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More refined knowledge of how tropical forests respond to changes in the abiotic
environment is necessary to mitigate climate change, maintain biodiversity, and preserve
ecosystem services. To evaluate the unique response of diverse Afrotropical forest
communities to disturbances in the abiotic environment, we employ country-wide
tree species inventories, remotely sensed climate data, and future climate predictions
collected from 104 1-ha plots in the central African country of Gabon. We predict a 3–
8% decrease in Afrotropical forest species richness by the end of the century, in contrast
to the 30–50% loss of plant diversity predicted to occur with equivalent warming in
the Neotropics. This work reveals that forecasts of community species composition
are not generalizable across regions, and more representative studies are needed in
understudied diverse biomes. This study serves as an important counterpoint to work
done in the Neotropics by providing contrasting predictions for Afrotropical forests with
substantially different ecological, evolutionary, and anthropogenic histories.

Keywords: afrotropics, Gabon, joint attribute modeling, biodiversity, community

INTRODUCTION

The anticipated pace of global warming is predicted to result in large declines of tropical
biodiversity (Aubry-Kientz et al., 2019), leading to biotic attrition of the lowland tropics (Sala et al.,
2000; van Vuuren et al., 2006; Colwell et al., 2008; Feeley et al., 2011; Hooper et al., 2012; Dexter
et al., 2018, but see Feeley and Silman, 2010). Effects of climate change may be indirect (Carley
et al., 2021; Clark et al., 2021; Qiu et al., 2021), and most acutely felt by long-lived organisms like
trees that endure several degrees of warming within a single lifetime, without the benefit of adaptive
nimbleness available to shorter lived species (Malhi et al., 2014; Clark et al., 2021). Tropical forests
contain over 40,000 tree species (Slik et al., 2015), shelter over half of all animal species (Pimm
and Raven, 2000), and store much of the planet’s carbon (Sullivan et al., 2017; Beirne et al., 2019;
Poulsen et al., 2020) while covering only 7% of the Earth’s surface (Corlett and Primack, 2011).
Despite their outsize value, tropical forests are notably understudied, and most in situ species
inventory data come from a few intensively studied sites in the Neotropics (Schimel et al., 2015;
but see Blundo et al., 2021). Neotropical studies demonstrate that community composition and
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function are degrading in response to climate change
(Engelbrecht et al., 2007; Bongers et al., 2009; Poorter et al.,
2017; Whitworth et al., 2021), with early successional species
thriving in warmer soil temperatures at the expense of late-
successional species that require cooler microhabitats (Colwell
et al., 2008). These processes have contributed to predictions of
30–50% loss of plant diversity with a 5◦C temperature increase
for most South American tropical forests (Colwell et al., 2008;
Feeley and Silman, 2010).

It is unclear whether the world’s other tropical regions will
respond similarly to climate change (Malhi and Wright, 2004;
Maslin et al., 2005; Parmentier et al., 2007; Malhi et al., 2013;
Mayaux et al., 2013; Enquist et al., 2017; Sullivan et al., 2017).
Afrotropical forests are distinct in having comparatively few wet-
affiliated species given their climate (Leal, 2009), and a high
proportion of large trees that grow and recolonize rapidly (Fayolle
et al., 2012; Gond et al., 2013). These differences in community-
level traits are hypothesized to have arisen from Africa’s unique
climatic past (Haffer, 1969; Maley, 1996; Maslin et al., 2005;
Oslisly et al., 2013; Willis et al., 2013). In direct contrast to the
Neotropics (Colinvaux et al., 1996, 2000, 2001), abnormally cool
and dry conditions during the last glacial maximum reduced
Afrotropical forests to small fragmented patches (Cohen et al.,
2007). This may have selected for species able to survive extreme
aberrations in temperature and precipitation and then quickly
disperse from refugia to recolonize the landscape cleared by
receding glaciers (Leal, 2009), potentially making them more
resilient to climate change than their Amazonian or Asian
counterparts (Hansen and DeFries, 2004; Gardner et al., 2007).
Indeed, a pair of studies comparing changes in canopy structure
found few lingering effects of drought on Afrotropical forest
canopy (Asefi-Najafabady and Saatchi, 2013), but did find
lingering canopy effects of drought on southwest Amazonia
(Saatchi et al., 2013).

