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ABSTRACT

Part 1

A classical path method using hyperbolic orbits and 

perturbation theory has been used to calculate rotational excitation 

cross sections for polar-ion-electron collisions. Good agreement 

with corresponding Coulomb-Born calculations is obtained close to 

threshold. The focussing effect of the Coulomb field is shown to 

be important for close collisions. Previous calculations including 

the dipole potential only are shown to underestimate substantially the 

AJ = +1 rotational cross section particularly for weak dipoles. 

Calculations using the quadrupole interaction only are shown to be 

unreliable. Cross sections including an empirical estimate of short- 

range effects have been performed for HD+ , CH+ and at electron

energies up to a few electron volts.

Part 2

The Strong Coupling Correspondence Principle (SCCP) method 

is applied to rotationally inelastic HF-HF and HC1-HC1 collisions. 

Transitions probabilities and cross sections have been calculated for 

different transitions and energies. Good agreement with corresponding 

quantum mechanical close coupling (CC) is found only for some 

transitions. Comparison with other theories suggests ti.at all theories 

are unreliable for adiabatic collisions. The first-order correspondence 

principle (FOCP) is consistently unreliable, overestimating the 

transition probability. The body-fixed correspondence principle 

(BFCP) approximation, the M-conserving correspondence principle (MCCP) 

and the decoupled-L-dominant correspondence principle (DLDCP) 

approximation are derived and applied to the molecule-molecule collision.



Comparison with SCCP shows that MCCP is the better approximation. 

BFCP is good for short-range adiabatic collisions while DLDCP is 

good at large impact parameters only for some transitions.
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INTRODUCTION

The simplest energy-transfer collision process involves 

rotationally inelastic scattering. The study of collision-induced 

rotational transitions is useful because the knowledge of these 

transitions is required to interpret phenomena such as ultrasonic 

absorption and disperson (Herzfeld and Litovitz 1959, Cottrell and 

McCoubrey 1961), pressure broadening of spectral lines (Birnbaum 

1967, Rabitz 197**), and various transport properties in gases (Levine 

and Bernstein 197*0. Moreover, theory of rotational transitions 

combined with appropriated experiments can provide us with a reliable 

way to determine intermolecular potentials.

We are concerned here with semiclassical studies of rotationally 

inelastic scattering. During the last decade, a considerable interest 

has been shown in the development of semiclassical methods to treat 

complex molecular collisions (Miller 197^, 1975; Clark et.al. 1977).

The term "semiclassical" is normally applied to two classes of methods : 

l) The most common is the "classical path model". Here a

classical trajectory is assumed for the translational motion. Thus a 

time-dependent perturbation is caused on the inte^ .1 degrees of freedom, 

which are treated quantum mechanically. In this method the Schroedinger's 

equation reduces to a finite set of first-order differential equations 

(Schiff 1955, p.l96); following Dickinson (1979a) we term them time- 

dependent close coupling equations (TDCC). Any solution to the TDCC 

equations which maintain the quantum mechanical treatment of the 

internal degrees of freedom yields what we call a classical path

method.
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2) The second class treats both the translational motion and

the internal degrees of freedom classically. The basic idea is 

to use a quantum mechanical description of the collision process and 

then classical mechanics is invoked to determine all dynamical 

relationships. Thus an asymptotic solution of the Schroedinger’s 

equation is obtained with the help of classical solutions of Hamilton's 

equations. Between the most successful of these methods are: the 

Classical-S-Matrix introduced independently by Miller,and Marcus (1970) 

(extensively reviewed by Miller 197^, 1975), and the Strong Coupling 

Correspondence Principle (SCCP) of Percival and Richards (1970).

Excellent discussions of the SCCP approximation can be found in 

Clark et.al. (1977), and Dickinson (1979b).

This thesis, exemplifies the use of a classical path 

approximation, and the. SCCP method in rotational inelastic 

scattering.

The first part of this work (Chapter*1»3) presents a study on 

rotational excitation of polar molecular ions by slow electrons. This 

process may play an important role in the understanding of the 

constituents of the interestellar medium (Somerville 1977) • The knowledge 

of the collisional excitation cross sections may facilitate the 

detection of new molecular ions.

Previous work on linear ions (Boikova and Ob'edkov 1968, Chu 

and Dalgarno 197^) has considered the transition as due solely to the 

dipole potential, which has been treated in the Coulomb-Born approximation. 

Following Faisal (1971) and Ray and Barua (1975), we use First-Order 

Time-dependent Perturbation Theory (FOTDPT) with hyperbolic orbit for 

the incident particle. The FOTDPT is perhaps one of the simplest
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versions of a classical path approximation as it is obtained by 

applying first-order perturbation theory to solve the TDCC equations.

Employing FOTDPT, we argue that, in this approach, unphysically 

low values are used for the transition probability for close collisions. 

In the absence of a detailed description of the short-ranged electronic 

interactions, we assume a conservative value of the transition 

probability in the strong coupling region. This shows that the 

Coulomb-Born Approximation almost certainly underestimates significantly 

the total rotational inelastic cross section.

For symmetric-top ions, we examine the contributions from the 

quadrupolar interaction and we find that the regions for which 

perturbation theory and the quadrupolar interaction are valid are very 

limited. We compare also with the work of Ray and Barua (1975) on 

the rotational excitation of HD+ by electrons and positrons. They 

used at short range a truncated form of the long-range anisotropic 

interaction. Since this modification takes little account of the 

strong coupling occurring for electrons in close encounters their 

results differ little from the Coulomb-Born values.

In chapter one, we examine the FOTDPT for the dipole and 

quadrupole potentials using a hyperbolic classical path for the 

incident electron. In chapter two we derive the dipolar probability 

and cross section. Limiting forms for low and high velocities are 

derived and comparison with the Coulomb-Born results confirm the 

validity of the time-dependent approach. Our simple modification to 

the short range contribution is made in chapter three, and compared 

with other results. Our conclusions are presented at the end of

chapter three.
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The second part of this thesis (Chapter 1* - 8) presents a 

study of rotational excitation in collisions between two linear 

molecules. Information obtained from such a study can be useful to 

determine the intermolecular potential. Some experiments like 

optical flourescence (Oka 1973) and pressure broadening (Rabitz 197^) 

require detailed calculation of either collision cross sections or 

rates for their interpretation in terms of molecular potential 

parameters.

The quantal theory of scattering of two linear molecules has 

been known for a number of years (reviewed by Takayanagi 1965).

However to the author knowledge only three quantal Close Coupling 

Calculations (CC) have been reported (Green 1975, DePristo and 

Alexander 1977, Alexander 1980). The major difficulty is the large 

number of degenerate levels which must be included for each rotational 

level, so that the problem becomes prohibitive whenever the number of 

accessible molecule rotational levels is large. This has stimulated 

the development and use of various approximations (Bhattacharayya et.al. 

1977, Bhattacharayya and Saha 1978, Alper et.al. 1978, Alexander and 

DePristo 197*1, Hashi et.al. 1978).

We concentrate in this work on the detailed application of the 

SCCP method.

The SCCP approximates the solution of the TDCC equations 

using a classical description of the internal degrees of freedom of 

the molecules. Thus classical action-angle variables are used; the 

rotational levels of energy are obtained by an appropriate quantization 

of the action variables. The change in action of the system is now 

determined using classical perturbation theory. The SCCP is expected 

to be most successful for large quantum numbers but quite good accuracy 

has in fact been obtained for transitions out of the ground level in H^-He
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collisions (Clark 1977). It has been successfully applied to 

rotational and rotational-vibrational excitation of molecules by atoms 

(Dickinson and Richards 197^, Clark 1977)> and is the basis for some 

current semiclassical approximations (Dickinson and Richards 1977, 1978).

Using SCCP we calculated dipole-dipole rotationally inelastic 

transition probabilities and cross sections for HF-HF and HC1-HC1 

collisions. A detailed study of the dependence of the transition 

probability on the different collision parameters is presented. A 

detailed comparison with other approximations has been done. We 

examine the advantages of each method and attempt to determine ranges 

of validity. We argue that none of the current calculations has 

offered a consistent quantitative description of the collision.

Subsidiary correspondence principle approximations have been 

derived and applied to the molecule-molecule collision problem.

Through comparison with SCCP we attempted to determine their accuracy 

and feasibility. It is argued that a combination of these approximations 

can prove to be efficient and accurate.

In chapter four we determine the parameters of the collision 

and examine their dynamical relations. The general SCCP transition 

probability is examined in Chapter 5. The first-order limit of our 

approximation is derived and compared with other first-order models.

In Chapter 6 we derive the correspondence principle equations 

for the dipole-dipole interaction. The transition amplitude is obtained 

in closed form.

The corresponding first-order and straight-line (SL) limits are 

examined. The numerical techniques used to evaluate transition 

probabilities and cross sections are described.
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Our numerical results are presented and discussed in Chapter 

seven. The correspondence principle transition probabilities are 

examined in detail. Our results are compared with other theories 

and the range of validity of our approach is analysed.

In Chapter 8 we derive correspondence principle equivalents 

of some of the current decoupling approximations. The simplifications 

introduced are examined and some limiting forms are studied.

Numerical results are compared against SCCP.

The investigation presented in this work is a first attempt 

to use the SCCP method in the study of rotational excitation of two 

linear molecules. Work is already planned to study the scattering 

of two rigid rotors, using SCCP and its subsidiary approximations 

(Richards private communication). It is intended to assess the ranges 

of validity and computational convenience of these approximations.
. . -«b- .It is intended to include in the computer program developed here 

terms of interaction potential other than the dipole-dipole term.

The eventual aim of this study is to produce a general purpose computer 

program for cross sections and rates.

We use aQ , e and m for the Bohr radius, electron charge and
• h  2mass respectively and we use Ry for me /2ft = 13.6eV.

The first part of the work presented in this thesis has been 

published by Dickinson and Munoz (1977).
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FIRST PART

Rotational excitation of polar molecular ions by 

slow electrons
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CHAPTER 1

BASIC THEORY

1.1 First-order time-dependent perturbation theory (FOTDPT)

1.1.1 The molecular ion rotational state. The rotational state of 

a symmetric-top molecular ion is characterised hy the three quantum 

numbers J, M and K. The first two, J and M, represent the rotational 

angular momentum and its Z-component in a space-fixed frame respectively, 

and K is the angular momentum component directed along the symmetry 

axis. The corresponding rotational eigen functions are given by 

Edmonds (i960, p66):

The interaction potential and motion of the incident electron. The 

asymptotic interaction potential between the molecular ion and the 

electron can be expanded in the form (Chu 1975)

electron with respect to the molecular ion-fixed co-ordinates, and 

Y. . is the spherical harmonic (Edmonds i960). In symmetric-top

(1 .1)

where is the matrix element of the operator of finite

rotations, and iJi ( ,  ¿3 , ) are the Euler angles specifying the

orientation of the ion with respect to a space-fixed frame.

(J)
is the matrix element of the operator of finite

1 .1.2

(1 .2)

where r is the electron distance from the centre of mass of the 

molecular ion, ( ?i , “f ) specify the direction of the incident
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molecular ions with symmetry C^v the term vanishes unless

|k| = 3n (n = 0, 1, 2, ...)• In this work, we are particularly 

interested in the first two non-vanishing terms. These are 

(Itikawa 19 7 1)

Vir)  S i r „ C r ) = - ( m , (1.3)

where D and Q are the dipole and quadrupole moments respectively. 

Transforming (1.2) into the space-fixed frame (Edmonds I960, p5U) 

we obtain

where (9, (()) specify the spherical polar angles of the incident 

electron in the space-fixed frame.

We assume the incident electron moves on a classical trajectory 

determined by the spherical part of the potential (1.2). The energy 

E, on the trajectory, is taken to be

j: = 1 ^ 0 ^  ; or =. (v* 1 (1.5)

where \A and are the initial and final speeds respectively of the 

electron.

1.2 The first-order transition amplitude.

The first-order transition amplitude S(i-*-f;b), for a transition 

between two states |i>=|jKM> and |f>=|j'K'M'> at impact parameter b 

is given by (Landau and Lifshitz 1965, pl^O-Ul)

d.t exp (cu )^ t) <̂ /i 3

-00

(1 .6 )
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where = (E^ - Ê ,)/ii = A  E/1S, the electron co-ordinates have

been written explicitly as functions of the time, and E^(E ) is the 

initial (final) translation energy of the dectron. The matrix 

element <i|v|f>, is given by

< JKH |l/[r(t),.a]|J'K,ri>=.I f(2JVjXzj+i)]*^(oy(e,0) a.T>
XW9

(-O'
M-K’ / J J l  X\ / J  J ’ ^

M -[I1 )) J\K -k.

where the 3-j symbol is defined by Edmonds (i960, pb-6).

1 . 2.1
The first-order probability and cross section. The calculation of 

the degeneracy-averaged probability ^ p  , for a transition from the 

level JK to J'K' is straightforward:

9 (j k ->i 'k'; t ¡  e) = (2J'+i£ ¿ !  (*  ^ (1 .8 )

where is given by

V /( E ;b ) = ^  I t  e x p C ^ )  • <1.9)
Al) "J

For notational simplicity, we derive transition probabilities for 

upward transitions only; probabilities for downward transitions are 

derived using the detailed-balance relation.

The terms in the potential contributing in first-order to the 

transition JK -*• J'K' are those with ( , k) satisfying

j - j ' i  —  a  -  j  + r  , K - K ’ -  k  . (1.10)



If K = K' = 0, as occurs for a linear molecular ion, there is the 

additional condition
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(1.11)

Since we treat the target quantum-mechanically and the projectile 

classically, the probability (1 .8 ) does not satisfy the detailed- 

balance relation. To enforce detailed-balance, we redefine our 

first-order probability for initial translation energy E^ as

1.3 The V X Q integral

Since we consider the electron moving classically in a Coulomb 

potential its trajectory is a hyperbola and we choose 9 = tt/2. It 

is convenient to treat the motion in terms of the parametric re­

presentation of the orbit given by (Landau and Lifshitz, I960, p38 )

where E is obtained from (1.5).
FO .The first-order cross-section O' is

co

CrF°C3‘K — Et) = -2TT l P F (j k  —>3'k '; b; E-) b cl(j .

o

= a (_€ cosb't -1) , t

=  - c o s k ' t )  , y  =. c»_ x—  n/x "T
(1.1*0

X ;
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where , the eccentric anomaly, takes values from -00 to 00 

given hy

a  -  e V z  E  =  a Q C Ky / el ) ,

and € , the eccentricity of the hyperbola, can be written as

e = 0 + bVcO* .

1.3.1
The I integral. We take V  = CK/IT where

a constant, see (1.3). Proceeding as for Coulomb excitation 

nuclei (Alder et al 1956) we find

where I  ̂ is given by
,00

J_ C6 > | ) — exP £ (6 sinAt - T ) ]  
A iJ

—03

[ e - c a s k  t  + lr

( c c o s U - . ) ^  7

with £, the adiabaticity parameter, defined by

£  -  / t r  .

Ai>

CL is

(1.15)

(1.16)

is

of

(1.17)

(1 .18)

(1.19)

The corresponding I ( €. ,0 integral for a repulsive Coulomb
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potential has been examined by Alder et al (1956). To transform 

the attractive case into the repulsive case (and vice versa) we may 

use the formal substitution (Biedenharn et al 1972):

Solution for X  = l. In the dipole case ( A. = l), it is easily 

verified by direct integration of (l.l8) that relation (1.20) is 

satisfied. The I1+1(€. »?) integrals have been given explicitly by 

Ter-Martirosyan (1952), and we obtain for I ^(£ ,?)

and its derivative respectively (Abramowitz and Stegun 1965, p358).

imaginary, while its derivative is real. The evaluation of the 

corresponding V ^ is straightforward.

In the quadrupole case ( A. = 2) the I^p integral cannot be 

evaluated analytically but numerically, and as we show below, relation 

(1.20) breaks down.

In the next chapters the theory presented above is used to 

calculate rotational cross sections for HD+, CH+ and H^0+. The 

values of the various molecular parameters needed are collected in

which leads to the relation

(1 .20)

1.3.2

table 1.1
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Table 1.1 Table of molecular data used in this work. A and B
are rotational constants. (All values in atomic units)

Ion D Q A B

CH+ 0.67a -
-5C6.U6 x 10

HD+ 0.3**b 1.578b a c1.02 x 10

H3°+ 0.22d -2.21*te
f f 

2.85 X 10-3 5.55 X 10~5

à Green (1973), unpublished work (quoted by Chu and
Dalgarno 197*0 based on the wave function given by 
Green et.al. (1972)

b Ray and Barua (1975)

c Herzberg (1950)

d Moskowitz and Harrison (1965)

e Chu (1975)

f Derived by Chu (1975) from OH distance and HOH angle
calculated by Moskowitz and Harrison (1965).



CHAPTER 2

EVALUATION OF THE TRANSITION PROBABILITY AND CROSS SECTION

2.1 The Dipolar probability

From the condition (l.lO), the dipole term V 10M  of

potential can produce only the transition |AJ|=1. Because

slow decrease of (r) with r it is the dominant term for
FOcollisions. Making use of (l.2l), we obtain for P ^  , the 

due to the dipole potential 

FO
Po(jK->j’K ; b ; E ;) G - C U ’K X R v / e.)

the 

of the 

distant 

probability

’ ( 2 .1)

where G(J, J', K) is given by

& ( 1 3 ' , K )  =  ^  ¿ J ’ . (2.2)

We consider the probability (2.1) for b=0 ( £  = l), where the 

probability takes its maximum value. Then

FO
P (j K. -> J' k : 0 ; Et- ) = 3
I o '

( V ^  (D/eo-o)2-

« (Ry/E;) [ H °  Ci§) 
L cb

(2.3)

There are two natural energy regions: £>>1 and £<<:1» The

transition between these two regions occurs at energy E where



E/Ry = (4E/ZRy)2/3 .

2 .1.1
The low-energy limit. For small energies (?»l), we have (Landau 

and Lifshitz 1971, pl85)

P (J k  —> J 'K; 0 ; E/) S (D /ea ,)i  GCJ,J'K)

'‘ ( h f A R y ) V 3 ) £ . C < E ,  (2 .5)

For all realistic systems the probability in this limit is much less 

than 1.

2 .1.2
The high energy limit. For high energies (C«l), we have (Landau 

and Lifshitz 1971, pl85)

H  (i§) =  ( l / r  V3 ) G>/$ ) /a P ( 2/3) .
<-5

(2. k)

(H.3)
and the probabilityVTn this limit is 

PO

where C =(|]2/3 | H 2 / 3) |2 = 2.221.

i ,0)» , ,0>5 _ .H Ui) = H ca) at Vire, .
ce,

( 2 .6 )

which, when substituted in (2.3), yields
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using E ^ E  at high energies.

The energy Ec at which the sum of the upward and downward 

transition probabilities at impact parameter b=0 is equal to one, 

in the high energy limit (2.7) of first-order perturbation theory, is

Clearly for systems with D i l e a 0= 2.5b Debye and AE<0.1 eV,

E__>>E. As will be shown below, for head-on collisions the breakdown

of the assumption of a dipole potential is more significant than 

the non-conservation of flux.

We note that in the time-dependent perturbation theory 

approximation used in this work, departures from unitarity become 

increasingly important as the energy increases - the reverse of the 

situation for neutrals (Dickinson and Richards 1975). The difference 

is caused by the strong acceleration of the electron by the attractive 

Coulomb field.

2.2 The dipolar cross section

Substituting (2.1) in (1.13), we obtain for the cross section 

(Landau and Lifshitz 1971, pl8U)

(2.8)

where

t fF(>K-*;rK ; E;) -  (Z ïï\ûî/3 )(0 /e*'f  G-(J, J' k ) 

* (Ry/E;) [i «$) H^Ci'5)] , (2.9)
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2 . 2.1
The low energy limit. The low-energy behaviour (E<<E;£»l) is 

obtained from (2.9) using (2.1*) and the relation (Landau and 

Lifshitz 1971, pl85)

H CV $ >  - ( * . / r n * 3 ) U / § ) ' /3 r o / s )  , (2.10)
*5

yielding

a  (8trl̂ / 3 ^ ) ( D / ^ ) l  

< G ( J , j ;k )  (Ry/Ei) , E; « E .  (2.u)

This is identical with the threshold dipolar cross section in the 

Coulomb-Born approximation (Chu 1975).

2 . 2 .2
The high energy limit. For high energies (E>>E;£<<1) we have 

(Landau and Lifshitz 1971, pl85)

a. H. (¿§) =  H0 c*.§) =  (2 /T r)jm (u 2 2 s/f) . (2<12)

Using (2.6) and (2.12) in (2.9) we obtain for the high-energy 

cross section

0"HCj k -.j‘k ;E1) » jliot (2D/ea.)1 Grh,l‘, K)

« (Ry/E^)JLl [ 5 .0 ‘f E’/ A E 'R y :  ,  B e »  E ,  (2.13)

recovering the usual Bethe limit for an optically allowed transition. 

This high energy limit of the cross section does not appear to have



been derived previously. All the above equations hold for linear 

polar ions when K=0.

2.2.3
Numerical results. To evaluate the Hankel functions used in (2.1) 

and (2.9) we use the method of Goldstein and Thaler (1959) to compute 

the Bessel functions Jy (Z) and Y^ (Z). The calculation of the 

Hankel function is then straightforward (Abramowitz and Stegun 1965, 

pp 385 and 36 1).

In table 2.1 we compare our results for CH+ with the Coulomb- 

Born results of Chu and Dalgarno (197*0 for the O+l transition. In 

the energy range (0.0035»2.0*0 eV, the agreement is within b%. For 

energies less than 0.007 eV Bessel functions of large imaginary 

argument and order (?>^ *» 5) are required and the routine employed 

suffered from rounding errors. The low-energy limit (2.1l) agrees 

within 10$ with the full result (2.9) for E^sE/2, while the high- 

energy limit (2.13) agrees within 15$ for E^6E. For this transition 

E = 0.03*+8 eV. Thus the low-energy approximation (2.11) gives 

acceptable accuracy in the region where our direct method of evaluating 

the Bessel functions suffered numerical difficulties. Overall, the 

agreement between the time-dependent and the time-independent 

approximations is very satisfactory.

2.3 The quadrupolar contribution

To calculate the quadrupolar contribution (|Aj|= 1 and 

|AJ|= 2) the Ig^integral (l.l8) was evaluated numerically. For 

small velocities (large £) and large £ , it is difficult to obtain 

accurate values because of the fast oscillation of the integrand.

We have used a modified Simpson's rule and tested our method by 

comparing the results with: (l) the tabulated values of Alder et al 

(1956) for the corresponding 1^ ̂  integral for a repulsive potential,
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(2) the analytical result for and (3) the analytical expressions

for Ig ̂  in the case of a sudden collision (£ =0), given by 

Biedenharn et al (1972)

= I î t l K ° )  > (2-lW

T Ce,o) = J_ Ce o) + Z i r / ( . e K , f i (s.ikb)
lo zo ‘ )

where y (£ , 0) has been given by Alder et al (1956). Equation 

(2.lUb) clearly shows that relation (l.20) breate down for the 

quadrupole case.

In figure 2.1, we show the quadrupolar first-order probability 
,F0Pi“ as a function of the impact parameter for collisions with H,0+

,+
20 "  ------Jr'”  ’ '----------------------- ------3“

and HD'. The probabilities do not satisfy unitarity, for small
-F0Since Pg0 diverges strongly as b tends toimpact parameters, 

zero, the quadrupole contribution to the cross section will be

discussed below after we have considered a short-range cut-off. 

