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A B S T R A C T   

In 2015 and 2016, the AfriSAR campaign was carried out as a collaborative effort among international space and 
National Park agencies (ESA, NASA, ONERA, DLR, ANPN and AGEOS) in support of the upcoming ESA BIOMASS, 
NASA-ISRO Synthetic Aperture Radar (NISAR) and NASA Global Ecosystem Dynamics Initiative (GEDI) missions. 
The NASA contribution to the campaign was conducted in 2016 with the NASA LVIS (Land Vegetation and Ice 
Sensor) Lidar, the NASA L-band UAVSAR (Uninhabited Aerial Vehicle Synthetic Aperture Radar). A central 
motivation for the AfriSAR deployment was the common AGBD estimation requirement for the three future 
spaceborne missions, the lack of sufficient airborne and ground calibration data covering the full range of ABGD 
in tropical forest systems, and the intercomparison and fusion of the technologies. 

During the campaign, over 7000 km2 of waveform Lidar data from LVIS and 30,000 km2 of UAVSAR data were 
collected over 10 key sites and transects. In addition, field measurements of forest structure and biomass were 
collected in sixteen 1-hectare sized plots. The campaign produced gridded Lidar canopy structure products, 
gridded aboveground biomass and associated uncertainties, Lidar based vegetation canopy cover profile prod
ucts, Polarimetric Interferometric SAR and Tomographic SAR products and field measurements. Our results 
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showcase the types of data products and scientific results expected from the spaceborne Lidar and SAR missions; 
we also expect that the AfriSAR campaign data will facilitate further analysis and use of waveform lidar and 
multiple baseline polarimetric SAR datasets for carbon cycle, biodiversity, water resources and more applications 
by the greater scientific community.   

1. Introduction: the need for multi -sensor forest structure 
datasets 

Following the urgent need for improved mapping of vegetation 
structure (Le Toan et al., 2011) to better quantify global carbon stocks 
and fluxes from land use change (Houghton, 2005) and impacts on 
ecosystem services and forest resources (Bustamante et al., 2016), NASA 
and ESA have developed three spaceborne missions – NASA Global 
Ecosystems Dynamics Investigation (GEDI, Dubayah et al., 2020), 
NASA-ISRO Synthetic Aperture Radar Mission (NISAR, Rosen et al., 
2016) and ESA BIOMASS (Quegan et al., 2019) - to be launched between 
2018 and 2022. By virtue of the different sensitivities to forest structure 
combined with overlapping coverage at different geographic and time 
scales, NISAR, GEDI and BIOMASS are slated for new remote sensing 
analysis and scientific discovery that were not possible to date or with 
each mission alone. In particular, the fusion of data from these three 
missions, which will be freely and publicly available, will provide sci
entific opportunities to further our understanding of ecosystem pro
cesses from the scale of anthropogenic disturbance to the global scale. 
An overview of the main expected mission parameters is shown in 
Table 1. 

GEDI is a geodetic laser altimeter and waveform lidar instrument 
built and operated by NASA and University of Maryland. The GEDI 
mission launched on December 5th, 2018 and deployed on the Inter
national Space Station (ISS), with the aim of measuring forest structure 
and biomass within the ISS coverage window of +/− 51.6 degrees 
latitude (Dubayah et al., 2020; Duncanson et al., 2020). The GEDI 
mission provides canopy height and Aboveground Biomass Density 
(AGBD) samples within 25 m footprints and a wall-to-wall gridded data 
products at 1 km resolution. The GEDI mission’s strengths lie in the 
penetration capability of GEDI’s near infrared lasers (1064 nm wave
length) and the near-continuous recording of the returned signal, 
providing the most accurate vertical samples of canopy structure from 
space. The spatial distribution of GEDI footprints is dense in tropical 
biomes (8 tracks separated by ~600-m across track with footprints 
spaced ~60-m along track) but no observations will be generated at 
high-latitudes (>51.5 degrees) due to the ISS orbit. 

The NASA-ISRO Synthetic Aperture Radar Mission (NISAR) is a 
three-year joint US-India L- and S-band SAR mission to be launched in 
2023 with scientific applications in the solid earth, cryosphere, hydro
sphere and ecosystem sciences (Rosen et al., 2017). NISAR will provide 
global, cloud-free, wall-to-wall L-band SAR observations with two po
larizations (HH and HV) at 12.5 m resolution, with a 12 day repeat and 
approximately 30 observations per year (NISAR, 2018). One of the 
mission objectives is to map woody vegetation disturbance, recovery 

and AGBD up to 100 Mg ha− 1 at the 1 ha scale. NISAR’s primary limi
tation for mapping of forest structure lies in the reduced sensitivity of L- 
band backscatter to AGBD above approximately 100 Mg/ha (Yu and 
Saatchi, 2016). This limits accurate AGBD mapping in most dense 
tropical, subtropical and temperate forests if backscatter alone is used. 

The European Space Agency’s BIOMASS Mission is a 5-year P-band 
SAR mission (435 Mz) to be launched in October 2022 with the primary 
objectives of mapping forest AGBD and height at 200 m spatial resolu
tion and disturbance at 50 m spatial resolution (Carreiras et al., 2017; Le 
Toan et al., 2011). The ESA BIOMASS mission will collect data in fully 
polarimetric, repeat-pass interferometric and tomographic modes to 
produce repeated measurements of forest height as well as AGBD during 
its 5-year mission life (Quegan et al., 2019). These maps are expected to 
be more accurate in higher AGBD ecosystems than those produced by 
other SAR missions, due to higher P-band penetration into the canopy 
compared to shorter wavelengths such as L, C, X or S-band and, more 
importantly, due to the missions’ capability to support Polarimetric 
InSAR and Tomographic SAR. However, the BIOMASS mission will only 
acquire data over tropical and subtropical regions worldwide due to the 
International Telecommunication Union–Radiocommunications re
strictions over North America and Europe (Carreiras et al., 2017). 

In anticipation of the three missions, there was a need for field and 
airborne measurements of forest structure and condition, as well as new 
forest structure retrieval algorithms across a wide range of tropical 
forest conditions. As a result the European Space Agency (ESA), United 
States National Aeronautics and Space Agency (NASA), French Aero
space Lab (Office National d’Etudes et de Recherches Aérospatiales; 
ONERA), German Space Agency (Deutsches Zentrum für Luft-und 
Raumfahrt; DLR), Gabonese National Park Agency (Agence Nationale 
des Parcs Nationaux; ANPN), the Gabonese Earth Observation Agency 
(Agence Gabonaise de l’Etude et Observation Spatiale; AGEOS) and 
multiple international University partners collaborated on the AfriSAR 
campaign, to acquire coincident calibration and validation datasets that 
would facilitate comparison between the airborne, field and spaceborne 
data. It follows NASA’s previous regional field campaigns, such as 1994 
and 1996 Boreal Ecosystem-Atmosphere Study (BOREAS), the 2001 
Large Scale Biosphere-Atmosphere Experiment in Amazonia (LBA-ECO) 
and the 2015 Arctic-Boreal Vulnerability Experiment (ABoVE), and 
ESA’s TropiSAR in combining remote-sensing techniques and ground- 
based experiments to assess ecosystem structure and change in re
sponses to anthropogenic and environmental drivers. 

The primary aim of the AfriSAR campaign was to collect ground, 
airborne SAR and airborne Lidar data for the development and evalua
tion of forest structure and AGBD retrieval algorithms and GEDI, NISAR 
and BIOMASS sensor calibration and validation. The campaign consisted 

Table 1 
Overview of the GEDI, NISAR and BIOMASS expected mission parameters.   

GEDI NISAR BIOMASS 

Type Waveform Lidar L-band SAR P-band SAR 
Coverage ~ +/− 51.6 degrees Global South America, Africa, Asia, Australia 
Launch date Dec 52,018 2022 2022 
Min. Mission length 2 years 3 years 5 years 
Repeat coverage None Every 12 days Every 3 days 
Resolution 25 m footprint 

1 km gridded data 
12.5 m SLC 
12.5 × 12.5 GRD 

30 m SLC 
50 m gridded Disturbance 
200 m gridded Height and AGBD product 

AGB range all <100 Mg ha− 1 all 
AGBD Uncertainty <20 Mg ha− 1 or 20% standard error, whichever is greater, for 80% of 1 km cells 20% up to 100 Mg ha− 1 20% for AGBD >50 Mg ha− 1 

10 Mg ha− 1 for AGBD <50 Mg ha− 1  
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of two deployments, the first deployment in 2015 focused only on ESA 
BIOMASS calibration with the ONERA SETHI P- and L- band SAR system; 
the second in 2016 included the NASA deployment, with the NASA LVIS 
(Land Vegetation and Ice Sensor) Lidar, the NASA L-band UAVSAR and 
the DLR L- and P-band F-SAR system; during both deployments AGEOS 
and ANPN collaborated on site selection, coordination and field mea
surements. The objectives of the AfriSAR deployments were to:  

1) Measure forest canopy height, canopy profiles and AGBD under a 
variety of forest conditions, such as primary and degraded forest, and 
a variety of forest types, including tropical rainforest, mangroves, 
forested freshwater wetlands and savannas.  

