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Abstract—Polarimetric synthetic aperture radar (PolSAR) is 
widely used in remote sensing and has important applications in 
the detection of ships. Although many polarimetric detectors have 
been proposed, they are not well combined. Recently, a 
polarimetric detection optimization filter (PDOF) was proposed 
that performs well in most environments. In this study, a novel 
subspace form of the PDOF (SPDOF) was further developed 
based on the Cauchy inequality and matrix decomposition 
theories, enhancing detection performance. Furthermore, a 
simple method to determine the optimal dimension of the 
subspace detector based on the trace ratio form was proposed by 
calculating the area under the receiver operating characteristic 
(ROC) curve, reaching the best detection performance among the 
subspaces of the detector. Moreover, to combine different 
subspace detectors, a modified linear discriminant analysis was 
proposed and developed to the diagonal loading detector (DLD) 
based on polarimetric subspaces. The experimental results 
demonstrate the superiority of these joint polarimetric subspace 
detectors. Most importantly, DLD solves for previous limitations 
due to the complex clutter background and achieves a 
performance comparable to that of the Wishart (Gaussian) 
distribution, particularly in the low target clutter ratio (TCR) 
case. 

Index Terms—Polarimetric synthetic aperture radar (PolSAR), 
Polarimetric detection, Subspace detection, Ship detection, 
Polarimetric detection optimization filter, Linear Discriminant 
Analysis, Diagonal loading  

I. INTRODUCTION

YNTHETIC aperture radar (SAR) is widely used in ship 
detection. The intensity of the SAR image can be utilized to 

statistically test the backscattering of pixels, and an adaptive 
threshold can be set to maintain a constant probability of false 
alarm (PFA) (i.e., the constant false alarm rate (CFAR)) [1, 2]. 
The current challenges in ship detection mostly lie in two 
aspects: the first is to detect small ships densely packed in 
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inshore regions while the second is to detect ships during the 
medium or high sea states. Particularly, small ship detection in 
complicated clutter backgrounds remains an ongoing problem. 
In this paper we focus on the small ship detection in 
complicated backgrounds. Polarization is an important property 
of electromagnetic waves. Polarimetric SAR (PolSAR) takes 
advantage of the polarization information to acquire more 
complete pictures of backscattering from targets, which has 
beneficial applications in target detection [1-4]. There are five 
main categories of PolSAR ship detectors: (1) independent 
polarization channel composition [5], (2) polarization 
optimization techniques [6], (3) polarimetric scattering 
mechanism [7], (4) ship wake detection [8], and (5) data-driven 
or machine learning [9]. In this study, we focus on the 
optimization method because it is effective and has a 
straightforward practical interpretation. 

Optimal polarimetric detection (OPD) is based on the 
likelihood ratio test and theoretically provides the best 
detection performance under the assumption that targets and 
clutter are both Wishart distributed [10]. The optimal 
polarimetric contrast enhancement (OPCE) method, which is 
mathematically equivalent to the polarimetric matched filter 
(PMF), maximizes the target-to-clutter ratio (TCR) using 
optimal antenna polarization states [11, 12]. A generalized 
OPCE (GOPCE) was proposed to include different scattering 
mechanisms between targets and clutter [13]. Recently, a novel 
polarimetric contrast enhancement method based on the 
minimal clutter-to-signal ratio (MCSR) subspace was proven to 
be more flexible [14], where OPCE and GOPCE can be seen as 
special cases of MCSR. However, the optimal dimension of the 
MSCR subspace has yet to be resolved, and the solution for the 
optimization is only numerical. Touzi et al. devised a method to 
optimize the degree of polarization for enhanced ship detection, 
obtaining good results [15, 16]. Because speckle fluctuation 
critically influences the detection performance, the polarimetric 
whitening filter (PWF) was proposed for ship detection [17], 
which minimizes speckle fluctuation (or the standard 
deviation-to-mean ratio). The PWF detector was found to 
achieve a performance comparable to that of the OPD when the 
target statistics are not provided. Recently, a polarimetric notch 
filter (PNF) was proposed based on the physical behavior of sea 
clutter, which minimizes clutter power [18]. A statistical test on 
the PNF was conducted with some assumptions, and it 
exhibited excellent performance [6].  

As noted by Novak et al., detection performance is not only 
dependent on TCR, but also depends on clutter fluctuation [19]. 
Combining the objectives of PMF and PWF, and inspired by 
the subspace theory of MCSR [14], Tao et al. proposed a 
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polarimetric detection optimization filter (PDOF) and its 
approximate subspace form (APDOF), which can provide 
performance similar to those of the best traditional detectors [6]. 
However, the derivation of APDOF maximizes the numerator 
TCR and minimizes the denominator fluctuation independently 
[6], rather than maximizing the overall value of their ratios 
simultaneously, which is not a strict solution in mathematics. 
This results in APDOF representing the middle ground between 
the PMF and PWF, rather than combining the benefits of PWF 
and PMF. Determining the optimal subspace dimension for 
ship detection is another difficult task that remains to be solved. 

It is well known that there are many polarimetric detectors at 
present. Each detector can be seen as extracting a feature that 
helps separate ships and clutter. The combination of outputs 
from different detectors remains an open problem, wherein 
linear discriminant analysis (LDA) is a good candidate for 
combining different features [20]. Yin et al. modified the 
GOPCE to improve the detection performance by considering 
both the signal clutter ratio and the clutter fluctuation; however, 
they did not provide a comparison against LDA [21]. In this 
study, we modified the LDA algorithm to a novel form, 
extending for the combination of different polarimetric 
detectors. 

This paper proposes a joint polarimetric subspace detector 
based on a modified LDA (MLDA) and extend it to a diagonal 
loading detector (DLD). The main contributions of this study 
are as follows: 

(1) A strict PDOF (SPDOF) subspace detector was proposed 
by maximizing the TCR over speckle variation. The 
full-dimensional PDOF was found to represent a special case of 
subspace detectors. The statistics of the SPDOF were derived in 
a Wishart distribution hypothesis based on the quadratic form.  

(2) A method to determine the optimal dimension of the 
polarimetric subspace was proposed based on the statistics of 
the detection variable and the area under the curve (AUC) of the 
ROC curve. The algorithm chooses the dimension for the 
practicable optimal subspace detector. 

(3) A joint polarimetric subspace detector was proposed to 
fuse all interesting polarimetric features based on the MLDA. 
Performance comparisons were made among all the mentioned 
polarimetric detectors.  

(4) A novel trace-based polarimetric detector (diagonal 
loading detector, DLD) based on the composition of 
polarimetric subspaces was proposed for ship detection. It was 
found to significantly improve performance by choosing a 
suitable balance parameter. The experimental results showed 
that it can overcome the negative impact of complex clutter. 

The remainder of this paper is organized as follows. Section 
II describes the traditional trace ratio detectors (MCSR detector 
et al.), including their subspace forms, and the strict form of the 
PDOF subspace (SPDOF) is derived based on the Cauchy 
inequality and matrix decomposition theories. The MLDA 
algorithm was proposed to combine different polarimetric 
features for detection. The DLD is proposed by combining the 
SPDOF and APDOF. Section III analyzes and validates all 
polarimetric detection methods and their comparisons using 
simulated data. The measured data were used to assess different 

polarimetric detectors in Section IV. Finally, Section V 
concludes the paper. 

II. SUBSPACE DETECTORS AND THEIR COMBINATION 
This section summarizes and improves the previous 

subspace detectors and provides a method for their 
combinations. Firstly, we summarize the expression forms of 
the polarimetric detectors based on polarization techniques to 
be the trace ratio problem. We analyze and compare both the 
trace ratio and ratio trace forms and explain the relationship 
between them. Secondly, the APDOF is improved to the 
SPDOF, which is a strict subspace form of PDOF. PDOF 
performs better in complicated clutter background compared 
with the OPD. Thirdly, the statistics of the subspace detectors 
are presented, which helps to derive the optimal subspace 
dimension. Finally, MLDA method is used to combine the 
above different polarimetric detectors, and a DLD detector is 
proposed by further optimization, which is the best detector 
compared with all the state-of-art methods. The structures of 
parts A, B, C, D, and E and their relationships are shown in 
Figure 1. The workflow is indicated by the solid arrow lines. 
The rectangular boxes within the gray background regions 
show the operation and procedure. ≈ means trace ratio solution 
can be approximated by the ratio trace solution. 

 
Fig. 1. Structure of Section II 

A. Trace Ratio and Ratio Trace Problems 
MCSR is defined to maximize the TCR [22] and is a typical 

trace ratio problem [23]. Meanwhile we can consider that some 
polarimetric detectors based on optimization techniques, such 
as OPD and PWF, can also be interpreted as a trace ratio 
problem [6]. The TCR is defined in (1): 

tr( )
tr( )

T

C

TCR PΣ
PΣ

                                                      (1) 

where TCR  is the m-dimensional MCSR, tr( )  is the trace 

operator, ( )H
 denotes the conjugate transpose, and TΣ  and 

CΣ  are the positive semi-definite polarimetric covariance 
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matrices of a target and clutter, respectively. The dimensions of 
the polarimetric matrix are n , the projection subspace 
dimension is m , and generally m n . The size of F  is n m× . 
The matrix F  satisfies HF F I , which denotes the matrix of 
the projected basis vectors. I denotes the identity matrix. Here, 

HP FF  is an orthogonal projection matrix and also a positive 
semi-definite Hermitian matrix. [6]. 

