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Abstract

Variants of the susceptible-infected-removed (SIR) model of Kermack & McKendrick (1927)

enjoy wide application in epidemiology, offering simple yet powerful inferential and predic-

tive tools in the study of diverse infectious diseases across human, animal and plant popula-

tions. Direct transmission models (DTM) are a subset of these that treat the processes of

disease transmission as comprising a series of discrete instantaneous events. Infections

transmitted indirectly by persistent environmental pathogens, however, are examples where

a DTM description might fail and are perhaps better described by models that comprise

explicit environmental transmission routes, so-called environmental transmission models

(ETM). In this paper we discuss the stochastic susceptible-exposed-infected-removed

(SEIR) DTM and susceptible-exposed-infected-removed-pathogen (SEIR-P) ETM and we

show that the former is the timescale separation limit of the latter, with ETM host-disease

dynamics increasingly resembling those of a DTM when the pathogen’s characteristic time-

scale is shortened, relative to that of the host population. Using graphical posterior predictive

checks (GPPC), we investigate the validity of the SEIR model when fitted to simulated

SEIR-P host infection and removal times. Such analyses demonstrate how, in many cases,

the SEIR model is robust to departure from direct transmission. Finally, we present a case

study of white spot disease (WSD) in penaeid shrimp with rates of environmental transmis-

sion and pathogen decay (SEIR-P model parameters) estimated using published results of

experiments. Using SEIR and SEIR-P simulations of a hypothetical WSD outbreak manage-

ment scenario, we demonstrate how relative shortening of the pathogen timescale comes

about in practice. With atttempts to remove diseased shrimp from the population every 24h,

we see SEIR and SEIR-P model outputs closely conincide. However, when removals are 6-

hourly, the two models’ mean outputs diverge, with distinct predictions of outbreak size and

duration.
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Author summary

Mathematical models of the spread and progression of communicable disease in popula-

tions are important tools in efforts to prevent and control outbreaks. A common class of

disease models assume that infection is transmitted directly from infectious to susceptible

individuals when they are in close proximity—so called direct transmission models. These

are used widely and have proven invaluable as simplified descriptions of a wide array of

infectious diseases in diverse populations. However, many pathogens spread through indi-

rect, environmental routes of transmission, for example via contact with contaminated

water sources in the case of cholera, or inhalation of infectious airborne droplets for respi-

ratory infections, such as Covid-19.
We show that direct transmission models work well for such pathogens with short

environmental lifetimes and where hosts shed pathogens into the environment at high

rates. This means that we do not require information about environmental pathogen lev-

els to understand the behaviour of outbreaks caused by these pathogens. When shedding

rates are also low, e.g., with macroparasitic infections, or when variable environmental

factors play a role in transmissibility, then explicit modelling of both the pathogen and

environmental transmission will provide a more accurate picture than a direct transmis-

sion approximation.

Introduction

The famed Susceptible-Infectious-Recovered (SIR) compartmental model framework of Ker-

mack and McKendrick [1], and its many subsequent extensions (see [2], for example), stand as

prominent examples of what can be gained from simple models of complex systems. In addi-

tion to the assumption that the host population can be divided into a finite number of discrete

states, transmission of infection within such models is characterised by a force of infection that

depends linearly upon the numbers of infectious individuals. Throughout this paper, we call

such a model a direct transmission model (DTM) (as in [3]). The proportionality constant,

known as the transmission rate, is often interpreted as the rate at which individuals within the

population come into contact with each other, times the probability that such a contact leads

to the transmission of infection (termed an infectious contact in [4]), times the probability of

successful transmission. However, this simplified representation has been extended, for exam-

ple, to account for non-uniform frequency of contact among the population and levels of

infectiousness varying across individuals and over time.

Such approaches have been pivotal in gaining valuable insights into the dynamics and pat-

terns of the spread of disease throughout many varied populations. Recently, for example,

DTMs have served as the basis for understanding drivers of spatial spread of Ebola virus [5],

the likely effectiveness of scaling up certain vaccination, treatment and testing regimes in the

fight to control hepatitis B [6] and the importance of targeting household transmission of

MRSA as a preventative strategy [7]. Incorporation of a spatial element into the DTM frame-

work enables the observed spatial-temporal trajectory of the 2001 foot and mouth outbreak in

the UK to be closely replicated and provides insight for control [8, 9]. DTMs have also been

recently drafted into the effort to understand and predict the dynamics of SARS-CoV-2 [10,

11].

Despite these sucesses, DTMs may not always be appropriate, e.g., when members of the

host population are in contact with environmental sources of infection, such as pools of
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pathogens residing on surfaces or in water bodies. The focus of this paper is to critique and

support the use of DTMs in describing the spread of disease in the presence of such environ-

mental pools of persistent pathogens. Examples of relevant disease systems include cholera

[12, 13], avian influenza [14, 15] and even respiratory infections, such as SARS-CoV-2 [16].

Our case study (in Case study: White spot disease in penaeid shrimp) focusses on infectious

disease spread in aquaculture systems which are likely to feature a large degree of environmen-

tal transmission. In scenarios such as these it is prolonged exposure to these sources, in addi-

tion to direct infectious contact between individuals, that gives rise to new infections, in the

most general case. Environmental transmission models (ETM, introduced below) are a second

family of candidate models for such infections. As well as describing direct transmission of dis-

ease between hosts, ETMs also allow indirect, environmental routes of transmission due to

interaction between the hosts and external pathogen, whose dynamics are in turn described in

terms of shedding from infectious hosts as well as pathogen decay (or loss of viability). Epide-

miological models, including DTMs and ETMs, are approximations of complex biological pro-

cesses driving disease transmission and progression. The main goal of this paper is to show

that the relative timescale separation between the host and pathogen populations determines

whether environmental transmission due to contact with external pathogens shed by infec-

tious hosts can be more parsimoniously described as direct transmission within the DTM

framework. A key advantage of this approach is that we do not need information about envi-

ronmental pathogen levels in order to fit DTMs.

A critical step in applications is the fitting of DTMs to data on disease outbreaks. Using

Bayesian model fitting methods and graphical posterior predictive checks (GPPCs) that target

observable characteristics of an outbreak, such as its final size and when it peaks, we show that

DTMs fit very well to simulated host-disease event times that would occur when the infection

is transmitted environmentally but the rates of pathogen emission and removal are high

(Results). We show that this is explained by the force of infection within an ETM behaving

increasingly like that of a DTM when the timescale of the pathogen population is shorter than

that of the host population (Results). When fitted to simulated outbreak data, we find that

DTMs still make accurate predictions of outbreak size and duration even when the underlying

data generating process comprises a low rate of pathogen emission and long pathogen life-

times. It is only the rate at which outbreaks grow towards their peak that is poorly predicted in

such cases.

These issues are further highlighted in a case study illustrating the use of DTMs as approxi-

mate descriptions of outbreaks of disease due to an environmentally persistent pathogen (Case

study: White spot disease in penaeid shrimp). Using parameter values estimated from pub-

lished data on WSD infection in penaeid shrimp, we explore how imperfect interventions that

aim to remove dead and diseased hosts at regular intervals impact outbreak control in closed

populations of this aquaculture disease system. With removal attempts spaced at 24 hourly

intervals, average outbreak trajectories, final outbreak size, outbreak duration, are accurately

captured using a DTM, without need to model the pathogen load. When the frequency of the

removal events are increased to every 6 h, we begin to see divergence between the two models,

so that, e.g., the DTM predicts slightly larger outbreaks of shorter duration than the ETM. This

case study illustrates the potential practical consequences of ignoring issues of timescale sepa-

ration when applying DTMs to environmentally transmitted pathogens. Control and other

processes in such disease systems may be accurately captured by DTMs at one timescale but

are poorly represented at others; in this case underestimating the benefit of high frequency

removal.

Tables 1 and 2 contain summaries of symbols and abbreviations used throughout this

paper.
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Table 1. Summary of symbols and their units used throughout this paper.

