
Real-like MAX-SAT Instances and the Landscape Structure
Across the Phase Transition

Francisco Chicano

ITIS Software, Universidad de Málaga

Málaga, Spain

chicano@lcc.uma.es

Gabriela Ochoa

Computing Science and Mathematics,

University of Stirling

Stirling, Scotland, UK

gabriela.ochoa@stir.ac.uk

Marco Tomassini

Information Systems Department,

University of Lausanne

Lausanne, Switzerland

marco.tomassini@unil.ch

ABSTRACT
In contrast with randomuniform instances, industrial SAT instances

of large size are solvable today by state-of-the-art algorithms. It is

believed that this is the consequence of the non-random structure

of the distribution of variables into clauses. In order to produce

benchmark instances resembling those of real-world formulas with

a given structure, generative models have been proposed. In this

paper we study the MAX-3SAT problem with model-generated in-

stances having a power-law distribution. Specifically, we target the

regions in which computational difficulty undergoes an easy/hard

phase transition as a function of clause density and of the power-

law exponent. Our approach makes use of a sampling technique

to build a graph model (a local optima network) in which nodes

are local optima and directed edges are transitions between optima

basins. The objective is to relate the structure of the instance fit-

ness landscape with problem difficulty through the transition. We

succeed in associating the transition with straightforward network

metrics, thus providing a novel and original fitness landscape view

of the computational features of the power-law model and its phase

transition.

CCS CONCEPTS
• Theory of computation → Mathematical optimization; Ran-
dom search heuristics.

KEYWORDS
Local optima networks, real-like MAX-SAT, phase transition, prob-

lem difficulty

ACM Reference Format:
Francisco Chicano, Gabriela Ochoa, and Marco Tomassini. 2021. Real-like

MAX-SAT Instances and the Landscape Structure Across the Phase Tran-

sition. In 2021 Genetic and Evolutionary Computation Conference (GECCO
’21), July 10–14, 2021, Lille, France. ACM, New York, NY, USA, 9 pages.

https://doi.org/10.1145/3449639.3459288

1 INTRODUCTION
The Boolean satisfiability problem (SAT) is the prototypical NP-

complete problem and has been used for decades to prove NP-

completeness of a host of other combinatorial decision problems [16].

But SAT, in spite of its worst-case exponential complexity, is very

important in applications too. There are several fields in which

SAT can be applied such as formal verification, in both hardware

and software, planning, cryptography and several others. This goes

© ACM, 2021. This is the author's version of the work. It is posted here by permission of
ACM for your personal use. Not for redistribution. The definitive version was published
in GECCO ’21, July 10–14, 2021, Lille, France 2021. ACM ISBN
978-1-4503-8350-9/21/07. https://doi.org/10.1145/3449639.3459288

through first encoding specific problems into SAT instances and

then solving them with a suitable SAT solver. For theoretical work,

random uniform SAT instances are often preferred because they

lend themselves better to mathematical treatment. However, it

has been found that smaller uniform instances are actually much

harder to solve and even intractable by the same state-of-the-art

SAT algorithms that are extremely successful in solving large real-

world instances quickly and efficiently [5, 11]. In fact, industrial

SAT instances tend to have nonrandom clauses, i.e., they possess a

structure and it is this structure that can be exploited by solvers.

A few decades ago it has been discovered that k-SAT instances

in which 𝑛 literals (variables and their negations) are distributed in

a random uniform manner between𝑚 clauses of size 𝑘 literals show

what is called a computational phase transition for particular values

of the critical parameter 𝛼 =𝑚/𝑛 [8, 17, 18]. For 𝑘 = 3, i.e. 3-SAT,

𝛼 ≈ 4.26. Before the critical value almost all instances are satisfiable

and the cost of finding a solution remains low. But in the vicinity

of the critical value the chance of generating satisfiable instances

tends to zero and the cost of finding a solution grows exponentially

with the number of variables 𝑛. This interesting behavior bears a

formal resemblance to critical phenomena observed in the theory

of phase transitions in statistical physics and has been intensively

studied with the methods of this discipline [9].

MAX-kSAT is the optimization version of k-SAT, where the goal

is to find an assignment of variables tomaximize the number of satis-

fied clauses. Starting from a different viewpoint, in a previous study

an attempt was made to understand what fitness landscape features

change when one goes from easy underconstrained instances to

hard overconstrained ones using uniform MAX-3SAT and the local

optima networks (LONs) model [12]. The authors found that there

is a single optimal plateau before the phase transition and many

of them after the transition, qualitatively explaining the search

difficulty. Ansótegui et al. analyzed a number of industrial SAT

instances and found that they possess structures that sets them

apart from random instances [1, 2]. In particular, they found that

heterogeneity, locality, modularity and self-similarity are among

the features that characterize real-world SAT formulas. Focusing

on heterogeneity, i.e., the fact that few variables appear in many

clauses and most variables appear in few clauses, Ansótegui et al.

proposed models that can generate heterogeneous non-uniform

instances according to various distributions, and in particular the

scale-free model, in which the degree distribution of a variable

follows a power-law [1]. Ansótegui et al. showed empirically that

these model instances undergo a computational phase transition

that depends on both the ratio 𝛼 and the exponent of the power law

𝛽 . In follow-up work, Bläsius et al. [4] studied the transition in more

https://doi.org/10.1145/3449639.3459288
https://doi.org/10.1145/3449639.3459288

GECCO ’21, July 10–14, 2021, Lille, France F. Chicano, G. Ochoa and M. Tomassini

detail, in an attempt to explain why SAT solvers that work well on

industrial instances show poor performance on uniform random

instances. Starting from Bläsius et al. analysis and results, in the

present work we study the fitness landscapes of the corresponding

MAX-3SAT instances using the LONs model. Our results show that

the network metrics that can be computed from the LONs change

before the easy/hard phase transition, anticipating the critical point.

