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ABSTRACT

A major challenge with utilizing a metaheuristic is finding opti-

mal or near optimal parameters for a given problem instance. It

is well known that the best performing control parameters are

often problem dependent, with poorly chosen parameters even

leading to algorithm failure. What is not obvious is how strongly

the complexity of the parameter landscape itself is coupled with

the underlying objective function the metaheuristic is attempting

to solve. In this paper local optima networks (LONs) are utilized to

visualize and analyze the parameter landscapes of particle swarm

optimization (PSO) over an array of objective functions. It was

found that the structure of the parameter landscape is affected by

the underlying objective function, and in some cases by a consid-

erable degree across multiple metrics. Furthermore, despite PSO’s

parameter landscape having a relatively simple macro structure,

the LONs demonstrate that there is actually a considerable amount

of complexity at a micro level; making parameter tuning harder for

PSO than would have been initially thought. Apart from the PSO

specific findings this paper also provides a formalism of parameter

landscapes and demonstrates that LONs can be used as an effective

tool in the analysis and visualization of parameter landscapes of

metaheuristics.
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1 INTRODUCTION

A major challenge for a practitioner is the selection of effective

control parameters for a metaheuristic. While there are often rec-

ommended control parameters for metaheuristics, the effectiveness

on unseen problems is generally not that predictable, with the
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best performance of a metaheuristic requiring at least some de-

gree of parameter turning. In an attempt to reduce the burden

on the practitioner a number of approaches to parameter tuning

have been proposed, a small subset of the fundamental ones are

[1ś3, 10, 12, 13]. While existing parameter tuning approaches have

been effective, they tend to utilize a uniform approach to the pa-

rameter tuning, which ignores the underlying structure induced

by the specific metaheuristic, leading to a potential loss in either

optimality or efficiency. It is for this reason that gaining a better

understanding of the structure of the space that parameter tuning

operates on is needed.

In this paper we propose a formalism for parameter landscapes

and demonstrate that local optima networks (LONs) can be effec-

tively utilized to visualize and analyze parameter landscapes of

metaheuristics, with the focus placed on the parameter landscapes

of the particle swarm optimization (PSO) algorithm, specifically the

inertia PSO [19].

We start with formally defining fitness landscapes and param-

eter landscapes in section 2. A brief description of PSO is given

in section 3. A description of LONs and monotonic LONs is pre-

sented in section 4, as well as the alterations to the standard LON

construction process used. The experimental setup is presented in

section 7, followed by the experimental results, visualizations, and

a discussion thereof in section 8. Section 9 presents a summary of

the findings of this paper as well as potential areas of future work.

2 FITNESS AND PARAMETER LANDSCAPE
DEFINITION

In order to better frame the focus of this paper it is worth formally

defining what is meant by a parameter landscape, and how it differs,

if only in form, from a traditional fitness landscape. To this end, a

fitness landscape is first defined.

Definition 2.1. A Fitness Landscape, in a discrete search space

context1, is a triplet (𝑆,𝑉 , 𝑓 ) where 𝑆 is the set of elements in

the search space, 𝑉 : 𝑆 → P (𝑆) maps each element, 𝑠 ∈ 𝑆 to a

set of neighbours 𝑉 (𝑠) ⊆ 𝑆 , where P denotes the power set, and

𝑓 : 𝑆 → R defines the fitness of the element 𝑠 ∈ 𝑆 .

A parameter landscape is inherently a type of fitness landscape

where the fitness is the algorithm’s performance. However, an ex-

plicit definition of a parameter landscape is worth creating as it

allows for better disentanglement between the algorithmic per-

formance and the fitness of a specific candidate solution on the

1The definition can be extended to a continuous search space, but it is not needed for
the purposes of the paper
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underlying objective function. Specifically, the following definition

is now introduced.

Definition 2.2. A Parameter Landscape, in a discrete search

space context1, is the tuple (𝑃, 𝑓 , 𝐷,𝐴,𝐶,𝑉𝑐 ) where 𝑓 is the un-

derlying objective function being optimized over domain 𝐷 by

algorithm 𝐴, which is configured with control parameters, 𝑐 ∈ 𝐶 .

The neighborhood function 𝑉𝑐 : 𝐶 → P (𝐶) maps each element,

𝑐 ∈ 𝐶 to a set of neighbors 𝑉𝑐 (𝐶) ⊆ 𝐶 . Lastly, 𝑃 is a performance

measure, 𝑃𝑓 ,𝐴, 𝐷 (𝑐), and is utilized to quantify how performant

algorithm 𝐴 was at optimizing objective function 𝑓 on domain 𝐷

using a configuration 𝑐 ∈ 𝐶 .

