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A B S T R A C T

Creating healthy environments around schools is important to promote healthy childhood development and is a
critical component of public health. In this paper we present a tool to characterize exposure to multiple urban en-
vironment features within 400 m (5–10 min walking distance) of schools in Greater London. We modelled joint
exposure to air pollution (NO2 and PM2.5), access to public greenspace, food environment, and road safety for
2,929 schools, employing a Bayesian non-parametric approach based on the Dirichlet Process Mixture modelling.
We identified 12 latent clusters of schools with similar exposure profiles and observed some spatial clustering
patterns. Socioeconomic and ethnicity disparities were manifested with respect to exposure profiles. Specifically,
three clusters (containing 645 schools) showed the highest joint exposure to air pollution, poor food environ-
ment, and unsafe roads and were characterized with high deprivation. The neighbourhood of the most deprived
cluster of schools had a median of 2.5 ha greenspace, 29.0 µg/m3 of NO2, 19.3 µg/m3 of PM2.5, 20 fast food retail-
ers, and five child pedestrian crashes over a three-year period. The neighbourhood of the least deprived cluster of
schools had a median of 21.8 ha greenspace, 15.6 µg/m3 of NO2, 15.1 µg/m3 of PM2.5, 2 fast food retailers, and
one child pedestrian crash over a three-year period. To have a school-level understanding of exposure levels, we
then benchmarked schools based on the probability of exceeding the median exposure to various features of in-
terest. Our study accounts for multiple exposures, enabling us to highlight spatial distribution of exposure profile
clusters, and to identify predominant exposure to urban environment features for each cluster of schools. Our
findings can help relevant stakeholders, such as schools and public health authorities, to compare schools based
on their exposure levels, prioritize interventions, and design local policies that target the schools most in need.

1. Introduction

The urban environment can affect our health and wellbeing from
early life. Health inequalities can emerge in childhood due to unequal
access to healthy environments and continue to impact across the life
course (Villanueva et al., 2016). Children growing up in neighbour-
hoods with high concentrations of NO2 and PM2.5 showed a loss of 5%
in their lung capacity over a five-year period, increasing the risk of lung
diseases in adult life (Mudway et al., 2019). Low access to greenspace
during childhood increased the risk of developing a psychiatric disorder
up to 55% (Engemann et al., 2019). High exposure to greenspace dur-
ing childhood was linked to increased physical activity, decreased risk
of obesity, and improved cognitive and behavioural development
(Dadvand et al., 2019; Islam et al., 2020). Neighbourhoods’ characteris-
tics including junction density and vehicle flow density were influential
in increasing child pedestrian casualties (Green et al., 2011). Built-

environment features such as land use diversity and road configurations
(e.g., speed limit) showed to affect child pedestrian crashes (Rothman
et al., 2014; Yu, 2015). Many other studies that investigated the impact
of urban environment features also highlighted the role of easy access
to fast food on obesity (Burgoine et al., 2018; Han et al., 2020; Pineda et
al., 2021), exposure to air pollution on cognition (Sunyer et al., 2015),
and access to nature on mental and physical health (Maes et al., 2021;
van den Bosch et al., 2018).

Schools and their immediate neighbourhood are places where chil-
dren spend the most time outside their homes. Therefore, these settings
have a crucial role in providing equitable and healthy environments for
children, particularly in disadvantaged communities where children’s
residential neighbourhood is strongly affected by income deprivation
(Christian et al., 2015). However, the location of schools and their
neighbourhood characteristics generate differential levels of exposure
to hazardous (such as air pollution) and health-promoting (such as ac-
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cess to parks) factors that can create and widen health inequality.
Schools located in proximity of roads, river transport, underground sta-
tions, bus stops, and traffic lights are more likely to breach the WHO air
quality guideline for NO2, while those situated in neighbourhoods with
less traffic congestion and more green space are more likely to have a
better air quality (Shoari et al., 2021b). In terms of access to green-
space, research showed that schools located in the central areas of Lon-
don were less likely to have a public park in their immediate vicinity
(Shoari et al., 2021a). As indicated by (Jacobs et al., 2021a), access to
greenspace in schools’ neighbourhoods is associated with socioeco-
nomic status such that schools in affluent areas are more walkable and
have more access to greenspace compared to their peers. As a result,
children are more likely to adopt active modes of travel to and from
school (Jacobs et al., 2021b). With respect to food environment, studies
argued that a greater availability of unhealthy food retailers in school
neighbourhoods affects dietary intake of children (Shareck et al., 2018;
Smith et al., 2013) although more research is needed to understand
how that relates to Body Mass Index (BMI) (Williams et al., 2015). The
built-environment characteristics around school can also affect child
pedestrian crashes. For example, schools located in neighbourhoods
with more intersections, higher density of one-way street, and with
more commercial land use can increase the rate of crashes (Rothman et
al., 2017).