The article has the following structure. We first describe and

illustrate the difference between uniform and power-law distributed

k-SAT instances in Section 2. After that, a brief introduction to the

nature and terminology of local optima networks is provided in

Section 3 to make the study self-contained. This is followed by a

description of the methodology used in Section 4, including the

selection of problem, the sampling method and the performance

evaluation. Section 5 reports and discusses the results in terms of

network metrics and through suitable visualizations and, finally,

we conclude and suggest ideas for future work in Section 6.

2 RANDOM UNIFORM VS POWER-LAW
DISTRIBUTED INSTANCES

To generate a uniform random k-SAT formula, 𝑘 variables are ran-

domly chosen in each clause and negated with probability 1/2. In
contrast, to build a scale-free distribution SAT formula one still

samples each clause randomly but the probabilities of choosing a

variable 𝑥𝑖 to enter a clause depend on weights that are determined

by the expression 𝑃𝑟 (𝑋 = 𝑥𝑖) ∝ 𝑖1/(1−𝛽) , where 𝛽 determines the

shape of the distribution. Finally, the variables are negated with

probability 1/2 [2, 4]. Using these weights, the probability distribu-

tion of the variable degree in the clause-variable interaction graph

of the resulting k-SAT formula approximately follows a power-law

distribution, that is, 𝑃𝑟 (𝑑𝑒𝑔𝑟𝑒𝑒 (𝑥) = 𝑑) ∝ 𝑑−𝛽 . A graph representa-

tion of SAT instances is a useful tool to understand how variables

are distributed among the formula clauses. There are various ways

for doing this [19]; to illustrate the issue, here we use the variable
interaction graph 𝐺 . Each node 𝑣 of 𝐺 is a variable and there is

an edge {𝑣1, 𝑣2} between two variables 𝑣1 and 𝑣2 when they ap-

pear together in at least one clause regardless of the variable’s sign.

Figure 1 provides a graphical illustration for two instances with

𝑛 = 100 and 𝑚 = 300. The left picture corresponds to a 3-SAT

formula drawn uniformly at random, while the right picture corre-

sponds to a 3-SAT formula drawn according to a power-law with

𝛽 = 2.5. Although the graphs are too small to allow for accurate

network statistics, the different structure is apparent. In the random

uniform instance, variables have degrees that are close to the aver-

age value and𝐺 approaches a random graph. In the power-law case

the degrees are more heterogeneous with many variables of low

degree and a few with high degree, giving a fatter tail. To generate

SAT formulas with a long tail variable distribution we used the

scale-free model suggested by Ansótegui et al. [2] in the version

published by Bläsius et al. in [4]. We direct the reader to [4] for

details on how to generate scale-free formulas by using a power-law

distribution in the choice of variables.

3 LOCAL OPTIMA NETWORKS
The local optima network (LON) model [13] is a tool to capture

the structure of fitness landscape as seen by an algorithm that

includes a local search heuristic. We use a variant of LONs, the

compressed LONs (CLONs) [14], which allows modeling the global

structure of landscapes with neutrality (i.e. existence of plateaus of

local optima with equal fitness). We describe below the LON model,

before introducing the compressed model (CLON).

3.1 LON Model
A fitness landscape [20] is a triplet (𝑆, 𝑁 , 𝑓) where 𝑆 is a set of

admissible solutions i.e., a search space, 𝑁 : 𝑆 −→ 2
𝑆
, is a neigh-

borhood structure, a function that assigns a set of neighbors 𝑁 (𝑠)
to every solution 𝑠 ∈ 𝑆 , and 𝑓 : 𝑆 −→ R is a fitness function that

can be pictured as the height of the corresponding solutions.

In our study, the search space is {0, 1}𝑛 , i.e., the space of binary
strings of length 𝑛, so its size is 2

𝑛
. As neighborhood, we consider

the standard Hamming distance 1 neighborhood, that is, the set of

all solutions at a maximumHamming distance of 1 from the current

solution.

Local optima. A local optimum, which in MAX-SAT is a max-

imum, is a solution 𝑙 such that ∀𝑠 ∈ 𝑁 (𝑙), 𝑓 (𝑙) ≥ 𝑓 (𝑠). Notice
that the inequality is not strict, in order to allow the treatment of

neutrality (local optima of equal fitness), which is known to widely

occur on MAX-SAT. The set of local optima, which corresponds to

the set of nodes in the network model, is denoted by 𝐿.

Perturbation edges. Edges are directed and based on the per-

turbation operator (𝑝 bit flips). There is an edge from local optimum

𝑙1 to local optimum 𝑙2, if 𝑙2 can be obtained after applying a random

perturbation (𝑝 bit flips) to 𝑙1 followed by local search. Edges are

weighted with estimated frequencies of transition. We determined

the edge weights in a sampling process. The weight is the number

of times a transition between two local optima occurred. The set of

edges is denoted by 𝐸.

LON. Is the directed and weighted graph LON = (𝐿, 𝐸), where
nodes are the local optima 𝐿, and edges 𝐸 are the perturbation

edges.