2) Acquire detailed measurements of airborne SAR data and Lidar data 
for validation and cross calibration of NASA and ONERA/DLR in
struments and for calibration and validation support of the 
BIOMASS, NISAR, and GEDI missions. 

3) Conduct technology demonstrations of joint SAR and Lidar applica
tions for improved measurement of canopy structure and AGBD. 

The AfriSAR campaign encompassed both field and airborne mis
sions to study forest structure and AGBD of tropical forests. The ESA and 
DLR acquisition and analysis have been described in detail in Hajnsek 
et al. (2016), Wasik et al. (2018) as well as Labrière et al. (2018). In this 
paper, we focus on the NASA contribution to the AfriSAR campaign and 
describe the objectives, field measurements and study sites covered. We 
also provide an overview and analysis of the higher-level NASA AfriSAR 
data products and in anticipation of similar data products that will result 
from NISAR and GEDI. In section 2 we describe the targeted field sites 
and study area. Section 3 provides a detailed overview of the field and 
airborne data analysis while section 4 describes the methods used to 
acquire field and airborne canopy structure and AGBD estimates from 
different sensors and processing techniques, such as PolInSAR, Lidar and 
Tomographic SAR. In section 5, we present an analysis and comparison 
of the different data produced by the campaign. Section 6 discusses the 
broader implications of the airborne campaign for mission algorithm 
development and existing applications of the data. Finally, in section 7, 
we discuss the implications of the campaign and present our general 
conclusions. 

2. Study area 

Gabon was selected as the study area for AfriSAR due to ecological 
and logistical considerations, as it is a densely forested country with rich 
structural and functional biodiversity. By area, Gabon is the second most 
forested tropical country in the world with 88.5% forest cover and 23.5 
M ha of forest (Sannier et al., 2014). Its composition roughly follows the 
precipitation gradient, with mesic equatorial coastal forests in the west 
and drier Guinean–Congolian lowland forests in the east (Poulsen et al., 
2017). Forests are estimated to have the second highest carbon density 
after Malaysia, with a mean total (above and belowground) carbon 
density of 164 Mg C ha− 1 (Saatchi et al., 2011). Almost three-quarters 
(67%) of Gabon’s forest is in logging concessions while 30,000 km2 or 
11% of the land areas are protected in 13 national parks that encompass 
most of the important terrestrial, coastal, and marine ecosystems in the 
country (Forêt Ressources Management, 2018). Across the country, 31% 
of the forested areas have been selectively logged, with harvest in
tensities ranging from 0.4–0.8 trees ha− 1 (Medjibe et al., 2013). Gabon 
has among the richest wildlife and plant communities in Africa, and up 
to 20% of its species are endemic to the country. For example, roughly 
40% of the world’s western lowland gorillas are thought to live in Gabon 
(Laurance et al., 2006). 

The sites imaged as part of the NASA AfriSAR campaign were 
selected based on preceding ESA acquisitions, the availability of field 
measurements of forest structure, accessibility and recommendations by 
experts, most notably the Gabonese National Park Service - Agence 
Nationale des Parks Nationaux (ANPN). The four joint ESA/NASA 

AfriSAR Sites were Mondah forest, Lopé National Park, Mabounié and 
Rabi (Fig. 1). The additional NASA AfriSAR sites were Pongara National 
Park, Akanda National Park, the Gamba Complex and Mouila, as well as 
two transects flown to capture geographic and climatic variability. See 
the Supplemental material for a detailed description of the sites. 

3. Airborne and field data acquisition 

LVIS is a medium-altitude imaging laser altimeter designed and 
developed at the NASA Goddard Space Flight Center to measure vege
tation structure, sub canopy ground elevation, and topography of ice 
sheets and glaciers (Blair et al., 1999). It is also the airborne prototype of 
the GEDI mission with similar instrument and data specifications. LVIS 
was flown in Gabon from February 20th to March 8th 2016 on the NASA 
Langley King Air B-200 at an altitude of 7.3 km (Table 2). The nominal 
footprint diameter was 22 m with 9 m separation, providing overlapping 
along track footprints. Both the transmitted and return signals are 
digitized to provides a true 3D vertical record of intercepted surfaces 
including the canopy surfaces and underlying ground. From each 
waveform, canopy height, canopy vertical metrics, and subcanopy 
topography were derived, relative to the WGS-84 ellipsoid (Blair et al., 
1999; Blair and Hofton, 2018). We compared LVIS crossover footprints 
(areas where two footprints from different acquisitions overlap) to 
compute horizontal and vertical accuracy of the measurements. 

LVIS standard data products include Level 1B and 2B. The Level 1B 
product contains the geolocated laser return waveforms in HDF5 format. 
The Level 2 product contains elevation (ground and canopy top) and 
Relative Height (RH) products derived from the Level 1B file in ASCII 
text (.TXT) format. LVIS Crossover comparisons showed that the LVIS 
Level 1B product has an expected horizontal geolocation of 1 m or less 
(Lope 0.41 m, Mabounié 0.57 m, Mondah 0.99 m, and Rabi 0.5 m) and 
vertical accuracy of 5 to 10 cm (Blair and Hofton, 2018). More acqui
sition details and original L1 & L2 data products are available through 
the National Snow and Ice Data Center DAAC and LVIS website. 

UAVSAR is an airborne fully polarimetric L-band (1.26 GHz, 80 MHz 
bandwidth) Synthetic Aperture Radar (SAR) system designed, built and 
operated out of the NASA Jet Propulsion Laboratory. The instrument 
was developed for repeat pass interferometry (InSAR) in support of 
crustal deformation, polarimetric Interferometric SAR (PolInSAR) and 
Polarimetric tomography (TomoSAR) to measure forest structure and 
sub canopy topography (Hensley et al., 2008). It was deployed in Gabon 
from February 23 through March 8, 2016 on the NASA Gulfstream III 
aircraft, flying at 12.5 km altitude and equipped with a Precision 
Autopilot system allowing for flight repeat track acquisition within 5 m 
of the original flight line. UAVSAR multi-looked complex data resolution 
is 0.00005556 degrees, or 6.14 m at the equator. The aim of collecting 
UAVSAR in Gabon was to acquire multiple repeat-pass InSAR acquisi
tions with varying interferometric baselines and time spans, including 
mimicking NISAR temporal baselines (Denbina et al., 2018a). The 
different interferometric baselines are obtained by acquiring repeat 
flight lines parallel to the first line but displaced vertically (i.e. changing 
flight altitude) by multiples of 15 m or 20 m (Table 2). This flight 
configuration was designed to resolve a wide range of forest canopy 
heights, and flight were nudged vertically by 15 m or 20 m to minimize 
the variation of the interferometric wavenumber within UAVSAR’s im
aging swath (i.e. the wavenumber varies more rapidly across the range 
perpendicular to flight with horizontal baselines). 

The vertical baselines collected by UAVSAR were planned consid
ering different objectives for the study areas. For example, the Akanda 
site was flown repeatedly using the same baseline lengths, in order to 
provide the data for an in-depth study of temporal decorrelation. The 
Pongara study area was limited to fewer flight lines due to scheduling. 
The Lope study area had baselines designed for TomoSAR, with 
consistent spacing between baselines and a large maximum baseline 
length. The appropriate baseline lengths were also planned using limited 
pre-existing knowledge (from lidar and field surveys) of the expected 
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forest heights in each study area. However, some study areas had 
maximum canopy heights greater than expected, such that the minimum 
baseline length collected by UAVSAR was insufficient to retrieve the 
heights of some of the tallest trees (Denbina et al., 2018a). 

UAVSAR acquired data in several modes including PolSAR, 

Inteferometric SAR (InSAR), PolInSAR, Tomographic SAR (TomoSAR), 
zero-baseline (i.e. exact repeated flight line). The Lopé site was the most 
extensively covered with up to 9 baselines on two separate dates (Feb 25 
and March 8). The two flights were acquired 12 days apart in order to 
simulate the temporal difference between two NISAR acquisitions. 

Fig. 1. NASA AfriSAR Airborne Acquisitions. A) All LVIS and UAVSAR acquisitions. B and C show LVIS and UAVSAR acquisitions and field data sites separately.  
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UAVSAR Standard products include full polarimetric (HH-HV-VV-VH) 
mulitilook complex (.mlc) gridded geocoded (.grd) data. Additionally, a 
SLC datastack was produced that includes all of the acquisitions with 
varying baselines, plus the vertical wavenumber and effective baseline 
data. The number of repeat passes and baselines are shown in Table 2. 

In Situ: We established and surveyed field plots in the forested areas 
in and surrounding the Mondah Forest in collaboration with ANPN. The 
Mondah plots were spatially distributed in low density forest based on 
previously developed biomass estimates (Saatchi et al., 2011) and pre
viously flown discrete return Lidar data (Silva et al., 2018) to focus on 
lower AGBD (<200 Mg AGBD ha− 1) forests. Sampling was conducted in 
March 2016 using a modified methodology of the Gabon National 
Resource Inventory (Poulsen et al., 2017). 