Variations in exposure to urban features is often related to socioeco-
nomic gradient. For example, evaluating the air quality of schools in
England showed that schools in areas with high annual mean concen-
tration of PM2.5 have significantly higher proportions of pupils from
economically disadvantaged and ethnic minority background (Osborne
et al., 2021). Exposure to fast food retailers in a neighbourhood was
found to be associated with household income (Burgoine et al., 2018).
More than 50% of the schools in United States with a majority of pupils
from low-income families and Hispanic background have a fast food re-
tailer nearby, while this figure reduces to 21% in schools with a major-
ity of White pupils (D’Angelo et al., 2016).

An increasingly popular solution to reduce health inequalities has
been place-based public health programmes that are tailored to priori-
ties and specific issues of communities. Since place-based programmes
aim to improve health by changing environments, they can lead to
strong and lasting effects on health (Kondo et al., 2015). An example of
these programmes targeting children is the “school superzone” initia-
tive, implemented in 13 local authorities of Greater London. This initia-
tive aims to create healthier environments in the 400 m radius around
schools by identifying what features makes the school unhealthy and to
implement corrective interventions, depending on local needs and cir-
cumstances. The focus of this initiative includes tackling issues such as
childhood obesity, reduced physical activity, air pollution, limited ac-
cess to greenspace, and unsafe routes to schools. More details on the
school superzone can be found in (Catt and Senior, 2020; Yvonne
Doyle, 2019). Most studies related to this initiative have been qualita-
tive based on audits of local authority officers.

An important component toward creating healthy environments
around schools is gathering comprehensive evidence on simultaneous
exposure to various urban environment features including air quality,
access to greenspace, food environment, road safety, among others. The
ability to recognize the subgroups of schools with similar exposure pat-
terns (i.e., exposure profiles) becomes valuable as it enables us to un-
derstand distinct exposures, their spatial distribution, and how those re-
late to the socioeconomic characteristics. Additionally, exposure pro-
files can be linked to health outcomes to assess their risk levels, which is
an essential step toward targeted implementation of interventions to re-
duce harmful exposures and increase beneficial ones.

Studies that have considered exposure to multiple urban environ-
mental factors are limited. For example, Doiron et al. (Doiron et al.,
2020) explored spatial patterns of exposure to multiple environmental
factors within three Canadian cities and identified health promoting

and health damaging areas of cities in terms of greenness, concentra-
tions of NO2, and walkability. Yet, no comprehensive study has uncov-
ered school-level exposure with respect to multiple urban environment
features and their spatial distribution across a large metropolitan area
like London. This research aims to fill this gap by i) identifying the la-
tent clusters of schools with similar exposure profiles within their
400 m buffer, ii) characterizing each cluster, and iii) comparing each
school exposure to the “median London schools” defined as median
value of exposures in London. We also explore associations between
clusters characteristics, ethnicity, and socioeconomic status.

2. Materials and methods

2.1. Study area

We were interested in studying school neighbourhood environment
and thereby considered a 400 m circular buffer around school bound-
ary in Greater London. The 400 m buffer was selected in accordance
with the “School Superzone” initiative and corresponds to 5–10 min of
walking. We identified the location and the extent of grounds of educa-
tional establishments in Greater London using Ordnance Survey Sites
Layer (version April 2020) available from https://
digimap.edina.ac.uk/. Ordnance Survey is a UK-based agency that pro-
vides detailed and up-to-date digital maps. We considered schools with
pupils aged from 5 to 16 years and excluded schools that solely func-
tioned as nursery, children centre, college, or university. We identified
32 duplicated school polygons that were removed from data. These
were school polygons that were identical but were referring to two sep-
arate institutions, for example, primary school and high school under
the same establishment names. Our final data included 2,929 schools in
Greater London in 2020.