3.2 Compressed LON Model
When the number of local optima is high in a LON it is difficult

to analyze and visualize the structure of the landscape. A natural

way of reducing the model size in landscapes with high-levels of

neutrality is to redefine the nodes of the model. The compressed

LON model (CLON) [15] joins the local optima that are connected

components and have the same fitness value.

Compressed local optima. A compressed local optimum (also

called a local optima plateau) is a set of connected local optima

nodes (a connected component) in the LON with the same fitness

value. This set of compressed optima, denoted by 𝐶𝐿, corresponds

to the set of nodes in the Compressed LON model.

CompressedPerturbation edges. The set of perturbation edges
is defined as above for the LON model. However, after compres-

sion, there are no edges between nodes with the same fitness, as

connected components with the same fitness become a single node.

The set of edges among compressed nodes are also aggregated and

their weights summed. We call this set compressed edges, 𝐶𝐸.

Real-like MAX-SAT Instances and the Landscape Structure Across the Phase Transition GECCO ’21, July 10–14, 2021, Lille, France

Figure 1: Left image: variable interaction graph of a random uniform SAT formula with 𝑛 = 100 and 𝑚 = 300. Right image:
variable interaction graph for a power-law distributed formula with the same number of variables and clauses. Node size is
proportional to the node degree.

Compressed LON. Is the directed graph CLON = (𝐶𝐿,𝐶𝐸),
where nodes are the compressed local optima 𝐶𝐿 and edges the

compressed perturbation edge set 𝐶𝐸.

4 METHODOLOGY
4.1 Benchmark Instances
We used instances with 𝑛 = 500 variables, as Bläsius et al. did [4].

We used the same instance generator as in [4] to generate random

instances following a power-law distribution for the degree of the

variables in the clause-variable interaction graph
1
. The number

of variables is low compared to hard industrial SAT instances, but

our focus is on the degree distribution, a feature characterizing

industrial SAT instances independently of their size. The parameter

𝛽 of the power-law distribution was chosen between 2.5 and 8.0 in

steps of 0.5 (12 different values). The parameter 𝛼 = 𝑚/𝑛 (clause

to variable ratio) was chosen between 2.0 and 5.0 in steps of 0.2

(16 different values). Bläsius et al. found that the value of 𝛼 in

which the easy/hard transition for 3-SAT happens depends on 𝛽

and varies from 2.4 to 4.2. The range of 𝛼 we use is large enough

to include the critical 𝛼 value for all the values of 𝛽 we use. For

each combination of 𝛼 and 𝛽 we generated 100 different instances

with random seeds from 1 to 100. In total 19 200 instances were

generated (12 · 16 · 100). The generator was configured to generate

clauses without duplicated variables.

4.2 Global Optima Computation
In order to compute relevant (C)LONs metrics and decorate the

network visualizations with information about the global optimum

we tried to find it in all the instances. With 500 variables, exhaustive

methods to compute a global optimum are out of question andmany

exact methods also fail. Thus, in many instances we were not able

to identify a global optimum. In these cases we used the best found

solution as an estimation of the global optimum in the (C)LONs.

We used three different approaches to identify the best solution or

global optimum:

1
https://github.com/RalfRothenberger/Power-Law-Random-SAT-Generator

(1) First, we ran an Iterated Local Search (ILS, details in Sub-

section 4.3) to collect the information needed to build the

(C)LONs and we stored the best solution found in any run

of ILS for each instance. If the maximum number of satisfied

clauses is𝑚, then the instance is SAT and at least one global

optimum was found.

(2) For the instances in which the best solution found by ILS

is lower than𝑚 (7 826 instances), we ran MaxHS
2
, one of

the two best complete solvers in the MAX-SAT Evaluation

2020 [3]. We ran MaxHS with a time limit of 1 hour. In this

way, we found a certified global optimum for 1 226 instances.

(3) We ran the MiniSat solver
3
for the remaining 6 600 instances

in order to check if the instance is SAT or UNSAT. There were

314 (out of 6 600) instances that were SAT and, thus, have a

certified global optimum of𝑚. In the other 6 286 instances we

have no certified global optimum and we use the best value

found by ILS or MaxHS as the estimated global optimum.

4.3 Sampling Method
The sampling procedure consists of aggregating the local optima

and transition edges obtained by 100 runs of the Iterated Local

Search (Algorithm 1). The stopping condition was to reach a maxi-

mum number of 10 000 iterations or 5 000 iterations without any

improvement in the number of satisfied clauses.

The ILS perturbation flips 10% of the variables selected at random

(50 bit flips for 𝑛 = 500). We used this value because in some pre-

liminary experiments it gave good performance results compared

to other values for the perturbation. The local search operator is

a first improvement local search. If a flip in one bit of the current

solution increases the number of satisfied clauses, the current solu-

tion is replaced by the new one. The local search is applied until a

local optimum is reached (no neighbor can increase the number of

satisfied clauses). A new local optimum is only accepted in Line 7

if it improves the incumbent solution. We report only the neutral

and improving edges encountered between local optima in Line 6.