Because the trace ratio problem does not have a closed-form 
solution, it is often simplified as a ratio trace problem, which is 
equivalent to the determinant ratio problem [23]: 

1
max

dim( )

dim( )

max tr ( ) ( )

max

H

H

H H
C T

m

H
T

Hm
C

r
F F

F F

F Σ F F Σ F

F Σ F

F Σ F







    


        (2) 

where dim( )  is the matrix dimension. This can be directly 
solved using the generalized eigenvalue decomposition (GEVD) 
method: 

       T k k C kf fΣ Σ                              (3) 
where k  is the k-th largest eigenvalue of the GEVD with 

the corresponding eigenvector kf and kf  constitutes the k-th 
column vector of the matrix F . Because CΣ  is an invertible 
matrix according to the definition of the polarimetric 
covariance matrix, Eq. (3) can be rewritten as 

1
C T k k kf fΣ Σ                               (4) 

Thus, the EVD method can be used to obtain a suboptimal 
solution to the ratio trace problem. Both GEVD and EVD are 
approximate solutions after converting the trace ratio problem 
into a ratio trace problem. In Section III.B we listed some the 
traditional and novel methods of numerical solution for the TR 
problems are listed. 

B. Strict Subspace of PDOF  
The objective of PDOF is to enlarge the TCR when reducing 

clutter fluctuation because both factors affect the detection 
performance [6]. The standard deviation of clutter fluctuation 
s/m  should be minimized for speckle reduction [10, 19]: 

2tr( )
s/m

tr( )
C

C

PΣ
PΣ

                               (5) 

Therefore, in PDOF, the variable 2M  should be maximized 
to improve the detection performance. 

2 2
2

2

tr ( )
(s/m) tr( )

T

C

TCRM PΣ
PΣ

 
    

                      (6) 

With the Hermitian property of TΣ and CΣ , there 

exists
1
2H
TA A Σ  ,

1
2H
CB B Σ  : 

2 2
2

2

2 1 1

2

tr ( ) tr ( )
tr( ) tr( )

tr ( ( ) ( ) )
tr( ( ) )

H H
T

H H H H
C

H H H H

H H H

M PΣ FF AA
PΣ FF BB FF BB

B F B F B A B A
B F B F

 

 


          (7) 

The diagonalization can be performed as follows: 

1 1
2 2( ) =H H H H

C C PCB F B F Σ PΣ UΛ U                 (8.a) 
1 1

1 1 2 2( ) =H H
C T C TCB A B A Σ Σ Σ VΛ V
                 (8.b) 

where H H
n nUU VV I   . n nI   is an identity matrix of 

order n . 1 2( , , , )PC ndiag c c cΛ    1 2( , , , )TC ndiag b b bΛ   . 
For convenience, 1 2 0nb b b    , 1 2 0nc c c    . 

Eq. (7) becomes 
2

2
2

tr ( )
tr( )

H H
PC TC

PC

M
V UΛ U VΛ

Λ
                      (9) 

The numerator 2tr ( )H H
PC TCV UΛ U VΛ  reaches a maximum 

when U = V  [25]. On this condition: 
2

2
12 2

2
2 1

1

tr ( )
( )

tr( )

m

i i m
iPC TC

im
iPC

i
i

b c
M m b

c

=

=

=

 
 
 = = ≤
∑

∑
∑

Λ Λ
Λ

        (10) 

where ib  is the i th−  largest eigenvalue of TCΛ , and (10) 
holds and only holds if 

1 2

1 2

... m

m

bb b
c c c

= = =                              (11) 

Therefore, the projection matrix P  can be derived using Eq. 
(8.a) and (8.b): 

1 1
2 2( ) H

C TC Cm
− −

=P Σ UΛ U Σ                  (12) 
where the subscript m  denotes the dimension of the 

subspace. 
A special case is when m n= ,  

1 1( ) C T Cn − −=P Σ Σ Σ                          (13) 
Equation (13) is the representation of PDOF, which means 

that the SPDOF is a generalization of the PDOF when a 
subspace is used instead of the full space. In addition, the 
APDOF in [6] is only an approximation and not a generalized 
version of the PDOF. When the prior information of TΣ is 
unknown, we can replace TΣ  by C as the maximum likelihood 
(ML) estimation, where C  is the polarimetric covariance 
matrix of the current area. If m n= , it becomes a weakened 
PDOF [6]. 

C. Statistics of the Subspace Dimension Detectors 
The polarimetric detectors based on MCSR and PDOF both 

have the same mathematical form as follows [6]: 

1

1= =tr( )
L

H
L i i

i

z
L

s Ps PC

                        (14) 

where is is the scattering vector with dimension d  for the 
i th−  pixel, L  is the number of looks, and Lz  is denoted by a 
quadratic form. C  is the polarimetric covariance matrix. The 
difference between the MCSR and PDOF detectors is only the 
transformation matrix for each detector. 

In homogeneous sea state, the polarimetric covariance 
matrix C  is assumed to be Wishart distributed 
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  exp Tr
( )

( )

L dLd

C L
d

L L
f

L

-1C Σ C
C

Σ

 



              (15) 

where ( )   denotes gamma function and ( )d L  is: 
1 ( 1)
2( ) ( ) ( 1)

d d

d L L L d


                  (16) 

 EΣ C  is the mathematical expectation of the 

polarimetric covariance matrix, and E( )  is the expectation 
operator. 

The quadratic form Lz  can always be expressed as [26]: 

,L
az Lb
L


    

                                 (17) 

Here, ( ),γ α β  is the gamma distribution, which can be 
expressed as follows 

1
1 1( , )
( )

x
x e

α
βγ α β

α β β

− − 
=  Γ  

                 (18) 

where α  is the shape parameter and β is the scale 
parameter. 

If the detection threshold is assumed to be T , the probability 
of false alarm (PFA) or probability of detection (PD) can be 
determined using Eq. (19) [6]: 

/ , =1- [ ]( ,)fa d T

a LTP Lb dz Lb
L a




                 (19) 

where 
1 1

0 0

1( )= , ( , )
( )

xt a t aa e t dt a x e t dt
a

∞ − − − −Γ
Γ

=Γ∫ ∫        (20) 

faP and dP  are the PFA and PD, respectively. When faP is 
calculated, C=Σ Σ ; when dP is calculated, T=Σ Σ . When the 
PFA is fixed, the threshold T  can be derived as 

1[ ,1- ] /faT Lb P a L−= Γ                   (21) 

where 1[ ]−Γ ⋅  is the inverse incomplete gamma function [26]. 
The terms 1λ , 2λ , …, dλ are the nonzero eigenvalues of 

PΣ . 2
1 1

/d d
i ii i

a λ λ
= =

= ∑ ∑ , and ( )2
2

1 1
/d d

i ii i
b λ λ

= =
= ∑ ∑ . In 

addition, the models can be extended to a generalized gamma 
distribution (GГD), which improves the robustness of the 
statistical model. The results can help to derive the optimal 
dimension of the subspace detector for trace based detectors. 
The proposed algorithm is built in Section III.C. 

D. Modified Linear Discriminant Analysis 
Different subspace detectors extract the different nonlinear 

characteristics of the ship detectors. If they can be fused 
together, the detection performance can be improved. 
Therefore, we propose a modified linear discriminant analysis 
(MLDA) method based on LDA and improved GOPCE [21] to 
combine the subspaces of MCSR and PDOF detectors. We 
define the objective function as 

2 2

1

E( ) E( )
argmax ( )

Var( )+Var( )

T T
T C

T T
C T

J
x

x z x z
x

x z x z


              (22) 

The z = ( SPDOFz , APDOFz , ITRz , EVDz ) composes the Fisher 
vector, Tz  is for targets, Cz  is for clutter, and x  denotes the 
weight coefficient. In traditional LDA, the between-class 

distance is 2
E( ) E( )T T

T Cx z x z , and it is simplified to a new 

form as 2 2E( ) E( )T T
T Cx z x z  in Eq. (22), which is validated to 

perform better [21].  Var  is the variance operator and  is 
the norm operator. It can be simplified as 

1

( )
argmax ( )

( ) ( )

T
T C

T T T T
C C C T T T

J
x

x R R x
x

x R μ μ x x R μ μ x




  
  (23) 

where TR  and CR  are the feature covariance matrices, and 

Cμ and Tμ are the mean feature vectors, respectively. We 
extend it to multidimensional subspaces as follows: 

tr( ) tr( )
argmax ( )

tr( ( ))+tr( ( ))H

T C
T T

C C C T T T

J
Q Q I

GR GR
G

G R μ μ G R μ μ




 
  (24) 

where = HG QQ , and =HQ Q I . This is similar to the 
projection matrix P , which may not be a square matrix. 

To balance the clutter variance and target variance, the 
parameter   is added to the objective function as follows: 

tr( ) tr( )
argmax ( )

tr( )+ tr( )H

T C

SC TC

J
Q Q I

GR GR
G

GR GR


            (25) 

where = T
SC C C CR R μ μ , = T

TC T T TR R μ μ and  is the 
balance factor between the sample numbers of the clutter and 
targets. To adapt to the complex clutter background, 2, pl norm 
regularization can be used to capture general features [27]. The 
coefficient tr( )CGR  can be used to adjust the whitening 
contribution. Therefore, the objective function becomes: 

2

tr( ) tr( )
argmax ( )

tr( )+ tr( )H

T C

SC ST ,p

J
Q Q I

GR GR
G

GR GR G


 





    (26) 

where,  ,  , and  are all balance parameters, p  is a 
regularization parameter. It is called the modified linear 
discriminant analysis (MLDA), which unified both Novak’s 
principle and the LDA algorithm. The MLDA also becomes a 
trace ratio problem, whose calculation can be found in [27]. 
The joint subspace detector can be expressed as tr( )GR . R is 
the observed covariance matrix of features.  

