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General abstract

Satellite remote sensing plays a vital role in providing large-scale and timely data

to stakeholders of the agricultural supply chain. This allows for informed decision-

making that promotes sustainable and cost-effective crop management practices.

In particular, data derived from satellite-based Synthetic Aperture Radar (SAR)

systems, provide opportunities for continuous crop monitoring, taking advantage

of its ability to acquire images during day or night and under almost all weather

conditions. Moreover, an abundance of SAR data can be anticipated in the next 5

years with the launch of several international SAR missions. However, research on

crop development monitoring with data from SAR satellites has not been as widely

studied as with data derived from passive multi-spectral satellites and contributions

can be made to the current state-of-the-art techniques.

This thesis aims at improving the current knowledge on the use of satellite-based

SAR imagery for crop development monitoring. This is approached by developing

novel methodologies and detailed interpretations of multitemporal SAR and Polari-

metric SAR (PolSAR) responses to crop growth in three different test sites.

Chapter two presents a detailed analysis of the Sentinel-1 SAR satellite re-

sponse to asparagus crop development in Peru, investigating the capabilities of the

sensor to capture seasonality effects as well as providing an interpretation of the

temporal backscatter signature. This is complemented with a case study where a

multiple-output random forest regression algorithm is used to successfully retrieve

crop growth stage from Sentinel-1 data and temperature measurements.

Following the limitations identified with this approach, a methodology that

builds upon ideas of Bayesian Filtering Frameworks (BFFs) for crop monitoring

is proposed in chapter three. It incorporates Gaussian processes to model crop dy-

namics as well as to model the remote sensing response to the crop state. Using this

2



Crop development monitoring from SAR imagery

approach, it is possible to derive daily predictions with the associated uncertainties,

to combine in near-real-time data from active and passive satellites as well as to es-

timate past and future crop key events that are of strategic importance for different

stakeholders.

The final section of this thesis looks at the new developments of the SAR tech-

nology considering that future open access missions will provide Quad Polarimetric

SAR data. An algorithm based on multitemporal PolSAR change detection is in-

troduced in chapter four. It defines a Change Matrix to encode an interpretable

representation of the crop dynamics as captured by the evolution of the scattering

mechanisms over time. We use rice fields in Spain and multiple cereal crops in

Canada to test the use of the algorithm for crop monitoring. A supervised learning-

based crop type classification methodology is then proposed with the same method

by using the encoded scattering mechanisms as input for a neural-network-based

classifier, achieving comparable performances to state-of-the-art classifiers.

The results obtained in this thesis represent novel additions to the literature that

contribute to our understanding and successful use of SAR imagery for agricultural

monitoring. For the first time, a detailed analysis of asparagus crops is presented.

It is a key crop for agricultural exports of Peru, the largest exporter of asparagus

in the world. Secondly, two key contributions to the state of the art BFFs for crop

monitoring are presented: a) A better exploitation of the SAR temporal dimension

and an application with freely available data and b) given that it is a learning-based

approach, it overcomes current limitations of transferability among crop types and

regions. Finally, the PolSAR change detection approach presented in the last thesis

chapter, provides a novel and easy-to-interpret tool for both crop monitoring and

crop type mapping applications.
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Chapter 1

General introduction

1.1 Motivation

As humanity tries to reduce the inequalities in wealth distribution, guarantee access

to food and improve nutrition worldwide, changes in food consumption can be ex-

pected (Fan et al., 2021). In addition, population growth forecasts predict that the

world’s population will reach 8.5 billion in 2030 and 9.7 billion in 2050 (DESA, 2019).

According to the United Nations (UN), in order to produce the resources needed to

preserve our present lifestyle, the equivalent of nearly three planets may be needed

(DESA, 2019). This places a significant pressure on our current food production

system. Furthermore, the predominantly unsustainable agricultural management

practices used nowadays cause degradation and infertility of cultivated soils, natural

vegetation clearing and unsustainable water consumption (Shukla et al., 2019a). In

fact, agriculture accounts for the world’s largest water consumption sector (69%), for

activities including irrigation, livestock and aquaculture (Smith et al., 2007). This

represents more than the industrial and household sectors combined (31%)(Smith

et al., 2007). Similarly, approximately 30% of the world’s energy consumption is

related to agricultural management practices, which often come from non-renewable

sources that emit green house gases. Moreover, studies show that between 10% and

12% of green house emissions can be attributed to the agricultural sector (Smith

et al., 2007). The combination of these factors are projected to reduce the produc-

tivity of our food production systems, challenging our ability to meet the increasing

food demand.
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Agriculture is also an important source of income and employment, particularly

for small farmers in developing countries (Fan et al., 2021). Consequently, the

sector represents a critical opportunity for attaining economic transformation and

growth (Fan et al., 2021). In recent decades, a new agriculture paradigm known

as precision agriculture has emerged as a way to increase farm productivity by

employing technology to accurately gather field data and make more efficient and

informed intra-field management decisions (Finger et al., 2019; McBratney et al.,

2005; Valle & Kienzle, 2020). An example of this is applying agricultural inputs to

a crop according to specific spatial and temporal variations within the field (Finger

et al., 2019; Valle & Kienzle, 2020). In this sense, precision agriculture for croplands

aims at maximising crop yields while optimizing production costs (McBratney et al.,

2005).

Considering the aspects discussed above, current initiatives aim at obtaining a

holistic solution to global problems including food security, malnutrition and re-

duction of Green House Gases (GHG) from agricultural activities, while optimiz-

ing returns from financial investments by increasing productivity of food producers

(Leahy et al., 2020; Shukla et al., 2019b; Smith et al., 2008). These initiatives,

including among others the UN sustainable development goals (numbers 2 and 12)

([UNDP], 2021), also try to ensure a multi-level approach to guarantee that actions

are taken from the small scale food producers and stakeholders of the supply chain,

to governmental, national and international levels.

Research and technological development have been considered key tools for achiev-

ing sustainable food production systems, resilient to climate change and helpful in

maintaining ecosystems diversity and productivity (Leahy et al., 2020; McBratney

et al., 2005). The use of satellite-based remote sensing imagery constitutes one

such technological advancement that can be used to increase efficiency in food pro-

duction systems (Gebbers & Adamchuk, 2010; Karthikeyan et al., 2020). Images

of the agricultural fields are acquired with certain temporal and spatial resolution

by several satellite types. Taking advantage of the large area covered, images have

been used to remotely derive information about crop status and health and manage-

ment practices (Karthikeyan et al., 2020). Applications aiming at contributing to

food security, ranging from crop inventories (Thenkabail et al., 2010), land change
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and degradation analysis (Rogan & Chen, 2004), soil moisture retrieval (L. Wang

& Qu, 2009), yield estimation (Doraiswamy et al., 2003), vegetation and biomass

monitoring (Lu, 2006; X. Zhang et al., 2003), have been reported.

More recently, thanks to the launch of new satellite constellations with improve-

ments in spatial and temporal resolution and freely available data, novel applica-

tions have been developed to monitor croplands at parcel scale level, allowing its

integration to precision agriculture applications. In this regard, remote sensing as

part of farming management systems, can also be used to increase productivity and

profitability of croplands, contributing to economical growth.

1.2 Satellite-based remote sensing for crop devel-

opment monitoring

The contributions of remote sensing to ensuring sustainable management practices

and to precision farming in croplands, can be initially categorised based on the stake-

holders. Three major levels of stakeholders are considered in this thesis with their

associated applications. These include, a) small scale food producers, b) agribusi-

nesses (mid and large scale food producers, food traders, retailers, etc) and c) gov-

ernments and food security agencies.

For small scale farmers, applications for crop monitoring have been reported

using very high spatial resolution from satellite data providers. Using this input

data, however, is difficult for small farmers given the costs associated with purchasing

the imagery. Freely-available imagery can be used, but the spatial resolution is not

sufficiently good in some cases e.g. for intra-field crop monitoring. On the other

hand, applications for governments and food security agencies have been constantly

increasing in the last decade (as introduced in the previous section) particularly due

to the growing number of satellite constellations available and the open data policies

that space agencies have adopted recently. However, ground data normally used for

validation of crop monitoring applications at regional or national scale is expensive

to collect and is not always available. Therefore, in this thesis we concentrate in

applications that would initially benefit agribusinesses and have the possibility to

be down-scaled to small farmers once high spatio-temporal resolutions are freely
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available or up-scaled for large areas once the developed monitoring methodologies

have been validated operationally.

Similarly, contributions of satellite-based remote sensing for cropland monitoring,

can also be classified according to the type of technology used to acquire the imagery

from space. The information captured by the satellite instruments can be acquired

in different regions of the Electromagnetic (EM) spectrum, including microwave,

infrared (IR), visible, and ultraviolet. Likewise, different sensors may use different

source of EM radiation or illumination. Active systems use their own antenna or

laser to send and receive EM radiation. These sensors include radars and they

capture backscattered EM energy in the microwave regions of the spectrum. Passive

systems use solar radiation as the source of EM energy, capturing the ultraviolet,

visible, and near infrared regions of the EM spectrum, that are reflected in the

direction of the satellite. A sub category of passive sensors can also capture radiation

emitted from the earth surface, capturing thermal infrared, microwave emissions, x

rays and gamma rays. Furthermore, as data from passive systems have a more close

connection to human vision, they have been more investigated for crop monitoring

than data from active systems.

In terms of crop monitoring, the use of the infrared energy acquired by passive

systems has been extensively investigated and several vegetation indices that rely on

this part of the spectrum have been developed to successfully retrieve information

about vegetation condition (Xue & Su, 2017a). Note however that, as passive sys-

tems capture the solar radiation reflected from the earth surface, clouds and gases

in the atmosphere disrupt the image acquisition. This limits the use of this type of

system to acquire images only when no clouds are present. Therefore, acquisitions

are irregular and can contain data gaps. Active radar systems on the other hand, are

designed in such a way that the wavelength of the microwave energy emitted by the

antenna in the satellite platform is significantly larger than the size of the particles

suspended in the atmosphere and clouds. This allows the emitted radiation to pen-

etrate them, providing acquisitions regardless of cloud coverage. As these systems

do not use solar radiation, they can also capture images at night time. These ad-

vantages result in the capability of providing systematic acquisitions for monitoring

earth processes.
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In active systems, other aspects of image acquisition arise that may reduce the

image quality. A broadly investigated issue with radar is ’speckle’, which is a noise-

like effect, visible in the images as a result of the coherent combination of the

backscattered radiation from within a resolution cell (see more details in sections

1.3.3 and 1.3.4). However, different spatial and temporal filters can be used to

reduce the impact of this effect (Oliver & Quegan, 2004a).

Research and use of satellite-based Synthetic Aperture Radar (SAR) systems

are increasingly gaining attention due to the recent adoption of policies that offer

free access to the available imagery. A key example of this is the European Space

Agency (ESA) with the C-band dual polarimetric SAR satellite, and the constella-

tion known as Sentinel-1 launched in 2015 (E. S. Agency, ESA 2015). Additionally,

new constellations such as ALOS-4 (JAXA, 2021), the RADARSAT Constellation

(C. S. Agency, 2021), Biomass (E. S. Agency, 2021), NISAR ((JPL), 2021) and the

increasing number of high resolution smaller satellites (NovaSAR-S), will provide

unprecedented access to SAR data (in some cases with open policy as for NISAR)

for research and operational monitoring of earth processes. This opens a broad set of

possibilities for using remote sensing for monitoring the implementation of sustain-

able management practices in croplands. As well as developing information decision

systems to increase crop productivity, based on this data as sole source or as a part

of a larger network of sensors to monitor agricultural fields. Given these factors,

this thesis focuses on the exploitation of temporal and polarimetric dimensions of

SAR data for crop monitoring.

1.3 Introduction to spaceborne SAR systems

A spaceborne SAR consists of a system of antennas mounted over a moving platform,

orbiting our planet between 500 km to 800 km of altitude. Pulses of electromagnetic

energy are sent to the earth surface and the backscattered EM energy is measured.

Since it uses its own EM energy, it can capture signals during the day and at night,

and given that it operates in the microwave region of the EM spectrum, it is able to

go through particles in the atmosphere due to clouds, smoke and rain (Campbell &

Wynne, 2011). This provides a key opportunity to observe earth processes almost
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without interruptions. As shown in figure 1.1, the antennas on the moving platform

are installed so that the instrument scans the earth surface in perpendicular direction

to the direction of movement, also known as the azimuth direction. The angle that

is formed between the wave direction and the normal to idealised the earth surface,

is known as the incidence angle. This angle has an important effect in determining

the intensity of the backscattered energy. In order to measure the backscattered EM

Figure 1.1: Side-looking Synthetic Aperture Radar (SAR) system geometry.

Adapted from (Woodhouse, 2017).

energy, a SAR system uses the echolocation principle. This consists of measuring

distance based on the time that an emitted pulse traveling at the speed of light takes

to hit the target and return to the antenna (Campbell & Wynne, 2011; Richards

et al., 2009). This provides the slant range distance to the target as shown in figure

1.1. The ground range dimension of a two dimensional image is constructed as the
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projection of the slant range over the horizontal plane. The azimuth direction of

the image is constructed by transmitting and receiving pulses as the platform moves

along the orbit.

The image resolution in the case of SAR systems depends on different factors for

the range and azimuth dimensions and it is therefore different in each dimension.

This implies that a pixel in the image is generally not squared. A resolution cell

(figure 1.2) is defined as the minimum area that a landscape on the ground can

be resolved or separated in, and is determined by the ground range and azimuth

resolutions (Richards et al., 2009).

Figure 1.2: Schematic of a SAR image divided into resolution cells. The dimensions

of each resolution cell are determined by the azimuth and range resolutions. Adapted

from (Richards et al., 2009)

1.3.1 Resolution in range

SAR resolution can be defined as the ability of the system to resolve or distinguish

neighbouring targets in a received signal. In the range direction, in a simple archi-

tecture, the resolution rg depends on the characteristics of the emitted unmodulated

pulse. This is considering that two targets on the ground can only be resolved if the

distance between them is larger than half of the pulse duration as shown in equation
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1.1 (Richards et al., 2009):

rg = c
τp
2

(1.1)

where c is the speed of light and τp is the pulse duration. Accordingly, a naive way

of achieving high range resolution would be to use short pulses. However, given that

short pulses carry low energy it would be harder for the system to detect returning

signals. On the other hand, it is complex to build a system capable of transmitting

much higher power. A pulse compression technique is utilised to approach this

problem by using pulse modulation. It consists of transmitting a so-called ’chirp’

or a long pulse in which the frequency of the signal increases linearly over time

(Richards et al., 2009). With the frequency modulation technique and expressing

the pulse duration in equation 1.1 as a function of its bandwidth, which is defined as

the range of frequencies over which the chirp sweeps, the resulting range resolution

can be then expressed as:

rg =
c

2Bc

(1.2)

where Bc represents the bandwidth of the transmitted pulse. In this sense, the pulse

bandwidth is a key feature that defines the image resolution in the range dimension.

Once a ’chirp’ impinges on a target on the ground and returns to the antenna,

the signal must be passed through a matched filter to remove the modifications

introduced with the frequency modulation (Richards et al., 2009).

1.3.2 Resolution in azimuth

In the azimuth dimension and considering the case of a Real Aperture Radar (RAR),

the resolution is dependent on the distance of the platform to the target (R0), the

signal wavelength λ and the antenna length la as described in equation 1.3 (Richards

et al., 2009):

δRAR = R0
λ

2la
(1.3)

In RAR systems, higher azimuth resolutions can be achieved by increasing the an-

tenna length la. This is because the longer the antenna, the narrower the antenna’s

beam width is, therefore, the easier it is for the system to separate targets. However,

due to space and weight constraints in the moving satellite platform, the desired

lengths are impractical (order of km). A different solution which gives origin to
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the name of Synthetic Aperture Radar is to take advantage of the movement in the

azimuth direction to synthesize and artificially create a longer antenna. This is done

by using signal processing algorithms that coherently combine multiple views of the

same target as the platform moves to greatly improve the azimuthal resolution. The

study of the aperture or antenna synthesis is beyond the scope of this document and

for a detailed description please refer to the textbooks by Curlander and McDonough

(1991), Cumming and Wong (2005), Woodhouse (2017) and Richards et al. (2009).

Concisely, the azimuth resolution resulting using the principle of synthetic aperture

(antenna) Le is:

ra = R0
λ

2Le

(1.4)

The length of the synthetic aperture (antenna) Le depends in turn on the real

antenna size, wavelength and distance to a target in the ground as follows (Richards

et al., 2009):

 Le <
λR0

la
(1.5)

Therefore, replacing equation 1.5 in equation 1.4, the azimuth resolution is:

ra =
la
2

(1.6)

Note that according to equation 1.6, the azimuth resolution depends only on the

antenna size and implies that the lower its length, the finer the resolution is. In

principle this is counter intuitive considering that with a small antenna the beam-

width is larger. However, having a large beam-width also means that the time

that a target is seen by the synthetic aperture increases. On the other hand, since

the azimuth resolution is independent of the distance between platform and target,

space-borne SAR systems can easily obtain very high resolutions in azimuth quite

independently of their orbital position.

1.3.3 Single-polarisation SAR image statistics

The size of a resolution cell is determined by the range and azimuth resolutions.

A SAR image contains the landscape of a region divided into resolution cells as

shown in figure 1.2. A resolution cell contains the response to the interaction be-

tween the microwave EM emitted and the targets on the ground. This response
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represents a wave and therefore it is composed by an amplitude and phase (Wood-

house, 2017). The amplitude and phase are collected by the receiver using a I/Q

modulation which converts them into a complex number format. This can therefore

be written in Cartesian form with a real and an imaginary component, in polar

form as amplitude and phase or in exponential form, also describing amplitude and

phase (Woodhouse, 2017). When analysing a single-polarisation image (see section

1.3.5), if a single target is present or is dominant with respect to other objects within

a resolution cell, the measured amplitude and phase correspond to the microwave

response of this object. This case is known as having a point or single target. How-

ever, in practice this is normally not the case considering that the microwave pulse

transmitted will interact with objects of the same size or bigger than the signal

wavelength (Campbell & Wynne, 2011). Since the resolution in range and azimuth

are significantly larger than the wavelength, the emitted pulse interacts with several

objects simultaneously as shown in figure 1.3a. Therefore, the phase and ampli-

tude received, correspond to the coherent combination of responses from individual

objects within the resolution cell as shown in figure 1.3b. This case is commonly

known as having a distributed target. The red vector represents (in the complex

plane) the resulting coherent combination of complex vectors (waves with ampli-

tudes and phases) from individual targets. Normally, adjacent resolution cells in a

(a) Emitted EM pulse interacting with sev-

eral scatterers in a resolution cell

(b) Coherent combination of responses

from individual scatterers.

Figure 1.3: EM pulse interaction with distributed targets on the ground. Adapted

from (Salepci et al., 2017)
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SAR image have different arrangements of individual targets within each resolution

cell. This causes the coherent combination of distributed targets to be different for

neighbouring cells. Consequently, a SAR image will have variations in amplitude

and phase even in areas of the ground that are homogeneous, such as in an agricul-

tural field. This is because even small variations in the distribution of targets on

the ground (i.e. leaves, branches, surface roughness, etc) will cause the interference

pattern to change and hence, the received signal to be different (Woodhouse, 2017).

The above-mentioned variations in the image are referred to as speckle and produce

a noise-like effect in the SAR image as presented in figure 1.4. However, even if

the speckle effect in a SAR image looks like noise, it cannot be defined simply as

random noise. This is because it is an effect that could be repeated if for instance a

SAR system could acquire two images over the same area with identical observation

and target conditions (Woodhouse, 2017), as opposed to pure random noise effects

where the exact noise cannot be reproduced by repeated experiments. If a random

Figure 1.4: Resolution cell intensity variations due to speckle. Adapted from (Salepci

et al., 2017).

arrangement of N scatterers is assumed to be within a resolution cell, the return

from the i−th element in the cell (expressed as a complex number in its exponential

form) is Zie
jθi . The coherent sum of the responses from all the scatterers in a cell
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is:

Z =
N∑
i=1

Zie
jθi = ZRe + jZIm =

N∑
i=1

Zicosθi + j

N∑
i=1

Zisinθi (1.7)

In SAR systems, the range and azimuth resolutions are normally significantly larger

than the signal’s wavelength, therefore the signal interacts with several scatterers.

In this case, N can be assumed to be large (N → ∞) and the central limit theorem

can be applied. Consequently, the real and imaginary parts of the total return

from a resolution cell are assumed to be independent (uncorrelated), identically

distributed Gaussian random variables with zero mean: ZRe ∼ N (0, σ2) and ZIm ∼

N (0, σ2). In this context, their corresponding probability density functions (PDF)

are described by:

P (ZRe) =
1√

2πσ2
exp

(
−Z

2
Re

2σ2

)
(1.8)

P (ZIm) =
1√

2πσ2
exp

(
−Z

2
Im

2σ2

)
(1.9)

A key point in statistically characterizing a SAR image is to identify the distribution

of the amplitude (A) and phase (θ) of the returned signal from a resolution cell. This

is done by firstly obtaining the joint PDF of the real and imaginary parts, shown in

equations 1.8 and 1.9 as follows (Oliver & Quegan, 2004a):

Pz(Z) =
1

2πσ2
exp

(
−Z

2
Re + Z2

Im

2σ2

)
(1.10)

Pz(A, θ) =
1

2πσ2
exp

(
− Z2

2σ2

)
(1.11)

Secondly, the individual distributions for the amplitude and for the phase can be

extracted from equation 1.11 by marginalizing the joint PDF. For the amplitude,

the marginalisation results in the Rayleigh distribution:

PA(A) =

∫ π

−π

PA(A, θ)dθ =
A

σ2
exp

(
− A2

2σ2

)
, A ≥ 0 (1.12)

Equation 1.12 provides the probability that the returning coherent signal is of am-

plitude A (note that it is independent of the phase angle). Evaluating the moments

of the PDF in Equation 1.12, the mean
√

π
2
σ and variance 4−π

2
σ2 are extracted

(Oliver & Quegan, 2004a). For the phase, the marginalisation results in the uniform

distribution:

PA(θ) =
1

2π
, −π ≥ θ ≥ π (1.13)
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which indicates that the phase is independent of the amplitude and that all phases

between −π and π are equally likely, hence not providing any information about the

target (Oliver & Quegan, 2004a). In some cases, the amplitude is not the quantity

of interest, but the intensity or power of the signal which can be computed as the

square of the amplitude (I = A2). It can be demonstrated that the intensity (I) is

then determined by the negative exponential distribution (Oliver & Quegan, 2004a):

PI(I) =
1

2σ2
exp(− I

2σ2
) =

1

m
exp(− I

m
), I ≥ 0 (1.14)

with m = 2σ2. Note that the variance σ2 of the real and imaginary components

from equations 1.8 to 1.13 can be described as a function of the parameter m with

σ2 = m/2. Also note that according to equation 1.14, the intensity distribution

for each resolution cell in an image can be characterised by the parameter m only

which contains all the information about the distributed targets (Oliver & Quegan,

2004a). From the moments of an exponential distribution such as in equation 1.14,

the mean can be extracted and is equal to the parameter m. This parameter is then

known as the average intensity and is the key value we are interested in. Another

important result is that the standard deviation for the exponential distribution also

corresponds to the parameter m (2σ2) (Oliver & Quegan, 2004a). This implies that

the standard deviation is as large as the mean and increases in linear fashion with

respect to it. These large variations around the mean help to statistically explain

the speckle effect. In fact, the coefficient of variation for this distribution is equal to

1 or 100% (Oliver & Quegan, 2004a). An important implication of this result is that

any calculations done using the intensity of a single resolution cell may include large

errors. This is because the true intensity differs from the observed intensity as it is

being mixed by the coherent sum of returns from individual scatterers (Woodhouse,

2017).

1.3.4 Reducing SAR image variability due to speckle

To reduce the variability present in the intensities of a SAR image, the average

of L independently measured samples can be computed. As mentioned above in

equation 1.13, for a single-polarisation and a single image the phase does not provide

information about the target and can be discarded. The process of averaging the L
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independent intensity samples without considering the phase is known as incoherent

average. The independent samples can be obtained in two ways: a) during the

acquisition process by splitting the azimuth beam into L sub-beams and acquiring

L images or looks (Woodhouse, 2017) or b) during data processing by spatially

averaging a set of L neighbouring resolution cells assuming that they all correspond

to the same target. In both cases the resulting statistical distributions after the

incoherent average are the same. The incoherent average is given by the expression

I =
1

L

L∑
k=1

Ik (1.15)

where Ik corresponds to the intensity which follows the exponential distribution

given by equation 1.14 for each of the L averaged resolution cells. The PDF of the

resulting L-averaged resolution cell follows a Gamma function and is determined as

(Oliver & Quegan, 2004a):

PII =
1

Γ(L)
(
L

m
)LIL−1 exp(−LI

m
) (1.16)

where Γ(L) = (L−1)! for integer values of L. Note, however, that number of looks is

normally not an integer number given that the sub-apertures are processed so that

they overlap and thus are not fully independent measurements. It has been shown

that the moments of the average intensity obtained in equation 1.16 are (Oliver &

Quegan, 2004a):

E[I] = m var[I] =
m2

L
(1.17)

where E corresponds to the expected value operator. Note that the variance var[I] =

m2

L
has important implications. First of all, it indicates that the variability of the

intensity decreases when more independent samples or looks (L) are averaged, hence

reducing speckle. Since the L number of looks or neighbour pixels considered for

reducing speckle are not necessarily independent, it is common to refer to this num-

ber as the Equivalent Number of Looks (ENL). In this context, another important

property of the variance is that it provides us with a tool to empirically estimate

ENL with the relationship ENL = m2

var
.

It is important to highlight that this subsection presented the image statistics for

the single-polarisation and a single image case. If more polarisations are considered,

the same assumptions apply for each polarisation separately, however, the statistics
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of the combined information are not fully exploited. Polarimetric speckle statistics

should then be considered (e.g. modelling the covariance matrix using a Wishart

distribution). Please refer to (Lee & Pottier, 2009; Oliver & Quegan, 2004a) for

an in-depth discussion. Similarly, if more than one image is considered, discarding

the phase information is not always adequate, for instance for applications such

as SAR interferometry or coherent change detection, among others. These cases

exploit the difference in the phase between images or spectral portions of images

and therefore phase needs to be preserved during the pre-processing and speckle

filtering (Woodhouse, 2017).

1.3.5 Introduction to SAR Polarimetry

This subsection is intended to present only a brief introduction to the use of po-

larimetric data acquired by a space borne SAR system. Please refer to (S. Cloude,

2009; Lee & Pottier, 2009; Richards et al., 2009) for a thorough review.

In Polarimetric SAR (PolSAR), the intention is to analyse the geometrical shape

and orientation of the emitted and received electromagnetic pulses, before and after

interacting with the target on the ground. The EM wave orientation is determined

by the direction of the oscillating electric field and is also known as polarisation

or polarisation state. The aim of PolSAR is to exploit additional information in

the data as each polarisation state used may interact differently with a target. In

this context, a SAR image component can be acquired for each combination of

transmitted-received polarisations used by the SAR sensor (see section 4.1). Sim-

ilarly, the correlations between these SAR image components provide a separate

source of information to characterise the target. In general, by characterising the

polarimetric properties of objects on the ground, we may be able to gain insight into

their physical characteristics.

1.3.5.1 Wave polarimetry

In this subsection, the derivation of the change in polarisation of a wave after inter-

acting with the target is presented. This is closely related to the theory of electro-

magnetism and wave propagation. Here however, the derivation will start from the

far field hypothesis, which states that far from its origin of propagation, a wave can
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Figure 1.5: Propagation of a plane wave’s electric field. Adapted from: A rep-

resentation of a plane wave’s electric field shown from an oblique angle, (https:

//commons.wikimedia.org/wiki/File:Plane Wave Oblique View.jpg), 2010. In the

public domain.

be approximated as a plane wave as shown in figure 1.5. Under this assumption,

the front of the wave can be seen as a plane and the electric and magnetic fields

oscillate orthogonally to the propagation direction. Wave polarisation is defined in

terms of the geometrical shape that the electric field draws in the plane wave-front

(Woodhouse, 2017). Different geometrical patterns such as lines, circles and ellipses

can be identified (figure 1.6).

Since it is a vector laying on a plane, the electric field of an EM wave is modelled

as the superposition of two vector components. If the direction of propagation is

along the Z-axis, the two electric field components are given in the X and Y directions

as shown in figure 1.7. This can mathematically be defined as:

E] = Exux + Eyuy (1.18)

where ux and uy are two generic and orthogonal unitary vectors perpendicular to

the propagation direction. After transforming to polar coordinates and including

the appropriate terms to describe the wave propagation in time, equation 1.18 can

be re-written as:

E = |Ex|cos(ωt− kz + ϕx)ux + |Ey|cos(ωt− kz + ϕy)ux (1.19)
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Figure 1.6: Geometric shape described by the orientation of the wave’s electric

field. Adapted from: Classification of Polarization, (http://hyperphysics.phy-astr.

gsu.edu/hbase/phyopt/imgpho/polcls.png), 2010. In the public domain.

where ω represents the angular frequency ω = 2πf with f being the temporal

frequency measured in hertz (Hz), t represents the time, k is the wavenumber k = ω
c

and c is the speed of light. ϕx and ϕy correspond to the initial phase angle of

each vector component. It is possible to create any EM wave polarisation state by

modifying either the amplitude of the two vector components Ex and/or Ey, their

phase difference, or both.

1.3.5.2 Linear Polarisation

The geometric shape drawn on the wavefront by a wave whose electric field has only

one direction of displacement (either X, or Y or an in-phase linear combinations

of those) is a line. This happens for instance if the amplitude of the component

in the X direction of the electric field is zero, Ex=0, as only oscillations in the Y

direction are present. Then the EM wave has vertical polarisation. Similarly, when

the amplitude of the component in the Y direction is zero, Ey=0, only oscillations

in the X direction are present, making the wave horizontally polarised.

The linear vertical and horizontal polarisations are frequently utilised by space-

borne radars. In addition, by modifying the phase difference between the two vector

components, elliptical and circular polarisations can be generated.
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Figure 1.7: Electric field vector components of a wave propagating in the Z direction.

From (Woodhouse, 2017)

1.3.5.3 The scattering matrix

When a polarised EM wave transmitted by the SAR satellite impinges on a target,

part of the energy is reflected back to the receiver antenna. The polarisation of the

reflection depends on the transmitted polarisation and the physical properties of the

object such as shape, orientation and dielectric properties. Therefore, understand-

ing the polarimetric behaviour of the target may help to characterise its physical

properties. The target properties modify the incident wave polarisation such that

we can assume that the scattering process converts the incident waves Ei into the

scattered waves Es. This relationship is described by:

ES = [S]Ei (1.20)

where [S] represents the target properties that modify the wave polarisation. The

vector form of the incident and scattered wave electric fields can be written as:

Ei =

Ei
x

Ei
y

 Es =

Es
x

Es
y

 (1.21)

In this case, equation 1.23 becomes:Es
x

Es
y

 =

S11 S12

S21 S22

Ei
x

Ei
y

 (1.22)
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where the components S11, S12, S21 and S22 form the [S] matrix, also known as

the scattering (or Sinclair) matrix. It describes the scattering process in terms of

the relationship between incident and scattered electric fields. The calculation of [S]

permits one to obtain information about the physical properties of the target and to

create physical models for identification and/or separation of scattering mechanisms

taking place inside the same resolution cell. Therefore, the interest is in [S] rather

than simulating Es starting from Ei, since [S] allows to describe the polarimetric

behaviour of a target (assuming that it does not change in either space or time,

i.e. it is a stationary point target). When considering the received waves Es by the

radar, the power drop due to the distance between the target and the radar must

be considered: Es
x

Es
y

 =
1√

2πR2
0

S11 S12

S21 S22

Ei
x

Ei
y

 (1.23)

where R0 represents the distance between the sensor and the target. SAR systems

that are able to acquire the full scattering matrix [S] in one pass are known as

quad-polarimetric systems. If [S] is partially acquired, i.e. only one of its columns

is acquired, the system is known as a dual-polarimetric system. Note that in order

to characterise the polarimetric properties of a target, the full matrix is required

(S. Cloude, 2009).

1.3.5.4 Coordinate systems: FSA and BSA

A SAR system can be utilised in monostatic or in bistatic configuration. In a mono-

static radar, both the receiver and the transmitter are physically located sharing the

same antenna (figure 1.8, right) while in the bistatic configuration they are spatially

separated by a considerable distance (figure 1.8, left) (Woodhouse, 2017). Differ-

ent reference coordinate systems can be utilised for the transmitted and received

electromagnetic waves. These define the coordinates relative to the position of the

transmitting and receiving antennas and relative to the target, as shown in figure

1.9. In this context, in the Forward Scattering Alignment (FSA) shown in figure

1.9(a), the reference direction given to the propagating wave scattered from the tar-

get points towards the antenna receiver. This type of reference coordinate system

is normally used in bistatic configurations (Lee & Pottier, 2009). This is opposite

to the IEEE convention known as Backward Scattering Alignment (BSA) of figure
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Figure 1.8: Monostatic and bistatic radar configurations. From (Richards et al.,

2009)

1.9(b), in which the direction of the scattered propagating wave points towards the

target or opposite to the antenna receiver. This reference system is particularly

useful for monostatic configurations such as in figure 1.9(c), since the transmitter

and receiver share the same antenna and the reference direction given to the emitted

and received propagating wave coincides (Lee & Pottier, 2009).

Figure 1.9: Coordinate systems: (a) FSA bistatic, (b) BSA bistatic, and (c) BSA

monostatic coordinate systems. From (Richards et al., 2009)

Commercial SAR satellites commonly employ the monostatic (or quasi-monostatic)

configuration and consequently, the most convenient coordinate system to utilise is
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the BSA monostatic system. In this scenario and under the principle of reciprocity,

the components S12 and S21 in the scattering matrix can be assumed to be the same

(S12 = S21) except for thermal noise. This allows the reduction in the number of

independent components in the [S] matrix from four to three complex measure-

ments in a fully polarimetric system (Lee & Pottier, 2009; Richards et al., 2009;

Woodhouse, 2017).

1.3.6 PolSAR Image statistics

Section 1.3.3 introduced the statistical modelling applicable for a single-polarisation

SAR image. If a SAR system is able to acquire imagery in more than one polarisa-

tion, the statistical exploitation of the SAR data needs to simultaneously consider

the information available in all polarisations. For the case of distributed targets and

linear polarisations, the scattering matrix of equation 1.23 can be represented as:

S =

SHH SHV

SV H SV V

 (1.24)

where H and V stand for linear horizontal and vertical and the double letter corre-

sponds to transmitter–receiver. A vectorisation of the scattering matrix is commonly

utilised in order to aid the statistical characterisation and provide a geometrical in-

terpretation of a target (Lee & Pottier, 2009; Richards et al., 2009). The resulting

vector, also known as the scattering vector, is obtained using the vectorisation op-

eratior V (S) as follows:

k4 = V (S) =
1

2
tr{SH} = [k1, k2, k3, k4]

T (1.25)

where tr is the matrix trace, T represents the vector transpose and H is a set of

2x2 complex basis matrices. The vectorisation algebraically corresponds to forming

linear combinations of the scattering matrix elements (Strang et al., 1993). A widely

used set of basis matrices is the lexicographic set, defined as:

HL =


2 0

0 0

 ,
0 2

0 0

 ,
0 0

2 0

 ,
0 0

0 2

 (1.26)

from where the lexicographic scattering vector can be obtained, corresponding to:

k4L = [SHH , SHV , SV H , SV V ]T (1.27)
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The Pauli base of equation 1.28 is another typically used matrix base to vectorise

the scattering matrix, considering that the resulting components of the scattering

vector can be associated with physical targets (Lee & Pottier, 2009; Richards et al.,

2009).