2
We used version 4.0, available at https://maxsat-evaluations.github.io/2020/

3
We used version 2.2.0, available at http://minisat.se

https://github.com/RalfRothenberger/Power-Law-Random-SAT-Generator
https://maxsat-evaluations.github.io/2020/
http://minisat.se

GECCO ’21, July 10–14, 2021, Lille, France F. Chicano, G. Ochoa and M. Tomassini

Algorithm 1 Iterated Local Search

1: 𝑥0 ← generateRandomSolution();

2: 𝑥 ← applyLocalSearch(𝑥0);

3: while not stopping condition do
4: 𝑦 ← perturb (𝑥);

5: 𝑧 ← applyLocalSearch(𝑦);

6: reportEdge(𝑥 ,𝑧);

7: if 𝑓 (𝑧) > 𝑓 (𝑥) then
8: 𝑥 ← 𝑧;

9: end if
10: end while
11: return 𝑥 ;

Worsening edges are counted but not reported. In particular, this

implies that all the non-neutral local optima (and edges) visited after

finding the global optimum are removed from the LON. This helps

to avoid a bias in the metrics, since they generate only worsening

edges and they do no not really provide additional information on

the difficulty of the search process.

4.4 ILS and WalkSAT performance
Wemeasured the performance of both ILS andWalkSAT. WalkSAT

4

is a well-known local search algorithm for SAT and MAX-SAT [10]

with a wide influence among modern local search algorithms and

is known to be very efficient in solving satisfiable random 3-SAT

and MAX-3SAT instances.

We used the ILS described in Subsection 4.3, slightly changing

the stopping condition, which is now to reach 10 000 iterations.

As a measure of performance we use the number of iterations

(visited local optima) to find a solution with the best known quality,

identified using the approaches in Subsection 4.2. We ran ILS 100

times for each of the 19 200 instances and computed the median of

the number of iterations as a measure of difficulty of the instance

for ILS. In the case of WalkSAT, we did 100 restarts (runs) per

instance with a maximum of 10 000 steps each and we collected the

median number of steps as a measure of difficulty of the instance

for WalkSAT.

5 RESULTS
For each of the 100 instances per 𝛼 and 𝛽 value combinations, we

extracted the LON and CLON models and computed the network

measurements described in Table 1.

Our aim is to identify fitness landscape features (in this case

network metrics) that correlate with and help to explain the search

difficulty of stochastic search algorithms. We therefore, consider a

set of stochastic local search performance measures (described in

Subsection 4.4). To estimate the location of the critical threshold, we

follow a similar procedure as in [4], we compute the satisfiability

of each formula as indicated in Subsection 4.2, and compute the

proportion of formulas out of the 100 generated that are satisfiable.

Figure 2 shows the performance metrics as defined in Table 1.

The vertical line indicates the critical 𝛼 ≈ 4.26 for the uniform

3-SAT transition. The number of variables is 𝑛 = 500. The top left

4
We used version 56, available at https://gitlab.com/HenryKautz/Walksat/-/tree/

master/Walksat_v56

Table 1: Description of Metrics.

Hardness Metric

prop-sat Proportion of satisfiable formulas.

Performance Metrics

walksat-steps Number of bit flips (steps) by WalkSAT before

reaching the global optimum (max. 10 000).

walksat-success Success rate of WalkSAT, i.e. number of runs

where the global optimum was achieved.

ils-steps Number of perturbations by ILS before reach-

ing the global optimum (max. 10 000 steps).

ils-success Success rate of ILS, i.e. number of runs where

the global optimum was achieved.

Network Metrics

lon-nodes Number of nodes (unique optima) in the LON

model.

clon-nodes Number of nodes in the compressed model

CLON.

sinks Number of sub-optimal nodes without outgo-

ing edges.

strength Incoming weighed degree (strength) of the

global optima nodes.

image depicts the proportion of satisfiable formulas as a function

of the clause-to-variable ratio 𝛼 and for the power-law exponent

𝛽 going from 2.5 to 8 in steps of 0.5. This is in very good qualita-

tive agreement with the results in [4] confirming that the critical

threshold depends on 𝛽 and it becomes sharper with growing 𝛽 ,

tending to the random uniform value 4.26 for large 𝛽 . The number

of WalkSAT steps (bottom left image) correlates very well with the

problem hardness expressed by the SAT probability. The ILS results

(right images) are in qualitative agreement with WalkSAT, in the

sense that the ordering and shape of the curves is the correct one,

but there is a systematic shift of the curves towards the right. We

do not yet know the origin of this phenomenon but our hypoth-

esis is that it originates in the sampling procedure performed by

ILS, which is highly influenced by the landscape (more details in

Subsection 5.1). We also observe that, in general, WalkSAT has a

higher success rate than ILS.

5.1 Network Metrics
Once a system is modeled as a graph, many structural properties

can be computed. The most basic metrics are the number of nodes

and edges, but a variety of other metrics could be calculated related

to the degree distribution, length of paths, community structure,

centrality of nodes to name a few. To keep things simple, however,

we concentrate on four network properties that help us to asses

the landscape global structure. These metrics are summarized in

Table 1. The number of unique optima sampled (lon-nodes) is the
number of nodes in the (uncompressed) LON model. Since we

constructed the compressed model (CLON), we also report the

number of compressed optima (clon-nodes).

https://gitlab.com/HenryKautz/Walksat/-/tree/master/Walksat_v56
https://gitlab.com/HenryKautz/Walksat/-/tree/master/Walksat_v56

Real-like MAX-SAT Instances and the Landscape Structure Across the Phase Transition GECCO ’21, July 10–14, 2021, Lille, France

Figure 2: Proportion of satisfied formulas and median values of the performance metrics described in Table 1 for all values of
𝛼 and 𝛽 . The vertical line indicates the critical density of the uniform random 3-SAT model, 𝛼 ≈ 4.26.

A funnel refers to a grouping of local optima, forming a coarse-

level gradient towards a low cost solution at the end. Funnels can

be considered as basins of attraction at the level of local optima.