Symbol description units

St, Et, It, Rt numbers of susc., exp’d, infectious and rem’d hosts at time t hosts

N total host population size hosts

Pt size of environmental pathogen pool at time t virions

α environmental transmission rate virion−1 h−1

β direct transmission rate host−1 h−1

νδ, νγ (gamma-distributed) exposed and infectious lifetime shape parameters -

λδ, λγ exposed and infectious lifetime rate parameters h−1

δ, γ (exponentially distributed) exposed and infectious lifetime rate parameters h−1

� pathogen emission rate host−1 h−1

ρ pathogen decay rate h−1

f(t) force of infection at time t h−1

tE, tI, tR times of exposure, onsets of infectivity, removals h

m final outbreak size hosts

ωβ, ωγ, ωδ prior exponential rate parameters for β, γ, δ h−1

κ host index corresponding to index exposure -

tE
k

time of index exposure h

tpeak time of outbreak peak h

Imax size of outbreak at peak hosts

c relates to interpolated value for tpeak -

b̂ ¼ bþ a �

r

� �
effective direct transmission rate host−1 h−1

d̂; ĝ reciprocals of mean simulated exposed and infectious lifetimes h−1

R0; R̂0
basic reproduction ratio for SEIR / SEIR-P models -

bingest;
~b ingest

rates of transmission due to ingestion in resp. Tuyen, et al. and Lotz & Soto host−1 h−1

bcohab;
~bcohab

similar to above for cohabitation host−1 h−1

αL lower estimate of α (Case Study) ml virion−1 h−1

ρU upper estimate of ρ (Case Study) h−1

πE, πI probability of removal of exposed, infectious hosts (Case Study) -

https://doi.org/10.1371/journal.pcbi.1009652.t001

Table 2. Summary of abbreviations employed in the text.

Abbreviation meaning

DTM direct transmission model

ETM environmental transmission model

DT (ET) direct (environmental) transmission

SIR susceptible-infectious-removed DTM

SEIR susceptible-exposed-infectious-removed DTM

SIR-P susecptible-exposed-infectious-removed-pathogen ETM

SEIR-P similar to SIR-P

MCMC Markov chain Monte Carlo

GPPC graphical posterior-predictive check

DTA direct transmission approximation

IDP immigration-death process

SIWR susceptible-infectious-waterborne reservoir-removed

WSD white spot disease

WSSV white spot syndrome virus

https://doi.org/10.1371/journal.pcbi.1009652.t002
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Models for direct and environmental transmission of disease

A direct transmission model: Susceptible-Exposed-Infectious-Removed (SEIR). The

stochastic, compartmental SEIR model (see Fig 1) referred to throughout this paper is a DTM

that treats the focal population (the hosts) as divided into four sub-populations: hosts that are

susceptible to disease (S), have been exposed to the disease but not yet infectious (E), infectious

(I) and recovered or removed from the population (R). Hosts in the R compartment play no

further role in the spread of disease. Here we consider outbreaks started by the introduction of

a single host to a wholly susceptible population of size N (this is known as the index exposure),

however, our results are generalisable to greater numbers of initial exposures. In addition a

closed population is assumed, so that there is no immigration, births or non disease-induced

mortality. Hosts remain in the E and I compartments for periods of time determined by the

exposed and infectious lifetime distributions, i.e., random variables with continuous, positive

distributions. In the case of exponentially-distributed lifetime distributions, with rates δ and γ
respectively for the exposed and infectious states, the resulting process is a continuous time

Markov chain and the current state of the system is fully determined by the number of hosts in

the four compartments. The SEIR model may be specialised by stipulating that hosts spend a

period of zero duration in the E compartment, resulting in a SIR model.

In Case study: White spot disease in penaeid shrimp we modify this model by additionally

allowing, at regular intervals, each host in the E and the I compartments to go directly to the R

compartment with probabilities πE and πI. This represents regular attempts, with error, to

remove all exposed and infectious hosts from the system.

The direct transmission assumption means that secondary cases are generated at a rate

dependent on the number of infected individuals. Here we adopt the standard approach to

modelling this. The probability that each susceptible host at time t becomes exposed to disease

over the short time interval (t, t + h], is βIth to first order, where β is the direct transmission
rate and It is the number of infectious hosts present at time t. The force of infection, i.e., the

rate of secondary infections, per susceptible host, or the imminent risk of infection that is

Fig 1. Susceptible-exposed-infectious-removed-pathogen (SEIR-P) environmental transmission model diagram illustrating the four host

compartments ((S)usceptible, (E)xposed, (I)nfectious and (R)emoved, or recovered) and single pathogen compartment (P) of the model. The solid

arrows indicate the movement of hosts between host compartments and the loss of viable pathogen from the system. The dotted arrows indicate how

the host and pathogen parts of the model influence each other. The parameters α and β are the environmental and direct transmission rates while � and ρ
are the rates of pathogen emission and decay. The time that hosts spend in the E and I compartments is determined by the chosen exposed and

infectious lifetime distributions, e.g., gamma distributions with shape parameters νδ and νγ and rate parameters λδ and λγ, as shown here. When

exponential distributions are assumed, then the rate parameters are denoted respectively by δ and γ (see Table 1 for a summary of all symbols used

throughout the paper). When α = � = ρ = 0 we obtain the SEIR direct transmission model as a submodel.

https://doi.org/10.1371/journal.pcbi.1009652.g001

PLOS COMPUTATIONAL BIOLOGY Direct transmission models for environmentally persistent pathogens

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009652 December 1, 2021 5 / 26

https://doi.org/10.1371/journal.pcbi.1009652.g001
https://doi.org/10.1371/journal.pcbi.1009652


faced by each susceptible host, at time t is therefore expressed as

f ðtÞ ¼ bIt: ð1Þ

This means that the force of infection is proportional (by the factor β) to the number of

infected hosts currently present. When the number of infected hosts increases or decreases,

there is a corresponding instantaneous change in the force of infection. This is a key feature of

this and other DTMs and represents an important modelling assumption.

An environmental transmission model: Susceptible-Exposed-Infectious-Removed-

Pathogen (SEIR-P). Here we define a class of models that represent both direct (DT) and

environmental transmission (ET) of disease (see, for example, [17]) where the latter occurs via

interaction of susceptible hosts with environmental pools of infectious pathogen. SEIR-P

describes the time evolution of two populations: the hosts, divided into S, E, I and R sub-popu-

lations, measured in hosts (as in the DTM SEIR, described above) and the pathogen popula-

tion (P—measured here in virions) in the environment, external to the hosts. When hosts

enter state I they begin to emit pathogen at the fixed rate �, i.e., they begin to contribute to an

increase in the environmental pathogen load. The pathogen population decays exponentially

at rate ρ.

Each susceptible host at time t now becomes exposed to disease over the short time interval

(t, t + h] with probability (αPt + βIt)h to first order, where the summand βIt represents that

part of the force of infection contributed by direct transmission, as in the SEIR model, and α
and Pt represent the indirect or environmental transmission rate and size of the pathogen popu-

lation (in virions) at time t, respectively. The force of infection is now

f ðtÞ ¼ aPt þ bIt; ð2Þ

which depends linearly on both the size of the environmental pathogen load and the number

of infectious hosts. A change in the number of infected hosts now produces a delayed response

in the force of infection due to the pathogen load taking time to either build up or decay.

Setting α to zero and restricting attention to the four host population compartments recov-

ers the SEIR model described above and setting β = 0 produces a pure ET model. Finally, stipu-

lating that hosts pass instantaneously from the E to the I compartment yields a SIR-P model

with both DT and ET.

The direct transmission approximation as timescale limit of SEIR-P

process

The two populations described by an ETM, the hosts and environmental pathogen, each have

a timescale characterising their evolution, and the extent to which these differ has a qualtitative

effect upon the behaviour of the model. For example, ETMs with shed pathogen retaining

infectivity for durations comparable with the typical host infectious lifetime can exhibit out-

breaks that appear to have died out, in terms of infected individuals, only to restart (see Fig 2).