HP =

√
2

1 0

0 1

 ,√2

1 0

0 −1

 ,√2

0 1

1 0

 ,√2

0 −j

j 0

 (1.28)

The Pauli scattering vector then corresponds to:

k4P =
1√
2

[SHH + SV V , SHH − SV V , SV H + SHV , j(SV H − SHV )]T (1.29)

The elements of the Pauli scattering vector are normally associated with scattering

mechanisms caused by physical targets (S. Cloude, 2009; Lee & Pottier, 2009). The

element SHH + SV V is associated with odd bounce or surface scattering caused by

isotropic scatterers that may include surfaces or spheres. The element SHH −SV V is

related to even or double bounce caused by targets such as a dihedral element with

one of the planes being horizontal. The elements SV H +SHV and j(SV H −SHV ) are

associated with volume scattering caused by a 45 degree oriented dipole.

As mentioned in section 1.9 for the monostatic case and assuming the BSA

convention, the scattering matrix can be simplified to three components and hence

the lexicographic scattering vector become:

k3L = [SHH ,
√

2SHV , SV V ]T (1.30)

and the Pauli Scattering vector:

k3P =
1√
2

[SHH + SV V , SHH − SV V , 2SV H ]T (1.31)

In order to exploit the polarimetric information contained in the scattering vec-

tors, all polarisations need to be considered simultaneously and coherently as well as

considering the statistical correlation among the polarisation channels. The deriva-

tion follows the same assumption as for the case of a single-polarisation SAR image

introduced in section 1.3.3. It was assumed that the coherent signal returning from

a resolution cell with distributed targets, follows a zero mean complex Gaussian dis-

tribution. Considering the same assumption for each of the SAR images acquired in
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every polarisation, a multidimensional zero mean complex Gaussian distribution is

obtained to characterise the distribution of the returning signals in all polarisations:

Pk(k) =
1

πp|Σ|
exp(−k∗T · Σ−1 · k) (1.32)

where p represents the number of elements in the scattering vector, the ∗T symbol

represents the conjugate transpose, Σ is a standard covariance matrix and |Σ| is

the matrix determinant. Note that this distribution representing the data acquired

for a resolution cell is completely characterised by its covariance matrix. This is

given that all of the higher order moments can be computed from Σ. Using the

scattering vector in the lexicographic form of equation 1.30, the covariance matrix

can be estimated as:

[ΣL] = ⟨k3L · k∗T3L⟩ =


⟨|SHH |2⟩

√
2⟨SHHS

∗
HV ⟩ ⟨SHHS

∗
V V ⟩

√
2⟨SHV S

∗
HH⟩ 2⟨|SHV |2⟩

√
2⟨SHV S

∗
V V ⟩

⟨SV V S
∗
HH⟩

√
2⟨SV V S

∗
HV ⟩ ⟨|SV V |2⟩

 (1.33)

For the scattering vector in the Pauli basis of equation 1.31, the covariance matrix,

also known as coherency matrix, can be estimated as:

[ΣP ] = ⟨k3P · k∗T3P ⟩

=


⟨|SHH + SV V |2⟩

√
2⟨(SHH + SV V )(SHH − SV V )∗⟩ ...

√
2⟨(SHH − SV V )(SHH + SV V )∗⟩ ⟨|SHH − SV V |2⟩ ...

2⟨(SHV (SHH + SV V )∗⟩ 2⟨(SHV (SHH − SV V )∗⟩ ...

... 2⟨(SHH + SV V )(SHV )∗⟩

... 2⟨(SHH − SV V )(SHV )∗⟩

... 4⟨|SHV |2⟩

(1.34)

Considering that the amplitude and phase of a resolution cell for each polarisation

are the coherent and linear combination of backscattered signals from individual

scatterers within it (see figures 1.3a and 1.3b), the measurements are also affected

by speckle. To reduce the image variability due to speckle, L number of iid resolution

cells can be averaged (or speckle filtered), and the matrix of equation (3) becomes

the L-looked coherency matrix:

T =
1

L

L∑
i=1

kpik
∗T
pi (1.35)
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where i=1,2, .., L, are the number of averaged samples or realizations. L-look Pol-

SAR data. Note that the spatial averaging assumes that the averaging is performed

over homogeneous areas or samples. In cases where this assumption is not met, it

results in loss of spatial resolution. This is in practice a common case and trade off

between spatial averaging to reduce speckle effects and spatial resolution loss.

The L-looked covariance or coherency matrix of equation 1.35 is normally used

to represent the polarimetric information of a SAR image resolution cell. As such,

several studies have proposed methods to exploit the information contained in it.

A review of covariance and coherency matrix decomposition was presented in S. R.

Cloude and Pottier (1996). Also, please refer to section 4.4.1, where the eigen-

value/eigenvector decomposition of the coherency matrix is presented as part of a

novel approach for crop monitoring using multitemporal PolSAR data. It is also

worth noting that, the probability distribution of the L-looked covariance or co-

herency matrix of equation 1.35 can then be modelled with a complex Wishart

distribution. Please refer to Lee and Pottier (2009) for a detailed explanation of

the formulation and applications of the Wishart distribution to statistically model

PolSAR data.

1.3.7 Scattering Mechanisms for Vegetated Soils

A SAR system measures the EM waves scattered from a target on the ground.

This scattering depends on the physical properties of the target, including rough-

ness, moisture, dielectric constant, shape and geometry (Campbell & Wynne, 2011;

Woodhouse, 2017). In order to analyse the interaction of incident EM waves and

the target properties that produce the scattered waves, some scattering processes or

as more commonly known, scattering mechanisms (SMs) have been introduced in

the literature. In the following, a brief overview of these scattering mechanisms is

provided and its applicability for agricultural fields monitoring. This is not intended

to be a complete literature review on scattering mechanisms and the reader is re-

ferred to (S. Cloude, 2009; Lee & Pottier, 2009; Richards et al., 2009; Woodhouse,

2017) for more details. The three most common and widely accepted scattering

mechanisms include:
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Figure 1.10: Specular and diffuse surface scattering and its relationship with surface

roughness. From (Richards et al., 2009).

• Surface or odd scattering: From a natural surface, the intensity of the scat-

tering is highly affected by the dielectric constant of the surface, which in

turn is related to the surface moisture content. The direction of the scattered

waves, which also influences the intensity, depends on the surface roughness as

follows. In a smooth surface, for example, the EM waves are scattered away

from the SAR sensor with the same angle of the incident waves. This effect

is known as specular scattering (Richards et al., 2009) and since only a small

part of the EM waves is scattered back to the satellite, these types of surfaces

appear dark in a SAR image. In a rougher surface, a part of the scattered

waves can have specular scattering while another part can scatter back to the

satellite. The proportion of energy that presents specular reflection or that

scatters back towards the spacecraft, is highly dependent on the amount of

surface roughness, as shown in figure 1.10. This in addition is dependent on

the system wavelength, considering that the signal interacts with targets that

have its same or greater size (Campbell & Wynne, 2011). In this context a

surface may appear rougher for an X-band system of 3 cm wavelength than for

an L-band system with 12 cm wavelength. Since in rougher surfaces a part to

of the energy is reflected to the satellite, these regions will appear brighter in

the image than the smooth surfaces. Importantly, the combination of surface

roughness and the SAR system incidence angle also influences the scattering

from surfaces as presented in figure 1.11. It is possible to see that this angle

influences more scattering from smooth forces than from rougher ones. In fact,

scattering in the latter case is almost unaffected by the incidence angle due to
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the surface roughness scattering the incident waves in several directions (right

of figure 1.11.

Figure 1.11: Surface scattering and its relationship with incidence angle and surface

roughness. From (Woodhouse, 2017)

• Volume scattering: Under this type of scattering, a complex scattering re-

sponse is assumed in which the reflected EM waves come from several scat-

terers rather than from a single one. A typical land surface used to describe

volume scattering is a forest, where the SAR signal from a resolution cell is

scattered from different elements of the forest canopy such as leaves, branches

and/or trunk, which in turn may have different orientations and dielectrical

constants (Richards et al., 2009; Woodhouse, 2017)

• Double or even bounce scattering: In ideal conditions, double bounce occurs

with scattering between two neighbour surfaces that form an angle between

them. A typical example of this is observed in situations where EM waves

present specular reflection from the ground that then bounces in a vertical

target such as a tree trunk or a building and subsequently reflects the EM
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waves back to the satellite. Note however that the bouncing can also occur

first in the vertical surface and subsequently in the horizontal surface. In real

cases, factors such as the incidence angle, the orientation of the two intervening

surfaces and their material properties (i.e. roughness, moisture), influence the

scattering characteristics and therefore the observed double bounce.

Figure 1.12: Typical scattering mechanisms in agricultural fields : (a) Surface scat-

tering, (b) Double bounce, and (c) Volume scattering.

For the specific case of croplands, the same scattering mechanisms are assumed to

occur and are depicted in figure 1.12. In this context, surface scattering is normally

observed when a crop does not have a canopy and the incident EM waves interact

with the soil directly. This occurs for instance before sowing stages or after a canopy

has been mechanically removed for harvest. The soil characteristics including soil

moisture, roughness and row orientation determine the scattered signals. With

regards to the satellite system, an important factor that impacts the scattered EM

waves is the incidence angle, and in particular, its combined effect with surface

roughness (Woodhouse, 2017). In the practice, surface scattering from crops is

observed for example in rice crops when the soil is flooded and the incident EMs

interact with the water surface (Lopez-Sanchez et al., 2014) and in general for other

crop types when the SAR signal interacts with a crop on very early growth stages or

after harvest (C.-a. Liu et al., 2019; Steele-Dunne et al., 2017a). Similarly, volume

scattering is normally observed in a crop when a canopy is present and the waves

emitted by the SAR sensor interact with leaves, branches, vertical and oriented stems

and the soil. The effect of the incidence angle when a canopy is present producing

volume scattering is less evident than for surface scattering provided the use of a
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short wavelength such as C-band. This is since C-band signals do not penetrate

the canopy significantly but are mostly reflected from the canopy top layer (De Roo

et al., 2001; Hosseini & McNairn, 2017; Skriver et al., 2011; Skriver et al., 1999).

When a longer wavelength is used such as L- or P-band, the penetration of the

SAR signal is greater and interaction of the signal with the main vertical stems

and soil can be expected. In this sense, the wavelength constitutes an important

system parameter when analysing SAR response from a crop canopy. Double or even

bounce is observed in a crop for instance when vertical stems are emerging from the

ground and vertically elongate resembling the presence of vertically oriented dipoles.

As will be introduced in next section, several crops present this type of behaviour

including rice and cereal crops (C.-a. Liu et al., 2019; Lopez-Sanchez et al., 2014;

Steele-Dunne et al., 2017a).

1.4 Spaceborne SAR for crop biophysical vari-

ables estimation and monitoring

In the literature for agricultural applications using SAR data we can identify five

general categories: crop type mapping (Bargiel, 2017; Shang et al., 2009; Van Tricht

et al., 2018), cropping practices monitoring (Bégué et al., 2018), assimilation of

SAR data into crop growth models (Huang et al., 2019; Kasampalis et al., 2018;

Steele-Dunne et al., 2017b), crop yield prediction (LIU et al., 2019; Steele-Dunne

et al., 2017b; Weiss et al., 2020a) and crop biophysical variables estimation and

monitoring. Since this thesis is concerned with crop development monitoring, this

section provides a review on crop biophysical variables extraction and monitoring.

The reader is directed to the above presented references for the other categories.

In terms of the crop variables themselves, in the literature among other the fol-

lowing variables have been reported: crop phenology, Leaf Area Index (LAI), above

ground biomass (AGB), crop height (Erten et al., 2016a; Lopez-Sanchez, Ballester-

Berman, & Hajnsek, 2011; McNairn et al., 2018; Vicente-Guijalba et al., 2015).

Most studies focus on investigating the interaction between the SAR signal and

crop vegetation during one or more agricultural seasons. This is done by imple-

menting modelling techniques to retrieve the state of crop parameters given a SAR
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image and by investigating the statistical correlation between SAR observables and

ground samples of the crop biophysical variables. Please note that the terms crop

parameters, crop biophysical variables and crop variables are used in this section

interchangeably.

With respect to the SAR imagery, the backscatter response to crop development

has been widely studied, particularly testing different system parameters such as

acquisition geometry, wavelength, and polarisations. Polarimetric data has been

used by exploiting quad-polarisation imagery modelled with a pixel covariance ma-

trix as presented in section 1.3.6. Other studies use features derived from eigen-

value/eigenvector decomposition of the covariance matrix as well as model based

covariance matrix decompositions (S. R. Cloude & Pottier, 1996). Interferometric

data has been used by studying the behaviour of the interferometric coherence as the

crop evolves over time (Jacob et al., 2020; Mestre-Quereda et al., 2020; Nasirzade-

hdizaji et al., 2021) and for crop height retrieval (Erten et al., 2016b; Romero-Puig

& Lopez-Sanchez, 2021) as will be introduced later in this chapter. Similarly, the

combined Polarimetric and interferometric features for crop monitoring have been

studied as described by Lopez-Sanchez and Ballester-Berman (2009) and Romero-

Puig et al. (2021). The following lines present a review of the main works reported in

the field and that are relevant for this thesis, however, an extensive and systematic

literature review of the field as whole is out of the scope of this thesis. Please refer

to (Erten et al., 2016b; McNairn & Shang, 2016b; Steele-Dunne et al., 2017b; Weiss

et al., 2020a) for more detailed reviews.

1.4.1 Correlating SAR observations with crop parameters

The SAR signal received by the system antenna after interacting with a target

is sensitive to target properties such as roughness, moisture, dielectric constant,

shape and geometry (Campbell & Wynne, 2011; Woodhouse, 2017). This Since the

crop morphological parameters, including soil moisture and roughness, crop height,

canopy density, biomass and plant water content etc, change as the agricultural

season progresses, the SAR signature changes accordingly. It is based on this prin-

ciple that SAR data can be exploited for agricultural applications. Several studies

have focused on observing the correlation between crop morphological parameters
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and the corresponding SAR observables. Using models to understand the response

of SAR observations to these parameters is key to develop applications that allow

operational retrieval of the crop biophysical variables using SAR imagery as input.

1.4.1.1 Semi-empirical models

Early research in the field relied on scattering models to explain the observed

backscatter given a crop condition and environmental factors. The Water Cloud

Model (WCM) is considered a seminal work for this approach and was developed by

Attema and Ulaby (1978). It proposes to model a vegetation canopy as a cloud of

water droplets that are supported by vegetation matter. It considers the scattering

and attenuation from the droplets and soil to derive the equations that estimate

backscatter intensity from three vegetation parameters: Soil moisture, plant water

content and plant height. Since the original experiment considered several incidence

angles, system frequencies and polarisations, these system parameters can also be

included in the mathematical expressions. This way, knowing the crop and SAR

system parameters, the backscatter intensity can be simulated. Since the backscat-

ter is measured by the satellite and the interest is to retrieve the crop parameters,

several calibration and inversion strategies have been proposed to invert (or esti-

mate) the crop parameters from the observed backscatter (Graham & Harris, 2003).

Ordinarily, retrieving the parameters is done in two steps: WCM calibration and

model inversion. In the calibration step, the crop parameters are measured in the

ground truth for a set of training fields in order to calibrate the WCM equations

in such a way that they correctly simulate the observed backscatter over the same

fields. Then, in the inversion step, the backscatter observations are used on the test

fields together with the calibrated model, to invert the crop biophysical variables.

The WCM model has been substantially used to retrieve crop parameters from

SAR data. De Roo et al. (2001) used the WCM to retrieve vegetation water content

and soil moisture of soybean fields using C and L band SAR imagery. Bériaux et al.

(2011) used the WCM to estimate surface soil moisture and LAI from SAR data

for maize crops. The applicability for LAI and biomass retrieval in corn and wheat

fields was tested successfully by Hosseini et al. (2015) and Hosseini and McNairn

(2017), respectively. Baghdadi et al. (2017) show the potential of retrieving soil
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moisture using the WCM, by replacing the canopy component of the required ground

samples with the optical NDVI and deriving the soil moisture samples for the integral

equation model (Fung et al., 1992). Then after the model inversion, the authors show

that the VV polarisation provides better estimations of soil moisture than the VH,

since the VH reacts more to the canopy layer than the VV.

Note, however, that given the simplifications assumed to develop the WCM, sev-

eral studies have found situations where the performance of the model is low and

have proposed modifications to it. These includes modelling more elaborated scat-

tering mechanisms or more geometrical properties of the vegetation (Paris, 1986;

Tao et al., 2016a). Additionally, other investigations have reported instability prob-

lems when calibrating the WCM model. Bériaux et al. (2015) introduces problems

of transferring the calibrated model coefficients of the WCM in space and time as

well as to other crop types or SAR sensors. Bériaux et al. (2015) also introduces

a Bayesian method to combine the WCM-based LAI predictions from the VH and

VV polarisations in such a way that the predictions with high uncertainty are given

lower averaging weight. Similarly, experimental data has shown that the assumption

of modelling the canopy as a cloud of uniformly distributed droplets does not always

hold true. Steele-Dunne et al. (2017b) report experimental measurements of vegeta-

tion water content which show that the water content changes with plant height, and

therefore, it is not uniformly distributed during the whole season. This assumption

combined with instability problems for calibration and problems for transferability

in space and time, may reduce the applicability of the WCM.

1.4.1.2 Physical models

Physical models have also been developed forward and inverse models for the backscat-

ter from a vegetated surface. These models exploit physics knowledge of the interac-

tion between electromagnetic waves and vegetation, where the vegetation is normally

assumed to be composed of geometrical shapes such as vertical or oriented cylinders

for stems and branches and ellipsoids or disks for leaves. Similarly, canopy parame-

ters such as height, dielectric constant, number of layers and leaves, leaf angle and

size, stem width etc, are used to describe the canopy (Della Vecchia et al., 2006;

Steele-Dunne et al., 2017b; Weiß et al., 2020). The microwave backscatter is gen-
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erally modelled using radiative transfer theory (Chandrasekhar, 2013). A popular

example of a physics based model is the Michigan Microwave Canopy Scattering

Model (MIMICS) (Ulaby et al., 1990). Although it was designed originally for for-

est scattering modelling by dividing the vegetation layer into three layers (crown,

trunk and under), it has been adapted for agricultural applications for its use in

wheat and canola crops vegetation parameters extraction (Toure et al., 1994). This

was done to retrieve LAI by removing the trunk layer of the model and representing

crop parameters by cylinders, discs and rectangles. A similar approach was used by

De Roo et al. (2001) to retrieve soil moisture from soybean crops. Also for soybean,

outputs from the MIMICS were used by P.-W. Liu et al. (2016) as input for a crop

growth model for soil moisture and biomass retrieval in a Kalman filter-based data

assimilation application. A fully polarimetric multiple scattering model for crops

was also introduced by Bracaglia et al. (1995).

L.-F. Wang et al. (2005) proposed a rice growth model based on a microwave

scattering theory and supported by Monte Carlo simulations to solve Maxwell’s

equations. The model considers the geometrical structures of rice plants and rice

fields and allows to simulate the backscatter response produced by growth of rice

crops using L- and C-band SAR data, and different incident angles. More recently

and also for rice, Y. Liu et al. (2016) proposed another radiative transfer model

to simulate the microwave scattering mechanisms of rice crops at different growth

stages and SAR system parameters. The authors used this model to show that

canopy backscatter from stems is more important than from leaves and that, dur-

ing stem elongation, intensity of VH and HH polarisations increase while the VV

increases at the start of the season and then decreases. A wheat canopy scattering

model was introduced by Yan et al. (2018) based on first order microwave radia-

tive transfer equation using time series of C-band quad- (Radarsat-2 and GaoFen-3)

and dual-polarization (Sentinel-1) SAR data. The authors report good agreement

between observations and simulations and highlight the importance of considering

the incidence angle as a key variable within an operational retrieval context. Also

for wheat, X-band data from the COSMO-SKYMED satellite has been used in a

physical based approach to retrieve canopy parameters and soil moisture.

Note that despite having a strong theoretical foundation, physical models still
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face challenges regarding accuracy of the retrieved results, partly due to the assump-

tions and approximations about the geometrical shapes used to model the canopy

and to solve the mathematical equations. The theoretical background required as

well as the computational cost to run the models are seen as a barrier for the opera-

tional adoption of these approaches (Della Vecchia et al., 2006; Steele-Dunne et al.,

2017b).

1.4.1.3 Statistical correlation of backscatter and crop biophysical vari-

ables

This subsection provides a brief review on the studies that empirically investigate

the relationship between SAR backscatter measurements and crop biophysical pa-

rameters. Considering the vast amount of studies published in the last two decades

and particularly after the freely available Sentinel-1 imagery, an exhaustive litera-

ture review is out of the scope of this section. Here we present the papers most

relevant to this thesis and some seminal works that are widely recognized in the

field. Although the WCM and other physical based models had provided initial

insights on the sensitivity of SAR measurements to crop parameters, several studies

based on empirical comparisons of SAR response to ground truth, further enhanced

knowledge on the interaction between microwave signals and agricultural fields. For

example, in Le Toan et al. (1997) the authors use C-band SAR data for flooded

rice fields monitoring. They show how the backscatter intensity from the fields

changes as the season progresses, highlighting that the temporal variation of the

radar response is due to the wave-vegetation-water interaction. It is demonstrated

how different growth stages have different responses and how the backscatter in-

creases from the transplanting stage to reproductive stage. Skriver et al. (1999)

study the temporal response of HH and VV polarisations over spring and winter

crops using L- and C-band polarimetric SAR data. They conclude that the im-

pact of variations in the incidence angle is stronger for images acquired early in

the agricultural season. This effect is less pronounced, according to the authors,

once the canopy is fully developed. Comparing the response from different fields,

authors conclude that the planting direction and tillage practices are the two key

factors that change the backscatter response. Similarly, the correlation coefficient
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between HH and VV polarisations was found to be key for discriminating between

winter crops and spring crops, especially at C-band. Macelloni et al. (2001) study

the influence of the shape and size of the canopy on the backscatter response, and

demonstrated that the response is different between broad and narrow leaves crops.

The authors also conclude that the leaves make a significant contribution to scat-

tering and reduce the contribution of stems at C-band SAR, while stalks dominate

the response at L-band. Mattia et al. (2003) discuss the sensitivity of different po-

larisations and incidence angles of C-band SAR to retrieve wheat biomass and soil

moisture. The authors show the potential of VV polarisation channel to retrieve

above ground biomass before the heading stage and also show the potential for soil

moisture retrieval after the heading stage with the HH polarisation channel. They

also highlight that there is no simple relationship between above ground biomass

retrieval after heading, and soil moisture before heading, and a more complicated

model needs to be developed as well as highlight the need to test the potential of

the VH polarisation. Della Vecchia et al. (2008) study the sensitivity of VV, HV,

and HH radar backscatter intensities to maize crop height, biomass and soil mois-

ture for several incidence angles and frequencies. The study concludes that VV is

sensitive to soil moisture, while the VV/HV ratio shows an important sensitivity

to crop canopy parameters and is moderately affected by soil-moisture conditions.

Similarly, Lin et al. (2009) study the C-band SAR backscatter response from sugar-

cane fields and the potential for operational retrieval of leaf area index at different

growth stages. Results show that the ratio HH/HV highly correlates with leaf area

index and reduces the soil backscattering effects. Based on this findings, the authors

present an empirical model to retrieve LAI from SAR imagery. On the other hand,

the polarisation ratio HH/VV was reported to be key for mapping rice cropping

systems given that VV is significantly lower than HH for most of the rice season,

which generates a characteristic pattern. This is because of the attenuation of the

microwave signals by the vertical structure of the plants (Bouvet et al., 2009). A sim-

ilar finding was reported by Larranaga et al. (2013) using RADARSAT-2 data over

cereal crops. Here, they observed a significant attenuation of the VV backscatter

intensity which is stronger than the one seen for HH due to the vertical orientation

of stems. In this same study a strong response for Rapeseed and peas was reported
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with the HV polarisation channel, presumably due to the canopies being more het-

erogeneous. Moran et al. (2011) study the response of dense RADARSAT-2 C-band

quad-polarized SAR imagery for wheat, barley, oat, corn, onion, and alfalfa in Bar-

rax, Spain. Preliminary results showed that the cross-polarized HV backscatter was

sensitive to crop growth, particularly for identifying heading in cereal crops and

leaf growth and reproduction in corn and onion. The HV was also found the least

sensitive to differences in beam incidence angle. Interestingly, the authors discuss

the importance of the temporal resolution and report that having 3 to 6 days res-

olution was acceptable for crop type mapping and for crop phenology monitoring

if quad-pol imagery are used. If only dual-polarization data is available with this

temporal resolution, mapping crop green biomass was possible. For soil moisture

applications, however, the authors recommend daily image acquisitions.

Fieuzal et al. (2013) present the results of a large experiment that combines X-,

C- and L-bands SAR data from the TerraSAR-X, RADARSAT-2 and ALOS satel-

lites, including HH, VV, VH and HV polarisation channels and several incidence

angles during the growing season of winter rapeseed and wheat. Results show that

the best correlation between leaf area index and crop height with the SAR observa-

tions are obtained with C-band SAR for rapeseed and with X-band data for wheat

crops. Authors present a novel method for normalizing the system incidence angles

while highlighting the opportunities of SAR to complement optical data, for crop

parameters monitoring. Inoue et al. (2014) present the results of a 4 year experi-

ment in Japan that tests the potential of rice crop biophysical variables monitoring

using C-band backscatter. Here, VH polarisation channel has a high sensitivity

to crop height, however, authors suggest that it is more an indirect effect of the

changes in the leaves biomass and structure. Authors also report an indirect or not

a significant relationship between backscatter and chlorophyll content ( Fraction of

Absorbed Photosynthetically Active Radiation - FAPAR), while stating that there

is no sensitivity to the canopy water content.

• Launch of the Sentinel-1 Constellation

The launch of the Sentinel-1 constellation enabled a wider use of SAR data for agri-

cultural monitoring. A noticeable increase in the amount of research published in

the field is evident. Although some studies make use of the dual-polarimetric and
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interferometric data, the majority of the studies focus on exploiting the VH and VV

backscatter intensities. An early study by Bousbih et al. (2017), uses two years of

ground measurements of soil roughness and water content as well as vegetation pa-

rameters including leaf area index, and vegetation height for cereal crops to evaluate

the sensitivity of Sentinel-1 to these crop variables. Authors show that the sensi-

tivity of the VV polarisation channel to soil moisture is stronger than that of VH,

and decreases as the above ground canopy starts to form and establish. Both po-

larisation channels are sensitive to increase in soil roughness. Interestingly, authors

report not finding an evident correlation between the VH channel and the vege-

tation parameters, while the correlation to VV decreases with vegetation growth.

Veloso et al. (2017) analyse time series of Sentinel-1 data for wheat, rapeseed, maize,

soybean and sunflower, and compare them with Landsat-derived NDVI time series.

Supported by rainfall, temperature and ground measurements of green area index

and fresh biomass, authors correlate crop growth with the corresponding VV and

VH backscatter intensities and VH/VV ratio trends. They found the VH/VV ratio

to provide key information for identifying maize, soybean and sunflower during the

heading and the flowering phases. The authors also demonstrate that there is a

strong correlation between VH/VV time series and both green area index and fresh

biomass measurements. Furthermore, the VH/VV ratio is found to be less influ-

enced by rainfall events than either the VH and VV polarisation channels individu-

ally. Therefore, authors report that VH/VV is suitable for biophysical parameters

retrieval, for biomass assimilation in crop models and that the backscatter inten-

sities may be complementary to NDVI during cloudy periods. Vreugdenhil et al.

(2018) introduce a study exploiting time series of Sentinel-1 data using the VV and

VH backscatter intensities as well as the ratio VH/VV for evaluating the poten-

tial for vegetation monitoring. In particular, authors focus on SAR sensitivity to

Vegetation Water Content (VWC), biomass, Leaf Area Index (LAI) and height, for

oilseed-rape, corn and winter wheat during two growing seasons. Results show that

it is difficult to separate vegetation water content from growth of leaves, stem exten-

sion and head development. Similarly, exponential models that use the VH/VV ratio

as input are found to be better predictor of VWC than linear models, confirming

a non-linear relationship between the SAR observations and crop parameters. The
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feature importance tool of the random forest algorithm is then used to demonstrate

that the VH/VV ratio is a more important feature than any individual polarisation

for retrieving VWC. Authors also report the sensitivity of the VH/VV ratio to esti-

mate the time of occurrence of heading and flowering in winter cereals, confirming

what was reported in Veloso et al. (2017). Also using time series of Sentinel-1 data,

Harfenmeister et al. (2019b) show an analysis of the SAR temporal profile driven by

the evolution of wheat and barley crops biophysical parameters. According to the

authors, an observed SAR signal attenuation can be explained by vegetation growth

in spring and by a more volume scattering, attributed to the crop reaching certain

height and due to the appearance of the flag leaves. Continuing the work on wheat

fields, Nasrallah et al. (2019) also study the Sentinel-1 time series as a function of the

phenological stages and investigate the potential for estimation of dates for wheat

main growth stages. These stages include germination, heading, soft dough and

harvesting. Authors identify that the ratio VV/VH at low incidence angle (32–34°)

was able to detect the germination and harvesting dates. Similarly, it is reported

that the VV polarization channel was able to detect the heading phase, while VH at

high incidence angle (43–45°) was better than that at low incidence angle (32–34°),

in detecting the soft dough phase. Supported by a Gaussian fitting and smooth-

ing algorithms, authors report the ability to estimate germination with a root mean

square (RMSE) error of 2.9 days, heading with RMSE of 5.5 days, soft dough RMSE

of 5.1 days and approximately 4 days for harvesting. Wali et al. (2020) reports an

analysis over paddy rice fields in Japan using C-band Sentinel-1 backscatter time

series to study the sensitivity to plant height, green vegetation cover, leaf area index,

and total dry biomass. The authors find that a polynomial regression accurately

model the non-linear relationship between crop parameters and SAR observables,

particularly for the VH channel. They also propose to fit a linear regression model

separately to the beginning of the season and another linear model for the end of

the season, in order to represent the relationship between crop parameters and both

the VH and VV polarisation channels. Interestingly, authors report that all the con-

sidered crop variables can be linearly estimated in the first half of the season from

the SAR backscattering observations (particularly for the VH polarization channel),

this is, from transplanting to the mid-reproductive stage. However, they also in-

Chapter 1 Cristian J. Silva-Perez 55



Crop development monitoring from SAR imagery

dicate that accurate monitoring after the mid reproductive stage is difficult since

the backscatter saturates and become insensitive to the further crop development.

Schlund and Erasmi (2020) study the occurrence of phenological stages using the

local extrema and breakpoints of smoothed VH, VV, and VH/VV SAR time series

collected over wheat crops for three consecutive years. Authors report the retrieval

of the date when shooting occur using the VH/VV ratio with an RMSE of 4.6, 5.3

and 9.5 days for each of the years monitored. For retrieving harvest date, accuracy of

5.1, 8.2 and 10.4 days are reported while ripeness stages could not be detected with

high accuracy. Bhogapurapu et al. (2021) introduce three vegetation descriptors

using the Sentinel-1 backscatter intensities. Authors designed them as the pseudo

scattering-type parameter, the pseudo scattering entropy parameter, and the co-pol

purity parameter from dual-pol S1 GRD SAR data. The usefulness of the proposed

vegetation descriptors is tested in wheat and canola crops. Authors demonstrate

that the indices are highly dynamic as the agricultural season progresses while high-

lighting the relationship between the indices and the crops phenological stages. They

also proposed a clustering algorithm using these three vegetation descriptors as in-

put, showing that the sample pixels moves in between the feature space zones of

the clustering algorithm according to the crop phenological stage. According to the

authors, the proposed indices can then be used to classify crop phenological stages.

• Use of Polarimetric SAR data

In general, the potential of polarimetric SAR observables for crop monitoring has

been widely tested and several studies report its successful use. However, due to an

added degree of complexity, lack of freely available imagery, a higher computational

cost and storage space, and a the trade-off between quad-polarisation systems and

image resolution, quad-polarimetry is not frequently reported in operational ap-

plications. As mentioned in section 4.1, the target scattering matrix collects the

information about the interaction between the polarisations sent and received by

a SAR system and a target on the ground. This matrix describes the changes in

polarisation between the incident and scattered waves. To aid the interpretation

and analysis of PolSAR data and inversion of target parameters from it, several

target methodologies have been proposed. A review of these can be found in S. R.

Cloude and Pottier (1996) and Lee and Pottier (2009). A general objective of the
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PolSAR decompositions is to extract information about the physical properties of a

target from the scattered waves, by understanding whether the response comes from

a surface or a volume structure, or a combination of both. Similarly, the aim is to

understand whether the target causes a single dominant scattering mechanism, or

more than one scattering mechanisms are present in the observed area. For agricul-

tural applications, the aim is to analyse how the scattering mechanisms derived from

PolSAR data change over time as a crop develops, plants grow and a canopy forms

and reaches maturation and how the soil and vegetation water content influence

them. This information is then related to the state of crop biophysical parameters.

An example of this can be seen in C. Liu et al. (2013) where the authors vectorise

the scattering matrix and use the Pauli components of equation 1.31 to study the

intensity of the surface scattering, double-bounce, and volume scattering in corn,

spring wheat, and soybeans using quad-Pol C-band RADARSAT-2 data. It is found

that since each crop type has specific structural characteristics, the evolution of the

Pauli components changes accordingly. They also found that for each crop type,

the dominant scattering mechanism changes depending on the crop growth stage,

noting particularly strong changes in the PolSAR response when plants emerge and

after harvest. Lopez-Sanchez, Cloude, et al. (2011) interpret the radar response of

rice fields by deriving a set of dual polarimetric observables from TerraSAR-X data

including the Pauli components and features derived from target decomposition tech-

niques such as the eigenvector decomposition. Authors found that even though the

dual-PolSAR response changes during the season, some growth are difficult to dis-

criminate since they present a similar PolSAR response. Adams et al. (2013) propose

the Cloude–Pottier (S. R. Cloude & Pottier, 1996) and Freeman–Durden scattering

decompositions (Freeman & Durden, 1998) to characterize scattering mechanisms

from mature crops and harvested fields. They found that the PolSAR features from

before harvest are statistically significantly different from post-harvest PolSAR re-

sponse. Also using Freeman-Durden and Cloude-Pottier decompositions, Cable et

al. (2014) found that PolSAR response to soybean and canola crops generally shows

an increase in volume scattering as the crops approximate senescence. They also

highlight the importance of considering the row orientation as well as incidence

angle, since they are strongly related to penetration of the SAR signal into the
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canopy. Wiseman et al. (2014b) study the response of 21 PolSAR parameters to dry

biomass growth in canola, corn, soybean, and spring wheat. It is demonstrated that

the intensity of the PolSAR observables increased more rapidly at the beginning of

the season as biomass accumulation accelerated, partially fitting a nonlinear model

(logarithmic). Similarly, it is shown that volume scattering and pedestal height can

help identify milking and dough stages in wheat. In Lopez-Sanchez et al. (2014), the

response of C-band backscattering coefficients and several polarimetric observables

computed using the Eigenvalue/Vector decomposition, the Freman-Durden decom-

position and compact polarimetry is presented as a function of rice crop phenology.

As part of the analysis, it is concluded by the authors that features such as the

Entropy, Anisotropy and alpha angle derived from the Eigenvalue/Vector decompo-

sition clearly describe the polarimetric behaviour in this crop. Each growth stage

presents a different behaviour for these features, for instance, moderate entropy,

dominant surface scattering (low alpha angle values), and high anisotropy for early

vegetative stage and high entropy, low anisotropy, and dominant alpha angle below

45 degrees for maturation. This enables the discrimination of the growth stage in a

SAR imagery by analysing these three PolSAR features. Canisius et al. (2018) also

study PolSAR features derived from C-band quad-Pol data from the RADARSAT-2

satellite for retrieving canola and spring wheat plant height and LAI. Results show

that there exist for this test site a linear correlation between plant height and the

alpha angle and that LAI for both crop types is strongly correlated with the beta

angle (derived from Eigenvalue decomposition of the covariance matrix). A differ-

ent approached based on change detection has been presented by Alonso-González

et al. (2016) and recently expanded in Alonso-González et al. (2020). It consists

in correlating the PolSAR changes with the changes that the crop undergoes as it

evolves during the season.

Although the dual-polarimetric properties offered by the Sentinel-1 satellite have

not been widely used so far, few studies have tested its potential for crop monitoring.