When sub-optimal funnels exist, search can get trapped and fail

to reach the global optimum despite a large computing time. For

characterizing the multi-funnel structure, we computed the number

of sinks, that is the number of sub-optimal nodes without outgoing

edges. Notice that the sinks represent dead ends in the search

process, once a search trajectory reaches a sink, there is no way

to escape to other local optima with the perturbation operator

modeled. Therefore, sinks have been associated to the end of funnel

structures [15].

The centrality of good solutions has been found to correlate with

search difficulty [7]. As a measure of the centrality and reachability

of the global optima (there can be more than one), we compute the

incoming strength (weighted degree) of the global optimal nodes

(strength). This is calculated as the sum of the incoming strengths

of the globally optimal nodes.

Figure 3 shows the medians (across 100 instances) of the four

network metrics for all the studied values of 𝛼 and 𝛽 . For all val-

ues of 𝛽 , the number of compressed nodes (clon-nodes in Fig. 3)

shows an opposite tendency than the number of uncompressed

nodes (lon-nodes in Fig. 3). That is, while the number of unique

local optima lon-nodes decreases, the number of compressed nodes

increases with increasing 𝛼 . This indicates that for low values of 𝛼 ,

many unique local optima exist but they have the same fitness and

are connected, which suggests that might be part of large plateaus.

For the same 𝛼 value, the number of nodes in the LON is larger, the

lower the 𝛽 value. The same tendency is observed for the number

of clon-nodes, but the tendency is reversed around 𝛼 =3.6.

Notice that the variation in the curves for the lon-nodes and
clon-nodesmetrics across the range of 𝛼 values is smooth. However,

for the sinks and strength metrics, there is a more sudden change

in the shape of curves around a critical value of 𝛼 . As observed

for the performance metrics (Fig. 2), the location of this critical

value depends on 𝛽 and it becomes sharper with growing 𝛽 . Both

of these network metrics (sinks and strength) correlate well with
the performance metrics of ILS (Fig. 2). They are also in qualitative

agreement with the performance metrics for WalkSAT and the

problem hardness (also in Fig. 2), but again show a systematic shift

towards the left. These networks metrics (sinks and strength) seem
to capture better the hardness phase transition than the metric

related to the number of local optima (lon-nodes).
The number of sinks is zero or close to zero for low values of 𝛼 ,

indicating that in this range, there are no sub-optimal funnels and

thus all trajectories can easily reach the global optimum/a. This

is supported by the high values of centrality (incoming strength)

of the compressed nodes containing the global optimum/a. High

values of the incoming strength indicate that the search trajectories

converge into the global optima. This is congruent and correlates

well with the performance metrics for ILS as mentioned above.

To shed some light on why the ILS performance and network

metric curves could be shifted we present the following result.

Theorem 5.1. For a distribution of random 𝑘-SAT instances with
𝑛 variables and𝑚 clauses where a variable cannot appear twice in

GECCO ’21, July 10–14, 2021, Lille, France F. Chicano, G. Ochoa and M. Tomassini

Figure 3: Median values of the networks metrics described in Table 1 for all values of 𝛼 and 𝛽 .

a clause and is negated with probability 1/2, the average number of
SAT assignments is 2𝑛 (1 − 2−𝑘)𝑚 = (2(1 − 2−𝑘)𝛼)𝑛 .

Proof. Given an instance 𝐼 ∈ P, let 𝑐𝑖 denote the set of 𝑘 vari-

ables in clause 𝑖 and 𝑠𝑖 the signs of the variables in the clause,

the signature of clause 𝑖 . An instance is characterized by a list

𝑐1, 𝑐2, . . . , 𝑐𝑚 of sets of variables and a list 𝑠1, 𝑠2, . . . , 𝑠𝑚 of signa-

tures. The probability of selecting a particular signature in each

clause is 2
−𝑘

. The probability of generating a particular instance is

given by 𝑝 (𝑐1, 𝑐2, . . . , 𝑐𝑚)2−𝑘𝑚 , where 𝑝 (𝑐1, 𝑐2, . . . , 𝑐𝑚) is the prob-
ability of selecting the list 𝑐1, 𝑐2, . . . , 𝑐𝑚 of sets of variables (observe

that we do not assume that the variables in a clause are selected

independently). The number of SAT assignments in a particular

instance 𝐼 is:

#𝑆𝐴𝑇 (𝐼) =
∑

𝑥 ∈{0,1}𝑛

𝑚∏
𝑖=1

𝑐
𝑠𝑖
𝑖
(𝑥), (1)

where 𝑐
𝑠𝑖
𝑖
(𝑥) is the evaluation of clause 𝑖 , with variables in 𝑐𝑖 and

signature 𝑠𝑖 in the assignment 𝑥 (1 if the clause is satisfied and 0 if

not). The expected number of SAT assignments when we consider

all the instances in P with the probability distribution described

above is:

𝐸 [#𝑆𝐴𝑇 (𝐼)] =
∑
𝐼 ∈P

𝑝 (𝑐1, . . . , 𝑐𝑚)2−𝑘𝑚
∑

𝑥 ∈{0,1}𝑛

𝑚∏
𝑖=1

𝑐
𝑠𝑖
𝑖
(𝑥)

=
∑
𝑐1

· · ·
∑
𝑐𝑚

∑
𝑠1

· · ·
∑
𝑠𝑚

𝑝 (𝑐1, . . . , 𝑐𝑚)2−𝑘𝑚
∑

𝑥 ∈{0,1}𝑛

𝑚∏
𝑖=1

𝑐
𝑠𝑖
𝑖
(𝑥)