E. Diagonal Loading Method in PDOF 
Many polarimetric detectors exist. The SPDOF and APDOF 

have similar forms among the four polarimetric detectors 
presented here. The only difference is the choice of the diagonal 
elements of a matrix. As shown in Section III, the combination 
of SPDOF and PDOF by the MLDA method always yields the 
best performance among all the detector combinations. This 
phenomenon motivated us to propose a novel detector by 
combining SPDOF and APDOF directly. 

The APDOF form is [6] 
1/2 1/2H

C GC CP Σ UΛ U Σ                      (27) 
and the SPDOF is  
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1 1
2 2H

C TC C

− −
=P Σ UΛ U Σ                        (28) 

where = m m
GC

n n

I 0
Λ

0 0




 
 
  

if the subspace dimension is m . 

From Eq. (27-28), it can be found that the unique difference 
between them is the choice of the diagonal matrix. Therefore, 
we can build a novel detector by combining the SPDOF and 
APDOF as follows: 

 1/2 1/2+ H
C TC GC CP Σ U Λ Λ U Σ           (29) 

where   is the loading factor. Because the diagonal matrix 
is formed by an eigenvalue matrix TCΛ  plus an identity 
matrix GCΛ , we call the novel detector the diagonal loading 
detector (DLD). The balance parameter  is very important for 
improving detection performance. To search for an accurate 
value efficiently, the initial value can be derived from the 
MLDA method, which combines SPDOF and APDOF 
together.  

In addition, the GEVD method can be considered as the other 
form of APDOF. Equation (3) can be transformed as  

1 1 1 1
2 2 2 2

C T C C k k C kf fΣ Σ Σ Σ Σ
                

           (30) 

where
1
2= CU Σ F ,  1, mf fF   . As a result, we get 

1- 1/22= H H
C CP FF Σ UU Σ                      (31) 

Therefore, the GEVD is the same as the APDOF, which 
provides a new explanation. It should also be noted that the 
EVD can only provide an approximate solution to the ratio 
trace problem. In the following experiments, the GEVD 
detector was replaced by the APDOF detector.  

In addition, if the APDOF is full dimension, the APDOF 
becomes a PWF. Then, the DLD of the full dimension becomes 
a linear combination of the PDOF and PWF. 

III. EXPERIMENTS VIA SIMULATION  

A. Simulated Data Generation 
A high-dimensional vector was established for ship detection 

based on the neighborhood polarimetric covariance matrix 
(NPCM), derived from the cross product of high-dimensional 
vectors conforming to a complex Gaussian distribution [28]. 
Therefore, NPCM can be used to validate the proposed method. 
The NPCM was established in seven different neighborhood 
forms [28]. Here, the horizontal-vertical neighborhood form 
(Fig. 2(a)) is used to establish a 15-dimensional covariance 
matrix. The simulated data were generated using the Monte 
Carlo method with underlying statistics obtained from a real 
dataset [6]. It should be noted that the NPCM is not necessary. 
It can also be made by the coefficients of different polarimetric 
decompositions [14], or the 3-dimensional polarimetric 
covariance matrix, as shown in the measured dataset. We can 
also find that the high dimension may improve the detection 
performance. 

The data generation method is the same as in [6]. In the 

simulation, 100,000N   samples were generated by a Monte 
Carlo method. Three common statistical models of clutter, 
including Wishart,  distribution, and 0 distribution, are used 
with the true polarimetric covariance matrix CΣ  [29]. Targets 
obey a 0 -distribution with the expectation of a polarimetric 
covariance matrix TΣ  [29]. Both CΣ  and TΣ  were drawn from 
RadarSat-2 data [6]. The multi-look number L  was set to 4. 
The shape parameters of the  -distribution and 

0 -distribution are 10 for the clutter. For ship targets, the shape 
parameter of the 0 -distribution was 2. The TCR is defined as 

TCR tr( ) / tr( )T C= Σ Σ                       (32) 

where tr( )TΣ  denotes the power of the targets, tr( )CΣ  
denotes the clutter power, and = +T C tΣ Σ Σ . Here the TCR is 
1.5 and the Pauli RGB images are presented in Fig. 2(b-f). 

 
Fig. 2. NPCM and Pauli images of the simulated dataset: (a) NPCM (b) clutter 
pixels of Wishart (c) clutter pixels of K-Wishart (d) clutter pixels of 
G0-Wishart (e) ship pixels of Wishart (f) ship pixels of G0-Wishart 

B. Efficiency of the TR problem Solution 
For the trace ratio itself, we propose an effective solver based 

on score evaluation using an iterative method. In a previous 
study [23], an iterative algorithm called ITR was proposed to 
solve (1), while a more efficient method was proposed in [24] 
and named the ITR-score algorithm. In a separate study [22], 
the suboptimal EVD solution was set as the initial value, 
improving the algorithm efficiency. Here, the ITR-score 
algorithm is used to efficiently find the eigenvector. The 
combined algorithm can be called an improved ITR-score 
(IITR-score) algorithm. The basic steps of the IITR-score 
algorithm are listed in Table I. 

TABLE I 
AN IMPROVED ITR-SCORE ALGORITHM FOR THE TR PROBLEM 

(1) Calculate the suboptimal solution of MCSR problem, obtain the matrix 0F , 

and calculate the initial value 1 0 0 0 0tr( ) tr( )H H
T CF Σ F F Σ F  . 

(2) Computer the eigen-decomposition of T t CΣ Σ : ( )T t C i i if fΣ Σ   , 

where ( 1,2, , )iu i n   is the eigenvector of T t CΣ Σ . 

(3) Compute the score /H H
i i T i i C is f f f fΣ Σ  for each eigenvector if  

(4) Choose the top m  eigenvectors if  having the m  largest eigenvalues if  

to form tF . 

(5) Update 1 tr( ) tr( )H H
t t T t t C tF Σ F F Σ F   . 

(6) Iterate the steps (2-5) until 1t t     , Output 1
ˆ

tF F . 
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Here, five methods to solve the trace ratio problem are 
compared using the Monte Carlo method: MCSR-Y [14], IITR 
[22], ITR-score [24], and IITR-score. The absolute bias  and 
computation time (s) are listed in Table II. The  in Table I is 
set as 1e-6, and the repetition times are 1e4. The dimension of 
the feature vector is 15, and the subspace dimension is 5. It can 
be seen that the IITR gives the best performance, and we also 
find that the number of recycle times of the IITR-score is the 
lowest in the simulation. It also shows that a suitable initial 
value significantly affects the calculation efficiency. 

TABLE II 
THE COMPARISON OF SOLUTIONS FOR TRACE RATIO PROBLEM 

 MCSR-Y IITR-score ITR-score IITR 
Bias 5e-6 1e-6 1e-6 1e-6 

time cost (s) 0.0012 0.0033 0.0054 0.0009 
recycles  8 4 7 4 

C. The Optimal Subspace of Different Detectors 
Defining the optimal subspace dimension is an interesting 

problem for ship detection. In this work, we solve this problem 
using a statistical model and AUC. The AUC allows the 
assessment of the performance of different dimensional 
subspaces to determine the optimal dimension of the 
polarimetric detection subspace. We used the analytical 
expressions of faP  and dP  derived for a Wishart distribution to 
calculate the AUC. The algorithm is presented in Table III. 

TABLE III 
ALGORITHM TO DERIVE THE OPTIMAL DIMENSION 

(1) Solve the subspace projection matrix P  for one subspace. 
(2) Calculate the Ca , Cb , Ta , Tb  for clutter and targets, respectively, in Eq. 
(19). 
(3) Set faP =[1e-8,1]. Calculate the threshold range ℋ in Eq. (21). 

(4) Calculate dP  in Eq. (19) with the range ℋ. 
(5) Calculate the AUC for each subspace of the different dimension m . 
(6) Repeat (1–5) until all the subspaces are covered.   
(7) Choose the optimal dimension by the largest AUC among all the subspace 
projection matrices. 

 
1) The Optimal Subspace of the MCSR 

10 -8 10 -6 10 -4 10 -2 10 0

Pfa

0

0.2

0.4

0.6

0.8

1

Pd

MCSR-1

MCSR-3

MCSR-5

MCSR-7

MCSR-9

MCSR-11

MCSR-13

MCSR-15

 
Fig. 3. ROC curves by numerical calculation when TCR = 1. 2. 

We used receiver of characteristics (ROC) curves to plot 
quantitative results about the performance of detectors using 
the analytical expressions derived previously (Fig. 3). “Pd” is 

the probability of detection (PD), “Pfa” is the probability of 
false alarm (PFA). “MCSR-m” denotes the m-dimensional 
MCSR (TR) subspace. The 9-dimensional subspace provides 
the best detection performance, regardless of whether the target 
clutter ratio (TCR) is small or large. 

Fig. 4 shows the results obtained using the Monte Carlo 
simulations. In Fig. 3(a), both the clutter and targets are 
Wishart-distributed (CWTW). These results are consistent with 
the theoretical results shown in Fig. 3. In Fig 4(b), the clutter is 
still Wishart-distributed, but the targets are set as 

0 -distributed (CWTG) [6] to study the robustness of the 
algorithm. In this case, dimension 9 was still the best. In Fig. 
4(c), the clutter is  distributed and targets are 0  distributed 
(CKTG); the optimal dimension in this case is 5. When the 
clutter is 0 distributed and targets are also 0  distributed 
(CGTG), the optimal dimension is 5. 

The higher the TCR is, the better the detection performance 
is. In the simulations, some of the plots have TCR = 1.5, and 
some TCR = 1.2, because in some cases of 1.5, the curves will 
be too high. The fitting of the statistical model also affects the 
detection results. When the actual targets and clutter statistics 
are Wishart distributed, consistency is evident. When their 
actual distribution is different from that of Wishart, the 
algorithm can still perform adequately, but the solution for the 
optimal subspace dimension is not the best one. 
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(d) 

Fig. 4. ROC curves by Monte Carlo simulation. (a) CWTW TCR = 1.2  
(b) CWTG TCR = 1.5 (c) CKTG TCR = 1.5 (d) CGTG TCR = 1.5. 