Similar behaviour is prohibited under the SIR model, where zero infectious hosts implies that

there is no more force of infection to drive the outbreak forward. On the other hand, ETMs

with short-lived pathogens produce host-disease dynamics that are reproducible with a host-

only DTM, as we now demonstrate.

The probability that a susceptible host at time t becomes exposed within the short interval

of time (t, t + h] is (αPt + βIt)h, to first order. The relationship between the qualitative behav-

iour of the SEIR-P model and pathogen timescale comes down to the appearance of Pt in this

expression. How does Pt behave? At time t, each infectious host is emitting pathogen at the

rate � so, overall, new pathogen is entering the population at the rate �It. At the same time, the
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pathogen decays exponentially at rate ρ, or equivalently, each pathogen element remains viable

on average for a duration 1/ρ (in appropriate units). This amounts to Pt being an immigration-

death process (IDP) with inhomogenous immigration rate �It and death rate ρ. As a conse-

quence of elementary theory of Markov chains (see, e.g., [18]), if we momentarily regard the

number of infectives as fixed, It = i for t� 0, then the distribution of Pt tends to Poisson �i
r

� �

and

EðPtÞ !
�i
r

as t !1: ð3Þ

Increasing the values of the parameters � and ρ, while keeping their ratio constant, increases

the rate of convergence but has no other effect upon this limiting behaviour, with the limiting

distribution unchanged. Returning now to variable It, in the limiting case, Pt’s behaviour can

be characterised approximately as being in equilibrium, i.e., Pt � Poisson �i
r

� �
during intervals

of constant It = i, and jumping without transition to a new equilibrium when It changes.

Consequently, for large � and ρ, we may approximate the probability that a susceptible host

becomes exposed over the interval (t, t + h] as

ðaEðPtÞ þ bItÞh ¼ a
�

r
þ b

� �

Ith ¼ b̂Ith: ð4Þ

The part of the SEIR-P model that describes the host disease dynamics is approximately a

direct transmission SEIR model, with an effective transmission rate b̂ and E and I lifetime dis-

tributions unchanged. This SEIR model is the direct transmission approximation (DTA) of the

ETM.

This approximation of the sub-process, Pt, is the stochastic analogue of the “quasi-steady

state approximation” of the pathogen concentration discussed by Tien and Earn in their sus-

ceptible-infected-waterborne reservoir-removed (SIWR) ordinary differential equation model

of cholera outbreaks among humans [19], in which the pathogen concentration in water

sources is restricted to the “critical manifold” of fixed points of the flow. This is related to the

concept of “timescale separation” [20] within complex systems, whereby one component of

Fig 2. Host S, I and R outputs from a single realisation of SIR-P model with environmental transmission only

(i.e., β = 0 host−1 h−1) among a host population of size N = 2000. The rates of environmental transmission and

pathogen emission are α = 1.325 × 10−10 virion−1 h−1 and � = 3462.5 virion host−1 h−1 and the rates of pathogen decay,

ρ, and host recovery, γ, are both 0.029 h−1 (equivalent to a half-life of 24 h). The inset in the central panel is the key

feature of interest and shows how the number of infectious hosts goes to zero roughly between the times t = 2075 h and

2120 h. Under the SIR model, as soon as the number of infectious hosts reaches zero no further secondary infections

are possible. However, within the SIR-P model with comparable pathogen and host infectious lifetimes, outbreaks can

appear to die off but later continue, due to the force of infection from long-living pathogens.

https://doi.org/10.1371/journal.pcbi.1009652.g002
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the system is undergoing changes rapidly enough to be considered as jumping instantaneously

between equilibria.

The vanishing lag between changes in the number of shedding, infectious hosts, and the

resulting response in the force of infection is the reason why ET via short-lived pathogen can

be approximated as DT. Systems with ET that results from the accumulation of relatively long-

lived pathogen retain a memory of the size of the infectious host sub-population since hosts

that have since been removed, or have ceased to shed, may still be the cause of new exposures

via the pathogen that they had previously emitted. This delay between changes in the number

of infectious hosts and their effect on the system dynamics violates the implicit assumption of

DTMs that the force of infection is directly related to the number of infectious hosts, or the

number of hosts who are shedding pathogen. As the pathogen lifetime decreases, so does this

memory effect, and we see an increasing similarity with the dynamics produced by direct

transmission.

Fig 3 demonstrates this behaviour by showing susceptible, infectious and removed sub-pop-

ulation sizes averaged over a number of independent simulations from three SIR-P models

Fig 3. Susceptible, infectious and removed host sub-population sizes of SIR-P (blue) process averaged over 5000

simulations for fixed environmental transmission rate α = 5.95 × 10−7 virion−1 h−1 and host mortality rate γ =

5.95 × 10−3 h−1. The rates of pathogen emission, �, and pathogen removal, ρ, are increased while keeping their ratio

fixed, �
r
¼ 50:0. Top row: � = 2.98 × 10−2 host−1 h−1, ρ = 5.95 × 10−4 h−1, middle row: � = 2.98 host−1 h−1, ρ =

5.95 × 10−2 h−1, bottom row: � = 2.98 × 102 host−1 h−1, ρ = 5.95 h−1. For comparison, the same sub-population sizes for

the DTA SIR process with fixed direct transmission rate b ¼ a �

r
¼ 2:98� 10� 1host� 1h� 1

and γ0 = 5.95 × 10−3 h−1 are

plotted in (red). Median population sizes indicated by bold lines, dashed lines indicate 5th and 95th percentiles. The top

row of panels show two processes that are visibly distinct in their outputs, but with a hundred-fold increase in the

pathogen decay rate, a closer alignment between the two sets of trajectories can be seen in the middle row. In the last

case (bottom row) there is no difference on the scale of the plots between the SIR-P and SIR model outputs.

https://doi.org/10.1371/journal.pcbi.1009652.g003
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with fixed α and γ and increasing � and δ, with �

r
held constant. These are plotted in each case

against similar outputs from a SIR model with the same γ and β chosen to equal a �

r
, so that the

SIR model is the DTA of the SIR-P model. As shown in the figure, increasing rates of pathogen

emission and decay rate lead to increasing similarity between the SIR-P and SIR model out-

puts, and in the case of short-lived pathogen, the SIR-P and DTA SIR outputs are indistin-

guishable on the scale of the plots.

Results

Estimating DTA parameters from outbreak data

The presence of environmental transmission violates an assumption of DTMs: that the force

of infection is directly related to the number of infectious hosts currently in the system. Here

we fited the DT SEIR model to data from simulated SEIR-P outbreaks with varied rates of

pathogen emission and decay and assessed the goodness of fit of the model using GPPCs

(Materials and methods). The simulated data consists of times of onset of infectivity and host

removal, i.e., the times of entry of hosts into the I and the R states, the observation of which is

feasible in some cases (see Case study: White spot disease in penaeid shrimp).

The data set specifications are summarised in Table 3 and the MCMC methods of model fit-

ting and a description of the GPPCs are found in Materials and methods and Section A in S1

Appendix. The first three data sets were generated using a SEIR-P process in which there was

both environmental transmission due to pathogen as well as direct transmission from host to

host. The rates of pathogen emission, �, and decay, ρ, were increased with �

r
kept constant. The

fourth data set has no environmental transmission rate, and so is the output of a DTM.

MCMC convergence and posterior coverage. Convergence of the MCMC sampling

chains was checked by running two separate chains for each fitted model with separated initial

values and observing that they converge to a common stationary distribution. Trace plots for

the two parameters that were MCMC sampled, β and δ can be found in Fig A in S1 Appendix.

Table 3. Scenarios for simulation study.