The field team established 15 1-ha plots (100 m × 100 m) divided 
into sixteen 25 × 25 m subplots and recorded the GPS coordinates of all 
plot and subplot corners. Technicians measured the diameter at breast 
height (1.3 m) of every tree ≥5 cm and counted the number of trees <5 
cm diameter. A botanist identified trees to species or genus. In addition, 
field teams measured tree heights with a laser hypsometer (TruPulse 200 
Hypsometer, Laser Technology, Inc., Centennial, CO, USA), taking three 
measurements of 55 randomly selected trees per site with 10 trees from 
each of 5 DBH subclasses (10–20 cm, 21–30 cm, 31–40 cm, 41–50 cm, 
>50 cm) and the five largest trees. Shrub height was measured at each 
subplot corner and shrub cover for each quadrant was recorded. Within 
each subplot, field teams took hemispherical photos at 0.5 m height from 
the forest floor. For woody vegetation shorter than breast height, a 1 × 1 
m mini-plot was randomly set up in each subplot to measure percent 
ground cover. In addition to these measurements, field teams recorded 
the following: altitude and orientation of each plot, forest type (primary, 
secondary or logged), inundation type (never, seasonally or perma
nently), and presence of disturbances, such as downed trees, fires, 
elephant or other large animal damage. The field team also noted 
whether there was evidence of hunting, forest product harvesting, and 
human trails and stumps. 

4. NASA AfriSAR Data Products and Algorithms 

4.1. Data products 

Following the release of the standard LVIS and UAVSAR data prod
ucts, the AfriSAR science team has produced additional Level 3 and 4 
data products in line with GEDI and NISAR data products. The aim of 
producing these products is to promote scientific analyses of the AfriSAR 
data and advance the calibration and validation between sensors and 
missions (Table 3). AfriSAR products are versioned and may be 
improved in the future. 

4.2. Plot level aboveground biomass density 

We estimated AGBD for the Mondah plots using a pantropical allo
metric model including parameters for tree diameter, height and wood 
specific density as developed by Chave et al. (2014). We used the R 
package, BIOMASS, to analyze the plot data (Réjou-Méchain et al., 
2017). BIOMASS assigns wood density values to trees, builds a model to 
predict tree height from DBH using one of five potential functional 
forms, and propagates errors associated with diameter and wood density 
measurements, tree height predictions, and the allometric model. 

4.3. Height and topography products 

LVIS gridded height models and bare earth DEM were produced for 
the Lopé, Mondah/Akanda, Pongara, Rabi and Mabounié flightlines 
from the standard LVIS Level 2 topography and relative height data 
products distributed for each laser footprint (Blair and Hofton, 2018). 
The canopy height was determined by the geolocation of the precise 
timing points along the received waveform. These timing points include 
the received waveform signal start, end and distinct modes representing 
reflecting surfaces within each laser footprint. An array of energy per
centiles between the signal end (0%) and start (100%) ranging points 
were then computed, with the relative height (RH) of each percentile bin 
defined as its elevation minus the elevation of the lowest detected mode 
(ie the ground) for more detail, see Blair et al. (1999). 

The relative height metrics RH25, RH50, RH75, RH90, RH95, RH98, 
RH99 and RH100 were computed from the lidar waveform. The 
percentile indicates the relative amount of energy above from the 
ground. For example, RH50 represents the height below which there is 
50% of the lidar return energy. RH98, RH99 and RH100 can be used to 
represent the top canopy height. The LVIS 25 × 25 m (0.0625 ha) spatial 
resolution relative height metrics (RH25, RH50, RH75, RH90, RH95, 
RH98, RH99 and RH100) and bare earth elevation grids were generated 
from the footprint elevation and height metrics. All shots falling within 
individual cells according to their ground location were aggregated and 
statistical moments calculated (mean and standard deviation of values). 
An ancillary data product describing the number of shots and flightlines 
used for each grid cell was also generated. The bare earth elevation or 
Digital Elevation Model (DEM) interpolation approach used the natural 
neighbor algorithm (Sibson, 1981), which is an efficient interpolation 
algorithm that requires no local tuning of parameters and has been 
previously applied to the generation of lidar DEM’s over large areas 
(Fisher et al., 2020). The gridded products cover a smaller spatial extent 
than the footprint products, since the former include transects and 
transit flightpaths. All LVIS gridded products use the GeoTIFF format. 

UAVSAR canopy height products and associated uncertainty maps 
from multi-baseline Polarimetric Interferometric Synthetic Aperture 
Radar (PolInSAR) were generated for all sites where multiple interfer
ometric baselines were collected, namely Lopé, Rabi, Pongara and 
Mondah. The co-registered stacks of UAVSAR SLC images are also 
distributed as a level 2 product and form basis input layers to derive the 
PolInSAR height products. Three product variants of the UAVSAR- 
derived Canopy Height Models (CHM) were generated using different 
algorithms and implemented using 2 different softwares with potentially 

Table 2 
LVIS and UAVSAR airborne acquisitions, site names and dates*  

LVIS Acquisitions 

Site Name Date in 
2016 

Mabounié February 20 
TanDEM-X transect February 22 
GEDI crossover transect February 22 
Biomass-1 transect February 23 
Lopé March 2 
Pongara March 4 
Rabi March 7 
Mondah and Akanda March 4 
Mondah and Akanda March 8 
Biomass-2 Transect March 8  

UAVSAR acquisitions  
Vertical Baseline configuration [m]  

Mondah and Akanda 0, 0, 0, 45, 45,45, 60, 60, 60 March 6 
Pongara 0, 20, 45, 105 February 27 
Pongara – March 6 
Lope (North) 0, 20, 40, 60, 80, 100, 120, 0 February 25 
Lope (North) 0, 20, 40, 60, 80, 100, 120, 160, 180, 

0 
March 8 

Lope mosaic (entire park) – March 1 
Rabi 0, 20, 40, 60, 80, 100, 120, 160, 180, 

200 
February 28 

Mouila, Mabounié and 
Ogooué 

0 March 1 

Gamba Complex 0 March 6  

* LVIS acquired data on multiple days and flights over several sites. The dates 
shown here represent primary date at which most of the data over specific sites 
was collected. 
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different interpretations of forest structure and height (e.g. sensitivity to 
tree density or woody biomass). These three products were produced 
using:  

1) the prototype NISAR interferometric processor ISCE (Interferometric 
Software Computing Environment) and the PLAnT toolbox (Polari
metric-Interferometric Lab and Analysis Tool) (Lavalle et al., 2018), 
called CHMPLAnT from hereon,  

2) an inversion of the random volume over ground (RVoG) model 
implemented in Kapok: an open source Python library (Denbina 
et al., 2018a). This canopy height inversion is called CHMKapok from 
hereon,  

3) a fusion approach that inverts the RVoG model using a Support 
Vector Machine (SVM) machine learning algorithm to estimate the 
best interferometric baseline for each pixel. The SVM is trained using 
lidar canopy height data, and attempts to select the interferometric 
baseline with highest accuracy given the observed PolInSAR coher
ence characteristics (Denbina et al., 2018a, 2018b), called CHMfusion 
from hereon. 

The standard approach used in all three products for estimating 
canopy heights from multiple baselines starts by calibrating and co- 
registering the set of available Single Look Complex (SLC) along with 
generating maps vertical wavenumber (kz), look vector, and latitude and 
longitude referenced to the WGS84 ellipsoid. The vertical wavenumber 
represents the sensitivity of the interferometric phase to vertical canopy 
height, and is dependent on the spatial baseline between the repeat 
acquisitions as well as the viewing and target geometry (Kugler et al., 
2015). The vertical wavenumber determines the suitability of a given 
baseline to accurately estimate canopy height for a particular true forest 
height. Different baselines with different vertical wavenumbers can be 
utilized to produce consistent canopy height inversion accuracy across a 
wide range of forest heights (Kugler et al., 2015). 

The vertical wavenumber maps were computed using the calculated 
look vector for each pixel, and considering the distortion effects caused 
by the underlying ground topography, based on the 30 m SRTM DEM. 
While higher resolution DEMs were available in some areas, none 
covered the full extents of the UAVSAR acquisitions. The full look vector 
was used, rather than just the look angle, in order to account for the 
effect of aircraft attitude including non-zero squint angle. 