2)  The Optimal Subspace of the PDOF 
In the PDOF, the results from the analytical solution are 

presented in Fig. 5, while the results for the Monte Carlo 
simulation data are shown in Fig 6. “PDOF-m” denotes the 
m-dimensional PDOF subspace.  
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Fig. 5. ROC curves by numerical calculation when TCR = 1.15. 

It can be seen that PDOF-9–PDOF-15 achieves the best 
performance and PDOF-1 achieves the worst performance 
when the clutter is Wishart, as shown in Fig. 6 (a) and (b). 

These results are consistent with this theory. When sea 
clutter becomes more heterogeneous, the optimal dimension of 
the PDOF is 5, regardless of whether the clutter statistics is   
or 0 . 
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(d) 

Fig. 6. ROC curves by Monte Carlo simulation. (a) CWTW TCR = 1.15  
(b) CWTG TCR = 1.5 (c) CKTG TCR = 1.5 (d) CGTG TCR = 1.5. 

D. Performance Analysis of Joint Subspaces Detector 
Here, the detection performance of the joint subspace 

detector is presented. The combination includes four subspaces: 
SPDOF, APDOF, MCSR, and EVD. Because the optimal 
dimension for each subspace is similar in our simulations, we 
chose this dimension for the MCSR to be 9 in a homogeneous 
background and 5 in a heterogeneous background. The balance 
parameters are initially defined as =0 , =0 , =0 , =2p , and 

=15d . In the following figures, “Detector-m” denotes the 
subspace detection with the dimension m and “Joint-m” denotes 
the joint subspace detector with dimension m. The area under 
curves (AUCs) are presented in the following Tables. In these 
tables, the results with different parameters are provided using 
the same background. = 1− indicates that the initial 

=0 change is -1. =1  indicates that the initial =0  change is 
1. =1 means changing the initial =0  value to 1. =1p  means 
changing the initial =2p  value to 1 and =1  to 1. =9d means 
changing the subspace dimension =15d to 9. When one 
parameter is changed, the others remain the same as before. 

10 -5 10 -4 10 -3 10 -2 10 -1

Pfa

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pd

Joint-1

Joint-2

Joint-3

Joint-4

SPDOF-9

APDOF-9

EVD-9

MCSR-9

 
Fig. 7. Comparisons of joint subspaces detectors: ROCs of different 
polarimetric subspace detectors (CWTW TCR = 1.1). 

 
TABLE IV 

AUCS OF DIFFERENT POLARIMETRIC SUBSPACE DETECTORS 
 Normal = 1−  =1  =1  =1p  =9d  

Joint-1 0.9992 0.9993 0.9962 0.9991 0.9991 0.9992 
Joint-2 0.9992 0.9993 0.9962 0.9991 0.9990 0.9992 
Joint-3 0.9992 0.9993 0.9965 0.9991 0.9990 0.9991 
Joint-4 0.9990 0.9990 0.9990 0.9990 0.9990 0.9992 

SPDOF-9 0.9992 
APDOF-9 0.9991 

EVD-9 0.9987 
MCSR-9 0.9943 

In Fig. 7 and 8, the detection ROCs with initial parameters 
are presented in the CWTW and CWTG cases, respectively, 
where the TCR is 1.1 and 1.5. It can be seen that SPDOF-9 
provides the best performance, and the MCSR gives the worst 
performance. The remaining detectors provided approximately 
the same performance. In Tables IV and V, “Joint-4” is the 
most stable detector with respect to the changing parameters. It 
can also be seen that the normal parameters give the best 
performance when we vary only one and leave the other the 
same from all these tables. 
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Fig. 8. Comparisons of joint subspaces detectors: ROCs of different 
polarimetric subspace detectors (CWTG TCR = 1.5). 

 
TABLE V 

AUCS OF DIFFERENT POLARIMETRIC SUBSPACE DETECTORS 

 Normal = 1−  =1  =1  =1p  =9d  
Joint-1 0.9798 0.9798 0.9694 0.9790 0.9787 0.9851 
Joint-2 0.9799 0.9799 0.9623 0.9787 0.9778 0.9852 
Joint-3 0.9799 0.9799 0.5411 0.9785 0.9778 0.9852 
Joint-4 0.9778 0.9778 0.9778 0.9778 0.9778 0.9840 
SPDOF-9 0.9866 
APDOF-9 0.9839 
EVD-9 0.9866 
MCSR-9 0.9831 

 
Fig. 9 and 10 present the detection results with initial 

parameters and TCR = 1.5. The background is CKTG and 
CGTG respectively. From these figures it can be seen in the 
heterogeneous background the Joint-1, Joint-2 and Joint-3 give 
the best performances, while Joint-4 gives a worse performance, 
which is comparable to the single subspace detector. The 
SPDOF performs best among the single detectors. 
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Fig. 9. ROCs of different subspace (CKTG TCR = 1.5). 

 
TABLE VI 

AUCS OF DIFFERENT POLARIMETRIC SUBSPACE DETECTORS 
 Normal = 1−  =1  =1  =1p  =5d  

Joint-1 0.9980 0.9980 0.8900 0.9966 0.9972 0.9768 
Joint-2 0.9980 0.9980 0.9735 0.9950 0.9964 0.9770 
Joint-3 0.9979 0.9979 0.9951 0.9931 0.9956 0.9770 
Joint-4 0.9580 0.9580 0.9580 0.9580 0.9580 0.9761 

SPDOF-5 0.9761 
APDOF-5 0.9752 

EVD-5 0.9761 
MCSR-5 0.9735 
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Fig. 10. ROCs of different subspace (CGTG TCR = 1.5). 

 
TABLE VII 

AUCS OF DIFFERENT POLARIMETRIC SUBSPACE DETECTORS 
 Normal = 1−  =1  =1  =1p  =5d  

Joint-1 0.9973 0.9973 0.6933 0.9945 0.9956 0.9764 
Joint-2 0.9972 0.9972 0.5835 0.9917 0.9941 0.9794 
Joint-3 0.9971 0.9971 0.6051 0.9891 0.9927 0.9794 
Joint-4 0.9668 0.9668 0.9668 0.9668 0.9668 0.9819 

SPDOF-5 0.9819 
APDOF-5 0.9811 

EVD-5 0.9818 
MCSR-5 0.9790 

 

 
Fig. 11. ROCs of two subspace combination (CKTG). 

 

The joint detectors applied four transform matrices. The two 
matrices are accurate, and the other two are approximate. 
Therefore, we used only two subspace combination detectors to 
observe the detection results to determine the main contribution 
matrices. The detection results for the CKTG and CGTG cases 
are presented in Fig. 11-12 and Table VIII-IX. 
“Detector-detector” denotes the names of the two combinations. 
“SPDOF-APDOF” gave the best performance among all the 
two-subspace combined detectors, followed by the 
“SPDOF-EVD,” while that of “MCSR-EVD” was the worst. 
“SPDOF-APDOF” performed as good as the best joint 
detectors. As shown in Table VIII-IX, performance was better 
when the dimensions of the subspaces were not further reduced. 

 
TABLE VIII 

AUCS OF DIFFERENT POLARIMETRIC SUBSPACE DETECTORS 
(CKTG) 

 Normal = 1−  =1  =1  =1p  =5d  
M-S 0.9956 0.9957 0.9740 0.9701 0.9766 0.9763 
M-E 0.5339 0.5340 0.5467 0.5219 0.5209 0.9762 
M-A 0.9908 0.9908 0.9529 0.9283 0.9399 0.9758 
S-E 0.9974 0.9974 0.9052 0.9603 0.9615 0.9760 
S-A 0.9979 0.9979 0.9955 0.9965 0.9972 0.9770 
E-A 0.9959 0.9959 0.8656 0.9118 0.9127 0.9761 

   

 
Fig. 12. ROCs of two subspace combination (CGTG). 
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TABLE IX 
AUCS OF DIFFERENT POLARIMETRIC SUBSPACE DETECTORS 

(CGTG) 
 Normal = 1−  =1  =1  =1p  =5d  

M-S 0.9941 0.9941 0.6035 0.9729 0.9763 0.9815 
M-E 0.5021 0.5020 0.5511 0.4919 0.4910 0.9809 
M-A 0.9870 0.9870 0.6640 0.9310 0.9367 0.9808 
S-E 0.9965 0.9966 0.6234 0.9684 0.9688 0.9806 
S-A 0.9972 0.9972 0.6059   0.9944 0.9956 0.9794 
E-A 0.9944 0.9944 0.7205 0.9224 0.9215 0.9818 

Here, M, S, E, and A are the abbreviations of MCSR, SPDOF, 
EVD, and APDOF, respectively.  We also note that   will 
affect the detection performance significantly when the TCR is 
very large, as can also be seen in the experiments using 
measured data. 

E. Performance Analysis of Diagonal Loading Detector  
In our four detectors, SPDOF and APDOF played more 

important roles because the combination of these two detectors 
provides the best performance among all the two detector 
combinations. We extended this result to build a new joint 
detector by linearly combining SPDOF and APDOF, which 
was previously named DLD. When the loading factor is 
negative, we refer to it as a diagonally reducing case. 
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Fig. 13. Comparison of performance among different backgrounds, DL factors, 
and subspace dimensions: (a) CWTW TCR = 1.1 (b) CWTG TCR = 1.5 
(c) CKTG TCR = 1.5 (d) CGTG TCR = 1.5 (e) Results of joint subspace 
dimension TCR = 1.5. 