Data generating process parameter values N m

A. long-lived pathogen α = 0.001 virion−1 d−1, β = 0.007 host−1 d−1 300 295

Ij − Ej * Gamma(1.10, 0.5 d−1)

Rj − Ij * Gamma(1.10, 1.0 d−1)

� = 5.4 virion host−1 d−1, ρ = 0.8 d−1

B. intermediate pathogen α = 0.001 virion−1 d−1, β = 0.007 host−1 d−1 300 294

Ij − Ej * Gamma(1.10, 0.5 d−1)

Rj − Ij * Gamma(1.10, 1.0 d−1)

� = 54.0 virion host−1 d−1, ρ = 8.0 d−1

C. short-lived pathogen α = 0.001 virion−1 d−1, β = 0.007 host−1 d−1 300 297

Ij − Ej * Gamma(1.10, 0.5 d−1)

Rj − Ij * Gamma(1.10, 1.0 d−1)

� = 5.4 × 104 virion host−1 d−1, ρ = 0.8 × 104 d−1

D. direct transmission only α = 0.0 virion−1 d−1, β = 0.0075 host−1 d−1 300 272

Ij − Ej * Gamma(1.10, 0.5 d−1)

Rj − Ij * Gamma(1.10, 1.0 d−1)

Total host population size = N. Final outbreak size = m.

https://doi.org/10.1371/journal.pcbi.1009652.t003
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Fig 4 is a graphical summary of the samples obtained from the posterior distribution of the

parameters and of the SEIR basic reproduction ratio (the expected number of new cases of

infection that result from addition of a single infected host into a large, wholly susecptible pop-

ulation), R0 ¼
bN
g

, for each of the fitted models. For comparison, these are plotted against the

reference values b̂; d̂; ĝ and R̂0, where b̂ ¼ a �

r
þ b is the effective transmission rate defined

in The direct transmission approximation as timescale limit of SEIR-P process. The quantity

d̂ ¼ EðtI � tEÞ
� 1

and the quantity ĝ ¼ EðtR � tIÞ
� 1

are, respectively, the reciprocals of the

mean E and I lifetimes in the underlying process and R̂0 ¼
b̂N
ĝ

is the basic reproductive ratio

for the SEIR-P process, according to the survival function formulation (see, e.g., [21, 22]).

Fig 4. Density estimates of SEIR parameter posterior distributions and R0 for long-lived pathogen (A),

intermediate pathogen (B), short-lived pathogen (C) and direct-transmission only (D) data sets. The red dot in the

leftmost panels indicates ðb̂; d̂Þ, where b̂ ¼ a�=rþ b and d̂ ¼ ðEðIj � EjÞÞ
� 1

. The red vertical lines in the central and

rightmost panels indicate ĝ ¼ ðEðRj � IjÞÞ
� 1

and R̂0 ¼
b̂N
ĝ

, respectively. The marginal posterior distributions γ and (β,

δ) are conditionally independent and so are plotted separately.

https://doi.org/10.1371/journal.pcbi.1009652.g004
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The position of b̂; d̂ and ĝ close to the centre of the parameter posterior distribution in the-

short-lived pathogen case in Fig 4C means that a SEIR process with direct transmission rate

b̂ ¼ a �

r
þ b and (exponentially-distributed) E and I lifetimes with means that match those of

the underlying process is the most likely model from among the class of SEIR models with

exponential lifetimes. As a result, the fitted model produces a very good estimate of R0 in rela-

tion to the underlying SEIR-P process.

As the pathogen lifetime increases in Fig 4A and 4B, leading to a lesser degree of timescale

separation, the fitted models both underestimate R0 and b̂; d̂ and ĝ lie further from the centre

of the parameter posterior distribution (in the tails in the long-lived pathogen case).

Assessing DTA model fit against ET outbreak. First, we compare the outbreak size tra-

jectories predicted by the fitted model with the trajectory obtained from the data. These were

obtained by simulating SEIR event times with parameter values drawn from the posterior sam-

ples, as discussed in Materials and methods. If the model fits well then we should expect these

posterior-predicted trajectories to look similar to the observed trajectory [23, 24]. Fig 5

Fig 5. Observed outbreak size trajectories, It, over course of a single simulated outbreak (solid red line): long-lived

(A), intermediate (B) and short-lived pathogen (C) and direct transmission only (D). These are compared with the

trajectories obtained from SEIR model with MCMC-sampled parameters values, with small outbreaks (� 50)

discarded. The time axis was discretised (400 points) and 5th, 25th, 50th (median), 75th and 95th percentiles of the SEIR-

predicted outbreak size were estimated at each discrete time point. The solid blue line indicates the median outbreak

size while the dashed blue lines are the other percentiles. In the short-lived and direct transmission only cases, the

shape of the predicted outbreak size trajectories (as indicated by the blue lines) mirrors that of the observed outbreak

size, with the solid red and blue lines aligning at the initial exponential growth phase, as well as at the end of the

outbreak when the number of infective hosts dies out. This is not the case for the long-lived pathogen case, for which

the model predicts earlier onset of growth of the outbreak, peaking somewhat earlier than was observed.

https://doi.org/10.1371/journal.pcbi.1009652.g005
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graphically compares the posterior-predictive outbreak size trajectories for the four cases

described above with the underlying observed outbreak trajectory. The outbreak size trajectory

from the data is indicated by the solid red line and superposed on this is a graphical summary

of posterior predictive outbreak size trajectories. The solid blue line indicates the median pre-

dicted number of infectious hosts, while the blue dashed lines are the 5th, 25th, 75th and 95th

percentiles. In the cases of intermediate and short-lived pathogen, the predicted model output

appears to agree well with the data, as is the case with DT only. However, for the long-lived

pathogen, the model appears to predict outbreaks that reach their peak and begin to recede

sooner than was observed in the data. Nonetheless, the fitted model does agree with the data in

terms of peak outbreak size.

Fig 6 compares graphically the final outbreak size and the outbreak duration associated

with each of the four sets of onset of infectivity and removal times with the same quantities

drawn from their respective posterior-predictive distributions. Fig 7 is similar, comparing size

and time of outbreak peak (i.e., the outbreak at its largest) (see Materials and methods for

details). As is indicated clearly in the plots, for the long-lived pathogen case, the model makes

Fig 6. Graphical comparisons of final outbreak size (total hosts infected during outbreak) vs. outbreak duration

(latest removal time minus time of first onset of infectivity) with their posterior predictive distributions. The red

dot indicates observed value of statistics from one outbreak: long-lived (A), intermediate (B) and short-lived pathogen

(C) and direct transmission only (D). The shading and contours were obtained from a kernel density estimate after

simulating 15000 SEIR outbreak trajectories with parameter values taken from the MCMC samples obtained while

fitting the SEIR model, with small outbreaks (� 50) discarded. In the case of long-lived pathogen, the fitted model

tends to predict shorter duration outbreaks but otherwise agrees with the data in terms of final outbreak size. This is

indicated by the red dot aligning horizontally with the darkest part of the density estimate but being shifted vertically.

Better agreement between the data and fitted model is evident in the short-lived and intermediate pathogen and DT-

only cases.

https://doi.org/10.1371/journal.pcbi.1009652.g006
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a poor prediction of when the outbreak peaks and the how long the outbreak persists before

finally dying out. Better agreement is evident for the intermediate and short-lived pathogen,

more so, in fact, than is evident in the DT only case.

Case study: White spot disease in penaeid shrimp

In this section we focus on white spot disease (WSD) in penaeid shrimp, since this is a key

example of an infectious disease transmitted via both DT and ET due to a pathogen known to

be long-lived in the environment, under the right conditions. We formulate a SEIR-P model of

the WSD-penaeid system in which attempts are made at regular intervals to remove dead and

diseased hosts from the system. We estimate its parameters from published data and then com-

pare the effect upon the outbreak trajectories resulting from stepping up the frequency of

removals from every 24 h to every 6 h.