UAVSAR CHMPLAnT data were produced for Mondah, Rabi and Lopé 
National Park sites. These were generated with the prototype NISAR 
interferometric processor ISCE and the PLAnT toolbox starting from 
polarimetric SAR (PolSAR) SLC stacks (Lavalle et al., 2018). This 
product also includes various intermediate PolInSAR products including 
canopy and ground coherence maps, mask coherence separation, mask 
coherence error and location, and merged vertical wavenumber maps. 
To generate the CHMPLAnT product, PolInSAR canopy height and un
certainty products were derived using an algorithm based on the 
random-volume-over-ground (RVoG) (Cloude and Papathanassiou, 
2003; Papathanassiou and Cloude, 2004) and its extension, named 
random-motion-over-ground (RMoG), to include temporal decorrelation 
(Lavalle and Hensley, 2015), as well as the structured-volume-over- 
ground (SVoG) models (Cloude et al., 2006). For CHMPLAnT, a cost 
function based on the product between mean PolInSAR coherence and 
RVoG/RMoG-model visible line length (the distance between optimized 
PolInSAR coherences) was adopted. The merging of interferometric 
observations from the multiple baselines ensures a good balance be
tween random phase noise, which increases with baseline length due to 
increased volume decorrelation and lower interferometric coherence, 
and interferometric sensitivity to structure. It also provides an effective 
way to partially compensate for temporal decorrelation effects that 
result from acquiring images of an interferometric pair in repeat-pass 
modes (i.e. at different time). Masking of very low coherence samples 
and very small baselines was applied during the multi-baseline merging 
process depending on the multi-baseline flight configuration and 

Table 3 
AfriSAR data product list.  

AfriSAR Data Product Name Description Reference 

Mondah Forest Tree Species, 
Biophysical, and Biomass 
Data, Gabon, 2016 

Individual tree, Plot (1 ha) and 
subplot (0.0625–0.25 ha) AGBD 
and structure metrics including 
uncertainty 

Fatoyinbo 
et al., 2018  

LVIS-based products  
L1B Geolocated Waveforms Geolocated laser return 

waveforms for each laser 
footprint 

Blair and 
Hofton, 2018 

L2 Elevation and Height 
Products 

Ground and canopy top 
elevations and relative height 
metrics describing the vertical 
distribution of Lidar return 
energy from the ground. 

Blair and 
Hofton et al., 
2018b 

Footprint-Level Canopy 
Cover and Vertical Profile 
Metrics 

Footprint-level products of 
vertical profiles of canopy cover 
fraction in 1-m bins, vertical 
profiles of plant area index (PAI) 
in 1-m bins, footprint summary 
data of total recorded energy, 
leaf area index, canopy cover 
fraction, and vertical foliage 
profiles in 10-m bins in Lopé, 
Mondah/Akanda, Pongara, Rabi 
and Mabounié. 

Tang et al., 
2018 

Gridded Forest Biomass and 
Canopy Metrics Derived 
from LVIS, Gabon, 2016 

Gridded version of Canopy 
cover, canopy heights, bare 
ground elevation, plant area 
index (PAI), foliage height 
diversity (FHD) and respective 
uncertainties at 25 m resolution 
in Lopé, Mondah/Akanda and 
Mabounié. 

Armston et al., 
2020 

Gridded Estimates of 
aboveground biomass (AGB) and 
respective uncertainties for four 
sites in Gabon at 0.25 ha (50 m) 
resolution derived with field 
measurements and airborne 
LiDAR data collected from 2010 
to 2016. 

Armston et al., 
2020  

UAVSAR based products  
Polarimetric SAR Stack Calibrated, co-registered single 

look complex (SLC) time series 
data in slant range 

Alaska Satellite 
Facility DAAC 

Canopy Height Derived from 
PolInSAR and Lidar Data 

Canopy height and intermediate 
parameters of the PolInSAR data 
(including radar backscatter, 
coherence, and viewing and 
terrain geometry) from multi- 
baseline PolInSAR data using the 
Kapok open-source Python 
library over Lopé, Pongara, 
Mondah/Akanda. 

Denbina et al., 
2018a 

Canopy height derived from a 
fusion of PolInSAR and LVIS 
Lidar data over Lopé, Pongara, 
Mondah/Akanda. 

Denbina et al., 
2018a 

Canopy Structure Derived 
from PolInSAR and 
Coherence TomoSAR 
NISAR tools 

Canopy Height, associated 
uncertainty and intermediate 
products derived by applying 
multi-baseline PolInSAR using 
the PLaNT software and 
Polarimetric Coherence 
Tomographic SAR (PCT) 
techniques over Lopé, Mondah 
and Rabi 

Lavalle et al., 
2018 

Polarimetric Height Profiles 
by TomoSAR, Lope and 
Rabi Forests, Gabon, 2016 

Canopy height profiles produced 
using synthetic aperture radar 
tomography (TomoSAR) over 
Lopé and Rabi 

Hawkins et al., 
2018  
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characteristics of the imaged forests. The associated canopy height un
certainty product represents the standard deviation in meters of 
CHMPLAnT. More details about the generation of the CHMPLAnT products 
and the canopy height uncertainty product can be found in Riel et al., 
2018. 

The UAVSAR CHMKapok product provides estimates of forest canopy 
height and uncertainty for study areas in Pongara and Lopé derived with 
the Kapok software (Denbina et al., 2018a; Denbina et al., 2018b). This 
dataset also includes various intermediate PolInSAR products including 
radar backscatter, coherence, and viewing and terrain geometry. Can
opy height was derived from the multi-baseline UAVSAR data by 
inverting the RVoG model. Kapok uses the SLC stack to calculate a multi- 
look PolInSAR covariance matrix for each pixel in the imagery. Kapok 
also resamples the available vertical wavenumber, look vector, and 
geolocation information to have the same dimensions as the multi- 
looked UAVSAR image stack. 

After calculating the multi-look covariance matrix, a coherence 
optimization procedure was performed to find the PolInSAR coherences 
with the largest separation in the complex plane, followed by an esti
mation of the interferometric phase of the ground surface beneath the 
forest canopy, as in the standard three-stage RVoG model inversion 
procedure (Cloude and Papathanassiou, 2003). For each pixel, a single 
interferometric baseline was used for the height inversion, based on the 
characteristics of the observed coherence region, as described in (Den
bina et al., 2018b) CHMKapok products were created by solving for the 
forest canopy height and extinction parameters of the model, ignoring 
the effects of temporal decorrelation. Pixels with low HV backscatter 
were masked out to avoid estimating forest heights over water areas and 
had their canopy height set to zero (i.e., non-forest). CHMKapok uncer
tainty is the standard deviation in meters of the canopy height product 
hv, derived using the same approach as described in Riel et al. (2018). 

UAVSAR CHMfusion: In addition to the standard PolInSAR canopy 
height products derived above, experimental UAVSAR and LVIS fusion 
canopy height products were also generated for the Pongara and Lopé 
sites as described in Denbina et al., 2018b. For each pixel, the algorithm 
uses machine learning to choose the interferometric baseline expected to 
provide the best canopy height estimate. This selection is primarily 
based on the characteristics of the observed PolInSAR coherence region, 
in addition to other parameters such as kz and radar backscatter. A 
sparse subset of coincident LVIS RH100 data, similar to the point density 
expected from the GEDI mission, was used to train the classifier at 
approximately 250-m spacing in both azimuth and range directions 
(Denbina et al., 2018b). After training, for each pixel the baseline 
selected by the classifier was used to invert forest height from the RVoG 
model, as described in the previous paragraph. This product helps 
demonstrate the potential of fusing multi-baseline PolInSAR with data 
from GEDI or other future spaceborne lidar missions. 

4.4. Vertical profile products 

The AfriSAR vertical canopy structure products were generated using 
established algorithms on the LVIS data, and more experimental tech
niques with UAVSAR data. 

LVIS footprint canopy cover metrics and profiles: Footprint-level 
canopy structure products were generated for the Lopé, Mondah/ 
Akanda, Pongara, Rabi and Mabounié flight lines using established 
techniques (Tang et al., 2018). Products generated are: 

1) Vertical profiles of canopy cover fraction (CCF) in 1 m vertical 
bins. Canopy cover fraction is defined as 1 -Pgap(z,θ), where z and theta 
are zero and Pgap is the directional gap probability (Tang and Armston, 
2019). This is equivalent to the probability that the ground surface is 
directly visible at the nadir view of LVIS. 

2) Vertical profiles of plant area index PAI(z) between the top of 
canopy (z = Hmax) and the ground (z = 0), with a vertical bin size of 1 m. 
PAI is defined as one half of the total plant element area per unit ground 
surface (m2 m− 2; (Gower and Norman, 1991). 

3) Footprint summary data of total recorded energy, PAI, CCF, and 
vertical plant area volume density (PAVD, m2 m− 3) profiles in 10 m 
vertical bins (i.e. 0–10, 10–20, 20–30 and above), and foliage height 
diversity (FHD) - a canopy structural index that describes the vertical 
heterogeneity of the PAVD profile (MacArthur and Horn, 1969). 

The algorithm to derive vertical canopy profile metrics from wave
form lidar is well developed (Armston et al., 2013a; Ni-Meister et al., 
2010a, 2010b; Tang et al., 2012) and requires estimates of the following 
parameters to compute: (i) the integrated laser energy returns from the 
canopy Rv(z) and ground Rg; (ii) the ratio of canopy and ground 
reflectance ρv/ρg; (iii) the leaf area angle projection coefficient, G(θ), 
representing the fraction of canopy element area projected perpendic
ular to the view direction to the total canopy element area; and (iv) the 
clumping index, Ω(θ), describing the spatial distribution pattern of 
canopy elements. 