Mandal et al. (2020) propose to exploit the information contained in the dual-pol

covariance matrix, and specifically, the degree of polarization and the eigenvalue

behaviour to estimate a novel vegetation index from Sentinel-1 imagery. The au-

thors compare the proposed index with the so-called dual-pol radar vegetation index
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and the cross-polarisation ratio to evaluate their sensitivity to canola, soybean, and

wheat crop growth. The statistical analysis reported demonstrates that there is

significant correlation between the proposed index and the crop parameters for the

three crops. Harfenmeister et al. (2021) analyse time series of entropy, anisotropy,

and alpha angle computed from decomposition of the dual-polarimetric covariance

matrix formed with Sentinel-1 data for monitoring wheat and barley. Single and

multiple linear regression models and exponential models are utilised to invert plant

height, wet biomass, dry biomass, and vegetation water content from the backscat-

ter and dual-pol features. This study reports that the dual-polarimetric features

provide additional information for crop parameters retrieval, in contrast to using

backscatter intensities only. This was shown by comparing the R2 results for multi-

ple regression which includes all features and linear regression models by individual

features separately. It is also shown that the retrieval accuracy of the regression

models is different for each phenological stage, with performances being more accu-

rate early in the season, possibly because the structural changes in the canopy are

more significant. A study by Xie et al. (2021a) presents retrieval of corn crop height

from Multitemporal C-band quad-Pol RADARSAT-2 data. It uses a Random Forest

Regression and a Support Vector Regression as well as a set of 27 features derived

from the PolSAR imagery. The root mean square error between predicted and ob-

served values is 40 to 50 cm throughout the growth cycle (corn plants can reach

up to 3 meters) and conclude that the features that contain information regarding

double-bounce and volume scattering are key for corn height estimation.

• Use of Interferometric SAR (InSAR), Polarimetric-interferometric

SAR (PolInSAR) SAR data

A study by Zalite et al. (2016) analyse the potential of X-band interferometric co-

herence from the CosmoSkyMed satellite to detect mowing events and estimate veg-

etation height and biomass on agricultural grasslands. Interestingly, it is found that

the vegetation height and wet biomass are negatively correlated with the coherence

while the backscatter intensities are not correlated with these two vegetation pa-

rameters. Rossi and Erten (2015) demonstrate an application on the use of bistatic

(separated transmitter and receiver) InSAR using Tandem-X data for monitoring

paddy rice crop height. This is done by generating Digital Elevation Models DEM
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over the fields for all crop stages, apart from the emergence stage when the fields

are flooded and without vegetation.

With regards to the use of Sentinel-1 data, Khabbazan et al. (2019b) study the

potential of the interferometric coherence to monitor crop biophysical variables of

sugar beet, potato, maize, wheat and English rye grass. Based on statistical anal-

ysis the authors show a strong correlation between time series of SAR backscatter

intensities and changes in the crop structure and vegetation water content. It is also

demonstrated that the interferometric coherence increases as the vegetation grows

and the canopy develops while, showing that after harvest the coherence increases

again. Based on this, it is highlighted that this feature can be used as a metric for

identifying crop harvest. A similar conclusion is reached by Kavats et al. (2019)

where the date when harvest occurs is inferred from Sentinel-1 imagery for soybean

and sunflower crops. Authors show that for the test site the interferometric co-

herence increases as plants ripen and dry out while drooping after harvest. This

effect seems to be maximised for crops planted in rows. Authors then design a

bespoke threshold-based algorithm from InSAR coherence to retrieve the harvest

date achieving mean average errors of about 6 days. Also for harvest detection and

expanding to seeding detection, a paper by Shang et al. (2020) presents an algo-

rithm which establishes the rules to estimate dates for crop seeding and harvest

from InSAR coherence for cereal crops, canola and hay, from Sentinel-1 data. The

algorithm achieves an accuracy of 85% for harvest detection and 56% for seeding

detection. In addition, it is discussed that issues may arise using InSAR coherence

for key dates estimation due to rainfall, excess of soil moisture and other events such

as post-harvest residue removal and field ploughing.

Although the PolInSAR technique has also been proposed for deriving forest

canopy height and crop canopy height, the applications have so far been limited to

airborne campaigns rather than spaceborne SAR systems as for the interest of this

thesis. A detailed analysis in this topic is out of the scope of this thesis but can be

found in Ballester-Berman et al. (2005) and Lopez-Sanchez and Ballester-Berman

(2009). In essence, the advantage of using PolInSAR observations, represented by

the complex InSAR coherence for different polarisations, is to be able to acquire

information about the vertical structure of the plants in a field. This is done eval-
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uating the localization of the scattering centers and it is in addition to providing

information of dielectric properties, shape and orientation of the canopy as when

using backscatter intensities and PolSAR data. Additionally, as described in (Lopez-

Sanchez & Ballester-Berman, 2009), PolInSAR allows the identification of different

scattering mechanisms along the vertical dimension (e.g. plant height). This means

that it is possible to separate scattering contributions from the soil and canopy.

Note however, that ideally, PolInSAR observations need to come from a single-pass

system with bi-static configuration and with long spatial baselines to have good ver-

tical sensitivity. Since satellites systems with this configurations are not common,

PolInSAR applications are more limited for operation monitoring.

• Methodologies to monitor and estimate crop parameters from SAR

imagery

As introduced previously in this section, the WCM and radiative transfer model

approaches have been used for inverting crop biophysical parameters from SAR im-

agery (Baghdadi et al., 2017; Graham & Harris, 2003; Hosseini & McNairn, 2017;

Hosseini et al., 2015; Y. Zhang et al., 2014). Similarly, a meta-modeling approach

has been proposed, specifically for rice fields in order to retrieve growth stage and

height (Yuzugullu et al., 2016; Yuzugullu et al., 2017). Recently, separate method-

ologies have proposed the use of linear, polynomial and exponential models to invert

crop height, green vegetation cover, leaf area index, and dry biomass using SAR

backscatter intensities for rice (Chakraborty et al., 2005; Wali et al., 2020), and

with dual-polarimetric data for wheat and barley (Harfenmeister et al., 2021).

Machine learning algorithms have also been tested in recent years for estimat-

ing crop parameters from SAR imagery. In Küçük et al. (2016) a method for rice

phenology monitoring was presented. It tests the performance of support vector ma-

chines (SVM), k-nearest neighbors (kNN), and decision trees (DT) to classify rice

growth stage from dual-PolSAR derived features as inputs for the classifier. Issues

including the correct selection of features and the number of classes are discussed.

A study by Ndikumana et al. (2018) reports the retrieval of rice height and biomass

from Sentinel-1 data by training algorithms including Multiple Linear Regression

(MLR), Support Vector Regression (SVR) and Random Forest (RF), with the RF

achieving coefficient of determination R2 above 0.9. In H. Wang, Magagi, Göıta,
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et al. (2019) authors proposed polarimetric features from covariance matrix decom-

positions as inputs for random forest, neural network and K-nearest neighbours for

classifying the crop stage from a SAR image for canola, wheat and soybean. Au-

thors report that the algorithms successfully learn the non-linear mapping functions

that estimate phenology, with the Random Forest being the most accurate using a

combination of multiple polarimetric features. A hybrid approach which seeks to

integrate the best of machine learning with current knowledge on the WCM, has

been similarly introduced in the literature. A study by Mandal, Hosseini, et al.

(2019) compares four approaches to invert LAI of corn using the WCM: iterative

optimization, Look-up table search, Support Vector Regression (SVR) and Random

Forest Regression, concluding that the SVR results in more accurate estimations

while the Look-up table search is the least accurate. Similarly, Mandal, Kumar,

McNairn, et al. (2019) proposed an approach to estimate, based on the water cloud

model, plant area index and wet biomass simultaneously, supported by a multiple

output random forest regression. Authors claim that retrieving the two variables at

the same time improve the retrieval accuracy compared to retrieving the crop vari-

ables individually. The Gaussian Process Regression algorithm (Rasmussen, 2003)

has been used to fuse Sentinel-1 data with optical data from the Sentinel-2 satellite

in order to retrieve leaf area index. In Pipia et al. (2019) a method to retrieve

leaf area index was proposed, which combines time series of Sentinel-1 backscat-

ter intensities to fill the gaps of Sentinel-2 vegetation indices due to clouds. The

advantage of this method is, according to the authors, that the Gaussian process

algorithm is able to learn the statistical correlations between the two satellites, so

that even if Sentinel-2 data are absent, using Sentinel-1 and the trained model, leaf

area index can be retrieved. Based on the results, authors demonstrate the bene-

fits of the synergy of the two sensors. Similarly, a study by Mercier et al. (2020)

uses Gaussian processes to retrieve LAI, biomass, and water content of wheat and

rapeseed crops from Sentinel-1 and Sentinel-2 imagery. Authors test several combi-

nations of features for each sensor, identifying the SAR and vegetation indices that

provide the most accurate LAI, biomass, and water content, and conclude that even

though Sentinel-2 is more accurate, polarimetric SAR features greatly increase the

performance of SAR based models. The authors, also highlight the potential for
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simultaneous exploitation of the two sensors in an operational context. Statistical

and probabilistic approaches have been introduced in the literature to estimate crop

biophysical variables from SAR imagery. Mascolo et al. (2016) present an algorithm

for classification of crop stage (phenology) in oats, barley, wheat and corn from quad-

PolSAR RADARSAT-2 data. Rather than using a polarimetric decomposition, the

algorithm computes the Wishart distance between training and test pixel covariance

matrices in order to classify the crop phenology. A procedure is introduced to select

the covariance matrices that are used as training for each crop phenological stage.

Then a threshold is applied to the computed distance to decide what training crop

stage is the most similar to the observed in the SAR image. A novel paradigm

was proposed by Vicente-Guijalba et al. (2014) and Vicente-Guijalba et al. (2015)

which considers the crop development as a dynamic process and utilises a Bayesian

Filtering Framework (BFF) for monitoring the crop development. In this case, it

specifically uses an Extended Kalman Filter (EKF) to classify rice crop phenological

stages. The methodology is then expanded by De Bernardis et al. (2014a) to replace

the EKF with a Particle Filter (PF) and use the dynamic model for forecasting key

dates, specifically, forecasting when the crop will be ready for harvest. Authors con-

clude that the PF provides better phenology estimation accuracy given that it is not

restricted to model a crop state with normal distributions but with any arbitrary

distribution. They also show that the proposed method can forecast harvest dates

with errors between 5 and 10 days. The same methodology is further expanded to

combine SAR data with optical data from the Landsat satellite in De Bernardis et al.

(2016a). It is concluded that a data fusion approach increases the retrieval accuracy

of phenology and is further enhanced if temperature measurements are considered

alongside. A study by McNairn et al. (2018) uses a particle filtering for estimating

canola phenology. In this case, the use of a phenology retrieval algorithm is justified

since it is important for canola growers to timely detect when flowering is reached.

This is since the moisture levels at this stage need to be controlled. This application

considers fusion of C- and X-band SAR sensors (RADARSAT-2 and TerraSAR-X,

respectively), however, forecasting is not approached.

The BFF algorithms are currently considered state of the art, since they are able

to retrieve crop parameters accurately, integrate several active and passive sensors
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as well as to nowcast and forecast the state of the biophysical variables.

1.5 Literature review concluding remarks

Although a significant amount of research has been devoted to understanding the

interaction between SAR microwaves and croplands, most of the studies have fo-

cused on cereal crops and rice fields. Accordingly, research on other crop types

could expand and enhance our current knowledge. Similarly, the test sites involved

in most of the research are located in developed countries, where the fields tend

to be large and the land flat. This may not transfer easily to developing coun-

tries, dominated by growers with small farms, difficult geographical conditions and

less ground truth available for experiments. Therefore, research in crops located

in developing countries should be encouraged. An important part of this thesis is

the use of PolSAR data for agricultural applications. A common challenge that re-

searchers have when starting an application for retrieving crop variables, is selecting

the appropriate PolSAR decomposition(s) to use. Options include: the Eigenvalue

decomposition, Freeman-Durden, Yamaguchi, Tutzi or other bespoke model-based

decompositions. Each one provides a different set of PolSAR observables conveying

similar or complementary information. Moreover, the analysis and interpretation of

the time series for all these features simultaneously can be challenging and prone

to error. This hand-crafted analysis may not be appropriate for large scale applica-

tions. Therefore, methodologies to better analyse and interpret multiple time series

of polarimetric features simultaneously, would benefit users looking to exploit mul-

titemporal PolSAR data. Additionally, there is evidence from recent studies that

the InSAR coherence may provide complementary information from backscatter in-

tensities and PolSAR data. Based on this, and although not explored in this thesis,

research exploiting InSAR coherence can be expected in the near future. PolInSAR

and Tomographic SAR, on the other hand, are more restricted due to requirements

of the SAR systems to have multiple observation baselines. These are still seen as

pilot applications as part of airborne SAR campaigns, rather than large scale and

operational monitoring systems from spaceborne SAR. Due to this limitation, these

approaches are not considered in this work. In relation to the methods for inver-
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sion or estimation of crop biophysical variables from SAR imagery, as mentioned

in the previous subsection, the performance of the WCM model may suffer due to

the simplifications assumed, numerical problems for model calibration and prob-

lems of transferability in space and time. Similarly, physical models derived from

radiative transfer theory, along with requiring a strong theoretical foundation, face

challenges regarding accuracy of the retrieved results. This is due to assumptions

around the geometrical shapes used to model a canopy to solve the mathematical

equations, and the computational cost to run the models. These represent barriers

for wider adoption of this approach. Recent applications based on machine learning

algorithms have shown promising results in terms of retrieval accuracy. These al-

gorithms exploit regression or classification methods using random forests, support

vector machines and/or neural networks. Although, these approaches can be highly

accurate with the possibility of learning the non-linear mapping functions between

SAR data and ground truth, some issues still remain unsolved. In particular, most

methodologies reported so far do not consider the crop development as an evolving

process monitored in real or near-real time. This applies to studies that estimate

a crop biophysical variable without considering the preexisting information from

previous predictions. Although in some cases this can still be accurate, it may be

beneficial to include knowledge of the previous crop state when making a new pre-

diction. Similarly, current approaches would need to design a separate subsystem

for each SAR acquisition geometry and other sensors (e.g. optical sensors). An

algorithm to harmonise the subsystems would be beneficial, but has not yet been

designed. Despite a few recent methodologies attempting to address this, not con-

sidering the crop development as an evolving process presents a further limitation

which still reduces accuracy of approaches. This limitation involves not being able

to forecast the crop biophysical variables given the previous and current crop state.

As this is a very informative characteristic, key to understanding when a growth

stage will occur, or when a field will be ready for harvest, adding it to the retrieval

algorithms is of strategic importance. The BFFs are considered to be state of the

art. They consider the crop development as a dynamical process and use dynamic

filtering techniques to monitor the crop. This provides the advantage of performing

monitoring in near-real time, combining sensors and forecasting the dates of key
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occurrences. Note however, that the freely available data offered by Sentinel-1 and

complemented by Sentinel-2 has not yet been used within the BFFs frameworks.

This is partly due to quad-polarimetric data being preferred in previous studies.

Note also, that two of the key elements of the BFFs, namely the dynamic and ob-

servation models, have been designed in a crop and location specific manner, which

makes the transferability of these methodologies to other applications difficult. In

summary, despite significant efforts to improve techniques for retrieval of crop bio-

physical variables from SAR data, methodological issues remain and opportunities

for enhancement are foreseen.

1.6 Thesis aims and contributions

As pressure in current food production systems increases, a synoptic and holistic

solution is needed to worldwide challenges that include food security and reduction

of green house gases from agricultural activities, while maximizing revenues from

financial investments. Remote sensing constitutes a key technology to provide tools

to mid and large-scale food producers, food traders, retailers, and agribusinesses in

general, for informed decision making that promote sustainable and cost-effective

crop management practices. SAR systems in particular, provide opportunities for

large scale crop monitoring without interruption, due to the added ability to acquire

images during day or night and under almost any weather conditions. An abundance

of SAR data can be anticipated in the next 5 years with the launch of several

international missions. Crucially, research on crop development monitoring with

data from SAR satellites has not been as widely studied as data from passive systems

and although significant amount of research has been devoted to understand the

relationship between crop development and SAR imagery, applications to retrieve

crop biophysical variables in near-real time have been less studied and as mentioned

in the previous subsection, improvements can still be made. Consequently, the

overall aim of this thesis is to contribute to current knowledge about the use of

spaceborne SAR imagery for crop development monitoring and biophysical variables

retrieval. This is approached in this thesis by processing large multitemporal and

polarimetric SAR datasets, interpreting SAR responses to crop growth, designing
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novel methodologies for crop monitoring built on state of the art statistical and

machine learning techniques, and using ground truth data for training and validation

purposes.

An initial objective of the thesis is to understand the SAR response to crop de-

velopment in both our test sites (see section 1.8). We achieve this in chapters 2

and 3 by interpreting time series of SAR backscatter intensity together with knowl-

edge about the physiology of asparagus crops and field data related to management

practices. This is similarly done in chapter 4 for rice fields, however, here we use

multitemporal quad-polarimetric change detection instead of dual-polarimetric time

series.

A second objective is to develop novel algorithms that allow monitoring crop

biophysical variables for these crops as new SAR images are acquired by satellites

and become available. In this regard, a multi-output random forest regression is

proposed in chapter 2 to retrieve asparagus crop growth stage. In chapter 3, a

Bayesian filtering algorithm is proposed to retrieve and to track below ground as-

paragus carbohydrates, and to estimate the crop age or the number of days since

the season started. Multitemporal quad-pol change detection based on optimisation

of the difference of covariance matrices is proposed in chapter 4 to monitor rice

growth. A further step is taken in chapter 4, by using the same approach for crop

type mapping, which is vital for crop inventories applications.

An additional specific objective that falls within the overall aim is for the pro-

posed algorithms to be able to incorporate data from other sensors to work alongside

SAR imagery. This is achieved in chapter 2 with the inclusion of temperature data

and in chapter 3 with the incorporation of multi-spectral satellite data in a sensor

fusion algorithm. In the latter, a modelling approach is taken for gap filling, which

is a recurrent problem when working with multi-spectral sensors, and also allows for

daily prediction of biophysical variables and for forecasting. The obtained results

represent novel additions to the literature that contributes to our understanding and

successful use of SAR imagery for agricultural fields monitoring.
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1.7 Outline of thesis chapters

Chapter 2: Monitoring Agricultural Fields Using Sentinel-1 and Temper-

ature Data in Peru: Case Study of Asparagus (Asparagus officinalis)

In this chapter, we investigate with an unprecedented level of detail, the response

of the freely available Sentinel-1 satellite SAR data to the asparagus crop develop-

ment in the north coast of Peru. We analyse how the time series of backscatter

intensities changes due to the crop growth and management practices. We also con-

sider several consecutive agricultural seasons to study the temperature effects on

the crop growth and the potential for estimating the crop stage from SAR imagery

and temperature using a Multiple-output machine learning model.

Chapter 3: Learning-based tracking of below ground asparagus carbo-

hydrates and key dates estimation from fusion of sparse remote sensing

observations

This chapter is built upon the understanding gained about the asparagus crop

and the limitations identified in chapter 2. We propose the use of a Bayesian filtering

framework, which was identified in the literature review as the current state of the

art method for crop monitoring and sensor fusion. However, we propose to improve

this methodology by using Gaussian processes to model the crop dynamics and

the multitemporal satellite sensor response to crop growth. We then integrate these

models into a Bayesian filtering framework which allows us to perform Sentinel-1 and

Sentinel-2 sensor fusion in near-real time. This reduces the temporal resolution and

enables the integration of complementary information derived from multi-spectral

vegetation indices. Based on the model of the crop dynamics, we are also able to

make daily predictions, even when no images are available (i.e., now-casting and gap

filling), and to forecast asparagus below ground carbohydrates thus providing the

ability to estimate the occurrence of future crop key dates.

Chapter 4: Multi-Temporal Polarimetric SAR (MT-PolSAR) Change

Detection for Crop Monitoring And Crop Type Classification

In preparation for future constellations of satellites that will provide freely avail-

able Quad-PolSAR data, we propose a multi-temporal PolSAR change detection-

based method for crop monitoring that builds upon recently proposed methodolo-
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gies. We present an intuitive interpretation of the PolSAR response to the crop

growth stage and monitor its changes over time as the crop develops. We validate

the results obtained with the proposed method using field data from rice fields in

Spain and several other crop types in the Indian head, Canada. This allows us to

see how, under the proposed method, each crop type forms a unique signature which

we then exploit to train neural network-based classifiers for crop type mapping.

1.8 Test sites and datasets

Three different locations were utilised in this thesis as shown in figure 1.13. The

asparagus crops studied in chapters two and three are located in the north coast of

Peru, near the city of Trujillo. The site was chosen as part of the EO4 cultivar project

(https://www.envsys.co.uk/data-services/eo4cultivar/). This project, co-funded by

the UK space agency and managed by Environment systems LTD (https://www.

envsys.co.uk/), relies on a close international cooperation with local growers and

food traders in Peru and Colombia. It aims at providing crop insights for informed

decision making derived from freely available earth observation data in near-real

time and at multiple scales (field level, regional and national scales). The EO4

cultivar project enabled close collaboration with farmers, including coordination of

ground campaigns where field data is collected by local farmers and shared with

different project stakeholders. The project also enabled direct communication with

lead agronomists and visits to asparagus farms in May of 2019. For chapters two

and three which focus on development of algorithms for asparagus monitoring, the

Level-1 Sentinel-1 SAR analysis ready data provided by the Google Earth Engine

platform (Gorelick et al., 2017) was used.

In chapter four, rice fields in the Isla Mayor town, near Seville, in the south

of Spain were utilised to develop a multitemporal and quad-polarimetric change

detection based method for monitoring the crop. The field data available for analysis

was collected in 2014 and is accompanied by 16 quad-polarimetric images from the

Single look complex (SLC) format of the RADARSAT-2 satellite in three different

incidence angles. Similarly, field data collected during the AGRISAR 2009 campaign

(team, 2009) in the Indian head, Canada, was utilised. This campaign was carried
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Figure 1.13: Location of test sites used in this thesis as follows: Trujillo, Peru,

chapters two and three. Isla Mayor, Spain and Indian Head, Canada, in chapter

four.

out using the C-band SAR data from RADARSAT-2 to demonstrate the potential for

several monitoring applications, focusing mainly in agriculture. This demonstration

was part of a series of studies to motivate the development of the C-band Sentinel-1

mission by the European Space Agency. This dataset, which included ground data

and SLC RADARSAT-2 imagery, is used in chapter four to test a crop type mapping

application including.
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Chapter 2

Monitoring Agricultural Fields

Using Sentinel-1 and Temperature

Data in Peru: Case Study of

Asparagus (Asparagus officinalis

L.)

This chapter presents the analysis and a methodology for monitoring asparagus crops

from remote sensing observations in a tropical region, where the local climatological

conditions allow farmers to grow two production cycles per year. To perform the

analysis, the freely available dual-polarisation GRD data provided by the Sentinel-

1 satellite were used together with temperature from a ground station and crop

phenology ground truth from January to August of 2019. A multi-output machine

learning regression algorithm was trained on a rich spatio-temporal dataset. Each

output estimates the number of asparagus stems that are present in each of the

pre-defined crop phenological stages. This analysis shows that particularly the VH

polarisation can be used for monitoring the canopy formation, density and growth

rate, revealing connections with temperature. Several scenarios to evaluate the

importance of each input data source and features were tested. Results show that

the methodology was able to retrieve the number of asparagus stems in each crop

stage when using information about starting date and temperature as predictors
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with coefficients of determination (R2) between 0.84 and 0.86 and root mean squared

error (RMSE) between 2.9 and 2.7. For the multitemporal SAR scenario, results

showed a maximum R2 of 0.87 when using up to 5 images as input and an RMSE

that maintains approximately the same values as the number of images increased.

This suggests that under the conditions considered, the use of multitemporal SAR

data only improved mildly the retrieval when the season start date and accumulated

temperature are used to complement the backscatter.

2.1 Introduction

Due to the recent and future growth of freely available satellite remote sensing data,

there is an opportunity to implement near real time agricultural monitoring systems

to increase yield and crop management efficiency. This is based on informed decision

making with information derived fully or partially from satellite sensors.

Such a system is particularly important in tropical regions which highly con-

tribute to the global food production but for many crops with considerably lower

yields per hectare compared with temperate regions (West et al., 2010). It is also

essential given the necessity in the tropics to preserve natural ecosystems by in-

creasing yield in existing crop areas rather than transforming tropical forests to low

yield croplands (West et al., 2010). A distinctive operational characteristic in trop-

ical and subtropical regions for several crop types is the uninterrupted production

cycles, with cultivation of more than one cycle per year. Each of these produc-

tion cycles or campaigns may be under slightly different meteorological conditions

due to a “soft seasonality”, e.g., mild winters, thus modifying to a certain extent

the crop growth rate and structure. This leads to the different responses captured

by the satellites at each campaign. This chapter considers the above-mentioned

conditions for agricultural monitoring, particularly analysing the case of asparagus

crops in Peru. Asparagus officinalis L. is a key crop for the country’s agricultural

exports, being the largest exporter in the world, the second largest producer after

China (Food & agriculture organization of the united Nations, FAO 2019) and an

important source of job (Terán-Velazco, 2017).

In this context, crop phenology has been used as a tool to measure crop status
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at any given time during the cultivation period and to measure the development

rate relative to previous campaigns or relative to neighbour plots (Hodges, 1990).

Accordingly, monitoring phenological evolution and accurately knowing crop status

and development rate, the farmers can strategically plan the management.

Given the importance of monitoring phenology during the campaign without in-

terruptions, synthetic aperture radar (SAR) emerges as a potential technology for

this task. The capabilities to acquire images at day and night and under nearly all-

weather conditions of SAR satellites offer significant opportunities for systematic

monitoring regardless of cloud coverage (Lee & Pottier, 2009). On the other hand,

to consider the impact of different climatological conditions on each campaign of a

year, temperature records can be analysed to support the crop development moni-

toring.

2.1.1 Related Work

An initial step for crop monitoring from SAR data is to understand the time se-

ries evolution of the features derived from SAR imagery over time. To this end,

biophysical crop variables collected in ground truth surveys are used as a reference

for validation and for correlating measurements in the field with the SAR response.

In the case of Quad-polarimetric data, multi-temporal polarimetric SAR (PolSAR)

analysis is used to characterise a crop signature in terms of evolution of scattering

mechanisms along the season identifying key moments (Alonso-Gonzalez et al., 2016;

Lopez-Sanchez et al., 2014; Wiseman et al., 2014a).

Recently, more attention is being given to dual polarimetric systems given the

free access to these data (Sentinel-1). Research to understand the interaction of

Sentinel-1 signal response to crop evolution has been presented for several crop

types. Researchers have reported the VH, VV backscatter and the ratio between

the two polarisations to be sensitive to the development of different crop biophysical

parameters (Harfenmeister et al., 2019a; Khabbazan et al., 2019a; Steele-Dunne et

al., 2018; Veloso et al., 2017).

A common method to monitor crop development is to determine the crop growth

stage when a new SAR image becomes available (De Bernardis et al., 2016b; Lopez-

Sanchez et al., 2014; McNairn et al., 2018). In a general context, phenology is defined
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as the observation of life cycle phases and their time of occurrence in plants and an-

imals (Lieth, 2013; Meier, 1997; Schwartz et al., 2003). In the current context, crop

phenology refers to the division of the crop development cycle into distinguishable

growth phases (Schwartz et al., 2003) to be detected from SAR imagery. Accurate

knowledge of crop phenology can aid farmers to plan timings for irrigation and ap-

plications of fertilisers and pesticides (Schwartz et al., 2003). This knowledge can

also be used to make forecasts of crop development and harvest dates.

In order to retrieve crop phenology from SAR data, an initial step is usually

to understand time series of SAR observables, and then use them as inputs to a

statistical or a machine learning model. These models are trained with SAR and

ground truth from past agricultural seasons such as in the works by Küçük et al.

(2016) and H. Wang, Magagi, Goıta, et al. (2019). Other authors have proposed the

use of distance measures to compare the covariance matrix of a given SAR resolution

cell inside a parcel with a set of previously characterised covariance matrices that

are associated with a phenological stage (Mascolo et al., 2016). The aim is to find

the most similar predefined covariance matrix and assign the pixel under analysis,

the crop stage with the most similar covariance matrix.

However, these approaches consider the phenology retrieval as a classification

application, aiming at classifying the current parcel state as one of the previously

defined pool of possible states (e.g., emergence, vegetative stage, maturation, etc.).

This generates inconveniences selecting the appropriate boundaries for each stage

in a process that may be subjective, often selecting ones (biasing) that the algo-

rithm can actually identify. On the other hand, if standard phenological scales are

used, such as the BBCH scale (Meier, 1997), the algorithm may not be able to

disentangle every stage since the SAR response may not be sensitive to all these

agronomic processes. Likewise, previous approaches ignore the fact that it is possi-

ble to have simultaneously more than a single stage in a parcel due to different plant

growth rates and the fact that in the real evolution adjacent stages overlap (e.g.,

a parcel with some plants in flowering and some in fructification simultaneously).

These approaches predict current phenology based on a single SAR image with-

out considering the multi-temporal information. This leads for instance to stages

at the beginning of the season being miss-classified by the model with final crop
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stages as they may have similar SAR response, as occurred in (Küçük et al., 2016;

Lopez-Sanchez, Ballester-Berman, & Hajnsek, 2011).

To overcome this, a hidden Markov model technique was proposed in (Cota et al.,

2015; Siachalou et al., 2015) so that a prediction of the current stage is dependant

on the previous stage, following a Markov property. However, the problem of subjec-

tively selecting the boundaries for the crop stages still remains. Other authors have

proposed a different approach whereby they consider the crop evolution as a time

dependant dynamical process that follows a trajectory governed by the crop under-

lying dynamics (De Bernardis et al., 2016a; McNairn et al., 2018; Vicente-Guijalba

et al., 2015). The aim of these methodologies is to retrieve the crop state in that tra-

jectory when a new SAR image is analysed. However, these last methods have only

been proven using polarimetric SAR data, which provides a much richer amount

of information to characterise a target compared to the freely available data from

Sentinel-1. Studies associated with the potential of space borne radar remote sens-

ing concerning asparagus fields have been presented in (Arias et al., 2020; Bargiel

et al., 2010; Sabour et al., 2008; Tavakkoli & Lohmann, 2006), although all of them

focus on the crop type classification problem rather than in the analysis of individ-

ual crop stages as we present in this chapter. In (Sabour et al., 2008; Tavakkoli

& Lohmann, 2006), C-band ENVISAR ASAR satellite data in VH and VV polar-

isations are used to identify land use of two agricultural regions, with asparagus

being one of several crop types to identify. However, neither description of the crop

stages nor the backscatter response over time is presented. In (Bargiel et al., 2010),

time series of HH and VV polarisations of X-band data from TerraSAR-X satellite

are reported. This study aims to evaluate the potential for classification of agricul-

tural areas by analysing the crop signature of several crop types. Among them, 12

parcels of asparagus are studied and both the HH and the VV polarisations using

X-band data are presented. The backscatter seems to increase during the period of

vegetation growth, with a widespread distribution among the 12 parcels. This in-

crease happens during the summer similar to several other crop types which was

identified as an inconvenient to classify asparagus. This same effect was reported

in (Tavakkoli & Lohmann, 2006), where asparagus response is particularly similar

to sugar beet. In (Arias et al., 2020), among other 13 crop types, the multitemporal
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response of asparagus was evaluated to use the crop signature for agricultural fields

classification purposes using Sentinel-1 data. The authors report an increase of the

VH backscatter during the periods of vegetation growth. Interestingly, the authors

also report a more constant backscatter response during the whole cultivation period

using the VV polarisation. This is aligned to what is presented in Section 2.2.6.1 of

this chapter and in contrast to Bargiel et al. (2010) (although X-band data was used

in this case). The authors, also report low accuracies for classifying asparagus due

to similarities to summer crop types as reported in (Tavakkoli & Lohmann, 2006).

Crucially, none of the reported work in asparagus focuses on monitoring growth

development or crop stages classification from SAR imagery. Also note that since

the climatological conditions in Peru are different to those reported in the works by

Tavakkoli and Lohmann (2006),Sabour et al. (2008), Bargiel et al. (2010) and Arias

et al. (2020), direct comparisons are not straight forward. For instance, in (Arias

et al., 2020), authors report that the agricultural season length is more than a

year, which is significantly different from our test site (6 months average). Simi-

larly, the crop signature is inherently different since the senescence periods for crops

located in temperate regions are not present in our Peruvian test site.

2.1.2 Objectives of the Study

The main objectives of this chapter are the following:

1. To analyse the SAR response to the asparagus crop evolution.

2. To present examples of how the seasonal climatological conditions influence

the crop development in the test site (tropical conditions).

3. To present the implementation of a data-driven methodology that captures

the recurrent patterns in the SAR response and the temperature to provide

an approximation of the crop development at every new SAR acquisition. It

consists of a Multi-output machine learning regression algorithm in which each

output estimates the number of asparagus stems that are present in each of

the predefined phenological stages at a given date.
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2.2 Materials and Methods

2.2.1 Asparagus Crop Development and Production Cycles

In this section, we briefly introduce the asparagus crop and the main phases of de-

velopment. For a more detailed description of the asparagus growth and physiology

the reader is directed to (Wien & Stützel, 2020; Wilson et al., 2005). Asparagus is a

vegetable perennial crop which once is in a productive phase, re-emerges after har-

vest without the need to re-plant it. The cultivation process begins by transplanting

to the fields the seedlings grown in a nursery. The roots system below ground, also

known as the crown, and the fern above ground begin to grow and after approxi-

mately 2 years of development and establishment, the ferns are cut, the asparagus

spears emerge and the crop is lightly harvested for the first time (Casas, 2004; Wilson

et al., 2001).

After the first harvest, at the emergence crop stage, the next stems that emerge

from the buds of the crown develop into a fern as shown in Figure 2.1. The as-

paragus stems grow vertically and will start producing the horizontal branches in a

crop stage known as ramification. From this point, the cladophylls (leaf-like struc-

tures in the branches) will develop during the aperture stage. The aggregation of

several consecutive individual asparagus stems that emerged from the root system,

with their respective side branches and cladophylls compose the fern.

Subsequently, the fern thickens and covers the sandy soil intercepting light and

beginning the production of carbohydrates which are sent down via translocation to

replenish the roots system and be stored (Wilson et al., 2005). The fern development

is followed by the short appearance of small yellow flowers and a maturation period,

which corresponds to the longest crop stage. In total, each production cycle takes

between four to five months before the crop is ready to be harvested.

During harvest, the spears that emerge from the buds are manually cut (har-

vested) when they reach approximately 20 cm of height. The root system produces

new spears that are again harvested causing the depletion of the carbohydrates

stored from previous seasons. The harvest is carried on until a minimum level of

carbohydrates is reached in the root system to maintain the plant’s healthy condi-

tion. At this point, the new asparagus stems are left to develop and grow again to
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begin a new production cycle, in a life cycle that can last up to 15 years (Casas,

2004; Wilson et al., 2001). The crop stages in Figure 2.1 are the same stages that

are recorded during the ground surveys and that are estimated in Section 2.2.7.

Figure 2.1: Asparagus crop growth and production cycles. Every season after har-

vest, new asparagus stems emerge to begin a new production cycle

2.2.2 Test Site

The asparagus fields (Figure 2.2) are located in the north of Peru in a dry coastal

zone with sandy soil, divided in plots of an average of two hectares. We consid-

ered approximately 442 parcels in total, where timing and management practices

such as starting and harvest dates as well as application of nutrients and pesticides

among other activities, are performed simultaneously in groups of around four to

six neighbouring parcels.

2.2.3 Climatological Conditions

The temperature and solar radiation present the maximum variability in the local

test site, following the seasons of the southern hemisphere with a maximum peak of

temperature around mid-February (summer) reaching up to 26 degrees Celsius and
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Figure 2.2: Test site. (Left): Sentinel 2 RGB image acquired the 29/09/2018.

(Center): Sentinel-1 RGB image acquired the 30/09/2018. (Right): Location of

test site in Peru

lowest values in August (winter) with temperatures of around 15 degrees (Figure

2.3).