Neotropical species to climate change are unlikely to be an
adequate proxy for Afrotropical forests, yet no landscape-scale
predictions of Afrotropical community responses to climate have
been made. This work is urgently needed—the current climate
of Equatorial Africa is already near the lower temperature-
precipitation threshold of rainforest viability (Malhi and Wright,
2004; Pan et al., 2011), after which a rapid shift in the ecosystem
could occur (Willis et al., 2013). Accurate models of forest change
in the Afrotropics are dependent on sampling both historical
refugia and areas of expansion. Past reviews of paleoecological
studies (Maley, 1996; Bonnefille, 2007) have interpreted the high
degree of endemism in western Gabon relative to surrounding
areas as an indicator that this area was an climatically stable
refuge for tropical plants during the last glacial maxima. However,
whereas recent genetic studies of some species support this
claim (Dainou et al., 2010), still others indicate that these areas
were not refuges for all species (Lowe et al., 2010, see also
temperate examples: Comes and Kadereit, 1998; Petit et al., 2003),
highlighting a need for systematically random census data in a
topographically and abiotically diverse Afrotropical region.

To evaluate how Afrotropical tree species will respond to
future climate change, we model tropical forest tree species
distributions using a systematic country-wide array of randomly
placed tree plots, remotely sensed historic climatic data, and

future climate predictions for the densely forested central
African country of Gabon. This first-of-its-kind study serves
as an important counterpoint to work done in the Neotropics
by providing contrasting novel predictions for Afrotropical
forests with substantially different ecological, evolutionary, and
anthropogenic histories. We hypothesize that the disturbance-
rich past of Afrotropical communities will result in two
divergent responses to forecasted climate change: (1) Afrotropical
community forecasts will demonstrate lower levels of species loss
than the 30–50% loss predicted for the Neotropics; and (2) early-
successional species will increase in number at the expense of
declining abundance of late-successional species.

MATERIALS AND METHODS

Tree Inventory Data
In this study, we employ tree census data from Gabon’s
National Resource Inventory—a national network of tree plots for
estimating forest biomass and carbon stocks (Figure 1; Carlson
et al., 2017; Poulsen et al., 2017a, 2020; Beirne et al., 2019; Wade
et al., 2019). Gabon is the second most forested country in the
world, with a forest cover of 87%, a deforestation rate near zero
(Sannier et al., 2014), and one of the highest densities of carbon
in Central Africa (Saatchi et al., 2011). Between 2012 and 2013,
trained technicians established 104 1-ha forest plots based on
a stratified random sampling design that consisted of dividing
the country into 100 50 × 50 km cells and randomly locating a
sample site within each of the cells (Poulsen et al., 2020). This
design ensured an unbiased sampling of Gabon’s forest (40.4%
old-growth, 28.8% logged, 30.8% secondary) and edaphic types
(69.2% terra firma, 22.1% seasonally flooded forest, 8.6% swamp).
Every tree with a diameter-at-breast height (DBH) ≥ 10 cm
was mapped, measured and identified to species by trained

FIGURE 1 | Map of all 104, 1-ha inventory plots located in Gabon. Plots were
located by a systematic-random design to capture the full breadth of Gabon’s
forest types and environmental conditions. Shapes indicate one of four
possible forest-types of each plot: Savanna Forest (triangles), Congolian
Forest (squares), Aucoumea Forest (diamonds), or Coastal Forest (circles).
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field teams following standard protocols for plot establishment
and measurement (Phillips and Baker, 2002). A total of 621
species from 296 genera were cataloged. We analyzed data for
all species that occurred on at least 30 of the 104 plots, resulting
in 34,460 stems representing 76 of the most widely occurring
species. The five most common taxa (31% of all stems) were
Santiria trimera, Dichostemma glaucescens, Plagiostyles Africana,
Aucoumea klaineana, and Diospyros spp. The five least common
taxa included in the model (1% of all stems) were Duboscia
macrocarpa, Ongokea gore, Zanthoxyllum heitzii, Klainedoxa
sp., and Erythrophleum ivorense. Each species was assigned, if
possible, into an “early-successional” or “late-successional” class
based on growth form, available trait data, and habitat class
(Whitmore, 1989; Raich and Khoon, 1990; Finegan, 1996; Davies
and Semui, 2006; Chazdon et al., 2010; Chazdon, 2014).