2.2. Urban environment features surrounding schools

Based on previous literature, we hypothesize that built and environ-
mental features, including air quality, access to greenspace, food envi-
ronment, and road safety exert influence on health and well-being of
school-age children. For exposure to air pollutants, we estimated the
mean annual concentration of NO2 and PM2.5 within 400 m buffer
around each school. Air pollutant data was generated from the Commu-
nity Multiscale Air Quality (CMAQ-urban) model (Beevers et al., 2012;
Beevers et al., 2013), which uses emission data from the London Atmos-
pheric Emission Inventory (LAEI) () in combination with the Weather
Research and Forecasting meteorological model (Wang et al., 2008),
the Community Multiscale Air Quality model (Byun, 1999), and the At-
mospheric Dispersion Modelling System roads model (Cambridge
Environmental Research Counsultants CERC, 2014). The LAEI provides
emission data at 20x20 m resolution across London local authorities.
This inventory includes emissions from key industrial, commercial, do-
mestics, and transport sources such as large boiler plants, gas heating,
agricultural and natural sources, rail, ships, airports, etc. The CMAQ-
urban model output was processed to provides annual average concen-
trations of NO2 and PM2.5 concentrations in 2013 at a spatial resolution
of 20x20 m over the Greater London. After intersecting 400 m school
buffer polygons with concentration data grid, we calculated the aver-
age concentration in each school buffer zone. Fig. 1 in Supplementary
Material shows a map of annual average NO2 and PM2.5 in the study
area.

Various measures of greenspace have been used in previous studies.
These included the normalized difference vegetation index (NDVI), ur-
ban vegetation such as garden and parks, natural vegetation compo-
nents such forested and agricultural areas (Dadvand et al., 2015;
Engemann et al., 2019; Putra et al., 2020). In this research, we consider
greenspace sites that are relevant for school-age children. Data on
greenspace was provided by the Open Spaces product of Greenspace In-
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Fig. 1. Characteristics of identified clusters.

formation for Greater London (GiGL) who collates and manages data on
public greenspace in London (Greenspace Information for Greater
London, 2017). Information comes in the form of a polygon dataset. We
only considered polygons with land use typology labelled as “Parks and
gardens”, “Children and Teenagers” (e.g., play space, and playgrounds),
and “Natural and Semi-natural Urban Greenspace” (e.g., public and pri-
vate woodland, common). Our assessment of access to greenspace was
based on intersecting school 400 m buffers with GiGL data and calculat-
ing the total area (ha) of public greenspace within those buffers. Fig. 2

of supplementary material shows the location of greenspace sites con-
sidered in this study.

Geocoded information on food retailers was extracted from Ord-
nance Survey Point of Interest (version 2020) available from https://
digimap.edina.ac.uk/. To assess unhealthy food environment around
schools, we included food retailers that were labelled as “Fast Food and
Takeaway Outlets” and “Fish and Chip Shops”. This resulted in the in-
clusion of global large chains, local chains, as well as independent small
shops. However, since there is no consistent definition of fast food re-
tailers across previous studies, we might have not included other poten-

Fig. 2. a) Heatmap of urban environment features for each cluster categorized in low, moderate, and high exposure based on the tertiles of the exposures (each
tile contains the posterior median of the cluster value for the corresponding variable), and b) mean percent of schools located in the most deprived LSOAs for
each cluster. Note that since exposure to greenspace is beneficial, we reversed the order of categorization.
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tial sources of unhealthy food environments such as convenience stores.
For example, other sources of unhealthy food environment in other
studies included convenience and general stores and confectioners
(Cetateanu and Jones, 2014; Oishi et al., 2021). We intersected the
school environment polygons and fast food data and calculated the total
number of fast food retailers for each school buffer. Location of fast
food retailers is shown in Fig. 3 of Supplementary Material. Alterna-
tively, other measures of food environment such as the proportion of
fast food retailers to all food establishments in an area (Shareck et al.,
2018), density of fast food retailers over a certain area (Wall et al.,
2012), and the distance to the closet fast food retailer (Han et al., 2020)
could be considered.

We used the number of child pedestrian crashes within 400 m buffer
of schools, as a proxy measure to assess road safety. To this end, we
used crash incidents obtained from Department for Transport, which
collects information from STATS19 accident report form, containing in-
formation on the geocoded location of crashes, type of vehicle involved,
circumstances of personal injury, and the consequential casualties. To
account for the yearly fluctuation in crash incidents, data over a period
of three to six years is usually considered (Hauer, 1997). In this study
we used the total crash counts over a period of three years
(2017–2019). Note that this input only includes crashes on public roads
that are reported to the police, and therefore are registered using the
STATS19 form. We then restricted the data to entries identified with
pedestrians less than 15 years old. We excluded observations for which
age of casualty was not recorded (∼2% of total data). Spatial distribu-
tion of child pedestrian crashes is illustrated in Fig. 4 of Supplementary
Material.

