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ABSTRACT: The bending modulus κ quantifies the elasticity of biological membranes in terms of the free energy cost of increasing
the membrane corrugation. Molecular dynamics (MD) simulations provide a powerful approach to quantify κ by analyzing the
thermal fluctuations of the lipid bilayer. However, existing methods require the identification and filtering of non-mesoscopic
fluctuation modes. State of the art methods rely on identifying a smooth surface to describe the membrane shape. These methods
introduce uncertainties in calculating κ since they rely on different criteria to select the relevant fluctuation modes. Here, we present
a method to compute κ using molecular simulations. Our approach circumvents the need to define a mesoscopic surface or an
orientation field for the lipid tails explicitly. The bending and tilt moduli can be extracted from the analysis of the density correlation
function (DCF). The method introduced here builds on the Bedeaux and Weeks (BW) theory for the DCF of fluctuating interfaces
and on the coupled undulatory (CU) mode introduced by us in previous work. We test the BW-DCF method by computing the
elastic properties of lipid membranes with different system sizes (from 500 to 6000 lipid molecules) and using coarse-grained (for
POPC and DPPC lipids) and fully atomistic models (for DPPC). Further, we quantify the impact of cholesterol on the bending
modulus of DPPC bilayers. We compare our results with bending moduli obtained with X-ray diffraction data and different
computer simulation methods.

1. INTRODUCTION

Lipids self-assemble spontaneously in water forming bilayers
with the lipid hydrophobic tails shielded from water by the
polar head groups. These soft-matter pseudo-2D structures
provide a robust physical barrier for the cell1,2 and host
membrane proteins that enable many biochemical processes.
The lipid membrane thickness varies with lipid composition,
and it is typically d ≈ 4−5 nm. At length scales much larger
than the membrane thickness the Helfrich Hamiltonian3 (HH)
defines the elastic (free) energy in terms of the geometrical
characteristics of a mathematical surface defining the
membrane shape. The HH can be used to analyze the
equilibrium shape of large lipid assemblies, such as lipid
vesicles, vesicle deformation under experimental conditions
(e.g., using aspiration micropipettes method4,5), and the
thermal fluctuations of free and supported bilayers.6−9

The surface tension, γo (times the area), and the bending
modulus κ (times the mean square curvature) are the key

terms defining the HH. Unlike the surface tension, the bending
modulus κ cannot be modified externally, but it depends on the
composition of the membrane and the temperature.10 The
values of γo and κ relate the equilibrium shape of the
membrane and its fluctuations to the composition of the lipids
and the experimental conditions (temperature and tensile
stress). Helfrich’s theory has been expanded to incorporate a
spontaneous curvature term to account for asymmetry in lipid
membranes11 that may appear in multicomponent mixtures,
such as in the cell membrane. In vitro symmetric

Received: January 28, 2022

Articlepubs.acs.org/JCTC

© XXXX The Authors. Published by
American Chemical Society

A
https://doi.org/10.1021/acs.jctc.2c00099

J. Chem. Theory Comput. XXXX, XXX, XXX−XXX

D
ow

nl
oa

de
d 

vi
a 

IM
PE

R
IA

L
 C

O
L

L
E

G
E

 L
O

N
D

O
N

 o
n 

A
pr

il 
21

, 2
02

2 
at

 0
7:

05
:4

8 
(U

T
C

).
Se

e 
ht

tp
s:

//p
ub

s.
ac

s.
or

g/
sh

ar
in

gg
ui

de
lin

es
 f

or
 o

pt
io

ns
 o

n 
ho

w
 to

 le
gi

tim
at

el
y 

sh
ar

e 
pu

bl
is

he
d 

ar
tic

le
s.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jose+Herna%CC%81ndez-Mun%CC%83oz"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Fernando+Bresme"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Pedro+Tarazona"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Enrique+Chaco%CC%81n"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.jctc.2c00099&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00099?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00099?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00099?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00099?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00099?fig=tgr1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00099?fig=tgr1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00099?fig=tgr1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00099?fig=tgr1&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acs.jctc.2c00099?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/JCTC?ref=pdf
https://pubs.acs.org/JCTC?ref=pdf
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://acsopenscience.org/open-access/licensing-options/


membranes12−14 have zero spontaneous curvature. Other
terms, such as the Gaussian characteristics and the edge of a
membrane can be added to the HH, but in general, such terms
are not needed to investigate membranes under typical
experimental conditions. Simulated (in silico) symmetric
membranes15−19 are often studied using the HH of a
fluctuating surface, z = ξ(x)⃗ = ∑q⃗ ξq⃗̂e

iq⃗x,⃗ with x ⃗ ≡ (x, y),
and wavevectors q⃗ ≡ (qx, qy) with values determined by the
lateral length of the simulation box, L, and the periodic
boundary conditions. The Fourier amplitudes ξq⃗̂ fluctuate
following Gaussian probability distributions with mean square
values ⟨|ξq⃗̂|

2⟩, and mean equal to zero.
The calculation of κ from molecular dynamics (MD)

simulations is far from trivial, and several methods have been
developed over the past decade. The most popular methods
rely on the spectral analysis of the thermal fluctuations of the
membrane shape and the orientation of the aliphatic tails.20−22