In the simulation, the statistics of the targets and clutter obey 
the CWTW, CWTG, CKTG, and CGTG assumptions. The 
diagonal reducing factors varied from -40 to 0. When the factor 
is zero, the DLD becomes the SPDOF detector. The AUCs of 
the ROCs in the different situations are presented in Table IX. 
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From the figures and tables, it can be seen that if a suitable 
value for the diagonal loading factor is improved, then the 
detection performance is improved significantly. DLD 
manages to almost solve the limitations when the clutter is not 
Wishart and reaches the performance of the Wishart hypothesis. 
Here, the diagonal loading factor (DLF) was -5.38. This factor 

optη  is difficult to determine. 

The MLDA solution of the joint SPDOF and APDOF can 
provide a satisfactory initial value. In Table X, the relations 
between optη  and the eigenvalues of 1

C TΣ Σ  are presented. 
In the simulation, the statistics of the targets and clutter obey 

the CWTW, CWTG, CKTG, and CGTG assumptions. The 
diagonal reducing factors varied from -40 to 0. When the factor 
is zero, the DLD becomes the SPDOF detector. The AUCs of 
the ROC curves in the different situations are presented in 
Table X. From the figures and tables, it can be seen that if a 
suitable value for the diagonal loading factor is improved, then 
the detection performance is improved significantly. DLD 
manages to almost solve the limitations when the clutter is not 
Wishart and reaches the performance of the Wishart hypothesis. 
Here, the diagonal loading factor (DLF) was -5.38. This factor 

optη  is difficult to determine. The MLDA solution of the joint 
SPDOF and APDOF can provide a satisfactory initial value. In 
Table XI, the relations between optη  and the eigenvalues of 

1
C TΣ Σ  are presented. 
 

TABLE X 
AUCS OF DIFFERENT POLARIMETRIC SUBSPACE DETECTORS 

(CGTG) 

 =0  =-4.03  =-4.62  =-5.38  
CWTW 0.9993 0.9949 0.9857 0.9362 
CWTG 0.9787 0.9990 0.9997   0.9998 
CKTG 0.9591 0.9966 0.9992 0.9998 
CGTG 0.9679 0.9977 0.9994 0.9998 

In Table X, we can see that in our simulation, optη is in the 

interval between the mean of the negative eigenvalue b−  and 
the mean of the maximum and minimum eigenvalues 

max min

2
b b+

−  . maxb  and minb  are the maximum and minimum 

eigenvalues of the matrix, respectively 1
C TΣ Σ . When the TCR 

is low, the clutter energy is an important factor that affects the 
detection performance. DL processing has the potential to zero 
clutter energy. From Eq. (29), we can derive the clutter energy 
as: 

 

   

1/2 1/2

1 1

tr( ) tr( + )

=tr + = + =0

H
C C TC GC C C

m m

TC GC i i
i i

b b m

PΣ Σ U Λ Λ U Σ Σ

Λ Λ



  

 

 



  
   (33) 

That is, opt = b  . If TCR is too large, the DLF will be positive, 
as can be seen in the measured data. 

TABLE XI 
THE RELATIONS FOR THE OPTIMAL DLF optη SELECTION (CGTG) 

TCR optη
 

max min

2
b b+

−
 

b−  Ratio(MLDA) 

1.1 -1.72 -1.88 -1.72 -1.47 

1.2 -2.45 -2.75 -2.45 -2.14 

1.3 -3.17 -3.63 -3.17 -2.87 

1.4 -4.50 -4.50 -3.89 -3.38 

1.5 -5.38 -5.38 -4.62 -4.03 

1.6 -6.26 -6.26 -5.35 -4.68 

1.7 -6.07 -7.14 -6.07 -5.23 

1.8 -6.80 -8.01 -6.80 -5.96 

1.9 -8.89 -8.89 -7.52 -6.60 

2.0 -9.77 -9.77 -8.24 -7.19 

IV. VALIDATION BY MEASURED DATA 

A. Flow chart of experiments 
The flow chart of the joint subspace detector proposed in this 

study is presented in Fig. 14.  
 

 
Fig. 14. Workflow of the Joint subspaces detector. 

There are four important processes, including initial target 
selection, detector pre-processing, constant false alarm rate 
(CFAR) processor, and performance assessment. Detector 
pre-processing includes estimating the feature covariance 
matrix, optimal dimension selection, projection matrix solution, 



 12 

feature Fisher vector construction, and parameter selection of 
the joint detector. The workflow is indicated by the solid arrow 
lines. Solid parallelograms represent the main inputs and 
outputs. The rectangular boxes within the gray background 
regions show the operation and procedure, and diamond is the 
decision on the balance parameters. The dotted arrow line 
indicates a parallel process using one type of polarimetric 
detector, such as SPDOF and DLD. In the MLDA case, =1e6  
is a different ordinary value of b, because in the measured 
dataset, TCR is generally much larger than that we simulated. 

B. Measured Data Descriptions 
The first scene of real data represents the North Sea area 

from RADARSAT-2 (RS-2) during November 2013 [6]. 
Automatic identification system (AIS) positions of the vessels 
were acquired and used for validation. The scene presents 11 
ships, as shown in Fig. 15(a) by PolSAR pro 6.0. “Sn” denotes 
the n-th ship in the image. A yellow rectangle is used for large 
ships, and a yellow circle is used for small ships. The wind 
speed is 32 knots; therefore, the sea state is high [6]. 

The second and third measured dataset were acquired by 
NASA/JPL Airborne SAR (AIRSAR) in Kojimawan, Japan, on 
October 4, 2000. They are in the L-band and covers 22 or 21 
ships, as shown in Fig. 15(b) and (c) respectively. Further 
details on the dataset can be found in the literature [6] and at 
https://vertex.daac.asf.alaska.edu/. The analysis of the 
cross-polarization C-band data revealed that the sea state was 
moderate to high [6, 30]. Based on [30], the relationship 
between C-band cross-pol backscatter and wind speed is 

100.592 35.6    [ ]o
cross pol NU dBσ − = −                   

(34) 

where o
cross polσ −  is the cross-pol C-band scatter, and 10

NU is the 
equivalent neutral stability wind speed at a 10-m height above 
the ocean surface. The averaged wind speed in the AIRSAR 
dataset is estimated to be 12.5 m/s using the Vachon’s method, 
signifying a moderate to high sea state. Here we choose two 
different areas B and C to assess the detection performances. 

The first step in selecting some preliminary targets is to use a 
high threshold. Additionally, the clutter is selected using a low 
threshold, as when applying a truncated statistical model [31].     
The ground truth is a key dataset in the assessment and 
generally it is hard to be obtained in practice. Therefore we 
choose two classical images where the ground truths have been 
accepted.   It has been validated by visual inspection in previous 
studies [32] for AIRSAR dataset, which verify the true ships via 
combing the L-Band image and C-Band image. For the 
Radarset-2 dataset, the AIS aided to ensure the true ships. To be 
more accurate, we decrease the detection threshold to find 
enough ship pixels as the ground truth, which will not affect the 
performance assessment via the same assessment methods, 
although it may involve some edge pixels between ships and 
clutter. 
 

 
(a) 

 
(b) 

 
(c) 

Fig. 15. The measured PolSAR images: (a) The selected RS-2 image : A 
(b) The selected AIRSAR image: B (c) The selected AIRSAR image: C 
 

C. CFAR detection by the GГD Model 
The quadratic form of =tr( )z GC  approximately obeys a 

gamma distribution ( , )z γ α β  [6]. To deal with heavier tails 
and increase the accuracy of the CFAR, the GГD can be used to 
model the output since the gamma distribution is a special case 
of the GГD family for simplicity. The gamma distribution can 
be rewritten as 

1

( ; , , )= exp
( )

kv vkv k z zf z k v k
k

σ
σ σ σ

−      −    Γ      
    (34) 

,k v , and σ are the shape, power, and scale parameters, 

https://vertex.daac.asf.alaska.edu/
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respectively. In the GГD case, the PFA can be rewritten as  
1- [ , ], 0

( ; , , ) =
[ , ], 0

v

fa vT

k T v
P f z k v dz

k T v





      
            (35) 

and the threshold is  
1/

1

1/
1

1 [ ,1- ]

1 [ , ]

v

fa

v

fa

k P
T

k P

η

η

−

−

 
Γ 

 = 
 

Γ 
                      (36) 

where vkη σ −= . The GГD is employed as an extension to 
accommodate cases with heavier tails.   

To build the higher dimensional space, we used the 
polarimetric and neighborhood covariance matrix using 
horizontal-vertical neighborhood collection in RADARSat-2 
imagery. Because there is no polarimetric scattering matrix in 
the multilook format in the AIRSAR dataset, we only use the 
polarimetric covariance matrix itself without spatial 
information. The covariance matrices of ships and clutter are 
estimated using the maximum likelihood estimation (MLE) 
method.  If the distribution of ships is dense, truncated statistics 
can be used for accurate estimation by removing large values 
[31]. 

D. Performance Validation Indexes 
The CFAR loss is used to assess the statistical model fitness 

and is defined as in [29]: 



20log fa
L

fa

PC
P

    
                       (37) 

where LC is a function dependent on the threshold and 

indicates the corresponding error between the actual PFA ( faP ) 

and PFA (  faP ) estimated by the model. 
Two factors are used to assess the detector performance over 

the measured data: (1) the ROC curves and the corresponding 
AUCs, and (2) the figure of merit (FOM). The FOM is a 
macroscopic index for performance evaluation and is based on 
the target number of detections in the final map [6]:  

( )
td

fa gt

N
FoM =

N + N
                               (38) 

where tdN is the number of detected targets, faN is the 

number of false alarms, and gtN is the total number of targets in 
the scene. The bisection search method is used to determine the 
adaptive threshold that can maintain the FA constant. Here, we 
assume that a ship pixel represents one target [6, 14, 33]. 