This increase in the frequency of removals is an example of how relative shortening of the

SEIR-P timescales might come about in practice. We see that with removals every 24 h the

SEIR-P host-disease dynamics are closely replicated by its direct transmission approximation

Fig 7. Graphical comparisons of size of outbreak peak, i.e., the size of It at its largest, and time of outbreak peak,

as defined in main body of text with their posterior predictive distributions. The red dot indicates observed value of

statistics from one outbreak: long-lived (A), intermediate (B) and short-lived pathogen (C) and direct transmission

only (D). The shading and contours were obtained from a kernel density estimate after simulating 15000 SEIR

outbreak trajectories with parameter values taken from the MCMC samples obtained while fitting the SEIR model,

with small outbreaks (� 50) discarded. For long-lived pathogen, the fitted SEIR model predicts that outbreaks peak, on

average, at the size observed in the data. However, the model predicts outbreaks that peak earlier. This is evident in

panel (A), where the predicted outbreak size trajectories clearly peak earlier than the observed outbreak size trajectory

indicated by the solid red line. Better agreement between data and model predictions are visible in panels (C) and (D).

https://doi.org/10.1371/journal.pcbi.1009652.g007
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(DTA), whereas SEIR-P and DTA visibly diverge in their averaged outputs with removals

every 6 h.

Background: WSD and its impact

WSD is a devastating viral disease caused by the white spot syndrome virus (WSSV) that

affects a wide host range, including penaeid shrimp, such as the Asian tiger shrimp, Penaeus
monodon and the whiteleg shrimp, Litopenaeus vannamei. Disease onset and mortality occur

in shrimp quickly after exposure, with 90% of farmed stocks typically lost to disease within 2 d

to 7 d [25] and nearly 100% mortality of experimentally infected shrimps observed after 5 d to

7 d [26]. Under laboratory conditions, WSSV has been shown to retain its infectivity in sea

water for up 12 days and in sun dried and water-logged pond sediment for up to 19 and 35

days, respectively [27]. Through periodic sampling of seawater from abandoned shrimp cul-

ture ponds and surrounding canals in Vietnam, where previously an outbreak of WSD had led

to 100% mortality of cultivated shrimp, the authors of [28] found that WSSV remained detect-

able for up to 20 months. The detection rates declined throughout the duration of the study

with the steepest declines observed between July and December of both 2001 and 2002. The

authors suggest this is linked to decreased plankton biomass during that period, which in turn

suggests that WSSV is able to replicate within certain plankton species. Esparza-Leal, et.al. [29]

suggest that free-floating WSSV virions have the potential to infect shrimp in pond water at

around 27˚C, whereas pond water temperatures in range of 30–33˚C prohibit infection. In

[29] it was noted that detectability of WSSV varied among pond water samples taken simulta-

neously from the same pond, leading the authors to note a degree of stochasticity in relation to

the waterborne pathogen load.

Modelling WSD and estimation of SEIR-P parameters

Estimates of rates of WSD transmission via ingestion and cohabitation have been made by

Lotz and Soto [30] for Litopenaeus vannamei and by Tuyen, et al [31] for both Litopenaeus
vannamei and Penaeus monodon. Each of these estimates rely on the assumption that the force

of infection is proportional to the number of infected shrimp currently present in the tank (It)
and therefore responds immediately to changes in this number.

Tuyen, et al, decompose the rate of direct transmission into two parts arising from ingestion

and cohabitation, β = βingest + βcohab (our notation), so that the force of infection at time t is
bIt
N

(where they assume that transmission is frequency dependent). They estimate the two compo-

nents of β using regression analysis of data obtained via an immersion challenge experiment

where the relative amounts of exposure via the two routes are controlled. This is done for Lito-
penaeus vannamei and Penaeus monodon independently, and for both species combined.

Lotz and Soto expose Litopenaeus vannamei to WSSV exclusively via either ingestion or

cohabitation for a set duration and estimate ~b ingest and ~bcohab from the numbers of shrimp that

later developed the disease. Using a Reed-Frost model of epidemics (e.g., see [32]), the latter

two quantities are probabilities of disease transmission per distinct susceptible-infected shrimp

pair during a time interval of duration Δt. The force of infection here is approximately
~bIt
Dt (see

Section B in S1 Appendix), where ~b is either ~b ingest or ~bcohab. Lotz and Soto found ~bcohab to be

not significantly different from zero in a first experiment and to be over an order of magnitude

smaller than ~b ingest when the experiment was repeated (~b ingest ¼ 0:56; ~bcohab ¼ 0:02). Such a rel-

atively low rate of transmission due to cohabitation led the authors to omit this from their

model of WSD in Litopenaeus vannamei, described in [33]. Tuyen, et al, found a similar result

in the case of Penaeus monodon (βingest = 0.22 h−1, βcohab = 0.0026 h−1) but for Litopenaeus
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vannamei they in fact found that the reverse was true, in that the rate of transmission via

cohabitation was greater than via ingestion (βingest = 0.0038 h−1, βcohab = 0.018 h−1).

Underlying the estimates of βcohab and ~bcohab above is the assumption that the force of infec-

tion responds without delay to a change in the number of infected shrimp, It. This assumption

is indeed valid across a wide variety of cases in which the size of the environmental pathogen

load responds more or less rapidly to changes in It, as discussed in the previous section. How-

ever, given the slow rate of decay of infectivity of WSSV and its persistence in water bodies

long after outbreaks have occurred, it is perhaps fruitful to consider the relationship between

environmental pathogen load and the rate of environmental transmission as described, for

example, by the SEIR-P model described in Models for direct and environmental transmission

of disease. For example, Wang, et al. (2012) [34] find that an environmental transmission

model similar to SEIR-P of avian flu among duck populations was able to account for the com-

plex periodic outbreak patterns of the disease over long time periods.

Whereas Lotz and Soto and Tuyen, et al. characterise the route of transmission due to

cohabitation as being implicitly direct, with rate βcohab, (since its rate is directly proportional

to the number of infectious hosts), we aim here instead to characterise this as environmental

transmission with rate α, as described in The direct transmission approximation as timescale

limit of SEIR-P process. As far as we know, there is no published estimate of this quantity for

WSD among penaeids. We obtain a lower estimate of αL = 10−4 ml virion−1 h−1 for Penaeus
monodon, along with an upper estimate of the pathogen decay rate, ρU = 0.005 h−1, from the

results of the WSSV viability in seawater experiment by Kumar, et al., ([27], details in Section

C in S1 Appendix). Lotz and Soto use a shrimp density of 12 animals per square metre of water

surface in their experiment in order to mimic densities of wild populations [30]. In the simula-

tion study, described below, we adopt a nominal water volume of 46.2 m3 and water surface

area of 77 m2 to obtain a similar host density with 1000 shrimps initially in the system. Since

the estimates of α and β both have dimensions volume × virion−1 × time−1 and volume
× host−1 × time−1, respectively, we scale these by this nominal volume before carrying out

the simulations.

The pathogen emission rate, �, is chosen from within a range of known shedding rates for

waterborne viruses (e.g., see [35, 36]). Since each dead shrimp contributes �

r
to the environ-

mental pathogen load, at equilibrium, and therefore a �

r
to the force of infection via environ-

mental transmission, we choose a direct transmission rate b ¼ 10� a �

r
. This is in accord with

the relative sizes of Lotz and Soto’s estimates of ~b ingest � 10� ~bcohab.

The S, E, I and R compartments of the SEIR-P model (summarised in Fig 8) are, respec-

tively, shrimp that are susceptible (S), have been exposed, but still alive (E), dead, and now

causing new infections either via shedding virus into the water body due to decay or being

scavenged upon (I) and physically removed from the system (R). We assume for simplicity

that there is no viral shedding or infectivity during the E stage and that times from exposure to

mortality are gamma-distributed with shape and rate parameters νδ and λδ such that the mean

time from exposure to mortality (
nd
ld

) agrees with the estimate given by [31].

There are two processes by which shrimp are removed from the system. Firstly, there is the

long process of decay characterised by gamma-distributed times in the I compartment, with

shape and rate parameters νγ and λγ with mean
ng

lg
¼ 333:3h � 14d. Secondly, removals occur

probabilistically from both the E and I compartments at regularly spaced time points with

probabilities of success of πE = 0.05 and πI = 0.95, respectively, so that bin(Et, πE) and bin(It,
πI) shrimp are removed at each removal point, t. Shrimp that are dead are therefore removed

at the first removal time, post-mortem, with probability 0.95 and at the second with probability
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0.9975. This means that it is highly unlikely that shrimp are removed from the system due to

natural decay in this scenario. We assume that no living, disease-free shrimp are accidentally

removed in this process. All of these model quantities are summarised together in Table 4.