Since the winter never reaches extremely low temperatures, the asparagus crop

does not reach a dormant stage which permits growers to have two productive cycles

per year. However, since the conditions along the year are not exactly the same,

there may be a difference in the crop evolution of the same plot in two consecutive

productive cycles, in response to these changing conditions. This is an important

factor that will be analysed in Section 2.2.6.2.

The rainfall levels are extremely low given the desert conditions where the parcels

are located with an average of less than 1 mm per month.

2.2.4 Ground Truth

As a part of the EO4 cultivar project (section 1.8), a survey campaign to collect

asparagus phenological information was carried over a period of 8 months, from Jan-

uary to August of 2019, for 442 asparagus parcels. For each parcel evaluated, field

surveyors randomly selected two transects to assess, with each transect being a me-

tre in length. Within each transect the surveyors identified the phenological stage

of each stem and counted the total number of stems in each stage present. Results

for the two transects were averaged and recorded. In this way, the proportion of

stems per parcel in any of the phenological stages identified in Figure 2.1 can be

recorded, and a proxy for the evolution of crop stage over time can be established.
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The average temporal evolution of asparagus stems in each crop stage is presented

in Figure 2.4 for all the production cycles covered in the ground truth. Please note

that after the asparagus stems have emerged from the ground, the total number of

stems remains approximately the same throughout the season while the number of

stems present at each stage changes as the crop develops.

Figure 2.3: Average temperature and solar radiation in the test site. Chart generated

from data collected by the farm’s meteorological station.

An average of 36 surveys were performed per parcel during the eight months

of the ground data collection, i.e, approximately one survey per week per parcel.

However, given the complexity of the operation not all surveys were carried on

systematically, e.g., exactly every week, but rather with irregular sampling. Also,

note that given the climatological conditions as explained in the previous section, it

is possible to grow up to two production cycles per year independently of the starting

month and consequently the resulting surveys contain information to characterise

multiple times an entire asparagus campaign or season. This enable us to create a

rich spatio-temporal dataset to characterise the crop development.

2.2.5 SAR Datasets

The Sentinel-1 dataset used for the analysis was built using the Level-1 Ground

Range Detected (GRD) and the Interferometric Wide swath (IW) acquisition mode,

with VV and VH polarisation channels. The data was collected using the Google
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Figure 2.4: Number of asparagus stems in each of the crop stages. The solid lines

represent the averages of all the ground measurements collected in 442 plots during

the first 8 months of 2019. The shaded regions represent plus and minus 1.96

standard deviations.

Earth Engine (GEE) platform (Gorelick et al., 2017) in which the data pre-processing

steps include applying orbit file, GRD border noise removal, thermal noise removal,

Radiometric calibration and terrain correction. After obtaining the data from the

GEE, a 3 × 3 boxcar averaging window was used as speckle filter.

Table 3.1 shows the three acquisition geometries available for the test site with

the corresponding average incidence angles and acquisition times, including the orbit

142 in descending pass direction and the orbits 18 and 91 in ascending pass. Using

the three available orbits the revisit frequency corresponds to between 3 and 5 days

while it is 12 days using a single incidence angle. In order to analyse the long-

term behaviour of the backscatter signal (e.g., seasonality), a time series of nearly

two years was built from Sentinel-1 data over a typical parcel of asparagus where

the ground truth is known and which includes four consecutive agricultural seasons.

For the methodology to monitor asparagus development presented in Section 2.2.7

data from January to August of 2019 was used for the 442 plots when ground truth

is available. Figure 2.5 shows the average temporal evolution of the backscatter for
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Table 2.1: Sentinel-1 acquisition geometries available in the test site

Pass Direction Relative Orbit Inc. Angle Acquisition Time

Descending 142 35 10:54

Ascending 18 31 23:34

Ascending 91 45 23:42

all the production cycles covered in the ground truth. The crop characteristics that

cause the SAR observations in Figure 2.5 will be further explained in Section 2.2.6.1.

Please note that the VH polarisation presents more significant changes through

time and with less statistical variance than the VV polarisation as described in

Section 2.2.6.1. Also note that after the day 125 there is a significant increase in the

variance of the response. This is due to different cultivation period lengths as will

be explained in Section 2.2.6.2. Figure 2.7 shows the VH backscatter profile with

the corresponding ground truth of a typical asparagus parcel over time, covering 4

consecutive production cycles.

2.2.6 Methodology for Estimating Asparagus Stems Per Stage

To design the methodology of this chapter, three main steps are undertaken: (1) Un-

derstanding of Sentinel-1 signal interaction and sensitivity with the asparagus tem-

poral evolution, (2) Analysis of the impact that the local climatological conditions,

particularly the temperature, have over the canopy development and (3) the multi-

output machine learning regression model training and use to estimate the number

of asparagus stems in the phenological stages of Figure 2.1.

2.2.6.1 SAR Sensitivity to Crop Evolution

Due to the mild winters with minimum temperatures of around 16 degrees Celsius,

the asparagus crop does not reach a dormant stage naturally and there is not a

harvest time forced by the climatological conditions. This allows growers to plan

the starting and ending dates of the season (occasionally for individual parcels) so
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Figure 2.5: Sentinel-1 temporal backscatter evolution for the orbit 142. This chart

shows the mean backscatter plus/minus two standard deviations of 442 parcels

backscatter time series. The backscatter of each parcel is sorted by the DaS so

that backscatter of all parcels can be combined.

that is possible to have more than one production cycles per year (normally two)

and if required, adjust to the market needs and contractual planning. Given this,

at a single SAR acquisition there are plots at almost all possible crop stages.

The photographs presented in Figure 2.6 were taken the same date as a SAR

acquisition (28/05/2019). Based on this, it is possible to locate in the time series of

each parcel where the picture was taken, what the SAR response to the crop is and

compare it with the crop status recorded in the footage. Please note that all the

images were taken the same date to parcels at different growth stages, a possibility

enabled by the local climatological conditions. Since the parcels are at different

crop stages, the backscatter is also different as shown in the VH polarisation time

series of Figure 2.6, in which the lowest backscatter of the season is present during

the harvest periods given that the fern has been mechanically removed and the new

emerging spears are being harvested (Figure 2.6, images 1 and 2). At this point,

the SAR signal interacts only with the soil presumably with a predominant surface

scattering mechanism. For a description of the main SMs in crops please refer to
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section 1.3.7).

The SAR response to these conditions has been shown to depend on the dielectric

and geometric properties of the soil, e.g., surface moisture and roughness (Davidson

et al., 2000; Oh et al., 1992). In the test site, the moisture is mainly dependant on

the irrigation since the rainfall levels are extremely low given the desert conditions.

On the other hand, the roughness is determined by the ridges and furrows created

by the rows where the plants were sowed. In this case, the height of these rows,

the plot age (the younger the crop, the more sand present), together with the row

orientation and the incidence angle define the soil-SAR signal interaction. This

effect is particularly evident with the VV polarisation (although not shown here).

Both polarisations, but particularly the VH polarisation increase significantly

as the asparagus stems start emerging and vertically elongating up to two meters

height. This increase may be a consequence of the double bounce created with the

SAR signal reaching the soil and bouncing off the vertical spears back to the satellite

(Figure 2.6, image 3), although a more detailed polarimetric analysis would be re-

quired to confirm it. Please note that as shown in Figure 2.5, the VV backscatter has

less increment in time than the VH backscatter possibly due to the VH being more

sensitive to the quasi-horizontal branches that grow sideways from the main vertical

asparagus stems. A similar result was reported in (Arias et al., 2020) where authors

present an almost constant VV response during the periods of vegetation growth.

However, when the crop reaches approximately the peak of the aperture stage

(see Figure 2.7), the backscatter also reaches the peak in the entire cultivation

period. At this point, the fern already has developed branches and the leaf-like

structures in the stems are developing. From this moment, the contact of the SAR

signal with the soil decreases thus also reducing the backscatter measured.

Subsequently, at the flowering stage (image 5 of Figure 2.6) the fern is fully

developed and denser covering the soil and presumably creating a volume scattering

response. The latter is less intense than the previous double bounce at the aperture

stage since the SAR signal is radiated in several directions rather than being reflected

back to the satellite, causing a decrease in the overall backscatter. Once the crop

has reached the mature stage (images 6 to 8 of Figure 2.6), no significant changes

happen in the biomass of the canopy hence the SAR signal remains at approximately
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Figure 2.6: Images taken in the fields the 28/05/2019 (red vertical line) when a

Sentinel-1 image was also acquired. The time series correspond to the VH backscat-

ter for the orbit 142. Each pair of image and time series correspond to a different

parcel. The parcels are at different growth stages taking advantage of the local cli-

mate.

the same level until the end of the season. An additional aspect to highlight is that

as presented in Figure 2.4 and mentioned in Section 2.2.5, during the maturation

stage the VV channel presents more statistical variation presumably since the VV

backscatter still has an important contirbution coming from the soil as opposed

to the VH backscatter which after the fern develops and stabilises, seems to have

a strong contribution from the canopy and less from the soil. As a consequence,
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the VV may capture features related to the soil, such as changes in moisture or

roughness that are not captured by the VV polarisation.

2.2.6.2 Impact of Temperature on the Crop and the SAR Response

In this section, we analyse the impact of the seasonality and the variable climatolog-

ical conditions on the crop evolution. This analysis is relevant to build a phenology

retrieval algorithm since these factors change the crop behaviour and/or the SAR

response in time thus modifying the inputs for an algorithm and affecting the ac-

curacy results. Please note that in this analysis of effect of temperature, we have

used the VH channel given that it is more sensitive to vegetation growth and canopy

establishment than the VV polarisation as shown in figure 2.5 and reported for dif-

ferent crop canopies C.-a. Liu et al., 2019; Steele-Dunne et al., 2017a; Weiss et al.,

2020b.

Based on empirical observations, growers have noticed that the crop evolution

during a “winter” and a “summer” campaign in the same year are different, in terms

of canopy volume and development rate, possibly due to the different climatological

conditions. Similarly, previous research showed that temperature influences aspara-

gus plant growth rates and may cause growth depression (Wilson et al., 1997; Yen,

1993). On the other hand, mechanistic models of asparagus shoots height have been

developed as a function of the temperature (Wilson et al., 1997).

To investigate this effect in our test site using remotely sensed observations,

time series of meteorological information, ground truth and SAR backscatter were

analysed. Figure 2.7 shows the VH polarisation channel backscatter intensity with

the corresponding phenology ground truth samples for a typical parcel during four

consecutive campaigns.

The bottom plot of Figure 2.7 shows that the number of asparagus stems in

maturation recorded during surveys are lower in the first semesters of 2018 and

2019 compared to the corresponding second semesters of the same years. Looking

closely at the backscatter level for the same periods in the plot of the same figure,

it is possible to see that the same pattern is followed in the time series of the VH

polarisation once the crop has reached the maturation stage. This provides initial

evidence of sensitivity of the SAR signal to the changes in the canopy volume (mea-
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Figure 2.7: VH polarisation and ground truth observations for a typical parcel

during four consecutive campaigns. Both the backscatter and the ground truth

show a seasonal behaviour. The green and red vertical lines represent the start and

end of the cultivation period respectively. The campaigns 1 and 3 correspond to

summer season while the campaigns 2 and 4 represent winter campaigns.

sured as number of stems in maturation, which would represent the total number of

stems in the parcel for this period).

On the other hand, the left side of Figure 2.8 shows the VH backscatter response

for the same parcel, during the winter campaign (second semester of 2018) and the

summer campaign (first semester of 2019) as a function of the number of days after

the cultivation started (DaS). It is possible to see the difference in the growth rate

at the beginning of the cultivation, where in the summer campaign (red line) the

crop reaches the peak of the VH time series faster relative to this same point in the

cold season (blue line).

In order to confirm that the temperature impacts the crop growth rate, a test was

done using the temperature as independent variable instead of the number of days

after the campaign start. A measure of daily accumulated heat has been previously

used in the literature for this purpose. It considers an averaged measure of the

daily maximum and minimum temperature to determine how much heat the crop

receives in a day (Growing Degree Day - GDD) and how much it accumulates day

after day during a period of time (McMaster & Wilhelm, 1997a). For the present

study, 10 degrees Celsius was considered to be base temperature (Wilson et al.,
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Figure 2.8: SAR backscatter of two consecutive campaigns aligned as function of

cultivation days (DaS) and accumulated Growing Degree Days (GDD). The blue

line corresponds to the campaign one that grew during the colder season (“winter”)

and red line corresponds to one in the warmer season (“summer”). The plots at the

bottom show the cultivation period length measured as a function of time (left) and

temperature (right).

2001). By accumulating GDD and using it as independent variable, the plot on the

right side of Figure 2.8 shows that the VH backscatter observed for the winter and

summer campaigns are approximately aligned. This suggests that the temperature

drives the rate of canopy formation as suggested in other studies (Wilson et al.,

1997; Yen, 1993), and that it is observable with the VH polarisation measurements.

It also provides insights about the potential usefulness of the temperature as input

feature to complement a remote sensing algorithm to retrieve canopy development

and thus crop stage information.

The boxplot of Figure 2.9 presents the median accumulated temperature in all

the campaigns registered in the ground truth, from the campaign start to harvest.

It can be seen that depending on the month when the cultivation started, there is

a seasonal trend in the accumulated temperature. This information is key to for

example estimate the harvest date given the campaign starting month, based on the

accumulated temperature.

To summarise, in principle there are three visible effects of the temperature on

the crop. The first one, corresponds to the canopy volume developed, being less

biomass during hotter temperatures. The SAR backscatter signal is sensitive to this

by measuring lower backscatter intensity during the maturation period (Figure 2.7).

The second effect is associated with the growth rate, since as shown in the left

side plot of Figure 2.8, it causes the stages at the beginning of the season to de-

Chapter 2 Cristian J. Silva-Perez 89



Crop development monitoring from SAR imagery

velop faster in a warmer campaign (red line). This effect is also visible from the

backscatter response. The third effect is related to the season length depending

on the accumulated temperature during the cultivation period (Figure 2.9). This

accumulated temperature in turn depends on the month of the year when the cam-

paign started.

Figure 2.9: Campaign length measured in degrees Celsius (accumulated tempera-

ture) as a function of the production cycle starting month. As an example, if a

campaign starts in January it normally accumulates around 600 degrees more than

a campaign that starts in July. A total 442 campaigns were considered to generate

this plot.

2.2.7 Estimation of Number of Asparagus Stems in Each

Crop Stage

This section presents the methodology used for monitoring asparagus development

as described by the number of asparagus stems in each of the stages of Figure 2.1. We

use a data-driven model to estimate ground truth measurements from SAR image.

Please note that a deterministic physical model inversion is an ill posed problem

since the number of unknowns are greater than the number of independent SAR

measurements (Liang, 2008; Oliver & Quegan, 2004b). However, we exploit the

patterns and correlations found in the SAR observations and temperature together

with the ground truth to build empirical models.

We consider the retrieving the number of asparagus stems as a regression problem

since it is possible to avoid selecting crop stage boundaries and allow soft transition
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between adjacent phenological stages. Please note that the ground truth used for

training corresponding to phenological information is given by multiple and corre-

lated variables (Figure 2.4). These variables do not evolve in time independently

but rather they have temporal co-variation since they are produced by the same

underlying process, i.e., the crop growth.

To exploit this structure in the output data, we use a multi-task or multi-output

regression algorithm. It considers this interdependence of the individual outputs

before making predictions. In this context, multitask learning (MTL) has been used

in several applications precisely with this objective (Caruana, 1997; Ruder, 2017).

It is expected that not only the accuracy of a single multi-task learner increases

compared to individual single-task learners (i.e., fitting an individual model for

each output), but also since the model captures the structure of the data, it is

able to generalize or interpolate better when the model is presented with unseen

data (Caruana, 1997; Ruder, 2017).

In the remote sensing community multitask-learning has been previously im-

plemented using different machine learning algorithms (Camps-Valls et al., 2018;

Leiva-Murillo et al., 2013). Specifically for the case of SAR, in (Camps-Valls et al.,

2018) the authors show how a multitask learner is able to make more accurately

predictions of soil moisture and plant water content than individual learners.

2.2.7.1 Model Development

We chose initially a multi-task Random Forest Regressor (Segal & Xiao, 2011) from

the available MTL algorithms due to its power for capturing both the non-linear rela-

tionships and the correlation between multiple outputs. A Random Forest Regressor

(Breiman, 2001) is known as an ensemble algorithm in which several individual de-

cision regression trees (n-estimator trees) are built from individual bootstrapped

datasets (datasets in which the samples are randomly selected from the original

training dataset) (R. W. Johnson, 2001). Each regression tree uses a random sub-

set of the input feature variables (m-features) from the original number of input

features, and from this subset an optimal feature with an associated threshold is se-

lected for each node (Breiman et al., 1984). In the single output case of a regression

decision tree, both the optimal feature and the node threshold (i.e., the threshold
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that decides whether to go to the left or right child node) are found by minimiz-

ing a split function (also known as node cost) based on a euclidean distance error

measure (Breiman et al., 1984). In the case of a multiple-output regression decision

tree, an additional term is added to the node cost to account for the correlations in

the output data. Specifically, in the framework proposed by (Segal & Xiao, 2011),

a Mahalanobis distance (Mahalanobis, 1936) is added to the split function to con-

sider the multiple dimensions in the output data in the minimization cost function

to select the corresponding thresholds. Please note that other split functions have

been developed (Kim, Lee, et al., 2003) but in this chapter the framework proposed

in (Segal & Xiao, 2011) is used. A final estimation is obtained from the multi-task

Random Forest Regressor by averaging the estimations provided by the leaf nodes

in each individual tree in the forest.

In this chapter, the objective is to estimate the number of asparagus stems

in each of five possible stages. Each of these five estimations corresponds to an

output predicted by the multi-output random forest regression. On the other hand,

the algorithm uses historical SAR, temperature and ground truth data to learn the

corresponding mapping functions. For this purpose, the scenarios in Table 2.2 have

been considered in this chapter.

2.2.7.2 Inputs

An initial category identified as category A, does not use remote sensing as input for

the multi-task regression but only uses ground data. In the scenario A1 the number

of days after the cultivation started (DaS) is used to estimate the number of as-

paragus stems present in each phenological stage at every image (Table 2.2), similar

to how farmers traditionally execute their planning in the test site and in general

for farms with low adoption of technology. Considering that multiple production

cycles per year occur and grow under different climatological conditions, as shown

in Figures 2.8 and 2.9, the day of the year (DoY) when the cultivation season starts

impacts the canopy development. We tested the value of using this information as

input for the algorithm, given that for instance, 20 days of cultivation in summer

may differ from 20 days of cultivation in winter. This corresponds to the scenario

(A2).
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Table 2.2: Scenarios considered for asparagus growth estimation. Please note that

each of the scenarios in B and C categories is tested using one image as well as

sequence of multiple images.

Category Scenario Input Description

A A1 DaS
Only number of days after

cultivation started.

A A2 DaS, DoY
Days after cultivation started and,

Day of year when cultivation started.

A A3 DaS, DoY, GDD

Days after cultivation started and,

Day of year when cultivation started and,

accumulated temperature.

B B1 VH Only VH polarisation

B B2 VH, VV, VH/VV VH, VV polarisations and the VH/VV ratio

C C1
VH, VV, VH/VV,

DaS

VH, VV, Ratio,

Days after cultivation started.

C C2
VH, VV, VH/VV,

DaS, DoY

VH, VV, Ratio,

Days after cultivation started,

Day of year when cultivation started.

C C3
VH, VV, VH/VV,

DaS, DoY, GDD
All previous features

A more robust scenario, the scenario A3, uses additionally the accumulated tem-

perature during the cultivation period (from cultivation start to the SAR acquisition

date) or accumulated growing degree-days, since as it was shown in Section 2.2.6.2,

the temperature drives the growth rate and canopy volume. Several other method-

ologies have used GDD to account for the impact of climatic conditions in the crop

growth (d’Andrimont et al., 2020; McNairn et al., 2018; Skakun et al., 2019). Please

note that by using these input data sources the model learns the mapping function

to give a theoretical estimation of the number of asparagus stems in each growth

stage. This estimation may be accurate only if no external abnormal conditions
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affect the crop, such as extreme weather events including droughts, hail, etc., plant

diseases, pests or changes in the management practices. Similarly, it does not pro-

vide any spatial information of crop status but a single prediction for the entire

field. Although this information may be valuable for planning, it is not sufficient for

operational crop monitoring.

A remote sensing-based approach that uses SAR images was considered to be

the second category (B), where the Sentinel-1 backscatter including VH and VV

polarisation channels with their corresponding ratio was used. This was tested using

a single image and a sequence of images, from two to five. In this case, the near-

real time data acquired by the satellite provides the capabilities for operational

monitoring. In this scenario the VH polarisation was tested individually as well as

together with the VH and VV ratio (scenarios B1 and B2). This scenario only uses

SAR data as input for the multi-output regression.

A third category (C), includes each of the previous data sources SAR, DaS, DoY,

and GDD as input for the algorithm hoping to integrate their individual advantages

(scenarios C1 to C3). Please note that the scenario C1 is included with the aim of

quantifying the usefulness of the DaS feature when using multi-temporal SAR data

and the scenario C2 quantifies the usefulness of the DoY feature.

2.2.7.3 Outputs

In all the scenarios, the aim is to produce estimates of the number of asparagus

stems present in each of the following phenological stages: Emergence, ramifica-

tion, aperture, flowering and maturation at any given SAR acquisition (same stages

shown in Figure 2.1). Because in this case we require to simultaneously predict the

multiple outputs, we chose the model described in Section 2.2.7.1. On the other

hand, as described in Section 2.2.4, these values would correspond to measurements

taken in a randomly selected linear meter within the parcel. Here we assume that

the ground data collected in this way is representative of the entire parcel.

2.2.7.4 Training and Testing Data

The ground truth described in Section 2.2.4 collected between January and August

2019, Sentinel-1 data and temperature measurements from the same periods are
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used to create the datasets. The dataset D takes the form D = (X, y) where X is a

matrix of dimension mxn, m is the number of ground truth measurements available,

n is defined by the features being used according to each scenario of Table 2.2 and

y is the matrix of ground truth data with dimension mx5, where the number 5

corresponds to the number of asparagus stems in each stage of Figure 2.1 recorded

in the ground truth surveys.

In order to separate training and testing data, we randomly select plots based

on their unique identifier tag. Then approximately 70% of plots are grouped in a

training dataset and 30% in a testing dataset. This guarantees the unseen data

required for the testing phase. In total, from the 442 plots (of 2 Ha on average)

with available ground truth, approximately 309 plots randomly selected are used for

training and the remaining 133 plots for testing. Given that the ground sampling is

not performed every day, several ground truth measurement dates do not coincide

with the Sentinel-1 acquisition dates. Consecuently, a three order spline interpola-

tion was used to interpolate and obtain daily samples of ground truth so that an

associated ground truth measurement can be obtained for every SAR observation.

In total, there exist 4023 training data-points and 1739 testing data-points.

2.2.7.5 Model Hyper Parameters

Tuning of the optimal model hyper-parameters was done using 5-fold cross-validation

with grid search. Table 2.3 presents the selected hyperparameters for the sce-

nario C3.

Table 2.3: Selected model hyperparameters

Hyperparameter Selected

Bootstrap True

The number of trees in the forest 800 (a)

Split funciton Mahalanobis Distance

max-depth 30 (a)

(a): Tunned hyper-parameter.
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2.2.7.6 Accuracy Metrics

The coefficient of determination R2 computed with Equation 2.1 (Krause et al.,

2005; Pedregosa et al., 2021) was used to measure the model performance, both for

the individual outputs and for the model as a whole, by averaging the scores of the

five outputs.

R2 = 1 −
Σn

i=1

(
yi − ŷi

)2

Σn
i=1

(
yi − ŷ

)2 (2.1)

where yi corresponds to the i− th ground truth test sample, ŷi a prediction made

with the model for this sample after training, and ŷ the mean value of the n-ground

truth test samples.

Similarly, the root mean squared error RMSE calculated with Equation (2.2),

was computed between predicted and testing values.

RMSE =

√
1

n
Σn

i=1

(
yi − ŷi

)2

(2.2)

where yi corresponds to the i− th ground truth test sample, ŷi a prediction made

with the model for this sample after training.

2.3 Results

2.3.1 Single SAR Image Results

The obtained results when using a single SAR image as input for the model are

reported in Tables 2.4 and 2.5. When using one SAR image (see Table 2.4), partic-

ularly the scenarios A2, A3, C2 and C3 achieve satisfactory predictive capabilities

with overall coefficients of determination R2 between 0.84 and 0.89. This is con-

firmed with the RMSE’s that are also the lowest for these scenarios.

Regarding individual outputs of the multi-task regression for these same scenar-

ios, the maturation phase has the best performance achieving an R2 of more than 0.9

in almost all of them and flowering the lowest accuracy between 0.70 and 0.8. Note

from Figure 2.4 that comparing flowering to any other stage the temporal shape

described in the ground truth by this measurement is more irregular and reaches

on average fewer stems than the other stages. This could be due to an agronomic

reason that requires further analysis or due to a systematic error affecting flowering
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Table 2.4: Summary of coefficients of determination R2 for the predicted number of

stems in each crop stage when using a single SAR image.

Stage A1 A2 A3 B1 B2 C1 C2 C3

Emergence 0.72 0.83 0.88 0.54 0.68 0.78 0.83 0.84

Aperture 0.65 0.9 0.92 0.04 0.27 0.71 0.87 0.9

Ramification 0.74 0.9 0.9 −0.22 0.11 0.81 0.9 0.9

Flowering 0.41 0.79 0.82 −0.36 −0.06 0.49 0.7 0.76

Maturation 0.79 0.91 0.94 0.36 0.52 0.82 0.89 0.9

Overall 0.66 0.87 0.89 0.07 0.3 0.72 0.84 0.86

when surveying the fields. This is also possibly the reason causing the predictions

of asparagus stems in flowering less accurate than in the other stages.

On the other hand, the results of scenario C1 are substantially higher than the

scenarios in category B. By providing to the regressor the number of days after the

season started (DaS) as in scenario C1, the algorithm improves the retrieval with

respect to category B potentially since it would be possible to disentangle similar

backscatters at different dates.

An additional increase in R2 (from 0.72 to 0.84) and reduction of RMSE (from

3.73 to 2.9) is achieved in the scenario C2 only by specifying the day of the year when

the agricultural season starts. This feature indirectly provides information about

the seasonality present in the test site and shown in Figures 2.7 and 2.8. The R2

and RMSE are further improved and decreased respectively in the scenario C3 after

the addition of the GDD feature, although not significantly. This low increase may

be explained by considering that providing DoY (as in scenario C2) we already pro-

vide information about seasonality and given that as mentioned in Section 2.2.6.2,

the impact of higher and lower accumulated temperature in the canopy is perceived

by the VH backscatter as shown in Figures 2.7 and 2.8. Consequently, the algo-

rithm indirectly receives information about the accumulated temperature through

the use of VH and DoY. This is an important result as it implies that temperature

from a ground station (as in scenario C2) may not be needed, without sacrificing
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Table 2.5: Summary of root mean square error RMSE for the predicted number of

stems in each crop stage when using a single SAR image.

Stage A1 A2 A3 B1 B2 C1 C2 C3

Emergence 4.16 3.23 2.72 5.36 4.42 3.69 3.25 3.13

Aperture 3.18 1.67 1.54 5.26 4.61 2.87 1.96 1.66

Ramification 2.2 1.34 1.34 4.78 4.09 1.87 1.36 1.35

Flowering 2.91 1.74 1.61 4.43 3.92 2.71 2.08 1.85

Maturation 6.48 4.34 3.48 11.39 9.88 6.08 4.63 4.36

Overall 4.07 2.72 2.3 6.77 5.84 3.73 2.9 2.72

substantially the model performance.

Figure 2.10 summarises the model performance for the scenario C3. For this

same scenario, Figure 2.11 shows the test and predicted data-points as a function

of the days after the season started (using the cultivation days associated with the

test data-points as x-axis). It can be seen that in general the predicted values

(in red) follow the timing and the expected number of stems of the testing data-

points (in blue). It is also possible to see however, that they are not exactly the

same, indicating that although the model is accurately making predictions, it does

not over fit to produce identical values as the testing points and does not predict

extreme values that may correspond to outliers.

2.3.2 Multi-Temporal SAR Results

In order to quantify the performance of all the scenarios considered when using

multiple Sentinel-1 images, we tested increasing the number of images to create the

training time series, e.g., from only using the latest SAR image to using the 5 lat-

est available images. In this case, the dataset D = ([Xt, Xt−1, Xt−2, Xt−3, Xt−4], yt)

where t represents the index of the date when the ground truth was collected or

in a prediction setting, when the prediction is desired. Figure 2.12 show the cor-

responding overall, R2 scores and RMSE for each scenario of Table 2.2 when using

from one to five Sentinel-1 images to estimate the number of asparagus stems in
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Figure 2.10: Observed vs Predicted number of asparagus stems per stage, with the

corresponding overall coefficient of determination and root mean squared error, using

features of scenario C3 to train the model .

each phenological stage. Please note that since the scenarios of the category A do

not use Sentinel-1 data, we only consider the categories B and C for this part of

the analysis.

In this case, the scenarios that use the VH, VV and ratio as features (B1 and

B2), increase their performance when more images are used, with the scenario B2

achieving an R2 of 0.66. This is not surprising since by using the sequence of the

backscatter evolution provides additional information for the algorithm to disen-

tangle similar backscatter present at different time of the season. An additional

significant result obtained here is that no substantial improvement is achieved when

more than 4 images are used.

However, all the other scenarios considered in this chapter do not increase the

performance when increasing the number of images used as it would be expected,

but rather maintain the same accuracy achieved when using a single SAR image,

temperature and the start of the season information as input features. This may be

due to the fact that the information provided by DaS, DoY and GDD is sufficient for

helping to disentangle the backscatter of a single image and thus no further images

are required for this purpose.
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Figure 2.11: Predicted (red) vs test (blue) number of asparagus stems per stage,

using the cultivation days associated with the testing data-points as x-axis.

2.3.3 Growth Stage Estimation Maps

Figure 2.13 shows for all the parcels in the test site, the estimation of asparagus

stems present in each phenological stage, obtained using the trained multi-task ran-

dom forest of the scenario C3, for the Sentinel-1 image acquired the 2018/10/12.

This is the same acquisition date as in Figure 2.2 and the intermediate subplot of

Figure 2.14, which in turn shows an RGB composite of the same information us-

ing the predicted asparagus stems in emergence in the blue channel, the predicted

asparagus stems in maturation in the green channel and the sum of the predicted

asparagus stems in ramification, aperture and flowering in the red channel ( given

their short duration).

Figure 2.14 shows additionally the RGB composites of 4 other Sentinel-1 acquisi-

tions in order to visualise the change in time of the predicted crop stages due to crop

development. This composite reveals the crop stage of each parcel in an intuitive

and fast way while the number of asparagus stems predictions map of Figure 2.13

shows more detailed information for every individual crop stage.
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(a) Coefficient of determination ((R2))

(b) Root mean square error (RMSE)

Figure 2.12: Multi-task regression performance metrics as a function of the number

of images used to train the model for each of the scenarios of Table 2.2.

2.4 Discussion

We have provided the analysis of the SAR backscatter response to asparagus growth

development and canopy formation as shown in Figure 2.4. Similarly, Figure 2.7

presents the seasonality effect both in the sensor response and the ground truth due

to consecutive production cycles that grow under different meteorological conditions.

Figure 2.8 shows how the VH polarisation is used for crop monitoring in order

to visualise the canopy growth rate, revealing that it is faster in summer than in
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Figure 2.13: Number of asparagus stems estimated for each of the crop stages for

the 2018/10/12 Sentinel-1 image (Same as Figure 2.2 and intermediate plot of Fig-

ure 2.14).

winter, but with less canopy volume (biomass). It also shows that although the

production cycles in winter are longer, those cycles accumulate less temperature

measured in GDD compared to the summer campaigns. Based on this informa-

tion, the season length varies depending on the cycle starting month as shown in

Figure 2.9. The backscatter response is sensitive to all these events as shown in

Section 2.2.6.2.

With respect to the algorithm to retrieve the crop stage algorithm, several scenar-

ios were considered in the analysis to understand the relevance of each data source

and input feature and to determine the best way to combine the available informa-

tion. The scenarios of category A, which do not include remote sensing data, show

that using accumulated growing degree days improves the predicting capabilities of

an algorithm given that temperature is an important factor driving the crop evolu-

tion. In fact, the scenario A3 provides the highest R2-scores as well as the lowest

RMSE’s of the scenarios tested (0.89 and 2.3 respectively). This is aligned with the

well known techniques to estimate the timing of phenological events using thermal

calendars (Ahmad et al., 2017). However, this estimation may be accurate only if
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Figure 2.14: RGB composites of the estimated crop stage. Red: (Ramifica-

tion+Aperture+flowering), Green: Maturation, Blue: Emergence.

no external anomalous conditions affect the crop, such as extreme weather events,

diseases or changes in the management practices. Similarly, it does not provide pixel-

wise spatial information of crop status as remote sensing can, but a single prediction

for the entire field. In consequence, although this information may be valuable for

planning, it is not sufficient for operational crop monitoring. With regards to the

scenarios of category B (SAR only), although by using multiple images as input for

a model the predictive capabilities improve significantly, it achieves poorer results

than the categories A and C. The scenarios in category C which use all available

input sources, achieve similar accuracy retrieving the number of asparagus stems

in each phenological stage than the scenarios of category A (Tables 2.4 and 2.5).

Note that in addition, these scenarios provide pixel-wise spatial resolution and the

ability to determine growth anomalies. Focusing particularly in scenarios C2 and

C3, while C3 performs better than C2 confirming the value of using temperature

measurements, the difference in their performance is not significant. Considering

that scenario C2 does not use temperature, it would reduce the hardware and soft-

ware that the monitoring system requires, at the expense of some retrieval accuracy

being lost.

Note that although results when using the K-nearest neighbour (KNN) algorithm

and Support Vector Machines (SMV) were not reported, preliminary tests suggests

that there is not a significant difference in accuracy when compared to the Random

Forest used in this chapter. In this sense, pixel-based algorithms are not expected to

improve significantly the R2 scores or reduce the RMSE. On the other hand, the use

of a deep learning approach (i.e. semantic segmentation), which includes contextual

information may improve performance. This will be further studied in future work.
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With regards to the current literature available, although previous studies have

considered the possibility of identifying asparagus from other crops using radar re-

mote sensing data (Arias et al., 2020; Bargiel et al., 2010; Sabour et al., 2008;

Tavakkoli & Lohmann, 2006), they did not focus on analysing the backscatter re-

sponse relative the crop evolution due to the transition between phenological stages

as was presented in Sections 2.2.6.1 and 2.2.6.2. Similarly, no previous study eval-

uated the possibility to retrieve the crop stage. In this context, the present study

contributes to the literature with a more detailed analysis of asparagus providing an

interpretation of backscatter evolution that may offer tools for better crop classifi-

cation (since so far low accuracy have been reported (Arias et al., 2020; Tavakkoli &

Lohmann, 2006)), through a better understanding of the temporal crop signature.

The VV backscatter throughout the agricultural season does not have significant

changes relative to the VH polarisation channel. This has been previously reported

in (Arias et al., 2020) and it differs from what was presented in (Bargiel et al.,

2010) using TerraSAR-X. This suggest that X-band is able to capture events in

the crop development not visible in C-band as happens for instance in rice fields

(Lopez-Sanchez et al., 2014).

It is important to highlight that the current methodology is limited in part

by the availability of the season starting date information as input, being used

for calculating the GDD as well as input for the multitemporal regressor (DaS).

A potential solution to this is the estimation of starting dates from remote sensing

as it has been previously investigated with satisfactory results in (Boschetti et al.,

2009; De Bernardis et al., 2014a; Mascolo et al., 2019; Ozer, 2003; Phan et al.,

2018b; Tan et al., 2008). A further limitation in the current analysis is the lower

accuracy of retrieving the number of asparagus stems in flowering, with respect

to other stages such as emergence and maturation (Tables 2.4 and 2.5), which as

mentioned in Section 2.3.1 might be caused by the unclear ground truth samples

used to train the model. Statistical tests to better understand the characteristics of

the training data and variations between measurements in each stage may be used

to make decisions about better strategies to use the same data.