Here we set G = 0.5 for a uniform random foliage distribution and Ω 
= 1, which assumes that elements are dispersed randomly and inde
pendently between canopy layers. These assumptions are consistent 
with findings by Marselis et al. (2018) who validated the vertical profile 
metric estimates using independently acquired Terrestrial Laser Scan
ning (TLS) estimates. The Rv(z) and ground Rg are derived from LVIS 
level 1B and level 2 products by fitting an exponential Gaussian to the 
lowest waveform mode corresponding to the ground (Dubayah et al., 
2020). The vegetation to ground reflectance ratio, ρv/ρg, is then set as a 
constant value per site (e.g. 1.493 for Mondah) using the method 
developed in previous studies (Armston et al., 2013b; Tang and 
Dubayah, 2017). 

LVIS gridded canopy cover and vertical profile metrics were pro
duced for the Lopé, Mondah/Akanda, Pongara, Rabi and Mabounié 
flightlines. The gridded map products were generated at 25 m (0.0625 
ha) spatial resolution from footprint canopy cover metrics and profile 
data. The canopy cover and vertical profile metric grids generated 
include the mean and standard deviation of total canopy cover, foliage 
height diversity, total plant area index (PAI), and PAI in height intervals 
of 0–10 m, 10–20 m, 20–30 m, and 30+ m. Data product format, pro
jection, and grid alignment were same as used for the LVIS gridded 
height models and bare earth DEMs. 

UAVSAR Tomographic SAR products enable the generation of a 
wall-to-wall 3-dimensional map of vegetation structure (see Hawkins 
et al., 2018; Lavalle et al., 2016; Riel et al., 2018). Generally, a TomoSAR 
product describes the radar backscatter as a function of vertical eleva
tion within the forest canopy and is thus related to the vertical distri
bution of material within the canopy (i.e. trunks, branches, leaves). 
Unlike Lidar, which results from intercepted surfaces, including leaves, 
L-band radar tomography penetrates deep into the canopy with greater 
sensitivity to large branches and trunks. The vertical resolution is driven 
by the length of the longest interferometric baselines in the tomographic 
stack and is therefore coarser than in the lidar data (ie m resolution in 
TomoSAR vs mm to cm in Lidar). The spacing between the interfero
metric baselines determines the height of ambiguity, which was set to be 
greater than the expected height of the forest. The three dimensional 
focusing of an image stack requires that each image has a common phase 
reference, which is especially difficult in the airborne case, since errors 
in the knowledge of the platform position are typically a large fraction of 
the size of the radar wavelength. For phase calibration, we adopted the 
approach described in Tebaldini et al. (2016) and Hawkins et al. (2018) 
where the full network of interferograms is reduced to a smaller set of 
“linked phases” and used to estimate a set of trajectory corrections 
having a consistent phase reference. The AfriSAR team generated two 
variants of the demonstrative Tomographic SAR products described 
below. 

UAVSAR TomoSAR: products have backscatter values at several 
vertical height slices that can be used to generate canopy profiles and 3D 
canopy structure across the entire vegetation volume. These products 
were generated over Rabi and Lopé National Park as these were suitable 
for processing using tomographic imaging techniques described by 
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Hawkins et al. (2018), Lavalle et al., 2016). In these two sites, several 
flight lines (N = 8) were acquired with different vertical baselines (i.e. 
separation between flights), spanning a vertical aperture of 120 m (see 
Table 3). Each flight line captures the radar backscatter projected onto 
its imaging plane and by varying the radar altitude between image ac
quisitions, we vary the angle of this projection and can therefore 
reconstruct the full backscattering profile. The tomographic processing 
begins with the single look complex (SLC) data products generated by 
the standard UAVSAR stack processor (see Table 3), which includes a 
motion measurement error calibration step (Hensley et al. 2015). To 
further reduce relative phase errors between the images in a stack, a 
second motion measurement error calibration step is performed 
(Tebaldini et al., 2016). Finally, the phase calibrated SLC images are 
considered samples of the backscatter vertical wavenumber spectrum, 
allowing the profiles to be recovered with spectral estimation tech
niques, either the discrete time Fourier transform (Reigber and Moreira, 
2000) or the Capon method (Lombardini and Reigber, 2003). This re
sults in a three-dimensional grid of radar backscatter throughout the 
vegetation volume and is therefore related to the vertical distribution of 
AGBD. 

UAVSAR TomoPLAnt products were generated for Mondah, Lopé 
National Park and Rabi, starting from the stack of polarimetric SLC 
images using a processing chain based on ISCE and PLAnT tools (Lavalle 
et al., 2018). Polarimetric Coherence TomoSAR (PCT) forest structure 
products were derived by expanding a second order Legendre poly
nomial expansion (Cloude, 2006) between the ground and the estimated 
tree height, in this case the lidar-based canopy height, to generate the 
forest vertical backscatter profile. Similar to the above method, the 
vertical wavenumber layers and phase-calibrated tomographic SLC im
ages were then used to estimate the vertical reflectivity for each polar
imetric channel using the standard Capon and Fourier beamforming. 
The generation of polarimetric coherence TomoSAR profiles also 
required the use of the tree height product generated using PolInSAR 
technique. 

4.5. AfriSAR Biomass Products 

LVIS gridded Aboveground Biomass Density and associated error: 
AGBD was estimated for Lopé, Mondah, Rabi and Mabounié using a 
model that follows the functional form of the scaling equations used to 
derive mass from individual tree structure: 

AGBD
(
Mg ha− 1) = Ha∙BADb∙WSGc (1)  

where H is the canopy top height, BAD is basal area density and WSG is 
the wood specific gravity. This model form has been widely used in the 
literature, for example Asner et al. (2011) to estimate AGBD in the 
tropical forests of Central and South America, Madagascar, and the Is
land of Hawaii. We used RH98 for the Canopy top height (H) since this is 
less sensitive to noise (Hancock et al., 2019). However, this model is also 
parameterized in terms of basal area density (BAD) and wood specific 
gravity (WSG), neither of which are directly measured by the lidar 
waveforms. Therefore, to model BAD in this study, we developed a 
linear model parameterized by canopy cover (CC) and height (z), as 
previously shown by Asner and Mascaro (2014) and Ni-Meister et al. 
(2010a, 2010b), for predicting BAD from lidar measurements: 

BAD
(
m2 ha− 1) = RH90∙CCz=Hmax (2)  

where CCz=Hmax is canopy cover at the top of canopy (i.e. total cover). 
The AGBD model was developed using field measurements from 

Mondah, Lopé, and Mabounié. Models were independently developed at 
spatial resolutions of 50 m (0.25 ha) and 100 m (1 ha), for which we had 
in situ estimates of AGBD that could be co-located with waveform 
footprints with relative geolocation errors of <5%. Specification of these 
models required explicit treatment of heteroscedasticity and the non- 

normal error distribution of the response (AGBD). To address this 
requirement, we used a Generalized Linear Model (GLM), selecting a 
Gamma distribution for modelling the continuous, non-negative and 
positive-skewed AGBD data. The variance of the Gamma distribution is 
proportional to the squared means, thus allowing this form of hetero
scedasticity to be specified and avoiding the assumption of homosce
dasticity. An identity link function was used, since we observed AGBD 
was linearly related to the non-linear combination of predictors in Eq. 1. 
Estimation of the model parameters was undertaken in a Bayesian 
framework using the R package ‘brms’ (Bürkner, 2017). Posterior pre
dictive distributions provided realistic per-pixel estimates of uncertainty 
in the form of 95% confidence intervals. Model performance was 
assessed by leave-one-out (LOO) cross-validation. 

4.6. Dataset intercomparison 

We compared the accuracies and sensitivities of the height and AGBD 
products by extracting the values of the RH100, CHMPLAnT, CHMKapok, 
CHMFusion data (for height) and AGBDLVIS, with the small footprint lidar 
datasets by Labriere et al. (2018) and plotting them against each other. 
To achieve this, we extracted all points covering the overlapping areas 
between LVIS and the radar products. The values of each point were then 
plotted and basic statistics calculated (r2, intercept, slope, RMSE, re
sidual error, p-value). Crossovers between LVIS and discrete return ALS 
data were used for comparison of equivalent products for each dataset at 
the Lopé, Mondah/Akanda, Rabi and Mabounié sites. To ensure both 
datasets were aligned, horizontal offsets were calculated by maximizing 
the correlation between real and ALS simulated LVIS waveforms (Blair 
and Hofton, 1999; Hancock et al., 2019) and then applied. 

For the TomoSAR analysis, lidar waveforms were reprojected to the 
radar geometry to ease the comparison with tomograms. Furthermore, 
radar tomograms have been normalized to their maximum vertical value 
to highlight the vertical structural changes and to avoid that a bright 
concentrated target shadows scattering elements less bright but more 
distributed along elevation. 

5. Data product analysis 

Here we present the analysis of the level 3 data products. These data 
products are accessible through the NASA Earthdata Search Portal for 
AfriSAR at https://search.earthdata.nasa.gov/search?q=afrisar and the 
Oak Ridge National Laboratories Distributed Active Archive Center for 
Biogeochemical Dynamics at https://daac.ornl.gov/. 

