisios where tte logHae ineradtin B tte qedrnyole, tte €l Sotrae
interaction nust be includd o dotain Fidble resdits.

Clearly there Baneed far an acourate calaulatian including the detailled electranic
structure of the tatet, similar © those alreedy performed far electron sEtay
by H2.N2and CO (Tenkin 196).
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