There are a number of reasonable ways to design the perfor-

mance measure, 𝑃 , particularly in the presence of a stochastic opti-

mizer, as is typically the case with metaheuristics. For the purposes

of this paper 𝑃 is treated as a distribution, which is sampled for each

repeated execution of algorithm 𝐴 using a configuration 𝑐 ∈ 𝐶 . The

performance of 𝐴 would also clearly depend on the stopping con-

dition used, adding further parameterization to 𝑃 itself. However,

for the purposes of this paper a fixed function evaluation budget as

well as a fixed repeated execution count are used.

The LON variants described in section 4 are defined in terms of

the standard fitness landscape triplet, it is therefore worth formaliz-

ing, for the sake of clarity, the linkage between the fitness landscape

triplet and a parameter landscape from definition 2.2. The search

space of a parameter landscape, (𝑃, 𝑓 , 𝐷,𝐴,𝐶,𝑉𝑐 ) is the set 𝐶 , the

fitness value is the performance, 𝑃𝑓 ,𝐴,𝐷 (𝑐) of configuration 𝑐 of

algorithm 𝐴 over domain 𝐷 on objective function 𝑓 .

3 PARTICLE SWARM OPTIMIZATION

Particle swarm optimization (PSO) was originally inspired by the

complex movement of birds in a flock. The variant of PSO this

paper focuses on uses the inertia coefficient, as proposed by Shi

and Eberhart [19], which is referred to as PSO from now on.

The PSO algorithm is defined as follows: let 𝑓 : R𝑑 → R be the

objective function that the PSO algorithm aims to find an optimum

for, where 𝑑 is the dimensionality of the objective function. For the

sake of simplicity, a minimization problem is assumed from this

point onwards. Specifically, an optimum 𝒐 ∈ R𝑑 is defined such

that, for all 𝒙 ∈ R𝑑 , 𝑓 (𝒐) ≤ 𝑓 (𝒙). Let Ω (𝑡) be a set of 𝑁 particles

in R𝑑 at a discrete time step 𝑡 . Then Ω (𝑡) is said to be the particle

swarm at time 𝑡 . The position 𝒙𝑖 of particle 𝑖 is updated using

𝒙𝑖 (𝑡 + 1) = 𝒙𝑖 (𝑡) + 𝒗𝑖 (𝑡 + 1) , (1)

where the velocity update, 𝒗𝑖 (𝑡 + 1), is defined as

𝒗𝑖 (𝑡 + 1) = 𝑤𝒗𝑖 (𝑡) + 𝑐1𝒓1 (𝑡) ⊗ (𝒚𝑖 (𝑡) − 𝒙𝑖 (𝑡))

+ 𝑐2𝒓2 (𝑡) ⊗ (�̂�𝑖 (𝑡) − 𝒙𝑖 (𝑡)), (2)

where 𝑟1,𝑘 (𝑡), 𝑟2,𝑘 (𝑡) ∼ 𝑈 (0, 1) for all 𝑡 and 1 ≤ 𝑘 ≤ 𝑑 . The

operator ⊗ is used to indicate component-wise multiplication of

two vectors. The position 𝒚𝑖 (𝑡) represents the łbestž position that

particle 𝑖 has visited, where łbestž means the location where the

particle had obtained the lowest objective function evaluation. The

position �̂�𝑖 (𝑡) represents the łbestž position that the particles in the

neighborhood of the 𝑖-th particle have visited. The coefficients 𝑐1,

𝑐2, and𝑤 are the cognitive, social, and inertia weights, respectively.

A full algorithm description as well as more details on possible

neighborhood typologies choices can be found here [4].

4 LOCAL OPTIMA NETWORKS

Local optima networks were proposed by Ochoa et al [14], inspired

by the work of Doye and Massen [9], as an effective tool for both

the analysis and visualization of the global structure of a fitness

landscape. A detailed overview of the utility of LONs on an array of

combinatorial optimization problems can be found here [16]. In this

paper the standard LON graph, the monotonic LON (MLON) graph

[15], and the compressed monotonic LON (CMLON) [15] are used

for analyzing parameter landscapes. In order to define both the LON

andMLON graphs some intermediate definition are required, which

are given in terms of the standard fitness landscape triplet (𝑆,𝑉 , 𝑓 ).

The following definitions contain minor alterations to the originals

to allow for a more lenient treatment of continuous values given

the floating point representational limits of the IEEE-754 standard

used by modern CPUs. Specifically, an 𝜖 term is introduced, when

𝜖 is set to zero the original definitions are restored. Furthermore,

minimization is assumed from this point onwards.