No such cut-off was necessary for the dipole potential since PF010
was finite for head-on collisions.
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CAPTION TO FIGURE 2.1

First order quadrupclar probabilities as a function of the impact 

parameter.
FO +

A: P20 (6,6-»7,6; Ei=leV) for ;
FO +B: P2Q (0+2; E.=leV) for HD ;

C: as B except E^=0.1eV;

D: as B except E^=0.06eV.
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CHAPTER 3

THE SHORT RANGE MODIFICATIONS

3.1 The short range contribution

The theory presented above may become invalid at small impact 

parameters for the following reasons:

(i) the incident electron must have an orbital angular momentum 

of at least sft to excite the molecular ion by an amount 

AJ=s;

(ii) the interaction potential (1 .2) is not valid for small r;

(iii) the transition probability for an anisotropic term with

is greater than unity for small impact parameters.

To allow for (i) we define

b =  A m  ir (3.1)

and we assume a probability (Dickinson and Richards 1975)

P(jK. - > T 4 s K ; l ? 5 E i ) = 0  > b < b , .  (3.2)

To correct for (ii) it is necessary to estimate the region where 

the potential (1.2) is reliable. We suppose that this is for 

electron-molecular-ion separations larger than the charge-cloud size, 

rc , of the molecular ion. Thus we define b^ as the impact parameter 

at which the Coulomb field focuses the incident electron to the edge 

of the charge cloud rc

k  “  +  e * rc / E . ) V\  (3-3)

when the incident electron penetrates the core region, r<rc , it has 

considerable kinetic energy from the Coulomb field and can easily 

excite the high rotational levels of the ion, so becoming captured 

temporarily. Subsequent collisions will then occur. While our 

knowledge of the details of this process is limited, we consider 

it likely and it certainly should not be excluded until detailed
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calculations with a realistic short-range potential have been made. 

To give a plausible estimate of the likely contribution from this 

mechanism, we assume a short-range probability

where ^  is a parameter. This form has been adopted so that 

the probability first increases due to the stronger collisions

requirement causes P to decrease in the strong-coupling regions 

b^<b<bm> A similar model for the strong-coupling probability in 

electron-polar-molecule collisions (Dickinson and Richards 1975) 

yielded cross sections in good agreement with those obtained using

modification makes negligible difference to the cross sections. 

The existence of strong rotational coupling in the interaction of

(1970) between two Rydberg series of terminating on the J=0 and

J=2 levels of the ground vibrational state of H£. Fano (1970) has

argued that this situation should be general in electron-molecular-
T

ion-collisions. Thus we can write the cross section C  as

r

P(JK ->J'k j k ;  EJ = 1 (3.U)

occurring as b decreases to b^. There we assume that the unitarity

FOclose-coupling calculations. Strictly, Pib^) = P (b,^ would
FOpreserve continuity but P (b^) is generally small so such a

slow electrons with Ht is shown by the mixing observed by Herzberg

where

C T ' 3'K; Ei) * 2T1 P(tk -> 3'K; b; E.) b dk ,
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and ,oo

cr (JK -> 3 'K j Ei) -  Z ir  

For simplicity we take

b - ( b, + )/l

P  (JK-> j 'i< ■ b; Et) b  dt> . (3.5c)

**n (3.6)

obtaining for cr 

■sh

sh

CT CjK~>j'K;Ec) = C ^ / 6 K - ) 7 T T 7)

For the dipole case CT can be obtained by a minor modification to 

(2.9) :

< T ( J K — >3'K; Ei) =  (27ri5 a * / 3 ) ( D / e o . ; f

x (Ry/Ec) [ i ^  H y C i j ^ )  ? (3,8)

where is obtained from b^ using (l.l6).

We have estimated the charge-cloud size, rc , as twice the 

equilibrium internuclear distance, Rg, in diatomic ions, and twice 

the OH distance in the H^0+ ion. We have taken ^  ■ 0.2, which should 

give a conservative estimate of the short-range contribution.

3.2 Results and discussion for dipole interaction

The effect of the short-range modification is shown for CH+ in 

figure 3.1 The increase in the cross section falls smoothly from 

about 30$ at threshold to 10$ at 2eV.

An interesting comparison may be made with the results of Ray 

and Barua (1975) for rotational excitation of by electron impact.
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They have used time-dependent perturbation theory with the long- 

range potential given by (1 .2) and (1 .3) with an additional 

polarisability term. Their short-range potential is given by

where o(.' is the non-spherical part of the polarisability and r is

In figure 3.2, we present a comparison for the 0+1 transition

between our results from (2.9), their results, and our modified

result (3.5a) for the dipolar contribution. The agreement between

their results and FOTDPT at low energies shows that the modified

potential (3.9) yields small probabilities for close collisions.

Since they use a straight-line trajectory inside the core, comparison

with the case of neutral molecules suggests that this straight-line

part will lead to higher probabilities, thus enhancing the cross

section, as shown in figure 3.2. At higher energies, the effect

of the straight-line trajectory is less marked and their use of a

weaker short-range interaction (3.9) leads to smaller cross sections.

Again, the effect of the modified probability (3.U) is to increase

the cross section above the pure dipole value, in this case more

than doubling the cross section at threshold.

Since <Ti0 (JK*J'K;Ei) depends mainly on the value of the

dipole moment, for small dipole moments, such as HD+ , the short- 
. sh . .range cross section g- becomes relatively more important. This

shis illustrated in table 3.1» where we compare the dipolar cr and

o
a cut-off parameter. They assume r =;o

CT.n for H_0+ (D = 0.22 ea ).• 0 3  o
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3.3 Results and discussion for quadrupolar interactions

As discussed in section 2.3, there is a singularity at b=0

in the quadrupolar transition probability. To avoid this, we have

obtained cross sections for the quadrupole interaction using (3.1 )

and (3.2) for close encounters and FOTDPT otherwise. The integration

over impact parameter has been done using Simpson's rule. Almost

all the contribution comes from small impact parameters and the

effective upper limit of the integral is always less than 130 0.,̂
3while for the dipole case this limit was about 10 Q_ .o

Comparison with the quadrupolar Coulomb-Born results of Chu 

(1975) for the (5,2 -*■ 6,2) transition in H^0+ (an example with an 

intermediate K value) shows differences of less than 3% for 

0.1 eV < E^<l.l+eV. This suggests that our cut-off procedure is 

reasonable. Since the transition probabilities at the cut-off 

increased from 1.1+5 to 1.6l as the energy increased, it appears 

unlikely that the Coulomb-Born approximation satisfies unitarity 

for close collisions even at electron energies of several electron 

volts.

The arguments presented above for the effect of Coulomb 

focusing for close collisions should be equally valid for the 

quadrupolar interaction. Thus the use of the quadrupole interaction 

for these collisions is unreliable. Since any cross section 

derived using approximations similar to (3.3) and (3.1+) would be 

dominated by the assumed short-range contribution, we have not 

thought it worth-while to make such a calculation. However, any 

cross section derived using a first-order perturbation theory and 

the quadrupole interaction is likely to exceed the true cross section 

considerably.
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3.1* Conclusions

For electron-polar-molecular-ion collisions, we have used an 

impact-parameter method to investigate the reliability of the usual 

approximation of combining the Coulomb-Born approximation with the 

dipole and quadrupole anisotropic potentials. We find that for a 

dipole potential, this method underestimates the cross section, 

particularly for weak dipoles. A modified expression for the 

cross section has been presented. By contrast, for collisions of 

electrons with neutral polar molecules, the use of the Born 

approximation and the dipole potential is more reliable, overestimating 

the cross section for large dipole moments (Dickinson and Richards 

1975). In collisions where the long-range interaction is the 

quadrupole, the full short-range interaction must be included to 

obtain reliable results.

Clearly there is a need for an accurate calculation including 

the detailed electronic structure of the target, similar to those 

already performed for electron scattering by H^, and CO 

(Temkin 1976).
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Table 3.1: Rotational-excitation cross section of H^0+ by electron 

impact for the (5,0 ->6,0) transition.

Q - C S , 0 - > 6 , 0 )

E.(eV) Equation Equation
(3.7) (3.8)

0. 1 89 19
0.2 A5 10.4
0. A 23 6
0.6 16 4.4
0.8 12 3.6
1 . 0 10 3
1 . 2 8.4 2.6
l.A 7.4 2.3
1 .6 6.6 2. 1
1 .8 6 1.9
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CAPTIONS TO FIGURES 3.1 - 3.2

Figure 3.1: Graph of E^CT(0-*1) for CH plotted against energy.

Curve A shows the pure dipole potential result, equation 

(2.27) and curve B shows the modified results (3.5a)

Figure 3.2: Graph of E^CTiO-»!) for HD plotted against energy.

Curve A shows the pure dipole results (2.27), curve 

B shows the results of Ray and Barua (1975) and curve 

C shows the modified results (3.5a).
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CHAPTER U

DYNAMICS OF THE COLLISION

^•1 The Strong-Coupling Correspondence Principle (SCCP)

Consider a collision whose classical model is described in

terms of the action-angle variables (Landau and Lifshitz I960, pl57).

I=(t1 >t2 >--- >Tn ) and 9=(0^,02,...,9^) respectively. The SCCP

transition amplitude Sfn^h1 ) between two states n=(n^,ng, • • • ,nn) and

n's(n',n’ ...,n') is given by Clark et.al. (1977):
± d n i f771'

5C^,n') = i ? V ) NJ ¿ e  e x p [ t [  e ■ C n - n ’) _  AC©)]} , (i*.i)

where A(0) is (l/Ii) times the first term of the classical 

perturbation expansion of the change of the action of the system, 

given by
Afe'* = J r  U t  \ T (  L ,  ®  +  ; b ) ,

(k.2)
fyCe)  f i t  V C( L ,  l + ¥ Ct ; t )  >

with jW^,... ,W^) the fundamental frequency vector of the

system, and VC(T_,9̂  + WCt;t) the interaction potential between the 

partners of the collision. To obtain approximately the quantal 

energy levels the system is quantized using the Bohr-Sommerfeld 

quant i s at i on rul e .

When the potential is weak we can approximate

exp [-¿A(2)J = I Ac©) t (ij.3)
obtaining ,2tr

(k.k)

which is the first-order correspondence principle (FOCP) (Percival

and Richards 1970). In the next section, we describe the parameters 

of the collision between two linear molecules as required by the 

SCCP to obtain the rotationally inelastic transition amplitude.
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*4.2 Description of the collision

The process we study is that of two linear molecules 

(l and 2 respectively), in initial quantum states given by the 

action variables and T^, which collide and change their quantum 

state to and T^ respectively. The usual rigid-rotor model is 

assumed, and the action variables T^(i=l,2) describe the rotational 

motion of isolated rotors.

The configuration of the system is classically described 

relative to an inertial coordinate system OXYZ and we consider the 

relative motion of the two rotors as indicated in figure h.l. 

Following Dickinson and Richards (197*0 we take a coordinate system 

fixed to the i-th rotor as shown in figure *4.2. The 

rotational angular momentum vector, , is taken perpendicular to

the CL \ \  plane and the molecular axis is along the CL ̂  axis so

that the polar angles of the rotor in the CL M A  system are
® i  =  , f t =  v / z  ,

The Euler angles oC- /3: , 2T (Edmonds 1960,p7) describe the 1 ) ^
orientation of the i-th rotor in the OXYZ frame as follows:

is the aximuthal angle of the rotational angular momentum 

vector J;. , of the rotor in the OXY plane 

(3̂  is the angle between J;, and the quantization axis OZ.

- ^  is the angle of rotation of the rotor given by

£  a ; W t  s  3 / l t # (It.5)

where t  is a time, is the frequency of rotation of the rotor,

= |Ji| > and 1^ the rotor's moment of inertia. Then the action- 

angle variables which describe the rotational motion of our system

are
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Action variables

= rotational angular 
momentum of the molecule 1

J^cos /3j = Z-component of J ,

Angle variables

ht + ¡r

1 .

J2 = rotational angular momentum 
of the molecule 2,

J^cos/^ = Z-component of J^, oi-̂

The Jv are quantized as (Dickinson and Richards 197I+)

i   ̂  ̂ Cj. + 'A) , (U.6)
where j- are the rotational quantum numbers. The frequency of 

rotation is then

Wi = * C j. + Vx )/l. . (U.T)

U.3 The interaction potential

For two molecules in a X  electronic state the long-range 

electrostatic potential is expressed, in a space-fixed system, by 

an expansion in a triple series of spherical harmonics as follows 

(Gray 1968)

Xf j ~ 0 Mi ~ "Xf

x ( v -  ] , (lt 8)

with

y c ß , , n , n ) - y ^ y . ^ y  <■»)

X lx ~ ;

(U.9)



- 37
and

M  W  ( g ^  + O  ! ~\',z Q.> a ,Ll
C a v ) J  ( * V 0 ! r ^ '

where R = (R,fl) is the vector joining the centre of masses G^ and G2 

of the molecules, O.- (&,V) is the orientations of R, Jl^ = ( ®c , Vi )

is the orientation of the i-th rotor, ( X, jkA, Xx Xx X lX ju,x )

is a Clebsch-Gordan coefficient (Edmonds i960,p.37), and the restriction 

A,x - A| + X x means that (1+.8) is valid when the two molecular charge 

clouds do not overlap significantly. The Q?^ are the scalar magnitudes 

of the multipole moments of order X  ̂  for an axially symmetric charge 

distribution, and are given by

Physically V(R, ,.Q^) is symmetric under a coordinate inversion

a coordinate interchange R^jR^R'^RgjR^^R.

The short-range potential can also be expressed by an expansion 

in a triple series of spherical harmonics (Bhattacharyya et.al., 1 977) 

and then the whole interaction potential is obtained from (1*.8) on just 

replacing Cx,Xx (R) by

where C (R) is the short-range contribution.

Since ^  obtained from OXYZ by the rotation ( 0,^ / 3 )

in the notation of Wolf (1969), we expand the spherical harmonics in 

(b.8) as (Wolf 1969, eq.8)

Glk . = Z ___  e r Xl (J{ (cos 9C)

— 1 ’̂ 2 1 ’ 2 ’̂ -i beine the internuclear vector of the i-th molecule. 

For two identical molecules VfRjn^jflg) is symmetric with respect to

system has

(it.11)

been written explicitly, and



of a finite rotation (Edmonds i960, p55). Replacing (1+ .11) in 

(U.8) we obtain the potential in terms of the action-angle variables 

and relative coordinates as
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T

where XI. -  (©; ; (i{ .

We present calculations on HF-HF and HC1-HC1 collisions.

To compare with previous alternative approximations (DePristo and 

Alexander 1977, Bhattacharyya et.al. 1977 respectively) we use the 

same potential surfaces as these authors:

HF-HF intermolecular potential

This potential is Alexander and DePristo's fit (1976) to 

the "ab initio" points of larkony et.al. (197*0. In this work only 

the first two terms corresponding to the spherically symmetric part 

Co q (R), and the first anisotropic interaction C^(R) are retained. 

They are given by (De Pristo and Alexander 1977)

where the energy has been expressed in cm and the distance in aQ .

The third term in (U .13b) corresponds to the asymptotic dipole-dipole 

form C^iR), obtained from (^.10) using a dipole moment value D=1.82 Debye.

1-83,1 x_106 (u.13b)
R3

( . 13a )

-1
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HC1-HC1 intermolecular potential

This potential was determined, by Bhattacharyya et.al, (1977). 
•SR.

The C. ^  (R) terms were obtained assuming a repulsive central force 

acting between different pairs of atoms in the molecules (Takayanagi 

1951*). The long-range spherically symmetric part c0Q(R) was

assumed to he

r  (o\ -- L cLjp Z«. D~; 3qC Gj- 
oo q <- o 8 ’

(h.ih)

where the first two terms correspond to the dipole-dipole dispersion

and induction interactions respectively, and the third to the

dipole-quadrupole interaction (Hirschfelder et.al. 1966); oC is the

average polarizability, D and Q the dipole and quadrupole moments
(6 )respectively, and is given approximately by (Hirschfelder

et.al. 1966)

Only the first two terms of (U.lU) are used in this work.

Again only the first two terms Cq o (R) and C^iR) of the 

potential are retained. Using the same units as for HF-HF they 

can be written as

C (R) = (6.108 x 106 - 5.259 x 106/R)exp(-2.06R)
00

+ (5.571 X 10T - It. 396 X 107/R)exp(-1.99R)
J

+ (5.202 x 10T - 2.961» x 105/R)exp(-1.92R) - 3 '63^  'X-— -  (**.15a)

C (B) = -(8.8105 x 10T + It.277 x 107/R)exp(-2.06R)

+ (U.0U3 x 107 + 2.032 x 107/R)exp(-1.99R)

- (It.628 x 106 + 2.It 10 x 106/R)exp(-1.92R) - 6 ’81^  x- —  (It.15b)

where the exponentials in both equations correspond to the 

short-range overlap interaction. The fourth term in (It.15b) 

corresponds to the asymptotic dipole-dipole term C-q (R) ior 

a dipole moment value D*l.ll Debye.
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U.U The relative motion

As seen in sections U.l and b.2 the SCCP considers the 

dynamics of the system described by classical mechanics. We assume 

that the relative motion is on a classical trajectory determined by 

the spherical part of the potential C (R). The energy E, on the 

trayectory, is taken to be

initial (final) relative speed. Then the relative motion is on a 

plane. We show below that a suitable choice of axis relative to 

this plane can lead to further useful approximations in the calculation.

(k.1 6)

where yU, is the reduced mass of the system, and ( Vf_) is the
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CAPTIONS TO FIGURES 4.1 - 4.2

Figure 4.1; Inertial coordinate system OXYZ where the relative motion 

of the rotors is described. and are the centre

of mass of rotor 1 and rotor 2, respectively, r^ and 

are their corresponding position vectors, and R is 

the relative position vector.

Figure 4.2: Euler angles oi: /3.' and Ji as used in this work.

AB is the i-th rotor and Oi its centre of mass. The 

system S, rotates fixed to the rotor respect

to the inertial system CKXYZ. The angles given the 

orientation of the rotor in (£[• 5 • ̂  are = =
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CHAPTER 5

GENERAL PROPERTIES OF THE TRANSITION PROBABILITY

5-1 The transition probability

In terms of the variables defined in sections k.l and 1*.2 

the transition amplitude S( , between two rotational

states |j1m1j2m 2 >  and | > is

ÀÏ
,ZV

cUf d£ cl*

•+ oil -

e*pi>{4J,^+4J4 £

ACÂ,**,)}], (5.1)

where Aj.=j. - j .’ and Am.=m. - ml are the changes in the rotationali l l  i l l
quantum number and the proyection quantum numbers of the molecule 

respectively. In this case the energy levels of the target and 

incident molecule are degenerate and we are concerned, in this work, 

in calculating the transition probability between levels(j^,j2) 

rather than states. We therefore require the degeneracy-averaged 

probability * jJjgiË) given by

Replacing the sum (5.2) by a sum over m^,m2 ,A m  andAm,,, and using 

the relations (Clark et.al. 1977)

d <rnr-c

we obtain

rms-j
d(.Cos(3)

~ Ibïï1

rW  r l V  r\

cltf. d.*; clCc osfi,)
11

dCco«/îa)|sCj^,j;j;)|l,
-l

V</fl«*-€
(-Wait

3  Cj,j, »j;jp ~ j 1d/t exp [*> l aj, ̂  + AJ» ̂  " A C-û. . -n*)} ].

(5.2)

(5.3)

(5.U)

o Jo

(5.5)



The sums over degenerate states have been replaced by two integrals 

over a microcanonical ensemble of target and projectile molecules.
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5*2 The change of the action

Substituting the potential (U.12) into (1*.2) we obtain

where

h  (• c. rRAtii / 7 ( 5 . 6)

■A,* > * »-* »  ^  ^

=  ( à ,^ , Aî/i/i / i |A!tA.a jAa )  Y  [
( 5. 7)

II § ► , A - ,<**)_, ( 5. 8)

and the relative coordinates have been written explicitly as functions 

of time. We consider the plane of the trajectory as the OXY plane, 

and take the incident velocity Vi in the direction of the OY axis. 

With this choice (5-6) becomes

A c s ,A ) * Z L  Z L  Z L  N w j n  (v - V x/a a V'J)X| i Xl yU, , V>< Ml I

V " ( w a ,0 0  £ f b )  ( 5 9 )

p  ^  ,00 M
= £  cltQjiR) Q x p i [ ( m +  ̂ « ^ ) t  “ O v ^ ' r f ’l , (5.1 0 )

E is given by (U.l6), b is the impact parameter and = ̂ C tT/4 ;0)t 

Following Dickinson and Richards (197*0 we define

t ’ct) =  +  */ *■  j
where X  is the deflection angle. Taking t=o at the classical 

distance of closest approach r0 , we have that | (-t) = -"f> (t), and 

since R (t) = R(-t) the integral (5.l0 can be written as

l)., U,t) - e v , (e»
^ lV A,̂ x 1̂, 5

(5.11)

(5.12)
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where roo

VU,0CE,b) =T dt W  1
The motion of both rotors is contained in the W^t terms. Each 

(E,b) determine a function R(t)=^?(t) ,~f (t)l which describes the 

relative motion in the field C (R). In this way the dynamical
. . * i Ifactors, which are contained in the V  integrals have

“i*nr> Mi-
been separated from the orientation dependent factors of the rotors,

which are contained in the functions. This simplification is

due to the use of classical perturbation theory in evaluating

A(f2 ,n_), and it is independent of the form of C (R) (Clark et.al. i d  oo
1977).

Substituting (5.12) in (5-9) we obtain

* a -o

where we have made the transformations (Dickinson and Richards 

197*0 + Va. — 1> t. , + X/z -> a(i , for only the average

over these variables is required in evaluating (5.*0> The 

classical changes AjC and AVnc are obtained from (5.1*0 using 

(Clark et.al. 1977).

~ 2 A
Ji. 9ii

a  /vv^ -  _  2 B.
Qo(i

where /vnf a J. CoS 0i .

It is important, as we will see below, to point out that with 

our choice of the plane of the classical trajectory we have

AjL = X = -  Annaf- - Ahry^

(5.13)

(5.1*0

(5.15)

(5.16)
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where A is the orbital angular momentum quantum number of the system.

5-3 The real form of the change of the action

To evaluate (5.1) it proves convenient to express 

in real form. Using the symmetry properties of the Clebsch-Gordan 

coefficients, the spherical harmonics and the rotation matrices we 

find that

so that the sums over jti-, in (5-6) are written in the form

f _ 1 L  c . “ * r f  ■ =
M r ' x. Wi ^  ^

Xa.

aR«z_z_Lc
M s0

U ,

m xi |vixt 1 D
' M M  1 T  D* * M  V  y »

where

~  ̂ Ai ^  Ax A, ̂ oi), + A<Ax* A, Ax 
A,Aî AiAt A, A, Ax ~ ôfi, A, Ax 

A*AxAK " A  Ax A  + >/z A>A Ax At ?