Climate Data
Long term average historical precipitation and temperature data
for each plot were derived from the NASA TerraClimate product
(Abatzoglou et al., 2018) for 1985–2017, accessed using Google
Earth Engine (Gorelick et al., 2017). We derived projected
precipitation and temperature data for each plot using the
NASA Earth Exchange Global Daily Downscaled Projections
(NEX-GDDP) database at a resolution of 0.25 degrees (∼25 km
× 25 km). This dataset provides downscaled projections for
two of the most used Representative Concentration Pathways
(RCP 4.5 and RCP 8.5) from the 21 General Circulation
Models that were produced and distributed under the Coupled
Model Intercomparison Project Phase 5 (CMIP5). All models of
temperature agree that Gabon will continue to warm through the
end of the century; thus, within each RCP scenario, we took the
ensemble mean prediction of all 21 CMIP5 GCMs to forecast
of forest response (Figures 2A,B). Models of precipitation
disagree as to whether precipitation will increase or decrease,
producing an ensemble mean that shows no substantive change
by 2099 (Figure 2C). This is due in large part to a lack of
rain gauges in Central Africa (Washington et al., 2013), and
also from the northward shift of the inter-tropical convergence
zone resulting from ocean-driven atmospheric circulation shifts
(James et al., 2013). To acknowledge the uncertainty in whether
the dry or wet models are more plausible, here we forecast
community change given both a wet and a dry scenario. The wet
scenario takes the mean prediction of the five models predicting
the greatest increase in precipitation, while the dry scenario
uses the mean prediction from the five models predicting the
greatest decreases in precipitation (Supplementary Table 3).
Although representing the extreme scenarios, this forecasted
climate space is well represented by historical climate space
(Supplementary Figure 1).

Community Composition Analysis
We use a generative Generalized Joint Attribute Model (GJAM)
that predicts species abundance at the scale and context used to
fit the model jointly, i.e., on the community scale (Clark et al.,
2017). GJAM estimates can therefore be interpreted on the scale
of the observations, accounting for sample effort. Full model
specifications are available from Clark et al. (2017). Parameters

A

B

C

FIGURE 2 | A comparison of average predicted maximum temperature (A),
minimum temperature (B), and precipitation (C) in Gabon from the highest
temperature increase models (orange), lowest five models (purple), and all
model ensembles (gray) for RCP 4.5 (solid lines) and RCP 8.5 (dashed lines).
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in the model include matrices of coefficients B relating X to
Y and the residual species covariance matrix 6. In effect,
6 represents the covariance between species beyond what is
explained by environmental covariates. This variation can come
from interactions between species, unmeasured environmental
variables, and other sources of error. The likelihood is:
[Y1,. . .,YS|X, B, 6], where subscripts refer to species 1 through
S. Model fitting is done on the observation scale, and is based
on the posterior distribution, [B, 6|X,Y]∝ [Y1,. . .,YS|B, 6][B,
6]. The right-hand side of the equation is the likelihood and the
prior distribution, [B, 6], which is non-informative. Traditional
species distributions models cannot generate the covariance
structure in Y or the proper uncertainty for B because they
are not fitted jointly, i.e., because [Y1, ...,YS |B, 6 ,X ] is not
equal to likelihood of independent SDMs, [Y1 |B, 6 ,X ]× ...×
[YS |B, 6 ,X ]. SDMs predict each species independently, which
ignores their interactions. Joint modeling is frustrated by the
different scales of measurement for many species and dominance
of zeros in most data sets. GJAM allows for continuous and
discrete data, including zeros, observed on different scales and
with different levels of sample effort.

Forecasting Species Composition
The predictive distributions combine the posterior
parameter estimates calibrated from long-term climate
data with a prediction grid of forecasted covariate
values (precipitation and temperature). X∗ is a vector of
environmental covariates that generate a response vector
of species Y∗= Y1, ...,YS, and (X∗, Y∗) is a pair of vector
observations used to fit the model. The predictive distribution
[Y∗ |X∗ ] =

∫
[Y∗ |B, 6,X∗ ] [B, 6 |X,Y ] d (B, 6) is obtained

by Monte Carlo integration. The two factors in the integrand
are the likelihood and posterior distribution. The two

factors in the integrand are the likelihood and posterior
distribution. If the prediction is based on an uncertain scenario
for climate X∗, that uncertainty enters the prediction as
[Y∗] =

∫
[Y∗ |X∗ ] [X∗] dX∗. In this analysis, [X∗] is a prior

distribution that is uniform over the full range of values that
have been observed.