=
∑

𝑥 ∈{0,1}𝑛

∑
𝑐1

· · ·
∑
𝑐𝑚

𝑝 (𝑐1, . . . , 𝑐𝑚)2−𝑘𝑚
∑
𝑠1

· · ·
∑
𝑠𝑚

𝑚∏
𝑖=1

𝑐
𝑠𝑖
𝑖
(𝑥)

=
∑

𝑥 ∈{0,1}𝑛

∑
𝑐1

· · ·
∑
𝑐𝑚

𝑝 (𝑐1, . . . , 𝑐𝑚)2−𝑘𝑚
𝑚∏
𝑖=1

∑
𝑠𝑖

𝑐
𝑠𝑖
𝑖
(𝑥)

(since each clause is satisfied in 𝑥 for all except one signature)

=
∑

𝑥 ∈{0,1}𝑛

∑
𝑐1

· · ·
∑
𝑐𝑚

𝑝 (𝑐1, . . . , 𝑐𝑚)2−𝑘𝑚
𝑚∏
𝑖=1

(2𝑘 − 1)

=
∑

𝑥 ∈{0,1}𝑛

∑
𝑐1

· · ·
∑
𝑐𝑚

𝑝 (𝑐1, . . . , 𝑐𝑚)2−𝑘𝑚 (2𝑘 − 1)𝑚

(the sum of 𝑝 (𝑐1, . . . , 𝑐𝑚) for all the lists of 𝑐𝑖 is one)

=
∑

𝑥 ∈{0,1}𝑛
2
−𝑘𝑚 (2𝑘 − 1)𝑚 = 2

𝑛 (1 − 2−𝑘)𝑚

□

The results of the theorem applies to the generator we are using

in this paper. A direct consequence of Theorem 5.1 is that for fixed

𝑛 and 𝑘 , the average number of satisfying assignments decreases

with 𝛼 because (1− 2−𝑘) < 1, and the landscape has to change also

Real-like MAX-SAT Instances and the Landscape Structure Across the Phase Transition GECCO ’21, July 10–14, 2021, Lille, France

with this reduction in the number of global optima. In particular,

global optima plateaus decrease in size and/or frequency. This is in

agreement with the observed change in the (C)LON metrics before

the phase transition.

A second consequence of Theorem 5.1 is that the average number

of SAT assignments is independent of the parameter 𝛽 . Furthermore,

the result applies also to 𝑘-SAT instances following a uniformly

random distribution (all clauses are sampled with equal probability).

Then, why do the curves of SAT probability (Fig. 2) depend on 𝛽?

The reason is that the average number of SAT assignments and the

SAT probability of an instance are not the same thing. Let 𝑝𝑖 denote

the probability that a random instance has 𝑖 SAT assignments. Then:

𝐸 [#𝑆𝐴𝑇 (𝐼)] =
2
𝑛∑

𝑖=1

𝑖 · 𝑝𝑖 , (2)

𝑃𝑟 [#𝑆𝐴𝑇 (𝐼) ≥ 1] =
2
𝑛∑

𝑖=1

𝑝𝑖 , (3)

which have different expressions. Definitely, 𝛽 has an influence in

the probability distribution 𝑝𝑖 , but the average of this distribution

is independent of 𝛽 . For a fixed 𝑛 and 𝛼 , increasing 𝛽 also increases

the SAT probability, but keeps the average number of assignments

constant. This can only happen if the value of 𝑝𝑖 for high 𝑖 is reduced

while the value of 𝑝𝑖 for low 𝑖 in increased. That is, it is less probable

to find instances with many SAT assignments and more probable

to find instances with a few SAT assignments.

5.2 Network Visualization
An advantage of a network model is that it allows a graphical rep-

resentation using the range of tools available for complex networks

visualization. Here, we used the R statistics language and the igraph
library [6] which implements a number of force-directed graph lay-

out algorithms. Network plots are decorated to reflect features

relevant to search dynamic. The LON compressed model allows

us to visualize landscapes with several hundreds of unique local

optima because each compressed node aggregates a large number

of individual optima. It would not be possible to visualize these

landscapes without compressing the nodes, and we argue that given

the neutrality present in MAX-SAT landscapes, this compressed

view is useful to understand the landscape’s global structure.

The networks in Figure 4 capture the whole set of sampled com-

pressed nodes and edges for the CLONs of representative instances

with 𝑛 = 500 (top row), 𝛽 = 4.0 and three values of 𝛼 , which include

the lowest (𝛼 = 2.0) and the largest (𝛼 = 5.0) explored, as well

as one value located around the observed critical value (𝛼 = 3.6).

Each node is a compressed local optima and edges are perturbation

transitions as defined in Subsection 3.2. The size of nodes is pro-

portional to the number of unique local optima they aggregate and

the color indicates the type of the nodes as detailed in the legend

(right plots).

The CLONs for𝑛 = 500 always show 100 components (connected

sub-graphs). This indicates that, in the sampling process, there is no

convergence of the search trajectories. That is, the 100 separate ILS

runs used to sample the LONs for each instance traverse different

portions of the search space, and the visited local optima do not

overlap. What the network images clearly indicate is that when

𝛼 = 2, all the 100 trajectories reach the optimum fitness value

(red nodes at the end of all trajectories). It might be that they

reach different portions of the same plateau, we cannot tell as

we are sampling a huge search space. It can also be noticed that

the trajectories towards the global optima are shorter for 𝛼 = 2.0.