^Mi^-   ̂ A< Ax A +A< Ax+A, ̂  ’
= 1 ■ i *  ’ 4 * "  < £ * + A  A x + iw, A f A xA l ,

~ * Az At f ~ ̂ ~ A,~ A + A> A, >

1 ~ A, > ~ 1 - A, *

(5.1 7 )

(5 .18 )
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substituting (5.18 ) in (5 .6) we obtain
Ai At

A m  ^  a , ̂  i C ;

. w  k : s c  C  +(-,r' s c  s c  C ,
tc-o^R 5)a0 f)<w ifw,° w *  ,<*<*■> \

^  W ( } ■ %  ^  V w t )

* «.(<-'>”  v ^ s a c u ,  
b ; , C ' « c c

* r f e , . O ; . C C 0 ) ] ,

where ~  ^ ^ , &  , < 0  and

is given by (5.10). Choosing again the OXY plaine as the plane 

of the trajectory we can write the change of the action in real 

form as

A ( s ,a ) = ^ Z _ l L Z _  [n..n,j I C 'u
\ , \ x Mnt'O  Mi, Ox*0 L V. Vt L k-'M> Mt

* (  B,M M  O *0 C O s U ^ M ^ M w O

+  C" ^ ^ , / v x  C ^ k  w . w o

+ (" Bt;, cij,£(/M 4**Ĉ  COS O', /, - t M  +A ̂ )

f  C' ̂  4*/-+t ̂  C°S (-^ ^  4A * i  +^ ^ ) )

+ C .  e u  4 >  C « C “ W «

(5.19 )

+
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+  C'° Z C0S M + - ^ * 0

+ (/3,) ° C iL ^  coŝ +̂ ^-^)
+ ĉ  <** W>U+M-*«o)]]

J U;) r \where the rotation matrix CLj ^A/^') is defined by Edmonds (i960, 

p55) and \/ is given by (5.13). The general analysis'I ''I p/*i
cannot be taken further. We have now to determine Aifi^fi^) for 

particular interactions (R), and then evaluate the transition

amplitude (5*5). We concentrate in this work on the dipole-dipole 

interaction ( l), and we shall show in the next chapter that

in this case we can express (5*5) analytically.

5.^ The detailed-balance relation

To evaluate the transition amplitude (5-5) we have to employ 

a suitable frequency W^ of the i-th rotor. Following Dickinson and 

Richards (197*0 we define W^ as the arithmetic mean of the initial 

and final values, and \fJi ( )  respectively. With this

definition we have

Wi =*[i- + ĵc + |)A]/l- .

Using the translational energy given by (U.16) and the above rotor 

frequency the probability (5*M is the same for both forward and 

backward transitions, and we have to correct it in order to obtain a 

probability satisfying the detailed-balance relation

E * ( 2J , + , X U +I)  P c j ^ - U ' j *  ; b ;  e )  -  E i ( * j 1,+0 ( a £ + i )  P o X - j j ^ )

where E is the total energy and E^(E^) is the initial (final) 

translational energy. We define the corrected probability as

(5 .20)

5 .21)

5 . 2 2 )
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where

c u y + o u j i - H )
Cajlti)(2jl+ 0

J.JkJ.'J.’) W Q j t - j X ;  E , (5.23)

'4
(5.2b)

For large (j^jg) andAji« j i (i=l,2) the correction (5.2*0 is 

approximately 1. The cross section is obtained

integrating (5.23) over all impact parameters

o U u ->j:j x ) P(«Mi *J| J*. ; b ; E ) t  c it
•Jo (5.25)

5•5 The first-order transition probability

We have seen in section 5-3 that to evaluate the transition 

amplitude (5.5) we have to consider particular interactions. In 

evaluating the FOCP however we can obtain a closed form for the 

transition amplitude and probability for the general potential.

We require the degeneracy-averaged FOCP transition probability

rm riir r1f 0 yO | I
P  b;E) = (Ei / e .̂) C ( i , i J / J 0  urr1 1 d-d, d<0 d (cosfi,)

"'rt •'rt yJ.

' j  cl (cos |Sa) | -5) (jijj. , J, j't ,) | (5.26)

5 rO
Cj, ji , j,’jt' ) is given by

_  r vr
SKu,k,u) - -4-V r ¿ « ¡ s  A c A ,-5 ,)«p [> o .» r* * ii] , (5.27)

•«/(j

where we have put s-=Aj. . Substituting (5.1*0 in (5.27) we1 l*
obtain

cjiJt/j/j») -  -jJE... Z L  ¿1_N̂j, u)t
Mirm\

( 5 .28)
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FOThe calculation of P ( ;b ;E) yields

Comparison of the FOCP with other first-order models

It is interesting for the understanding of the main features 

of the FOCP to compare (5-29) with other similar models. Consider 

first the first-order time-dependent perturbation theory (FOTDPT).

The FOTDPT formulae for the transition probability has been 

derived previously in the literature (Cross and Gordon 1966, Rabitz 

and Gordon 1970). Considering the relative motion as a linear 

trajectory contained in the OXZ plane they obtained a general expression 

for the probability in terms of modified Bessel functions, Kj(Z) 

(Abramowitz and Stegun 1965,p37*0 • To compare with our FOCP we 

rederived the FOTDPT equations considering the classical trajectory 

on the OXY pla^ne and determined by the Cq o (R) potential.
FOTDFor the FOTDPT transitions amplitude S (i—j>f) between

states | i) = | j1m1j2m2^ &nd | f)= | j|m|j^m^ we obtained

(i-2>f) between

where (!!!) is a 3-j symbol (Edmonds 1960,pl46),



- 52 -

given by

V ‘ S ’
P  r -j ifKft -iA*.+WiO]
C , , M  e  ¿ t■% At

with

~ a ( EJ/ Hj( -  E j; Eji ) = A E J-A  ,

(5.31)

(5.32)

where Ej^ is the rotational energy of the i-th rotor. The degeneracy 

averaged transition probability is

P f " W )  O o ) t o  C o 7
A, /

X .  i (5 33)

which is similar to (5.29). Using the quantal relation for the

rotational energy E.=Bj(j+l), in (5.32) we have that for any 
J

transition st +

%  — s, W| + sA vVj, (5.31+)

where W. (i=l,2) is given by (5.21);

then V, . (E,b) = V ^ 11' (E,b). Using the expansion

(Dickinson and Richards 1971+)

. N is j1 A V  _ W  M »  r. . _5_____ *(*+»)- Zs*
U j+ l)V o  0 0 /  ~ 2A+1 I 'a s I 1 cij+i) ¿ C a j  + I)A + (5.35)

and assuming that and ĵ! are large compared with ̂  we obtain 

- P OT P ■ k j  ̂  ^

P  (U->j/4; t) "Z _  (2A,+i)(U1+/) Z L  I /A,A,> 1 , ^ 1;
A/\ JU,̂ !

(5.36)
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which, except for the term ( E ^ E ^ - ^  (j jg j!j£), is identical 

with (5.29). For a linear trajectory the V. (*'*■) integrals can he 

expressed in terms of modified Bessel functions recovering the 

usual Rabitz and Gordon result (1970). It has been shown (Cross 

and Gordon 1966) that, for the dipole-dipole interaction, the 

straight-line (SL) trajectory limit of FOTDPT at relative initial 

translational energy E . » A E - gives the same cross section as the 

time-independent first-order Born approximation (8 A).

Another first-order limit which has been applied to the

problem studied here is the distorted-wave Born approximation

(DWBA). Davidson (1962) has derived the DWBA expression for the

rotational inelastic cross-section and used it for coll:*-sions•

Following Miller and Smith (1978) we can write the semiclassical

DWBA transition amplitude, S^(n,n') between two states n=(n,,n_,...,n )---  -  1 - 2 n
and n'^in^jn^,...,n^) as

S  (h,n’) - - ^ y T  cl® e. [ I - AC©) J ?
-Jo

where

$ -   ̂ itm  C- KR + \ c(R' [ v  { E - V0 (r)J] 1)
"Vo ’

(5.37)

(5.38)

with k the wave number corresponding to a translational energy
2 2E=n k /2yU,/A is the reduced mass of the system and Vq (R) the spherical 

potential. Apart from the phases $  ( $’), (5.37) is identical to 

(1+.1+) and when applied to rotor-rotor collision it yields (5.29).

In general the first-order models do not satisfy unitarity 

for close collisions, and for small impact parameters some kind of 

unitarization is required. Our numerical results, presented in 

Chapter 7, show that with the interactions of interest here the 

SCCP converges into the FOCP only at very small values of the 

probability.
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5.7 General remarks

The accuracy of the model presented here is dependent on the 

validity of classical perturbation theory (CPT) to describe the 

coupling between the rotors and the relative motion. We have not 

attempted here to investigate the validity of CPT, as we expect 

that the general conclusions of Cohen and Marcus (1970) for atom- 

rotor collisions are valid for rotor-rotor collision. Thus the 

change of the action as given by (5*20) is expected to be

valid within 10%, tending to be better for large incident energies, 

large rotational energies, and for rotors with large moment of 

inertia. A higher accuracy can be expected for the probabilities 

(5.23) and (5.29) and the cross section (5-25) as they are averages 

over the orientation and impact parameter respectively; it has 

been argued by Dickinson and Richards (1976) and Clark et.al. (1977) 

that CPT could be more accurate in predicting averaged quantities 

rather than individual orbits.
1 / (AiO

Central to CPT are the trajectory integrals V. , 

defined by (5.12). Since for a given orientation of the system 

they determine the value of the change of the action Aifl^jfig), 

their absolute value can be considered as a measure of the strength 

of the collision. It is interesting at this point to introduce the 

relation (Dickinson and Richards 197*0

ctR Vty(k') CA(Xtt)W ; (lc)
q> * ( k k f *

r«

it
+sxv<4.)t -(M.+^OtCt)]

e
-00 ?

( 5 . 39)
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where Wj(k) is the wave function for a particle of orbital angular

is the classical orbit followed by the particle in the same potential. 

The prime (') indicates final state.

From (5.39) and (5.29) we can see that the only V
»i M i

integrals appearing in the FOCP result are those associated with a net

equal in absolute value to the translational-rotational (T-R) energy 

transfer AE=Ef-E., during the collision. This is equivalent to 

the first-order quantal description where the only matrix element 

determining the transition between two states, is the one coupling 

those states.

the action (5*20) do not necessarily correspond toAE.=AE. Although 

complex we interpret this as the way in which the SCCP considers the 

effect of the transitions between intermediates channels, and then 

\ - Aj; > Mi would indicate the way in which these transitions

information about the form in which the couplings between intermediate 

levels take place. This will be clearly seen in Chapter 8, where 

we present the correspondence principle version of some quantal 

decoupling schemes ; in all the cases the decoupling takes the form

the effects of the variation of these parameters is not simple 

as there are no analytic approximations uniform in all the four 

parameters. Dickinson and Richards (1976, 1977, 1978) have

momentum tl and wave number k in the potential

change in the rotational energy of the molecules A E.=fe( s-, w , + s w )J 2 2'lwl &2 2

We point out one difference between the FOCP and the SCCP.

In the latter the V . , 1 integrals appearing in the change of
"1 Ji M 1M*.

are most likely to occur. So, the V integrals contain

of the conditions on the V ’ s
''n'tM'Mi

The value of the V>>, *  Mi Mi.
integrals depends on the

four parameters, Ë, b, and W = i), W, To give
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extensively studied these trajectory integrals, and from these works 

we can summarize the general properties:

A) In general the value of v / f  depends strongly on the

value of the potential (R) at the distance of closest approach

rQ . So, as a function of the impact parameter it varies slowly

for b £Rn , where Pm is the position of the minimum, of Cq o (R); for

larger values of b it converges rapidly to zero. If there is

orbiting and bQ is the impact parameter at which this

orbiting occurs, the absolute value of V falls sharply
M> A i

when b becomes larger than b . This is because the only R's 

classically accessible are those larger than or equal to the largest 

of the three turning points occuring at these b's.

B) The absolute value of is a decreasing function ofv, H i M i
the frequency W  = So, for a given E and b, the largest

I \J I is associated with a resonant transition
0, >>i Mi Hr

( -0) W; ±0 l,l). For this resonant integral the integrand

is dominated by C ̂  ^ (R) since cos is relatively slowly

varying; for W^O but small the behaviour is similar to the W=0 case. 

When W is large the oscillations of the cosine term are dominant and 

for large impact parameters the integral converges rapidly to zero.

C) The \J integral is a slowly varying function of E.
Vivz^ iMi.

It will be shown in Chapter 7 that the behaviour of the transition 

probability P(j^jg^jjjgibjE) is largely determined by the above 

properties of the integrals.
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CHAPTER 6

THE CORRESPONDENCE PRINCIPLE EQUATIONS FOR THE 
DIPOLE-DIPOLE INTERACTION

6.1 The dipole-dipole change of the action

Consider the dipole-dipole interaction (A, = A^= l) as the 

only anisotropic term of the potential (h . 12)- In this case (5.lh)

becomes

' C O

( 6 .1 )

and its real form is

A(fi,(nf [-sinAvnfr {ifi'cos * cosft-iflj

f  tos(t,+tn) Cos (flf,+cia) { \(m cosZ(l3,/z)cosl(fa/z)t \/( (sin?(ß,/z)sihY/Vi)} 

~ b tn U + i- , ) sin^+tfa) { l c o s Y 3' /*) cosY^A)-  l / ( ^ ¡ n  (ß>Ji)s in*(fa /2)} 

~ Cos(î +£) cos(“Wa) { /   ̂sin (/3i/z)cos (&/z) + cos(ß,/z)s,\* [ßi/z)}

+ 6in.(4A)sl̂ (̂ '+̂ ) { (ßJl)cosl(<fyi)- y l\os(A\/z) anY )̂]

~ Jcos(!l)+^ ) cos(0<'A ) |  \ /   ̂ cosY/Vi)i \ t x ( ß i/o )  sin A /s )co s ^ t/ i) }

+3 sih(/,+^)sm cosl (0'A) s m (ß i/Z ) -  \ /   ̂s ir f fa /z )  c o s ( ß t / i ) \

+ 3 cosl^-^,)ws(c(r0ii)[ y.,!_!cos*((*1/2)coi(ßi/z) +• y  ^st>\(ß,/z)ßin (ft/z)} 

s i n S i n Y )((c o i^ i/t)  cos(fit/z)~~y^ti (6.2)
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We notice that the v / Y  integrals appearing in A(55, havev/vi 1 2
11)̂ | =1 and I*' =0>1. As discussed in section (5.7) this would 

correspond to intermediate transitions with |AjJ =1 and |Am J  =0,1,

i.e. dipole-dipole first-order transitions. So, CPT predicts that 

the coupling between two given states occur through successive 

first-order couplings between intermediate channels.

It proves convenient in evaluating the transitions amplitude 

S(j j g 2  ̂ exPress A(R_ in terms of the variables

~  ~  j

oC+ - 0i, + cCz ■ 0i_ = c C ' - ° C t ' (6.3)

Using the relation

W  = W  = V W)
'Y ,U i i / + l  V \),Jl 0O  -»,-¿>*00 7

the change of the action is written as

( 6.10

A  ( * V ,  a i )  =  w r  " 3  »»t &  6ltl fa { ^ 00cos £  +  t o cos^ l

+ c o s t + cos d t { t cos (ft/z) cosY^A)f l/./w sinl (& k ) sin z( f a / z )}

~ 6 in.<f+ sin  oi+ Cos' (P '/i) cos \ (3t/z) - y i t i ■ sin (fl,A) s in ( ih / z ) \

-  C o st coso (L Sir?-(&  A ) co s(tVi) + \/() oos(fl'/z) sin* (/3*/2)]

+ sintf; sin <<+
t i n

s ir i( fr /z ) COsY<V0 " \/v Mil
COSl (/3,/z) sih (%/«)]

” 5- cosVj. cos«(■ ^100 | cosl(Pi/z) sinl(/3t/a) + ̂ inl(& /z) co$l (fa/z) }

sinVj. siVio('■ V„.o | cos* (/Vi) sin (fa h )  ~ sin (/Vi) c °s
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+  3 co^ -  cosat_ l ( l00 [c o s* ( A A )  COS>aA) + S l V p A )  S/nY/V*)} 

t 3  Sia£ sin«:_ l/_|0o | cos* P'A) t o s z ( f i i/ d )  - sia (&A) sin (fo/z)J j  ;

(6.5)

reducing the number of V ^  to six, and where we have put fi+. =

( , 3̂;/c(+ )> = (*C / {3\. , °L . ) • Here, and henceforth we drop the

superscript 2.

6.2 The transition amplitude 

In eq. (6.5) we define

Rcos <6 = cos** ( Vlni C0SZ(f3,/z) COSZ(l3i/z) + H ¿¿(/3,/z)sin (ft/i)),

KsiVi € =  s\n  d + { 1/|(( c o s \ ^ / z )  co<?(Hz/z) - ^  f u s i t i  (/3, / i ^

R'cosC1 - Co 5 o£+ j VNH_stn(fr/z) cos(fiifz) + \JH It cos1 (h/z) sirifa/zĵ

R siti €1 ~ sin d + [ y ^ ^ / z )  cjos'((ìx/z) -  l/ (( co&x(fa/z) sin* (jii/ì)\}

P cos f = J- \/i00 { coŝ 'A) 5ÌaY/3*A) + sinz(0/z) COSCoU_
+ sin /3( sin /3t j

P*"i? =Ì\(I00̂ <  { cos? (A A) sin* (ffySi) - siri (fii/z) cosl({3z/z) } ̂  

P - ? '4 \ U  cosCfi'/z) cospiVa) cos ̂  + sin*(fli/z) sin [h/i) tosci_
-  sin fa sia/3j.

P 5ÌriS> =  ̂Vf.100 siMoi. ( ws (M) cosl(/3*A) - Sia2 (A'A) s/rtlC/3tA)ĵ

(6 .6 )



in term of* which the change of the action is expressed as

A  , -^l) = sin ( Y + +  <£+) + R _  $ in ( £  + £.)  ̂ (6-7)

where
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R + = 3 Z T T  (an-) { ( R cos € - p cos'?)* + (P sinS ~ R. s it\ € )l J  * (6.8a)

R_ _ 32.ir Gir) { (P  cosS' -  R‘ecus€') + (R'sin.£’+Pc<9sS')i j * (6.8b)

<£* =■ w i R " 5 6 - p “ s«
I P sinS -  R sin€

) (6.8c)

=. t n r { ' P’cosS’-R'cose' 
R1 sin €. + p' sin1?'

• (6.8d)

Replacing (6.7) in (5*5) and changing the integration variables 

to ^  and we obtain for the transition amplitude

sin (£+<£+)]

ft £  - R sin & -mT)}
' > (6.9)

where

n + - &■ + S2
Z ( 6 . 1 0 )

For n+(n_) half integral we have S ( j j p B0. For n+(n_) integer 

we use the integral representation of the Bessel function (Abramowitz 

and Stegun 196 5 , p.360) obtaining

(6 .11)
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Because of the integer condition for (6.10) we have the selection 

rules:

if s^ odd, then s^ odd,

if s^ even, then s^ even or zero or vice versa.

These selection rules are the same as those in the quantum treatment 

of this problem. It is interesting to note that the above selection 

rules are independent of whether or not the colliding molecules are 

identical.

The transition probability is

p(j,jt t;E) (j.JtJi’j*) ¿j*

.sir

cLfli. ddi

d lf o s f i')  cl (cos f a )  J  ("R^ T 1 ( R_)
'-'hi- ' )

'Cl

where the average on the **■ -S and fi 's must be performed numerically.

We can see that the phases (f+ and <f_ play no role in determining

the probability. In contrast to the atom-homonuclear rotor case

(Dickinson and Richards 197*+) the integrand in (6.12) has no symmetry

property which permits us to simplify the four-dimensional integral;

nevertheless its complexity is substantially reduced for /3- - O ot fl'j

in which case I S ( ^  independent of oĈ  . This is because

for /3C =0 or Tf the angular momentum vector of the ith rotor is

perpendicular to the OXY plane (see section *+.2).

For a given orientation of the rotors the variations of

R and R depend only on the variations of the V , integrals.

It is interesting to note that the frequencies lH , in the ’syiyi r'r-x.
determining R+ and R_ are W+ = and W_ = W^-W^ respectively.

As seen in section (5-7) V . , ,, . decreases as W increases, and
u> A*1 A*«.

then we have that in general, for a given E and b , R+<R_•

(6.11a)

(6 .12)

This



- 62 -

difference in the values of R+ and R_ explains some features of the 

first-order allowed transitions which will he discussed in the next 

section.

6.3 The first-order result

From (5.29) we obtain for the dipole-dipole FOCP probability

P CU.-u'Ji; M) ‘  (e;/e()'/i tftoi'J;)T  H i ,

where the N (3. give the selection rule | S^| = | | =1. Expanding

the s\im in yH 's we obtain

P (jà - > J X  : P £) " (fr/O * ^ üâj,'jO102.¥ ir*

which is proportional to the FOTDPT result, the proportionality 

constant K, being

K =
%

wui mua l
Co

J,
o i y 1 ( J'*

O ) \0 0 k

with [ j.] = (2ji+l) .

6.3.1 The straight-line limit

Among the semi-classical models, the straight-line (SL) 

has been the most widely used approximation to the relative motion 

(Cross and Gordon 1966, Rabitz and Gordon 1970a, 1970b, Mehrotra and

(6.13)

(6.1U)
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Boggs 1975» Hashi et.al., 1978, are some examples in dipole-dipole 

collision). We present here the results of the SL approximation 

for the dipole-dipole FOCP as an example where the probability and 

the cross-section can be expressed analytically, providing a better 

understanding of some features of the long-range collisions.

For W= ^ 0  the integrals can be

expressed as (Dickinson and Richards 1977).

rotor, K^(Z) is a modified Bessel function (Abramowitz. and Stegun 

196 5, p.371*), iris the relative speed, and Z=Wb/o" is a measure of 

the adiabaticity of the collision; for Z<<1 the collision is sudden, 

while for Z » 1  it is adiabatic. Replacing (6.15) in (6.lU) and 

using recurrence relations for the K^Z) functions (Abramowitz and 

Stegun 1965, p.376) we obtain for the SL limit of the FOCP probability

(6.15a)

(6.15b)

1 /?where C= (U'ÏT'/5)(^0Tf/3) ' D^D^, Di the dipole moment of the i-th

where
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For a resonant transition (AE.EtiW=0,W.*0,i=l,2) the V , .
J i

integrals are

z c
'oooo % o' y1V (6.17a)

V =' oo 11 3 -t) iT bz (6.17b)

where we have put = V 00 u,u~ for the resonant integrals.
> ’

. . FOFor the SL limit of the resonant FOCP probability P we obtainSLR

Pslr CjlJx->4Jl ; b; E) = J- ( D/ttao)^ (’b)  ̂ /j'_ | = I J (6.18)

where we put D^sDg=D, since a resonant transition occur in a collision 

between identical molecules.

For small values of the impact parameter the FOCP probability

does not satisfy unitarity and modifications to enforce it are

necessary. Hence a cut-off b* is defined so that for b>b* the

first-order model is valid (see section 3.1). Once b* is defined

the contribution to the cross-section from the long-range region b>b* is

calculated using (3.5c), where b^ is replaced by b*. For the general

case of the probability (6.lit), the integral over impact parameters

must be performed numerically. However, for the SL limit the

integration is analytic, and we obtain for the non-resonant long-range 
FOFOCP cross section Q" OT SL

Jv; E) =(E*/Ef)/̂  C  (Lii'j'x) (o,/eaofCDi / e ^  (6.19 )T

f i r [ *  kwK,c*) *
and for the resonant cross-section FO

SLR

C  Ui.  - > U  ;*> *  i  fC d /«  • ( 6 . 2 0 )
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FOWe use b# so that P(b*)=P (b*), where P(b) is given by (6.12)

6.3.2. Convergence of the SCCP to the first-order result

Our numerical results presented in the next chapter, show tha- 

the SCCP converges into the FOCP at very low values of the probabilit; 

This slow convergence can be understood through the occurrence of the 

two different frequencies, W+ and W_, in the integrals,

which produce the inequality R+<R_, for any E and b. To see the 

physics implicit in this inequality we consider here two cases where 

| R+-R_ I becomes large. In what follows we consider a collision 

between two identical molecules, and a range of impact parameters 

for which the dominant term of the anisotropic potential is the 

asymptotic term C^iR), given by (U.10), so that R+ and R_ are 

monotonic decreasing functions of b.