Definition 4.1. The floating point inequality, 𝑥 ≤𝜖 𝑦, is true when

𝑥 < 𝑦 or |𝑥 − 𝑦 | < 𝜖 , where 𝜖 ∈ R+ is a sufficiently small value 2.

Definition 4.2. 𝑠∗ is a local optima, in the context of minimization,

if ∀𝑠 ∈ 𝑉 (𝑠∗), 𝑓 (𝑠∗) ≤𝜖 𝑓 (𝑠). The inequality is intentionally not

strict, in order to cater for the neutral landscape case.

Definition 4.3. The LON nodes are the set, 𝐿𝑜𝑝𝑡 = {𝑙1, 𝑙2 · · · , 𝑙𝑛},

of all local optima under definition 4.2.

Definition 4.4. The basin of attraction of local optima, 𝑙𝑖 , is defined

as 𝑏𝑖 = {𝑠 ∈ 𝑆 | ℎ(𝑠) = 𝑙𝑖 with probability 𝑝𝑖 (𝑠) > 0}, where ℎ(𝑠)

represents the final state of a best-improvement hill-climber from

the start position 𝑠 . The basin’s size is defined as |𝑏𝑖 | =
∑
𝑠∈𝑆 𝑝𝑖 (𝑠).

Definition 4.5. The set of LON edges, 𝐸𝑙𝑜𝑛 , are all the weighted

edges 𝑤𝑖, 𝑗 between local optima 𝑙𝑖 and 𝑙 𝑗 where 𝑤𝑖, 𝑗 represents

the probability of ending up in the basin of attraction 𝑏 𝑗 after

perturbing 𝑙𝑖 , by 𝑀 random moves, and applying ℎ. Specifically,

𝑤𝑖, 𝑗 = 𝑝 (𝑙𝑖 → 𝑏 𝑗 ), where the probability of moving from any 𝑠 ∈ 𝑆

to a basin 𝑏 𝑗 is calculated as 𝑝 (𝑠 → 𝑏 𝑗 ) =
∑
𝑠′∈𝑏 𝑗

𝑝 (𝑠 → 𝑠 ′)𝑝 𝑗 (𝑠
′)

with 𝑝 (𝑠 → 𝑠 ′) = 𝑃 (𝑠 ′ ∈ {𝑧 | 𝑑 (𝑧, 𝑠) ≤ 𝑀}), and 𝑑 an appropriate

distance metric.

Definition 4.6. A LON is the weighed graph 𝐿𝑂𝑁 = (𝐿𝑜𝑝𝑡 , 𝐸𝑙𝑜𝑛),

with 𝐿𝑜𝑝𝑡 and 𝐸𝑙𝑜𝑛 defined in definitions 4.3 and 4.5 respectively.

Definition 4.7. An MLON is the weighed graph 𝑀𝐿𝑂𝑁 =

(𝐿𝑜𝑝𝑡 , 𝐸𝑚𝑙𝑜𝑛), where 𝐸𝑚𝑙𝑜𝑛 = {𝑤𝑖, 𝑗 ∈ 𝐸𝑙𝑜𝑛 | 𝑓 (𝑙 𝑗 ) ≤𝜖 𝑓 (𝑖𝑖 )}.

Namely, only directed edges represent a non-deterioration in the

fitness are included in the MLON graph.

Definition 4.8. A CMLON is the weighed graph 𝐶𝑀𝐿𝑂𝑁 =

(𝐶𝐿𝑜𝑝𝑡 , 𝐸𝑐𝑚𝑙𝑜𝑛), where the nodes 𝑐𝑙𝑖 ∈ 𝐶𝑙𝑜𝑝𝑡 are the MLON

plateaus. The MLON plateaus are derived from connected subgraph

of𝑀𝐿𝑂𝑁 where each node has the equal fitness, and where equal-

ity is defined as 𝑓 (𝑙𝑖 ) =𝜖 𝑓 (𝑙 𝑗 ) when |𝑓 (𝑙𝑖 ) − 𝑓 (𝑙 𝑗 ) | < 𝜖 . Weighted

edges in the CMLON are aggregated for the edges of nodes in the

MLON plateau.
2The value 𝜖 = 10−5 was used for this paper.
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5 RELATED WORK

To the best of our knowledge, the properties of metaheuristic param-

eter landscapes have been investigated by only two previous articles.