To quantify how changes in climate will affect total species
counts regardless of forest type, we first run the model
using forest type (Congolian, savanna, coastal, Acoumea) as a
random effect. We then use forest type as a factor to make
predictions about species counts within forest types. Covariates
used to fit the model were limited to those for which there
are predictions available from the NASA NEX GDDP GCM’s
for years 2020–2099 and having variance inflation factors less
than 3. Model estimates were taken from 100,000 iterations,
discarding the first 1000 iteration as pre-convergence. We visually
inspected trace plots to confirm convergence and adequate
mixing (Supplementary Figure 3) and validated model fit by
comparing predicted and observed discrete species abundances
(Supplementary Figure 2).

RESULTS

Of the 76 most abundant species analyzed, species richness in
Gabon’s forests is projected to decrease by 3–8% by the end
of the century, although there is variation among precipitation
models and RCP scenarios (Figures 3, 4 and Supplementary
Table 1). The dry model predicts a loss of 2.58 focal species
per plot ± SE 5.36 in the low emissions scenario (RCP 4.5,
Figure 4A), and −5.85 ± 5.12 species in the high emissions
scenario (RCP 8.5, Figure 4C). The wet model predicts fewer
species losses (RCP 4.5: −3.17 ± 5.37; RCP 8.5: −5.96 ± 5.11,
Figures 3A,C). Species losses were consistent across forest types

A B C D

FIGURE 3 | Declines in estimated plot-level species richness and the estimated net tree species loss for each forest type by the end of the century for RCP 4.5 (A,B)
and RCP 8.5 (C,D) for the wet model.
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A B C D

FIGURE 4 | Declines in estimated plot-level species richness and the estimated net tree species loss for each for each forest type by the end of the century for RCP
4.5 (A,B) and RCP 8.5 (C,D) for the Dry model.

(Figures 3B,D, 4B,D and Supplementary Table 2) with greatest
losses in the RCP 8.5 scenario (Figures 3D, 4D) compared to RCP
4.5 (Figures 3B, 4B). Of the 76 species we analyzed approximately
one third are predicted to increase in abundance and two-thirds
of species likely to decrease in abundance. The most likely species
to increase in abundance include Diospyros spp., Aucoumea
klaineana, and Staudia gabonensis. By contrast, Santira trimera,
Plagiostyles africana, and Dichostemma glaucescens are predicted
to decrease in abundance (Figure 5). Net change in predicted
species abundance was similar between wet and dry models and
among RCP scenarios (Figure 5 and Supplementary Table 4).

DISCUSSION

We demonstrate a 3–8% decrease in Afrotropical forest species
richness by the end of the century for the most abundant tree
species. This prediction is substantially less severe than 30–
50% predicted for the Neotropics (Colwell et al., 2008; Feeley
and Silman, 2010), and lends support to the argument that
the unique evolutionary past of Afrotropical forest communities
(Malhi and Wright, 2004; Maslin et al., 2005; Parmentier et al.,
2007; Malhi et al., 2013; Mayaux et al., 2013; Enquist et al.,
2017; Sullivan et al., 2017) could have made them more resilient
to climate change than their Amazonian or Asian counterparts
(Hansen and DeFries, 2004; Gardner et al., 2007). It also indicates
that predictions of tree species responses to climate change are
not generalizable across continents. Surprisingly, we find that
losses do not differ appreciably among forest types, indicating
that no habitats will be immune from species changes. The
equivalent responses may also be a result of the subjective
distinction between our four forest types—communities are

complex assemblages of species that may not always readily lend
themselves to clear classification.

We find that species-specific changes in abundance varied
considerably, with approximately a third of all species likely
increasing in abundance and two-thirds of species likely
decreasing in abundance. Our hypothesis that disturbance-
related species would increase at the expense of climax species
was not well supported. Of the ten species most likely to increase
in abundance, only two are considered early successional. Of
the ten species most likely to decrease in abundance, five were
early successional. It is interesting that the species increasing
are not just those that are fast growing, low wood density
species associated with disturbance. For example, two of the
species most likely to increase are Acoumea klaineana (a light-
loving, low wood density species), and Diospyros spp., the
genus that incudes ebony (high wood density, slow growing).
Among the species expected to decrease in abundance is Santira
trimera, one of the most widespread species throughout West
and Central African rainforests, often in moist secondary forests
or along rivers. Also predicted to decrease is Dichostemma
glaucescens, a small slender tree prone to climbing other
trees. These species-specific responses suggest that rather than
functional groups responding similarly, tropical species respond
individualistically to tropical climate change. This pattern agrees
with past research (Bush, 2002; Bush et al., 2004) and may
arise from unique relationships to unmeasured abiotic variables
that contribute to its response to disturbance (Nuñez et al.,
2019a). A comparison of the forecasts produced by both dry
and wet models yields surprising little difference in predicted
species richness. Although the total water available to trees
are the product of both precipitation and temperature, these
results suggest that species will respond more strongly to
increases in temperature, not precipitation as it is in the
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FIGURE 5 | Predicted change in abundance for each tree species (y-axis) by the end of the century for RCP 4.5 and RCP 8.5 in both the “wet” and “dry” model
ensembles (x-axis). Box colors correspond to estimated changes in species abundance. “*” symbol in box denotes species-model predictions that do not overlap
with 0.