In order to scale up and transfer the methodology of this chapter to regional or

national scale asparagus monitoring, it is necessary to understand if the asparagus
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crop signature is maintained in other farms and regions or the country. Having the

same crop signature would mean that the ground truth already collected is applicable

to other locations and therefore the model trained can be used too. However, in

case this signature is different, it is recommended to expand the current dataset

by adding ground truth phenology samples of different test sites. Two additional

factors that may impact on the use of the current model for asparagus phenology

monitoring are the incidence angle that the satellites uses to observe the crop in

different locations and crop orientation respect to the sensor line of sight. In this

context, it is ideal and recommended as future work, to either normalise the SAR

incidence angle for training and use of the normalised imagery to train the machine

learning algorithms. A different approach could be to use a sensor fusion method

in which each of the acquisition geometries (i.e. orbits) is considered as a different

sensor.

Crucially, deploying a machine learning model for operational monitoring such

as the multiple-output random forest used here, is not computationally expensive.

This is because once the model has been trained, it can be loaded and used for

phenology predictions almost instantly.

Based on all the limitations identified, future research will focus on the automatic

detection of starting date from SAR and the use of quad-polarimetric data to better

understand the scattering mechanisms throughout the season. Additionally, the use

of better ways to deal with the sequential nature of data generated from agricultural

fields and multitemporal remote sensing data will be considered including dynamical

modelling (McNairn et al., 2018; Vicente-Guijalba et al., 2015) and more advanced

machine learning models . A better way to deal with the inclusion of different SAR

observation geometries should also be investigated.

2.5 Conclusions

In this chapter, an interpretation of the SAR backscatter response to asparagus crop

growth was provided with an analysis of the impact that temperature has on the

canopy volume, its development rate, and the cultivation length. It was shown that

the VH backscatter is sensitive to all these effects. Then, a multi-output machine

Chapter 2 Cristian J. Silva-Perez 105



Crop development monitoring from SAR imagery

learning regression algorithm was trained to retrieve the number of asparagus stems

present in each of five possible phenological stages. Several operational scenarios

were tested finding that the temperature and DoY when the season starts, provide

the best predictive performance of crop phenology at a parcel level with an overall

R2 of 0.89 and RMSE of 2.3. This is provided that no anomalies occur in the fields

and no pixel-wise phenology estimation is required. This agrees with methods that

employ well-known thermal calendars to estimate crop phenology (Ahmad et al.,

2017). Using SAR remote sensing for near-real time, pixel-wise monitoring which

include the VH, VV, VH/VV, and information about season start date (scenario

C2), the model is able to retrieve the number of asparagus stems with an overall

R2 of 0.84 and RMSE of 2.9. Adding the accumulated temperature (AGDD) as in

the scenario C3, improved slightly the accuracy resulting in overall R2 of 0.86 and

RMSE of 2.7. However, given that this increase is not substantial, the scenario C2

might be preferred since the temperature feature is not required and therefore this

additional data source could be removed without losing significant model perfor-

mance. Additionally, as shown in Figure 2.12, for the conditions evaluated in this

paper, the use of multitemporal SAR data is not critical when using information

about the season start date and temperature as crop stage predictors to complement

the backscatter, since these features provide similar information for the algorithm

to disentangle events in the temporal dimension
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Learning-based tracking of below

ground asparagus carbohydrates

and key dates estimation from

fusion of freely available

spaceborne SAR and optical data

3.1 Abstract

The yield of asparagus crops is highly associated with the amount of carbohydrates

stored below ground in the plant’s root system. This amount defines the crop ca-

pacity to grow asparagus spears during harvest and to establish a healthy canopy

when the harvest ends (Wilson et al., 2001; Wilson et al., 2005). However, current

methods for measuring carbohydrates in the fields require expensive and destructive

sampling. In this paper, we propose a novel dynamic filtering framework which uses

Gaussian Process based dynamic and observation models, an Unscented Kalman fil-

ter (GP-UKF) and fusion of freely available multitemporal Sentinel-1 and Sentinel-2

data to track the below ground carbohydrates, the season crop age and to forecast

crop key dates. The proposed method complements state of the art filtering frame-

works given its ability to learn the models and uncertainties from data and to exploit

the temporal dimension of the remote sensing observations. This enables the method
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proposed here to be transferable to other crop biophysical variables, crop types and

locations. We validated the proposed filtering framework with ground truth data and

found that the method can successfully track below ground carbohydrates, retrieve

season crop age and forecast harvest. It was also found that the use of more than

one Sentinel-1 acquisition geometries combined with Sentinel-2 data when available,

provided the best tracking performances and a reliable system for handling missing

data from an individual sensor. Under this configuration, the method achieves a

Mean Absolute Error (MAE) of 1.802 brix degrees (i.e. a surrogate for carbohy-

drates). Similarly, it is able to retrieve crop age and forecast the date when a parcel

will be fit for harvest, with MAE of 6 days. Tracking the below ground carbohy-

drates as proposed here, the method provides farmers the possibility to drastically

reduce the amount of destructive sampling required in this high valued crop.

3.2 Introduction

In line with population growth, demand for agricultural commodities is also in-

creasing. Technological tools to ensure sustainable management practices are key to

reduce the negative impact on people and the environment (Shukla et al., 2019b).

Thanks to its large area coverage and the growing availability of free data, satellite

remote sensing has been increasingly used in recent decades for agricultural informa-

tion extraction. These insights are then used to inform decision making by different

stakeholders in the agricultural supply chain (C.-a. Liu et al., 2019; Steele-Dunne

et al., 2017a; Weiss et al., 2020b). Agricultural fields monitoring with satellite-based

Synthetic Aperture Radar (SAR) has gained substantial importance in recent years

(C.-a. Liu et al., 2019). This is due to the ability of these sensors to acquire im-

ages under moderately adverse weather conditions, including the presence of clouds

and irrespective of day light. Consequently, we can achieve a systematic acquisition

system able to avoid data gaps and create consistent time series.

For the case of monitoring crop development with SAR, several methodologies

have been reported in the literature. These include methods in which the SAR

response to a given crop stage is manually analysed and insights are extracted based

on expert knowledge (Lopez-Sanchez, Ballester-Berman, and Hajnsek, 2011; Phan
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et al., 2018a). More recent methods use machine learning algorithms trained on

ground truth and SAR data to create a mapping function between the SAR images

and the crop stages (Küçük et al., 2016; H. Wang, Magagi, Goıta, et al., 2019).

Wishart distance-based crop stage classifiers (Mascolo et al., 2016) have also been

proposed with the aim of exploiting the Quad-Polarimetric SAR information of a

resolution cell when available. However, these methods cannot be easily combined

with other sensor technologies such as multispectral satellites and lack the ability

to properly exploit the data’s temporal dimension. Similarly, these methods lack

the ability to model the crop dynamics to be able to hind-cast and forecast crop

development.

To overcome these limitations, other studies proposed to retrieve crop biophysical

variables as a problem of tracking the state of a dynamic system and used well estab-

lished tracking algorithms such as Kalman filters and particle filters. An example of

this method is presented by De Bernardis et al. (2016b) who perform sensor fusion

by using TerraSAR-X backscatter in combination with Landsat-derived GNDVI to

estimate rice phenology. The authors report successfully tracking phenology, how-

ever, the dynamic and observation models used within the filtering strategy are

parametric models based on double logistic functions, which despite offering results

for rice fields in a specific location, are not likely to be transferable to other bio-

physical variables, crop types or locations. Vicente-Guijalba et al. (2015) adopted

another tracking application which avoids this issue by deriving the crop dynamic

model from historical data. However, the authors in this case, do not provide a way

to fuse multiple sensors, but only limit the application to the RADARSAT-2 satel-

lite. Similarly, no forecast of key dates is attempted. De Bernardis et al. (2014b)

presented a particle filter-based rice phenology tracking approach, which uses the

same method to derive the required dynamic model from historical data, with the

additional capabilities to forecast key dates. However, in this method they do not

propose a straightforward way to utilise other sensors and the forecasting process

may be computationally expensive.

McNairn et al. (2018) utilise a particle filter to track canola phenology. The

algorithm fuses data from the RADARSAT-2 and TerraSAR-X satellites and tem-

perature. In this case the attention is focused on the potential of the model of
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predicting flowering, since it is a key point in this crop type to guarantee certain

conditions of humidity and trigger other management practices. In this application

however, the dynamic model is not derived from data, but it is assumed that the

phenology can be estimated from the accumulated temperature in the year or in the

agricultural season, measured in growing degree days (GDD) (McMaster and Wil-

helm, 1997b). Under this assumption for the dynamic model, the framework works

exclusively for phenology, but is not possible to use it for other crop biophysical

variables. In this application, temperature is the most critical measured variable,

more than the remote sensing observations to such an extent that if temperature is

not measured, the algorithm cannot work. In addition, the authors do not present a

way to forecast crop phenology as part of the tracking methodology, partly because

the dynamic model which allows this capability is based on temperature rather than

based on remote sensing observations. This is a well-known procedure in agricul-

ture, using the so-called thermal calendars, however, here the capabilities of remote

sensing are not exploited.

All the previously described methods for tracking the state of crop variables, use

only one image to extract information about the crop development. Specifically,

the vector of observations considers only features extracted from the latest image.

While this might be enough when using quad-PolSAR data, which provides a richer

set of information to characterise a target on the ground, it can be more challenging

when utilising dual-polarimetric datasets. Additionally, given the strength of the

SAR technology to systematically acquire images avoiding data gaps, the temporal

dimension may offer additional advantages.

In this chapter, we propose a Gaussian Process-based, Unscented Kalman Fil-

tering Framework (GP-UKF) that uses freely available multitemporal Sentinel-1

data and learns the non-linear and not parametric dynamic and observations mod-

els of the filter using Gaussian Processes (GPs) (Rasmussen, 2003). Learning these

models and their predictive uncertainties allows the GP-UKF to be transferable

to other crop variables, locations, and crop types. The framework also performs

active-passive satellite sensor fusion, incorporating multitemporal Sentinel-2 data

when available. The GP-based dynamic model is utilised to fill gaps due to miss-

ing remote sensing observations and to forecast the crop development. We present
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an application for tracking below ground asparagus plants carbohydrates (highly

related to the crop yield) and the seasonal crop age (also known as the Days Af-

ter Season start – DaS). In addition, the forecasting capabilities of the GP-UKF

framework are tested to determine when a field will be ready for harvest.

The remainder of the paper is organised as follows: Section 3.3 presents a brief

introduction to the theoretical background required by the GP-UKF. Section 3.4

introduces the test site and ground and remote sensing datasets used in this study.

Section 3.5 presents the results obtained tracking below ground asparagus plants

carbohydrate and seasonal crop age and the results of forecasting when a field will

be ready for harvest. The strengths and limitations of the current study are discussed

in section 3.6 and the conclusions are presented in section 3.7.

3.3 Methodology

Crop development monitoring can be seen as a particular case of monitoring a dy-

namical system, in which the crop development is considered a time varying pro-

cess observed through noisy and/or missing remote sensing observations (Vicente-

Guijalba et al., 2015; Vicente-Guijalba, 2016). A set of D biophysical variables such

as phenology, leaf area index (LAI), biomass (among others) is assumed to describe

the crop condition at a given point in time. Specifically, the crop state can be de-

scribed by knowing the state of these variables, which are in turn known as the state

variables. Typically, and throughout this paper, the state variables are represented

by the D-dimensional random vector xk where k refers to the time step in which the

system is.

This approach enables the use of widely known tools for dynamical systems state

estimation by means of the well-known Bayesian filtering algorithms (Särkkä, 2013).

The Kalman filter (Kalman, 1960) is the most used in practice, for example for sys-

tems with linear evolution in time and process states that are Gaussian distributed.

For the concrete purpose of this paper, a filtering algorithm aims at tracking the

crop state variables by fusing observations from freely available active-passive mul-

titemporal satellite data sources and data-driven models of the crop state variable

dynamics. As shown in figure 3.1, the filter does this by updating or modifying
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Figure 3.1: Schematic of a dynamic filtering algorithm to track the state vari-

ables. The filter (UKF) updates the dynamic model predictions based on deviations

between observations and predicted observations. Dashed lines are optional paths

executed only when a new vector of remote sensing observations yk arrives (new

image).

the predicted distribution from the dynamic models P (xk|xk−1), by a factor derived

from the deviations between the vector of remote sensing observations received at

time step k (yk) and these same observations predicted given the dynamic model

predictions P (ŷk|x̂k).

The filter output P (xk|y1:k) is the state at time step k given all observations

available up to time k. This is achieved by assuming that the Markovian property

for estate estimation applies (Särkkä, 2013), or in other words, assuming that a

future state only is dependent on the present state. Note however, that this is

different from exploiting multitemporal data as will be shown in section 3.3.3.2.

The difference between x̂k and xk is that x̂k represents predictions from the dynamic

model and xk is the filter output, this is, the predictions after being updated by the

filter. The same rationale applies for the vector of remote sensing observations yk

and the predictions of remote sensing observations ŷk from the observation model.

After a filter output, the previous state is updated to the current state (xk−1 = xk),

providing the filter with the ability to perform recursive state estimation. In figure

3.1, the dashed lines indicate that these paths are optional and are executed only

when the vector of remote sensing observations yk is available, this is, when a new

image arrives. In this sense, if no remote sensing observations are available, the

filter output corresponds directly to the dynamic model predictions. This enables

estimation of the crop state variables between remote sensing images (nowcasting
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and/or gap filling) and through recursive estimation, forecasting of the crop state

variables.

Apart from the filter itself, two key components of the filtering algorithms are the

dynamic and the observation models (Särkkä, 2013). The state variables evolution

over time is modelled with a probabilistic dynamic model, represented by:

xk = f(xk−1) + qk (3.1)

In equation 3.1 the system state at a given date k can be estimated as a function

of the previous state xk−1 using the non-linear function f(.) and considering the

additive Gaussian process noise qk ∼ N (0, Qk) accounting for the uncertainty when

modelling the system dynamics with the process noise covariance matrix Qk. The

non-linear function f(.) describes the laws that govern the dynamic system evolution,

which is a function deriving future states following from the current states. Also

note that the dynamic model of equation 3.1 results in the conditional probability

distribution P (xk|xk−1).

The observation model is in charge of modelling a sensor response to a given

crop state and is represented by the E-dimensional vector of sensor observations

yk. The E dimensions in this case correspond to the number of features used to

observe the crop state with sensors, which corresponds in this paper to backscatter

indices derived from Sentinel-1 data and/or the vegetation indices from Sentinel-2

data. The sensor response yk can be predicted as a function of the system state xk

by means of the probabilistic observation model:

yk = gith(xk) + rk (3.2)

Where gith(.) is a non-linear function mapping from system state to remote sens-

ing observations measured by the sensor ith, and rk ∼ N (0, Rk) is the additive

Gaussian measurement noise accounting for the uncertainty around the predicted

observations. Note that the probabilistic observation model of equation 3.2 results

in the conditional probability distribution P (yk|xk) describing the likelihood of get-

ting the observations yk given the state xk. The under-script ith stresses the fact

that there should be as many non-linear functions gith(.) as sensors observing the

crop development. This is to ensure the correct fusion of sensors.
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3.3.1 Learning dynamic and observations models

Typically, the dynamic and observations models are represented by parametric mod-

els (i.e. equations) derived from having in depth knowledge of the forces driving the

evolution of system states and the response of each of the satellite sensor to the

system states (Särkkä, 2013). For crop monitoring, this is associated to knowledge

regarding the dynamics of each state variable, for each individual crop type and

under the specific conditions of each location. It requires identifying the adequate

number of factors impacting the evolution of state variables over time and the com-

plex relationship between them. Unfortunately, even if this process can be done for

a test site, it is difficult and/or expensive to scale everywhere this may be needed.

Given the large variety of variables (e.g. crop type, location, wavelength in the case

of SAR measurements), models are very specific and not transferable to other crop

types or locations.

Instead of using parametric models that may experience the above-mentioned

issues, a Gaussian process regression (GPR) has been proposed in engineering ap-

plications with the so-called Gaussian process state space (GPSS) models to learn

the transition and observation models from data (Deisenroth et al., 2013; Ko and

Fox, 2009). A key advantage of using statistical modelling tools such as the GPR to

learn these models, beside their non-parametric form and flexibility, is that they pro-

vide uncertainty with each predicted estimation. This is a vital requirement of the

Bayesian filtering algorithms. In fact, it provides a state-dependant uncertainty, for

instance with increased uncertainty in those regions where the variability increases

or in those regions where insufficient data is used to train the models.

3.3.2 Gaussian process regression (GPR)

Given the importance of the GPR to learn dynamic and observations models, this

section presents a basic introduction to its foundations. For an in-depth study of

GPRs, the reader is referred to Rasmussen (2003). Note that in the literature, the X

and y variables are normally used to denote, respectively, the inputs and outputs of

a Gaussian Process regression. In this paper, however, since these variables are used

for the system states and vector of observations, the training inputs for the GPR are
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represented by the matrix χχχ while the outputs are represented by the vector ψ. In

this context, given a set of inputs χχχ = [d1, d2, . . . , dn]T where di is a D-dimensional

input vector example and a set of outputs ψ = [ψ1, ψ2, . . . , ψn]T with ψi being the

corresponding scalar output, a GPR considers the following non-parametric model

for regression:

ψi = h(di) + ε (3.3)

where h represents the unknown mapping function between di and ψi and ε ∼

N (0, σ2
n) corresponds to the additive noise model with variance σ2

n assumed to be

corrupting the observed values. Rather than using a parametric model and esti-

mating its parameters from the data in order to obtain a regression function, h(.)

is assumed to be a Gaussian process (i.e. a Gaussian distribution over functions)

(Rasmussen, 2003). A Gaussian process (GP) is fully specified by a mean function

m(.) and a positive semidefinite covariance function K(.) (also known as the kernel).

The covariance function determines the key characteristics that the mean function

takes, such as smoothness, periodicity, etc, and is chosen depending on the modelling

problem at hand (Rasmussen, 2003). In this paper, we consider the exponentiated

quadratic kernel k(di, dj):

k(di, dj) = σ2
fexp(−

1

2
(di − dj)

TΛ2(di − dj)) (3.4)

where Λ is a diagonal matrix of the length-scales hyperparameters, and σ2
f is the

variance of the function h defined in equation 3.3. At a test point(s) d∗ evaluated

with the model h(.), the GP estimates an output ψ∗ with mean and variance using

the predictive equations 3.5 and 3.6 respectively, shown below. These equations are

derived from the conditional distribution of the test points d∗, given the observed

values χχχ and ψ. The reader is directed to (Rasmussen, 2003) for the complete

derivation:

mh(d∗) = GPµ = kT∗ (K + σ2
nI)−1ψ = kT∗ βββ (3.5)

σ2
h(ψ∗) = GPvar = k∗∗ − kT∗ (K + σ2

nI)−1k∗ (3.6)

In equations 3.5 and 3.6, the term k∗ = k(χχχ, d∗) is a vector defined by kernel values

between the inputs χχχ and test point(s) d∗, K = k(di; dj) is the n × n kernel matrix

of the training input values, and k∗∗ := k(d∗; d∗) is the kernel function evaluated

at the test points d∗. In equation 3.5, βββ is often used in the literature to shorten
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the equation, with βββ := (K + σ2
nI)−1ψ. The length scale hyperparameters Λ and

the variance σ2
n in the kernel function are learned by maximizing the log marginal

likelihood of the training outputs given the inputs (Rasmussen, 2003).

3.3.3 Training dynamic and observation models

This section explains how the crop dynamic model and the crop observation models

can be learned with Gaussian process regressions. GPRs are particularly suited for

this task since not only they provide model predictions but also the uncertainty

associated with the predictions. This is in turn a key requirement in Bayesian

filtering algorithms as will be introduced in section 3.3.4.

3.3.3.1 Training the dynamic model

Within a filtering framework, the purpose of the dynamic model is to advance the

state of the system one step at a time. This can also be seen as a one step-ahead state

forecast given the current state. The dynamic model must predict the conditional

distribution P (xk|xk−1) corresponding to the prediction of the current state given

the previous state, because at all times the state is represented by a probability

distribution. In this paper we use Gaussian processes to obtain the prediction of

this probability distribution. The output of the GPR is a Gaussian distribution

thus, P (xk|xk−1) ∼ N (xk|µk,Σk). Training of the dynamic model is achieved in two

steps: First we obtain the typical state variables behaviour over time and secondly,

we learn to predict a state distribution at time step k given the state distribution

at step k − 1.

In order to estimate a typical state variable behaviour over time, we collect a

training set of ground truth samples from several agricultural seasons, either several

parcels or more than one season of the same parcel (i.e. for perennial crops). Then

we fit a non-linear, non-parametric GPR using this set as output and using the crop

age or Days after the season started (DaS) as input. This also allows us to gain

insight about the process that we are monitoring as will be presented in section

3.5.2.1. Once the typical evolution is obtained, the key role of the dynamic model

is to predict a state distribution at step k given the state distribution at time step

k − 1. In this paper, we propose to do this by training a second GPR model that
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learns to predict the expected change to the current state in order to advance to

a subsequent state following the typical dynamics previously obtained. To train

this model a dataset of the form Ddyn = [xk−1, (xk − xk−1)] is required, where the

input xk−1 corresponds to the expected value of the crop state variables at time

step k− 1, and the output expression (xk −xk−1) is the expected change to advance

to a subsequent state. The conditional probability distribution P (xk|xk−1) can be

obtained as:

P (xk|xk−1) ∼ N (µk, Σk)

µk = µk−1 + ∆µ

µk = µk−1 +GPµ([µk−1], Ddyn)

Σk = GPvar([µk−1], Ddyn)

(3.7)

where GPµ and GPvar corresponds to the prediction obtained from a Gaussian pro-

cess model using the dataset Ddyn and the equations 3.5 and 3.6. Note that using

this procedure results in a ”one-step ahead” prediction. However, by recursively

using equation 3.7, multiple steps ahead predictions can be obtained. This is a key

property since it allows us to predict values of the state variables when no remote

sensing observations are available (i.e., in a daily basis), allows us to fill gaps for

instance for Sentinel-2 and/or to forecast the expected evolution of the state vari-

ables given the current states. An additional key property at this point is the ability

to propagate uncertainty. This enables the model to convey the uncertainty asso-

ciated with a prediction. For instance, increased uncertainty should be seen when

interpolating between images or when performing multiple steps ahead forecasting

(given the lack of remote sensing observations). This is done by considering the

whole input distribution P (xk−1/y1:k−1) as input for the dynamic model as opposed

to only its mean (muk−1). Note that the notation 1 : k − 1 indicates indexes from

1 to k − 1.

This property of the GPs with respect to uncertainty propagation has been

studied in the literature (J. E. Johnson et al., 2019; McHutchon and Rasmussen,

2011). In this paper, the unscented transform (Julier and Uhlmann, 1997) is used

to characterise the distribution P (xk−1|y1 : k − 1) using the so-called sigma points,

and these points are propagated through the dynamic model. Then a weighted

combination of the outputs obtained for each sigma point is performed to obtain
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the propagation of the whole distribution through the dynamic model. A more

detailed explanation of this is presented in section 3.3.4.

3.3.3.2 Training the observation models

As mentioned previously in this section, the observation model oversees modelling

a sensor response to a given crop state (represented by the state variables). A GPR

is trained to predict the conditional probability P (yk|xk) ∼ N (yk/µk,Σk) of the

remote sensing observations given the crop state at time step k. The remote sensing

observations predicted by this model are the same remote sensing observations used

to monitor the crop. In previous works, authors have reported the use of several

features derived from backscatter and PolSAR decompositions of a single image (16

features in De Bernardis et al., 2014b and 12 features in McNairn et al., 2018 or

more generally, p PolSAR features). In this paper, we propose to use the temporal

dimension of the observations to compensate for the lack of Quad-PolSAR data. This

way a vector of remote sensing observations contains a sequence of the last N past

available images instead of the p PolSAR features of a single image. Considering

a sequence of observations is in fact desired since it provides information of not

only the crop state in a single date but in the period covered. In this sense, the

observation model predicts the sequence of the past N observations available in a

pre-defined period (e.g., the previous N -VH backscatter or N -GNDVI measurements

available in the past 100 days) given the current crop state. It is important for the

observation models to be able to predict the observations and their uncertainty for

any arbitrary day in the past (within the pre-defined period). This way we do

not constrain the model to predict exclusively every 6 or 12 days for the case of

Sentinel-1 or 5 days for Sentinel-2. This is beneficial for optical Sentinel-2 data,

where there may be gaps in the observations acquired in cloudy days resulting in

irregular number of days between observations. To train this model a dataset of

the form Dobs = [(xTk , DaSk−j), yk−j] is required, where xTk in the input expression

(xTk , DaSk−j), corresponds to the expected value of the crop state variables at time

step k, DaSk−j is the number of days in the past when we wish to predict an

observation, and the output yk−j are the predicted remote sensing observations

acquired k−j days before. Note that the model is used N times to form the sequence
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of the past N observations, for j that goes from zero to the N past observations.

In this case, zero corresponds to the observation at time k and N the oldest of

the N observations in the sequence. The output of an observation model is then:

P (xk|xk−1) can be obtained as:

P (yk|xk) ∼ N (µk−j, Σk−j)

for j = 0, ..., N :

µk−j = GPµ[(xTk , DaSk−j)]

Σk−j = GPvar[(x
T
k , DaSk−j)]

(3.8)

Sensor fusion is achieved by training separate models for each sensor and observable

used (e.g., one for Sentinel-1 VH and another for Sentinel-2 GNDVI), and selecting

the model to use for predicting the sequence of past N observations, to be the same

as the sensor providing the new observation that arrives at time k. This will be

further detailed in section 3.5.3.2.

3.3.4 Unscented Kalman filter (UKF) with Gaussian pro-

cess dynamic and observation models

In this paper, the UKF is used in order to perform the near-real time dynamic filter-

ing. This section presents a brief introduction to the UKF and how it is combined

with GP derived predictions of dynamic and observation models. The UKF is an

extension to the Kalman filter to applications where the dynamic and observation

models are non-linear. This is the case in this paper since these models are learned

with the non-linear and non-parametric GPRs.

The UKF first finds an approximation to a Gaussian function for the non-

Gaussian distributions resulting from propagating the states xk−1 and xk through

the non-linear models of equations 3.1 and 3.2 respectively. Then, the analytical

solution of the Bayesian filtering equations (Särkkä, 2013) for the case of linear

and Gaussian systems, i.e., the Kalman filter equations, can be applied to compute

the approximated system state. In the UKF the approximation to Gaussian dis-

tributions is made with the aid of the unscented transform (UT), hence the name

unscented Kalman filter. The UT selects, in a deterministic rather than random

manner, a set of points (known as sigma points) in the input distribution (xk−1 of
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equation 3.1 or xk in equation 3.2) in order to characterise it (Särkkä, 2013). These

points are then propagated through the non-linear models, i.e., a prediction is made

for each sigma point using a GP-based model, and a weighted mean and covariance

of the output or target distribution is computed from them.

Algorithm 1 below combines the original UKF (Julier and Uhlmann, 1997) with

the Gaussian processes based dynamic and observation models as presented in sec-

tion 3.3.1 and adapted from Ko and Fox (2009) and Särkkä (2013):

Algorithm 1: GP-UKF algorithm

1 Algorithm GP-UKF(µk−1,Σk−1, yk) :

2 χk−1 = (µk−1 µk−1 + γ
√

Σk−1 µk−1 − γ
√

Σk−1)

3 for i = 0,...,2n: χ
[i]
k = χ

[i]
k−1 +GPµ([χ

[i]
k−1], Ddyn) (see equation 3.7)

4 Qk = GPvar([µk−1, Ddyn])

5 µ̂k =
∑2n

i=0W
[i]
m χ

[i]
k

6 Σ̂k=
∑2n

i=0W
[i]
c (χ

[i]
k − µ̂k)(χ

[i]
k − µ̂k)T +Qk

7 χk = (µ̂k µ̂k + γ
√

Σ̂k µ̂k − γ
√

Σ̂k)

8 for i = 0,...,2n: Ŷ
[i]
k = GPµ([χ

[i]
k ], Dobs) (see equation 3.8)

9 Rk = GPvar([µ̂k, Dobs])

10 ŷk=
∑2n

i=0W
[i]
m Ŷ

[i]
k

11 Sk =
∑2n

i=0W
[i]
c (Ŷ

[i]
k − ŷk)(Ŷ

[i]
k − ŷk)T +Rk

12 Σ̂x,y
k =

∑2n
i=0W

[i]
c (χ

[i]
k − µ̂k)(Ŷ

[i]
k − ŷk)T

13 Kk = Σ̂x,y
k S−1

k

14 µk = µ̂k +Kk(yk − ŷk)

15 Σk = Σ̂k −KkSkK
T
k

16 return(µk,Σk)

Bayesian filtering algorithms approach the filtering problem in two stages: pre-

diction and update steps (Särkkä, 2013). The algorithm 1 begins the prediction in

step 2 with the unscented transform, generating a set of (2n + 1) so-called sigma

points to characterise the normally distributed previous state xk−1 ∼ N (mk−1, Pk−1).

In this step, the parameter λ is associated with the spread of the sigma points around

the distribution mean (Särkkä, 2013) and D is the number of state dimensions. In

step 3 each of the sigma points are propagated through the GP-based dynamic

model (section 3.3.3.1) while in step 4 the additive process noise is estimated from
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the predicted uncertainty of the GP-based dynamic model. In steps 5 and 6, the pre-

dicted mean mk and the predicted covariance Pk as originally proposed in the UKF

(Julier and Uhlmann, 1997) are estimated. In these steps, Wi(m) and Wi(c) are

constant weights required to perform a weighted combination of the propagated or

predicted sigma points (Särkkä, 2013). The update stage of the GP-UKF algorithm

begins in step 7 by generating again a set of sigma points, now characterising the

predicted state distribution of steps 5 and 6. Then this set is propagated through

the GP-based observation model in step 8 to obtain the expected observations given

the state (see section 3.3.3.2), while the observation noise is also obtained from the

GP-based observation model in step 9. Subsequently, in steps 10 and 11 again a

weighted combination of the propagated sigma points is made to obtain the mean

and covariance of the predicted observations. Step 12 computes the cross-covariance

of the predicted state and predicted observations as proposed in the seminal UKF

algorithm. Step 13 computes the so-called Kalman gain as in the original Kalman

filter algorithm and steps 14 and 15 provide the state mean mk and the covariance

Pk, conditioned on the sensed observations yk

3.4 Test site and Datasets

3.4.1 Test site

Figure 3.2 shows a Sentinel-1 and Sentinel-2 image of the test site acquired on 29-09-

2018. The asparagus fields located in the Peruvian north coast considered a total

of 432 parcels for the analysis. The plants (Asparagus officinalis L.) used in the

crop were grown in a nursery and later transplanted to the fields, which consist of

dry sandy soil with subtropical climatological conditions. The peak of temperature

occurs in February reaching averages of up to 26 degrees Celsius and lowest values in

August with average temperatures of 15 degrees. This synchronises with the highest

and lowest solar radiation levels (Senamhi, 2021).

Given the mild winters, the crop does not naturally reach senescence and is

instead able to grow all year round. Therefore, the test site experiences two agri-

cultural seasons per year. The timing of each of the individual parcels is generally

not synchronized, where different parcels could be in different growth stages.
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Figure 3.2: Test site. (a): Sentinel 2 RGB image acquired the 04/01/2019. (b):

Sentinel-2 GNDVI image. (c): Multitemporal Sentinel-1 RGB composite, Red:

VH on the 17/11/2018, green: VH on the 04/01/2019, blue: ratio between the

04/01/2019 and the 17/11/2018 VH images.
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3.4.2 Asparagus crop growth cycle

Once the transplanted asparagus plants have matured and are in their productive

period, the crop undergoes two main phases during each agricultural development

cycle (season): fern establishment and harvest1. Phenological stages including emer-

gence, aperture, ramification, flowering, maturation and harvest are typical in each

season (Silva-Perez et al., 2020). As a perennial crop, this development cycle is re-

peated twice a year given the sub-tropical conditions of the test site, with a life-span

of up to 25 years. Each above-ground development cycle drives an additional cycle

of consumption and production of soluble carbohydrates (CHO) that are stored in

the plant’s below-ground root system Wilson et al., 2001; Wilson et al., 2005. CHO

consumption is mainly happening during the above-ground spear and fern growth

and during harvest. CHO production occurs once the fern canopy has established

and is produced from photosynthesis in the ferns and translocated to the root sys-

tem below-ground Wilson et al., 2000. When the crop is ready to be harvested,

the canopy ferns are mechanically removed to initiate spear production. At this

point, spears grow with a temperature dependant growth rate from the plant buds,

enabled by the CHO produced and stored during the fern establishment in the pre-

vious season. Once the asparagus spears reach a desired length (between 20 and

25 cm), they are harvested and new spears develop from the root system. Since

each spear that emerges and is harvested consumes stored CHO, the level of CHO

decreases as the harvest progresses. This implies that the higher the level of CHO

stored during the previous season, the higher the crop yield will be. At harvest

completion, spears are left to grow reaching average heights of 1.8 meters, using the

remaining CHO stored in the roots to develop a new canopy. In order to develop

a healthy canopy, a minimum level of CHO is required, and therefore the harvest

needs to be terminated before this minimum is reached. Farmers ensure this by

constantly sampling the CHO levels in plants during harvest. Once the canopy is

fully formed, the production of CHO begins and is stored in the roots to be used

for harvest and to grow a healthy canopy in the subsequent season.

1A dormancy phase is additionally included for crops in temperate climates Wilson et al., 2001
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3.4.3 Datasets

3.4.3.1 Ground truth

Given the key role that CHO plays in the crop yield, periodic samples are taken in the

field to monitor a parcel’s CHO evolution over time. However, the samples collected

do not correspond directly to CHO. Although it exists an analytical method known

as the anthrone method for measuring soluble carbohydrate in mg of CHO per g

of dry weight (Allen et al., 1989), it is too demanding and not-commercially viable

(Wilson et al., 2005). This led to the development of an approximation of root CHO

content derived from the refractive index (Brix%) of asparagus root sap measured

with a refractometer (Wilson et al., 2000; Wilson et al., 2005). According to this

method, the CHO can be estimated by a linear regression model that uses Brix% as

input (Feller & Fink, 2007; Wilson et al., 2000; Wilson et al., 2005). Authors of the

method reported a Pearson correlation coefficient of 0.91 (r=0.91) for correlation

between CHO estimated with the time and labour consuming analytical method

and the model that uses the Brix% as input. This was obtained from an statistical

analysis containing more than 400 samples.

The procedure considered to obtain the Brix% samples is as follows: avoiding

row ends and external rows in the parcel, two random asparagus plants are selected.

For each plant, two parallel vertical cuts of 40 cm deep are excavated and root

pieces of approximately 10cm long are removed. Then, after washing and drying

the root pieces, they are squeezed to obtain the root sap which is subsequently used

to measure refraction with a digital refractometer. The Brix% level is then recorded

from the refractometer scale. The mean Brix% level for the two plants is computed

and used to represent the parcel Brix% level. This process was carried out as a tool

to monitor the crop development in the 432 fields analysed in a period covering from

June of 2018 to December 2020.

3.4.3.2 Sentinel-1 images

The level-1 GRD Sentinel-1 data utilised were downloaded from the Google Earth

Engine platform Gorelick et al., 2017. The VH and VV polarisations are obtained

in the Interferometric Wide swath (IW) acquisition mode. The pre-processing steps
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Table 3.1: Sentinel-1 acquisition geometries available in the test site

Direction Orbit Inc. Angle Acquisition Time Total images

Descending 142 35 10:54 62

Ascending 18 31 23:34 66

Ascending 91 45 23:42 82

applied by GEE include orbit file update, GRD border noise removal, thermal noise

removal, Radiometric calibration and terrain correction Gorelick et al., 2017. Three

acquisition geometries are available in the study site as shown in table 3.1, covering

the period from June 2018 to December 2020.