The first [18], investigates the effect on the landscape structure of

varying individual numerical parameters while fixing the remain-

ing parameters at optimized values. The authors consider different

algorithm configuration scenarios, including three widely studied,

NP-hard problems (SAT, MIP and TSP), 6 prominent algorithms for

these and 5 well-known instance sets. Two basic landscape met-

rics were considered, the number of local minima, and the fitness

distance correlation. They found that parameter landscapes on in-

stance sets tend to be uni-modal and convex. However, for single

instances, these responses are more rugged than their aggregate

counterparts. This study only considers single-parameter slices,

and indeed the authors indicate that their results do not preclude

the possibility of complex parameter interactions that result in con-

figuration landscapes with many local optima, leaving this to future

work.

The second article to look at metaheuristic parameter landscapes

[20], does consider parameter interactions and uses fitness distance

correlation and sampled local optima networks to analyse and vi-

sualize the global structure of the landscapes. The study constructs

the LON models from data extracted while running the ParamILS

automatic algorithm configuration framework [11]. Themetaheuris-

tic used is a standard GA for solving five continuous benchmark

problems. The search space consists of three parameters (crossover

rate, mutation rate and population size) each covering a discretized

range of possible values. The results indicate that the configura-

tion spaces of interacting parameters of the same algorithm when

solving different instances can vary widely. The landscapes show

many local optima and, with the exception of the simplest Sphere

benchmark function, the landscapes showmultiple funnels. Funnels

can be loosely defined as groups of local optima which are close

in configuration space within a group, but well-separated between

groups. They can make optimization harder.

The contribution of this paper is to continuewith the use of LONs

to analyze and visualize parameter landscapes where parameters

interact. However, instead of sampling the space as it was done

in [20], we conduct a full enumeration of two PSO parameters in

a discretized range. PSO is more suitable as an optimizer in the

continuous domain than a standard GA, and we covered a wider

range of benchmark functions than those explored in [20].

6 DEFINING THE PARAMETER REGION
UNDER CONSIDERATION

For the purposes of the paper the tuple 𝑐 = (𝑐1, 𝑐2,𝑤) represents a

PSO configuration, where the configuration set, 𝐶 , is derived from

the following intervals:

𝑤 ∈ [−1.2, 1.2] and 𝑐1 + 𝑐2 ∈ (0, 5] (3)

where 𝑐1 = 𝑐2, with a sample point every 0.1 along 𝑤 and 𝑐1 + 𝑐2.

This results in a set of |𝐶 | = 1250 possible configurations. The

region was selected to contain the parameter region that would

result in order-2 stability of PSO particles, where order-2 stability

is defined as convergence in expectation and variance [5]. It was

shown by Cleghorn and Englebrecht [6] that the best performing

configurations are near the boundary of the parameter region that

would result in order-2 stability of PSO particles. Specifically, the

following region is necessary and sufficient for order-2 stability of

PSO particles:

−1 < 𝑤 < 1 and 0 < 𝑐1 + 𝑐2 <

24(1 −𝑤2)

7 − 5𝑤
, (4)

with 𝑐1 = 𝑐2, as originally derived by Poli [17] and under min-

imal modeling assumption by Cleghorn and Engelbrecht [7]. A

derivation without the restricted relationship between 𝑐1 and 𝑐2
was derived by Cleghorn and Stapelberg [8].

7 EXPERIMENTAL SETUP

A total of 26 well known benchmark functions are used in this

paper, listed in table 1. For each objective function a parameter

landscape is generated using PSO as𝐴, and the objective function’s

domain as 𝐷 . In order to obtain 𝑃𝑓 ,𝐴,𝐷 (𝑐), for all 𝑐 ∈ 𝐶 , a PSO

is run for 30 trials using an iteration based stopping condition of

2000, and a population size of 20, in 30 dimensions. In order to

directly utilize the LON model, the expected value of the perfor-

mance, 𝐸 [𝑃𝑓 ,𝐴,𝐷 (𝑐)] is used (and estimated from the 30 trials) as

the "fitness". The neighborhood function, 𝑉𝑐 , allows step sizes of

0.1 provided the new configuration is still in𝐶 as defined in section

6.