5.1. In situ aboveground biomass density 

We measured 6692 trees from 139 species in Mondah, with DBH 
values ranging from 5 cm to 198.4 cm and maximum measured heights 
of 59.23 m. Mean AGBD was 103.2 Mg ha− 1 and ranged from 3.26 Mg 
ha− 1 to 267.5 Mg ha− 1. All vegetation characteristics and estimates of 
AGBD were reported at multiple scales: 0.0625 ha, 0.25 ha, and 1 ha. 
These data are available on the ORNL DAAC (Fatoyinbo et al., 2018) and 
were used to validate and calibrate the NASA AfriSAR higher level data 
products described below. 

5.2. LVIS footprint level canopy cover metrics and profiles 

Canopy cover and height distribution across plots varied greatly, 
highlighting the difference in stand structures across sites. Examples of 
canopy metric data products over the Mondah flight lines are shown in 
Fig. 2. All LVIS based data products are shown in Fig. 3. Taller stands, as 
shown in plot NASA 13, Fig. 2 with a 40+ m canopy had lower plant 
volume throughout the vertical canopy profile, with the highest density 
in the understory, while the medium stature (~25 m canopy) plot NASA 
21A’s plant area was dense throughout the entire canopy layer. Plot 20 
on the other hand had a similar canopy height to plot 21, but lower 
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AGBD and a majority of the plant area volume concentrated in the 
lowest 5 m of the canopy, suggesting a difference in forest composition 
and/or forest management strategy between the 3 plots. 

In the comparison of the LVIS and ALS crossovers of the canopy 
metric products, there was a mean negative bias (LVIS cover estimates 
are lower than ALS) of between 5.9% at Mabounie and 11.2% at Mondah 
with the corresponding RMSE between 15.5% and 24.2%. Mondah was 
not included in these statistics because of the 5 years between the ALS 
and LVIS acquisition dates and large areas of secondary forest growth. 
The differences in cover estimates between LVIS and ALS are in some 
cases the result of errors in ground return energy estimates. It is 
important to note that ALS does not provide a direct estimate of canopy 
cover, which can cause systematic differences (see Armston et al., 
2013a; Fisher et al., 2020), but this small negative bias in LVIS estimated 
canopy cover is consistent with what we would expect from the small 
positive bias in LVIS estimated ground elevation (0.6–2.3 m across all 

sites) described below. 

5.3. LVIS footprint level height and elevation metrics 

LVIS to ALS footprint cross-over comparisons showed the RMSE for 
ground elevation ranged between 1.75 m for Mondah and 4.2 m for 
Lopé. The mean bias was positive (LVIS elevation estimates above ALS 
estimates) and ranged between 0.64 m for Lopé and 2.3 m for Rabi. 
There was a weak trend of increasing positive mean bias (LVIS elevation 
estimates above ALS estimates) and RMSE with increasing canopy cover 
and slope. Uncertainties in subcanopy ground elevation estimates from 
large-footprint waveform lidar have been well explained in the literature 
(Hofton et al. 2000, Duncanson et al. 2010, Hancock et al. 2012). In the 
case of mangroves, underlying conditions such as the presence of water 
(tides) or aboveground roots (such as mangrove prop roots) may also 
affect the ability of the LVIS algorithm to accurately estimate the 

Fig. 2. Plant area volume density as a function of canopy height in three plots in Mondah forest (plot 13, 21 and 20). The lightest shade is 0.1–0.9 percentile, the 
darker shade is 0.3–0.7 percentile and the line is the 0.5 quantile. 

Fig. 3. LVIS and UAVSAR gridded data products for Mondah and Pongara at 30 m resolution. In the left pane, the following gridded metrics are shown from top to 
bottom: Gridded Digital Elevation Model for Mondah, RH100 for Mondah, Plant area index composite of 0 m-10 m (red), 10 m-20 m (green), 20 m-30 m (blue) plant 
area index between 0 and 10 m vertical, plant area index between 20 and 30 m vertical and canopy cover fraction. In the right pane, the following gridded products 
are shown from top to bottom: CHMKapok Canopy Height, CHMKapok Canopy height for Pongara, CHMFusion Canopy height for Pongara. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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elevation of the ground. 

5.4. LVIS gridded height models and bare earth DEMs 

The largest height metrics were found in Lopé National Park, with 
maximum canopy height estimates in the gridded LVIS product of 84.3 
m for RH100 and 75.9 m using RH98. At the individual footprint level, 
the maximum heights at Lopé are 93.5 m for RH100 and 88.9 m for 
RH98, highlighting the impact of spatial averaging to 25 m on gridded 
height estimates. Over areas with complex topography (e.g. gullies), 
such as Lopé, the ground waveforms at the spatial resolution of LVIS or 
GEDI footprints can be multi-modal, meaning that the lowest mode may 
not always be the only ground return, thereby resulting in RH metrics 
being larger than actual individual tree height. Maximum gridded 
height values are 64.2 m (55.17 for RH98) in Mondah, 65.1 m (51.5 m 
for RH98) for Pongara, 76.6 (49.4 m for RH98) for Rabi, 75.26 m (50.3 
m for RH98) in Mabounié. 

The bare earth gridded DEM height is presented as height over the 
geoid, and ranges from the lowest areas of 8 m in Pongara to 671 m in 
Lopé National Park, highlighting the wide range in topography and 
environmental settings covered. Overall, the subcanopy bare earth 
height range for Lopé is from 101 m to 671.8 m, from 10 m to 63.3 m in 
Mondah, from 10 m to 243.2 m in Rabi, and from 8.9 m to 138.8 m in 
Pongara. 

5.5. LVIS gridded Aboveground Biomass density and associated error 

For the 3 sites, mean AGBD ranged from 337 Mg ha− 1 +/− 165 Mg 
ha− 1 in Lopé National Park to 249 Mg ha− 1 +/− 145 Mg ha− 1 in 
Mabounié and 86 Mg ha− 1 +/− 138 Mg ha− 1 in Mondah forest. The 
calibration results for the LVIS AGBD estimators at 1 ha and 0.25 ha 
spatial resolution using Mondah, Lopé and Mabounié plot data is shown 
in Table 4. Estimator parameters were not significantly different at 0.25 
and 1 ha spatial resolutions, with greatest uncertainty in the stand wood 
density (SWD) parameter. Estimator performance was best at the 1 ha 
resolution, with an r2 of 0.82 and RMSE of 85 Mg ha− 1, whereas the 0.25 
ha resolution model had an r2 of 0.72 and RMSE of 114 Mg ha− 1. 

In the comparison of AGBDLVIS vs ALS-based AGBD data (Fig. 4), the 
LVIS-based AGBD estimates were close to the AGBDLabriere, with r2 of 
0.86, RMSE of 25% and a bias of 6%. The differences in AGBD derived 
from ALS and LVIS can be attributed to multiple reasons – temporal 
differences, particularly secondary forest growth in Mondah Forest be
tween the 2012 ALS and the 2016 LVIS Lidar acquisitions in addition to 
differences in sampling error (number of LVIS shots per grid cell) be
tween grid cells. 

5.6. UAVSAR canopy height 

UAVSAR height product accuracies were assessed through a regres
sion with LVIS RH100 metrics. Comparisons of the three UAVSAR can
opy height products with LVIS are shown in Fig. 3 and Fig. 5. 

The UAVSAR Canopy height models performed better in Pongara 
than in Lopé, likely due to the flat topography of mangrove forest of 
Pongara. The Lopé and Mondah sites are characterized by large 

topographic gradients and many areas of steep slopes. The UAVSAR’s 
CHMFusion canopy height product is the most accurate, as compared to 
LVIS RH100, with the highest r2 (0.84 in Pongara and 0.74 in Lopé), 
lowest RMSE (around 27%) and low bias (3.65% for Pongara). Good 
agreement between these datasets is expected as the CHMFusion product 
used a sparse subset of LVIS RH100 data to train the classifier. 

The CHMfusion model overestimates canopy height in short man
groves, most likely due to the impact of temporal decorrelation being 
more significant relative to volume decorrelation. Changes in water 
level that occur in these open and short stature mangrove forests be
tween UAVSAR acquisitions may also have a greater impact on radar 
signal. CHMKapok also overestimated shorter trees and underestimated 
taller canopies when compared to RHh100 with r2 of 0.73 and 0.63 in 
Pongara and Lopé respectively and RMSE of about 33%. Similarly to the 
CHMFusion, the CHMKapok product was biased, with mangrove heights (in 
Pongara) being generally overestimated (bias of 7.23%) and tall trees of 
Lopé underestimated with an overall bias of – 9.94%. Similarly to 
CHMKapok, CHMPLaNT generally underestimated tall trees while over
estimating short ones when compared to RHh100. The comparison 
resulted in r2 values of 0.76 for Lopé, 0.54 for Mondah and 0.24 for Rabi, 
and biases ranging from 14.48% in Mondah to − 32.9% in Rabi (Fig. 5). 