3.4.3.3 Sentinel-2 images

Orthorectified and radio-corrected Sentinel-2 level 1C data available in the GEE

platform were used. A cloud masking pre-processing step was applied exploiting

the Sentinel-2 QA60 band, masking out opaque clouds and cirrus clouds. A period

covering from June 2018 to December 2020 is selected to generate vegetation indices

time series at 10 metres resolution. This results in a total of 71 images used for the

analysis. However, these images are concentrated in consecutive images for short

periods of time (cloud-free months) and prolonged gaps in cloudy months as will be

mentioned in section 3.5.4.2.

3.4.3.4 Remote sensing and ground truth time series

Figure 3.3 shows the mean values of VH backscatter intensity, Green Normalised

Vegetation Index (GNDVI) (Bannari et al., 1995; Xue & Su, 2017b) and brix degrees

(ground truth) time series. Three agricultural seasons for five typical parcels which

have the same management practices are shown. The green and red vertical dashed

lines mark the season beginning and end of the fern establishment, respectively.

The time between a red and green vertical line corresponds to harvest. It can be

seen in the VH backscatter shown in the top plot, that a significant decrease in

intensity is measured during the harvest periods (between red and green lines).

Chapter 3 Cristian J. Silva-Perez 125



Crop development monitoring from SAR imagery

This is considering that the canopy is mechanically removed when harvest starts

and therefore, single bounce scattering predominates in the interaction between the

SAR signal and the ground under the crop (Silva-Perez et al., 2020). The absence of

canopy causes a similar effect in the Sentinel-2 data reducing the plant reflectance

as can be inferred from the trends recorded in the GNDVI time series. Despite

limited samples available in this example, the brix degree measurements have a

negative trend as CHO are consumed when producing new spears during harvest

as described in section 3.4.2. When harvest stops, and the spears emerge from the

ground and are allowed to elongate vertically, the backscatter rapidly increases as

a result of the double-bounce scattering with the signal reflecting from both the

ground and the asparagus main vertical stalks (Silva-Perez et al., 2020). Once

the leaf-like structures in the branches also known as cladophylls grow establishing

the canopy fern, the backscatter moderately decreases since volume scattering is

predominant at this point. This is a key point for the crop, since it marks the

moment when the fern has fully established and GNDVI reaches its maximum value.

Also, this is the moment when the CHO consumption stops and the production

begins via photosynthesis as mentioned in section 3.4.2. After this point, since no

important changes in the canopy biomass are observed, the VH backscatter remains

almost constant (Silva-Perez et al., 2020). The GNDVI shows a marginal decrease

until the end of the season, however, it is not as pronounced as it could be in a

temperate climate when the crop senescence is more significant. The brix degrees,

conversely, continue to increase until the end of the season when the crop is ready

to be harvested. Figure 3.3 shows how the above-ground processes involving spear

growth and fern establishment as recorded by the remote sensing observations, are

connected with the below-ground carbohydrate stored in the plants root system.

Based on these links and interactions, the methodology of section 3.3 is applied to

track the parcel level CHO values over time.

3.5 Results

This section presents the results obtained using the proposed method for learning

the dynamics of asparagus crop variables and tracking their state over time. We
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first describe the variables that are being tracked, the results after training dynamic

and observation models, and the results obtained using the filtering framework for

tracking the variables for several consecutive seasons and for forecasting the harvest

date.

3.5.1 State variables

Two informative variables are initially considered to characterise the crop over time

and are of interest for farmers locally and other asparagus supply chain stakeholders.

These include the below ground plant carbohydrates and the season crop age in days

or also known as the number of days after the season started (DaS). This results in

the state vector xk = (DaSk, DaSk)T

3.5.1.1 Below ground plant carbohydrates

As mentioned in sections 3.4.2, the crop yield is directly linked with the amount of

plant carbohydrates stored in a plant root system (Wien and Stützel, 2020). The

carbohydrates are in turn linked to the amount of canopy available to intercept

sunlight, the solar radiation in the site and the efficiency of the plant transforming

the latter into carbohydrates (Wien and Stützel, 2020). In this paper, we consider

tracking the Brix% quantity since this is the variable taken in the field and available

as ground truth. Note that as this quantity is constantly monitored, there are several

samples available for training and testing, providing spatial and temporal diversity.

3.5.1.2 Crop Age or Days After the Season started (DaS)

Several stakeholders of the agricultural supply chains are interested in knowing the

current season starting date. These include, for example, insurance companies and

governments as a requirement prior to paying indemnity to farmers. This is also

an informative feature required to compute the growing degree days (GDD) for cases

when phenology is estimated with a thermal calendar GDD1997.Similarly, itprovidesroughestimationsoffuturekeydatessuchasfloweringorharvest.PreviousstudieshaveconsideredtheDaSasakeyfeatureanddesignanindependentalgorithmforitsestimation(De

BernardisEtal., 2014b;MascoloEtal., 2019).Inthispaper, weshowhowthiscanbeincludedasavariabletotrackwithafilteringframeworkasnewremotesensingobservationsareavailable.Thisalsoprovidesusefulinformationfordynamicandobservationmodelstobeabletodisentanglesimilarremotesensingobservationsatdifferenttimesoftheagriculturalseason.
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3.5.2 Dynamic model

As described in section 3.3.3.1, the dynamic model represents how the crop state

variables evolve over time, one step at a time. The training of the dynamic model is

achieved in two steps: First we obtain the typical state variable evolution over time

and secondly, we learn to predict a state distribution at time step k given the state

distribution at time step k − 1.

3.5.2.1 Asparagus below ground carbohydrates typical dynamics

We first identify the typical dynamics of the variables being tracked. To achieve

this, the ground samples available are used to train a GPR (described in section

3.3.2). The input for the GPR is the DaS when a sample is taken while the output

is the corresponding brix degree measured. The result of this is shown in figure 3.4

and explained as follows.

Figure 3.4: Typical Brix% dynamics and uncertainty. Red crosses are the ground

truth samples.

The red crosses correspond to the brix degree sampled for several parcels plotted

with the cultivation days (DaS) as a reference in the x axis. The solid blue line
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represents the fitted GPR which corresponds to the typical brix evolution over time

with its associated uncertainty shown in shaded blue. The interpretation of this

typical model is given based on the agronomical and biological processes known for

this crop type. After harvest of a season ends (DaS=0), the energy required to

grow a new canopy is taken from the remaining carbohydrates stored in the root

system after harvest in the previous season(s). As shown in fig x, from day zero the

brix level decreases during this period as the carbohydrates in the roots are depleted.

Note that around day 30 after the season started (DaS=30), a minimum brix level is

reached. This point marks the end of the canopy formation as can be corroborated in

the remote sensing observations of figure 3.3. The canopy has finished the production

of cladophylls (leaf-like small structures in the canopy branches), the GNDVI reaches

its maximum point in the season, and the double bounce effect in the VH polarisation

has decreased and is transitioning to volume scattering, which is sustained until the

end of the season (Silva-Perez et al., 2020). From this point, the brix level increases

until the end of the season with different increase rates depending on the processes

happening in the canopy above ground and environmental conditions, particularly

solar radiation. The light that is intercepted by the now formed canopy is then

transformed by the plant in carbohydrates and stored in the root system. However,

note that the increase rate varies over time as well as the uncertainty associated with

the ground samples. This is mainly due to changes in the canopy above ground, for

instance when the plant spends CHO growing flowers and fruits which reduce the

amount the CHO that is stored. Similarly, as the canopy gets more mature, the

efficiency producing CHO may decrease altering the rate of CHO gain. By the end

of the cultivation period (after DaS 130), when the canopy is cut prior harvest, new

asparagus spears start to emerge and are harvested causing the CHO levels stored

in the roots to rapidly decrease. Harvest is then stopped when a lowest level is

reached. At this point, the new stems that emerge are allowed to regrow and form

a new canopy to begin a new season.
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3.5.3 Predicting asparagus crop state distribution at time

step k given the state distribution at time step k-1

To estimate a crop state, the filter optimally blends a prediction obtained from

the dynamic model and predictions made after acquiring new sensor observations.

With regards to the DaS, the dynamic model consists in increasing by one day

the previous prediction of DaS. For the brix state variable, the GP-based dynamic

model uses as input the previous state and provides as output the change required

to advance to the next brix state. In this sense, the model uses a training dataset

of the form D = [(DaSk−1, Brixk−1),∆Brixk], where the model inputs DaSk−1

and Brixk−1 correspond to the expected values of the state variables at time step

k − 1, and ∆Brixk is the expected change given the previous state (obtained as

Brixk−Brixk−1). Then, using equation 3.5 (GP mean), a prediction for this variable

can be made and the current state is then approximated as:

P (xk|xk−1) ∼ N (µk, Σk)

µk = µk−1 + ∆µ

µk =

 DaSk−1 + 1

Brixk−1 +GPmu[DaSk−1, Brixk−1]


Σk =

1 0

0 GPvar[DaSk−1, Brixk−1]


(3.9)

In equation 3.9 the dynamic model for the DaS simply increases one day at each

time step with uncertainty assumed to be 1 day. Since the dynamic models for

the DaS and Brix are considered independently, the non-diagonal terms in equation

3.9 are zero. This can be solved with a multioutput Gaussian Process Regression

(Álvarez et al., 2012; Pipia et al., 2019) which provides correlated outputs as will

be detailed in the discussion section.

3.5.3.1 Dynamic model gap filling and forecasting

As first introduced in section 3.3.3.1, the dynamic model can be used recursively to

obtain the value of the state variables between remote sensing observations (now-

casting) and for multiple-step ahead prediction or forecasting. Figure 3.5 shows the

result of this for several consecutive agricultural seasons.
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Figure 3.5: Recursive dynamic model predictions useful for gap filling and/or fore-

casting. Only the starting Brix% and DaS need to be provided, then the predictions

from the dynamic model are fed-back for recursive estimation.

To generate this plot, only the initial value for Brix and DaS is provided and

recursive prediction is then carried out for forecasting. An automatic detection of

end of a season in real time is used with the expression:

Season end detection if brixk < median brix0 and brixk−1 > medianbrix0 (3.10)

where the median brix0 corresponds to the median of all brix ground samples at

the beginning of the season. This detector estimates when the brix level goes below

a typical starting brix level (median brix0) to reset the DaS value to zero. This

way, the forecast can be performed even beyond the current season. Note how

the uncertainty associated with the predictions increases the more time steps are

considered. This is achieved by the uncertainty propagation implemented with the

help of the unscented transform and conveys the fact that the predictions are made

using the model only, without new observations. Note that due to the uncertainty

increase, the brix level does not go below the typical starting level after the second

season and therefore there is no DaS reset.
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3.5.3.2 Observation model

An observation model predicts the conditional probability distribution P (yk|xk) cor-

responding to a sensor’s response given the crop state (represented by the state

variables). As introduced in section 3.3.3.2, in this paper we propose to use a vector

of observations conformed by a sequence of N observations available in the past 100

days. The period of 100 days is chosen since it covers half or more of an agricultural

season. Then, the sequence of N observations is predicted using equation 3.11 as

follows:

P (yk|xk) ∼ N (µk−i, Σk−i)

For i = 0, . . . , N

µk−i = GPmu[DaSk, Brixk, DaSk−i]

Σk−i = GPvar[DaSk, Brixk, DaSk−i]

(3.11)

In order to achieve the fusion of active and passive satellite remote sensing data,

separate models must be trained for Sentinel-1 and for Sentinel-2. Then during

near-real time operation, a model is chosen to be compatible with the observations

received, i.e. using model of Sentinel-1 when Sentinel-1 observations arrive or model

of Sentinel-2 when Sentinel-2 observations arrive. Furthermore, given the variations

captured by each acquisition geometry of Sentinel-1 (i.e., ascending, or descending

passes and different incidence angles), individual models are trained for each of the

three acquisition geometries available shown in table 3.1. It is important to highlight

here that, if a single feature for each sensor is used, for instance, a sequence of the

previous N-VH backscatter or N-GNDVI measurements, a single output GPR can be

trained. If multiple features are considered, such as the VH, VH/VV, dual-Pol RVI

or others for the case of Sentinel-1, an individual model for each feature is required

or a multiple output GPR (Álvarez et al., 2012; Pipia et al., 2019) can be trained

instead. Note that as in the case of the dynamic model, using independent models for

each feature results in uncorrelated noise covariances or in other words, the matrix

Σk−i is a diagonal matrix. In this paper, both the VH backscatter and the ratio

VH/VV are considered, and individual models are trained to predict each feature.

For the case of Sentinel-2, the green normalised difference vegetation index (GNDVI)

and the Modified Chlorophyll Absorption in Reflective Index (MCARI) (Blackburn,
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Figure 3.6: What-if simulation of an GNDVI typical season given different brix

levels at the end of the season. Using these levels, a DaS=160, and the observation

model, we can predict backwards the GNDVI season.

1999; Wu et al., 2008) are used, also training individual models to predict each

feature. Other vegetation indices were not included since linear correlation between

them and the GNDVI and MCARI were identified.

In order to test what the observation models learned based on the training data,

figure 3.6 shows a ‘what-if’ analysis where the model for Sentinel-2 simulates the

GNDVI response to different brix levels at the season end. In this case, we set the

DaSk to 160 (end of season), simulate several brix degrees for this same day, and

use the model to predict the GNDVI backwards every ten days to form the history

of GNDVI to reach these brix levels.

It can be seen in figure 3.6 that the higher the brix level is at the end of the

season (i.e. Brixk), the higher the GNDVI that the model predicts during the

season. Similarly, with a high brix level, the season is expected to last longer than

those cases with lower brix.

3.5.4 Unscented Kalman Filtering with GP-based dynamic

and observation models

In section 3.3.4 the GP-UKF and its integration with Gaussian process dynamic and

observation models was presented. In order to test the performance of the near-real

134 Chapter 3 Cristian J. Silva-Perez



Crop development monitoring from SAR imagery

Table 3.2: Dynamic model and sensor combination cases. S1 is short for Sentinel-1

and S2 for Sentinel-2.

Case name
Dynamic

model

S1

Orbit 18

S1

Orbit 142

S1

Orbit 91
S2

Dyn model X

S1 18 X X

S1 142 X X

S1 91 X X

S2 X X

S1 18+S1 142 X X X

S1 18+S1 142+S2 X X X X

S1 18+S1 91 X X X

S1 18+S1 91+S2 X X X X

S1 91+S1 142 X X X

S1 91+S1 142+S2 X X X X

S1 all Orbits X X X X

S1 all Orbits + S2 X X X X X

time filtering framework with fusion of active and passive satellite sensors, several

possible combinations between the available Sentinel-1 acquisition geometries and

Sentinel-2 data were evaluated as shown in table 3.2.

Ground brix measurements collected in the fields from July 2018 to September

2019 are used for training the GP-UKF and data collected from October 2019 to

December of 2020 for testing. The analysis is carried out at parcel level after av-

eraging the pixel backscatter and reflectances. This is to match the ground truth

also sampled at parcel level and considering that the management practices for the

analysed fields are performed at parcel level. As described in equation 3.10, an au-

tomatic detection of the end of a season in near-real time is used to begin a new

agricultural season. The observation models that use multitemporal data, consid-

ered the available images present in the previous 100 days to a given image using the

VH and VH/VV backscatter as Sentinel-1 features, and the GNDVI and MCARI as
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Sentinel-2 features. To initialise the filter, a prior belief of the crop state variables

needs to be provided. An assumption based on the Sentinel-1 VH backscatter is

made to provide an initial estimate of the DaS and the brix degrees. The starting

date or DaS zero is the nearest date in the previous 100 days to the monitoring

starting date, in which the VH backscatter was lower than -23 dB. If all values are

higher than -23dB in the previous 100 days, the crop is assumed to be in maturation

and a DaS of 120 is adopted. This is considering that the backscattering for C-band

during harvest and at the moment of starting a new agricultural season is low (i.e.

less than -23dB) due to the absence of canopy and the single bounce resulting from

the SAR signal interacting with bare soil. The brix degrees are then initialised with

the typical starting value of figure 3.4 (for DaS zero) estimated as the median of all

the brix starting values collected in the ground truth. If a DaS of 120 is adopted, the

typical brix value for DaS 120 is used. Since the filter is initialised with a Gaussian

probability distribution, a standard deviation of 20 days for the DAS is used and a

standard deviation 2.5 brix degrees for the below ground carbohydrates. Note that

the described assumption is not necessarily required if large variances to the prior

belief or initial probability distribution are adopted. In this case, after seeing new

observations, the filter updates the state variables so that they are in agreement

with the observations thus converging to the actual states. However, the described

assumption allows the filter to converge faster. Similarly, the assumption that VH

backscatter is low before beginning the agricultural season could be generalised to

other crop types, again due to the absence of vegetation. The GP-UKF algorithm

described in section 3.3.4 is then used for filtering. The algorithm updates predic-

tions of the GP-based dynamic model when a new vector of observations arrives.

This update is based on a weighted difference between the acquired vector of obser-

vations and the observations predicted by the GP-based observation model, given

the dynamic model predicted state.

3.5.4.1 Tracking crop state variables only with the dynamic model

Figure 3.7 shows the result of running the GP-UKF filter without any remote sensing

observations but only using the dynamic model to predict recursively and track the

below ground plant carbohydrates and the crop age. As shown by the red dots, using
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Figure 3.7: GP-UKF using dynamic model only, without remote sensing observa-

tions.

recursively the dynamic model to estimate brix degrees and DaS, the filter is able

to provide daily predictions that are comparable to the ground truth samples (black

crosses). The quantification of the error for these estimations will be introduced in

section 3.5.5. These predictions follow the typical trends expected for the evolution

of the state variables confirming that the dynamic model effectively captured their

behaviour. Note that when the season end is detected, the DaS is reset to zero

as well as the state initial uncertainty. Note however, that the predictions do not

adapt to the particular conditions of every season as no remote sensing observations

are being considered. These conditions could include among others, variations in

management practices as well variations in crop development due to environmental

conditions. Specifically in figure 3.7, note for example that after September of 2019

the dynamic model predictions are not synchronized with the ground truth. This

is due to an atypical season start and end being changed according to management

practices. This in turn reduces the overall GP-UKF performance if observations are

not available.
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3.5.4.2 Tracking crop state variables with Sentinel-2

In the case that Sentinel-2 observations are considered, the GP-UKF adapts better

to the particularities of each agricultural season, as shown in figure 3.8. In this

Figure 3.8: GP-UKF using dynamic model and Sentinel-2 data. Data from before

the vertical dashed line is used for training, and data after is used for testing.

case, the filter uses the Sentinel-2 observations when available and based on the

deviations between them and the predictions from the GP-based observation model

for the Sentinel-2 features, adjusts the predictions of the dynamic model. If ob-

servations are not available, for instance due to cloudy days, the filter is still able

to provide a prediction filling these gaps. The uncertainty in the predictions de-

creases significantly when several observations are consecutively received, such as

between February and May of 2020. On the contrary, when a gap in the Sentinel-

2 observations occurs, the filter fills the gaps and the uncertainty associated with

these predictions increases as is the case between July and September of 2020. In

fact, notice that a seasonal pattern can be observed in the uncertainty, where in

the coldest months of the year when is also cloudier (second semester of each year),

the uncertainty is larger than in the hotter months where less clouds are normally

present. It is expected then that during cloudy months the GP-UKF relies mostly
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on the dynamic model whereas in the cloud-free months relies in the observations.

Note also that the uncertainty also increases when recursively using the dynamic

model to forecast, as shown after the last observation available in February of 2021.

3.5.4.3 Tracking crop state variables with one acquisition geometry of

Sentinel-1

Given the SAR capabilities of acquisition at day and night and almost all-weather

conditions, long time series can be obtained. Figure 3.9 shows the result of the

GP-UKF using one of the Sentinel-1 acquisition geometries available for the test

site (orbit 91 in ascending pass).

Figure 3.9: GP-UKF using dynamic model and Sentinel-1. Data from before the

vertical dashed line is used for training, and data after is used for testing.

Visually inspecting figure 3.9, it can be seen that the predictions are close to

the ground truth even though the observations can be noisy (see error for these

predictions in section 3.5.5). If we focus on predictive accuracy, we can notice that

Sentinel-1 seems to be less accurate than Sentinel-2 in cloud-free months. However,

in the cloudy months, the more consistent time series of observations of Sentinel-

1 provides better predictions than Sentinel-2. This suggests that the vegetation

indices from a multispectral satellite may be more easily associated with the canopy
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development than the backscatter from Sentinel-1 but this benefit is lost with the

data gaps. Note that the predictive uncertainty using a single orbit of Sentinel-1 is

relatively constant during the whole monitoring period.

3.5.4.4 Tracking crop state variables with one acquisition geometry of

Sentinel-1 and Sentinel-2

Figure 3.10 shows the result of the GP-UKF combining both Sentinel-1 and Sentinel-

2 data when available. To perform the data fusion, the crop state variables predic-

tions from the GP-based dynamic model sit at the centre of the filtering strategy.

These predictions are then adjusted after either of the data sources is available by

using the adequate observation model to predict the expected remote sensing ob-

servations given the current crop state. The predicted remote sensing observations

are then compared with the actual observations and based on their deviations, the

state variable predictions of the dynamic models are adjusted.

Figure 3.10: GP-UKF using dynamic model, Sentinel-1 and Sentinel-2.

The uncertainty that was high when filling the gaps if using Sentinel-2 data only,

is now reduced thanks to the Sentinel-1 data being present. Note that the accuracy

of the predictions with respect to each individual data source also improves. In

a more general analysis, with the aid of the dynamic and observation models, the
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GP-UKF learns to identify automatically when to start increasing or decreasing the

plant carbohydrates given the remote sensing observations. This can be seen for

instance in seasons shorter or longer than the typical season. Similarly, the brix

degree starts to increase only after the canopy has been fully formed, this is, when

the GNDVI reaches its highest point, and the double bounce reduces in the VH

backscatter around DaS 30. This is a consistent behaviour to what was described

in section 3.4.2 about the plant carbohydrates charge and discharge pattern.

3.5.4.5 Tracking crop state variables with all acquisition geometries of

Sentinel-1

The results of the GP-UKF using the three Sentinel-1 acquisition geometries are

shown in figure 3.11. In this case the temporal resolution is reduced such that on

average every four days an image is obtained, provoking the uncertainty associated

with predictions to be low throughout the monitoring period. Visually inspecting

figure 3.11, it can be seen that it shows better performance than using only one

orbit, however, compared for instance with the active-passive sensor fusion of figure

3.10 the difference in accuracy or uncertainty do not seem to be substantial.

Figure 3.11: GP-UKF using dynamic model and all Sentinel-1 acquisition geome-

tries.
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3.5.4.6 Tracking crop state variables with all acquisition geometries of

Sentinel-1 and Sentinel-2

When all acquisition geometries of Sentinel-1 and the Sentinel-2 data are used as

shown in figure 3.12, the results obtained are more precise and the uncertainty when

tracking the crop state variables is low. The accuracy in the season from January

to June of 2020 improves compared to what is shown in figure 3.11, confirming

the added value of Sentinel-2 to the three sentinel-1 Orbits. Similarly, an interesting

synergy achieved using active-passive sensor fusion can be seen at the end of October

2020. The estimation of the accumulated brix degrees at the end of the season are

better predicted than in any other case. In this case as in the other seasons, the

brix degrees level at the end of the season prior harvest is a key informative factor

about the potential asparagus yield in that season.

Figure 3.12: GP-UKF using dynamic model, all Sentinel-1 acquisition geometries

and Sentinel-2.

3.5.5 Performance evaluation

This section presents the quantitative assessment of the GP-UKF for retrieving

asparagus below ground carbohydrates and the season crop age. The ground dataset
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is split in two parts for training and test. The performance is evaluated with ground

truth from October 2019 to December 2020 covering more than two agricultural

season for each of the 116 analysed parcels. Three metrics typically utilised for

regression and time series assessment are used as indicators of performance: the

Root Mean Square Error (RMSE), the Pearson correlation coefficient (r2) and the

Mean Absolute error (MAE). The results of these metrics validating the performance

of the GP-UKF applied to each of the analysed cases of table 3.2 is shown in table

3.3.

Table 3.3: GP-UKF performance evaluation. S1 is short for Sentinel-1 and S2 for

Sentinel-2. Results are organised in descending order, from best to worst Mean

Absolute error (MAE) brix performance.

Case
MAE

Brix

MAE

DaS
r2 Brix r2 DaS RMSE Brix RMSE DaS

S1 all + S2 1.802 6 0.58 0.97 2.287 8

S1 18+S1 91+S2 1.805 6 0.59 0.97 2.278 8

S1 91+S2 1.808 6 0.58 0.97 2.295 8

S1 91+S1 142+S2 1.812 6 0.58 0.97 2.309 8

S1 all 1.905 6 0.53 0.97 2.401 8

S1 91 1.931 6 0.54 0.96 2.413 8

S1 18+S2 1.944 7 0.5 0.94 2.472 10

S1 18+S1 91 1.946 6 0.53 0.96 2.435 8

S191 + S1142 1.953 5 0.51 0.97 2.46 7

S1 18+S1 142+S2 1.989 7 0.45 0.91 2.548 11

S2 2.083 8 0.43 0.91 2.649 12

S1 142+S2 2.14 9 0.32 0.83 2.745 12

S1 18+S1 142 2.243 8 0.33 0.83 2.862 13

S1 18 2.508 12 0.17 0.74 3.166 17

S1 142 2.531 15 0.07 0.52 3.278 22

Dyn model 3.109 31 -0.27 -0.01 3.964 39

Line 16.88 44 -22.52 -0.34 17.252 52

Chapter 3 Cristian J. Silva-Perez 143



Crop development monitoring from SAR imagery

As expected, using all the acquisition geometries of Sentinel-1 together with the

Sentinel-2 data when available, provides the best results. In this case, the GP-UKF

is able to track the asparagus crop state variables with a MAE of 1.802 brix degrees

and 6 days. Note that while the r2 for DaS is high achieving 0.97, it is not as

high for brix degrees achieving only 0.58. This difference may be related to the

fact that the brix samples are significantly more prone to error when measuring

them, resulting in noisy training and testing data. In fact, in order to reduce this

error in the ground truth, more samples are required at parcel level for the sampled

population to correctly represent the brix level. However, this process is expensive

and resources consuming. The RMSE achieved in this case is 2.287 and 8 days,

similar to the error obtained with the MAE.

In general, based on the results of table 3.3, adding more satellite sensors im-

proves the performance partly due to the improvement to the temporal resolution

observing the crop and partly due to the complementary information of the active-

passive data fusion. This is even more evident in summer seasons when more

Sentinel-2 images are available. The errors retrieving Brix degrees obtained with

the other cases, are not substantially different as shown in table 3.3. The last row

(line), represents the performance evaluation if all predictions corresponded to a line

equal to the median of the training ground truth samples. This is only for testing

that the filter is indeed better than predicting always the median brix and DaS val-

ues. The row Dyn model represents the case when no remote sensing observations

are considered but only the dynamic model as presented in section 3.5.4.1.

For the case of DaS as well as for brix degree, the poorest results are obtained

when using the orbits 18 and 142 of Sentinel-1, both individually and in combination

with other orbits or with Sentinel-2. This can be associated with the number of

images available being considerably lower than for the orbit 91 as it can be seen

in table 3.1. In fact, using Sentinel-2 data only (S2) even with the associated data

gaps, has better performance than orbits 18 (S1 18) and 142 (S1 142), with a MAE

of 2.083 compared to the 2.508 and 2.531 for these two Sentinel-1 orbits.

However, the orbit 91 (S1 91) individually presents better performance than

Sentinel-2 data with a MAE of 1.931 and 6 Days. Note that this is practically the

same performance achieved using all the acquisition geometries available (S1 all)
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which achieves a MAE of 1.905 and 6 days, possibly meaning that the majority of the

performance achieved corresponds to information provided by orbit 91 of Sentinel-

1. The value of the active-passive sensor fusion can be seen when considering that

the best four performances are achieved when using both Sentinel-1 and Sentinel-

2. In these four cases the orbit 91 is always present confirming the value of a

consistent flow of Sentinel-1 data (not fully achieved with orbits 18 and 142). An

interesting case to highlight here is that using the orbit 91 and Sentinel-2 (S1 91+S2)

performs better than using all Sentinel-1 acquisition geometries (S1 all), confirming

the value of Sentinel-2 even with its data gaps in cloudy months. Note that this case

(S1 91+S2) practically achieves the same performance as the best case. However

using all orbits of Sentinel-1 (or more than one) and Sentinel-2 provides a more

robust system in case of intermittent operation of any acquisition orbit, as was the

case in this test site with orbits 18 and 142.

3.5.6 Multitemporal prediction maps: DaS and Brix de-

grees

Figures 3.13 and 3.14 show the results of retrieving the crop state variables with the

GP-UKF when using the active-passive sensor fusion, for the whole farm where the

ground truth was collected. These four dates show the evolution of both the brix

degree and the days after the season started (or cultivation days). As it can be seen,

not all the parcels are in the same development stage since farmers can manage this,

taking advantage of the all year-round food production potential offered by the local

climatological conditions.

3.5.7 Key dates estimation

As mentioned in sections 3.3.3.1 and 3.5.2, the same procedure to fill gaps or make

one step ahead predictions can be recursively performed for multiple steps ahead

prediction or forecast. This gives the GP-UKF the possibility to estimate the oc-

currence of future crop key dates. Accurately predicting the date when a parcel will

be ready for harvest is essential to plan human and material resources required for

harvest and to plan the capacity in the plant to process the harvested asparagus.
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(a) 01 February (b) 01 March 2019

(c) 29 March 2019 (d) 10 May 2019

Figure 3.13: Multitemporal DaS retrievied with the GP-UKF using Sentinel-1 and

Sentinel-2 data. Image geo-coordinates not included to anonymize the fields location.

This is particularly important considering the all-year round production of aspara-

gus. The crop is assumed to be ready for harvest when the accumulation of below

ground plant carbohydrates in the roots system is maximum. Therefore, the proce-

dure to test the GP-UKF capabilities for harvest date prediction is as follows: Using

the case that provides the best results for tracking, i.e., using the three acquisition

geometries of Sentinel-1 and Sentinel-2, the GP-UKF tracks the crop state variables

until the last season in 2020. Then four cases are considered: the filter stops the

tracking when the season crop age is 0, 30, 60 and 90 days. The GP-based dynamic

model is utilised to recursively forecast from these points when the maximum brix

degree in the next 200 days will occur. This date is then extracted as the expected

harvest date for the parcels of asparagus included in the analysis. A key point to

highlight is that this date in the practice can be affected by management decisions

since it could be accelerated or delayed depending on contractual obligations or

market intelligence. Therefore, since the date provided here is an estimation based
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(a) 01 February (b) 01 March 2019

(c) 29 March 2019 (d) 10 May 2019

Figure 3.14: Multitemporal Brix degrees retrieved with the GP-UKF using Sentinel-1

and Sentinel-2 data. Image geo-coordinates not included to anonymize the fields location.

only on the crop condition, it may in some cases disagree with the real date for days

or in few cases even weeks. Table 3.4 shows the results from forecasting the harvest

date for the three cases considered: As it can be seen, the error predicting harvest

Table 3.4: Forecast performance in days.

DaS

0 30 60 90

MAE 17 6 4 4

date is lower the closer the parcel is to the real harvest (DaS=90). This is because

the filter has seen more observations to correctly track the crop state variables up

to that point. Conversely, forecasting the harvest date from DaS=0, corresponds

to predicting without the aid of remote sensing observations, but only using the
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dynamic model. Note than even when predicting harvest date 30 days after the

season started, a MAE of 6 days is achieved. This is already an acceptable error for

the practical purpose of this task.

Despite not accurately knowing when the season started but assuming a window

of one month where it could have started, and after receiving observations for 2

months (60 days), the GP-UKF is able to forecast the date when the crop will be

ready to harvest with an error (MAE) of 4 days.

3.6 Discussion

This paper introduced a filtering framework designed to track below ground aspara-

gus plants carbohydrates and the season crop age with fusion of freely available and

multitemporal Sentinel-1 and Sentinel-2 data. The method proposed complements

what other studies have suggested are the advantages of a filtering framework, partic-

ularly in relation to accuracy, sensor fusion and key dates estimation (De Bernardis

et al., 2016b; McNairn et al., 2018; Vicente-Guijalba et al., 2015).

As mentioned in section xx, there is evidence that suggests that if enough

Sentinel-2 images are available the predictions using these observations may be more

accurate than using Sentinel-1 (i.e. if no data gaps existed). However, if a Sentinel-1

acquisition geometry provides constant data (S 91) it is overall more accurate than

Sentinel-2 as shown in table 3.3. In this regard, current work is focused on evalu-

ating the accuracy metrics by considering the local climate seasonality. The aim is

to quantify the gain in accuracy in the summer months with respect to the winter

months when less acquisitions are available. This will also help to analyse the con-

tribution of Sentinel-2 to the overall accuracy when the active-passive sensor fusion

is used. Crucially, even when Sentinel-2 data gaps exist, the GP-based dynamic

model is able to fill these gaps and provide an estimation of the tracked crop state

variables and to forecast crop key dates. The combination of active-passive data

provided the best performances and was found to be valuable to better predict the

brix degree of a parcel at the end of the season. This is one of the most important

moments in the season for this prediction, since it is highly correlated to the crop

yield (Wilson et al., 2001; Wilson et al., 2005). As it can be seen in table 3.3, us-
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ing one orbit of Sentinel-1 that provides systematic acquisitions and in fusion with

Sentinel-2 (S1 91+S2) provides better performance than using all three available

acquisition geometries of Sentinel-1. This helps corroborate the value of the active-

passive sensor fusion. Additionally, including more than one Sentinel-1 orbit with

Sentinel-2, besides of providing the best performance, contributes to having a more

reliable operational system.

Note that an important advantage of the method proposed is the potential for

transferability to other crop biophysical variables, crop types and Satellite sensors

(i.e. other SAR wavelengths or multi-spectral satellites). This is a clear improvement

with respect to previous approaches that use filtering frameworks with parametric

models (De Bernardis et al., 2016b; McNairn et al., 2018). Since the GP-based dy-

namic and observation models are learnt from historical satellite and ground truth

data, the only requirement for replicating this work to other sites is to have the

training data for the state variables available (as in any other supervised approach).

Since the GPs permit to learn a diverse range of functions and provide the associated

uncertainties, the method can adapt to the different locations and crop types. In

addition, previous work did not consider the use of several images to create a vector

of observations as proposed here. However, in remote sensing the multitemporal in-

formation has been repeatedly shown to improve an algorithm’s performance. Note

also that in this paper we proposed to estimate the DaS directly as part of the fil-

tering instead of designing a totally different algorithm as has been done in previous

works (Mascolo et al., 2019; Phan et al., 2018a).

Compared to the traditional Kalman Filter, the GP-UKF is more accurate as

it is able to learn non-linear dynamic and observation models. Compared to the

Extended Kalman Filter (EKF) as in (Vicente-Guijalba et al., 2015), the UKF has

been shown to be at least as accurate as the EKF (Julier and Uhlmann, 1997). Note

that propagating the states through the GP-based models results in a non-Gaussian

distribution (Deisenroth et al., 2013). However, the GP-UKF approximates them

to Gaussian in order to use the original Kalman filter equations. In this regard, the

GP-UKF may be at a slight disadvantage compared to the particle filters of (De

Bernardis et al., 2014b; McNairn et al., 2018). Nevertheless, a pragmatic approach

can be taken, accepting the error, as it allows for a significant improvement in

Chapter 3 Cristian J. Silva-Perez 149



Crop development monitoring from SAR imagery

reducing the destructive sampling damage of this high value crop. Future work will

address this potential disadvantage.

Previous papers have exclusively focused on tracking one individual crop state

variable, particularly crop phenology. As we show in this paper, tracking more than

one variable may imply having individual dynamic models for each crop state vari-

able, which results in uncorrelated process noise covariance (section 3.5.3). This is

a limitation of the current version of the GP-UKF that can be solved by training

multiple outputs GPs (Álvarez et al., 2012; Pipia et al., 2019) instead of individual

models. The same case is true for the measurement noise covariance in the observa-

tion models for each of the individual remote sensing features used. This will also

be addressed in a future version of the GP-UKF.