Table 1: Objective functions

Function name Modality Separable Domain

F1 Ackley Multi No [32.768, 32.768]𝑛

F2 Alpine Multi Yes [−10, 10]𝑛

F3 Bent-Cigar Uni No [−100, 100]𝑛

F4 Discus Uni No [−100, 100]𝑛

F5 Egg_Holder Multi No [−512, 512]𝑛

F6 Elliptic Uni Yes [−100, 100]𝑛

F7 Expanded-G+R Multi No [−100, 100]𝑛

F8 Griewank Multi No [−600, 600]𝑛

F9 HappyCat Multi No [−2, 2]𝑛

F10 HGBat Multi No [−2, 2]𝑛

F11 Hyper-Ellipsoid Uni Yes [−5.12, 5.12]𝑛

F12 Katsuura Multi Yes [−5, 5]𝑛

F13 Michalewicz Multi Yes [0, 𝜋]𝑛

F14 Norwegian Multi No [−1.1, 1.1]𝑛

F15 Quadric Uni No [−100, 100]𝑛

F16 Quartic Uni Yes [−1.28, 1.28]𝑛

F17 Rastrigin Multi Yes [−5.12, 5.12]𝑛

F18 Rosenbrock Multi No [−30, 30]𝑛

F19 Salomon Multi No [−100, 100]𝑛

F20 Schaffer-6 Multi No [−100, 100]𝑛

F21 Schwefel-2-21 Uni Yes [−100, 100]𝑛

F22 Schwefel-2-22 Uni Yes [−10, 10]𝑛

F23 Spherical Uni Yes [−5.12, 5.12]𝑛

F24 Step Multi Yes [−100, 100]𝑛

F25 Vincent Multi Yes [0.25, 10]𝑛

F26 Weierstrass Multi Yes [−0.5, 0.5]𝑛
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For each objective function a LON, MLON, and a CMLON are

constructed from the PSO’s parameter landscape. From the con-

structed LONs the following metrics are derived:

• The number of local optima and edges within the LON, de-

noted as ∥𝐿𝑜𝑝𝑡 ∥ and ∥𝐸𝑙𝑜𝑛 ∥ respectively, where ∥ · ∥ repre-

sents the cardinality of the set.

• The number of self-loops within the LON, ∥𝑆𝑒𝑙 𝑓 (𝐿𝑂𝑁 )∥,

where 𝑆𝑒𝑙 𝑓 (𝐿𝑂𝑁 ) is the set of self-loops in the LON.

• The number of globally optimal configurations within the

LON, ∥𝐺𝜖 (𝐿𝑜𝑝𝑡 )∥, where 𝐺𝜖 (𝐿𝑂𝑁 ) is the set of globally op-

timal configurations within an 𝜖 fitness threshold of the best

configuration.

• The ratio of improving edges to all not self-loop edges,

𝐼𝑟𝑎𝑡𝑖𝑜 = ∥𝐼𝜖 (𝐿𝑂𝑁 )∥/(∥𝐸𝑙𝑜𝑛 ∥ − ∥𝑆𝑒𝑙 𝑓 (𝐿𝑂𝑁 )∥), where

𝐼𝜖 (𝐿𝑂𝑁 ) is the set of edges that represent a transition im-

provement greater than an 𝜖 fitness threshold.

• The ratio of neutral edges to all not self-loop edges, 𝑁𝑟𝑎𝑡𝑖𝑜 =

∥𝑁𝜖 (𝐿𝑂𝑁 )∥/(∥𝐸𝑙𝑜𝑛 ∥ − ∥𝑆𝑒𝑙 𝑓 (𝐿𝑂𝑁 )∥), where 𝑁𝜖 (𝐿𝑂𝑁 ) is

the set of edges that represent a neutral transition improve-

ment with an 𝜖 fitness threshold.

• The ratio of worsening edges to all not self-loop edges,

𝑊𝑟𝑎𝑡𝑖𝑜 = ∥𝑊𝜖 (𝐿𝑂𝑁 )∥/(∥𝐸𝑙𝑜𝑛 ∥ − ∥𝑆𝑒𝑙 𝑓 (𝐿𝑂𝑁 )∥), where

𝑊𝜖 (𝐿𝑂𝑁 ) is the set of edges that represent a transition wors-

ening greater with an 𝜖 fitness threshold.

From the constructed CMLONs the following metrics are derived:

• The number of local optima and edges within the CMLON,

denoted as ∥𝐶𝐿𝑜𝑝𝑡 ∥ and ∥𝐸𝑐𝑚𝑙𝑜𝑛 ∥ respectively.

• The number of sinks within the CMLON, denoted as 𝑛𝑠𝑖𝑛𝑘 =

∥𝑆 (𝐶𝑀𝐿𝑂𝑁 )∥, where 𝑆 (𝐶𝑀𝐿𝑂𝑁 ) is the set of nodes from

𝐶𝑀𝐿𝑂𝑁 that have zero outgoing edges.

• The number of globally optimal sinks within the CM-

LON, denoted as 𝑛𝑔𝑙𝑜𝑏𝑎𝑙𝑠𝑖𝑛𝑘 = ∥𝐺𝜖 (𝑆 (𝐶𝑀𝐿𝑂𝑁 ))∥, where

𝐺𝜖 (𝑆 (𝐶𝑀𝐿𝑂𝑁 )) is the set of globally optimal sinks within

an 𝜖 fitness threshold of the best configuration.