With increasing 𝛼 the trajectories become larger and an increasing

number of components do not reach the global optimum value,

but instead end in a sub-optimal sink with worse fitness. These

sub-optimal sinks are indicated as blue nodes with a numerical label

showing how different they are in fitness from the global optimum.

For 𝛼 = 3.6, several blue nodes appear and their number as well as

their fitness differences from the global optimum is much higher

when 𝛼 = 5.0.

After visualizing the CLONs for 𝑛 = 500, we found it unsatisfac-

tory that the trajectories do not overlap and thus offer a limited

grasp of the landscape structure. Therefore, we conducted a similar

study now for a smaller search space with 𝑛 = 50. The network

visualizations in Figure 4 (bottom row) capture the CLONs of rep-

resentative instances with 𝑛 = 50, 𝛽 = 4.0 and the same four values

of 𝛼 = {2.0, 3.6, 5.0}. In these images we can now see that the 100

search trajectories do converge and visit overlapping areas of the

search space. As indicated in the color legend, the yellow nodes are

the start of the trajectories, gray nodes are intermediate local op-

tima, and red nodes indicate the global optima. We can observe that

for 𝛼 = 2, the landscape is very easy to traverse with all trajectories

converging into a single compressed global optimum after a short

number of steps (one or two steps in most cases). For the larger

values of 𝛼 , the trajectories become longer and blue nodes (sub-

optimal sinks) start to appear. We can observe one for 𝛼 = 3.6 and

two for 𝛼 = 5.0, which are one value away in evaluation from the

global optimum, moreover large intermediate (gray) nodes seem to

be capturing many trajectories. This is consistent with the increas-

ing search difficulty with larger 𝛼 values; trajectories are longer,

they can get trapped in sub-optimal plateaus and fail to reach the

global optimum.

6 CONCLUSIONS
Industrial and pseudo-industrial SAT instances are very impor-

tant in theory and in practice because many relevant problems

in engineering and computer science can be easily encoded as

SAT problems. Although random uniform SAT instances are more

amenable to mathematical treatment and have been deeply stud-

ied, it appears that they are much harder to solve than real-world

instances. This difference has been attributed to the fact that in-

dustrial instances tend to have highly nonrandom clauses. Among

the various deviations from uniformity that have been suggested

such as heterogeneity, locality, modularity and self-similarity, we

have focused on heterogeneity in the present work. Heterogeneity

refers to the variable distribution into clauses and it has been found

empirically that in many real-world cases it can be modeled by

power-law distributions. Our approach is based on an analysis of

fitness landscapes through the concept of local optima networks.

Using a suitable power-law SAT instance generator, we built the

LONs and CLONs of the corresponding instances and computed

a number of network metrics. We have shown that the chosen

metrics correlate well with the performance of an iterated local

GECCO ’21, July 10–14, 2021, Lille, France F. Chicano, G. Ochoa and M. Tomassini

N: 742 E: 642 C: 100

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

(a) 𝑛 = 500, 𝛼 = 2.0,

N: 2054 E: 1954 C: 100

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1

1

2
3

2

1

2

1

1

2

1

1

2

2

1

1

2
1

1

1
1

1

2

2

1

1

3

1

1

1

1

1

1

1

2
1

2

1

3

1

1

1

2

2

1

1 2

1

2

1

4

1

1
1

1

1
2

2

1

3

1

1

1

3

1
1

1

3

1

2

1

3

2

2

2

(b) 𝑛 = 500, 𝛼 = 3.6

N: 2538 E: 2438 C: 100

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

9

2

2

4

3

2

5

3

3

4

4

8

1

2

8

4

4

5

6

4

3

6

5

6

6

6
7

3

6

7

5

5

4

2

5

3

4

4

9

6

4

7

2

5

8

3
5

8

5

4

9

2
4

7

4

8

4

5

5

6

2

12

5

6

4

7

21

9

6

4

5

4

7
9

2

4

4

2

2

10

4

1

5

5

7

4

6

9

6

4

1

6

5

9

3

10

8

6

●
●
●
●

Start
Intermediate
Sub−optimal Sink
Global Optimum

(c) 𝑛 = 500, 𝛼 = 5.0
N: 74 E: 78 C: 1

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

(d) 𝑛 = 50, 𝛼 = 2.0,

N: 329 E: 336 C: 1

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

1

(e) 𝑛 = 50, 𝛼 = 3.6

N: 234 E: 281 C: 1

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1

1

●
●
●
●

Start
Intermediate
Sub−optimal Sink
Global Optimum

(f) 𝑛 = 50, 𝛼 = 5.0

Figure 4: CLONs for the representative instances with 𝑛 = 500 (top), 𝑛 = 50 (bottom) 𝛽 = 4.0 and density 𝛼 and as indicated
in the sub-captions. The color of nodes reflects different types of local optima is as indicated in the legend in the right plots.
The size of nodes is proportional to the number of unique optima aggregated in the compressed nodes. The labels in the blue
nodes indicate their difference in evaluation from the global optimum.

search. We also appreciate a shift in the metrics compared to both

the problem hardness, measured as the proportion of SAT instances,

and the performance of WalkSAT. We conjecture that this shift can

be related to the ILS sampling process, which depends not only on

the SAT probability, but also on the landscape features. We defer to

future work the detailed explanation of the reasons that produce

this shift in the LON metrics. It would also be useful to analyse the

correlation between the properties of the CLON and the difficulty

found by other algorithms. This could provide contributions in the

field of algorithm selection and could be used to enhance current

SAT solvers.