2.3. Socioeconomic confounders

We adjusted the model for potential socioeconomic confounders at
Lower Super Output Area (LSOA) level. LSOAs are geographical units in
England used to report small area statistics. Each LSOA contains be-
tween 400 and 1,200 household or 1,000 and 3,000 population. The
confounders included were the percentage of population from Black,
Asian, and Minority Ethnic groups obtained from 2011 UK Census , and
the quantiles of index of multiple deprivation in 2019 provided by the
Ministry of Housing, Communities and Local Government (available
from https://data.london.gov.uk/dataset/indices-of-deprivation). In
the UK, the index of multiple deprivation is a relative measure of depri-
vation across small areas. It is a weighted combination of seven do-
mains: income, employment, health and disability, education, skills and
training, barriers to housing and services, living environment, and
crime. We assigned to each school the confounder data of the LOSA in
which the centre of the school polygon fell into.

2.4. Statistical analysis

We used a nonparametric Bayesian clustering method that relies on
Dirichlet process mixture models (DPMM) while adjusting for socioeco-
nomic confounders. The DPMM can be seen as an extension of mixture
model with infinite components, where the number of components (i.e.,
clusters) is assumed to follow a Dirichlet process and is inferred from
the data (Antoniak, 1974; Ferguson, 1973). As a dimension reduction
method, the DPMM can deal with collinearity of simultaneous exposure
to multiple factors (Liverani et al., 2016), which is the case in this
study. Some applications of the DPMM can be found in detail in (Coker

Fig. 3. Map of identified clusters of school neighbourhoods in Greater London.
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Fig. 4. Probability of exceeding the median exposure for each urban feature at each school. The probability of exceedance for each school is represented with a line.

et al., 2017; Coker et al., 2016; Heydari, 2018; Lavigne et al., 2020;
Papathomas et al., 2011).

In this study we are interested in clustering schools based on a set of
specific urban environment features (NO2, PM2.5, greenspace, number
of unhealthy food retailers, and child pedestrian crash) within a 400 m
school buffer. We standardized data for each feature by subtracting the
mean and dividing by the standard deviation. Let yi,1, yi,2, …, yi,5 be the
standardized measure of exposure to the five urban environment fea-
tures for the ith school buffer, where i = 1, 2, …, 2,929. Following the

model specification in (Gershman and Blei, 2012; Görür and Edward
Rasmussen, 2010), we can describe yi,q (q = 1,2,…,5) as a mixture of
normal distribution with K components.

(1)

where πk is the weight of the k-th component in the mixture of Nor-
mal with cluster-specific mean, µk,q, and precision (inverse variance) τq,

5
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Xi denotes the vector of confounders (i.e., percent black, Asian, and mi-
nority ethnicity, and IMD quantile) with their associated vector of coef-
ficients β. We introduce an allocation variable Ci that indicates to which
cluster the ith school exposure belongs to and this can take any value be-
tween 1 and K. We can rewrite the equation (1) as.

(2)
(3)
(4)
(5)

where the Dirichlet process is defined with two parameters: a base-
line distribution (a Normal density with mean mo,q, and precision, To,q)
and a concentration parameter α, which expresses the strength of the
belief in the baseline distribution. Since drawing inference with an infi-
nite number of components is computationally cumbersome, we con-
sidered a truncation to limit the number of clusters. In this paper, we
define K = 20, which we found to be sufficiently large for the purpose
of our application. For details regarding the DPMM and its implementa-
tion see (Ferguson, 1973; Gershman and Blei, 2012; Li et al., 2019;
Ohlssen et al., 2007; Wehrhahn et al., 2018). For a better interpretabil-
ity, we back-transformed the results to the original scale.

With respect to prior specification, we specified a non-informative
Normal (0, 100) prior distribution for mo,q and the effect of the con-
founders β, a Gamma (1,1) for α, and a Gamma (0.01, 0.01) for the pre-
cision parameters To,q and τq. Inference was performed through Markov
Chain Monte Carlo (MCMC) simulations in the NIMBLE Package in R
(de Valpine et al., 2017). The posterior inferences for model parameters
were obtained from two chains with 70,000 iterations and the first
30,000 iterations were discarded to ensure convergence. We considered
a thinning factor of 5 as a way to reduce auto-correlation. We checked
the convergence of the parameters using the Gelman-Rubin statistic
(Gelman and Rubin, 1992) and visually using trace plots.

We performed a sensitivity analysis to evaluate how robust the pos-
terior estimates are under different model specifications. We considered
four model scenarios: in scenario 1, we repeated our analysis using the
2019 LAEI pollution emission data. In scenario 2, we evaluated the ef-
fect of changing priors on the estimates of model parameters. Specifi-
cally, we considered a Gamma (1,0.01) for the precision parameters To,q
and τq and then a uniform prior distribution, uniform(0, 10), on their
standard deviations σo,q and σq (defined as σo,q=(To,q)-1/2 and
σq=(τq)-1/2). In scenario 3, we evaluated the effect of changing the prior
on the concentration parameter α by considering a uniform prior distri-
bution, uniform(0.3, 10). Finally, in scenario 4, we increased the maxi-
mum number of component K to 30.