• The funnel size of the global optimum sinks, denoted

as ∥𝐹𝑢𝑛𝑛𝑒𝑙𝜖 (𝐶𝑀𝐿𝑂𝑁 )∥, where 𝐹𝑢𝑛𝑛𝑒𝑙𝜖 (𝐶𝑀𝐿𝑂𝑁 ) is the

set of nodes that have a path in the CMLON to one

or more of the globally optimum sinks [15]. 𝐹𝑟 =

∥𝐹𝑢𝑛𝑛𝑒𝑙𝜖 (𝐶𝑀𝐿𝑂𝑁 )∥/∥𝐶𝐿𝑜𝑝𝑡 ∥ is the relative funnel size,

which is reported to allows for a better comparison of the

funnel size over objective functions.

• The aggregate incoming strength for optimal sinks (as-

suming 𝜖 equality) and the aggregate incoming strength

of suboptimal sinks, which are denoted as 𝑆𝑡𝑟𝑜𝑝𝑡𝑖𝑚𝑎𝑙 and

𝑆𝑡𝑟𝑠𝑢𝑏𝑜𝑝𝑡𝑖𝑚𝑎𝑙 respectively.

• The compression percentage, 𝐶𝜖 (𝑀𝐿𝑂𝑁 ), in terms of node

count reduction, obtained when constructing the CMLON

from the MLON under the floating point inequality from

definition 4.1. The smaller the compression percentage is the

less neutrality is present in the parameter landscape.

• The average fitness difference between all sub-optimal sinks

and the global sink(s) as well as the corresponding standard

deviation, which is denoted as 𝐴𝑣𝑒𝐷𝑖 𝑓 𝑓𝐹𝑖𝑡𝑛𝑒𝑠𝑠 .

8 EXPERIMENTAL RESULTS AND
DISCUSSION

The recorded LON and CMLON metrics over the 26 objective func-

tions under consideration are presented in tables 2 and 3 respec-

tively. Additionally, for four interesting example objective functions,

Ackley (F1), Egg-holder (F5), Hyper-Ellipsoid (F11), and Quartic

(F16), a 3D visualization of the parameter surface, as well as 2D

network visualization of the LON and CMLON models of the corre-

sponding PSO parameter landscapes are presented in figures 2, 3,

4, and 5 respectively. The legend used for both LON and CMLON

figures is show in figure 1.

Regular local optima

→ Improving edge

→ Worsening edge

→ Neutral edge

Non-optimal sink

Optimal sink

Node Size Proportional to incoming weighted degree

Figure 1: LON and CMLON network visualization legend.

The first notable finding, shown in table 2, is that the number

of local optima is surprisingly high. The highest number of local

optima present in the parameter landscape was found with the

F9 objective function, with 187 local optima (14.96% of the search

space). Even at the lower end of local optima count, where F7 and

F26 tied, 109 local optima were still present (8.72% of the search

space). This relatively high local optima count is already sugges-

tive of a landscape that could easily trap a naive parameter tuning

approach. Furthermore, the 6.21% range in number of local optima

across the objective functions points to the fact that the underlying

objective function is influencing the parameter landscape. The sub-

sequent LON metrics will better serve at indicating how impactful

these changes are on the fundamental properties of the parameter

landscape.

One noteworthy feature of the PSO parameter landscape, is the

low level of neutrality. Specifically, the 𝑁𝑟𝑎𝑡𝑖𝑜 metrics is 0 for 20

of the 26 functions in table 2. The low neutrality is also evident

with how low the compression percentage, 𝐶𝜖 (𝑀𝐿𝑂𝑁 ), is when

constructing the CMLON from the MNLON models as seen in table

3.

It was also found that for the vast majority of objective functions

there was only one globally optimal node, ∥𝐺𝜖 (𝐿𝑂𝑁 )∥, in the LON

model (20 out of 26 objective function). However, there are some

clear outliers with F16 having 42 globally optimal nodes within

the LON model. What is interesting is that in the case of objective

functions that resulted in multiple globally optimal nodes (F4, F11,

F15, F16, F23, and F24), the corresponding CMLON model had only

one globally optimal node. The presence of only one globally op-

timal node in the CMLON models indicate that while there may

have been multiple globally optimal nodes in the LON they were

in fact neutrally connected to each other (there existed at least one

neutral edge connecting them), and not spread out over the search

space. Of the objective functions that resulted in multiple globally

optimal nodes in the LON model, all but one of the underlying con-

tinuous objective functions was unimodal, with the one multimodal
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(a) 3D Plot of Ackley.
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(b) LON of Ackley.
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(c) CMLON of Ackley.