Depending on the size of the training dataset, a GPR can become computa-

tionally expensive to handle. Several algorithms for efficient inference have been

proposed (H. Liu et al., 2020). An upgrade to these approximations of GPs, such

as sparse GPs (Quinonero-Candela and Rasmussen, 2005), may be recommended

in large datasets. Including this also reduces the computational cost needed for

near-real time monitoring.

In this paper, back-prediction (or hind-casting) was not performed using the

dynamic model, however, it is possible to do so by adopting a straight forward

modification of the training data and the equation 3.9. A practical application

of this could be the ability to extrapolate (backwards), the initial date of canopy

maturation. For asparagus physiological models this date is critical as it can be

assumed as the point where the gain of carbohydrates starts (Wilson et al., 2001;

Wilson et al., 2005). Although ground sensors were not included in the analysis, the

GP-based dynamic model can handle them as control inputs (Deisenroth et al., 2013;

Ko and Fox, 2009).The model can then learn to predict the response of a crop state

to climatological signals and thus the crop dynamics. This includes factors such

as temperature and solar radiation. A notable experiment that is being considered

for future work is the use of different SAR wavelengths. The use of X-band for

instance may enable earlier identification of emerging asparagus, from the soil than

the C-band of Sentinel-1. This is a feature that would contribute to the automatic

identification of the start of a new season, in a similar manner as have been reported
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for other crop types (Lopez-Sanchez, Ballester-Berman, & Hajnsek, 2011; Lopez-

Sanchez et al., 2014). Conversely, using a longer wavelength such as L-band may

provide additional information during the crop maturation phase. This is because

it may penetrate the canopy significantly more the C-band providing additional

information about the soil status, such as moisture content. It is important to

also understand the benefits of treating each SAR acquisition geometry (i.e. orbit)

as a different sensor as treated here, rather than performing an incidence angle

normalisation approach to combine them. Based on this a decision can be taken on

which method is preferable for transferibility purposes. In principle, an incidence

angle normalisation approach that does not require training data may be easier to

implement in different locations. Similarly, it is important to corroborate that the

SAR crop signature and the ground truth samples of brix degrees are similar in

other fields and regions of the country. This will ease transferability of the current

algorithm. However, expansion of the training dataset may be required to include

more training diversity which would then allow scalability for larger area asparagus

crop monitoring.

3.7 Conclusion

In order to provide an alternative to current, destructive and expensive field sam-

pling of below ground asparagus plants carbohydrate, this paper presents a novel,

data-driven, unscented Kalman filtering framework. It fuses multitemporal and

freely available Sentinel-1 and Sentinel-2 data to track brix degrees as a surrogate

of carbohydrates, the season crop age and to forecast crop key dates. Gaussian pro-

cess regressions are trained with multi-year ground truth to learn the dynamic and

observation models and their corresponding uncertainties. After testing the perfor-

mance of the GP-UKF with unseen field samples, a MAE of 1.802 brix degrees is

obtained fusing the three Sentinel-1 acquisition geometries available in the test site

and the Sentinel-2 data when available. The GP-UKF achieved a MAE of 6 days for

crop-age retrieval and a MAE of 6 days for forecasting the date for a parcel being

fit for harvest.

The GP-UKF proposed here is also able to perform daily predictions, fill data
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gaps and forecast key crop dates while remaining robust to individual sensor failures.

As a data-driven approach, the method can be applied to other crop biophysical

variables and crop types. Apart from overcoming the limitations discussed in section

4.9, future work will expand the GP-UKF for combination with asparagus growth

physiology models and with ground sensors for temperature and for solar radiation.

The algorithm may also be expanded for national scale monitoring.
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Chapter 4

Multi-Temporal Polarimetric SAR

(MT-PolSAR) Change Detection

for Crop Monitoring And Crop

Type Classification

4.1 Abstract

The interpretation of multidimensional Synthetic Aperture Radar data often re-

quires expert knowledge. In fact, it requires to simultaneously consider several time

series of polarimetric features to understand the physical changes of a target and

its temporal evolution. In an effort to characterise the changes over time, Multi-

temporal Polarimetric SAR (MTPolSAR) change detection was introduced in the

literature by Lê et al. (2015) and Alonso-González et al. (2020). However, existing

methods either only exploit intensity of changes or the resulting changed scattering

mechanisms are not guaranteed to represent physical changes of the target.

This paper presents a variation in a previously published change detector (Alonso-

González et al., 2020). It is based on the difference of covariance matrices that

characterise the polarimetric information, allowing for an intuitive representation

and characterisation of physical changes of a target and its dynamics. We show

the results of this method for monitoring growth stages of rice crops and present a

novel application of the method for crop type mapping from MT-PolSAR data. We
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compare its performance with a neural network-based classifier that uses time series

of PolSAR features derived from a target covariance matrix decomposition as input.

Experimental results show that the classification performance of the proposed

method and the baseline method are comparable, with differences between the two

methods in the overall balanced accuracy and the F1-macro metrics of around 2%

and 3%, respectively. The method presented here achieves similar classification

performances of a traditional PolSAR data classifier while providing additional ad-

vantages in terms of interpretability and insights about the physical changes of a

target over time.

4.2 Introduction

Since a single satellite image cannot capture long-term variability, seasonality effects,

or information described by the changes in a process state, multitemporal informa-

tion has become a key tool in remote sensing. The day and night and all-weather

capabilities of SAR satellites offer significant opportunities for continuous and re-

mote monitoring regardless of cloud cover. Additionally, the information extracted

from the acquired SAR data can be augmented by means of polarimetric analysis,

exploiting the covariance between the different polarization channels measured by

the satellite (S. Cloude, 2009; Lee & Pottier, 2009). However, the process of deriving

information is often not intuitive due to the large amount of polarimetric features

that change over time driven by natural or human-made processes. This analysis

is essential for evaluating changes in earth processes, land cover and use, includ-

ing applications such as forest (Antropov et al., 2011), agriculture (Lopez-Sanchez

et al., 2014; McNairn et al., 2009), glacier changes (Akbari et al., 2013) and urban

settlements monitoring, among others. Agricultural fields are just one of the exam-

ples of such dynamical behaviour since the morphological parameters of the plants

evolve along the season varying the PolSAR response accordingly. The most widely

used polarimetric analyses consider the simultaneous interpretation of several po-

larimetric time series, resulting from multitemporal backscatter measurements and

PolSAR decompositions (S. R. Cloude & Pottier, 1996; Lopez-Sanchez et al., 2014).

However, the process of identifying the adequate PolSAR decomposition to use, the
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set of features that are best suited for the problem at hand and how to combine

them to identify informative patterns is not straightforward.

Other methods focus on identifying the scattering mechanisms that are suffering

the largest change by means of PolSAR change detection. Test statistic methods

such as the likelihood ratio test focus on evaluating the equality of two covariance

matrices that follow the complex Wishart distribution (Conradsen et al., 2003; Ker-

sten et al., 2005). Likewise, the complex Hotelling-Lawley trace test statistic is used

by Akbari et al. (2016) to evaluate the similarity between two complex covariance

matrices which is subsequently thresholded to determine changes between images.

Statistical information theory has also been applied to measure divergence between

complex covariance matrices (Nascimento et al., 2018), as well as distance-based

methods which evaluate the polarimetric similarities between images to identify

changed regions (Inglada & Mercier, 2007; M. Liu et al., 2014). Note that although

these methods exploit the PolSAR information to quantify the intensity of changes,

they do not focus on identifying the type of changes between images. Therefore,

they are not suitable for analyzing the scattering mechanisms dynamics and its

temporal evolution. Marino et al. (2012) presented a method in order to detect

polarimetric changes between two images. However, a way to combine this informa-

tion with the changes in the backscatter amplitude is not directly embedded in the

detection process. In terms of multitemporal change detection, the likelihood ratio

test statistic was extended in order to handle multiple images and test the equality

of several covariance matrices (Conradsen et al., 2016; A. Nielsen et al., 2017). In

this case, the authors focused on detecting whether change occurred in any of the

images in the stack and try to estimate when it happened. Note however that the

interpretation regarding the type of change which is vital for change analysis is not

considered in this approach. In A. A. Nielsen et al. (2019), the same authors propose

to improve this method by adding the capability of identifying the change direction.

This is done by computing the definiteness (positive or negative definiteness) of the

difference of covariance matrices that model the PolSAR response in the two dates

considered for the change detection. This way the method detects not only that

there was a change and its associated intensity, but also the direction of the change,

for example, whether the change was due to a target(s) that appeared or disappeared
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between the two dates. A faster computation of the same method is presented in

A. A. Nielsen (2019). Note that while knowing the direction of change provides more

information, it does not explain in physical sense, i.e. as a scattering mechanism, the

type of change. This may be sufficient for some applications, specifically for change

analysis of man-made targets, however, understanding types of changes is crucial for

example for environmental applications, such as understanding the physical changes

in the vegetation development or degradation of a crop or a forest.

Other studies introduced the concept of change detection matrix to denote

changes not only between consecutive images but also between all images in a stack.

In Lê et al. (2014), the authors used it for speckle filtering by identifying the changed

an unchanged areas over a time series, however, the analysis was limited to single

polarization data and focused exclusively on the image filtering strategy. In Lê et

al. (2015), the concept was extended for PolSAR data and included multitemporal

change detection. However, besides being a supervised change detection methodol-

ogy, the change matrix and the change maps only provide information about how

dynamic or stable the resolution cells are over the time series, without giving infor-

mation about the types of changes and the specific dates of occurrences.

In Marino and Hajnsek (2013), a PolSAR change detector inspired by the Po-

larimetric Match Filter (Novak et al., 1989) was introduced, which proposes to find

changes between two images based on the optimization of the power ratio between

them. In this case, focus is given to the intensity of the change for anomaly detection,

although the scattering mechanisms are not analyzed. Based on the same concept,

a method to analyse and characterize multi-temporal PolSAR changes was proposed

recently by Alonso-González et al. (2020), also based on the maximization of the

power ratio between acquisitions, with the aim of providing not only the intensity

of changes between images, but also its type. A novel visualisation of the PolSAR

changes, previously introduced in (Alonso-Gonzalez et al., 2016; Alonso-González

et al., 2016) is also formalised.

The authors of Alonso-González et al. (2020) extend the method to not only

analyse changes between consecutive images but also among all images in the stack

and apply it to visually inspect changes in agricultural fields. Note however, that

the projection vectors of the optimisation (i.e. eigenvectors of the optimisation) that
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maximize the power ratio are not guaranteed to correspond to scattering mechanisms

but are the vectors that provide the maximum contrast between the covariance

matrices of the two dates. This implies that the type of changes detected may not

correspond to physical changes in the target and can only be interpreted with the aid

of transformation models which significantly restricts the potential of the method.

In this paper, a modified version of the change detector is proposed in order to

improve the type of change interpretation so that the obtained changes represent

PolSAR scattering mechanisms directly. This allows one to gain insight into the

scene evolution without depending on transformation models that consider matrix

multiplications. We also present the analysis for different crop types and test sites,

confirming the transferability of the method presented here, and present a novel

application of the same method, in which we test the potential for image classifica-

tion. We exploit the fact that analysing the intensity and type of changes during the

whole growing season and encoding them into a change matrix allows the charac-

terization of a target, in this case a crop type, in terms of the increase and decrease

of scattering mechanisms over time. In other words, we propose a classifier that is

not only based on states (at different dates), but also on the dynamics (or changes)

of such states directly embedded in the change matrix. Unlike other crop type clas-

sification algorithms, the method proposed here provides the advantage of having

a single method for in-season phenology monitoring as shown by Alonso-González

et al. (2020) and for crop type classification as will be presented here.

4.3 Test site and Data sets

The methods presented in this paper are tested on two separated test sites where

ground truth has been collected. The sites are geographically distant and include

several crop types in order to include crop and region diversity. In the first site

the focus is on monitoring crop growth while in the second site, additional to crop

growth the interest is to test the potential of the methods presented here for crop

classification. The following is a short description of the two locations.
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4.3.1 South of Spain

The site 1 corresponds to rice fields locate near Seville, in the south of Spain as shown

in figure 4.1. The ground truth includes phenology data for validation collected

weekly from May to September of 2014 covering one complete agricultural season.

In this case the ground data is used for comparing and validating the results obtained

from the proposed methodology, particularly for monitoring crop growth along the

season as it will be shown in section 4.7. With regards to the satellite data, as

shown in table 4.1, 16 Single Look Complex (SLC) Quad-Polarimetric images from

the RADARSAT-2 satellite with three different incidence angles are available, with

temporal resolution of approximately two weeks when combining incidence angles

or one month for each incidence angle separately.

Figure 4.1: Rice fields in the South of Spain (Test site 1). Quad-Pol RADARSAT-2

image acquired the 02/08/2014. Blue:
√
λ cos(α), Red:

√
λ cos(α)sin(β), Green:

√
λ sin(α)sin(β) (See equation 4.9).

4.3.2 Indian Head, Canada

This dataset includes several other crops types including barley, oats, wheat, canola,

flax, lentils and field peas. These crops are located in the Indian head in Canada,

where ground truth was gathered as part of the AgriSAR 2009 campaign, which
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Table 4.1: South of Spain (Test site 1) RADARSAT-2 images used

Date (yyyymmdd) Beam Inc. angle(deg)

20140522 FQ8 28

20140605 FQ19 39

20140615 FQ8 28

20140622 FQ13 33

20140629 FQ19 39

20170709 FQ8 28

20170716 FQ13 33

20140723 FQ19 39

20170802 FQ8 28

20170809 FQ13 33

20140816 FQ19 39

20170826 FQ8 28

20170902 FQ13 33

20140909 FQ19 39

20170919 FQ8 28

20170926 FQ13 33
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covers phenology among other biophysical variables. Images between June and

September of the same year are selected, ensuring that the cultivation period is

covered and removing images affected by severe rainfalls. Figure 4.2 presents the

location of the fields and table 4.2 shows the 7 quad polarimetric images from the

RADARSAT-2 satellite with the associated incidence angles that are considered for

crop growth monitoring and crop type mapping (sections 4.7.2 and 4.8).

4.3.3 SAR data pre-processing

In both test sites, the covariance matrices utilised as input for the analysis are

obtained after applying radiometric calibration, multi-looking and speckle filter. A

9x9 boxcar filter is used considering that parcels are sufficiently big and several

pixels fall within a parcel. Then terrain correction and geocoding are performed, to

ensure that all the images are geocoded over the same grid even if they are acquired

by different beams or pass directions.

Figure 4.2: Indian Head, Canada (Test site 2). Quad-Pol RADARSAT-2 im-

age acquired on the 22/08/2009. Blue:
√
λ cos(α), Red:

√
λ cos(α)sin(β), Green:

√
λ sin(α)sin(β) (See equation 4.9).
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Table 4.2: Indian Head, Canada (Test site 2) RADARSAT-2 images used

Date (yyyymmdd) Beam Inc. angle(deg)

20090604 FQ19 39

20090702 FQ2 22

20090712 FQ11 31

20090815 FQ19 39

20090822 FQ15 35

20090829 FQ11 31

20090908 FQ19 39

4.4 Methodology

The scattering process measured by a quad-polarimetric radar imaging system is

conventionally represented for each resolution cell by the scattering matrix S (S.

Cloude, 2009; Lee & Pottier, 2009)

S =

SHH SHV

SV H SV V

 (4.1)

The elements Sij of the matrix correspond to the complex scattering coefficients

associated with the amplitude and phase of the backscattered signals, where H and

V stand for linear horizontal and vertical and the double letter is for transmit-

ter–receiver. The scattering matrix can also be represented in a vectorized form

derived from a chosen set of 2x2 complex basis matrices, as k = 1
2
[Tr(SΨ)], where

Tr is the matrix trace operator, and Ψ is a set of 2x2 complex basis matrices (S.

Cloude, 2009; Lee & Pottier, 2009).

If a monostatic backscattering system is used and assuming reciprocity (HV =

VH), the polarimetric target vector in Pauli basis is given by:

kp =
1√
2

[SHH + SV V , SHH − SV V , 2SHV ]T (4.2)
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where the superscript T denotes the vector transpose, and the
√

2 is required to

preserve the total scattered power.

The polarimetric target vector presented in (4.2) corresponds to the case of a

single look complex image. The central limit theorem can be applied assuming

that the number of scatterers inside a resolution cell is large and thus kp follows a

multivariate complex circular Gaussian distribution with zero mean and probability

density function (S. Cloude, 2009; Lee & Pottier, 2009):

f(kp) =
1

π3∥Σ∥
exp(−k∗Tp Σkp) (4.3)

where * represents the complex conjugate, ∥.∥ represents the matrix determinant,

and Σ is the covariance matrix of the PolSAR target vector in Pauli basis (also known

as the coherency matrix), obtained as Σ = {kpk∗Tp }, where {.} is the statistical

expectation operator.

Equation 4.3 corresponds to the distribution kp ∼ N (0,Σ), where Σ is a Hermi-

tian positive semi-definite matrix and contains the necessary information to charac-

terize a target (S. Cloude, 2009; Lee & Pottier, 2009).

Since the amplitude and phase of a resolution cell are the coherent and linear

combination of backscattered signals from individual scatterers within it, the mea-

surements are affected by a random variation denoted as speckle (Oliver & Quegan,

2004a). To reduce the randomness of the acquired signals, L number of iid resolution

cells can be averaged (or speckle filtered), and the matrix of equation (3) becomes

the L-looked coherency matrix:

T =
1

L

L∑
i=1

kpik
∗T
pi (4.4)

where i=1,2, .., L, are the number of averaged samples or realizations.

4.4.1 Covariance matrix eigenvector/eigenvalue decomposi-

tion

Several theorems have been proposed to decompose the target covariance matrix of

equation 4.4 into simpler objects to aid its physical interpretation. These can be

coherent decompositions to characterize the so-called coherent or pure targets, or
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incoherent decompositions for partial or distributed targets (Lee & Pottier, 2009).

In this paper, a brief introduction to the eigenvector/eigenvalues decomposition in

the context of PolSAR data analysis (S. R. Cloude & Pottier, 1996; Lee & Pottier,

2009) is given since as it will be seen in section 4.5, it is linked to the optimization

required in the change detector proposed. The coherency matrix T of equation 4.4

can be decomposed using the eigendecomposition theorem, as

T = U ·D · U−1 (4.5)

where D is a 3x3 diagonal matrix that contains the non-negative and real eigenvalues

diag(λ1, λ2, λ3), and U = [u1 u2 u3] is a 3x3 unitary matrix in which the column

vectors u1, u2, and u3 are the three orthogonal eigenvectors.

In order to provide a physical interpretation of this decomposition, the eigen-

vectors u1, u2, and u3 or more generally, vi with i=1,2,3 of T can be rewritten

as

vi =
√
λi [cos(αi) cos(αi) sin(βi) sin(αi) sin(βi)]

T (4.6)

The average or dominant scattering mechanism of a resolution cell can then be

obtained by combination of the three orthogonal eigenvectors as (Lee & Pottier,

2009)

v =
√
λ [cos(α) cos(α) sin(β) sin(α) sin(β)]T (4.7)

where λ =
∑3

i=1 Piλi, α =
∑3

i=1 Piαi, β =
∑3

i=1 Piβi. In the three later definitions,

Pi corresponds to the pseudo probabilities

Pi =
λi∑3
k=1 λk

. (4.8)

Using equation 4.7 it is possible to visualise the average or dominant scattering

mechanism of each resolution cell of a PolSAR image as an RGB composite as shown

in figure 4.1, using the following colour representation:
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Blue :
√
λ cos(α)

Red :
√
λ cos(α) sin(β)

Green :
√
λ sin(α) sin(β)

(4.9)

In equation 4.9 the expression in the blue channel corresponds to surface scattering,

in the red channel to double bounce scattering and in the green channel to volume

scattering (Lee & Pottier, 2009).

4.5 PolSAR change detection based on difference

of covariance matrices

This section introduces the proposed PolSAR change detector which allows us to

extract polarimetric changes between two acquisitions, identifying the occurrence of

changes and providing interpretation about the type of change that a target suffered.

Part of this method has been previously introduced by the authors in (Marino &

Alonso-González, 2017; Silva et al., 2018). Note that previous works introduced

only the algebraic part of the detector but it did not contain a way to intuitively

visualise scattering mechanisms. Similarly, it did not explore the potential for crop

type classification nor any of quantitative validation had been performed.

4.5.1 Pairwise change detection

For the case of bi-date change detection, we denote the pair of co-registered acqui-

sitions to be compared as date1 and date2. The coherency matrices represented by

equation 4.4 and denoted as T1 and T2 are used to characterize a resolution cell at

date1 and date2, respectively. It is possible to write T2 as the sum of T1 plus an

independent matrix including the added and subtracted components as

T2 = T1 + TC (4.10)

where the matrix TC calculated as TC = T2−T1 is Hermitian symmetric, since it

is produced by the linear combination of two hermitian matrices, but is not positive

semi-definite. This means that the diagonal elements of Tc are real and the upper
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triangular part is the complex conjugate of the lower triangular part (Marino &

Alonso-González, 2017). However, there is a difference with ordinary coherency

matrix, since it is not bound to be positive semi-definite. This means that its

Trace and its quadratic form P = ω∗TTCω (using a generic projection vector ω)

can be negative. This is an expected feature since we need a matrix that is able to

communicate if the change in the partial target has brought an increase or reduction

of a) a specific scattering mechanism and b) the overall power of the final partial

target (trace).

By representing TC with its quadratic form P = ω∗TTCω we can investigate the

amount of change that a scattering vector represented by the projection vector ω

suffers. In this sense, by optimizing over all the possible projection vectors ω, it is

possible to find the one that experiences the largest or smallest change. Note that the

optima ω also corresponds to the scattering mechanism that was added/subtracted

to the partial target in date1.

4.5.2 Optimisation

To find the maximum and minimum projection vectors we can apply the well-known

Lagrangian optimisation for the quadratic form P = ω∗TTCω. That is:

ωmax = arg max
ω∈C3

[ω∗TTCω] (4.11)

By constraining ω to be unitary we can obtain the Lagrangian as:

L = ω∗TTCω − λ(ω∗Tω + C) (4.12)

Differentiating with respect to ω∗T and setting the derivative equal to zero we

obtain the equation:

dL

dω∗T = TCω − λω

TCω = λω

(4.13)

Note that equation 4.13 corresponds to the eigendecomposition theorem de-

scribed in equation 4.5 and therefore the optimisation can be completed by a di-

agonalisation of the matrix TC . Since TC is Hermitian, the eigenvalues will be real
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but as TC is not positive semi-definite, the eigenvalues are not bound to be positive.

This is because a change can increase or decrease the resulting power of a scattering

mechanism (e.g. we could have that the surface scattering mechanism increases or

decreases).

4.5.3 Change visualisation

After the optimisation procedure described in the previous section the eigenvalues

and eigenvectors of TC are obtained. In this case, the eigenvectors represent scat-

tering mechanisms that change between a pair of acquisitions and the eigenvalues

represent the intensity of such changes. Note that since the eigenvalues are not

bound to be positive, the negative eigenvalues represent a scattering mechanism

that has been removed from the scene.

The visualisation and interpretation can be performed in the same way as de-

scribed in section 4.4.1. The dominant or average scattering mechanism for both

cases, i.e. when is added or removed from a scene, can be represented with equation

4.9. However, equation 4.8 requires special consideration given that the eigenvalues

can be negative. It is adjusted by separating the positive and negative eigenval-

ues, corresponding to added or removed scattering mechanisms respectively, which

allows for their independent visualisation, as follows:

Pi added =

0 for λi < 0

λi

|λ1|+|λ2|+|λ3| for λi > 0

Pi removed =


|λi|

|λ1|+|λ2|+|λ3| for λi < 0

0 for λi > 0

(4.14)

Equation 4.14 indicates that if an eigenvalue is negative, the pseudo-probability

that the associated eigenvector or scattering mechanism (SM) was added to the scene

is zero and if the eigenvalue is positive, the pseudo-probability that the associated

eigenvector or SM was removed to the scene is zero. We can then compute the

average parameters λ, α, β separately for added or removed scattering mechanisms

which enable us to employ the RGB representation of equation 9, as follows:
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λ added =
3∑

i=1

Pi added |λi|

α added =
3∑

i=1

Pi added αi

β added =
3∑

i=1

Pi added βi

(4.15)

λ removed =
3∑

i=1

Pi removed |λi|

α removed =
3∑

i=1

Pi removed αi

β removed =
3∑

i=1

Pi removed βi

(4.16)

Using equation 4.15 and 4.16 into equation 4.9, an RGB representation for the

added and removed scattering mechanisms between a couple of acquisitions can be

obtained.

4.6 Results and Interpretation of PolSAR Change

Detection

Figure 4.3 shows the change detection results applied over four different pairs of

images along the season in the test site 1. To describe the changes between images

we will focus on the rice fields which are represented by the pink colour in figure

1. Although other interesting behaviour is observed in the smaller fields nearby, no

description is given since ground truth for these fields is not available in this dataset.

A single incidence angle is considered to provide an interpretation of the observed

PolSAR changes between the following set of pairs of images:

• Pair 1: From 2014-06-05 to 2014-06-29 (fig 4.3a)

• Pair 2: From 2014-06-29 to 2014-07-23 (fig 4.3b)

• Pair 3: From 2014-07-23 to 2014-08-16 (fig 4.3c)
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Figure 4.3: RGB composite of changes detected in test site 1. The colours represent

Red: Double bounce, Green: volume scattering, Blue: Surface scattering. The

brightness of the pixel corresponds to intensity of change. Top row: Scattering

mechanisms added to the scene. Bottom row: Scattering mechanisms removed from

the scene. Changes from: a) 2014-06-05 to 2014-06-29, b) 2014-06-29 to 2014-07-23,

c) 2014-07-23 to 2014-08-16, d) 2014-08-16 to 2014-09-09

• Pair 4: From 2014-08-16 to 2014-09-09 (fig 4.3d)

Pair 1: Figure 4.3a shows the change in scattering mechanisms from the be-

ginning to the end of June when the phenological information confirms that on

2014-06-05 most of the parcels have been already flooded while on 2014-06-29, the

majority of the parcels reached the tillering stage. In the top plot of figure 4a,

we can see a strong increase in double bounce (red) mostly due to the SAR signal

bouncing in the water surface, then to the emerging plants in tillering and back to

the satellite. Few parcels also depict blue colour since not all parcels share the same

starting date or might be shortly delayed in the growth process. Note at the bottom

plot of figure 4a that mostly dark areas are present meaning that the scattering

mechanisms that are removed from the scene are not strong. This can be associated

with the fact that the parcels transitioned from flooded fields to fields with short

vegetation and therefore the power of the acquisition is stronger at the end of June

than at the beginning, causing the majority of the SMs to be added rather than

removed.

Pair 2: A similar behaviour can be observed for change in SMs from the 29th
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of June to the 23th of July when the fields reach the vegetative stage and plants

continue to get more vigorous. However, the intensity of the SMs that are added to

the scene is not as strong as the change between the previous pair since the overall

change in the backscatter power is not as high. Note that the colour depicted in fig4b

resembles more a pink colour rather than only red, indicating a combination of added

double bounce and surface scattering. This might be explained since stronger and

more vegetative structures are added to the scattering scene due to the increase in

the plants height and the number of tillers. Note that this does not necessarily mean

that surface scattering is predominant in the scene but that the surface scattering

in July was stronger than in June. As a consequence, there is an increase in the

intensity of both surface scattering and double bounce. Similar to the previous pair,

the SMs that are removed from the scene are not strong, however, some weak red

colour can be seen in the bottom plot of figure 4.3b, indicating the removal of double

bounce in those parcels.

Pair 3: The pair from the 23th of July to the 16th of August shows mostly dark

areas indicating no added scattering mechanisms to the scene (figure 4.3c). This

can be explained since the plants are reaching the advanced vegetative state in the

16th of August image therefore starting to lose the vigour and vertical structure and

producing a less strong backscatter response than in the 23th of July image. On

the contrary, the bottom plot shows that the combined double bounce and surface

scattering that had been added from June to July, are now being removed from

the scene given the weaker structure of the plants once they reach late vegetative

stages. This is the only pair of images in which the removed scattering mechanisms

are stronger than the added ones.

Pair 4: Figure 4.3d shows an increase in green colour in the top plot, corre-

sponding to the addition of volume scattering from the 16th of August to the 9th

of September. By the latter date, plants have reached maturation, lost water con-

tent and the vigorous vertical structure allowing the SAR signal to interact with

plants, soil and simultaneously with both in a combination of the three scattering

mechanisms. In the bottom plot of figure 4.3d, it is possible to see that it is mostly

characterised by dark areas with again weak pink color being removed from some

parcels, in this case due to these parcels being delayed in the growth process and
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showing the same effect than the removed SMs in the previous pair.

4.7 Change matrix and target dynamics

Since the information about the crop evolution is obtained from the analysis of

pairs of acquisitions, it is possible to evaluate not only changes from consecutive

dates but also to see how any given acquisition differs with respect to all the other

acquisitions in the stack of co-registered images. This process identifies the evolution

of the scattering mechanisms throughout the season.

Inspired by Alonso-González et al. (2020), we organised the PolSAR changes

not only between consecutive images but between all the images in the stack as a

NxNx3 square matrix, with N being the number of images in the stack, and three

given the RGB representation of equation 4.9. The off-diagonal elements correspond

to the evaluation of polarimetric changes between the available dates. The upper

triangular part is designed to represent the scattering mechanisms that are added to

the scene between a given pair of images and the lower triangular part to represent

the ones that have been removed. Note that the diagonal elements of this matrix

can also be employed if desired, by obtaining the dominant or average scattering

mechanism in the scene for a given date as introduced in section 4.4.1.

It is worth noticing that the color representation of added or removed scattering

mechanisms in the square matrix is in the same way as described in section 4.9.

Therefore, the change matrix is an RGB composite that depicts with the color the

type of change and with the contrast the intensity of the change between a given

pair of dates.

4.7.1 Target dynamic analysis

To illustrate the evolution of a target scattering mechanisms over time and relate

them to physical changes, figure 4.4 shows the SMs throughout the season of a rice

parcel in the test site 1, where the ground truth is known. The colours and intensities

of the change matrix can be interpreted as a conventional Pauli RGB composite,

that is, red for double bounce, green for oriented dihedral or volume and blue for

surface scattering.
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Figure 4.4: Typical rice change matrix. Left: Change matrix. Top right: Main rice

growth stages. Bottom right: RGB interpretation of added and removed scattering

mechanisms (SMs). The added and removed SMs between two stages correspond to

their intersecting squares in the upper and lower triangular part, respectively.

Due to the rice crop cultivation practices in which the season starts with seeding

over flooded soils with low backscatter returned to the satellite, the multitemporal

change detection process mostly identifies increase in scattering mechanisms when

compared to this initial stage. This is reflected by the upper triangular elements

of the change matrix of figure 4.4, having marginally stronger intensity than the

lower triangular part. In figure 4.4, the squares and circles with the numbers 1

to 5 correspond to the main growth stages of rice. The SMs added between two

growth stages can be seen as the intersection between the squares of both stages in

the upper triangular part. The intersection of these stages in the lower triangular

part represents the SMs that are removed from the scene. It is possible to see

for instance, that double bounce is added to the scene between stages 1 and 2

represented by the red colour, which is assumed to be caused by the interaction

of the SAR signal with the plant stems emerging from the water at tillering stage.

Although is almost imperceptible, dark blue appears in the leftmost column of the

change matrix indicating that surface scattering is removed from all stages when

compared to square 1 (flooded soil).

When the crop reaches the advanced vegetative stage in July, more vegetative
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structures are added to the scattering scene due to the increase in the plants height

and the number of tillers. As a consequence, there is an increase in the power of

the returned backscatter and addition of both surface scattering and double bounce

is observed. This combination is reflected in the change matrix with purple colour

in the intersection between squares 1 to 3 and 2 to 3. On the contrary, the biggest

decrease in the intensity of change occurs in the transition between vegetative to

reproductive stages (end July to end of August). This is observed due to the plants

starting to lose the vigorous vertical structure when entering into the reproductive

stage. The change matrix shows at this point, decrease in surface and double bounce

in the intersection between squares 3 to 4 in the lower triangular.

At the end of the season (rightmost column) an increase in green color cor-

responding to volume scattering being added to the scene when the crop reaches

maturation can be seen. This is communicating that comparing stage 5 with any

stage from 1 to 4, volume scattering is added. This is as a consequence of the

plants random orientation and also due to the plants getting drier and therefore

more transparent to the SAR signal causing multiple scattering to be present in the

scene. Traditional polarimetric analysis has reported similar results with high values

of entropy at this stage (Lopez-Sanchez et al., 2014; Lopez-Sanchez et al., 2017).

4.7.2 Other crop and land types

To generalize the usefulness of the change matrix for target dynamics analysis, we

obtained the change matrix for other crops included in the test site 2. The obtained

results are shown in figures 4.5, 4.6 and 4.7. It is possible to see by visual inspection

how different the resulting matrices are for each of these three crop types and to

that of the rice crop presented in figure 4.4. This shows how the matrix encodes

differently the temporal PolSAR evolution for each crop type characterizing it in a

specific way. The analysis correlating the crop morphology at the different growth

stages can also be used with these change matrices to understand the interaction of

the SAR signal with each crop throughout the season.

It is important to notice that because the matrix contains separately each scat-

tering mechanism (in each channel), the analysis of the parcel evolution can be done

for each mechanism separately. For instance, we can compare if the double bounce
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Figure 4.5: Typical Barley change matrix. The added and removed SMs between

two dates correspond to their intersecting squares in the upper and lower triangular

part, respectively.

in a parcel due to the plants emergence above the water level is delayed in time

relative to other parcels or a reference parcel.

On the other hand, similar effects were observed for other land types, such as

rivers, forests, cities where each of these land types created a change matrix with

specific behaviour. These differences, described by the colours that represent the

evolution of scattering mechanisms, the intensity of the change matrix and the times

when specific events occur, can be used to characterize a crop type or more generally

a land class and, consequently, this information can be exploited as input for image

classification.

4.8 Crop type classification

It was shown in section 4.7 how the change matrix can be used to visualize, un-

derstand and characterise the interaction and response of the radar signal with a

target that evolves over time. This section presents the application of the change
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Figure 4.6: Typical Canola change matrix. The added and removed SMs between

two dates correspond to their intersecting squares in the upper and lower triangular

part, respectively.

matrix for multitemporal image classification. It considers the proven fact that mul-

tiple acquisitions provide better performance results than single image classification

while also considering the fully polarimetric information measured by the satellite

(McNairn & Shang, 2016a; Skriver et al., 2011).

In order to investigate the change matrix potential for image classification,

change matrices are used as inputs for a fully connected Neural network (NN) clas-

sifier. Its performance is then compared with a classification based on time series of

PolSAR features, where the features are derived from covariance matrix decompo-

sitions (Lee & Pottier, 2009).

4.8.1 Dataset splits, metrics and classifier

4.8.1.1 Dataset splits

In all cases, the parcels where ground truth is available are divided into three groups:

Training (65%), validation (15%) and test parcels (20%) preserving in all cases the
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Figure 4.7: Typical Field Pea change matrix. The added and removed SMs between

two dates correspond to their intersecting squares in the upper and lower triangular

part, respectively.

same proportion of samples per class as in the original dataset. Note that we split

the data ensuring that the resolution cells belonging to a parcel are only present in

one of the sets (i.e. training parcels independent from validation and test parcels)

considering that neighbouring pixels would have correlation due to spatial filters and

other pre-processing steps, such as multi-looking, speckle filter and co-registration.