E. Experiments by the measured datasets 
1) Validation in North Sea Dataset 

The measured data were processed using different 
polarimetric detectors. The density-based clustering algorithm 
DBSCAN is applied to discover erring clusters in noisy images 
[6]. Here, we use a distance parameter ε  equal to 100 and a 
point number tol equal to 8 in the DBSCAN algorithm to 
cluster the ship pixels. The detection result of SPDOF-9, which 
means the SPDOF detector with a dimension of 9, is presented 

in Fig. 16. ⅹ denotes the false alarm pixels. There were 12 
targets in this study. It should be noted that only 11 ships had 
AIS certification. Because each effective detector found the 
twelfth ship, we assume it is the 12-th ship.  
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Fig. 16. Detection results of SPDOF-9. 

Here, the CFAR is set to 1e-6. These quantities are listed in 
Table XII. Because LC is not the same, the FOM cannot be used 
to compare the performances of different detectors. Moreover, 
the GГD model cannot fit the statistics well. Finally, ROC 
curves were drawn based on the number of pixels of the target 
ship on the resulting graph.  

 
TABLE XII 

PERFORMANCE COMPARISON OF THE DIFFERENT DETECTORS. IN 
RS-2 

Image Method tdN  faN
 LC  %FoM（ ） 

RS-2 

Joint-1 9412 68 11.41  94.46 

Joint-2 9412 68 11.41  94.46 

Joint-3 9412 68 11.41  94.46 
Joint-4 9419 69 11.53  94.52 

M-S 9423 70 11.66  94.55 
M-E / / / / 
M-A 9147 96 14.40  91.54 
S-E 9419 69 11.53  94.52 
S-A 9412 68 11.41  94.46 
E-A 8977 95 14.31  89.85 

SPDOF-9 9463 79 12.71  94.87 
APDOF-9 9896 99 14.67  99.01 

EVD-9 9210 67 11.28  92.44 
OPD 4882 128 16.90 48.70 
PWF 4672 178 19.76 46.38 
PNF 3019 45 7.82 30.37 

MCSR-9 7354 38 6.35  74.03 
DL(-5) 9479 82 13.03  95.00 

 
It should be noted that M-E gives the worst performance, and 

too many false alarms make the clustering unable to work. 
Therefore, we use “/” to symbolize a very large number of FAs.  
In the following performance comparisons, the ROCs were 
presented to assess different polarimetric detectors.  

The optimal dimensions of a single detector are shown in Fig. 
17. The results are consistent with those of the numerical 
calculation and the simulated experiment. It can be seen that 
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MCSR-9 gives the best performance in the MCSR subspace 
detectors, and SPDOF 9-15 gives almost the same performance 
in the PDOF subspace detectors. The starting point of the 
abscissa is not consistent with the simulated data part because 
the pixel numbers are different, which should make the false 
alarm rate reasonable. 

The joint detectors are shown in Fig. 18. All the joint 
detectors, including 1 to 4 dimensional subspaces combined by 
the MLDA method, provide almost the same high performance. 
Compared with the single polarimetric detector, SPDOF-9 
provides the best performance, and it is very close to the joint 
detectors. In Fig. 18(b), the detection performances of the joint 
detectors combined with two simple detectors are presented 
and compared with those of the four detectors combinations. It 
can be seen that SPDOF-APDOF provides the best 
performance, which is even better than the joint detectors using 
four subspaces (Joint1-4). The EVD-APDOF clearly yielded 
the worst results. 
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(b) 

Fig. 17. ROCs of 1-15 dimensional subspaces in RS-2 imagery, (a) MCSR: 
1-15 (b) PDOF: 1-15. 

The detection performance of the DLDs with different 
factors is presented in Fig. 18. This is the same as the SPDOF 
when =0η . DLFs( =0 -1 -5 -10η ，，， ) are almost the same because 
the statistics of clutter and ships are Wishart models [6]. 
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(b)  

Fig. 18. ROCs of different joint subspaces detectors in RS-2. (a) Joint 
subspaces detector-4 subspaces(b) Joint subspace detector-2 subspaces 
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Fig. 19. The ROCs of DLDs with different DLFs in RS-2. 

 
The comparisons among the classical polarimetric detectors, 

such as PWF, Reflection Symmetry (RS) [34], PNF, are 
presented in Fig. 20. It can be seen DLD gives the best 
performance and the RS would be the worst. The joint detectors 
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are almost overlapped by the SPDOF-APDOF and DLD. It 
should be noted that the dimensions are all 3 instead of 15 for 
fair in the comparison simulation because OPD, RS and PNF 
are obtained in the 3-dimensional case. 
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Fig. 20. ROC curves of traditional detectors in the RS-2 image. 
2) Validation in AIRSAR Dataset 

In the AIRSAR imagery, the data format is a multilook 
complex (MLC); therefore, the full dimension is 3, and the 
neighborhood information is not used in our experiments. The 
parameters of MLDA are still in the normal state, 
except =1e6 , owing to the large TCR. The pixel-based FOM 
and ROC curves were used for evaluation.  

In the area B, the result of Joint-3 is shown in Fig. 21 as an 
example. There are 23 targets in the scene, instead of 22. Ship 
wakes from a ship are seen as targets here because this is also a 
feature of one ship and can be seen as weak targets. Of course, 
if wakes are not seen as targets, the results of performance 
comparisons will not change, but Pfa will increase. 
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Fig. 21. Detection Results of the Joint-3 detector in AIRSAR B. 

Here, the CFAR is set to 1e-5. The values of different 
polarimetric detectors are listed in Table XIII, where the faN  
of each detector is zero. This is caused by the high threshold. 
We can see that the clutter background is very complicated, and 
the statistical GГD model cannot fit the measured data 
effectively. In addition, the FOM cannot be used to assess the 
detection performance because the actual false alarm rate is not 

constant. 
TABLE XIII 

PERFORMANCE COMPARISON OF THE DIFFERENT DETECTORS IN 
AIRSAR IMAGERY B 

Image Method tdN  faN
 LC  %FoM（ ） 

AIR 
SAR B 

Joint-1 2123 0 / 94.48 
Joint-2 2123 0 / 94.48 

Joint-3 2123 0 / 94.48 
Joint-4 2123 0 / 94.48 

M-S 2123 0 / 94.48 
M-E 1118 0 / 49.76 
M-A 2146 0 / 95.51 
S-E 2123 0 / 94.48 
S-A 2123 0 / 94.48 
E-A 2146 0 / 95.51 

SPDOF-2 2117 0 / 94.21 
APDOF-2 2153 0 / 95.82 

EVD-2 2124 0 / 94.53 
OPD 2155 0 / 95.91 
PWF 2150 0 / 95.68 
PNF 1821 3 / 81.04 

MCSR-2 2089 0 / 92.97 
DL(770) 2247 0 / 100.00 

All the ROC curves of the different polarimetric detectors are 
presented in Fig. 22-23. Fig. 22(a) shows the performances of 
single detectors with different dimensional subspaces.  We 
found that EVD-2 gave the best performance, followed by 
SPDOF-2. Fig. 22 (b) also shows that EVD-2 provides the best 
performance compared with the Joint1-4 detectors. 
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(c) 

Fig. 22. ROCs of different detectors in the AIRSAR image B. (a) Single 
detectors with different subspace dimension (b) Joint subspaces detector-4 
subspaces (c) Joint subspace detector-2 subspaces. 
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Fig. 23. ROC curves of DLDs in the AIRSAR image B. 
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Fig. 24. ROC curves of traditional detectors in the AIRSAR image B. 

 
In theory, EVD is an approximate solution of GEVD, and 

GEVD is the same as APDOF. Therefore, the EVD should be 
close to APDOF. Here, we believe the fact that EVD-2 provides 
the best performance is coincidental. This assumption is 

verified by changing the region of clutter. Additionally, we 
used the DLD method to find a better detector than EVD. The 
results are presented in Fig. 23. This shows that the DLD with a 
suitable diagonal loading factor always achieves the best 
detection performance. 

The detection results between different classical polarimetric 
detectors are similar to RS-2’s, which are presented in Fig. 24. 
DLD gives the best performance and the RS would be the worst. 
The OPD is overlapped by the PWF. The joint detectors are 
almost overlapped by the SPDOF-APDOF. 

In the area C, the detection result of PWF is shown in Fig. 25 
as an example. We can see that there are 23 targets in the scene, 
instead of 21. One is a false alarm, and the other is ship wake. 
Ship wake from a ship can be seen as a target since it helps to 
find the small ships. The FOM is listed in Table XIV. The 
CFAR is set as 1e-5. The results are almost the same as that in 
Table XIII. 
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Fig. 25. Detection Results of the PWF detector in AIRSAR image C 

 
TABLE XIV 

PERFORMANCE COMPARISON OF THE DIFFERENT DETECTORS IN 
AIRSAR IMAGERY C 

Image Method tdN  faN
 LC  %FoM（ ） 

AIR 
SAR C 

Joint-1 1873 0 / 71.22 
Joint-2 1873 0 / 71.22 

Joint-3 1873 0 / 71.22 
Joint-4 1873 0 / 71.22 

M-S 1873 0 / 71.22 
M-E 2026 4 / 77.03 
M-A 1992 2 / 75.74 
S-E 1873 0 / 71.22 
S-A 1873 0 / 71.22 
E-A 1992 2 / 75.68 

SPDOF-2 1923 2 / 73.06 
APDOF-2 1911 1 / 72.63 

EVD-2 1904 1 / 72.37 
OPD 1991 2 / 75.65 
PWF 1992 2 / 75.68 
PNF 2182 6 / 82.78 

MCSR-2 1786 3 / 67.83 
DL(1e5) 2630 7 / 99.73 

All the ROCs of the different polarimetric detectors in area C 
are presented in Fig. 26 and 27. We can find the 2-dimensional 
and 3-dimensional subspace detectors have almost the same 
performances in Fig. 25(a). The results are consistent with 
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those in area A and area B. Here the PWF reaches the best 
performance, which can be seen as a special case of the DLD. 
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Fig. 26. ROCs of different detectors in the AIRSAR image C. (a) Single 
detectors with different subspace dimension (b) Joint subspaces detector-4 
subspaces (c) Joint subspace detector-2 subspaces. 