Figure 2: PSO parameter landscape plots for the Ackley objective function (F1) in 30-dimensions.
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(a) 3D Plot of Egg-Holder.
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(b) LON of Egg-Holder.
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(c) CMLON of Egg-Holder.

Figure 3: PSO parameter landscape plots for the Egg-Holder objective function (F5) in 30-dimensions.

underlying continuous objective function (F24) only having two

global optima. The finding that the PSO parameter landscape had

only one global sink, as seen in table 3, held across all considered

objective functions. This finding suggests that the single global sink

structure is likely an interesting characteristic of the PSO itself that

appears invariant to the underlying objective function.

The CMLON metrics provide us with a good indication of how

searchable the underlying parameter landscape is. Specifically, in

table 3 there are numerous non-optimal sinks present for all objec-

tive functions, implying that there are a number of "traps" in the

search space were even a non-naive tuner could easily get stuck.

The number of non-optimal sinks is dependant on the underlying

objective functions, with F1 and F16 having the least (11) and F20

and F25 having the most (23). The presence of non-optimal sinks is

in principle only a problem, from a practical perspective, if there

is a meaningfully degradation in performance between the non-

optimal configurations and the globally optimal ones. However,

upon inspection of the 𝐴𝑣𝑒𝐷𝑖 𝑓 𝑓𝐹𝑖𝑡𝑛𝑒𝑠𝑠 it is clear that there is in

fact a meaningful average degradation when selecting a parameter

configuration that corresponds to a non-optimal sink as apposed

to one from an optimal sink. Moreover, there is also a substantial

amount of variance on the 𝐴𝑣𝑒𝐷𝑖 𝑓 𝑓𝐹𝑖𝑡𝑛𝑒𝑠𝑠 metrics, indicating that

there is a large range of differing performance levels that a tuner

could get stuck at.

The next question worth asking is, for a given objective function,

how likely are we to end up at the globally optimal sink(s). The

𝐹𝑟 metric provides some illumination in this regard. Specifically,

for 23 of the 26 objective functions the funnel size of the global

sink contains over 30% of all the CMLON nodes, with F8 having

the largest percentage, 52.13% of CMLON nodes within the global

sink’s funnel. This large funnel size is somewhat expected after
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(a) 3D Plot of Hyper-Ellipsoid.
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(b) LON of Hyper-Ellipsoid.
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(c) CMLON of Hyper-Ellipsoid.

Figure 4: PSO parameter landscape plots for the Hyper-Ellipsoid objective function (F11) in 30-dimensions.
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(a) 3D Plot of Quartic.
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(b) LON of Quartic.
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(c) CMLON of Quartic.

Figure 5: PSO parameter landscape plots for the Quartic objective function (F16) in 30-dimensions.

inspecting the 3D plots in figures 2a, 3a, 4a, and 5a. Specifically,

in each case, there is a large sunken connected area, which cor-

responds, roughly, to the the order-2 stability criteria of equation

(4). Unfortunately, the 𝑆𝑡𝑟𝑜𝑝𝑡𝑖𝑚𝑎𝑙 metrics is rather low across all

the objective functions considered, with an average value of only

0.0986. The low 𝑆𝑡𝑟𝑜𝑝𝑡𝑖𝑚𝑎𝑙 metrics implies that despite the large

funnel sizes the chances of moving towards the globally optimal

sink is far lower than the chances of moving to a sub-optimal sink.

All these observations provide strong evidence that the param-

eter landscape of PSO is surprisingly intricate and multimodal in

nature. This observation is in contrast to the findings of Pushak

and Hoos [18], in which the parameter space of the considered

metaheuristics were simple. There are two reasons for this discrep-

ancy. The first is that in the work of Pushak and Hoos their analysis

was done over a set of problem instances as opposed to focusing

on problem specific parameter landscapes. Secondly, they did not

cater for parameter interdependence if multiple were being tuned

simultaneously (listed as future work). As such one of the big find-

ings of this paper, is that the parameter space of metaheuristics,

in the case of this paper PSO, can actually be a considerably chal-

lenging search space when considering multiple parameters and

per-instance tuning. The per-instance tuning part of the findings,

is rather practically pertinent, as most real world problems being

solved are not sets of problems, but rather an important singular

problem that needs solving.

Apart from the complexity of the found parameter landscapes,

it is clear that while there are some constant trends across the PSO

parameter landscapes, there is also a considerable amount of vari-

ability. For example, in the CMLON of the Egg-Holder function (F5),

shown in figure 3c, there are many non-optimal sinks, with most

having larger incoming strength than the globally optimal sink.