A) The(j,j) (j+ljj+l) transition. In this case we have for

the integrand of (6.12)

Since the integrals determining R are resonant,

and so R_ decreases with b more slowly than R+ . Then there exists 

a large impact parameter b <b*, for which R+ becomes small enough

Stegun 1965, p.360), while R_ is still large. In this case we can 

write (6.21) as

(6 .21)

to make the small argument limit for J (R+ ) valid (Abramowitz and

( 6 .2 2 )



It is easy to show that the FOCP transition probability for this

transition can be obtained from (6.22) by applying the small argument

limit to J (R ) (lim J (R_)=l), and performing the average over the ° “ 0 -
cC1S and /3's . Since the actual limit is reached at b=b*, usually 

much larger than b , the value of the FOCP probability is too large 

in the region b <b<b* since | 30 C*)I ^ I . Clearly this 

overestimation arises because by making Jq (R_)=1 we are neglecting 

the resonant integrals V a0/*,/Jix , which may be significant even at

very large impact parameters.

B) The resonant (j^jg) -> (jg,^) transition, ■ /j — j | =1. In

this case we have

I J X )  J jV ) .

Again the V, , . u integrals determining R are resonant, and in

the region b <b<b* (6.23) becomes

I .

In contrast to (A) in this region the transition is determined only 

by the resonant integrals \ oojk, ^ . This is equivalent to the 

quantal description where at large impact parameters the matrix 

elements corresponding to non-resonant channels become negligible 

(Bhattacharyya et.al. 1977).

As in (A) to obtain the FOCP probability for this transition, 

we apply the small argument limit to in (6.21*), yielding

I S U j , ,j.j,)lî ' ,

and then we perform the average over orientations. As before in

66 -

(6.23)

( 6 .21*)

(6.25)



-  6 7  -

the region b <b<b* the value of the FOCP probability is overestimated. 

From comparison between (6.2b) and (6.25) it is clear that the 

overestimation is because in this region | R_l >2|j1(R )|, which indicates 

that the resonant trajectory integrals, Voo/m.,^ , are significant 

at large impact parameters.

It is clear that for the transitions discussed above the 

resonant trajectory integrals are dominant in determining the transition 

amplitude, S(j^jjjjj,), in the region b <b<b*. This dominance 

indicates that the SCCP treats the collisions as being sudden. In 

Chapter 7 (section 7.2) we present a numerical study of the adiabaticity 

parameter, Z=wt>/ vT" , which shows that, for the energies and transitions 

studied in this work HC1-HC1 and HF-HF collisions are adiabatic rather than 

sudden. This suggests that the slow convergence of the SCCP to the 

FOCP is due to the adiabatic nature of the collision. It is 

interesting to notice that large values of the V00^|yUl ’s indicates 

a large dipole-dipole coupling potential. Clearly the FOCP should 

be more accurate, in the region b <b<b*, for non-adiabatic collisions 

between molecules with a small anisotropy in the potential surface.

Although the two transitions discussed above are just special 

cases of the transitions (j^jg) -*■ (j^l.jg+l) and (j^jg) -*■ (jx+ 1,^+1) 

respectively the conclusions are expected to be general for every 

first-order allowed transitions with W_<<W+, provided they are not 

both sufficiently small for the sudden approximation to be valid.

6.!* Numerical Techniques

To calculate the cross-section at a given energy we have to 

evaluate the integral (5*25) of the transitions probability

over impact parameters, where the probability itself 

is the four-dimensional integral (6.12) of the modulus squared of 

the transition amplitude S(j^jgîjjjg)• The transition amplitude
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is obtained evaluating (6.11) for each R+ and R_ which, for each 

value of b, require the evaluation of the V , , ,, ,,

6.1+.1 Evaluation of the V., , „ „ .---------------------zi ¿Ax

The integrals ^  depend on the classical trajectory

followed by the incident molecule relative to the target. As seen 

in section k.k this is determined by the spherical part of the 

potential Coe (R). Taking the well depth of the potential E, and 

its position R^ as units of energy and length respectively we write 

the reduced variables as

i~ =. R/Rm , Ip - Is/R̂ v ; £ - E/e 3
(6.26)

Q>0 -  C J t  ? t  = z s t / a  } B z = £ / * - £ R m A J

in term of which the classical equations of motion are

where the reduced distance of closest approach Y0 , is the largest

root of the right-hand side of (6.27a). The integration of equations

(6.27) is carried out using an algorithm of fourth-order predictor-

corrector type based on the Adams-Bashforth predictor and Adams-Moulton

corrector (Hamming 1962, p.l9^)j Crane and Klopfenstein 1965)* To

start the procedure the routine employed requires that i-i'm (dr/ct?)#0
t -»o

This is obtained using the substitution 6  (A.P. Clark,

i '*  Ua/dt) *o .
t ->0

private communication), so that
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The are integrated using Clenshaw-Curtis

quadrature with reliable error estimates (O'Hara and Smith 1968).

The routine was checked by comparing the results at large impact 

parameters with those given by the SL limit (6.15). The agreement 

was within the expected accuracy.

To evaluate the modified Bessel functions in (6.15) we use 

polynomial approximations for and Kq (Abramowitz and Stegun 1965 ,

P-379), and then is obtained using recurrence relation (above 

referenc e , p .376).

6.1*.2 Evaluation of the transition amplitude

Given the /*,/jl%. the calculation of R+ and R_ for

specified values of °Ci and fti is straightforward.

To evaluate the Bessel functions of the first kind J^(x), 

we use polynomial approximations for J0 and (Abramowitz and Stegun 

1965 , pp-369 and 370), and then other orders are obtained using 

either recurrence relations or ascending series (above reference, 

pp.36l and 360 respectively) depending on I Xl being larger or 

smaller than l*)| respectively.

6.1*.3 Evaluation of the transition probability

The rapid evaluation of cross-sections using SCCP depends 

strongly on the efficient evaluation of the integral (6.12). 

Accordingly, most of the effort in the implementation of the computing 

program has been spent in doing this integration. We found that 

Clenshaw-Curtis quadratures reconcile speed and accuracy.

The integration overot's is carried out first making full use 

of the simplification for /3¿-0 oh 17 (see section 6.2). The 

integration over /3 's is performed on the variable cos /3( which gave
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a smoother integrand. Typically the number of points in each 

integrand gradually decreases from 33 in the inner integral to 5 or 

9 in the outer, to give results accurate to 1%. The accuracy of 

the integration was checked by doing the FOCP calculation numerically 

and comparing with the closed form results (6.13) for the full curved 

trajectory, and (6.l6) for the SL approximation.

6.U.U Evaluation of the cross-section

The evaluation of the integral (5.25) is performed using,

again, Clenshaw-Curtis quadratures. The upper limit of the integration

was taken at a cut-off b defined by P(b )b <10 Themax max max
contribution from impact parameters beyond this value is completely

negligible. For resonant collisions we found that at b*<b<b themax
contribution to the integral was still considerable, and the trajectory 

was well approximated by a straight line; in this case we put our 

upper cut-off b =b* and the cross-section was calculated as

Some cross-sections have been calculated using the SL limit for the

relative motion. Since in this case there are unphysical small values

of R we have introduced in the integral (5*25) a lower limit

b . =r =R r (b=0). min o m o
Much of the computing time is spent in the four-dimensional 

integral (6.12), and we feel that any attempt to reduce the computing 

time should concentrate on this integral. In evaluating the V , .k'lk'l pijt-i.
we have sacrificed generality for speed, and to make the computing 

program applicable to any transition and system, an integration 

routine "tailor-made" for rapidly oscillating functions could be more 

desirable.

max



The precision of the calculations we present in the next 

chapters is estimated to be about 31. The program was run in the

University of Manchester CDC 76OO computer through the Stirling 

University link. The SCCP cross-sections presented in this thesis 

required about 36 minutes CPU time. An average cross-section required 

about 55 seconds CPU time.
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CHAPTER 7

RESULTS AND DISCUSSION

7.1 Introduction

Probabilities and cross-sections for rotational transitions 

in HF-HF and HC1-HC1 collisions have been calculated for different 

levels of the molecules at different initial relative energies E^.

Our goal was to investigate the features of the rotationally inelastic 

transitions for different collisional parameters. To allow comparison 

with earlier studies, we discuss here some examples of transitions out 

of low rotational levels (j^j^), for which there is no formal 

justification for using the SCCP; however, quite good accuracy has 

in fact been obtained for the j=0 -*■ j’=2 transition in H^-He collisions 

(Clark 1977)> and although the reasons for this are not clear we expect 

our predictions to be reasonably accurate.

7.2 The adiabaticity of the collision

It proves convenient to facilitate our discussion by examining 

the adiabaticity of the collision. The adiabaticity parameter is 

usually defined as the ratio between the collision time, T^, and 

the transition time, W \  for the rotational motion of the system.

As seen in sub-section 6.3.1 for the SL limit this ratio is conveniently 

taken as

where "KW/ is the change in rotational energy of the system. When 

Z » 1  the collision is adiabatic and the molecules rotate a great deal 

during the collision; when Z<<1 the collision is sudden and we may 

consider that the molecules do not rotate during the collision.
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A numerical estimate of the adiahaticity for the systems

studied in this work is obtained by examining the (l,l)->-(0,2)

transition. Using V  as given by (U.l6) we obtain, in HF-HF

collisions, z=0.itb/aQ and Z=0.1b/aQ at initial energies E^=500 and

8000cm respectively; for HC1-HC1 collisons we have z  =O.Vb/ao and

Z. =0.26b/a at E.=201.71 and 500cm ^ respectively. These results o 1
show that in both cases the collision cannot be considered as sudden, 

as even for HF-HF at E^=8000cm ^ Z is small only for the smaller 

impact parameters. This large adiabaticity is characteristic of heavy- 

particle collisions involving hydrides.

At small impact parameters the relative motion is not well 

represented by a straight line. For the curved trajectories at 

small b however, there is no comparable ratio to (7-1)• Based on

the strong dependence of the V . , integrals on the value of the

potential at the distance of closest approach, rQ , we define a 

characteristic adiabaticity parameter Z as

•y _ J To (7.2)

where V is some typical speed. Clearly this would be the adiabaticity 

parameter if we approximate the curved trajectory by a SL with impact 

parameter b=rQ and speed V.

The evaluation of (7.2) involves the choice of a physically 

convenient V, which is not unique. Using the simplest cases we have 

calculated Z for the following three choices of V:

( i )  ( ¿ )  v  - v ;  =  f ( 3 )  y - ( i r + * ) A  ;  ( T . 3 )
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where V  is given by (lt.l6) and V  is the actual relative speed ofo
the molecules at the distance of closest approach. For distant 

collisions, where the curved trajectory converges to a SL, Z=Z. On 

physical grounds the third V in (7.3) should be the best of xnese 

approximations.

We present in table 7.1 our results for Z for the (l,l)-+(0,2) 

transition at E^=8000cm . We notice that for the smaller impact 

parameters Z>Z. This is because at these values of b the repulsive 

part of the potential is dominant, making the relative motion at r^ 

slower and keeping the molecules apart. No significant difference

between Z and Z appears at larger b, and they become equal at b=12aQ

where b = r .o
The results discussed above predict, for the systems studied

in this work, a breakdown of the time dependent sudden approximation

(TDS A). This has been shown by Alexander and DePristo (1979),

who have calculated sudden transition probabilities and cross sections

for the (0,0)-*(l,l),(0,2) ,(2,2) and (l,l)-*-(0,2) transitions in HF-HF

collisions at a total energy E=8000cm ^ . Their results (presented

below) show that the main contribution to the cross section comes from

distant adiabatic collisions, giving cross sections which can be

overestimated greatly in the sudden approximation. This can also

be noticed from our discussion in sub-section 6.3.2, as the TDSA in

the SCCP framework puts V , n =V ; from eqs. (6.13) and
f* t r-i vu r'ri, T

(6.1 It) it is clear that at large impact parameters the sudden approximation 

overestimates a non-resonant transition, while it is exact for a

resonant one.
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7-3 The correspondence principle transition probability

7.3.1 The function P(b)

We discuss first the behaviour of the transition probability 

as a function of the impact parameter b. To investigate the 

importance of curved orbits we have calculated the SCCP probabilities 

using both, a straight line (SL) and curved trajectory under the 

spherically symmetric potential cj,„ (r ) - the latter being termed the 

full SCCP result.

We present the function P(b) for the (0,0)->-(l,l) transition

at energies E^=1000 and 8000cm ^ in figures 7-1 and 7.2 for HF-HF

collisions. Since the lowest energy is much smaller than the well

of the potential, £, orbiting occurs at 1)=1|0 . When b becomes just

larger than b Q three turning points exist, and bQ marks a jump in the

classical distance of closest approach (from r <R to r >>R ). Theo m o m
trajectory integrals, Vj ̂ fA,jjLX » are no't defined at b=bQ but the integral 

over b for the cross section exists.

The results in figures 7-1 and 7*2 show that at small impact 

parameters in the SL limit the SCCP probability is negligible. This 

is because at these impact parameters the trajectory integrals are 

extremely large, being roughly proportional to the value of the 

potential C^(R) at R=b. Here we expect for the rotor-rotor probability 

a behaviour similar to the strong-collision limit of the atom-rotor 

probability (Dickinson and Richards 1978), so that a statistical limit 

P ( b K  Mi / , j  is likely to be valid (Bfnstein et.al., 1963). There the 

number of strongly coupled levels, N, is proportional to vooll (Dickinson 

and Richards 1976); if C^(R) increases, N increases and more levels 

are classically accessible. Thus, to conserve probability, the flux 

to a particular level must decrease. When b increases the SL 

probability increases, reaches a maximum and decreases to become 

negligible again at large b.



- 76

For the full SCCP the picture is slightly different. At 

the low impact parameters the distance of closest approach rQ changes 

very slowly, and the strength of the collision, as measured by the 

V , , . integrals, is almost constant. As b increases the change

in rQ is more noticeable and the probability increases, reaches a 

maximum and decreases becoming negligible at large impact parameters.

This shows the dependence of the probability on the dynamics of the 

relative motion. The same shape occurs in the calculations of 

Bhattacharyya et.al. (1977) for rotor-rotor collisions.

While at the lower energy most of the probability arises 

from impact parameters where the effect of the spherical potential 

on the trajectory is still noticeable, at the higher energy the 

contribution to P(b) comes mainly from b's where the trayectory is 

very well represented by a SL. These represent what we have termed 

short and long-range transitions respectively. In the short-range 

transitions we notice that after the maximum is reached the probability 

falls sharply to a very low value. This is because the collision is 

very adiabatic, and at these impact parameters the transition probability 

decreases as square of K Bessel functions (Abramowitz and Stegun 1965, 

p.37l+). The physical factors that make a transition short or long- 

ranged are discussed below.

7.3.2 The FOCP probability

The transitions presented in figures 7-1 and 7-2 are first-

order allowed. In all these cases the FOCP transition probability

does not satisfy unitarity at small impact parameters, and becomes 
<**>

less than 1 at b £ b _  for both the short and long-range transitions.

Some FOCP probabilities are presented in figures 7.1 and 7-2 for large

(*) rruox PCb) “  PCtw) .
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impact parameters, with the same qualitative picture in both cases: 

the FOCP overestimates the transition probability, which deviates 

from the correct value even at impact parameters where the value of the 

probability is very small (figure 7.1)* Eventually, the SCCP 

probability converges to the FOCP value, but this convergence usually 

occurs when the probability is negligible.

The FOCP probability has also been calculated using both curved 

and SL trayectories. The comparison between them (not shown) showed 

that in the region where the repulsive part of the potential Cao (R) is 

dominant (very low impact parameters), the SL limit gives results very 

much larger than the curved orbit result, while when the attractive 

part of the potential dominates the SL limit result becomes smaller.

This is consistent with the fact that the distance of closest approach

integrals. The

impact parameters for which both probabilities become less than 1 are 

approximately the same, so in our approach the SL limit of the first- 

order result is not improved by the curved trayectory version. This 

result is a semiclassical confirmation of the prediction of DePristo 

and Alexander (1977) that the DWBA treatment of the collision would not 

remedy the failure of the BA. As seen in sub-section 6.3.2 the failure 

of the FOCP model is mainly because of the adiabatic nature of the 

collision.

is a dominant effect in evaluating the V„. „ „VlVl

7.3.3 The change of the probability with Ei

We now study the transition probability as a function of the

initial relative energy . The impact parameter b, and the net

change of rotational energy of the system, A.E. = A.E ; +A E. > areJ 0, \
considered constant. It is important in the following discussion to
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separate the transitions into resonant (A.E.=0,AE. =-AE. ^0) and
J Ji J*.

non-resonant (A.E.^0) cases.
J

Consider first a non-resonant transition. It is clear from

figures 7>1 and 7.2 that when E. increases the transition probability
1

also increases. This is generally valid for large impact parameters, 

and so a transition which is short-ranged at low energies can become 

long-ranged when the energy increases. Another example is presented 

in figure 7-3 where we show the probabilities for the (l,l)->-(0,2) 

transition at E.=1000 and 8000cm ^. Note here that the difference inl
the range of the transition at the two energies is not as marked as for 

the (0,0)-*-(l,l) transition (see figures 7-1 and 7-2). This is because, 

although E^ has been increased by the same amount for the two cases, 

the (l,l)-*(0,2) transition is less adiabatic. The fact that at E^=1000cm 

the (l,l)->-(0,2) transition is longer-ranged than the (0,0)-*-(l,l), 

indicates that a low E. is not sufficient for a non-resonant transitionl
being short-ranged; the collision should also be adiabatic.

In the FOCP result at large impact parameters, the non- 

resonant transition probability increases as E^ increases; this is 

because at large b the trajectory integrals are increasing functions 

of the speed. Since the FOCP is invalid at small impact parameters we 

do not consider it further.

For a resonant transition the dependence of the probability on 

E^ is different. At large impact parameters, where the trajectory is 

well represented by a SL, an increase in the energy E^ produces a 

decrease in the transition probability. This is because here FOCP is 

valid and the resonant trayectory integrals are decreasing functions of 

the speed (see e<̂ . 6.17). At small impact parameters there is strong 

coupling and the probability behaves more like a non-resonant transition



- 79 -

probability; this is illustrated in figure 7-^ where we present the 

probability for the resonant transition (0,l)->-(l,0) at E^=1000 and 8000cm ^ 

in HF-HF collisions.

In contrast to the non-resonant case, a resonant transition is 

longer ranged at smaller energies, which is a feature of sudden collisions. 

Overall, a resonant transition cross section is mainly determined by 

the long-range contribution and we shall see below that the resonant 

cross section is a decreasing function of the energy ,

7.3.1+ The variation of the probability with AE..
______________________ Z___________________1]_

We now consider the transition probability as a function of

the net change in the rotational energy AE.(l> and E. constants), which0 +-
is equivalent to studying the probability as a function of the 

frequency W.

It proves convenient to consider first the FOCP result, as

it is directly proportional to the squares of the trayectory integrals

V s , . As shown by Dickinson and Richards (1977) these integrals{¿¡fix
decrease rapidly as W increases for curved orbits, and so the first- 

order result increases when W decreases.

For the SCCP result the extension of above picture to the 

region where the coupling is weak is straightforward, and at large 

impact parameters an increase in V/ produces a decrease in the transition 

probability. This means that at a given energy E^, the transition is 

shorter-ranged as the collision is more adiabatic. This is clearly 

shown in figure 7.5, where we present the probability for the (0,0Wl,l) 

and (l,l)-+-(0,2) transitions in HF-HF collisions at E^=8000em , and

in figure 7.6, where we present results for the (0,0)-*'(0,2), (2,2)-*-(3,3) 

and (5,l)-*-(2,2) transitions, for the same system at the same energy.
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At large impact parameters the larger probabilities correspond to

the smaller A-E.^s associated with the transitions.0
In the strong-coupling region however, the situation is 

different and complex. While in figure 7.5 the largest probability 

is associated with the smallest change in rotational energy, in figure 

7.6 there is not a clear pattern associated with the variation of AE.. 

This is because the probability is not a single valued function of 

the collision strength. In our picture the form of this dependence 

is non-linear and it does not seem possible to give a simple account 

of its effects on the probability.

It is interesting to note that in collisions between identical 

molecules, for the (j^jg) (j^Sjjg+s) transitions there are sets

j »j2)j, of initial rotational quantum numbers for which, for a

given s, the value of AE. associated with the transition is the same
J

for any element (j ,j_) of a particular set. So for instance, A E .=0 -L ^ J_ 2
for all such that j^jg+s, and A  E^=2Bs for all (j ̂ , jg) such

that j^=jg, B being the rotational constant of the molecules. Clearly 

for distant collisions the transition probabilities for such a transition 

are equal for any element (j^jjg) of a given set. In the strong­

coupling region however, the probabilities are different for different 

initial quantum numbers, as at a given collision energy E^, the number 

of accessible channels changes for different initial (o1 ,jg) • As an 

example we show in figure 7-7 probabilities for the resonant transitions 

(2,l)-*-(l,2) and (l,0)->-(0,l) for HF-HF collisions at E^=8000cm 1 . We 

notice that in this case the probability for the larger initial (j^,jg) 

is the larger, and this is so even at b's where the trayectory is a SL

(r =b at bit 12a ), showing that the coupling is still strong when the o o
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spherically symmetric potential is negligible. This dependence of 

the rotor-rotor probability on the initial quantum numbers highlights 

an important difference with the atom-rotor case, where a large initial

quantum number has associated a large AE.. In the rotor-rotor case
J

transitions with very small A®. can occur in collisions between highlyJ
excited molecules.

7.U Comparison of the SCCP probability with that obtained in
other theories

7.^.1 Introduction

In the last section we have discussed different features of 

the SCCP transition probability, and how these depend on the different 

parameters of the collision. Since our discussion has not delimited 

the validity of our calculations, we aim in this section to investigate 

the usefulness of our model. To do so we compare here with the Close- 

Coupling calculations (CC) of DePristo and Alexander (1977), the 

Perturbed Rotational States calculations (PRS) of Hashi et.al. (1978), 

the Classical Trayectory calculations (CT) of Alper et.al. (1978), and 

the Adiabatically-Corrected-Sudden calculations (ACS) of Alexander 

and DePristo (1979).

Despite the CC and PRS calculations should, in principle, 

provide accurate results we feel that there is not, so far, a 

dipole-dipole rotationally inelastic calculation we can consider a yardstick 

against which to test our approximation. Hence, here we discuss not 

only the validity of the SCCP results but also the validity of the 

results we compare with. However, after this work was substantially 

completed we received a preprint from Alexander (i960) describing a 

more extensive close-coupling study which may well be almost converged. 

Comparison with these Alexander results áre presented in section 7.5.
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Inadvertantly the SCCP calculations were performed with a 

spherically symmetric potential which was ClYtr) times too strong.

Thus comparisons with other works in regions where curvature of the 

orbit is important can only be qualitative. We have obtained a 

numerical estimate of such a region looking into the deflection angle, 

©  , as given by the first-order momentum approximation (Pauly 1979, 

p.ll*0). For HF-HF collisions at E^=500,1000 and 8000cm ^ the

trajectory is well represented by a SL at impact parameters b ^ b  =9,8SL
and 5.5aQ respectively.

We include in the comparison SCCP results using a SL trajectory

for the relative motion - henceforth termed the straight line

correspondence principle (SLCP). At b£bg^ the effect, on the

probability, of using a stronger spherical potential is shown by the

difference between SLCP and SCCP. For b<b T it is difficult tobL
estimate such effect; however, it is likely that for those b where 

the trayectory is dominated by the repulsive core of the potential, 

the transition probability is underestimated.

J.k.2 Comparison with Close Coupling calculations

To test the adequacy of our approach we compare here with the 

close coupling theory (CC) which, in principle, can give exact results 

for this problem. The application of the CC theory to the collision 

of two rotors has been presented by Takayanagi (1965), see for example 

Green (1975) for collisions, and DePristo and Alexander (1977)

for HF-HF collisions.