2.5. Characterization of clusters of exposure profiles

A well-known issue of MCMC algorithms in Bayesian mixture mod-
els is label switching (Jasra et al., 2005; Stephens, 2000), which refers
to the possible change of the label of the cluster allocation parameter,
Ci, from iteration to iteration of sampler. As a consequence of this fea-
ture, the interpretation of clusters is not straightforward and requires
other methods to optimally partition the data. A possible solution to
this problem relies on the construction of a posterior similarity matrix,
followed by the application of a classical hierarchical clustering, dis-
tance-based partitioning algorithm (e.g., partition around the medoid
(PAM) (Kaufman and Rousseeuw, 2009)), or minimizing the posterior
expectation of some loss function (e.g., Binder’s method (Binder, 1978;
Fritsch and Ickstadt, 2009)). For our dataset of size N (N = 2,929 in
this study), the posterior similarity matrix S was an N × N matrix,
where each element represents the pairwise probabilities that two
schools belong to the same cluster. For details on how to construct the
posterior similarity matrix S, see (Medvedovic and Sivaganesan, 2002;

Molitor et al., 2010; Ohlssen et al., 2007). Adopting the procedure used
in (Gilholm et al., 2020; Pirani et al., 2015), we applied the PAM algo-
rithm on the similarity matrix S to identify the number of clusters that
provided the optimal partitioning of data. This was determined based
on the comparison of the average silhouette width for different number
of clusters ranging from 2 to 20. The average silhouette is computed us-
ing the average distance between observations of the same cluster. It
gives an indication of the quality of clustering, with a large silhouette
indicating a good clustering.

Once the optimal number of clusters was selected, we characterized
clusters and evaluated the uncertainty associated with each cluster un-
der the optimal partitioning of data. To characterize each cluster, we
computed summary statistics of observations assigned to each cluster.
To compare clusters in terms of exposures, we summarized the predom-
inant urban environment features for each cluster by computing the
median exposure of each feature and comparing it to the tertiles of ex-
posure for that feature in all schools. Doing so allowed us to categorize
exposures into “high”, “moderate”, and “low” exposure. This approach
has been used in (Coker et al., 2017) and (Liverani et al., 2016) as well.
Finally, we investigated the associations between exposure levels and
socioeconomic status.

To estimate the uncertainty associated with each cluster, we used
the posterior distribution of µk and computed the standard deviations of
µks that were allocated to the same cluster (identified by PAM) across
the entire MCMC sample. In other words, if the model is capable of con-
sistently partitioning the data from iteration to iteration, we expect that
cluster assignment of schools are similar throughout the iteration, lead-
ing to similar values of µks in each cluster. As a result, we obtain a pos-
terior distribution of µks with small standard deviation, meaning that
the number of clusters selected with the PAM algorithm ensures the op-
timal partitioning of observations. This approach has been adapted
from (Molitor et al., 2010).

2.6. Benchmarking of schools’ exposure profiles

For a more effective identification of high priority individual
schools, we benchmarked school exposure in relation to median expo-
sure of London’s schools. Specifically, we estimated the probability of
exceeding the median exposure to greenspace, NO2, PM2.5, unhealthy
food environment, and road safety for each school.

3. Results

Descriptive statistics of the urban environment features surrounding
schools are reported in Table 1.

3.1. Identification and characterization of clusters

We identified 12 clusters of school exposure profiles using the PAM
algorithm on the similarity matrix. In terms of evaluating the uncer-
tainty associated with each cluster, we employed the entire MCMC sam-
ple and calculated standard deviation of observations in a given cluster
over 8,000 iterations. Generally, the specified model resulted in clusters
with small standard deviation, giving confidence in the optimal parti-

Table 1
Descriptive statistics of urban environment features within 400 m buffer of
schools.
Risk factors (urban features) Mean (standard deviation) Median Min Max