Whereas in the case of the Quartic function (F16), shown in figure
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Table 2: PSO parameter landscape LON metrics over 26 functions

∥𝐿𝑜𝑝𝑡 ∥ ∥𝐺𝜖 (𝐿𝑂𝑁 )∥ ∥𝐸𝑙𝑜𝑛 ∥ ∥𝑆𝑒𝑙 𝑓 (𝐿𝑂𝑁 )∥ 𝐼𝑟𝑎𝑡𝑖𝑜 𝑁𝑟𝑎𝑡𝑖𝑜 𝑊𝑟𝑎𝑡𝑖𝑜

F1 121 1 675 121 0.700361 0 0.299639

F2 120 1 605 120 0.711340 0 0.288660

F3 120 1 678 120 0.698925 0 0.301075

F4 172 3 931 170 0.653088 0.006570 0.340342

F5 162 1 864 162 0.665242 0 0.334758

F6 156 1 832 156 0.644970 0 0.355030

F7 109 1 554 109 0.674157 0 0.325843

F8 117 1 635 117 0.710425 0 0.289575

F9 187 1 1063 187 0.699772 0 0.300228

F10 152 1 894 152 0.683288 0 0.316712

F11 122 14 728 108 0.617742 0.137097 0.245161

F12 133 1 706 133 0.732984 0 0.267016

F13 150 1 844 150 0.707493 0 0.292507

F14 154 1 865 153 0.689607 0 0.310393

F15 114 2 595 112 0.641822 0.004141 0.354037

F16 149 42 1311 107 0.398671 0.478405 0.122924

F17 134 1 780 134 0.710526 0 0.289474

F18 126 1 735 126 0.706076 0 0.293924

F19 114 1 606 114 0.729675 0 0.270325

F20 177 1 995 177 0.711491 0 0.288509

F21 127 1 705 127 0.66609 0 0.333910

F22 137 1 716 137 0.677029 0 0.322971

F23 118 19 678 101 0.604853 0.159445 0.235702

F24 112 2 603 112 0.665988 0.004073 0.329939

F25 151 1 901 151 0.690667 0 0.309333

F26 109 1 544 109 0.708046 0 0.291954

5c, the globally optimal sink has a considerably larger incoming

strength than any of the sub-optimal sinks as can be seen by the

large red node. Furthermore, the Quartic function has a large num-

ber of sinks connected by neutral edges in the LON model, shown

in figure 5b, which is not at all the case for the egg-Holder function

(F5), shown in figure 3b. Most of the presented metrics provide evi-

dence that the optimal tuning approach will likely depend not only

the type of metaheuristic but also the underlying problem. This

observation makes it clear that the problem of automatic algorithm

configuration will need to consider both components to be highly

effective.

9 CONCLUSION

In this paper a formalism for investigating parameter landscapes

was provided and it was demonstrated that local optima networks

can be effectively used for the visualization and analysis the param-

eter landscapes of PSO. The approach used is sufficiently general

to be directly applied to other metaheuristics.

It was found that, despite earlier research in the realm of pa-

rameter landscape analysis suggesting otherwise, that parameter

landscapes can be of significant complexity. Namely, objective func-

tion specific parameter landscapes can be highly multimodal with

multiple sub-optimal sinks. Furthermore, the performance differ-

ence between sub-optimal sinks and the globally optimal sinks was

found to be surprisingly large with a high degree of variance.

In terms of PSO specific findings that were stable across objec-

tive functions, it was observed, in the CMLON models, that all PSO

parameter landscapes had only a single global sink with a relatively

large funnel size. However, the global sink typically had low incom-

ing strength compared to the suboptimal sinks. Generally it was

found that the PSO parameter landscape was fundamentally influ-

enced by the underlying objective function, and that each landscape

was far from trivial in terms of searchablity.
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Table 3: PSO parameter landscape CMLON metrics over 26 functions

∥𝐶𝐿𝑜𝑝𝑡 ∥ ∥𝐸𝑐𝑚𝑙𝑜𝑛 ∥ 𝑛𝑠𝑖𝑛𝑘 𝑛𝑔𝑙𝑜𝑏𝑎𝑙𝑠𝑖𝑛𝑘 𝐹𝑟 𝑆𝑡𝑟𝑠𝑢𝑏𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑆𝑡𝑟𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝐶𝜖 (𝑀𝐿𝑂𝑁 ) 𝐴𝑣𝑒𝐷𝑖 𝑓 𝑓𝐹𝑖𝑡𝑛𝑒𝑠𝑠
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