The CC theory exploits conservation of the total angular 

momentum of the system. Consequently, basis functions in the total 

angular momentum representation I Cj,jJt ; _n, -Q.t Xl) ” formed from 

the internal wave functions of the separated molecules - are introduced



(Takayanagi 1965, e<̂ . 6). Here J and M are the total angular 

momentum and its projection quantum number respectively, Z is the 

orbital quantum number, and j is the quantum number corresponding to
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the vector sum of J, and J-. j. , O.. (i=l,2) and fl are the same as —1 d 1 1
used in this work. The wave function for the rotor-rotor system

is the usual S-matrix; the + sign indicates that, since we consider 

collisions between identical molecules, properly symmetrized functions,

I1™ —  , are used. We compare with the results of DePristo and Alexander 

(1977) who studied HF-HF collisions at total energies E=500,1000 and 8000cm 

These CC calculations have been done mostly using a basis B3 containing 

the (0,0), (l,l), (0,2), and (2,2) rotational levels and correspond 

to both interchange symmetries.

the larger energy we notice that for distant collisions (b>l8ao ), the 

SCCP agrees well (error^ 15$) with the CC results. There is also

r ) is expanded in terms of the 1*^ functions, and, when 

substituted in the time independent Schrodinger equation, the usual

CC equations for the coefficients of the expansion for each J,M are

obtained (Takayanagi 1965, e<^,9). A major difficulty with the CC 

calculations is the (2j^+l) degenerate levels which must be included 

for each rotational level, j^ of each molecule, making the calculations 

prohibitively long when the number of levels increases.

In figures 7.8 and 7.9 we show weighted probabilities for 

the (0,0)-*-(l,l) transition at E^=1000 and 8000cm 1 respectively. At
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good agreement between FOCP and BA at both energies. This is 

significant as it shows that the quantization of the internal rotational 

states (ecj,. 1*.6) is not producing serious errors, even for this 

transition out of the ground rotational level. It is interesting to 

point out that at E^=8000cm ^ the CC probability converges to the 

first-order result faster than the SCCP. This suggests that the 

SCCP considers the collision as less adiabatic and converges to the 

FOCP slower than expected. A further discussion on this point is 

presented below.

From the results presented above it seems clear that the 

SCCP provides a reasonably good description of distant collisions.

At small impact parameters the correspondence principle results 

(SCCP and SLCP) are inaccurate, and we cannot estimate the error 

because the CC results are unconverged. It is likely that a basis 

containing more rotational levels than B3 is necessary to assure 

convergence (DePristo and Alexander 1977, Alexander and DePristo 1979)• 

Close coupling calculations using an extended basis B1*={b 3, (l,3), (3,3) J , 

have been performed for the (0,0) (l,l) transition at E^=1000cm 1 at 

J=l+0, 60 and 80 (DePristo and Alexander 1977). The results, presented 

in figure 7.8, show that at J=UO the CC probability using Bi* is 

smaller than the result using B3, while no change occurs at J=60.

The result at J=80 is unexpected, as the CC probability using B**

becomes so large that it is off the scale of figure 7.8 ( pCt£ 18.2.)J
Although just a few, these results suggest that to achieve convergence 

at small J, the CC calculations need a basis containing more states 

than Bb.
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It is interesting at this point to reexamine CPT. Using 

(5.15) in (6.7) we obtain for the classical change in the rotor angular

momentum

A j a  A.j, + A ji  = - 2. K+ cos + <TJ .
(7.5)

From (6.8a) and (6.6) we can see that there is at least one ( /3,, (3*. ) 

for which A j  is given by

It is clear from (7-6) that the maximum A j  allowed classically in 

CPT is

We show in table 7.2 values of max(Aj) for different b's in HF-HF

the (0,0)-?(l,l) transition and assuming a straight line trajectory 

for the relative motion. We present also the highest level (j^jj^j^), 

satisfying max(Aj) which is classically accessible. Clearly from 

table 7.2, the SLCP has probability flux in energetically forbidden 

channels. This is likely to make the SLCP underestimate the 

transition probability (Clark et.al., 1977).

with the action associated with the isotropic potential. From table

7.2 we see that in these very strong collisions CPT may produce

accurately with these strong-coupling collisions, and A( £1, , ) does

this produces errors in the cross sections for short-ranged collisions 

at the smaller energies, it is almost unnoticed for long-range

(7.6)

(7.7)

collisions at E^=500, 1000 and 8000cm \  using the parameters for

At small impact parameters the collision is very strong, and 

the change of the action A( -3.,, ^\)> is unlikely to be small compared

transitions up to A  j=50. It is our feeling that CPT cannot cope

not describe precisely the coupling between the two rotors. While



collisions.

Overall the SCCP should provide an accurate description of 

long-range collisions, with errors which, due to averaging, may he 

smaller than the possible CPT errors in determining the change of the 

action A( Ü, , .

7.*+.3 Comparison with Perturbed Rotational State calculations 

We have seen above that both the FOCP and BA are in good 

agreement and give overestimated transition probabilities. We have 

also shown in subsection 6.3.2 that this is due to the size of the 

dipole-dipole coupling potential and the non-sudden nature of the 

collision. In adiabatic collisions it is likely that the coupling 

potential will affect strongly the phase of the rotational motion of 

the molecules, and, to describe this, CC will require a large number 

of rotational states. To take this perturbation into account it is
_JM

convenient to use an adiabatic formulation in which X (j j^X) 

functions are replaced by the adiabatic internal states
J

These are eigenfunctions of the full internal part of the Hamiltonian 

(Child 197*1, pp.87-88):

[ H01 CO + H jj i)  + V C sl.-o-,- 7C. (r  ; = K/ (r ) ?Ç  ( R a t )
(7.8)

where Hoi (j^) (i=l,2) is the Hamiltonian for a free rotor in the 

rotational level j., and W.(R) &  E; t E- , the rotational energy
X J  03 j |

of the non-interacting rotors.

This method has been used in rotationally inelastic collisions

between two diatomic molecules by Hashi et.al. (1978), and been termed

Perturbed Rotational States (PRS). Expanding the wave function of

the system in terms of the ?C., they solved the time-dependent
0

Schrodinger equation obtained assuming a SL trajectory with constant
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speed, both numerically and using a first-order approach. This latter 

approximation can be termed the first-order perturbed rotational state 

(FOPRS). SCCP, SLCP, PRS and FOPRS results are compared in figure 

7.10, where we present probabilities for the (0,0)-*(l,l) transition at

E^=500cm "*■ in HF-HF collisions as a function of the reduced impact
2 1parameter p=b/(D /B) (Hashi et.al., 1978).

The marked difference in the form of the PRS and the

correspondence principle probabilities (SCCP and SLCP) indicates

that the distortion of the rotational states by the coupling potential

during the collision is strong, and affects the dynamics of the

transfer of rotational energy. This is very important at small energies

since, as shown in figure 7-10, most of the cross section arises

from the region where the distortion of the rotational states is

noticeable. The good agreement between PRS and FOPRS suggests that

the PRS results are converged, and that a major source of error in
(or

the usual first-order perturbation calculations (BA,FOTDPT)Vadiabatic

collisions is the failure to take into account the distortion of the

rotational states by the coupling potential.

In principle the PRS treats the coupling between rotational

states exactly, and should provide a very convenient description of

the dynamics of near-adiabatic rotational energy transfer. As the

energy increases the use of theBC-'s offers little advantage. From
J

the above comparison it is clear that the SCCP does not describe 

accurately adiabatic collisions.

7,U,U Comparison with Classical Trajectory calculations

Here we compare with results obtained from completely classical 

calculations. The method is usually termed Classical Trajectory (CT)
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calculations as it involves the study of the trajectories followed 

hy the collision partners.

These are determined by solving the classical equations of

motion

where H is the classical Hamiltonian of the system, q^ a coordinate 

variable and p.. its conjugate momentum. The detailed methodology 

of trajectory calculations has been recently reviewed by Pattengill 

(1979), and some details of the basic concepts of the classical 

collision theory, as applied to rotationally inelastic collisions,

have been given by Clark et.al., (1977), Dicinson (1979b) and 

Pattengill (1979)•

A major problem of the CT calculations is the procedure to be

used to quantize the continuous classical variables such as angular 

momentum. In the context of the problem studied here this produces 

ambiguities in:

a given initial quantum level j^, of the i-th molecule, and

final rotational energy E.), of the i-th molecule, determined 

by the trajectory calculations.

The most common technique for (A) is to assign a classical rotational 

energy to a molecule using either the standard quantum-mechanical 

formula

Ej -  Bj ( j+i )  , (7.1(

or to employ the usual semiclassical correction

)
(7-9)

A) the method to assign a classical rotational energy E. , to

B) the method to assign a rotational quantum number j^, to the

Ej - B O '/ O l . (7.10b)
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For each set of initial conditions trajectories are computed, and 

the final relative translational energy and final rotational energy 

of each molecule are determined. To find j' one uses (7.10) to

So, a trajectory is said to result in the j-*-j ! transition.

We compare here with the CT results of Alper et.al. (1978) on 

HF-HF collisions, which have been obtained using both (7.10a) and 

(7.10b); we have termed them CT1 and CT2 respectively. They also 

used a third procedure in which a set of rotational energies, chosen 

randomly from a given uniform distribution, was taken to correspond 

to an initial j. This technique appeared to be much less accurate 

than CT1 and CT2 (Alper et.al. 1978), and we do not compare with it.
C

In figure 7.11 we present StiP, SLOP and CT weighted probabilities

also include the corresponding CC results (DePristo and Alexander 1977). 

At b>5.5aQ (SLCP exact) the agreement between SCCP and CT results is 

poor. Quantitatively the CT probabilities are consistenly smaller 

than the SCCP, with CT2 closer. At close collisions the CT results 

show the peak arising in the quantal results, although its value is 

very much smaller than the quantal. It is interesting to point out 

that CT1 and CT2 have differences between them of the order of the 

probability. Also interesting is to notice that the agreement 

between SCCP and CC is better than for the (0,0)-»(l,l) transition.

determine the classical j corresponding to the final rotational 

energy, and then associates j' with j by (Dickinson 1979a)

J (7.11)

bP(00-»02 ;b) as function of the impact parameter at E^=8000cm ^ . We
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In figure 7.12 we show bP(ll-»02;b) at E.=l000cm \  In the 

region where the probability maximum occurs the SCCP results are 

very much larger than CT, while at very large impact parameters ( b Z 18a ) 

the CT probabilities are larger than the SCCP results. Since at this 

large impact parameters the transition is classically forbidden it is 

clear that CT overestimates greatly the probability.

To draw any conclusions from the above comparison is difficult.

The main difficulty is the inherent ambiguity of quantization in CT 

calculations. Despite the apparently small difference between (7.10a) 

and (7.10b) the quantitative difference between the predictions of 

CT1 and CT2 is large, and we shall see below that cross sections 

differing by more than a factor of two arise; this suggests that any 

quantization procedure used has inaccuracies of this order, which 

makes comparison difficult. Another problem is the neglect, by CT, 

of quantal interference and quantal tunnelling,

7.U.5 Comparison with Adiabatically Corrected Sudden calculations

It was predicted in section 7*2 that the time-dependent sudden 

approximation (TDSA) would break down and overestimate transition 

probabilities, This has been confirmed by Alexander and DePristo 

(1979) who, using a SL for the relative motion, have calculated TDSA 

probabilities and cross sections for HF-HF collisions at E^=8000cm ^ ; 

their results are very much larger than CC and CT results. In figure 

7,13 we can see that, for the (0,0)-*(l,l) transition the TDSA 

probabilities at b Z l°a0 are several times larger than those of 

SCCP, Clearly, from our earlier discussion (section 7,2), the TDSA 

becomes invalid because most of the contribution to the probability 

comes from impact parameters giving Z»l,
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To correct for the adiabatic character of the collision 

Alexander and DePristo (1979) introduced the "dephasing factor"

exp(iwt) into the sudden action, AS , so that the trajectory integrals,
• • sI„ , which determine A become 2m

L ^ )  = m et)] a x p (itft)  y  ( e j )  a l t
=>00 J (7.12)

where i\W is an "effective" energy gap. This adiabatic correction 

to the TDSA has been termed adiabatically corrected sudden approximation 

(ACS). It is important to point out that this is inconsistent with the 

non-sudden classical action (5.lU).

Clearly the above adiabatic correction makes the evaluation
Acsof the ACS action A , and the derivation of the ACS transition 

ACSamplitude S , very much more difficult than in TDSA. To avoid this 

difficulty and as a first test of ACS Alexander and DePristo (1979) 

introduced an extra approximation neglecting I^^iw) and Ig+^(W):

I„W  5 !«,(*> ‘  0 (7.13a)

(7.13b)

where

R,C*) - f  x1 K .  M (7.13c)

with K,(Z) the usual modified Bessel function (Abramowitz and Stegun
V

196U, p.37*+)> Defining the scaled impact parameter (Alexander and 

DePristo 1979)

b = ^ \  (i? ¿>/\r) ]  ? (7.1*0
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and substituting this in (7.13) we have

(7,15)

i.e. I^tW) depends on b in the same form as I^(W=0) depends on 

b in TDSA. Thus the ACS action satisfies

AACS( w , b )  = b )Acs, _

so that the ACS degeneracy-averaged transition probability is

(7.16)

,ftCS _ _ f j I ] fA. ]
• £ J, -> J J * ) W )  b  ) “ 4  If ̂

z_|(::i)(hi)t'v hv (7.17)

where formally given by

^ U ' m (61,^) e  * cl 6, df, c l ^ c i ^ (7.18)

To complete the above theoretical picture it is necessary to choose a 

physically realistic W. Alexander and DePristo (1979) based their 

choice on the dipole-dipole first-order selection rule, and consider 

a multiple quantum transition as occuring through a series of first- 

order jumps - which is predicted by CPT; see paragraph following eq. (6.2). 

Thus they define

(7.19(0
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where

<AEj.)  ~ Bf t W +i) -jiC Jf+ i)]/ 1  j£' -  Jj I , (.7,19b)

We notice that W is related to the W's determining the trajectory- 

integrals in the SCCP action A, as

W “ Wf L-f (4/,) = SSK ^4) ;

W  =  W _  ¿ 1  « g n .  ( A M  =  ,

where

U/± =  K/f ± ^

(7.20a)

(7.20h)

(7.20c)

and W. (i=l,2) is given by (5.21).

In figure 7*13 we compare TDSA and ACS weighted transition 

probabilities (Alexander and DePristo 1979) with the corresponding 

SCCP result for the (0,0)-*(l,l) transition at E^=8000cm \  The 

effects of the adiabatic correction are: (l) to reduce the TDSA 

transition probability at large impact parameters, where the collision 

becomes very adiabatic, and (2) to shift to position of the maximum 

of the TDSA probability to smaller impact parameters. These effects 

are general for all transitions studied by Alexander and DePristo (1979).

Since ACS has no rigorous theoretical justification and 

contains some subsidiary approximations (eqs. 7.13a and 7.19b), we 

would not necessarily expect it to agree closely with SCCP.

Qualitatively its behaviour is consistent with our model of the collision
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as the position of both probability maxima in figure 7.13 almost

coincide. Quantitatively however, the agreement is not good, and

despite the large correction introduced by ACS to the sudden approximation,

it still gives probabilities much larger than SCCP. This is because of

the large difference between A and A, as the ACS action is a function

only of W+ or W_, and it fails to describe the coupling properly.
ACSThere are some transitions for which A and A compare well and the

quantitative agreement between ACS and SCCP improves, for example the

single-molecule transition , where / v</ I —  I W/+ 1 — IH/_ | .

For multiple transitions however, good agreement is somewhat fortuitous

and it cannot justify the application of ACS. In general for rotor- 
ACSrotor collisions A is not well founded and it is unlikely that ACS 

provides an accurate description of such collisions, in particular 

those involving hydrides. For heavier molecules the TDSA becomes 

less inaccurate and, consequently, the ACS modification could provide 

a more accurate description of the collision.

7.5 The cross section 

7.5.1 Introduction

In this section we discuss the SCCP results for the integral 

dipole-dipole rotationally inelastic cross sections. Our detailed 

discussion in sections 7.3 and 7.^ has examined the main physical 

features of the transition, and in the first part of this section 

(subsection 7*5.2) we show how these features are reflected in the 

cross section. In the second part (subsection 7.5.3) we compare our 

results with the other theories discussed in section l.k, and the most
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recent results of Alexander 1980. As with all semi^classical 

approximations in the SCCP cross sections, as given by (5.25), the 

integration over impact parameters can allow the cancellation of 

errors in different impact parameter ranges (Dickinson and Richards 

19T7)5 and the SCCP cross section can compare better with other theories 

than the SCCP probabilities.

7.5*2 The SCCP cross section

Cross sections for the (5,l)-*-(2,2), (2,2)-*-(3,3), (0,0)-*-(l,l) 

and (l*,2)->-(3,3) transitions at energies E^=^000, 6000, 8000 and 10000cm 

in HF-HF collisions are shown in table 7.3 The corresponding | AEj| 

for each of the above transitions are 20B, 12B, Ub and 2B respectively, 

where B=20.939cm ^ (Herzberg 1950,p.536). The energy E^=l+000cm ^

is greater than the energy E ^  above which no orbiting takes place 

and thus quantum barrier penetration effects cannot occur.

From our discussion in subsections 7.3.3 and 7.3.1* we expect 

that, for a given transition, the cross section increases when the 

energy E^ increases; as the collision becomes sudden the cross section 

reaches a maximum and then decreases. Of the results in table 7*3 

only for the (k,2)->(3,3) transition does the cross section show this 

form. For the (0,0)->(l,l) and (2,2)-»(3,3) transitions the cross 

section increases with the energy, although we have shown that the 

former starts decreasing at E^=20000cm ; since the (U ,2)-»(3,3)

transition has the smallest |AE,I the collision becomes sudden at E.» 1
smaller than for the other two transitions. The cross section 

0'(51->22;E^) on the other hand, shows a different form, as it 

decreases at the lower energies, to start increasing at E^=10000cm ^ .

The transition at these energies is very short-ranged and most of 

the cross section arises from the strong-coupling region. It is
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likely that for these strong, short-range, collisions the SCCP cross 

section decreases as the energy increases because the transition 

p robability is statistical: an energy increase allows more transitions 

and the probability becomes smaller. As the energy is further 

increased the contribution from distant collisions becomes more 

significant, since they are less adiabatic, and the cross section will 

recover its usual dependence on E^.

For a given energy E^ we can see that, as predicted in sub­

section 7*3.^, the cross section is a decreasing function of | AEy|

Note that for the energies and transitions presented in table 7*3, when 

lAEjl decreases from 20B to 2Bthe cross section increases by almost 

two orders of magnitude.

In table 7.1* we present cross sections for the (0,0)-«(2,2),

(0,0)->(l,l) and the resonant (0,l)-»(l,0) transitions at different

energies in HC1-HC1 collisions. We notice that the resonant cross

section is two orders of magnitude larger than the other rotationally

inelastic cross sections, and as predicted at the end of sub-section

7.3.1+, is a decreasing function of the energy. The dependence of

the other cross sections on E. and IAE.I is consistent with the1 J
behaviour discussed above.

7.5.3 Comparison with other theories

Figure 7-1** shows SCCP, PRS, CC, CT and ACS rotationally 

inelastic cross sections as functions of the initial relative speed 

for the (0,0)-»(l,l) transition in HF-HF collisions. At the lower 

speeds, where PRS is reliable, we notice that the PRS cross sections 

are much larger than all the other theories results, except CT2, which 

is more than 3.5 times the CT1 result. At the higher speeds, where
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CC is reliable ( V- > \>+/  lo* cl. u l . ), the SCCP consistently

underestimates the cross section. Note that at the highest speed 

ACS and CT2 overestimate the cross section about as much as SCCP 

underestimates it. No PRS results are available at these larger 

speeds. Since SLCP and SCCP results differ only slightly for 

E^>1000cm CV\>7/-0 a.u.) our conclusions could not be significantly

altered if the correct spherical potential were employed.

Also in figure 7.1^ we compare SCCP and PRS cross sections 

for the (0,0)-»(l,l) transition in HC1-HC1 collisions, and for the 

(l,l)-?(0,2) transition in HF-HF collisions. While for HC1-HC1 the 

picture is similar to the one shown for the same transition in HF-HF 

the agreement for the (l,l)-»(0,2) transition is good. This suggests 

that SCCP underestimates particularly the (0,0)-*(l,l) transition.

The underestimation arises from the SCCP description of the coupling, 

as the dependence of the action A on W_ indicates that SCCP considers 

a de-excitation in one of the molecules, which is unphysical for 

this directly coupled (0,0)-»(l,l) transition. This is basically a 

consequence of the use of CPT for such low initial quantum numbers, 

and it would be expected to be much less important for higher initial 

j values.

The most recent CC results (Alexander 1980), as shown in 

figure 7.1 U, indicates that at large speeds the SCCP and CC results 

for the (0,0)-i>(l,l) transition have started to converge. At the 

highest energy for which CC results are available (12500cm 1 ; not shown 

here) SCCP results are about 20$ below the CC values. This shows 

that at this very high energies the dependence of the action A on W- 

becomes less important in determining the cross section, i.e. a first-
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order description of the collision becomes more accurate. Note that 

for the lower speeds the CC cross sections obtained using a B3 basis

although normally the cross section would be expected to decrease as 

the basis size is increased.

In table 7-5 we compare the SCCP and SLCP cross sections with 

CC, CT, ACS and TDSA results for the (0,0)>»(2,2), (0,0)-?(0,2), (0,0)->(l,l)

results of Alexander (1980) using a BU and B5 basis; they will be 

referred to as CCU and CC5 respectively. The CC results at E^=500

(l,l)->(0,2) transition the CC, ACS and TDSA calculations were performed

results we need the symmetrized correspondence principle cross

and CT( j j ^ j g )  is the unsymmetrized cross section (5-25). The 

cross section (7.21a) refers to a collision in which two molecules 

with initial levels (j ,jg) are finally in levels (jj,j£), either the 

transition j — > , jg-p- jg or the transition having

occurred. For the special case we have

are smaller than those obtained with a basis B5=[b 3;(1,3);(3,3);(0,U);(2,U)J,

and (l,l)->{0,2) transitions at E^=500, 1000 and 8000cm \  The CC 

results at E^=8000cm ^ contain two entries, corresponding to the

and 1000cm 1 are those of DePristo and Alexander (1977). For the

at a total energy of E=1000 and 8000cm \  To compare with the CC

section cr ( :

(7.21a)

where

(7.21b)
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^  Cj , jt ->j,'j’) = Z  cr ( J, j t -> j/j,')

Below we discuss each of the transitions

A) The (0,0)-»(2,2) transition 

At E^=500 and 1000cm ^ the transition is short-ranged and Both

the SCCP and SLOP cross sections are unreliable. On the other hand, 

the CC results are far from being converged (DePristo and Alexander 

1977) and the CT cross sections are not reliable at these low energies 

(Alper et.al., 1978). So, no definitive conclusion on the accuracy 

of the correspondence principle methods is attempted.

At E^=8000cm 1 the agreement between SCCP and SLCP is within 

3%. This suggests that, at this energy, the use of a stronger spherical 

potential does not introduce large errors in the SCCP cross section.

The agreement between SCCP and CClt is within 30%, while the CC5 cross 

section is more than twice the SCCP result. The large increase of 

the CC cross section when the basis is enlarged suggests that the CC 

results are not converged. The CT cross sections are also larger 

than SCCP's, CT2 being the larger. As expected the ACS cross section 

is larger than the SCCP, CC and CT results, despite it is less than 

a half of the TDSA result. Again the uncertain convergence of the CC 

makes it difficult to reach a definitive conclusion, although the 

comparison suggests the SCCP cross section may be somewhat underestimated.

B) The (0,0)-»(0,2) transition

At E^=500 and 1000cm 1 we have a similar situation as for the 

(0,0)-+(2,2) transition and no definitive conclusion is attempted.