 
In Fig. 27, the performances of the DLD detectors with 

different DLF are presented. It can be seen that the larger the 

DLF is, the better the performance would be. This also shows 
that the PWF should reach the best performance in the DLDs as 
a special case. 
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Fig. 27. ROC curves of DLDs in the AIRSAR image C. 

 
The comparisons between the classical polarimetric 

detectors, such as PWF, RS, PNF, are presented in Fig. 28. It 
can also be seen DLF gives the best performance and the RS 
would be the worst. The OPD is overlapped by the PWF. The 
joint detectors are almost overlapped by the SPDOF-APDOF. 
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Fig. 28. ROC curves of traditional detectors in the AIRSAR image C 

 

V. CONCLUSION 
This study focused on PolSAR ship detection. First, the 

APDOF was improved to a strict formalism—SPDOF, which 
included the full-dimensional case of PDOF, while the 
approximate one did not. The SPDOF transformed the PolSAR 
image into a subspace in which the ratio of TCR and clutter 
fluctuation reached the maximum, showing the best detection 
ability in single polarimetric detectors, regardless of the 
Wishart background or complex clutter environment. 

Then, a joint detector was proposed based on the MLDA 
method, which showed strong robustness and detection 
capabilities. It combined different detectors to maximize the 
detection efficiency, in contrast to a single detector, which is 
only suited for one optimization objective function. 

The best performance of the joint mainly comes from the 
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combination of two detectors, SPDOF and APDOF. To further 
improve the detection ability, the linear coefficient provided by 
the MLDA theory was used as the initial value, and the 
eigenvalue was used to optimize the proportion of SPDOF and 
APDOF. Finally, SAPDOF, which can achieve the best 
detection under various environments, was proposed, providing 
a strong practical application for PolSAR ship detection. 

In addition, the main line of work detailed above, this paper 
presents an efficient and simple numerical operation method to 
determine the optimal dimensions of the subspace detector. The 
accuracy of this method was verified by simulation and real 
data. At the same time, the relationship between MCSR, EVD, 
and APDOF detectors, which involve trace ratio and ratio trace 
problems, was also clarified in this study. The GEVD was 
proven to be the same as the APDOF. 

There are many ship detection approaches based on the deep 
learning at present. To our best knowledge, the open PolSAR 
benchmark dataset are very few and the deep learning is 
data-driven and data-sensitive. In our future work, we will aim 
to step into interpretable deep learning, hoping to conduct a 
more in-depth analysis of small ships detection, including ship 
wakes detection, by finding novel neural networks and trying to 
explain their physical meaning. 

VI. REFERENCES 
[1] D. Crisp, “The state-of-the-art in ship detection in Synthetic Aperture 

Radar imagery,” DSTO, Department of Defence, Canberra, ACT, 
Australia, vols. 05/01, 2004. 

[2] G. Gao and G. Shi, “CFAR ship detection in nonhomogeneous sea clutter 
using polarimetric SAR data based on the notch filter,” in IEEE Trans. 
Geosci. Remote Sens., vol. 55, no. 8, pp. 4811–4824, Aug. 2017. doi: 
10.1109/TGRS.2017.2701813. 

[3] K. Ouchi, “Current status on vessel detection and classification by 
synthetic aperture radar for maritime security and safety,” in Proc. Symp., 
Remote Sens. Environ. Aichi, Japan: Sci, pp. 5–12, Sep. 2016. 

[4] C. Brekke and S. N. Anfinsen, “Ship detection in ice-infested waters 
based on dual-polarization SAR imagery,” in IEEE Geosci. Remote Sens. 
Lett., vol. 8, no. 3, pp. 391–395, May 2011. doi: 
10.1109/LGRS.2010.2078796. 

[5] M. Sciotti, D. Pastina, and P. Lombardo, “Polarimetric detectors of 
extended targets for ship detection in SAR images,” in Geoscience and 
Remote Sensing Symposium. Sydney, NSW, Australia, Australia, Jul. 
2001. 

[6] T. Liu, Y. Jiang, A. Marino, G. Gao, and J. Yang, “The polarimetric 
detection optimization filter and its statistical test for ship detection,” in 
IEEE Trans. Geosci. Remote Sens., vol. PP, vol. 99, pp. 1–18, 2021. 

[7] T. Liu, Z. Yang, T. Zhang, Y. Du, and A. Marino, “A new form of the 
polarimetric notch filter,” in IEEE Geosci. Remote Sensing Lett., vol. 99, 
pp. 1–5, 2020. doi: 10.1109/LGRS.2020.3020052. 

[8] F. Biondi, “A polarimetric extension of low-rank plus sparse 
decomposition and radon transform for ship wake detection in synthetic 
aperture radar images,” in IEEE Geosci. Remote Sens. Lett., vol. 16, no. 1, 
pp. 75–79, 2019. doi: 10.1109/LGRS.2018.2868365. 

[9] K. Jin, Y. Chen, B. Xu, J. Yin, X. Wang, and J. Yang, “A patch-to-pixel 
convolutional neural network for small ship detection with PolSAR 
images,” in IEEE Trans. Geoence Remote Sens., vol. 99, pp. 1–16, 2020. 
doi: 10.1109/TGRS.2020.2978268. 

[10] L. M. Novak, M. B. Sechtin, and M. J. Cardullo, “Studies of target 
detection algorithms that use polarimetric radar data,” in IEEE Trans. 
Aerosp. Electron. Syst., vol. 25, no. 2, pp. 150–165, 1989. doi: 
10.1109/7.18677. 

[11] A. B. Kostinski and W. M. Boerner, “On the polarimetric contrast 
optimization,” in IEEE Trans. Antennas Propag., vol. 35, no. 8, pp. 
988–991, 1987. doi: 10.1109/TAP.1987.1144209. 

[12] W. M. Boerner, and A. B. Kostinski, “On the concept of the polarimetric 
matched filter in high resolution radar imaging: An alternative for speckle 

reduction,” in Antennas and Propagation Society International 
Symposium, pp. 69–72, 1988. 

[13] J. Yang, G. Dong, Y. Peng, Y. Yamaguchi, and H. Yamada, “Generalized 
optimization of polarimetric contrast enhancement,” in IEEE Geosci. 
Remote Sens. Lett., vol. 1, no. 3, pp. 171–174, 2004. doi: 
10.1109/LGRS.2004.830127. 

[14] D. Yang, L. Du, H. Liu, and W. Ni, “Novel polarimetric contrast 
enhancement method based on minimal clutter to signal ratio subspace,” 
in IEEE Trans. Geosci. Remote Sens., vol. 57, no. 11, pp. 8570–8583, 
2019. doi: 10.1109/TGRS.2019.2921629. 

[15] R. Touzi, J. Hurley, and P. W. Vachon, “Optimization of the degree of 
polarization for enhanced ship detection using polarimetric 
RADARSAT-2,” in IEEE Trans. Geosci. Remote Sens., vol. 53, no. 10, 
pp. 5403–5424, Oct. 2015. doi: 10.1109/TGRS.2015.2422134. 

[16] R. Touzi, F. J. Charbonneau, R. K. Hawkins, and P. W. Vachon, “Ship 
detection and characterization using polarimetric SAR,” in Can. J. 
Remote Sens., vol. 30, no. 3, pp. 552–559, 2004. doi: 10.5589/m04-002. 

[17] L. M. Novak and M. C. Burl, “Optimal speckle reduction in polarimetric 
SAR imagery,” in IEEE Trans. Aerosp. Electron. Syst., vol. 26, no. 2, pp. 
293–305, 1990. doi: 10.1109/7.53442. 

[18] A. Marino, “A notch filter for ship detection with polarimetric SAR data,” 
in IEEE J. Sel. Top. Appl. Earth Obs. Remote Sensing, vol. 6, no. 3, pp. 
1219–1232. doi: 10.1109/JSTARS.2013.2247741. 

[19] L. M. Novak, “Target detection studies using fully polarimetric data 
collected by the Lincoln Laboratory MMW SAR,” 92 Intl. Conf. on 
Radar, Brighton, UK, pp. 167–170, 1992. 

[20] R. Zhang, F. Nie, X. Li, and X. Wei, “Feature selection with multi-view 
data: A survey,” in Inf. Fusion, vol. 50, pp. 158–167, 2019. doi: 
10.1016/j.inffus.2018.11.019. 

[21] J. Yin, J. Yang, C. Xie, Q. Zhang, Y. Li, and Y. Qi, “An improved 
generalized optimization of polarimetric contrast enhancement and its 
application to ship detection,” in IEICE Trans. Commun., vol. E96b, no. 7, 
pp. 2005–2013, 2013. 

[22] T. Liu, “Comments on novel polarimetric contrast enhancement method 
based on minimal clutter to signal ratio subspace,” in IEEE Transactions 
on Geoscience and Remote Sensing, 1–2. doi: 
10.1109/TGRS.2021.3087138. 