Impact of removal frequency on WSD outbreaks among penaeids

Using simulations, we study outbreak patterns under 24 and 6-hourly removals under the

SEIR-P model described above. Alongside these we also look at those of the DTA of this

model, where b̂ ¼ a �

r
þ b, for comparison. Density plots for the final outbreak size and out-

break duration, max (tR), of the SEIR-P model and the DTA are displayed in Fig 9 for both 24

and 6 hourly removals. Figs 10 and 11 show the simulated outbreak trajectories for the four

host compartments of the SEIR-P model and DTA. The top row in these two figures are typical

individual outbreak trajectories while the bottom row are trajectories averaged over 3 × 104

independent simulations, with “small” outbreaks of fewer than 10 infections removed.

Figs 9A and 10 show that attempting to remove the dead shrimp from the system at 24 h

intervals, even with a success rate of 95%, is not sufficient to prevent large outbreaks of WSD,

with outbreaks overwhelmingly affecting more than 90% of the shrimp population and lasting

Fig 8. Summary of SEIR-P model of WSD among penaeids. Parameter values are listed in Table 4. The arrow from I to R, labelled Γ(νγ, λγ), represents

removal of dead hosts after a gamma-distributed time to full natural decay. The curved arrow from I to R represents removal at one of the x-hourly removal

attempts, with probability πI, similarly for the curved arrow from E to I. The direct transmission approximation (DTA) of the SEIR-P model is obtained by

replacing αStPt + βStIt above the leftmost arrow with b̂ ¼ a �

r
þ b and setting � = ρ = 0.

https://doi.org/10.1371/journal.pcbi.1009652.g008
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more than 600 h from index exposure to final removal. Increasing the intensity of surveillance,

however, by removing dead and diseased shrimp every 6 h, eliminates many such large out-

breaks, limiting the final outbreak size to about 60% of the population. Additionally, outbreaks

tend to be eradicted sooner, at around 200 h, although a sizeable proportion continue for lon-

ger (see Fig 9B).

It is interesting to compare the SEIR-P and DTA trajectories when going from 24 to

6-hourly removals, since the time that infectious shrimp are in the system is reduced by about

a quarter, on average. This is an example of how two distinct degrees of host and pathogen

timescale separation may be observed for the same host-disease system. The plots in Figs 9A

and 10 suggest very close alignment between the SEIR-P and DTA models in their host com-

partment dynamics, final outbreak sizes and outbreak durations, meaning that we can faith-

fully reproduce the environmental transmission without needing to model the pathogen load.

Under such a scenario, most hosts remain infectious for less than 24 h. Nonetheless, we see

that the resulting outbreak patterns are captured equally well by the DTM as by the full SEIR-P

model. The shortening of the host timescale by removing every 6 h is sufficient, however, to

begin to observe divergence between the SEIR-P and the DTA, most noticeably, perhaps, in

the distributions of the final outbreak size and outbreak duration (Fig 9B). Indeed, the DTA

underestimates, on average, the reduction in final outbreak size and overestimates the reduc-

tion in outbreak duration. The DTA outbreaks at 6-hourly removals tend to grow slightly

faster than the SEIR-P outbreaks (see Fig 11).

Discussion

We have seen in Results that the SIR and SEIR models approximate the host-disease dynamics

arising from a combination of direct and environmental transmission, as modelled by SIR-P

or SEIR-P, that this approximation improves with increasing rates of pathogen shedding and

decay and that when fitting these models to data, using Bayesian inference and data augmenta-

tion, they are highly robust to violations of the assumption of direct transmission. For example,

these results suggest that the direct transmission approximation will be suitable for modelling

transmission of SARS-CoV-2 within a closed environment, such as a hospital, since it has a

half life of about 1 h in aerosols and 1 h, 3.5 h, 5.75 h and 7 h on copper, cardboard, stainless

steel and plastic surfaces [37] but the mean infectious period is considerably longer: 5 d to 11 d

Table 4. Parameter estimates and sources for SEIR-P model of WSSV in penaeids.

Description source / comment

α transmission (cohabitation) 10−4 ml virion−1 h−1 estimated from [27] (Section C in S1 Appendix)

2.16 × 10−12 virion−1 h−1 scaled by 46.2 m3

β transmission (ingestion) 8.64 × 10−4 shrimp−1 h−1 10� a �

r
(see [30] and above discussion)

b̂ direct transmission (DTA) 9.5 × 10−4 shrimp−1 h−1 a �

r
þ b

νδ mortality (shape) 1.5

λδ mortality (rate) 0.0112 h−1 [31]

νγ removal (decay) (shape) 2.0

λγ removal (decay) (rate) 0.006 h−1

πE success of removal (from E) 0.05

πI success of removal (from I) 0.95

� WSSV shedding 2 × 105 virion shrimp−1 h−1 (see e.g. [35, 36])

ρ loss of WSSV infectivity 0.005 h−1 estimated from [27] (Section C in S1 Appendix)

https://doi.org/10.1371/journal.pcbi.1009652.t004
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for asymptomatic cases, up to 4 d for presymptomatic cases [38] and about 7 d for symptom-

atic cases [39].

Tien & Earn, in their investigation of multiple transmission routes of cholera among

humans [19], cite the rate of pathogen decay in the waterbody as the important factor in deter-

mining whether one should consider modelling the environmental and direct routes of trans-

mission separately, or combined as one direct route. As suggested by the simulation study in

Case study: White spot disease in penaeid shrimp, a viral lifetime of 200 h versus a much

shorter host mean infectious lifetime of around 24 h also results in disease dynamics closely

reproducible with a DTM, in spite of the low rate of pathogen decay. In this case the high rate

of pathogen shedding produces sufficient host-pathogen timescale separation in order that DT

provides a good, approximate description of the transmission via both direct and environmen-

tal routes. When the rates of shedding and pathogen decay are both low then we do not expect

the DT approximation to work. Macro-parasite infections are one class of disease system

within this grouping and our results indicate why models describing the complex host-parasite

interaction, similar to those of similar to that of Anderson & May [40, 41], are often used for

these systems (e.g., see [42]).

While individual outbreak trajectories appear very similar, statistical comparison over

many runs reveals a strong and practically important divergence between environmental and

Fig 9. Estimated density plots of final outbreak size (left panels) and outbreak duration (right) for the SEIR-P

(blue) and DTA (red) models of WSD under (A) 24-hourly removals, where both quantities are distributed very

similarly under the two models, and (B) 6-hourly removals. Increasing the removal frequency tends to reduce the

size and duration of outbreaks, although some larger outbreaks still occur. The benefit of increasing the removal

frequency, in terms of reduction in mean final outbreak size, is underestimated slightly by the DTA and the reduction

in outbreak duration is over-estimated.

https://doi.org/10.1371/journal.pcbi.1009652.g009
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direct transmission models of WSD among penaeids under more effective disease control (i.e.,

more frequent removals). The model fitting and checking in Results were done under the

rather special scenario that both the times of onset of infectivity and host removal are known

so as to construct the outbreak size trajectories displayed in Fig 5, which provides the clearest

indication of lack of model fit in the long-lived pathogen case. However, DTMs can and have

been fitted to a wide range of partial epidemic data [43, 44] and our conclusions will hold in

such scenarios. Nonetheless GPPCs in general may not be the sharpest way to detect departure

Fig 10. Simulations of the SEIR-P (blue) and DTA (red) models of WSD in penaeid shrimp with removals of

exposed (E) and dead (I) hosts at 24-hourly intervals, with probabilities of success 0.05 and 0.95, respectively.

Single outbreak trajectories (top row) and averages over 30 000 independent simulations with small outbreaks (fewer

than 10 infections) excluded (bottom row). The zig-zag pattern in the 3rd panel on the bottom row is due to the

periodic removals. The averaged model outputs show a high degree of similarity between SEIR-P and DTA, meaning

that at these timescales the environmental transmission of WSD can be well approximated with direct transmission

among the hosts.

https://doi.org/10.1371/journal.pcbi.1009652.g010

Fig 11. Simulations of the SEIR-P (blue) and DTA (red), as in Fig 10, with removals at 6-hourly intervals.