(7 .22 )

in turn.
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At E^=8000cm ^ the SCCP and SLOP give the largest cross 

sections and agree with CC5 within b0% and b2% respectively. The 

CT gives small cross sections, and CT2 is more than two times larger 

than CT1. The ASC and TDSA are smaller than expected, and agree with 

CC5 within 30% and 12$ respectively. We point out that, in contrast 

to SCCP, the CT, ACS and TDSA cross sections do not appear to he 

properly symmetrized, and it is likely that their values in table 7-5 

should be doubled. So, ACS and SCCP would be in good agreement, which 

is what we would expect for this single-molecule transition (see 

sub-section 7.1*.5). As for the (0,0)->-(2,2) transition the convergence 

of CC is uncertain and it is difficult to reach a conclusion. However, 

for this transition, we would expect the error in the rotor-rotor SCCP 

cross section being similar to the SCCP error for atom-rotor collisions.

C) The (0,0)->-(l,l) transition

From the results shown in figure 7.1^ we have already shown 

that the SCCP cross sections for this transition are likely to be 

underestimated. The results shown in figure 7*1^ also suggest that 

at E^=500 and 1000cm 1 only CT2 gives accurate results, and not only 

SCCP but also CC and CT1 underestimate the cross section.

At E^=8000cm ^ CCU and CC5 results agree within 1$. As 

before CC5 gives a cross section larger than CCl*, but as the difference 

is smaller than the error of the calculations the CC cross section can 

be considered as fully converged. The SCCP agrees with SLCP within 

6$ and differs from the CC result in a ¡+5$.

D) The (l.lMo.2) transition
This is the less adiabatic and longer-ranged transition studied 

here and we expect our approach to become more accurate at the lower

energies.
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At E^-1000cm SCCP and SLCP cross sections agree within 15$, 

and are several times larger than the CC result. The CT1 and CT2 

results agree within 3^$ and are also larger than the CC cross section. 

As in the (0,0)-»(0,2) transition the CT results should he symmetrized, 

which makes the CT1 and CT2 cross sections become closer to the 

correspondence principle cross sections. These results suggest that 

the CC cross section is greatly underestimated. This underestimation 

was first suggested by DePristo and Alexander (1977), and explicitly 

pointed out by Hashi et.al. (1978).

At E^=8000cm ^ the SCCP and SLCP cross sections agree within 

6$. They are larger than the CC results, and the SCCP cross section 

agrees with the CCU and CC5 results within 7$ and 11$ respectively.

The ACS and TDSA cross sections are smaller than the CC results, which 

suggests that, as in the (0,0) (0,2) transition, these cross sections 

are not properly symmetrized and should be doubled. In this case 

TDSA overestimates the cross section, while the agreement between the 

ACS and CC results is excellent, with a difference of less than 2$.

From the above discussion, we infer that much work is still 

needed to establish the accuracy of the various methods, especially for 

adiabatic collisions. It is clear from table 7-5 that the ambiguities 

inherent in the CT description (see subsection 7-^*M can introduce 

errors of the order of magnitude of the cross sections. It is also 

clear that while TDSA overestimates the cross section, the "ad hoc" 

character of the corrections introduced by ACS still makes its accuracy 

uncertain. On the other hand, the inaccuracies of the SCCP depend 

on the validity of CPT. At the smaller incident energies, the 

transitions discussed above cannot be considered favourable cases for 

the application of CPT, and errors should be expected in the SCCP
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cross sections. A better accuracy should be obtained at larger 

incident and rotational energies. Among the SCCP results presented 

in table 7-5 we consider the cross section for the (l,l)-*(o,2) 

transition at E^=8000cm ^ the more accurate, and, despite the use of 

a stronger potential, the error is less than 15%.

7.6 Concluding remarks

We have applied the Strong Coupling Correspondence Principle 

to rotational excitation in collisions between two diatomic molecules.

Only the dipole-dipole anisotropic potential is considered, and it is 

shown that in this case the transition amplitude is obtained in closed 

form. Transition probabilities and cross sections for HF-HF and HC1-HC1 

collisions were calculated, and where possible, compared with other 

theories.

As in earlier work the SCCP shows that a first-order description 

of the collision is inadequate, as it grossly overestimates the 

transition probabilities. It was also shown that this overestimation 

is mainly because of the adiabatic nature of the collisions studied 

here. This large adiabaticity is characteristic of collisions involving 

hydrides, and for heavier molecules the first-order theories are 

expected to become more adequate to describe long distance collisions - 

at the same incident energies considered here.

Comparison with quantal results shows that satisfactory 

agreement is obtained for some transitions, although it is difficult 

to reach a definitive conclusion on the validity and accuracy of the 

SCCP results. However, the comparison is encouraging as for many of 

the transitions studied here the application of SCCP is not formally 

justified. For transitions between excited levels CC becomes increasingly
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impractical while the other approximations discussed here become no
(i>more accurate. At present, collisions between heavier rotors at 

higher incident and rotational energies appear beyond the grasp of the 
current quantal and classical theories. In this case, the SCCP 
becomes of great value in the calculation of rotationally inelastic 
cross sections for such collisions.

More work needs to be done to determine the range of applicability 

of SCCP. The latest results of Alexander (1980) provide a first 

benchmark for assessing the validity of our approach. Calculations 

to compare with Alexander's results are currently in progress (Richards, 

private communication). A future publication will also contain reviewed 

calculations of the SCCP cross sections discussed here, using the 

correct spherical symmetric potential. As in atom-rotor collisions 

the use of SCCP for low rotational quantum numbers has not been 

theoretically justified. This still remains a challenge. 1

(1) (Pn the other- hand. S C C P  Oxn. b e  expectecL io he. moi-t accurate..
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CAPTIONS TO TABLES 7.1 - 7.5

Table 7.1: Adiabaticity parameter Z, as defined by (7.2). The

parameters correspond to the (l,l)-*(0,2) transition in 

HF-HF collisions at E£=8000cm 1 .

Z^jZg and Z^ correspond to values of Z calculated using 

speeds (l), (2) and (3), respectively, as defined by (7-3).

Table 7.2: Maximum change in the quantum number as defined

by (7.7), and highest level (j1 ,J2=o1 ) satisfying max (A j)

which is classically accessible. The parameters correspond

to the (0,0)— >(l,l) transition in HF-HF collisions.

. . . . . °2_Table 7.3: SCCP rotationaily inelastic cross sections in A , for

different transitions and energies in HF-HF collisions.

Table 7.**: SCCP rotationaily inelastic cross sections in A , for 

different transitions and energies in HC1-HC1 collisions.

Table 7.5■ Rotationaily inelastic cross sections in 1*"

CC at 500 and 1000cm  ̂from DePristo and Alexander (1977)- 

CC at 8000cm ^ from Alexander (1980).

CT from Alper et.al. (1978).

ACS and TDSA from Alexander and DePristo (1979). 

a: the first and second entry were obtained using a 

and B5 bases, respectively.

b: the first and second entry correspond to CT1 and CT2 

respectively. *

c: obtained using Bl* basis at J=U0,60,80 and B3 at all other 

J values.

SCCP and SLCP values for (0,0)->(2,2) and (l,l)-»(0,2) correspond 

to symmetrized cross sections as given by (7.22).



- 105

Table 7.1

b 0 2 4

Z1 0.493 0.496 0.506
Z2 1.291 0.671
Z3 0.987 0.717 0.577

6 8 10 12

0.530 0.645 0.947 1.147

0.489 0.544 0.939 1.147

0.509 0.590 0.943 1.147

Table 7.2

b/ac E(cm ■*■) max ( A  j )

6 500 28.1 (14,14)
8 4.8 (2 ,2 )

10 0.87 (0,0 )
12 0.086 (0,0 )

6
8

10
12

1000 50.8
14.2
4.1
1.2

(25,25)
(7 ,7 )
(2 ,2 )
(0 ,0 )

6 8000 38.4 (19,19)
8 21.0 (10,10)

10 12.2 (6 ,6 )
12 7.4 (3 ,3 )
14 4.5 (2 ,2 )
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Table 7.3

o - c u - ^ j ; )  (Â *)

(cm X)

4000 6000 8000 10000

(51 —> 22) 7.9-1 7.5-1 6.1-1 7.9-1
(22 ->33) 7.4-1 7.9-1 1.2 1.8
(00 ->11) 14.3 23.8 31.0 38.5
(42 —> 33) 45.1 53.8 53.0 50.7

Table 7.4

(TCUi-Ú'Ji) (Á*) 20.171

E (̂cm ■*■) 

500 1000

(00 —>22) 8.5-1 1.3 -

(00 -*11) 9.6-1 2.2 -

(oi_»io) 245.9 156.8 98.6
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CAPTIOUS TO FIGURES 7.1 - 7 .1 U

Figure 7-1:

Figure 7.2: 

Figure 7-3:

Figure 7.**:

Figure 7-5:

Strong Coupling Correspondence Principle (SCCP) transition 

probabilities as a function of the impact parameter, b, 

for the (0,0)->(l,l) transition in HF-HF collisions at 

E^=1000cm \  Along the top we show the classical distance 

of closest approach,

A: using curved trajectory determined by C (R).00
B: using a Straight Line (SL) trajectory.

C: First-order Correspondence principle (FOCP).

As in 7.1 for HF-HF collisions at E^=8000cm \

SCCP transition probabilities as a function of the impact 

parameter, b, for the (l,l)—¡>(0,2) transition in HF-HF

collisions,

A: E.=1000cm-11
B: E.=8000cm_11

As 7*3 for the resonant (0,l)-»(l,0) transition

A: E.=1000cm_1.1
B: Ei=8000cm_1.

SCCP transition probabilities as a function of the impact 

parameter, b, for HF-HF collisions at E^=8000cm \

A: (0,0)->(l,l) transition.

B: (l,l)->(0,2) transition.

Figure 7.6: As 7.5

A: (0,0)-7(0,2) transition.

B: (2,2)-*(3,3) transition. 

C: (5,l)-?(2,2) transition.
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Figure J.J: As 7.5

A: resonant (0,l)-?(l,0) transition 

B: resonant (2,l)-'>(l,2) transition

Figure 7.8: Weighted correspondnece principle transition probabilities 

b P(b) as a function of the impact parameter b, for the 

(0,0) ->(l,l) transition in HF-HF collisions at E^=1000cm 1 .

CC and BA from DePristo and Alexander (1977)»

•: FOCP,

Along the top we show the rotational quantum number J  5 b/fe,

where k is the wave number. The values of J indicated

in the graph correspond to the actual values at which the

CC calculations were performed. The right hand scale shows 
CC(2J+l)Pj . Abbreviations are explained in the text.

Figure 7.9: As 7.8 for E^=8000cm \

Figure 7-10: Transition probabilities for the (0,0)->(l,l) transition

at E^=500cm ^ for HC1-HC1 collisions, as a function of the 

reduced impact parameter p.

The broken curve shows the first-order approximation of the 

PRS results, and • corresponds to the full PRS results 

(Hashi et.al., 1978).

At the top of the graph we show the corresponding impact 

parameters in aQ .

Abbreviations are explained in the text.

Figure 7.11: Weighted transition probabilities as a function of the impact 

parameter b, for the (0,0)-*(0,2) transition at E^=8000cm 1 

for HF-HF collisions.

Abbreviations are explained in the text.

CT1 and CT2 from Alper et.al. (1978)

CC from DePristo and Alexander (1977).
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Figure 7-12: As 7.11 for the (l,l)-?(0,2) transition at E^=1000cm 1 .

Figure 7-13: Weighted transition probabilities as a function of the impact 

parameter b, for the (0,0)-»(l,l) transition at Ei=8000cm”1  

for HF-HF collisions.

Abbreviations are explained in the text.

ACS and TDSA from Alexander and DePristo (1979)•

Figure 7.1^: Rotational inelastic cross sections (a.u.) as a function 

of the initial relative velocity \T .

• SCCP for HC1-HC1 collisions,

o SCCP for HF-HF collisions.

a PRS for HC1-HC1 collisions, Hashi et.al. (1978).

A PRS for HF-HF collisions, Hashi et.al. (1978).

0 CC for HF-HF collisions using basis B3, Alexander (1980),
b

(Note: values at S  and 7x10 (a. u. ) from DePristo

and Alexander 1977)•

B CC for HF-HF collisions using basis B5, Alexander (1980), 

(Note: value at v = 7xlOi*(a. a*. ) from DePristo and 

Alexander (1977) using basis Bit).

6 CT1, Alder et.al. (1978)

8 CT2, Alder et.al. (1978).

■ ACS, Alexander and DePristo (1979).

correspond to the (0,0)->(l,l) transition 

--- correspond to the (l,l)-> (0,2) transition.

Basis Rotor levels

B3 

Bit

B5

(0 ,0 ) ;  (1 ,1 ) ; (0 ,2) ;  (2 ,2)

(0 ,0 ); (1 ,1 ); (0 ,2 ); (2 ,2 ); (1 ,3 ); (3,3)

(0 ,0 ); (1 ,1 ); (0 ,2 ); (2 ,2 ); (1 ,3 ); (3 ,3 ); (0,U ); (2,1*)
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Figure 7.5
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Figure 7.6
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CHAPTER 8

CORRESPONDENCE PRINCIPLE EQUIVALENTS OF SOME 

DECOUPLING APPROXIMATIONS

8.1 Introduction

Although in the SCCP the computational effort is largely 

independent of the excitation of the rotors, the multidimensional 

character of the average in eq. (6.12) can make the calculation of 

rotationally inelastic cross sections very expensive. Consequently, 

it is important to look for further approximations, which maintain 

the basic SCCP assumptions while easing the computational effort.

This is normally done by making, within the framework of SCCP, 

approximations similar to those made in deriving some of the current 

decoupling approximations (Dickinson and Richards 1977, 1978).

In this chapter we investigate three different approximations 

as applied to the problem studied in this work: the body-fixed 

correspondence principle (BFCP) and M-conserving correspondence 

principle (MCCP) of Dickinson and Richards (1977 and 1978 respectively), 

and the decoupled L-dominant correspondence principle (DLDCP). The 

latter makes approximations similar to the decoupled L-dominant 

approximation (DLD) of DePristo and Alexander (1976), and it has been 

developed in this work for the first time.

In sections 8.2, 8.3 and 8.1* we present the BFCP, MCCP and 

DLDCP approximations respectively. In section 8.5 we discuss 

briefly modifications to the numerical techniques employed for the 

full problem. Our results and discussion are presented in section 8.6.
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The Body-fixed correspondence principle

8.2.1 Theory

To obtain the body-fixed correspondence principle (BFCP) 

we derive the SCCP equations in a rotating frame of reference OX'Y'Z', 

with origin 0 in the centre of mass of molecule 1, and in which the OZ' 

axis always lies along R, the vector joining the centre of masses of 

the colliding molecules (Dickinson and Richards 1977). The 

orientation of the i-th rotor in the OX'Y'Z' frame is described by
• » l

the Euler angles °(.; / /3,' / o7 (Edmonds I960,p.7), which have the same 

significance as in section h.2. Since OZ'Y'Z' is rotating, Coriolis 

and centrifugal terms arise. The BFCP retains only the centrifugal 

terms for the relative motion. The approximate body-fixed Hamiltonian 

H3", is now written as:

where H ol is the Hamiltonian for a free rotor, P^ is the momentum

The interaction potential V( R  / , Xl'̂  ) in OX'Y'Z' is expanded

From the properties of the Clebsh-Gordan coefficients (Edmonds I960, 

P.38), one sees that /a , = - , and from the definition of the

of the relative motion, and fl- = (©. ( /S>\ t o(;) with Qt- = ^ 1

as

matrix elementsmatrix elements (Edmonds I960, p.55), one sees that the

potential (8.2) depends only on the difference 3 °(| ~
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Proceeding as in section 5.2 we obtain the BFCP change of the action

abf.

The action (8.3) yields the BFCP approximation to the transition 

amplitude from levels ( j, , Ji ) to levels ( j/ ( ):

Clearly, the BFCP approximation yields two major simplifications. 

Firstly, the average over orientation (8.6) is now three-dimensional 

rather than four-dimensional, and secondly, the number of 

trajectory integrals is greatly reduced. Each trajectory integral 

is itself simpler to calculate since only the relative radial motion 

is required.

8.2.2 The body-fixed correspondence principle error

The BFCP action (8.3) can also be obtained by making the

approximation V  * U  in the space fixed action (5.11*),
*,\00

and then making ^  = q • one sees directly that

(8.3)

where

(8.>t)

o

and the degeneracy-averaged BFCP transition probability is

the BFCP is valid when the V
V«.

integrals are independent
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of jU.u  = //I, + jx.x • Consequently, we define the relative 

percentage error:

EBF U,b) = too f I -  V U,l) (K/,b)/\/(A,0(w b) 1
Vi/*.! ' *- '' NV 1o ^ J > (8.7)

where VJ = \),vJ, + ^  K/t . Equation (8.7) is a measure of the BFCP 

error. For h=0 the BFCP principle is exact since re t )  = o (see 

eq. (5.1l)), hut as the impact parameter increases so does the body- 

fixed error (8.7). Thus the BFCP approximation is expected to he 

accurate for short range collisions.

8.2.3 The body-fixed correspondence principle equations for the 

dipole-dipole interaction
BFProceeding as in section 6.2 we obtain for K

A (t f,, A1, ia , K, oil) + i+) + R_sin(£'+ S.) t
(8.8a)

with

R.*SffGI)*P , R --© (£ )V

f 1 = . f- -I ($ £ ± 1 \ C  _ L -I
o+ to-h. J o_ tan. VsinS'/

> }

where P and P 1 are defined by equation (6.6) and 5^  ̂ are

the primed equivalents of (6.3). The BFCP transition amplitude,

(8.8b)

(8.8c)

„BFCP .S , is

<1BFC^ . \ + n.o.j t  -r
^  CJ,J, ¿ j j  ~ G  - '„ .( • O  , (8.9)

where n+ and n_ are given by (6.10). From the integer condition 

for n+ ,n_ one sees that BFCP gives the same selection rules (6.11a).

The BFCP transition probability (8.6) must be evaluated numerically.

-l («+.<£ +
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As in the SCCP, the first-order BFCP probability, PF0BF, ¿s 
obtained in closed form:

where st- = Ajh .

For a resonant transition, the straight-line approximation 
is valid for large impact parameters. In this case we obtain

correspondence principle first-order probabilities is obtained using 

(6.1 7 ) and (6.l8):

Thus for a resonant transition in the straight-line limit the BFCP 

is significantly in error. The relation (8.1l) is also valid for 

sudden collisions at large impact parameters.

8.3.1 Theory

Let us consider the collision being described in a space-fixed 

frame OXYZ, with origin 0 in the centre of mass of the molecule 1, 

the OZ axis lying in the plane of the orbit followed by molecule 2 

and passing through the point of closest approach. The X and Y axes 

are arbitrary. The M-conserving approximation (MC) of Dickinson and 

Richards (1978) is obtained when the coupling is described in this 

frame, under the condition that the Z component of the rotational 

angular momentum, M, is conserved. The basis of MC was suggested by 

Takayanagi (1959)* and it has been applied in the TDCC framework to 

atom-molecule (Saha and Guha 1975)* and molecule-molecule (Bhattacharyya 

and Saha 1978) collisions.

E (o,b) = 66.6, and the relation between the full and body-fixed 
± 2.

(8 .11)

8.3 The M-conserving correspondence principle
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For convenience we express the change of the action in OXYZ in 

terms of the variables 2^  ̂ y o<._ as given by (6.3). Proceeding

as in section 5.2 we obtain

A ( a a , a ) Z _  Y —  N v  A/t/ta )
Hi ^

hp T./**- J HKi/'ij.
where

r CD

i / (An) _ J_

V «  '  *
d-t C (r) y  "  ( d j )  e 'Vt

AI** A u M n  ; (8.13)

with V =  d,tf( +i)t W,. and jW(l - /a, + /ax • Taking the trajectory 

in the OXZ plane along the OX axis the trajectory integral (8.13) is 

written as
rO

v.
CA.0 _ J!_

^ j

rCO

d t  CA x ( R) Y  Ce#T>) e  *  + d t  CA|a(r) Y  (e, o) el **
' J0

e . (8.1U)

If "h'mj is the Z component of the i-th rotor angular 

momentum, we can express the M-conserving condition

= tn[~-Vn, + -<mt = A'vn, +  A lm l = O .

Using (5.15) we obtain for the change in the Z component of the 

rotational angular momentum, ^ ̂  M  , due to the collision

Thus to obtain an approximation in which M is conserved we must 

approximate the action (8.13) by an action independent of A

(8.15)

(8.16)

MC

, MC

Xi X». Mi 4 ¿x Â,i)

(8.17)
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where

V (An) i
i), ̂a.o

ivC/tdt CaxCk)P (cose) e*1*1 Aa (8.18 )

Here is a Legendre polynomial (Edmonds i960, p,22). The

action (8.18), when used in (5.5), yields the M-conserving 

correspondence principle approximation (MCCP) to the transition 

amplitude, gMCCP, The MCCP transition probability, pMCCP5 is now 

obtained averaging over /S, / /3* &noL oC _  ;

^  r1

P T i j W i i r i t J  " (8.19)
4 l  l

As the BFCP approximation, the MCCP reduces the dimension 

o f the average over orientation by one degree o f freedom , and requires 

many fewer trajectory integrals V. This approximation is  exact only

i f  V “ ' °  =  0 ,  u„*0.
Adi/** “

A subsidiary approximation in  the same idea of the MCCP has

been studied by Bhattacharyya et.al., (1977). They imposed the 

condition that ^Yn- a- - '>2- , is individually conserved, i.e.

Avn, * A Y n A a O . Since the change in ^ vyi,; due to the 

collision is - ^^/'daCi (see eq. 5.15), to obtain an approximation 

in which v n ; is conserved we must approximate the action (8.13) by an
• . , . MCIaction independent of oc,- ( /\ t

A, AIK!
(8.20)
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The action (8.2) yields what we have termed the subsidiary M—conserving 
correspondence principle (SMCCP) to the transition amplitude, sSMCCP. 
The SMCCP transition probability, P , is now

n SMCCP /p .  (' (  \ c SMCtPi*

P Cxi« —>jVjV) = ( e t ) €U,ki'Sl)j:\clCcosi2,) cLCvstylS .4 J
Thus the SMCCP introduces a further reduction in the dimension of the 

average over orientation (8.19). This approximation is exact only

if V =0 u  OT U ± 0  ' A 1/ 0T r-t r  V .

l

8 .21)

8.3.2 The M-conserving correspondence principle error

From the discussion above one sees that the action (8.17) is 

obtained directly from (8.12) by making

Thus we define -MC
t. , as a measure of the MCCP error: 
Ji^.x

„ MC
E. = (8.22)

where

= [
V o  L(»ui-OAr]“  . (8.23)

For b=0 we have 0 = 0  and = O ^ ^ t h e  MCCP approximation is

then expected to be good for small impact parameters. In general by 

setting 0 = 0  one sees that MCCP reduces to the BFCP approximation.

Thus we expect the domain of validity of the M-conserving approximation 

to include that of the BFCP approximation. However, when 0 #  0 , the 

M-conserving approximation to the action is different, as it takes 

some account of the curvature of the orbit, through V
V i *

An error similar to (8.22) can be defined for the SMCCP 

approximation by imposing the condition yu, or jxt 0 • In general
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we do not expect the accuracy of this approximation to be good because 

the terms of the action (8.17) which are eliminated to obtain (8.20) 

are of the same order as those retained.