ACKNOWLEDGEMENTS
This research is partially funded by Universidad de Málaga, Con-

sejería de Economía y Conocimiento de la Junta de Andaluía and

FEDER under grant number UMA18-FEDERJA-003 (PRECOG); Min-

isterio de Ciencia, Innovación y Universidades and FEDER under

contracts RTC-2017-6714-5 (Eco-IoT) and RED2018-102472-T (SE-

BASENet 2.0). The authors thank Andrew M. Sutton for providing

technical details about the results in [4].

REFERENCES
[1] Carlos Ansótegui, Maria Luisa Bonet, and Jordi Levy. 2009. On the structure of

industrial SAT instances. In International Conference on Principles and Practice of
Constraint Programming. Springer, 127–141.

[2] Carlos Ansótegui, Maria Luisa Bonet, and Jordi Levy. 2009. Towards Industrial-

Like Random SAT Instances. In IJCAI, Vol. 9. 387–392.
[3] Fahiem Bacchus. 2020. MaxHS in the 2020 MaxSat Evaluation (Report B-2020-2.).

Technical Report. 19–20 pages. http://hdl.handle.net/10138/318451

[4] T. Bläsius, T. Friedrich, and A. M. Sutton. 2019. On the Empirical Time Complexity

of Scale-Free 3-SAT at the Phase Transition. In International Conference on Tools
and Algorithms for the Construction and Analysis of Systems. Springer, 117–134.

[5] James M Crawford and Larry D Auton. 1996. Experimental results on the

crossover point in random 3-SAT. Artificial intelligence 81, 1-2 (1996), 31–57.
[6] G. Csardi and T. Nepusz. 2006. The igraph software package for complex network

research. InterJournal Complex Systems (2006), 1695.

[7] Sebastian Herrmann, Gabriela Ochoa, and Franz Rothlauf. 2017. PageRank

centrality for performance prediction: the impact of the local optima network

model. Journal of Heuristics (12 May 2017).

http://hdl.handle.net/10138/318451

Real-like MAX-SAT Instances and the Landscape Structure Across the Phase Transition GECCO ’21, July 10–14, 2021, Lille, France

[8] Scott Kirkpatrick and Bart Selman. 1994. Critical behavior in the satisfiability of

random boolean expressions. Science 264, 5163 (1994), 1297–1301.
[9] Olivier C Martin, Rémi Monasson, and Riccardo Zecchina. 2001. Statistical

mechanics methods and phase transitions in optimization problems. Theoretical
computer science 265, 1-2 (2001), 3–67.

[10] David McAllester, Bart Selman, and Henry Kautz. 1997. Evidence for invariants

in local search. In AAAI/IAAI. Rhode Island, USA, 321–326.
[11] Zongxu Mu and Holger H Hoos. 2015. On the empirical time complexity of

random 3-SAT at the phase transition. In Twenty-Fourth International Joint Con-
ference on Artificial Intelligence.

[12] Gabriela Ochoa, Francisco Chicano, and Marco Tomassini. 2020. Global Land-

scape Structure and the Random MAX-SAT Phase Transition. In International
Conference on Parallel Problem Solving from Nature. Springer, 125–138.

[13] G. Ochoa, M. Tomassini, S. Verel, and C. Darabos. 2008. A Study of NK Landscapes’

Basins and Local Optima Networks. In Proceedings of the 10th Annual Conference
on Genetic and Evolutionary Computation (Atlanta, GA, USA) (GECCO ’08). ACM,

New York, NY, USA, 555–562. https://doi.org/10.1145/1389095.1389204

[14] Gabriela Ochoa, Nadarajen Veerapen, Fabio Daolio, and Marco Tomassini. 2017.

Understanding Phase Transitionswith Local OptimaNetworks: Number Partition-

ing as a Case Study. In Evolutionary Computation in Combinatorial Optimization,
(EVOCOP) (LNCS, Vol. 10197). Springer, 233–248.

[15] Gabriela Ochoa, Nadarajen Veerapen, Fabio Daolio, and Marco Tomassini. 2017.

Understanding Phase Transitions with Local Optima Networks: Number Parti-

tioning as a Case Study. In European on Conference Evolutionary Computation
in Combinatorial Optimization (EvoCOP) (Lecture Notes in Computer Science,
Vol. 10197). 233–248.

[16] Christos. H. Papadimitriou. 1994. Computational complexity. Addison-Wesley.

[17] Bart Selman and Scott Kirkpatrick. 1996. Critical behavior in the computational

cost of satisfiability testing. Artificial Intelligence 81, 1-2 (1996), 273–295.
[18] Bart Selman, David G Mitchell, and Hector J Levesque. 1996. Generating hard

satisfiability problems. Artificial intelligence 81, 1-2 (1996), 17–29.
[19] Carsten Sinz. 2007. Visualizing SAT instances and runs of the DPLL algorithm.

Journal of Automated Reasoning 39, 2 (2007), 219–243.

[20] Peter F. Stadler. 2002. Fitness Landscapes. Appl. Math. and Comput 117 (2002),
187–207.

https://doi.org/10.1145/1389095.1389204

	Abstract
	1 Introduction
	2 Random Uniform Vs Power-law Distributed Instances
	3 Local Optima Networks
	3.1 LON Model
	3.2 Compressed LON Model

	4 Methodology
	4.1 Benchmark Instances
	4.2 Global Optima Computation
	4.3 Sampling Method
	4.4 ILS and WalkSAT performance

	5 Results
	5.1 Network Metrics
	5.2 Network Visualization

	6 Conclusions
	References