Annual average NO2 (µg/m3) 20.3 (6.2) 19.6 8.3 53.5

Annual average PM2.5(µg/m3) 16.5 (1.8) 16.2 12.7 23.4

Public greenspace (ha) 4.7 (6.7) 2.0 0.0 62.6
Fast food retailer 6.6 (7.7) 4.0 0.0 82.0
Child pedestrian crash 2.4 (2.3) 2.0 0.0 21.0
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tioning of data. Posterior average and posterior interval estimate of the
identified clusters are depicted in Fig. 1. Fig. 1 also includes the number
of schools that were allocated to each cluster. Clusters 3 and 4 exhibited
considerably high access to public greenspace, with the mean area of
greenspace about two- to ten-fold higher than that of other clusters.
With respect to air pollution, the mean concentration of NO2 and PM2.5
in all clusters exceeded the WHO-recommended concentrations of
10 µg/m3 and 5 µg/m3, respectively. Furthermore, clusters 5, 11 and 12
contained schools with particularly high levels of air pollution, up to
53.5 µg.m−3 for NO2 and 23.4 µg.m−3 for PM2.5. The food environment
within 400 m buffer of schools was highly variable across clusters, with
clusters 4 and 12 being the two extreme situations with an average of
two and 26 fast food retailers, respectively. In terms of road safety,
schools in clusters 5, 8, and 9 showed a higher number of child pedes-
trian crashes around schools compared with other clusters. Schools in
these clusters had on average four crashes involving a pedestrian child
over a period of three years. Cluster 11 included a handful of outliers, in
which there were schools with exceptionally high values with respect to
a single factor such that they could not be allocated to any other cluster.
Partitioning the similarity matrix with higher numbers of clusters could
result in the separation of these outliers in favour of creating new but
depopulated clusters.

In terms of results of sensitivity analyses, the results were consis-
tent, and we observed a similar spatial clustering pattern. In addition,
we observed similar estimates of model parameters under the consid-
ered scenarios (Table 1 of Supplementary Material). To help with the
interpretation and comparability of cluster-specific exposure levels, the
heatmap shown in Fig. 2-a displays the level of exposure to each feature
in each cluster. If the median exposure to a factor (NO2, PM2.5, fast food
environment, and road safety) fell in the lower, middle, and upper ter-
tile, we labelled that factor as “low exposure”, “moderate exposure”,
and “high exposure”, respectively. Since access to green space is a bene-
ficial feature of an urban environment, the order of categorization crite-
ria has been inverted. Fig. 2-a indicates that clusters 4 and 6 contained
schools with low to moderate exposures with respect to all NO2, PM2.5,
unhealthy food environment, and road crashes and high exposure to
greenspace. In contrast, clusters 5 and 9 were categorized as high expo-
sure to harmful features except greenspace, meaning that schools in
these cluster are experiencing above the average levels of exposure.

When evaluating associations with socioeconomic status (Fig. 2-b),
we observed clear disparities of exposure. Cluster of schools in the most
deprived areas had generally moderate to high exposure to harmful fea-
tures. Specifically, road safety showed to be one of the predominant
risk factors in clusters 5 and 9 compared to other clusters, where the
percent of schools in the most deprived area was the highest. A similar
pattern was observed when we related the heatmap of clusters to the
median percent of population from Black, Asian, and Minor Ethnicity
groups (Fig. 5 in Supplementary material). Clusters 1, 4, 6, 7, and 10,
which generally had low to moderate exposure to air pollutant, un-
healthy food environment, and road crashes and moderate to high ex-
posure to greenspace, showed to have a relatively low percent of
schools in deprived areas as well as low percent of population from
Black, Asian, and Minority groups.

Fig. 3 represents spatial location of schools and their cluster alloca-
tion. Schools located in suburban areas of London (mainly clusters 4, 6,
and 7) were generally allocated to clusters with low and moderate ex-
posure to harmful and moderate to high exposure to beneficial fea-
tures. On the other extreme end, schools with the highest levels of air
pollution and unhealthy food environment were mostly located in cen-
tral parts of London (clusters 2, 3, 5, 11, and 12). We identified
hotspots for child pedestrian road crashes mainly in south and central
London, specifically in areas with high levels of deprivation (clusters 5,
8, and 9). Schools in clusters 1 and 10, characterized as moderate expo-
sure with respect to all factors, were mostly located in less deprived ar-

eas in South-West and on the edge between central and suburban Lon-
don.

3.2. Benchmarking schools’ neighbourhood exposures

Fig. 4 shows the probability of exceeding the median exposure to
each urban feature for each school in London. The median exposure
was calculated as two ha for greenspace, 19.6 µg/m3 for exposure to
NO2, 16.2 µg/m3 for PM2.5, four fast food retailers for food environ-
ment, and two crashes for road safety. We can clearly see contrasting
patterns of probabilities of exceedance in schools belonging to the clus-
ters with high exposure to NO2, PM2.5, unhealthy food environment,
and road crashes (e.g., cluster 5) versus the clusters that have low ex-
posure to these harmful features (e.g., cluster 4). Fig. 4 also allowed us
to distinguish the transitioning clusters (e.g., cluster 1 and 10), con-
taining schools with exposure profile that can overlap with other clus-
ters. In fact, the transitioning clusters contained schools with both high
and low probabilities of exceedance at the same time.