8.3.3 The M-eonserving correspondence principle equations for the 

dipole-dipole interaction

Proceeding as in sections (6.1) and (6.2), the application 

of MCCP to the dipole-dipole interaction leads to the equations:

p Cos j  =. ~  [  coso(_ |  sinfa/n) cos (ft‘/z) + sin(ft*/:Cjj + s/h/3 sm/3̂  }

p 5,Vi? = ^  Sin -s in (r3 ,/z )C 0 S A ( f c / ! l )+  U>s(/3'/ty s i h ( f r / i ) j ^

p ' cos S ' = y  [cosit_ | C os (ft/a) C os(fa/z) + sin (ft'/z) - sin/3, sin fit ] ̂

p1 sin f  = ^  S\hoL_ cos (Q2h)

The change of the action is

A" P= ^  P s i n  (tf++ i ) + n  P ' s l n  + *') ,

which yields the MCCP transition amplitude

(8.25)

<-MCcP
^  Ci(J; , j;j;) * e

¿ ( • M  +  M ' ) J (tr P) J  CiV P ) . ( 8 . 2 6 )

As the BFCP approximation, the MCCP satisfies the selection rules
MCCP(6.11a). The transition probability P , must be evaluated 

numerically.
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m

For the SMCCP the action (8.25) reduces to 

S M  CCp _  _
A = R cos t R, cos

where

0 JL .Ml0 • » ■ a o '  3 ^ -10
(V = /fir 5in A  sin/»t ; K. = 4ir -yj si'n/3,&in[3z

The SMCCP transition probability is now

(8.27a)

(8.27b)

J  (a) J h Cr’) .
h -

(8 .28)

The first-order MCCP transition probability, pFOMC is

IsiI 3 15* I = I (8.29)

where 0 is given by (8.23). It is convenient, to compare

with the full first-order correspondence principle, to express the

trajectory integrals (8.13) in terms of the V
^ /*. pi

given by

(5.1 3 ). From (8.13) we obtain:

v 1" ]/. + y  + 1 -  V (8.30a)
V t O lb V.1T ' v ,  n 3 ^ ^ ,0 0 .1 ,

«

II zV*■ yi,Jxoo V - V 1»Viii J (8.30b)
J

V ,
. L / IS V/l 
" 8 [ W J

T1*
>

S -  v u „  ] . (8.30c)

It is interesting to notice that when the BFCP approximation is

valid V,. . . „ = V =  0 , and MCCP is exact.>Wi±a V tti ’
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8.*+ The decoupled-L-dominant correspondence principle 

8.U.1 Theory

In this section we derive modified SCCP equations using 

approximations similar to those made in the quantal dominant-L-decoupling 

approximation (DLD) (DePristo and Alexander 1976). Consequently, the 

frame of reference is the usual space-fixed frame as described in 

section *+.2

The DID approximation of DePristo and Alexander (1976) is based 

on the observation that at large J, the quantum number of the total 

angular momentum, the matrix elements, V ^  (Si , j'i’ ; J ) , of

standard close coupling are dominated by terms with },11< J . Here 

represents the triple index A,Ai A|t (Ji Jt Jii) . For the 

molecule-molecule case the index A  = is introduced, with

0 ^ A  ^ 2. • From the asymptotic behaviour of the product of a

3-j and 6-j symbols (Edmonds I960, p.*+6 and p.92 respectively), a 

decoupling in A  is found. Thus DLD makes A  - A  , which yields

A j ia. =  A j ( +  A j t =  ~ . (8.3*0

Using (5.16) in (8.3*+) we have that the DLD condition in our approach 

can be written as

Am , + A = A j ( + A A
(8.35)

To see the impact of (8.23) in the SCCP equations we write the

transition amplitude (5>l) as 
rlV

c i t c U . c U ^ c U .  +

+ - AUX, * . / <0| ] ; (8.36a)
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where A j ± = ± £j ; Aryi + = & vy\, ± A . (8.36b)

From (8.36a) one sees that to satisfy (8.35) we must have 

A * A + f-> fii,/3z, <_) . Thus we define

OLD r̂-
A (**,*., a, * , * tJ«gs 2 _  Z__ IN N f\)

A., Xa. Mi;* >.«.wi2 M i  1 ' '

’ { ¿ J M  / Af  <8-87>
.ill "- *7*4 "IJ. 7*V*. V 1

where - 1). + and

.00

\/a '^ - A  ott C CR)cos[( ,̂i<(W1^ )t -^ l1’1]
U K  On " A,A* l J * (8 .38)

The action (8.37) yields the decoupled-L-dominant correspondence
DLDCPprinciple approximation (DLDCP) to the transition amplitude, S

Using (8.37) in (8.36a) one notices that the o( + dependence of i/ji)

is simply an overall phase, so it can be ignored, Then we define

, DLD
A = A (<rH * 1 , 0 , , /3*| 0, o l_) .

(8 .39)
DLDCPThe DLDCP transition probability, P , is now obtained averaging

in <*■_ , /3i ahoi. fix. :
,jfT -<

^ ) ‘ (e.) 8TT ^

f  A

J
oUcos/3,) cUcoS/3,) | 5 CLDC,,| (8.U0a)

where

,»IT

6DLDCP = cK e*p[<■ {aj+ *vt + ¿j/-4 “  ̂| . (8,1+ob)
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Thus the DLDCP reduces the average over orientation by one degree

of freedom and requires fewer V CAli) integrals. This
v*, Jx. /*•!

approximation is exact only if V ( An) = 0  h =  /k, + u , 4 *•« .
¿1 jU, JUt ’ I 1 z

Here V (A|t-) is defined by (5.13).

8.1*.2 The decoupled-L-dominant correspondence principle error 

The action (8.37) can also he obtained by making, in the 

action (5.ll+), V (A|*̂  — q u i  J . Thus the quantity

E ^  O . b )  = 1 0 0 V u,z)C ^ b ) / v (A,i) (vt/, b)
( 8 .1*1)

is a measure of the DLDCP error. Here we put V iA|l) - N/^A|1)

For b=0 we have V CA|,-)-  \J (A|*) ; since in this limit DLDCP
»AMit '’A o

retains only V ^ ' O  we expect this approximation to be largely

in error. In general the DLDCP approximation is not good for small 

impact parameters. As b increases DLDCP should improve. However, 

this improvement is not general, and we show below that it depends 

on the nature of the transition.

8.1*.3 The decoupled-L-dominant correspondence principle equations 

for the dipole-dipole interaction

Proceeding as in sections (6.1) and (6.2) we obtain the 

equations

R sin € = V,ti COSZ ((3,/z) COSl ( f t z / z )  ,

Pcos % = £ cos ^  | co s (4 /z) cos (fa/z) + W  (/Vi)sin ( fa f y j-  smfl, S'V*J }

f  s.‘m ? = ~  sin <  {  cosl ( f t / z )  (8^ 2)
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which yield the action:

Â <A, if-, fi. ,A, < )  - jfi (if-)'4  [ R cos A + pcos <v - ?)J _
The DLDCP transition amplitude is now

(8.1*3)

< DLDtp t  T
cJ = e " '  J  C r O  J  ( (8.1*l*a)

where

p = — ~ ~  ^  p p = _ 6 /  is y / *  _
3 i Ï Ï  ^STr y a  ; a .  3 ^  (^ r-J  p  _ ( 8. l*l+b )

As the other approximations presented above, the DLDCP approximation 

satisfies the selection rules (6.11a). The DLDCP transition 

probability must be evaluated numerically.
FODT T)The first-order DLDCP transition probability, P , is

‘ (li Jt—  ̂ii (tj.) L  (j/JtJJt.) lOZ’V TT* ^ Ĉ i/S»)  ̂ Ŝ,Sj Sii ' ; (8.1*5a)

is, I = is» I = /

where Su ~ s, + sz , and

S u , Si) ~

2. ‘

f Sgh (S|) +  S g l(s i)  

^  sgh (*J - (Sa)

(8.1* 5b)

For a resonant transition in the straight-line limit we obtain 
DLDE =33.3, and the relation between the FODLD and FOCP isH  ±Z

pPOP*-P _ p F0CP
' ^i4t f ' tjiSx (8 .1*6 )

Thus for a resonant transition in the straight-line limit DLDCP 

gives the same first-order result as the MCCP approximation. This 

can be obtained directly by just applying the MCCP and DLDCP conditions 

to the trajectory integrals in the FOCP probability (6.1**).
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In contrast to the MCCP approximation the relation (8.U6) 

is valid for distant sudden collisions only when sgn(s^)isgn(sr,).

For transitions where sgnis^^sgnisg) the FODLD approximation retains 

only +| ¿ 2, * and the relation between FOCP and FODLD for sudden

collisions in the straight-line limit is

which shows that the FODLD is largely in error.

For adiabatic collisions we must also consider two types 

of transition:

the error (8.1*1), in the straight-line limit is,

where Z is the adiabaticity parameter. Clearly the elimination

Since for adiabatic collisions Z »  1 the errors are small. Thus 

for adiabatic collisions in the straight-line limit FODLD should 

be accurate.

From our discussion above we infer that for distant collisions

DLDCP is reasonable accurate to describe: l) a first-order Allowed 

resonant transition, and 2) a first-order allowed transition with

(8.1*7)

A) when sgnis^^sgnfsg) FODLD retains only V ±1 I 0 » an<̂

of V produces large errors, and FODLD is not good.T J X I Î6

B) when sgn(s1 )=sgn(s2 ) FODLD retains only V+| + j

and the error (8.1*1), in the straight-line limit, is now

(8.1*9)

a. • However, DLDCP is largely in error to describe:
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3) a first-order allowed transition with A j ( =- ; w  =£ 0 .

The larger error in 3) is because DLDCP retains only the trajectory 

integral V . , i.e. it considers the collision with 4 w , + Am, = oAll ~AJ1 O ' 1

8.5 Numerical techniques

The main computational feature of all the approximations 

presented above, is that they reduce the dimension of the average 

to obtain the transition probability. To make full use of this

feature it is then necessary to modify the computer program used to 

evaluate SCCP probabilities and cross sections. In this section we 

discuss the main changes to the numerical techniques described in 

section 6.1*. First, we describe the numerical techniques used to 

make MCCP and SMCCP calculations.

8.5.1 Evaluation of the V. .____________________vi Mu-______

No attempt was made to evaluate directly the V,
Vt/Ui v

integrals. Thus the usual integrals (5.13) are evaluated, and 

the V, are obtained using equations (8.30).

8.5.2 Evaluation of the transition amplitude

Given the V . . „ the calculation of P and P' for specifiedvi /An,
values of oi_ and /2c (i=l,2) is straightforward. The Ĵ , Bessel

functions are evaluated as described in subsection 6.1*.2.

8.5.3 Evaluation of the transition probability

Since the transition amplitude is now evaluated in terms of 

c^_ and , the integrations over oLx and oLt was replaced by

an integral over oL . As before Clenshaw-Curtis quadratures were 

used. The accuracy of the integration was checked by using the
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approximation V . . u u - V  , for which MCCP reduces to thevlv% l*ipi ri/,v±0 0
BFCP approximation; then we compare with BFCP results performed 

with the SCCP program described in section 6.1*. The differences 

were less than 0.5$• Since during tests the program described here 

run much faster than the SCCP program, it was also used to perform 

the BFCP calculations. When performing SMCCP calculations a 

flag was set to save the integration over ,

8.5.1* Evaluation of the cross section

To evaluate the cross sections we use the same techniques 

described in subsection 6.U .U.

The program implemented using the techniques described above 

was used to evaluate MCCP, SMCCP and BFCP rotationally inelastic 

cross sections. The savings in CPU time were dramatic, and the 

program proved to be up to four times faster - for MCCP calculations - 

and up to five times faster - for SMCCP and BFCP calculations - than 

equivalent SCCP calculations.

No special program was implemented to evaluate DLDCP cross 

sections. The calculations were performed with the SCCP program, 

•where we made V . —  O w -t J . Since the DLDCP transition

amplitude is independent of o C , the integrand in (6.12) is smoother 

and there is some savings of CPU time. For some DLDCP calculations 

the program run up to 1.5 times faster than for the equivalent SCCP 

calculations.

8.6 Numerical results and discussion

In this section we present numerical results obtained using 

the BFCP, MCCP, SMCCP and DLDCP approximations. Our aim is to study 

the accuracy of above approximations and consequently we compare with
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potential which was too strong, we do not compare with the quantal

coupled states (CS) and DLD results for HF—HF collisions presented by 
CM if)

DePristo and Alexander* As before only the dipole-dipole interaction 

is considered.

8.6.1 The error terms

Before we discuss the transition probabilities,it is convenient
. 8 F  MCto compare some numerical values of the errors E , . , E

'WxMn- *1 Mit
O ^ BF DLDand E . In table 8.1 we show the behaviour of E and E

for various impact parameters; the transition is (0,0)-»(l,l) in

HF-HF co llis ion s.

The results confirm our earlier predictions. For b=0 the

BFCP approximation is exact, but as the impact parameter increases 
BFso does E . On the other hand DLDCP has the largest error at b=0,

BF BFand decreases as b increases. We notice that E, and E , ^  have

opposite signs. As pointed out by Clark et.al. (1977), this suggests

that some cancellation of the errors due to the BFCP approximation is

likely in calculating orientation-averaged transition probabilities.

In table 8.1 we also show the effects of varying the energy.
BF DLDWe notice that as the energy increases E increases, while E 

decreases. The decrease of E ^ ^  is valid for adiabatic collisions

only; if the energy increase makes the collision to become sudden,
. DLD DLDat large impact parameters E ,,_ a—>100 and E(|—  > 300. For the same

BFlimit we have that E, — > 66.6 (see section 8.2.3). ti tz
n BF MC DLDIn table 8.2 we show E , E and E for various impact

. • . / \ / \ DLD •parameters; the transition is (1,1) —>(0,2). As expected E is

large showing that for this transition DLDCP is largely in error.

Since our results were obtained using a spherical
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We notice that c  and E )ta have opposite signs, suggesting as before
• BF BFcancellation of errors. The situation is similar for E „ and E

h 2 l-l-t
The comparison in table 8.2 suggests that almost everywhere the MCCP 

is better than the BFCP.

8.6.2. The transition probability

In table 8.3 we show SCCP, BFCP, and MCCP transition 

probabilities for various impact parameters; the transitions are 

(0,0)-7(1,1) at Ei=500cm“1 and (0,0) (0,2) at Ei=8000cm_1 in HF-HF

collisions. For b=0 both BFCP and MCCP are exact, but as the 

impact parameter increases they deviate from the exact result.

Overall the MCCP approximation is better than BFCP, and maintains a 

better agreement with SCCP in the whole range of impact parameters.

In table 8.U we show SCCP, MCCP and DLDCP transition probabilities 

for the (l,l)->(0,2) and (0,0)—>(l,l) transitions at E^=8000cm .

For the (l,l)—>(0,2) transition the MCCP approximation is much better 

than DLDCP. For the smaller impact parameters DLDCP overestimates 

the transition probability by one order of magnitude; as the impact 

parameter increases the agreement between SCCP and DLDCP becomes better 

but still DLDCP is largely in error. For the (0,0)->(l,l) transition 

at small impact parameters MCCP is better than DLDCP, which gives 

probabilities largely overestimated. As the impact parameter increases 

DLDCP improves dramatically and at the larger impact parameters 

becomes more accurate than MCCP, with errors smaller than 7%. These 

results confirm our earlier predictions that DLDCP fails to describe 

properly a collision where an excitation-deexcitation occurs, while 

is good for collisions in which the two molecules are excited or 

deexcited.
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An interesting comparison is presented in figure 8.1. There 

we show SCCP, MCCP, SMCCP and the classical path results of 

Bhattacharyya et.al., (1977), for the (0,1)-»(l,0) resonant transition 

in HC1-HC1 collisions at E^=201.71cm 1 . The results of 

Bhattacharyya et.al., correspond to a subsidiary M-conserving 

calculation in the time-dependent close coupling framework (TDCC).

The comparison shows that at large impact parameters the shape of 

their probability is similar to the shape of the correspondence 

principle probability, although it decreases faster than the SCCP,

MCCP and SMCCP probabilities. The comparison for small impact 

parameters is not valid as the potential used by Bhattacharyya et.al. 

(1977) included the quadrupolar interaction.

We also show in figure 8.1 the results, at large impact 

parameters, of Bhattacharyya and Saha (1978). These results 

correspond to a M-conserving calculation in the TDCC framework.

Although for most of the impact parameters these M-conserving 

probabilities are larger than the correspondence principle results, 

they decrease to become smaller than MCCP.

8.6.3 The cross section

In table 8.5 we show SCCP, BFCP, MCCP, SMCCP and DLDCP 

rotationally inelastic cross sections for the (2,2)-»(3,3), (0,0)— >(l,l) 

and (H,2)—>(3,3) transitions, at initial energies E^=l+000 - 10000cm 1 , 

in HF-HF collisions. For the more adiabatic collisions we notice that 

the BFCP approximation agrees with SCCP within 10$. As the energy 

increases, or W decreases, BFCP becomes less accurate and consistently 

underestimates the cross section. These results are consistent with 

our earlier predictions on BFCP being accurate for short-range collisions 

since the more adiabatic collisions are the shorter-ranged.



The SMC CP approximation overestimates the cross sections for 

the (2,2)—?(3,3) transition at E^=H000 — 8000cm , As the collisions

become less adiabatic SMCCP consistently underestimates the cross 

sections. In general, for the transitions presented in table 8.5, 

the SMCCP is better than the BFCP approximation.

The DLDCP approximation underestimates the cross section for 

the (2,2)—>(3,3) transition at E M O O O c m  1 by more than a factor of 2.

For the other energies DLDCP agrees well with SCCP, giving errors of 

less than 10$. For the (0,0)— >(l,l) transition the errors of 

DLDCP, for all the energies considered here, are less than 6$. For 

the (U,2)->(3,3) transition however, the DLDCP approximation consistently 

underestimates the cross section, and give errors of more than 50$.

The more consistent approximation presented in table 8.5 is 

the MCCP approximation. For the (2,2)-*(3,3) and (0,0)->(l,l) 

transitions MCCP consistently gives errors smaller than 6$. while for 

the (U,2)—>(3,3) transition agrees with SCCP within 15$.

In table 8.6 we show cross sections for HC1-HC1 collisions at 

E.=201.71 and 500cm 1 ; the transitions are (0,0)-?(2,2) and (0,0)-»(l,l) 

For the (0,0)—> (2,2) transition the BFCP approximation is the better of 

all the approximations, while SMCCP is the worst. The MCCP approximation 

overestimates the cross section and gives errors between 25$ and 30$.

The DLDCP approximation is better than MCCP at the larger energy, 

but MCCP is better for the smaller .

For the (0,0)-»(l,l) transition the body-fixed approximation 

is good at 201.71cm"1, but underestimates by more than a factor of 

two the cross section at E£=500cm 1 . In general MCCP and DLDCP 

give errors smaller than 30$, and SMCCP has errors of 36$ and 12$ 

for E^=201.71 and 500 respectively.
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In table 8.6 we also show the cross sections for the resonant 

transition (0 ,1 )- »  (1,0) at E. = 201.71,500 and 1000 cm"1. For this 

sudden like transition the BFCP overestimates the cross section, and 

this overestimation increases as the energy increases. As we showed 

in subsection 8.2.3 in the sudden limit for distant collisions the 

FOBF probability is three times the FOCP probability. The MCCP and 

DLD, at Ê  = 201.71 and 500 cm 1 , agree between them within 1%. At 

Ê  = 1000 cm 1 the MCCP has the better agreement with SCCP. The 

SMCCP approximation underestimates the cross sections and gives errors 

up to 3b%.

8.6.it Conclusions

In earlier sections we have derived the body-fixed, the 

M-conserving and the decoupled-L-dominant versions of the strong 

coupling correspondence principle. We have termed them BFCP, MCCP 

and DLDCP respectively. A subsidiary approximation in the spirit of 

the MCCP has also been derived; we termed it SMCCP. These 

correspondence principle decoupling approximations have been applied 

to the rotational excitation of two linear molecules. The equations 

for the dipole-dipole interaction were obtained for each of above 

approximations and some interesting limits were studied. In 

particular we showed the relation between the BFCP and MCCP 

approximations, and the first-order result for each approximation was 

studied. Finally we presented, earlier in this section, some numerical 

results for rotationally inelastic transition probabilities and cross 

sections in rotor-rotor collisions.

The goal of this work was not to make a detailed study on the 

validity of the above approximations, but to show how they can be 

extended to the rotor-rotor collision problem, and make preliminary 

findings on the deviation of these approximations from the full SCCP
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result. Another of our aims was also to look for feasible ways of 

easing the computational effort of the SCCP approximation,

Our findings were both encouraging and rewarding. We found 

that the BFCP approximation is accurate within 10# to describe short- 

range adiabatic collisions. This suggests that, as in the atom- 

rotor case (Dickinson and Richards 1977), the BFCP is adequate to 

describe rotor-rotor collisions dominated by a strong short-range 

inisotropy. We have also found that in general the MCCP approximation 

is valid wherever the BFCP is valid, but that MCCP is significantly 

better for distant adiabatic, as well as sudden collisions. Our results 

show that the MCCP produces significant savings in computations of 

probabilities and cross sections with little loss of accuracy. Some 

MCCP cross sections, with deviations from the exact SCCP result of less 

than 10#, were obtained in up to a fourth the CPU time spent to calculate 

the corresponding SCCP cross section.

The DLDCP results show that for close collisions (small b) this 

approximation is largely in error. This suggests that, in contrast to 

the BFCP, the DLDCP approximation is not adequate for collisions 

dominated by a strong short-range anisotropy. For distant collisions 

the situation tends to improve, and reasonably good agreement with the 

exact SCCP result was obtained for a resonant transition, and for 

transitions satisfying sgn(A^) = sgn(a^) . There is however,

one non-resonant transition for which the DLD approximation has proved 

to be grossly in error: ( ^ +  .

The large error arises from the DLD condition (8.35)» which, for this 

transition, makes A m , . Consequently, for long distance 

collisions DLD retains only trajectory integrals associated with 

Aw\, + (iw»l=o transitions. Since these integrals are exact for head- 

on collisions, the DLDCP at large b is largely in error.
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Clearly, much more work needs to be done on assessing the 

va lid ity  o f the semiclassical approximations presented here in rotor- 

rotor collis ions. Since the domain o f va lid ity  o f the SCCP should 

include those of the BFCP, MCCP, SMCCP and DLDCP approximations, i t  

seems necessary, as a f ir s t  stage, to determine such a domain. Then 

a study o f rotor-rotor co llis ions using the SCCP and these corres­

pondence principle decoupling approximations (CPD) can prove 

convenient to assess the ranges o f va lid ity  and computational 

convenience o f the CPD approximations. The d ifferen t ranges of 

va lid ity  and computational conveniences suggest that a combination of 

some of the CPD approximations can provide a useful too l to calculate 

rotationally inelastic  cross sections and rates. Surely, such a tool 

may be appreciated by some theoretiti&ns and experimentalists. There

is much to be done. ..



CAPTIONS TO TABLES 8.1 - 8.6

TABLE 8.1

Percentage error as defined in the text. The parameters 

correspond to the (0,0)-» (l,l) transition in HF - HF 

collisions.

TABLE 8.2

As table 8.1 for the (l,l)-> (0,2) transition at 

E. = 8000 cm“1 .l

TABLE 8.3

SCCP, BFCP and MCCP transition probabilities for 

HF - HF collisions.

TABLE 8.U

SCCP, MCCP and DLDCP transition probabilities in 

HF - HF collisions at E. = 8000 cm 1 .l

TABLE 8.5

SCCP, BFCP, MCCP, SMCCP and DLDCP cross sections for 

HF - HF collisions.