[23] H. Wang, S. Yan, D. Xu, X. Tang and T. huang, “Trace Ratio vs. ratio 
Trace for Dimensionality Reduction,” in IEEE Conf. on Comput. Vis. and 
Pattern Recognit., Minneapolis, MN, USA, pp. 1–8, 2007. doi: 
10.1109/CVPR.2007.382983. 

[24] M. Zhao, Z. Zhang, T. Chow,“Trace ratio criterion based generalized 
discriminative learning for semi-supervised dimensionality reduction,” in 
Pattern Recognit., vol. 45, no. 4, pp. 1482–1499, Apr. 2012. doi: 
10.1016/j.patcog.2011.10.008. 

[25] D. Li and Y. Zhang, “Random similarity Between two mixed scatterers,” 
in Geosci. Remote Sens. Lett. IEEE, vol. 12, no. 12, pp. 2468–2472, 2015. 

[26] C. Forbes et al., Statistical Distributions, 4th ed. Hoboken, NJ, USA: 
Wiley, 2010. 

[27] M. Zhao, M. Lin, B. Chiu, Z. Zhang and X. Tang, “Trace Ratio Criterion 
based Discriminative Feature Selection via L2,p-norm regularization for 
supervised learning,” in Neurocomputing, vol. 321, pp. 1–16, 2018. doi: 
10.1016/j.neucom.2018.08.040. 

[28] T. Liu, Z. Yang, A. Marino, G. Gao and J. Yang, “PolSAR ship detection 
based on neighborhood polarimetric covariance matrix,” in IEEE Trans. 
Geosci. Remote Sens., vol. 59, no. 6, pp. 4874–4887, 2020. doi: 
10.1109/TGRS.2020.3022181. 

[29] T. Liu, J. Zhang, G. Gao and A. Marino, “CFAR ship detection in 
polarimetric synthetic aperture radar images based on whitening filter,” in 
IEEE Trans. Geosci. Remote Sens., vol. 58, no. 1, pp. 58–81, Jan. 2020. 
doi: 10.1109/TGRS.2019.2931353. 

[30] P. W. Vachon and J. Wolfe, “C-band cross-polarization wind speed 
retrieval,” in IEEE Geosci. Remote Sens. Lett., vol. 8, no. 3, pp. 456–459, 
May 2011. doi: 10.1109/LGRS.2010.2085417. 

[31] T. Liu, Z. Yang, A. Marino, G. Gao and J. Yang, “Robust CFAR detector 
based on truncated statistics for polarimetric synthetic aperture radar,” in 
IEEE Trans. Geosci. Remote Sens., vol. 58, no. 9, pp. 6731–6747, Sept. 
2020. doi: 10.1109/TGRS.2020.2979252. 

[32] J. Wei, P. Li, Y. Jie, J. Zhang and F. Lang, “A new automatic ship 
detection method using L-band polarimetric SAR imagery,” in IEEE J. 
Sel. Top. Appl. Earth Obs. Remote Sensing, vol. 7, no. 4, pp. 1383–1393, 
2014. doi: 10.1109/JSTARS.2013.2269996. 

[33] T. Zhang, L. Jiang, D. Xiang, Y. Ban, L. Pei, and H. Xiong, “Ship 
detection from PolSAR imagery using the ambiguity removal 

https://doi.org/10.1109/TGRS.2017.2701813
https://doi.org/10.1109/LGRS.2010.2078796
https://doi.org/10.1109/lgrs.2020.3020052
https://doi.org/10.1109/lgrs.2018.2868365
https://doi.org/10.1109/tgrs.2020.2978268
https://doi.org/10.1109/7.18677
https://doi.org/10.1109/TAP.1987.1144209
https://doi.org/10.1109/LGRS.2004.830127
https://doi.org/10.1109/TGRS.2019.2921629
https://doi.org/10.1109/TGRS.2015.2422134
https://doi.org/10.5589/m04-002
https://doi.org/10.1109/7.53442
https://doi.org/10.1109/JSTARS.2013.2247741
https://doi.org/10.1016/j.inffus.2018.11.019
https://doi.org/10.1109/tgrs.2021.3087138
https://doi.org/10.1109/cvpr.2007.382983
https://doi.org/10.1016/j.patcog.2011.10.008
https://doi.org/10.1016/j.neucom.2018.08.040
https://doi.org/10.1109/TGRS.2020.3022181
https://doi.org/10.1109/tgrs.2019.2931353
https://doi.org/10.1109/LGRS.2010.2085417
https://doi.org/10.1109/tgrs.2020.2979252
https://doi.org/10.1109/JSTARS.2013.2269996


 19 

polarimetric notch filter,” in ISPRS Journal of Photogrammetry & 
Remote Sensing, vol.157, pp. 41-58, 2019. 

[34] E. Ferrentino, F. Nunziata, A. Marino, M. Migliaccio and X. Li, 
“Detection of wind turbines in intertidal areas using SAR polarimetry,” in 
IEEE Geosci. Remote Sens. Lett., vol. 16, no. 10, pp. 1516-1520, 2019. 

 
Tao Liu received the B.S. degree in 
communication engineering and the Ph.D. 
degree in information and communication 
engineering, all from the National 
University of Defense Technology (NUDT), 
Changsha, China, in 2001 and 2007 
respectively. Since 2007, he has been with 
the School of Electronic Engineering, Naval 
University of Engineering, where he is 

currently a Professor. He has authored over 50 journal papers 
and three books. His research interests include statistical theory 
of radar polarization, polarization information processing, 
synthetic aperture radar (SAR) automatic target recognition, 
statistical modeling of SAR image, SAR ship detection, InSAR 
(interferometric SAR), SAR ground moving target indication 
and Artificial Intelligence(AI). 
 
 
 
 

Ziyuan Yang received the B.S. degree in 
radar engineering from the Naval 
University of Engineering (NUE), 
Wuhan, China, in 2019 .Now he is 
studying for a doctor’s degree in 
information and communication 
engineering.  

His research interests include radar 
polarization information process and 

electronic warfare system modeling and SAR ground moving 
target indication. 
 
 
 
 

 Armando Marino (M’2011) received the 
M.Sc. degree in telecommunication 
engineering from the Universita’ di Napoli 
“Federico II,” Naples, Italy, in 2006. In 
2006, he joined the High Frequency and 
Radar Systems Department, German 
Aerospace Centre, Oberpfaffenhofen, 
Germany, where he developed his M.Sc. 

thesis. He received the Ph.D. degree in polarimetric SAR 
interferometry from the School of Geosciences, University of 
Edinburgh, Edinburgh, U.K., in 2011. From March 2011 to 
October 2011, he was with the University of Alicante, Institute 
of Computing Research, Spain. From December 2011 to May 
2015, he was a Postdoctoral Researcher and Lecturer with ETH 
Zurich, Institute of Environmental Engineering, Switzerland. 
From June 2015, he was a Lecturer with the School of 
Engineering and Innovation, Open University, Milton Keynes, 
U.K. Since May 2018 he is a Senior Lecturer (Associate 
Professor) at the University of Stirling, Faculty of Natural 
Sciences, Stirling, UK. 

Gui Gao (M’09) received the B.S. in 
information engineering, the M.S. and 
Ph.D. degrees in remote sensing 
information processing from National 
University of Defense Technology 
(NUDT), Changsha, China, in 2002, 2003 
and 2007, respectively.  
From 2007, he joined the Faculty of 
Information Engineering, School of 

Electronic Science and Engineering, NUDT, as an associate 
professor. From 2017, he was with Faculty of Geosciences and 
Environmental Engineering, Southwest Jiaotong University, 
Chengdu, China, where he is currently a professor. He has 
authored over 100 journal and conference papers and has 
written four books and an English chapter. His current research 
interests include radar signal processing, InSAR 
(interferometric SAR), target detection, marine environment, 
and SAR GMTI (ground moving target indication). 
 
 
 
 

 
Jian Yang (M’03, SM’ 04) received the B.S. 
and M.S. degrees from Northwestern 
Polytechnical University, Xian, China, in 
1985 and 1990, respectively, and the Ph.D. 
degree from Niigata University, Niigata, 
Japan, in 1999. In 1985, he joined the 
Department of Applied Mathematics, 
Northwestern Polytechnical University. 

From 1999 to 2000, he was an Assistant Professor with Niigata 
University. In April 2000, he joined the Department of 
Electronic Engineering, Tsinghua University, Beijing, China, 
and he was promoted to a full Professor in 2002. He has 
published more than 300 papers and received many awards. His 
research interesting areas include radar polarimetry, feature 
extraction, target detection and target classification. 

View publication statsView publication stats

https://www.researchgate.net/publication/358363197

	I. INTRODUCTION
	II. Subspace Detectors and their Combination
	A. Trace Ratio and Ratio Trace Problems
	B. Strict Subspace of PDOF
	C. Statistics of the Subspace Dimension Detectors
	D. Modified Linear Discriminant Analysis
	E. Diagonal Loading Method in PDOF

	III. Experiments via simulation
	A. Simulated Data Generation
	B. Efficiency of the TR problem Solution
	C. The Optimal Subspace of Different Detectors
	1) The Optimal Subspace of the MCSR
	2)  The Optimal Subspace of the PDOF

	D. Performance Analysis of Joint Subspaces Detector
	E. Performance Analysis of Diagonal Loading Detector

	IV. Validation by measured data
	A. Flow chart of experiments
	B. Measured Data Descriptions
	C. CFAR detection by the GГD Model
	D. Performance Validation Indexes
	E. Experiments by the measured datasets
	1) Validation in North Sea Dataset
	2) Validation in AIRSAR Dataset


	V. Conclusion
	VI. References