4. Discussion

We used a class of Bayesian nonparametrics method to identify dis-
tinct clusters of schools with similar exposure patterns to multiple fac-
tors, understand exposure levels for each cluster, and tease out the
dominant contributor exposure in each cluster. Our study includes a
baseline analysis of subgroups of schools with similar air pollution, ac-
cess to public greenspace, number of fast food retailers, and pedestrian
child crashes within 400 m (equivalent to 5–10 min of walking) of their
boundaries. We standardized the exposure data before performing the
analysis to ensure that all features had an equal influence over the re-
sults. This should not substantially change our cluster allocation pattern
since the focus was on understanding the clusters of schools with simi-
lar simultaneous exposures to multiple factors. However, it becomes of
importance in the case that exposure profiles are linked to a health out-
come.

The median concentration of air pollutants in all clusters were
above the WHO-recommended air quality guideline, and six clusters ex-
hibited considerably high exposure to air pollution, which included
33% (equivalent to 959) of London schools. These were located in cen-
tral boroughs or in the most deprived neighbourhoods of London. Gen-
erally, clusters of schools with elevated air pollution levels had also ele-
vated access to fast food retailers. Such co-occurrence might explain dy-
namics of urban activity in those schools’ neighbourhoods and might
indicate the contribution of fast food retailers’ emissions to air pollu-
tion at neighbourhood scale (Robinson et al., 2018; Shah et al., 2020;
Vert et al., 2016). Our estimated exposure to greenspace surrounding
schools was highly right-skewed, implying that most London schools
had comparable access to public greenspace, except 20% of schools
(equivalent to 558) that had more than 10 ha area of green space avail-
able in their neighbourhood. With respect to road safety around the
schools, 481 schools (∼16%) were characterized as high risk with on
average more than four child pedestrian crashes in 3 years.

Our study confirms patterns of exposure disparities among London
schools. Schools with high levels of air pollution, surrounded by many
fast food retailers, and high number of child pedestrian crashes were lo-
cated in the most deprived areas, all of which make it challenging for
the health gap to close. The only exception was one cluster (cluster 10)
in the affluent central London neighbourhood, where both air pollution
and the number of fast food retailers were high, but the level of depriva-
tion was low. Child pedestrian crashes were considerably higher around
schools located in areas with higher deprivation (e.g., clusters 2,8, and
11). One potential reason can be that children in deprived area tend to
rely more on walking or cycling to and from school, increasing their ex-
posure to risk of road traffic accidents (Sonkin et al., 2006). Addition-
ally, child pedestrian crashes were concentrated around schools located
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in areas with higher percentage of population from Black, Asian, and
minority ethnic groups. Further research to fully understand road and
environmental risk factors that derives such disparities is required.

Our study framework has been developed such that we can interpret
exposure profiles at various levels of granularity (e.g., school, subgroup
of schools, subset of LSOAs, Local Authorities). At the lowest level of
granularity, schools can use our results to compare themselves, recog-
nize their priorities and work toward them. For example, schools can
participate in School Street policies where motorized traffic is restricted
for 30–60 min at the school gates at the start and end of the school day.
Such policy reduces traffic flow in school neighbourhoods during drop-
off and pick-up hours address, addressing both air quality and traffic
safety around schools. Alternative school-based actions to improve air
quality and road safety include installing green barriers, dedicating
drop-off zones with restricted stay time to decrease idling times, educa-
tional campaigns for pupils and parents, providing active travel ameni-
ties (e.g., secure bike storage), and developing organised walking/bik-
ing/scooting buses supervised by adults along a pre-specified route
(Shoari et al., 2021b). Around 16% of London schools do not have any
public park and garden within 400 m of their neighbourhoods. If
schools do not have resources to compensate for the lack of access to
greenspace through school grounds, there is a need to create opportuni-
ties outside schools through the shared use of outdoor space with other
schools, and trips to nature. When an unhealthy food environment
around schools is a major concern, improving the quality of school
meals can encourage pupils to take school meals, which provide health-
ier food and drink options compared to fast food retailers (Hart, 2016).
Consulting with pupils on the food preferences, including healthy op-
tions in vending machines, combined with closed-gate policies at school
lunchtime, educational training programs on the importance of a bal-
anced diet can increase the likelihood of uptake of healthier food op-
tions.