Neotropics. For this reason, the increasing radiative forcing
associated with RCP 8.5 resulted in greater species loss
than the more conservative RCP 4.5 scenario. Temperature
specific responses are consistent with the theory that a unique
ecological history in the Afrotropics (Malhi and Wright, 2004;
Maslin et al., 2005; Parmentier et al., 2007; Malhi et al., 2013;
Mayaux et al., 2013; Enquist et al., 2017; Sullivan et al.,

2017) cultivated tree communities with few wet-affiliated species
(Leal, 2009).

Several considerations are necessary to situate this study in the
literature. First and foremost, this analysis considered only the
76 most common species across plots. Rare species (occurring
on fewer than 30/104 plots) have few observations and provide
insufficient information on their relationship with environmental
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predictors to make accurate predictions, perpetuating the “rare
species modeling paradox” (Lomba et al., 2010). This could mean
that we are ultimately underestimating losses of total species
richness because it is precisely these rare species that are most
vulnerable to climate change (Ohlemüller et al., 2008; Pacifici
et al., 2015). However, limiting analyses to species with adequate
data is a common component of many analyses, including those
predicting 30–50% loss in the Neotropics (Wisz et al., 2008;
Feeley and Silman, 2010).

The model predicts at the scale of the data, i.e., the community
level, allowing a comparison of a species likelihood of presence
in a plot with full uncertainty. However, the model does not
explicitly consider mechanistic changes in recruitment, carbon
enrichment, seedling survival, or changes in dispersal. As such,
the model does not account for plasticity that may allow for
species to occur in plots outside their current climate space.
Although such mechanistic understanding is needed, the type
and resolution of data currently available make this impossible.
These results do not consider other types of disturbance that are
likely to affect biodiversity, but are less clearly measurable, like the
loss of medium and large animals from hunting (Koerner et al.,
2017; Poulsen et al., 2017b, 2018, 2021; Beirne et al., 2019; Nuñez
et al., 2019c). Finally, although the geographic scope of this
analysis is uncommonly expansive, covering the entire country
of Gabon (267,667 km2), it may not be directly comparable to
the diverse terrain contained in the 2,250 km2 assessed in the
Neotropics (Feeley and Silman, 2010; Maicher et al., 2021). Care
must also be taken when generalizing our results—although the
impacts predicted here appear to be modest relative to the new
world Tropics, elsewhere in sub-Saharan Africa has already seen
devastating effects of climate change (Willis and Bhagwat, 2009;
Willis et al., 2013; Serdeczny et al., 2017).

This study demonstrates that community forecasts are not
generalizable across regions, and more studies are needed in
understudied biomes like the Afrotropics. Nascent data sets
(Enquist et al., 2017; Fyllas et al., 2017), increased availability
of high quality remote sensing (Patterson and Healey, 2015;
Stavros et al., 2017; Silva et al., 2018), and new statistical
techniques capable of synthesizing multiple types of data (Clark
et al., 2017) will help in further resolving the responses of
the world’s ecosystems. This study serves as an important
counterpoint to work done in the Neotropics by providing
contrasting predictions for Afrotropical forests with substantially
different ecological, evolutionary, and anthropogenic histories.
Even though we are predicting a comparatively small reduction in
species richness, the effects reported here will have ramifications
for whole food webs (Dirzo et al., 2014; Clark et al., 2019), and
potentially threaten the ecosystem services on which humans
depend (McCann, 2000; Hooper et al., 2005; Balvanera et al.,
2006; Cardinale et al., 2012; Schweiger et al., 2018). The
differences exposed by this work should serve as motivation for

future research using fine scale data to compare the differing
responses of tropical biomes to global change.
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