Although the outbreaks of single SEIR-P and DTA trajectories appear similar, a small but definite divergence between

the two models appears when studying their averaged outputs.

https://doi.org/10.1371/journal.pcbi.1009652.g011
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from direct transmission when the data from an outbreak is less complete, as is often the case.

Exposure time residuals (ETRs) (Lau, et al [45]) could potentially yield a numerical measure of

model fit. ETRs are defined, relative to some putative model, as joint functions of the data,

latent variables and parameters and their joint posterior predictive density should approximate

an independent uniform sample when the parameters are close to the mode of their posterior.

However, in the case of there being latent variables, such as when the host event times are not

fully observed, analysis of their high-dimensional posterior distribution is not straightforward.

Common methods of model comparison, such as model evidence [46] and the Bayesian and

the deviance information criteria (BIC & DIC) would require an alternative ETM fitted to the

same data in order to make a comparison. It is an open question whether ETMs can be fitted

to host-disease events without measurement of the environmental pathogen load or strong

prior information about the pathogen shedding and decay rates. Tien and Earn [19] comment

that even when pathogen dynamics are slow, parameters quantifying rates of environmental

and direct transmission (α and β) are still unidentifiable from disease incidence data alone.

Methods that measure pathogen density in the waterbody, such as polymerase chain reaction

[47, 48] are therefore required in order to quantify environmental transmission from data.

Among the key assumptions of the SEIR-P model of WSD among penaeids is that the rate

of pathogen shedding, �, is constant, both across the host population and temporally within a

single host over the course of their infection. There are, indeed, a few studies in which the rate

of pathogen shedding has been measured in the same host at multiple time points, and these

suggest that rates of pathogen emission do indeed vary over time (e.g., the investigation by

Wargo, et al., of infectious hematopoietic necrosis virus shedding in juvenile rainbow trout

[49] and that by Jones, et al., regarding repeated measures of respiratory viral load of SARS-

CoV-2 [50]). What is gained by fitting a model with fixed shedding rate to epidemiological

data is an idea of the “average” rate of shedding, both across the population and over time,

even though the model’s estimates of risks at particular time points are either under or over-

estimated. Another assumption is that the environmental pathogen is uniformly mixed

throughout the water body. In the context of small to mid-sized tanks, this is reasonable, but

when, e.g., considering the spread of infection between a local network of shrimp farming

ponds then we would perhaps consider additionally incorporating a contact structure between

multiple, uniformly mixed sites, as in [44]. Further complications may arise, however, in larger

bodies of water where pathogen density perhaps varies spatially due to factors including water

temperature or the existence of eddy currents, and temporally, due to effects of diffusion that

cannot be neglected. Computational fluid dynamics, which numerically models flows of air

and water, can be coupled with epidemiological models in order to incorporate uneven spatial

pathogen densities and predict flows of pathogen carrying air and water currents (see, e.g., the

study of the spatial pattern of affected households in the 2001 Amoy Gardens outbreak of

SARS [51, 52].

Nonetheless, even simple models, as long as we can adequately quantify them from data,

offer approximations of useful quantities, such as the likely size and duration of outbreaks.

This work should offer reassurance to readers that direct transmission models, with their sim-

ple picture of disease transmission, remain powerful tools as their field of application grows.

Materials and methods

Bayesian model fitting and inference

SEIR posterior, likelihood and prior densities. In Results we fit the SEIR model with

exponential exposed and infectious lifetimes to data generated by both the SEIR and SEIR-P

processes. Since in practice, the times of host exposure, tE ¼ ftE
1
; . . . ; tE

mg, are very rarely
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observed directly, these are treated as missing data. It is often the case that that the times of

onset of infectivity, tI ¼ ftI
1
; . . . ; tI

mg, are also unobservable. However, we will be using the SEIR

and SEIR-P models to describe WSSV in penaeid shrimp (see Case study: White spot disease in

penaeid shrimp), for which onset of infectiousness coincides roughly with the death of the

shrimp. Therefore, in this particular case, the times of entry into the I state, corresponding to

death (and onset of infectiousness), and the R state, corresponding to removal from the system

(either due to complete decay or physical removal from the waterbody) are feasibly observable.

Bayesian inference regarding the parameters of the SEIR model is based entirely on the pos-
terior density, which in the case of exponentially distributed exposed and infectious lifetimes is

pð b; d; g; tE j tI; tR Þ / pð tE; tI; tR j b; d; g Þ pð b; d; g Þ ð5Þ

where tI and tR ¼ ftR
1
< . . . < tR

mg are the observed times of onset of infectivity and removal

and tE are the unobserved times of exposure (with indices corresponding to hosts, so that the

host that is exposed at time tE
i becomes infectious at tI

i and is removed at tR
i ). The symbol m

denotes the final outbreak size. The two factors on the right hand side are respectively the like-
lihood and the prior densities. The prior density summarises our knowledge and uncertainty

about the parameters prior to observing the data. Throughout, we will assume that the three

parameters are a priori independent, i.e.,

pð b; d; g Þ ¼ pð b Þpð d Þpð g Þ ð6Þ

and that

pð b Þ � ExpðobÞ

pð g Þ � ExpðogÞ

pð d Þ � ExpðodÞ or Uð0; 10Þ

ð7Þ

We follow [43] in choosing exponentially-distributed priors since their functional form

leads to conventient expressions for the full conditional distributions of the parameters, mak-

ing it easier to sample from the posterior distribution. We choose the values ωβ, ωδ and ωγ =

0.001 for each marginal prior distribution’s rate parameter so that each has a mean 1 × 103 and

variance 1 × 106 (in appropriate units) and the resulting prior density is approximately flat

over a large area of parameter space. This means that almost all of the information expressed

by the posterior distribution comes from the likelihood. This kind of prior is described as

uninformative since it expresses, in probabilistic language, that we have minimal knowledge

about the values of the parameters prior to observing the data. In circumstances where we are

fitting models to real data, without prior knowledge about the parameters of the model, it is

necessary to ensure that a specific choice of uninformative prior is not unduly influential on

posterior inferences. We perform such a sensitivity analysis by refitting the same model with

several distinct, uninformative priors, comparing the resulting posterior distribtions and

checking that these are largely unaffected by choice of prior. However, since in what follows,

we are fitting models to simulated data with known parameter values, we select priors in

advance that we know to be sufficiently uniform on the scale of the likelihood. We will see, in

what follows, that even with no prior knowledge about the direct transmission rate, β, (as

expressed by its uninformative marginal prior density) it is possible to estimate this quantity in

the absence of observed exposure times (see, e.g., [43, 44, 53]).

In the case of long-lived pathogen, SEIR is far from the “correct” model for the data (e.g.,

see [54, 55] for accounts of fitting mis-specified models) and this can present issues with the

convergence of the MCMC chains since there are no strong candidates among parameter val-

ues that simultaneously explain the data. In order to aid convergence, therefore, the alternative,
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uniformly-distributed prior for δ is used in the long-lived pathogen case only (Estimating

DTA parameters from outbreak data). By placing an upper bound (in this case, 10.0) on the

support of δ, we stipulate that we seek a model with non-negligible latent infectious periods, of

duration no shorter than one tenth of a day.

The likelihood, p(tE, tI, tR | β, δ, γ), describes how the data depend on the parameters of the

model, which, in the case of exponentially distributed times in the E and I states is

pð tE; tI; tR j b; g; d Þ /
Y

i6¼k

fbItEi �
g � exp

�

� b

Z maxðtRÞ

tEk

StIt dt
�

� � � �

� � � �
Ym

j¼1

de� dðt
I
j � tEj Þ �

Ym

j¼1

ge� gðt
R
j � tIj Þ:

ð8Þ

where ItEi �
is the number of infectious hosts immediately before the ith exposure time. See Sec-

tion A in S1 Appendix.