At the highest level of granularity, our study can serve local authori-
ties and policymakers to assess the needs and amenities in a given area
and work with schools to develop school-based interventions and com-
plement those with other corrective measures. An example of such ap-
proach to improve air quality is the Ultra Low Emission Zone policy in
London, which bans highly polluting vehicle entering a restricted zone.
As a result of this policy, the concentration of NO2 in 96% of primary
schools in Central London has been reduced to below 40 µg/m3. Expan-
sion of this policy would broaden the benefits by improving air quality
around polluted schools that were identified by our study. In terms of
strategies to deal with unhealthy eating, with 84% of total fast food re-
tailers being located within 400 m of schools and a significant propor-
tion of pupils (especially secondary school pupils) purchasing lunch
from a nearby store, strategies to restrict easy access to unhealthy food
need to be integrated with those that improve pupils eating habits.
Some potential options include bans on the opening of new fast food re-
tailers in the proximity of schools, limits on the proximity of fast food
retailers to schools, incentive for retailers that provide healthy food op-
tion, and providing vouchers to encourage purchase of healthier food
and drink options especially in the most deprived areas. With respect to
road safety, deprivation showed to be a determinant factor. Implement-
ing targeted intervention in hotspots of crashes becomes of paramount
importance, especially when active travel for school journeys continues
to be a core strategy to increase physical activity, and reduce traffic
flow, congestion, and road risk. Some key actions include considering
traffic calming measures, school 20 mph zones, and engineering ade-
quate infrastructures that allow pupils have a safe walking or cycling
experience. To ensure adequate access to greenspace, there is need for a
collaborative response from local authorities, Department for Educa-
tion, and urban planners to safeguard school grounds, to invest in creat-
ing new greenspace in schools, and to improve the quality of existing
public parks and gardens around schools.

Our study is different from previous investigations on school expo-
sures in several ways. First, we considered simultaneous exposure to
multiple urban features surrounding schools, rather than including a
single feature that is typically applied. Therefore, our results allow an
integrative approach to decision-making, accounting for multiple expo-
sures and considering synergic or conflicting effects of an intervention.
For example, when a cluster of schools face simultaneously high expo-
sure to air pollution, poor food environment, and unsafe roads (such as
cluster 5 and 9), interventions to promote active travel to school that
aim to reduce air pollution and increase physical activity, need to be
combined with interventions to make the commute roads safer for chil-
dren. Extending this work and linking the exposure profile to a health
outcome would help us understand which combination of exposures is
more detrimental to health, which in turn is useful for prioritising poli-
cies that target schools most negatively affected. Second, the adopted
methodology allows for flexibility in modelling in the sense that it can
accommodate correlated data, multimodal distributions, as well as out-
liers without compromising the inference. Third, our approach relies on
a non-parametric approach where the number of parameters is not
fixed and can vary according to data complexity, therefore, the analyst
does not need to the number of clusters in advance.

A possible extension to the current model could be evaluating how
different clusters are associated with various health outcomes. How-
ever, we could not elucidate this question in our study because we
lacked school-level health data for all schools in London. Including
health outcomes in the analysis could shift how schools’ neighbour-
hoods cluster together and could allow us to make inferences on how
exposure profiles can imply health-promoting and health-damaging
clusters of schools. Due to data availability issues, we only considered
five urban environment features. Once data on other urban environ-
ment features becomes available, we can adapt our study framework to
incorporate new features such as noise pollution, crime, advertising for
unhealthy food (Herrera and Pasch, 2018) and tobacco (Handayani et
al., 2021), among others. Another limitation is that we used 2013 air
pollution data. Additionally, we did not have data on other confound-
ing variables for all London schools. We acknowledge that data repre-
senting urban features have been collected in different years, but the ur-
ban features used in this study were considered to be stable over a rela-
tively short time period.

Our results can be used to link multiple exposures in school neigh-
bourhoods to a physical and/or mental health outcome. Furthermore,
our study can be used as a basis to evaluate the impact of public health
policies and interventions on the change on exposure levels in school-
aged children. We provided a tool to help schools, public health offi-
cials, “school superzone” officials, local authorities, and policy-makers
to understand schools exposure to specific features of urban environ-
ment, identify the subgroups of schools with similar exposure patterns,
and to uncover which urban feature(s) is the dominant exposure in each
subgroup. For example, if the focus of a public health policy is on im-
proving access to greenspace for children, our results can be used to
identify school neighbourhoods with similar exposure patterns, with
priority to be given to those with less access to greenspace. This tool im-
proves our understanding of complex exposure patterns of schools,
which is essential to design effective public health measures targeted to
vulnerable schools, and to evaluate the effect of intervention or policies
that aim to make schools’ environments healthier.
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