TABLE 8.6

As table 8.5 for HC1 - HC1 collisions.
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Table 8.3

b(ao) E.(cm
A. ( j i >J2^

p SC C P p BFCP pMCCP

0 500 (0,0) -> (1,1) 4.9-3 4.9-3 4.9-3
2 5.1-3 4.9-3 4.8-3

4 5.3-3 4.9-3 5.2-3

6 6.1-3 5.0-3 5.7-3

8 9.1-3 7.2-3 1.0-2

10 1.2-2 9.3-3 1.5-2

11 1.3-2 9.5-3 1.6-2

0 8000 (0,0) (0,2) 1.1-2 1.1-2 1.1-2

2 1.05-2 1.08-2 1.09-2

4 1.1-2 9.8-3 1.1-2

6 1.4-2 9.3-3 1.3-2

8 2.0-2 9.6-3 1.97-2

10 5.5-2 9.1-2 9.2-2

12 5.6-2 3.5-2 5.8-2

14 3.1-2 6.7-3 1.7-2

16 1.0-2 1.1-3 4.1-3
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CAPTION TO FIGURE 8.1

Correspondence principle transition probabilities as functions 

of the impact parameter b, for the resonant (0,l)-*(l,0) transition 

in HC1-HC1 collisions at E.=201.71 cm

____________ : SCCP----------------- . MCCP
---------- ; SMC CP

............ : Subsidiary M-conserving approximation in the TDDC

framework, Battacharayya et.al. (1977). 

oooooooooooo: M-conserving approximation in the TDCC framework, 

Bhattacharayya and Saha (1978).
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Abstract. An impact-parameter method using hyperbolic paths and perturbation theory has been used to calculate rotational-excitation cross sections for polar-ion electron colli­sions. Good agreement with corresponding Coulomb-Born calculations is obtained even close to threshold. The focusing effect of the Coulomb field is shown to be important for close collisions. Previous calculations including the dipole potential only are shown to underestimate substantially the A J = +1 rotational cross section, particularly for weak dipoles. Calculations using the quadrupole interaction only are shown to be unreliable. Cross sections including an empirical estimate of short-range effects have been performed for HD*, CH* and HsO‘ at electron energies up to a few electron volts. 1

1. Introduction

Despite a recent increase in theoretical work on the rotational excitation of molecular 
ions by slow electrons, this process has attracted relatively little attention compared 
to the analogous process in neutral molecules. The measurement of excitation cross 
sections for molecular ions is difficult, but such cross sections are of interest for 
studies of low-temperature partially-ionised gases.

We concentrate here on the excitation of polar molecular ions. Previous work 
on linear ions (Boikova and Ob'edkov 1968, Chu and Dalgarno 1974) has considered 
the transition as due solely to the dipole potential, which has been treated in the 
Coulomb-Born approximation. Following Faisal (1971) and Ray and Barua (1975), 
we use a time-dependent method based on a classical trajectory for the incident 
particle. Employing first-order perturbation theory (fcYtdpt), wc show that, in this 
approach, unphysically low values are used for the transition probability for close 
collisions. The existence of strong rotational coupling in the interaction of slow elec­
trons with Hi is shown by the mixing observed by Herzberg (1970) between two 
Rydberg series of H2 terminating on the J  = 0 and J  = 2 levels of the ground vibra­
tional state of H2+. J  being the rotor quantum number. Fano (1970) has argued 
that this situation should be general in electron molecular-ion collisions.

In the absence of a detailed description of the short-range electronic interactions, 
wc assume a conservative value of the transition probahility in the strong-coupling 
region. This shows that the Coulomb Born approximation almost certainly underesti­
mates significantly the total AJ = ± 1 cross section.

3151
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For symmetric-top ions, we examine the contributions from the quadrupolar inter­
action and we find that the regions for which perturbation theory and the quadrupo­
lar interaction are valid are very limited. We compare also with the work of Ray 
and Barua (1975) on the rotational excitation of HD+ by electrons and positrons. 
They used at short range a truncated form of the long-range anisotropic interaction. 
Since this modification takes little account of the strong coupling occurring for elec­
trons in close encounters their results differ little from the Coulomb-Born values.

In §2, we examine time-dependent perturbation theory for the dipole and quadru­
ple potentials using a hyperbolic classical path for the incident electron. Limiting 
forms for low and high velocities are derived and comparison with the Coulomb-Born 
results confirms the validity of the time-dependent approach. Our simple modification 
to the short-range contribution is made in §3 and compared with other results. Our 
conclusions are presented in §4.

The values of the various molecular parameters needed are collected in table 
1. We use a „ ,  e and m for the Bohr radius, electron charge and mass respectively 
and we use R y for m e*/2h2 * * = 13-6 eV.

Table 1. Table of the molecular data used in this work. A and B are rotational constants. (All values in atomic units.)
Ion D Q A B

ctr 067* ___ ___ 6-46 x 10“!cHD* O'34" l'578b — 102 x 10“*‘HjO* 022d -2-214' 2-85 x KT5r 5-55 x 10“5'
J Green (1973), unpublished work (quoted by Chu and Dalgarno 1974) based on the wavefunction given by Green e t  a l (1972). b Ray and Barua (1975). c Herzberg (1950).

d Moskowitz and Harrison (1965).'Chu (1975).f Derived by Chu (1975) from OH distance and HOH angle calculated by Moskowitz and Harrison (1965).

2. Theory

2.1 . F irst-o rd e r  tim e-dependent p ertu rb a tio n  th e o ry

The rotational state of a symmetric-top molecular ion is characterised by the three 
quantum numbers J .  M  and K . which have their usual significance (Herzberg 1950). 
The corresponding rotational eigenfunctions are given by Edmonds (1960):

V j k m  = [(2 J  +  D/Sk2]1' ^ « ) (2.1)

where 7^* is the matrix element of the operator of finite rotations and ft m ( a ,f l ,y )  
are the Euler angles specifying the orientation of the ion with respect to a space-fixed 
frame.

The asymptotic interaction potential between the molecular ion and the electron 
can be expanded in the form (Chu 1975)

y {r ,  x, ih ) = - e 1/r + £ f/lk(r) VJ*(x. tj>) (2.2)
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where r is the electron distance from the centre of mass of the molecular ion, (y, tp) 
specify the direction of the incident electron with respect to the symmetry axis of 
the molecular ion and Y lk is the spherical harmonic (Edmonds 1960). In symmetric-top 
molecular ions with symmetry C3v the term vlk vanishes unless \k\ = 3n (n = 0, 1,2, . ..). 
In this work, we are particularly interested in the first two non-vanishing terms. 
These are (Itiwaka 1971)

p D  e O
i>i0(r) = -(4n/3)1/2 Ciolr) = — (4tt/5),/2 ~  (2.3)

where D and Q are the dipole and quadrupole moments respectively. Transforming 
(2.2) into the space-fixed frame, we obtain (Edmonds 1960)

V(r, 6, <j>, il) = -e2/r+ X ifc(r)9®t-t(n)Uv(0. <t>) (2.4)
l*V

where (9, tj>) specify the direction of the incident electron in the space-fixed frame.
We assume the incident electron moves on a classical trajectory determined by 

the spherical part of the potential (2.2). The energy £, on the trajectory, is taken 
to be

E = |m v2 v = (ytyr)1/2 (2.5)
where u, and v , are the initial and final speeds respectively of the electron. Thus, 
the first-order transition amplitude S ( i —* f , b ) , for a transition between two states 
|i > = | J K M  > and |/> = | J ' K ' M ' }  at impact parameter b is given by

S(i—*f,b) = J  dtexp(itO|ft)</|K[r(t),fl]|f> (2.6)
where (% = (E , - E,)/h = A£/ft, the electron coordinates have been written explicitly 
as functions of the time and £, (£r) is the initial (final) translational energy of the 
electron. For notational simplicity, we derive transition probabilities for upward tran­
sitions only; probabilities for downward transitions are derived using the detailed- 
balance relation.

The calculation of the degeneracy-averaged probability .4*, for a transition from 
the level J K  to J ' K ' is straightforward:

* ( J K  -  J'K'\ b\ E ) = (2J ' + 1) X ~-rr
lv +  1 î(i -K->'• (2.7)

where the 3- j symbol is defined by Edmonds (1960) and Vly is given by

V,y = J" dt exp(iwirt)t;n[r(t)]y,v[0(t), 0(r)]. (2.8)

The terms in the pptential contributing in first order to the transition J K  —»J ' K  
are those u« with (/,fc) satisfying

\ J  -  J  +  J '  K - K ' - k .  (2.9)
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Following Ter-Martirosyan (1952), we obtain for P\%, the probability due to the 
dipole potential
P \ ° ( J K —* J ' K \ b \£,)

= ${n P a Q/a)2(D /ea 0)2G ( J, J ' ,  K ) ( R y / E¡)
* + w'/mv) (iw)

where H [ '\ z ) and H \ 2)\z) are the Hankel function of the first kind and its derivative 
respectively (Abramowitz and Stegun 1965, p 358) and G { J , J ' , K ) is given by

G { J , J \ K )  =  ( 2 J '  + 1 ) ( Jk  _ Jk  ' J .  (2.19)
For v and z imaginary the Hankel function H [ " ( z ) is purely imaginary, while its 
derivative is real.

We consider the probability (2.18) for b = 0 (e = 1), where the probability takes 
its maximum value. Then

P Ï Ï ( J K - + J ' K f l ; E i) =  M a 0/a)2(D/ea0)2G ( J , J \ K ) ( R y / E i) \ _ H ^ \ i m 2. (2.20)
There are two natural energy regions: P » 1 and P « 1. The transition between these 
two regions occurs at energy Ë where p  — 1, i.e.

E / R y = (AE/2Ry)2'3.
For high energies (/( « 1), we have (Landau and Lifshitz 1971, p 185)

H \ y m  S n n ip) = 2 / n p (2.21)
which, when substituted in (2.20), yields

P \ o ( J K —, J ' K ; 0 ; E i) s $<2D /ea0)2G ( J J ' , K ) E J R y  E , »  E  (2.22)
using £| s E  at high energies.

The energy E c at which the sum of the upward and downward transition probabili­
ties at impact parameter b =  0 is equal to one, in the high-energy limit (2.22) of 
first-order perturbation theory, is

E J R y  = % ea0/2 D )2/ g { J ,K ) (2.23)
where

=  I - K 2/ J ( J  +  1). (2.24)
Clearly for systems with I) s? lea0 = 2-54 Debye and AE $ 01 eV, £c » £. As 

will be shown below, for head-on collisions the breakdown of the assumption of 
a dipole potential is more significant than the non-conservation of flux.

For small energies (/I » 1), we have (Landau and Lifshitz 1971, p 185)
H \ y m  a (î/Bv/âiiô/fl̂ ni) (2.25)

and the probability in this limit is
Pf§(JK-./X;0;£,) a  C(i'r/ul)(D/ea0)JG(7,J',/i)(A£/2Ry)J,J £, « £ (2.26«)
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where
c  = (!)J,3[r(§)]2 = 2 -2 2 1 . (2 .266)

For all realistic systems the probability in this limit is much less than 1.
We note that in the time-dependent perturbation theory approximation used in 

this work, departures from unitarity become increasingly important as the energy 
increases— the reverse of the situation for neutrals (Dickinson and Richards 1975). 
The difference is caused by the strong acceleration of the electron by the attractive 
Coulomb field.
2 .3 .2 . C r o s s  se c tio n . Using (2.18) in (2.12), we obtain for the cross section (Landau 
and Lifshitz 1971, p 184)

-  J ' K  ;£,) = (2»t3j3aJ/3)(D/ea0)2G(J,J'>K)(Ry/£l)[i//Sil(ijS)Ĥ'(ijS)]. (2.27)
The low-energy behaviour (£ «  £; ft »  1) is obtained from (2.27) using (2.25) and 
the relation (Landau and Lifshitz 1971, p 185)

H " \ i P ) s -(i/*v/3)(6//J)1/3r(S) (2.28)
yielding
o % ( J K  —  I K  ;£,) s (8rt2ag/3v/3)(D/ea0)2G(J,J',K)(Ry/£i) £, « £. (2.29)
This is identical with the threshold dipolar cross section in the Coulomb-Born 
approximation (Chu 1975).

For high energies (£ » £; /? « 1) we have (Landau and Lifshitz 1971, p 185)
z  iH U 'W )  z  (2/n )In(1-1229/)?). (2.30)

Using (2.21) and (2.30) in (2.27) we obtain for the high-energy cross section
o " ( J K  —  J ' K ;  E {) = j7Mo(2D/eao)2G(J,J',K)(Ry/£|)ln [5-04£3/A£2R>-] E , »  E

(2.31)
recovering the usual Bethe limit for an optically allowed transition. This high-energy 
limit of the cross section does not appear to have been derived previously. All the 
above equations hold for linear polar ions when K  =  0.

To evaluate the Hankel functions used in (2.18) and (2.27) we use the method 
of Goldstein and Thaler (1959) to compute the Bessel functions dv(z) and F,,(z). The 
calculation of the Hankcl function is then straightforward (Abramowitz and Stegun 
1965, pp 385 and 361).

In table 2 we compare our results for CH+ with the Coulomb-Born results 
of Chu and Dalgarno (1974) for the 0—*1 transition. In the energy range [0007, 
2 04] eV, the agreement is within 4%. For energies less than 0007 eV Bessel functions 
of large imaginary argument and order (/l £ 45) are required and the routine 
employed suffered from rounding errors. The low-energy limit (2.29) agrees within 
10% with the full result (2.27) for £, < E/2, while the high-energy limit (2.31) agrees 
within 15% for £,  ̂6E. For this transition E — 0-0348 eV. Thus the low-energy 
approximation (2.29) gives acceptable accuracy in the region where our direct method 
of evaluating the Bessel functions suffered numerical difficulties. Overall, the
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Table 2. Comparison of the 0—> 1 rotational-excitation cross sections of CH' by electron impact.

£, (eV)

<t(0—►D(A2)

E , (eV)

<t(0—*1)(A2)
Equation(2.27) Coulomb-Born6 Equation(2.27) Coulomb-Born6

000351 7403" 7409 0-20 235 2290005 — 4809 0-31 174 1730007 3826 3835 0-40 145 1420010 2728 2619 0-50 124 1210017 1669 1675 061 108 1050 028 1072 1071 0-75 93 910 045 719 709 101 75 730072 496 491 204 44 43010 381 370
1 From (2.29).K Chu and Dalgarno (1974).

agreement between the time-dependent and the time-independent approximations is 
very satisfactory.
2.4. T h e  qu a d ru p o la r con tribu tion

To calculate the quadrupolar contribution (|AT| = 1 and |AJ| = 2) it is necessary 
to evaluate the I 2v integral (2.15) numerically. For small velocities (large /3) and large 
e, it is difficult to obtain accurate values because of the fast oscillation of the inte­
grand. We have used a modified Simpson's rule and tested our methods by comparing 
our results with: the tabulated values of Alder et a l (1956) for the corresponding 
/2v integral for a repulsive potential; the analytical result for I l v ; and finally the 
analytical expressions for l 2v in the case of a sudden collision (/( = 0). In that limit

/2o(e, 0) = i 1 + [tt - tan' '(i2 - l),,2]/(e2 - 1),/J}
, (2.32)/2±2(e,0) = 2/3f2.

In figure 1, we show the quadrupolar first-order probability P 2” as a function of 
the impact parameter for collisions with H}0* and HD+. The probabilities do not 
satisfy unitarity for small impact parameters. Since P2o diverges strongly as h tends 
to zero, the quadrupole contribution to the cross section will be discussed below 
after we have considered a short-range cut-off. No such cut-ofT was necessary for 
the dipole potential since was finite for head-on collisions.
3. The short-range contribution
The theory presented above may become invalid at small impact parameters for 
the following reasons:

(i) the incident electron must have an orbital angular momentum of at least sh 
to excite the molecular ion by an amount & J = *;
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Figure I. First-order quadrupolar probabilities P)° as a function of the impact parameter A: P-!o(6,6 —*7,6; £, = 1 eV) for H,0*; B: f*5o(0 — 2; E , = 1 eV) for HD+ ; C: as B except E , = 01 eV; D: as B except E , = 006eV.

(ii) the interaction potential (2.2) is not valid for small r;
(iii) the transition probability for an anisotropic term with / ̂  2 is greater than 

unity for small impact parameters.
To allow for (i) we define

/>, = sh/m v (3,|)
and we assume a probability (Dickinson and Richards 1975)

P[JK-*J + s  K;b;E,) - 0 b<bt. (3.2)
To correct for (ii) it is necessary to estimate the region where the potential (2.2) 
is reliable. We suppose that this is for electron-molecular-ion separations larger than 
the charge-cloud si:,e, rc, of the molecular ion. Thus, we define b2 as the impact 
parameter at which the Coulomb field focuses the incident electron to the edge of 
the charge cloud rc

b 2 = (rc2 + e 1r J E ) tl1. (3.3)
When the incident electron penetrates the core region, r <  r „ , it has considerable 

kinetic energy from the Coulomb field and can easily excite the high rotational levels 
of the ion. so becoming captured temporarily. Subsequent collisions will then occur. 
While our knowledge of the details of this process is limited, we consider it likely 
and it certainly should not be excluded until detailed calculations with a realistic
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short-range potential have been made. To give a plausible estimate of the likely 
contribution from this mechanism, we assume a short-range probability

where p is a parameter. Strictly, P(b2) = Pro(b2) would preserve continuity but P' °(b2) 
is generally small so such a modification makes negligible difference to the cross 
sections. This form has been adopted so that the probability first increases due to 
the stronger collisions occurring as b decreases to bM. There we assume that the 
unitarity requirement causes P to decrease in the strong-coupling region bM ̂  b > 6,. 
A similar model for the strong-coupling probability in electron-polar-molecule colli­
sions (Dickinson and Richards 1975) yielded cross sections in good agreement with 
those obtained using close-coupling calculations. Thus we can write the cross section 
<tt as

For the dipole case o' can be obtained by a minor modification to (2.27):
o ‘j 0( J K  —> J ' K ; E J = (2n3)Sfl?/3)(D/efl0)2G(J,J'>K)(Ry/£1)[ie2//!i'(i/5e2)Wii,'(î ,)] (3.8)
where e2 is obtained from b 2 using (2.17).

We have estimated the charge-cloud size, rc , as twice the equilibrium internuclcar 
distance, R , , in diatomic ions, and twice the OH distance in the H 30 + ion. We 
have taken t\ = 0-2, which should give a conservative estimate of the short-range 
contribution.

v , b
b ¡  ^  b ^  b M

(3.4)
bM si b ^ b 2

o r ( J K  —* J ' K  ; £|) = a l' ' ( J K  —>J'K; £¡) + o L( J K ^ J ' K \ E i ) (3.5a)
where

and
(3.5c)

For simplicity we take
b M = (b i +  b i ) ß (3.6)

obtaining for cr,h
o ' ^ I J K  —* J ' K , E i ) = (t)f/6t),)>/Jt[b2(3b2 + ft,) - 8hf/(b, + b 2) l (3.7)

3.1 . R e su lts  a m i d isc u ss io n  f o r  d ip o le  in tera ction s

The effect of the short-range modification is shown for CH+ in figure 2. The increase 
in the cross section falls smoothly from about 30"„ at threshold to 10% at 2eV.
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Figure 2. Graph of £¡0(0—>1) for CH* plotted against energy. Curve A shows the pure dipole potential result, equation (2.27) and curve B shows the modified results (3.5<r).

An interesting comparison may be made with the results of Ray and Barua (1975) 
for electron excitation of HD + . They have used time-dependent perturbation theory 
with the long-range potential given by (2.2) and (2.3) with an additional polarisability 
term. Their short-range potential is given by
V(r,X) = ~ ( e 2/r0) -  (eD/rg)P,(cosx) - (e Q / rl + a'e2/rS)P2(cos y) r < r0 (3.9)
where a' is the non-spherical part of the polarisability and r0 is a cut-off parameter. 
They assume r„ = 2a0.

Figure 3. Graph of £,o(0-»l) for HD* plotted against energy. Curve A shows the pure dipole potential results, equation (2.27), curve B shows the results of Ray and Barua (1975) and curve C shows the modified results (3.5u).
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In figure 3, we present a comparison for the 0—* 1 transition between our results 
from (2.27), their results, and our modified result (3.5a) for the dipolar contribution. 
The agreement between their results and f o t d p t  at low energies shows that the 
modified potential (3.9) yields small probabilities for close collisions. Since they use 
a straight-line trajectory inside the core, comparison with the case of neutral mole­
cules suggests that this straight-line part will lead to higher probabilities, thus 
enhancing the cross section, as shown in figure 3. At higher energies, the effect of 
the straight-line trajectory is less marked and their use of a weaker short-range inter­
action (3.9) leads to smaller cross sections. Again, the effect of the modified probability 
(3.4) is to increase the cross section above the pure dipole value, in this case more 
than doubling the cross section at threshold.

Since <r\0( J K  —> J ' K  ;£,) depends mainly on the value of the dipole moment, for 
small dipole moments, such as HD+, the short-range cross section <7sh becomes 
relatively more important. This is illustrated in table 3, where we compare the dipolar 
<Tsh and (T[0 for H30 + (D = 0-22 ea 0).

Table 3. Rotational-excitation cross sections of H,O ‘ by electron impact for the 
(5.0—>6,0) transition.

Er (eV)

<7(5,0—.
Equation
(3.7)

6,0)(AJ)
Equation(3.8)

0-1 89 19
0-2 45 10-4
0-4 23 6
0-6 16 4-4
0-8 12 3-6
10 10 3
1-2 8-4 2-6
1-4 7-4 2-316 66 2-1
1-8 6 19

3.2. R e su lts  and d iscu ssio n  f o r  qu a dru p ola r in tera ctio n s

As discussed in §2.4, there is a singularity at b = 0 in the quadrupolar transition 
probability. To avoid this, we have obtained cross sections for the quadrupole interac­
tion using (3.1) and (3.2) for close encounters and f o t d p t  otherwise. The integration 
over impact parameter has been done using Simpson’s rule. Almost all the contribu­
tion comes from small impact parameters and the effective upper limit of the integral 
is always less than 130 a0 , while for the dipole case this limit was about 103uo.

Comparison with the quadrupolar Coulomb-Born results of Chu (1975) for the 
(5,2 -* 6,2) transition in HsO + (an example with an intermediate K  value) shows differ­
ences of less than 5% for 01 eV < £, ̂  1-4 eV. This suggests that our cut-off pro­
cedure is reasonable. Since the transition probabilities at the cut-off increased from 
145 to 1-61 as the energy increased, it appears unlikely that the Coulomb-Born 
approximation satisfies unitarity for close collisions even at electron energies of 
several electron volts. •
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The arguments presented above for the effect of Coulomb focusing for close colli­
sions should be equally valid for the quadrupolar interaction. Thus the use of the 
quadrupole interaction for these collisions is unreliable. Since any cross section de­
rived using approximations similar to (3.3) and (3.4) would be dominated by the 
assumed short-range contribution, we have not thought it worthwhile to make such 
a calculation. However, any cross section derived using a first-order perturbation 
theory and the quadrupole interaction is likely to exceed the true cross section con­
siderably.

4. Conclusions
For electron-polar-molecular-ion collisions, we have used an impact-parameter 
method to investigate the reliability of the usual approximation of combining the 
Coulomb- Born approximation with the dipole and quadrupole anisotropic potentials. 
We find that for a dipole potential, this method underestimates the cross section, 
particularly for weak dipoles. A modified expression for the cross section has been 
presented. By contrast, for collisions of electrons with neutral polar molecules, the 
use of the Born approximation and the dipole potential is more reliable, overestima­
ting the cross section for large dipole moments (Dickinson and Richards 1975). In 
collisions where the long-range interaction is the quadrupole, the full short-range 
interaction must be included to obtain reliable results.

Clearly there is a need for an accurate calculation including the detailed electronic 
structure of the target, similar to those already performed for electron scattering 
by H2. N2 and CO (Temkin 1976).
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