The products over j = 1, . . .m in (8) are the contributions to the likelihood from each of the

exponentially-distributed times spent in states E and I. The terms in the product over i 6¼ κ are

the contributions from the exposure times, excluding the index exposure, which each have

associated hazard βSt It.
Similarly to [43], tE

k
represents the (perhaps unobserved) first exposure time. In Results we

fit these models in scenarios where the exposure times have not been observed and so the time

of the index exposure is unknown.

For details of model fitting, see Section A in S1 Appendix.

Model checking using graphical posterior-predictive checks (GPPC). Graphical poste-

rior predictive checks (GPPC) [23, 24] are used here to test for departure from DT model

assumptions. These are a standard model checking tool, offering a visual comparison of quan-

tities derived from the observed data, h(tI, tR), with h(t0I, t0R), where t0I, t0R are simulated from

the posterior-predictive distribution of the fitted model, with density

pð t0I; t0R j tI; tR Þ ¼
Z

pð t0I; t0R j b; d; g; tE; tI; tR Þ pð b; d; g; tE j tI; tR Þ db dd dg dtE

¼

Z

pð t0I; t0R j b; d; g Þ pð b; d; g; tE j tI; tR Þ db dd dg dtE
ð9Þ

Uncertainty regarding parameter values is expressed by drawing from their posterior distri-

bution. The idea is to check that the fitted model replicates the original data with reasonable

probability, with no large, systematic disagreements between the data and model predictions.

Among the salient features of a disease outbreak are its size, at both peak and completion,

and characteristic timescales, e.g., time from index exposure to peak of outbreak, and total

duration. Such statistics are of interest in their own right and there are known formulas in the

deterministic case for peak and final outbreak sizes and initial exponential growth rates for

SIR, SEIR and similar models [56–58]. For the GPPCs here we obtain a probabilistic picture of

similar quantities with the timing of the outbreak’s peak standing as proxy for the initial

growth rate. The following four quantities are considered.

1. final outbreak size, m, i.e., total hosts who become exposed during outbreak

2. outbreak duration, max (tR) − min (tI)

3. time of outbreak peak, tpeak

4. size of outbreak at peak, Imax = max{It, t� 0}.
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Since the simulated data contains times of onset of infectivity and host removal, the

above quantities are indeed directly calculable. Additionally, the outbreak size trajectory, It,
over the course of an outbreak will be examined. Due to likely correlations between m and

max (tR) − min (tI) and between Imax and tpeak, these are plotted bivariately.

The time of outbreak peak, tpeak, is interpolated between the first and last times that the out-

break size is within the range cImax� It� Imax, where 0< c< 1, i.e.,

tpeak ¼
maxft : It � cImaxg � minft : It � cImaxg

2
: ð10Þ

Calculating tpeak this way, rather than simply taking the time that the outbreak size reaches

its maximum, avoids the complication of the outbreak hitting its maximum size more than

once and, more importantly, aims to reduce the variance of its posterior-predictive distribu-

tion, and therefore produce a sharper test for model departure. Here c is chosen to be 0.3,

since the GPPC outputs were not found to be sensitive to the particular value chosen.

Supporting information

S1 Appendix. Supplementary text. Detailed description of Metropolis-cooled MCMC rou-

tine, derivation of force of infection for Reed-Frost epidemic models, parameter estimation for

WSSV SEIR-P model and diagnostic MCMC trace plots.

(PDF)
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borne Pathogens: Detection Methods and Challenges. Pathogens. 2015; 4(2):307–334. https://doi.org/

10.3390/pathogens4020307 PMID: 26011827

48. Aintablian N, Walpita P, Sawyer MH. Detection of Bordetella pertussis and Respiratory Syncytial Virus

in Air Samples from Hospital Rooms. Infection Control and Hospital Epidemiology. 1998; 19(12):918–

923. https://doi.org/10.2307/30142018 PMID: 9872529

49. Wargo AR, Scott RJ, Kerr B, Kurath G. Replication and shedding kinetics of infectious hematopoietic

necrosis virus in juvenile rainbow trout. Virus Research. 2017; 227:200–211. https://doi.org/10.1016/j.

virusres.2016.10.011 PMID: 27771253

50. Jones TC, Biele G, Mühlemann B, Veith T, Schneider J, Beheim-schwarzbach J, et al. Estimating infec-

tiousness throughout SARS-CoV-2 infection course. Science. 2021; 5273(May):eabi5273. https://doi.

org/10.1126/science.abi5273 PMID: 34035154

51. Yu ITS, Li Y, Wong TW, Tam W, Chan AT, Lee JHW, et al. Evidence of Airborne Transmission of the

Severe Acute Respiratory Syndrome Virus. New England Journal of Medicine. 2004; 350(17):1731–

1739. https://doi.org/10.1056/NEJMoa032867 PMID: 15102999

52. Yu ITS, Qiu H, Tse LA, Wong TW. Severe Acute Respiratory Syndrome Beyond Amoy Gardens: Com-

pleting the Incomplete Legacy. Clinical Infectious Diseases. 2014; 58(5):683–686. https://doi.org/10.

1093/cid/cit797 PMID: 24319085

53. Streftaris G, Gibson GJ. Statistical Inference for Stochastic Epidemic Models. Annals of Statistics.

2002; 609616:1–8.

54. Berk RH. Limiting Behavior of Posterior Distributions when the Model is Incorrect. The Annals of Mathe-

matical Statistics. 1966; 37(1):51–58. https://doi.org/10.1214/aoms/1177699597

55. Walker SG. Bayesian inference with misspecified models. Journal of Statistical Planning and Inference.

2013; 143(10):1621–1633.

56. Feng Z. Final and peak epidemic sizes for SEIR models with quarantine and isolation. Mathematical

Biosciences and Engineering. 2007; 4(4):675–686. https://doi.org/10.3934/mbe.2007.4.675 PMID:

17924718

57. Miller JC. A Note on the Derivation of Epidemic Final Sizes. Bulletin of Mathematical Biology. 2012; 74

(9):2125–2141. https://doi.org/10.1007/s11538-012-9749-6 PMID: 22829179

58. Ma J. Estimating epidemic exponential growth rate and basic reproduction number. Infectious Disease

Modelling. 2020; 5:129–141. https://doi.org/10.1016/j.idm.2019.12.009 PMID: 31956741

PLOS COMPUTATIONAL BIOLOGY Direct transmission models for environmentally persistent pathogens

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009652 December 1, 2021 26 / 26

https://doi.org/10.1098/rsos.171519
http://www.ncbi.nlm.nih.gov/pubmed/29657762
https://doi.org/10.3390/pathogens4020307
https://doi.org/10.3390/pathogens4020307
http://www.ncbi.nlm.nih.gov/pubmed/26011827
https://doi.org/10.2307/30142018
http://www.ncbi.nlm.nih.gov/pubmed/9872529
https://doi.org/10.1016/j.virusres.2016.10.011
https://doi.org/10.1016/j.virusres.2016.10.011
http://www.ncbi.nlm.nih.gov/pubmed/27771253
https://doi.org/10.1126/science.abi5273
https://doi.org/10.1126/science.abi5273
http://www.ncbi.nlm.nih.gov/pubmed/34035154
https://doi.org/10.1056/NEJMoa032867
http://www.ncbi.nlm.nih.gov/pubmed/15102999
https://doi.org/10.1093/cid/cit797
https://doi.org/10.1093/cid/cit797
http://www.ncbi.nlm.nih.gov/pubmed/24319085
https://doi.org/10.1214/aoms/1177699597
https://doi.org/10.3934/mbe.2007.4.675
http://www.ncbi.nlm.nih.gov/pubmed/17924718
https://doi.org/10.1007/s11538-012-9749-6
http://www.ncbi.nlm.nih.gov/pubmed/22829179
https://doi.org/10.1016/j.idm.2019.12.009
http://www.ncbi.nlm.nih.gov/pubmed/31956741
https://doi.org/10.1371/journal.pcbi.1009652