Without doing this, the test set would contain samples very similar to those in the

training set and the model would give over-optimistic performance after predicting

on test set. After splitting the available ground truth and removing the crop types

where the data is not enough for training and testing a model, the dataset is reduced

to 10 crop types and results in a highly imbalanced distribution of pixels for training,

validation and testing in each class. Accordingly, both the classifier and the metrics

used are adjusted to account for this effect.
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4.8.1.2 Neural network classifiers

A fully connected neural network is used for classification in all the cases presented in

the following subsections. Hyperparameter search was performed to select network

depth, width and need for dropout layers, and to select the optimizer and learning

rate. This resulted in a NN with three hidden layers of 256 neurons each, using

batch normalization before every hidden layer and before the output layer, and

Nadam optimizer with learning rate of 0.0005. To deal with the class imbalance as

previously stated, the model is trained using weighted cross entropy loss function,

in which the weights correspond to ratios obtained from the class imbalance. Note

that randomly sub-sampling the majority classes before training was also tested,

delivering similar or slightly lower performances. On the other hand Random Forest

based classifiers were also tested also with lower performance.

4.8.1.3 Metrics

The accuracy metric is traditionally reported to evaluate classifiers performance.

However, since it relies on the frequency with which the model predictions on the

test set match the ground truth, in imbalanced classification problems the results

are dominated by the majority classes and with small contribution by the minority

classes (Santos et al., 2018; Sun et al., 2009). To account for this, we report the

balanced accuracy metric which is the accuracy adjusted by their corresponding

class weight (ratio of samples per class over the total number of samples). We also

report the per-class F1 score, recommended for imbalanced classification (Santos et

al., 2018; Sun et al., 2009), and compute the macro average F1 measure to average

across classes.

To be able to compare the obtained results with other works, we additionally

report the traditional overall accuracy which we call imbalanced accuracy, since it

does not account for the class imbalance present in the data.

4.8.2 Change matrix based classification

The change matrix (CM) of size NxNx3 derived in section 4.7, where N is the number

of dates, is flattened as a one-dimensional array and received by the input layer of
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Table 4.3: Classification results using the flattened change matrices and PolSAR

features as input for the NN.

Metric Change Matrix PolSAR-features

Balanced accuracy 0.671 0.667

F1 macro 0.623 0.614

Imbalanced accuracy 0.788 0.777

the NN. For the present analysis 7 images corresponding to the dates shown in table

4.2 are used, thus resulting in a 147 input feature vector.

Figure 4.8 shows the confusion matrix obtained after predicting on the test set.

It can be noticed that the CM-based classifier performs well predicting crops such

as canola, field peas, lentil and mixed pasture and that it under performs predicting

crops such as barley, durum wheat, oats and spring wheat, mostly due to confusion

in the prediction between these four classes. This is in part explained considering

that these crop types have similar biophysical characteristics being all of them part of

the family of cereal crops, therefore producing similar PolSAR responses. Table 4.3

shows the corresponding metrics obtained on the test set after training the models.

It can be seen in the change matrix column that both the overall balanced accuracy

and the F1 macro metrics are relatively low mainly due to the confusions made by

the classifier within the cereal crops predictions. Note that the overall imbalanced

accuracy gives the impression of a better classifier performance, although in this

particular case it can be attributed to the class imbalance in the dataset.

If instead of classifying cereal crops individually but a single class is used for

all of them (barley, durum wheat, oats and spring wheat), the classification perfor-

mance increases significantly as presented in the figure 4.9. In this case most classes

are predicted correctly, being flax the crop less accurately predicted with some con-

fusions with the cereal crops and pastures. Also notice that the performance of the

classifier predicting canola in the test set is very high since this crop structure and

its evolution over time is considerably different with respect to the other crops under

analysis.
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Figure 4.8: Confusion matrix for the change matrix based classification when pre-

dicting 10 crop types.

4.8.3 PolSAR-features based classification

Time series of backscatter and PolSAR features derived from the H/A/alpha de-

composition of the coherency matrix (S. R. Cloude & Pottier, 1996; Lee & Pot-

tier, 2009), were obtained and used as input for an additional Neural network to

compare its performance with that of the CM-based classification. A total of 16

features time series were considered, including the VV, VH, HH backscatter, the

ratios VH/VV, HH/VH, and HH/VV, dominant and average eigenvalues, dominant

and average alpha angles, dominant beta angle, entropy, anistropy and the magni-

tude of the scattering mechanisms computed as
√
λ ∗ cos(α),

√
λ ∗ sin(α) ∗ cos(β),

√
λ ∗ sin(α) ∗ sin(β).

Figure 4.10 shows the confusion matrix for this case, with most classes having a

similar performance than the CM-based classification, except for Canary seed and

field peas where the CM-based classifier seems to have slightly better performance,

and showing that using PolSAR time series features the classifier also has confusions

identifying the cereal crops.
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Figure 4.9: Confusion matrix for the change matrix based classification when pre-

dicting 6 crop types.

In terms of overall performance, table 4.3 shows that the classifiers using both

input data types (i.e. change matrices or PolSAR time series features) seem to have

very similar resulting test metrics and the balanced accuracy as well as the F1 macro

which are particularly important for imbalanced classification, are slightly better for

the change matrix based classifier. Note however that because the differences are

not large enough (around 1%) a definite conclusion about which input data type

performs best is not possible.

After grouping the cereal crops in a single class and training a NN classifier to

predict the reduced set of classes, the results obtained are shown in figure 4.11.

Again significant improvements are achieved compared to a classifier predicting the

cereal crops separately and improvements in all crops types apart from mixed pas-

ture are also achieved with respect to the CM-based classification. With regards to

overall performance, table 4.4 shows that the classifiers using both input data types

have similar resulting test metrics, however, note that for this case of the reduced

set of classes the balanced accuracy and the F1 macro are both metrics approxi-
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Figure 4.10: Confusion matrix for the PolSAR-features based classification when

predicting 10 crop types.

Table 4.4: Classification results when predicting the cereal crops in a single class.

Metric Change Matrix PolSAR-features

Balanced accuracy 0.908 0.928

F1 macro 0.839 0.867

Imbalanced accuracy 0.910 0.933

mately 3% better for the PolSAR time series based classifier than for the CM-based

equivalent. This is opposite to the results of table 4.3 where the CM-based out-

performs the PolSAR-features based classification. Since neither of the two tables

show large differences between metrics a definite conclusion about which input data

type performs better is not possible but rather we see that the performances are

comparable.
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Figure 4.11: Confusion matrix for the PolSAR-features based classification when

predicting 6 crop types

4.8.4 Prediction maps

The trained models can now be used for predicting on the whole test site as shown in

figures 4.13 and 4.15 for the 10 classes case, that is, the cereals crops as independent

classes, and for the 6 classes by combining the cereal crop types, respectively.

We can notice in figure 4.13 similar results to those obtained in the confusion

matrices, in which canola, lentil, field peas and mixed pasture have strong agreement

with the ground truth, whereas the cereal crops are confused between them. Figure

4.15 also shows the confusion of the model to predict flax as a cereal crop.

4.9 Discussion

This paper addresses a method to process and analyse multitemporal and quad

polarimetric SAR data. This aims at developing a methodology that helps reduc-

ing the complexity when analysing time series of polarimetric features. As shown

in section 4.7, inspired by Alonso-González et al. (2020), we use quad-pol change
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Figure 4.12: Ground truth map when predicting 10 crop types.

detection to encode the evolution of scattering mechanisms over time in a change

matrix. The proposed change matrix can be interpreted intuitively by looking at

its colours and intensities. Note that in this paper, in order to have a more straight

forward interpretation of the scattering mechanisms, a change detector based on the

difference of the covariance matrices is used as opposed to the power ratio used by

Alonso-González et al. (2020). This is also an improvement compared to previous

approaches that propose a multitemporal change detection (Conradsen et al., 2016;

A. Nielsen et al., 2017) and change matrices (Lê et al., 2014; Lê et al., 2015), how-

ever, only exploiting intensity of changes without using the polarimetric information

available.

In section 4.8, we address the performance for image classification using the

change matrix as input. This was compared to more traditional classifiers that

use multitemporal quad-pol features as inputs. Experimental results indicate that

comparable levels can be obtained for image classification purposes when using the
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Figure 4.13: Prediction map using the CM-based classifier when predicting 10 crop

types.

change matrix as input for a machine learning classifier. Note however, that the

change matrix allows one to have an interpretable idea of the input data being used,

while simultaneously providing a single method for crop monitoring over time and

crop type classification. The crop type classification outcome could be improved fur-

ther by implementing a post-processing spatial filtering stage such as a majority vote

moving window or using morphological filters. This would smooth the predictions at

pixel level by considering spatial information. Although it was not implemented in

this paper to avoid biases when comparing the proposed change detection method-

ology and state of the art classifiers, it could increase the accuracy achieved by the

predictive models.

Regarding transferability of the methodology presented in this chapter, since the

change detection proposed here for crop monitoring does not require ground truth, it

can be implemented in other sites where Quad-PolSAR data is available. While hav-

ing information about the crop being monitored aids the interpretation, the current
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Figure 4.14: Ground truth map when predicting 6 crop types.

method will provide information about the changes in crop scattering mechanisms

and which can be then linked to the crop growth stage. It is important to consider

the influence of the incidence angle since combining different acquisition geometries

currently results in undesired artifacts due to combined detection of changes in both

the crop growth and the observation geometry. Using the change matrix for crop

growth, a simple solution would be to restrict the detection of changes to the same

orbit as in figure 4.3 resulting in increasing the time between images. However, for

current constellations this might be acceptable since it can reach times of 6 days,

for example for the case of Sentinel-1. A different approach could be to perform

incidence angle normalisation before the change detection step as for instance in

Bauer-Marschallinger et al., 2018. Note that the influence of the incidence angle

when using the change matrix for crop type classification is expected to be less sig-

nificant. This is because both the training and test pixels (or pixels in the region

of interest) contain the effect of the incidence angle. Therefore, a classifier could

predict crop types since it receives the same information at training and testing
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Figure 4.15: Prediction map using the CM-based classifier when predicting 6 crop

types.

times. The acquisition geometry, however, requires more detailed consideration and

will be addressed in future work. Also for forthcoming investigation, other methods

that create multitemporal matrices can be integrated to the present methodology.

These methods, recently introduced in the literature, use interferometric coherence

between images Jacob et al., 2020; Mestre-Quereda et al., 2020 instead of the polari-

metric information. Therefore, combining the PolSAR and InSAR data, may result

in complementary information being used as input for the classifier in order to boost

performance. Similarly, a next step developing the change matrices methodology is

to adapt it to dual pol systems such as the Sentinel-1 satellite. This is done by re-

placing the 3x3 pixel covariance matrices derived for monostatic Quad-pol systems

of equation (4.10), for the 2x2 matrices formed using the two polarisations provided

by Sentinel-1. Note, however, that the visualisation and interpretation need to be

adaptaded accordingly.

A current limitation of the proposed method is that the crop stage monitoring
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was addressed using 5 phenological stages and not a more granular index of phe-

nology. This aspect is currently being addressed and will be shown in future work.

In addition, we have noticed that differences in colour and intensity and deviations

from a typical change matrix can be identified visually. This can also be used as

a tool for in-season crop growth anomaly detection and will be the focus of fu-

ture research. Lastly, the computational efficiency of the change matrix needs to

be increased considering that it grows over time, as new images become available.

Investigations in this regard are being undertaken.

4.10 Conclusion

This article presents a change detection-based method to visualise and analyse multi-

temporal quad polarimetric images. The change detector is derived as the pixelwise

difference of covariance matrices between all the co-registered images in a stack,

which organised in a matrix form, allows the interpretation of the evolution of scat-

tering mechanisms over time. We showed how growth stages of rice fields can be

related to the scattering mechanisms observed and how it differs from other crop

types. Based on this property of encoding the scattering mechanisms for each crop

type, we tested the performance of the proposed method for image classification

to identify several crop types. Results show that this method yields similar per-

formance to traditional classifiers, which use time series of polarimetric features as

input with differences in the overall balanced accuracies and F1-macro metrics of

around 1% or 2% in favour of one or another based on the number of classes used.

The method presented here achieves similar classification performances while pro-

viding additional advantages in terms of interpretability and insight into the physical

changes of a target over time. It also provides a different view of the change of crop

states that could be incorporated to provide a broader view of the whole dynamic

system.
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General Discussion and

Conclusion

Space-borne earth observation represents a key tool, enabling access to multi-scale

and frequent data for stakeholders within the agricultural supply chain. It is consid-

ered an important medium for informed decision making that promotes sustainable

and profitable crop management practices. The ability of SAR systems to acquire

images without interruptions and their capacity to respond differently to geomet-

rical and dielectric properties of objects, shapes and vegetation states, represents

a unique opportunity for timely monitoring of crop biophysical variables. In this

context, improving our sets of tools and techniques for exploitation of SAR data for

croplands monitoring is essential.

The work of this thesis contributes to current state of the art knowledge and

methodologies for agricultural fields monitoring, using data derived from SAR satel-

lites. This section provides discussion around this point, by focusing specifically on

three aspects:

(a) A synthesis of the main findings of the thesis and their importance in connec-

tion with the existing literature in the field.

(b) Future research directions, underpinned by this thesis.

(c) Recommendations and concluding remarks, in terms of the selection of algo-

rithms for near real-time monitoring of agricultural fields from space-borne

SAR imagery.
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5.1 Synthesis of findings in the context of the ex-

isting literature

An important finding of this thesis is that asparagus crop phenology can be mon-

itored from multitemporal SAR data. Chapter two shows that the C-band SAR

signal of the Sentinel-1 satellite is sensitive to asparagus crop development as the

backscatter temporal response presents clear changes that can be associated with

crop growth and/or management practices. We showed that particularly the VH

backscatter is sensitive to crop growth, for instance, since the backscatter intensity

rapidly increases in response to stem vertical elongation, caused by the double inter-

action between the SAR signal with the soil and the vertical stems. The backscatter

then remains constant after the canopy reaches maturity as the signal mostly inter-

acts with the fully formed canopy which does not suffer major biomass changes until

harvest. The significant backscatter drop in both Sentinel-1 polarisation channels

was also associated (through ground truth) with the fern mechanical removal at har-

vest time. The temporal backscatter signature of asparagus tends to follow a similar

sequence to the scattering mechanisms observed for other crop types, such as rice

(Lopez-Sanchez et al., 2014) and cereal crops (Vicente-Guijalba et al., 2015). In all

of these cases, including asparagus, surface scattering is observed at the beginning

of the season, then double bounce increases due to interaction of the signal with soil

and vertical stems, and finally, volume scattering dominates once a canopy is formed

and the crop reaches maturation. Two unique features, however, characterise the

SAR response of asparagus from other crops. Firstly, being a perennial crop causes

the backscatter to have a strong seasonal component, as a new agricultural season

starts immediately after the end of the previous one, without crop rotation. Sec-

ondly, most of the changes in the backscatter time series can be observed in the first

month of the season, as this is the time taken from emergence to canopy formation.

Note that as the Peruvian test site has mild winters, the canopy does not reach

senescence naturally and there are not significant changes in the canopy biomass.

This is reflected in the backscatter time series which shows minimal change during

this period. It is important to mention that before this thesis, only a limited number

of studies had considered the use of radar remote sensing for monitoring asparagus
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activities. In these cases, authors have specifically focused on asparagus crop iden-

tification using SAR imagery (Arias et al., 2020; Bargiel et al., 2010; Sabour et al.,

2008; Tavakkoli & Lohmann, 2006). However, none of these studies investigated

and interpreted the backscatter response to the crop growth stages and develop-

ment over time, as was shown in chapter two. As such, it is the first time that

evidence is provided to the literature about the potential for asparagus monitoring.

Similarly, to the best of our knowledge, none of the previous studies evaluated the

possibility of retrieving asparagus crop stage, as was proposed in this thesis using a

machine learning approach (section 2.2.7). An important outcome of this was the

use of ancillary data, such as multitemporal images, the season starting date or the

season accumulated temperature, helps to separate crop stages that have similar

backscatter response.

Note, however, that the work on asparagus of chapter two is limited in its scope

since it only used one of three possible SAR acquisition geometries and does not

have a straight forward integration with other satellite sensors. Similarly, as in sev-

eral publications presented recently, (Küçük et al., 2016; Lopez-Sanchez, Ballester-

Berman, & Hajnsek, 2011; Mascolo et al., 2015; Shang et al., 2013), the model

presented for crop stage retrieval is not able to extrapolate predictions forward or

backward in time. This means, for instance, that this approach does not allow to

forecast when subsequent growth stages would be reached. In this regard, recent

studies have shown that a Bayesian Filtering Framework (BFF) can be used to ad-

dress these issues (De Bernardis et al., 2016b; De Bernardis et al., 2014b; McNairn

et al., 2018; Vicente-Guijalba et al., 2015). BFFs enable near real-time crop moni-

toring by updating the state of the crop variables as soon as a new image is available.

Similarly, as an observation model can be used separately for a given sensor, it al-

lows to easily integrate several sensors observing the crop. Indeed, a study by De

Bernardis et al. (2016b) fused SAR and optical data from the TerraSAR-X and

the LANDSAT satellites for rice phenology tracking. The authors highlighted the

benefits of the active passive sensor fusion for improving retrieval accuracy of rice

phenology. Similarly, McNairn et al. (2018) fuse multifrequency SAR data using the

X-band from TerraSAR-X and C-band from RADARSAT-2 satellites also empha-

sizing the benefits of the fusion for accuracy and reduction of temporal resolution
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for monitoring canola phenology. Note, however, that the dynamic and observation

models of these studies limit their transferability to other sites. In the case of De

Bernardis et al. (2016b) since it uses parametric models specific for rice crops. In

the case of McNairn et al. (2018) since the model relies specifically on temperature

for the dynamic models and the observation models are not mentioned in the study.

In this context, a key contribution of this thesis is the use of historical data and a

data-driven approach to learn the predictive dynamic and observation models and

the associated uncertainty with a model prediction. The Gaussian Processes based

Extended Kalman filter (GP-EKF) proposed in chapter three of this thesis for as-

paragus below ground carbohydrates tracking, implement this and expands current

state of the art studies for tracking crop variables.

First of all, since it is a learning-based method, it removes the requirement of

fitting a parametric function for dynamic and observation models in the Bayesian

Filtering Frameworks (i.e. Kalman and particle filters). This is a constrain that

can be encountered in recent works (De Bernardis et al., 2016b; McNairn et al.,

2018). On this basis, the GP-UKF of chapter three facilitates the transferability of

the method to other crop types and regions where ground truth is available. This

can be seen for instance with the use of the method for asparagus crops. Parametric

dynamic and observation models for asparagus are not as common as those for cereal

crops which are the crop types where most of the research in the literature has

focused on (i.e. rice, wheat, barley) (De Bernardis et al., 2016b; Vicente-Guijalba

et al., 2015). This means that obtaining these models can be time consuming,

requires specific crop knowledge and may not be initially accurate. On the contrary,

learning the models with Gaussian Processes, simplifies this task. Moreover, since

the uncertainty associated with the model predictive accuracy and the training data

availability is learnt alongside, their incorporation in Bayesian filtering frameworks

is straight forward (Deisenroth et al., 2009; Ko & Fox, 2009; Turner et al., 2010).

In addition, the GP-UKF method was also presented with the use of freely avail-

able remote sensing data. Existing studies use quad-polarisation SAR as it provides

more information to characterise a crop (De Bernardis et al., 2014b; McNairn et al.,

2018; Vicente-Guijalba et al., 2015). This translates in the practice into having more

SAR features helpful to separate crop growth states over a season. This is a more
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complicated task using the dual-pol backscatter intensities of the free Sentinel-1

data alone as less information is available, and therefore, for this task we proposed

to exploit the temporal data dimension. Specifically, we created SAR vectors of

observations including the images available in the previous 100 days to characterise

a crop state. This way the vector of observations contains more information and is

able to discriminate between similar crop conditions. This has important implica-

tions since it gives opportunities for freely available data users (such as farmers in

developing countries) to implement state of the art techniques.

Most of the work that reports monitoring biophysical variables from spaceborne

SAR data, has focused on estimating crop phenology (Küçük et al., 2016; Lopez-

Sanchez et al., 2014; Mascolo et al., 2016; McNairn et al., 2018; Shang et al., 2013;

Vicente-Guijalba et al., 2015). To a lesser extent, other studies focused on the esti-

mation of variables such as leaf area index (Bériaux et al., 2015; Kweon & Oh, 2014;

Tao et al., 2016b), biomass (Hosseini & McNairn, 2017; Mandal, Kumar, McNairn,

et al., 2019; Wiseman et al., 2014b) or crop height (Erten et al., 2016a; Xie et al.,

2021b; Yuzugullu et al., 2016). However, an investigation reporting below-ground

carbohydrates content from SAR observations of above-ground canopy condition of

agricultural fields, has not been reported before (to the best of our knowledge).

This is a novel contribution of this work, exploring additional capabilities of the

exploitation of SAR data for agricultural applications.

It is to be noted that through the Unscented Transform, the GP-EFK approx-

imates the crop states to Gaussian distributions. While this ensures the resulting

filtering equations to be tractable or in closed form, the filter may lose representa-

tional power and hence accuracy. Compared to the sampling-based particle filters

presented by De Bernardis et al. (2014b), De Bernardis et al. (2016b) and McNairn

et al. (2018) which can deal with non-Gaussian distributions at expense of higher

computational cost, this can be seen as a limitation of the GP-UKF. In addition,

the process and observation noise for the two variables monitored are uncorrelated

in the current version of the GP-UKF. This is a limitation first recognised in this

study, since previous papers report only tracking a single variable. Despite not be-

ing implemented here yet, a potential solution using multi-output Gaussian Process

models that learn correlated uncertainties is introduced in the discussion section of
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chapter three.

In chapter four, a novel quad-PolSAR change detection based method is pre-

sented for crop monitoring and crop type classification. It builds upon recent state

of the art change detection techniques based on the optimisation of the difference

of the covariance matrices (Marino & Alonso-Gonzalez, 2018; Silva et al., 2018),

which enables the extraction of information about the intensity and type of changes

between a pair of PolSAR images. As mentioned in section 4.2, this is an im-

provement compared to classical methods that only focus in extracting intensity of

changes, as it provides additional tools to infer what physical changes a target on

the ground may be suffering. We also designed a novel visualisation method that

allows straight forward interpretation of both intensity and type of changes between

pairs of SAR images (Silva-Perez et al., 2021). By organizing the multitemporal

polarimetric changes in a change matrix formalism, we ensure that it contains the

added or removed scattering mechanisms of a scene, not only, from consecutive pairs

of images, but also among all the images in a stack. Note that recent methods that

focus in multitemporal PolSAR change detection only intent to determine when a

given change happened in a time series without interpreting the types of changes in

scattering mechanisms that a target undegoes (Conradsen et al., 2016; A. Nielsen

et al., 2017). Moreover, other studies present ways to determine whether a target

has been added or removed from a scene, for instance, if a strong response coming

from a ship in the sea is now present in an image but was not in the previous one

(A. A. Nielsen et al., 2019). Interestingly, the change matrix that we proposed,

is able to present both, if a target has been added or removed from a scene and

also how the scattering mechanisms changed due to the added/removed target. In

regards to organising multitemporal changes in a matrix form, some studies have

previously presented work upon this idea. These works, however, use only a single

polarisation (Lê et al., 2014) or provide information about how dynamic or stable

a pixel is (Lê et al., 2015), without providing insight into the kind of process that

may be happening in the pixel, as it our change matrix approach can do. In this

thesis, these advantages are applied to the observation and interpretation of changes

in the PolSAR scattering mechanisms of several crop types over a whole season and

validated with relevant field data.
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Note that since we strongly emphasise in results interpretability and in results

that are highly related to physical changes in the crop, the change matrices method

proposed provides a step towards less reliance in ground truth. Due to high costs,

this is normally a limitation on the use of remotely sensed data. Interestingly,

since we also evaluated the potential of this method for crop type classification and

found that its performance is similar to a traditional neural-network based classifier

that uses PolSAR time series as input, the change matrices approach contributes

to current literature not only with a novel crop monitoring method but also with

a novel methodology for crop type identification. This is a crucial result since a

single methodology is able to perform satisfactorily for two separate applications.

Moreover, since the interpretable change matrices are used for training a classifier,

it is also a step towards reducing the black box effect that can often be common in

machine learning algorithms trained for crop type mapping.

5.2 Future work

Futures line of research can be devised when considering the current context of the

field and the findings of this thesis. In terms of improving state of the art algorithms

for crop monitoring, a common point that all current Bayesian filtering algorithms

are lacking (including the GP-UKF presented in this thesis), is the implementation

of pixel-level monitoring of crop biophysical variables. This can be a challenging

task since it is necessary to harmonise the spatial resolution of the different sensors

involved (i.e. SAR, optical and ground sensors). Although it can be argued that

the parcel level tracking is acceptable since the management practices are normally

implemented at this level, pixelwise retrieval could provide farmers more accurate

data for informed decision making, for example for intra-field zone management. In

addition, for the GP-UKF implemented as part of this thesis, the implementation of

other Bayesian filtering methods such as a particle filter could improve the accuracy

of the results. This will complement the implementation of the multiple output

Gaussian process regression as discussed in the previous section, to account for the

correlated uncertainties between state variables and correlated uncertainties between

the remote sensing observations.
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An additional line of work that is relevant is the design of novel and informa-

tive ground truth-free features that extract information about the crop from SAR

imagery. This is by, for example, proposing novel SAR vegetation indices, derived

from backscatter intensities, Interferometric SAR (InSAR) products or the inte-

gration of PolSAR/InSAR or PolInSAR data formats. Such indices support the

characterisation of crop states and the gain of crop insights from the SAR response

without requiring ground truth. Critically, better understanding of the SAR signal

interaction with bare soils and vegetation represent a significant milestone in this

field of research. Although this has been widely investigated, even nowadays most

algorithms rely heavily on the ground truth to fit statistical or machine learning

models. This is a major limitation for the potential of large area coverage offered by

remote sensing. In this context, applications such regional or national level monitor-

ing of management practices are limited by a quality, but expensive ground dataset

collected in the field.

Crop agronomical models are a tool for retrieving the state and health of crop

biophysical variables and for modelling crop yield from the interaction between soil,

plants, and meteorological conditions (Kasampalis et al., 2018). However, deploy-

ment of these crop models at large scale in operational settings is complex consider-

ing that the spatial dimension is not directly embedded in the models but needs a

large, expensive and in occasions impractical network of ground sensors to monitor

meteorological and ground conditions (Kasampalis et al., 2018). Remote sensing is

regarded as a tool to observe and measure input variables that correlate with crop

condition. This can be for example by deriving variables such as Leaf Area Index

(LAI), soil moisture or biomass from remote sensing data and using them as inputs

for the crop agronomical models. It can also be by using SAR based or optical-based

vegetation indices directly into the crop model. This way, agronomical models can

be scaled up and crop monitoring can be achieved by the synergetic use of knowl-

edge accumulated in both, the crop modelling and the remote sensing communities.

Note that recent machine learning approaches aim at deriving this same information

directly from remotely sensed data without using crop models. However, these meth-

ods require intensive ground truth datasets to train the models. Lack of training

data translates in prediction inaccuracies and model uncertainties, since the model
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has no capability to extrapolate results when conditions different to those in which

the models are trained are used as inputs (Kasampalis et al., 2018). In this context,

the use of crop models that use knowledge about soil, plants, and meteorological

conditions interactions, represents a valuable tool to fill these potential gaps left by

the machine learning models. In addition, applications that involve remote sensing

and crop modelling are sometimes referred to as a data assimilation applications

(Huang et al., 2019). Considering this, few studies have presented Kalman Filters

(Kalman, 1960) as a tool for data assimilation for rice, wheat and potato crops,

however, mostly, for optical sensors (De Wit & Van Diepen, 2007; Jiang et al.,

2014; Wagner et al., 2020). Therefore, an expansion of machine learning and the

Bayesian-filters for data assimilation using multidimensional SAR alone or in fusion

with optical data, could bring a new set of opportunities for accurate and timely

crop development monitoring.

In the chapter 4 of this thesis, a paradigm different to Bayesian filtering algo-

rithms was presented for crop monitoring. It is based on the concept of change

matrices created from multitemporal and polarimetric change detection that can be

used for crop monitoring and crop type mapping. The change matrices approach

provides a physical interpretation of the changes in target dynamics over time. This

is considering that the change matrix illustrates the PolSAR intensity and type of

scattering mechanisms that a target suffers over time. As such, the same principle

can be used to monitor different applications to those presented in this thesis. In

agriculture, cropping management practices such as irrigation type, use of soil tillage,

harvest timing, post-harvest activities and knowledge about implementation of crop

rotation and agroforesty, are other key aspects of large area crop monitoring. This is

to tackle food security problems, payments of indemnities from governments, banks,

and insurance companies, and to deal with current agro-environmental challenges.

In this regard, the change matrices approach can be adapted to for this purpose.

Similarly, the change matrices concept can be easily expanded to monitoring other

environmental processes including forest change and logging, wetlands, and flood

monitoring. Current efforts are focused on adapting it for flood monitoring.

The change matrix can be further developed for information extraction by us-

ing additional features that describe change over time. InSAR coherent changes
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have been used recently in a change matrix type of application (Jacob et al., 2020;

Mestre-Quereda et al., 2020). This technique can be added to the current approach

to increase and complement the representational power of the change matrix to

capture more information about a dynamic process. Furthermore, to enhance or

complement the change matrices approach developed in this thesis, future work

could include other ways to derive multitemporal changes. This can be by using

different PolSAR change detection approaches such as that presented in (Alonso-

González et al., 2020) or by utilising well-known similarity measurements such as

ratio operators (Conradsen et al., 2003) or the Wishart or Geodetic PolSAR dis-

tances (Lee et al., 1999). Finally, expansion of the approach for anomaly detection

may be achieved by adding an automatic thresholding method to flag in near-real

time anomalous change from a typical change behaviour. This is currently under de-

velopment considering statistical control chart techniques (Woodall & Montgomery,

1999) and online change point detection methods (Aminikhanghahi & Cook, 2017).

5.3 Final recommendations and concluding remarks

Several approaches for retrieving crop biophysical variables from SAR data have been

reported in the literature. Modelling approaches based on radiative transfer theory

are not as popular nowadays as they were two decades ago. This might be due to

the strong theoretical background required, the assumptions about the geometrical

shapes of the canopy involved in the modelling as well as the computational cost of

running the models. Although machine learning approaches have been significantly

utilised recently, the applications presented so far focus on a single task, such as

classification or regression settings to estimate a biophysical variable. However, a

complete monitoring system that enables near real time monitoring, sensor fusion,

gap filling, and the forecasting of crop variables is yet to be presented. Accordingly,

it is recommended to use a Bayesian Filtering Framework to accomplish these tasks.

A key suggestion proposed in this work is to use a data-driven approach to learn

dynamic and observation models (and uncertainty associated with their predictions),

so that the BFF can be easily adapted for different state variables, crop types and

locations.
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With regards to SAR data formats used as input for the algorithms, GRD SAR

data was used in chapters 2 and 3 while SLC was used in chapter 4. An increasing

number of platforms are focusing on providing the so-called analysis ready data

(ARD) (Gorelick et al., 2017; JNCC & NERC, 2021; Truckenbrodt et al., 2019) in

which the SAR image pre-processing steps are already applied, as was the case for

chapters 2 and 3 of this thesis. Note, however, that only the GRD data format is

commonly provided as ARD which limits the use of these platforms for polarimetric

or interferometric SAR data exploitation. The methodology presented in chapter 4,

for instance, can not be deployed using GRD-ARD, and the pre-processing steps are

required. While this increases the computational requirements in terms of storage

and processing, it provides more flexibility when choosing the steps undertaken to

process the images, as it was, for example, described in section 4.3.3 of this thesis. In

this context it is of key importance to recognise the type SAR data to be exploited

when designing and applying algorithms for crop development monitoring.

Concerning SAR data types, although pilot applications for PolInSAR data have

been developed, the satellite system requirements for data acquisition limit its po-

tential for operational crop monitoring. Since missions in the near future will in-

clude both PolSAR and multiple-pass InSAR, it is encouraged to explore these data

types for agricultural applications. Currently, most approaches derive PolSAR in-

formation from decompositions of SAR pixel covariance matrices. However, it is

recommended to also consider change detection methods, both for PolSAR, as pre-

sented in chapter four of this thesis, and InSAR coherent change detection (Jacob

et al., 2020; Mestre-Quereda et al., 2020). These represent powerful approaches to

quantify, visualise and understand changes in a field. Even though some work is still

required in this area for operational monitoring, specifically mapping the observed

changes to crop condition and how to handle the computational cost of the change

matrix, this approach can easily be expanded for different uses in agriculture or

other environmental applications.

Exploration of data assimilation techniques is also recommended e.g. the com-

bination of agronomic models with climate variables and with SAR and remote

sensing-derived vegetation indices and information about canopy state variables.

This allows the possibility of the agronomic models predicting the evolution of bio-
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physical variables over time, estimating crop yields, and simulating the impact and

effectiveness of different crop growth conditions and management practices on a re-

gional or national scale (based on knowledge of the interaction between the crop and

external factors such as weather and soil). Further, machine learning and BFFs can

be used in a previous, subsequent or parallel step, or in a hybrid fashion, to increase

the accuracy of the results.

5.3.1 Summary and concluding remarks

Increase in food demand due to the increasing population, improvements in quality

of life of developing countries and wider access to food, are expected to put addi-

tional pressures on society’s food production systems. This challenge needs to be

overcome in a sustainable manner, mitigating current agro-environmental issues and

yet providing a source of profitable work for communities around the world. Unin-

terrupted crop monitoring helps the promotion of sustainable management practices

to achieved this. Remote sensing and particularly, SAR imagery, supported by re-

cent and future satellite constellations that provide free access to data, can make an

important contribution in this regard. The crop monitoring applications presented

in this thesis, included monitoring of asparagus in Peru, rice in Spain and cereal

crops in Canada. We demonstrated how this can be accurate, and how other similar

monitoring challenges can be approached. The use of SAR technology is ultimately

a tool to provide insight for all of the stakeholders in the agricultural supply chain

to allow informed decision making that promotes sustainable food production and

trade.
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Pipia, L., Muñoz-Marı, J., Amin, E., Belda, S., Camps-Valls, G., & Verrelst, J. (2019). Fusing

optical and sar time series for lai gap filling with multioutput gaussian processes. Remote

Sensing of Environment, 235, 111452.

Quinonero-Candela, J., & Rasmussen, C. E. (2005). A unifying view of sparse approximate gaussian

process regression. The Journal of Machine Learning Research, 6, 1939–1959.

Rasmussen, C. E. (2003). Gaussian processes in machine learning. Summer school on machine

learning, 63–71.

Richards, J. A. et al. (2009). Remote sensing with imaging radar (Vol. 1). Springer.

Rogan, J., & Chen, D. (2004). Remote sensing technology for mapping and monitoring land-cover

and land-use change. Progress in planning, 61 (4), 301–325.

Romero-Puig, N., & Lopez-Sanchez, J. M. (2021). A review of crop height retrieval using insar

strategies: Techniques and challenges. IEEE Journal of Selected Topics in Applied Earth

Observations and Remote Sensing.

Romero-Puig, N., Marino, A., & Lopez-Sanchez, J. M. (2021). Application of the trace coherence

to hh-vv polinsar tandem-x data for vegetation height estimation. IEEE Transactions on

Geoscience and Remote Sensing.

Rossi, C., & Erten, E. (2015). Paddy-rice monitoring using tandem-x. IEEE Transactions on Geo-

science and Remote Sensing, 53 (2), 900–910. https : //doi . org/10 . 1109/TGRS.2014 .

2330377

Ruder, S. (2017). An overview of multi-task learning in deep neural networks. CoRR, abs/1706.05098.

http://arxiv.org/abs/1706.05098

Sabour, S. T., Lohmann, P., & Soergel, U. (2008). Monitoring agricultural activities using multi-

temporal asar envisat data. International Archives of the Photogrammetry, Remote Sensing

and Spatial Information Sciences, 37, 735–742.

Chapter 5 Cristian J. Silva-Perez 211



Crop development monitoring from SAR imagery

Salepci, N., Eckardt, R., & Richter, N. (2017). Speckle filtering [Available at https://eo-college.

org/resource/speckle/].

Santos, M. S., Soares, J. P., Abreu, P. H., Araujo, H., & Santos, J. (2018). Cross-validation for im-

balanced datasets: Avoiding overoptimistic and overfitting approaches [research frontier].

ieee ComputatioNal iNtelligeNCe magaziNe, 13 (4), 59–76.
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