These comparisons highlight that the deviation between UAVSAR- 
and LVIS-derived canopy maps depends significantly on the choice of 
the interferometric baseline, forest structure, presence of temporal 
decorrelation, terrain conditions, and the inversion model. Generally 
speaking, UAVSAR canopy height estimates are most accurate over a 

Table 4 
LVIS AGBD model performance at 1 ha and 0.25 ha spatial resolution using Mondah, Lopé and Mabounié plot data. Parameter estimates and model fit statistics were 
estimated using leave-one-out cross validation.  

Resolution R2 RMSE Parameter Estimate Error Lower 95% CI Upper 95% CI 

1 ha 0.82 (0.04)* 84.94 SWD − 1.84 0.68 − 3.17 − 0.51    
RH98 0.01 0.15 − 0.30 0.30    
SBA 0.24 0.07 0.11 0.38 

0.25 ha 0.72 (0.01) 114.07 SWD − 1.86 0.43 − 2.70 − 1.00    
RH98 − 0.02 0.10 − 0.20 0.17    
SBA 0.27 0.04 0.19 0.35  

* where SWD is stand wood density, WD is Wood Density and SBA is stand Basal Area. 

Fig. 4. Comparison of airborne lidar-derived AGBD estimates (Labriere et al. 
2018 and Armston et al., 2020) in Lopé National Park. 
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height range between 10 and 30 m due to L-band penetration in the 
canopy and the implementation of the UAVSAR repeat-pass interfero
metric flights. The quality of the height retrieval degrades as the 
retrieved height approaches values lower than 5 m, which may be 
dominated by temporal decorrelation, resulting in an overestimation of 
short heights. For values greater than 40 m, the effects of the microwave 
penetration and saturation of the L-band signal may lead to an under
estimation of maximum (RH100) tree height. 

5.7. UAVSAR Tomographic SAR 

We generated SAR tomograms using the Capon, Fourier and Polari
zation Coherence Tomography techniques, as shown in Fig. 6. The 

transects is 1.7 km long and 20 m wide where topography varies by 
about 50 m and land cover ranges from bare soil or short vegetation to 
40 m tall trees. Generally, the radar tomograms and lidar waveforms 
agree with each other, especially over short vegetation. In these regions, 
mainly concentrated in the horizontal intervals 0–300 m and 550–800 m 
in Fig. 6, the lidar height metrics, along with the Capon and the PCT 
tomograms show similar patterns of vertical volume distribution across 
the transect, suggesting that these tomographic techniques are good 
candidates for estimating vegetation structure patterns. Over tall trees in 
the intervals 300–550 m and beyond 800 m, all SAR-based transect show 
modulations of vertical brightness depending on the vegetation struc
ture and underlying soil scattering that need to be taken into account. 

The tomogram resulting from the Fourier technique has a coarse 

Fig. 5. Comparison of LVIS Rh 100 standard height products with 3 UAVSAR Pol-InSAR height products CHM Kapok (Denbina et al, 2018), CHM Fusion (Denbina et 
al, 2018) and CHM Plant (Lavalle et al., 2018). 
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vertical resolution of about 8 m as highlighted of over bare earth or 
short-vegetated areas and is therefore less suitable for fine vertical res
olution mapping of tree canopies. As expected, the Fourier tomogram 
also has larger side lobes compared to the Capon and PCT tomograms, 
with the canopy reflectivity “leaking” above the expected tree height, 
giving the profile a blurrier appearance. 

The exact features of TomoSAR measurements are more visible when 
vertical profiles of the four techniques are extracted from an approxi
mately 20 m by 20 m square column or equivalent LVIS footprint as 
shown in Fig. 7. Here, the profiles have been normalized to their 
maximum value along the vertical direction, with all peaks equal to 1. 
Most notably, the profiles have multiple peaks, one strong peak repre
senting the ground and another weaker but wider peak about 20 m 
above the ground representing the bulk of the canopy returns. The 

Capon and Fourier tomograms are in good agreement with the corre
sponding LVIS profiles with profiles produced using the Capon algo
rithm most similar to the LVIS profile, although tomographic profiles 
change with the polarimetric channels (Fig. 7) revealing different scat
tering mechanisms within the canopy and in the ground-trunk scattering 
interaction. Note that, from Fig. 7, canopy height could be estimated 
from the UAVSAR TomoSAR products as the maximum vertical extent of 
the tomograms, although additional corrections would be required to 
account for L-band penetration, look angle, resolution and overall 
sensitivity (Shiroma and Lavalle, 2020). More specifically, the differ
ences in viewing geometry between the nadir looking lidar and the side 
looking TomoSAR profiles, and different interactions with canopy 
components may result in different parts of the canopy being repre
sented. Here our results show that lidar waveforms and L-band radar 

Fig. 6. Comparison of transects of LVIS (A) with TomoSAR Fourier (B), PCT (C) and Capon (D) data projected into radar geometry in the Lope National Park site. The 
color scale ranges from dark blue (low values) to yellow (high values) and indicates the normalized waveform return (panel A) and the normalized radar HV 
backscatter (panels B, C and D). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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tomograms have similar overall responses over forest canopies even 
though they are based on measurements at different wavelength and 
thus different scattering mechanisms. More detailed analyses of SAR 
tomograms collected as part of AfriSAR and their implications for forest 
vertical structure measurements can be found in Shiroma and Lavalle, 
(2020) and Pardini et al. (2019). 

The tomographic SAR profiles produced using the Capon technique 
are most similar to the LVIS profile, although large differences between 
the retrievals of each polarization are still present. The estimated Capon 
and Fourier ground location are in good agreement with LVIS, although 
the ground detected by UAVSAR here is generally higher than what was 
measured by LVIS. The estimated maximum canopy height from the 
UAVSAR TomoSAR product is comparable to canopy height from LVIS, 
although there is still some error due to L-band penetration, look angle, 
resolution and sensitivity. More specifically, there are significant geo
metric differences between lidar waveforms and the TomoSAR profiles 
leading to differences between measurements, such as LVIS being nadir 
looking whereas TomoSAR is side looking and then projected onto a 
vertical height axis. 

6. Discussion 

The 2016 NASA AfriSAR mission was the first simultaneous acqui
sition of polarimetric SAR, waveform lidar and field data in support of 
the upcoming NISAR, GEDI and Biomass missions and the first coordi
nated campaign for measurements of forest structure properties across 
multiple international space agencies. While similar campaigns flying 
LVIS and UAVSAR have been carried out, such as the 2009 and 2010 
DesdynI Cal/Val campaigns in Howland, Harvard and Penobscot 
Experimental Forests (Montesano et al., 2013), the amount of data 

collected and area covered was much lower than accomplished by 
AfriSAR. Furthermore, previous campaigns did not include multiple 
baseline or tomographic SAR acquisitions. Here, we collected over 7000 
km2 of Lidar and 30,000 km2 of PolSAR data, covering 30% of the 
Gabonese territory and all of the major terrestrial ecosystems of Central 
African Region. 

The AfriSAR data have been key in advancing forest structure 
retrieval algorithms, image processing software, spaceborne data 
simulation and biodiversity mapping methodologies amongst others. In 
Denbina et al. (2018b), the new Kapok software package to generate 
canopy height from repeat-pass UAVSAR data was developed using 
UAVSAR and LVIS airborne acquisitions over Pongara and Lope Na
tional Parks, while the ISCE-PLANT software was developed over Lope, 
Mondah and Rabi sites. Similarly, this dataset was instrumental in 
developing new machine learning approaches to fuse SAR and Lidar data 
(Denbina et al., 2018b, (Pourshamsi et al., 2018). Here the subsampled 
LVIS data was used to select the best baseline configuration and kz value, 
i.e. to determine whether a large or shorter baseline configuration be
tween two UAVSAR acquisitions should be used in multiple baseline 
PolInSAR processing. 

On the Lidar side, the AfriSAR data was one of the key datasets used 
for validation of the GEDI-simulator (Hancock et al., 2019a), pre-launch 
calibration and validation of GEDI Level 2 footprint product algorithms 
(Hofton and Blair, 2019; Tang and Armston, 2019), and is an ongoing 
key component of GEDI’s post-launch calibration and performance 
assessment strategy (Dubayah et al., 2020). It has also been used in 
combination with other SAR datasets, such as Sentinel-1, to generate 
country wide (Lang et al., 2019) and site-wide (Pourshamsi et al., 2018) 
canopy height and AGBD (Marshak et al., 2020) estimates. 

Areas of dense canopy cover as found in Gabon may sometimes 
present a challenge for lidar measurements, particularly over complex 
topography. LVIS was designed to be sensitive enough to detect a ground 
pulse in canopy cover of up to 99% and comparisons with small- 
footprint systems have shown this to be true (Hofton et al., 2002). 
However, certain environmental conditions such as steep slopes or low- 
lying canopy material such as shrubs can weaken already weak ground 
returns to the point where automated ground finding algorithms 
misidentify the ground. Here, LVIS was deployed over the most chal
lenging forest conditions - the combination of high canopy cover, wide 
ranges of topographic relief and different types of forest types and 
densities. Despite these conditions we showed a high degree of consis
tency in estimating canopy structure parameters from airborne wave
form lidar data. We also found excellent agreements with PAI profiles 
derived from terrestrial laser scanner (TLS) even at a high vertical res
olution (1 m) (Marselis et al., 2018). In sum, our results highlight the 
fidelity of LVIS-based vegetation structure products and strengthens the 
confidence in our data processing algorithms. 

The extensive UAVSAR collection over a wide range of forest types 
and biomass added important new sites for the NISAR mission calibra
tion and algorithm development, with the addition of 15 new 1-ha plots 
in lower biomass areas and extensive airborne Lidar data needed for 
AGBD calibration and validation. Indeed, while a breadth of field 
measurements was previously available in Central African forests, 90% 
of all plots were in high biomass forests (over 200 Mg/ha). Through the 
additional field data collected here we have expanded the range in 
AGBD measurements available for the tropics with plot AGBD densities 
ranging from 50 to 250 Mg/ha. In the case of UAVSAR, this was the first 
extensive PolInSAR and tomographic experiment over tropical forests. 
While TomoSAR and PolInSAR processing have been carried out before 
with UAVSAR (Hensley et al. 2015), the AfriSAR campaign allowed for 
extensive experiments on baseline and temporal decorrelation. Here, we 
were able to generate canopy height products using multiple method
ologies, using the PLAnT software (Lavalle et al., 2018b), the Kapok 
software and the Fusion approach (Denbina et al., 2018a) which helped 
determine the limitations and strengths of each methodology and the 
ideal configurations for L-band multibaseline PolInSAR acquisitions in 

Fig. 7. Comparison of TomoSAR Capon, Fourier, PCT data overlaid on a LVIS 
waveforms projected into radar geometry in Lope National Park for a 20 m by 
20 m area. 
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dense tropical forests. 
As an example, the fact that the ‘fusion’ approach performs better at 

estimating the RH100 or Top of Canopy height than the traditional 
PolInSAR approaches highlights the potential improvement when using 
SAR-Lidar fusion or other ancillary data that helps in selecting the 
appropriate interferometric baseline. The lower bias between the 
CHMFusion products and the more traditional PolInSAR methodology 
highlights the importance of selecting the appropriate baseline, espe
cially in areas like Gabon, where the range in heights is high (up to 65 +
m). 

The demonstration of the Tomographic SAR capabilities in tropical 
forests of Gabon served to develop and evaluate several algorithms that 
will be used to improve the design of future airborne experiments and 
spaceborne missions. Similar to Pardini et al. (2019), the Lidar profiles 
are more sensitive than TomoSAR reflectivity profiles to variations in 
the top of the canopy, however, TomoSAR long-wavelength profiles 
(from L- and P-band) are more sensitive to below-canopy variations in 
vertical structure. Thus, in addition to providing structural information 
complementary to Lidar, TomoSAR could effectively improve carbon 
stock estimates and sensitivity to forest disturbances. Importantly, 
TomoSAR may enable the generation of wall-to-wall maps of vertical 
distribution of material within forest canopies due to its all-weather 
capability. Finally, while the operational repeat-pass mode of the 
NISAR mission does not allow for TomoSAR or multi-baseline PolInSAR 
acquisitions, the multi-baseline acquisitions of the ESA BIOMASS 
mission will provide the necessary datasets. 

The released UAVSAR and LVIS datasets provide a large quantity of 
coincident (PolIn)SAR and lidar coverage, ideal for the development and 
testing of algorithms which fuse the results from these sensors. While 
SAR data has wide spatial coverage and high resolution, it can be 
affected by some limitations and error sources such as temporal decor
relation and saturation in high AGBD forests. Lidar can generally esti
mate forest canopy height and vertical variations in canopy structure 
with high accuracy but is limited in terms of spatial coverage. Fusion 
algorithms can therefore help to mitigate the weaknesses of each sensor, 
combining the data into fused products which leverage the strengths of 
both lidar and SAR. The released CHMFusion fused canopy height and 
AGBD products help demonstrate examples of this potential, and the 
released L1 UAVSAR and LVIS data can be used for development and 
testing of other future algorithms, which can be applied to spaceborne 
data from GEDI, NISAR, Biomass, and other future sensors. 

One of the main hurdles for the uptake and use of lidar and SAR by 
the broader ecological and scientific community has been the lack of 
gridded and higher level products available from waveform Lidar and 
SAR data. Data from sensors with existing and well documented ARD 
products have much higher use than sensors without, highlighting the 
importance of providing not only raw data but also preprocessed data
sets. As an example, the SRTM DEM, a processed and tiled product 
derived from C-band single pass interferometry, is one of NASA’s most 
downloaded datasets, although it is only based on a one-time acquisition 
in early 2000 (Farr et al., 2007). 

As part of the AfriSAR campaign, we have produced a suite of data 
products from UAVSAR and LVIS that have not been available to date, 
such as LVIS-derived canopy cover fraction, Plant Area Index, Gridded 
canopy height from LVIS and UAVSAR Pol-InSAR and Tomographic SAR 
products, allowing the development of new scientific applications. In 
Marselis et al. (2018), for example, the LVIS canopy cover profile data 
products were used to predict successional vegetation types in Lopé 
National Park, with potential implications for the use of GEDI data for 
informing conservation and biodiversity studies. The dataset was also 
key in the development of a methodology to map tree species diversity 
using canopy structure data (Marselis et al., 2019) using GEDI-like data. 
We anticipate and encourage a wide range of future applications, such as 
the development of new algorithms that make use of the SAR SLC stacks 
and associated geometric parameters (e.g. Soja et al., 2021). The unique 
combination of multi-modal remote sensing and field datasets produced 

by AfriSAR are also the basis of the Biomass Retrieval Inter-comparison 
eXperiment (BRIX-1 and BRIX-2), which will benchmark biomass 
retrieval algorithms using GEDI, NISAR and ESA BIOMASS data on the 
joint ESA-NASA Multi-mission Analysis and Algorithm Platform (MAAP; 
Albinet et al., 2019). 

AfriSAR was an experimental campaign for which several new SAR 
and Lidar algorithms were developed and implemented. Because of the 
limitations that arise during airborne experiments, such as time con
straints and changes in flying conditions, there were flight configura
tions and data acquisitions that resulted in data that did not capture the 
entire range of forest structure conditions. An example is the vertical 
wavenumber configuration of the SAR experiments limiting the acqui
sition of the full height range in all of the imaged sites, or the presence of 
clouds and poor conditions in some LVIS acquisitions leading to gaps in 
the data. In addition, while the NASA AfriSAR campaign was designed to 
acquire data over as many forest ecosystem types as possible there is still 
a lack of data in certain key areas and types of measurements, such as 
flooded freshwater forests, wetlands or temporal forest structure 
changes. We therefore recommend follow-on airborne experiments 
focused on different types of ecosystems, including wetlands, dry forests, 
temperate forests as well as repeat measurements that allow the esti
mation of forest structure changes. 

The AfriSAR campaign also provided the opportunity to advance 
applications of current airborne and future spaceborne missions in the 
field of tropical forest ecology, conservation and biodiversity. African 
rainforests in particular have suffered extensive clearing and fragmen
tation; it is estimated that West and Eastern Africa and Madagascar have 
lost about 90% of their original rainforest cover, whereas about 60% of 
the Central African forests still remain with much lower deforestation 
rates (Malhi et al., 2013). The Central African forest studied as part of 
AfriSAR is the second largest tropical forest after the Amazon, and better 
data, such as that expected from current and future missions, is crucial to 
better inform its management. 

7. Conclusions 

The airborne SAR, Lidar and field data acquired during the AfriSAR 
campaign constitutes a rich dataset for use not only in support of the 
NISAR, BIOMASS and GEDI missions, but also for improved under
standing and monitoring of Central Africa’s tropical forests, wetlands 
and savannas. We anticipate that the dataset and described data prod
ucts will be of use for studies of water and carbon cycling in the Congo 
basin, used as input and validation for forest growth models and to 
evaluate conservation and forest management practices. The high- 
resolution canopy height and vertical structure distribution data will 
be of direct use for studies of carbon cycling and biodiversity amongst 
many other applications. 

Spatially explicit estimates of the vertical dimension of forests are 
needed to characterize rapidly changing global forest cover and AGBD, 
monitor disturbance, and assess biodiversity (Bergen et al., 2009). The 
suite of current and upcoming active Remote Sensing missions, 
including GEDI, BIOMASS, and NISAR, is expected to provide the global 
scale estimates of canopy height, vertical forest structure and forest 
density at the resolutions (1 km or better) and accuracies (20% error for 
80% of the grid cells) needed to improve our understanding of the role of 
the land carbon sink in the global carbon cycle. 

Combining multiple active datasets is already of immense interest, 
and this is only expected to increase with the impressive amount of data 
promised from GEDI, NISAR and BIOMASS. The AfriSAR datasets have 
allowed us a snapshot of the capability of not only the individual mis
sions’ measurements, but also the exciting range of science and appli
cations possible through Lidar and SAR data fusion. 
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Réjou-Méchain, M., Tanguy, A., Piponiot, C., Chave, J., Hérault, B., 2017. Biomass: an R 
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