Erguder and Deserno23 have reviewed the challenges
associated with the computation of κ. First, a smooth
mathematical surface z = ξ(x)⃗ (which requires a lattice
representation describing the membrane shape) and a smooth
local field n⃗(x)⃗ (for the tilt of the lipid molecules) must be
defined using the atomic coordinates of the lipid molecules.
The approaches followed to construct that surface, the local tilt
field, and the fluctuation analysis that links ξ(x)⃗ and n⃗(x)⃗, are
not unique. As a matter of fact, there are several
methods10,23−25 to perform tilt-curvature spectral analysis
(TC-SA). The differences in the methodological approaches
introduce uncertainties regarding the choice of parameters and
the criteria required to construct the smooth surfaces.
Specifically, one problem is concerned with the choice of
upper bound, q, in the Fourier transform of the surface, ξq⃗̂, that
is defined over a regular grid, that is, disregarding the off-grid
molecular coordinates.23 A method was proposed26 to
circumvent these problems, using a direct Fourier transform
(DFT) of the lipid positions instead, hence avoiding the
computation of a continuous smooth surface. However, the
high-q lateral correlations can only be approximately
subtracted, and this shortcoming is reflected in the calculation
of the bending modulus.27 The direct least-squares fitting of
the lipid positions,28 as an alternative to the DFT description
has the same problems as the regular-grid Fourier transform
TC-SA, namely, the choice of an upper bound for q.
Moreover, the direct use of the HH to evaluate the bending

modulus entails some problems, concerned with the practical
limitations in the simulation system size and time. Helfrich’s
description applies to membrane fluctuations with wavelengths
much longer than the membrane thickness. Therefore, an
accurate evaluation of κ requires huge systems, and extremely
long MD trajectories, to sample the slow low-q modes. Hence,
the computation is impractical in many cases, particularly for
all-atoms force-fields. Therefore, the community has devised
alternative approaches to compute κ, which rely on extensions
of the theory to shorter length scales (higher q), by including
additional elastic modes that go beyond the overall undulation
of the membrane considered in the HH. Hence, fitting the
fluctuation spectrum over a wide q range requires new elastic
constants, with κ being one of the fitting parameters. These
approaches have been used to estimate κ using minimal
systems (a few hundred and fewer lipids) and short MD
simulations. In our opinion, the bending modulus obtained
through this approach depends on the criterion used to analyze

the membrane fluctuations, hence bringing uncertainty to the
computations.
As an alternative to the TC-SA methods, the membrane

shape has also been modeled using two smooth mesoscopic
surfaces z = ξ±(x)⃗ for the “upper” (+) and “lower” (−)
membrane layers without targetting the tail orientations. In this
approach, the undulatory (U) and peristaltic (P) eigenmodes
in the correlation matrix for the two surfaces29 provide a
natural choice to define long and short wavelength fluctuations,
describing either collective or individual motions of lipids,
respectively. The Helfrich Hamiltonian describes the fluctua-
tions of the U mode via the mean surface z = ξU(x)⃗ = (ξ+(x)⃗ +
ξ−(x)⃗)/2. However, a gradual decoupling of the fluctuations at
the two monolayers that form the membrane takes place at
short length-scales. Therefore, the mesoscopic fluctuations of
ξU(x)⃗ and the peristaltic fluctuations in the local membrane
thickness, ξ+(x)⃗−ξ−(x)⃗, mix with each other. The molecular
protrusions dominate the fluctuations of the lipid monolayers
(m) at high-q, when each monolayer fluctuates nearly
independently of the other. We proposed19 an approach to
describe that decoupling of the fluctuations of the two
monolayers, by introducing a coupled-undulatory (CU)
mode. Because the length of the lipid tails and their tilt28 are
correlated, the description of the membrane elasticity in terms
of U, P, and CU fluctuation modes and the curvature-tilt
analysis are linked. Therefore, we may expect that some elastic
constants beyond the Helfrich range, associated with the
molecular tilt in the TC-SA, may be evaluated from their
effects in the undulation of the membrane, accessible to the
analysis of the U, P, and CU modes that do not monitor the
orientation of the lipids.
Here, we introduce a Bedeaux−Weeks density correlation

function30 method (BW-DCF) to obtain the bending and tilt
moduli from MD simulations. Our approach does not require
the construction of a mesoscopic surface or a tail-orientation
field. Instead, it requires the number density profile ρ(z) of the
phosphorus atoms in the lipid heads, and their density
correlation function (DCF) G(z1, z2, q), Fourier transformed
in the (x2 − x1, y2 − y1) coordinates. As in the DFT method,26

the Fourier transform for the DCF is obtained directly from
the atomic positions of the lipids along the MD trajectories.
Hence, we reduce the computational cost associated with the
construction of surfaces and fields, and we circumvent the
methodological issues related to the mapping of the smooth
surface to perform Fourier transforms on a regular grid. Unlike
the DFT method, our approach does not require the
subtraction of lateral molecular correlations. This is achieved
by considering the interlayer component of the DCF, that is,
the correlation between the lipid densities in one and the other
monolayer. The method proposed here relies on the rigorous
theoretical analysis of Bedeaux and Weeks30 (BW), linking
ρ(z) and G(z1, z2, q) to the mean square Fourier amplitudes of
fluctuating interfaces. We introduce here a new element that
links the interlayer component of the DCF to the coupled-
undulatory (CU) mode.19 In addition, a deconstruction
method, recently proposed and successfully tested for
graphene sheets,31 is used to calculate the bending modulus
κ, and other parameters describing the internal fluctuation
modes of the membrane, such as the tilt-modulus κθ used in
the tilt-based approaches.
We apply the BW-DCF method to coarse-grained and all-

atom models of phosphatidylcholines (PC) lipids,32 which are
widely used for in vitro experiments of synthetic membranes.
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We also evaluate the impact of cholesterol on the bending
modulus of DPPC membranes. In section 2, we provide a short
review of the methodological background (see original refs 19
and 30 and the SI for additional details). Sections 3.1 and 3.2
present the foundations and tests supporting the method. The
reader interested only in the practical use of the method may skip
these sections and go directly to section 3.3. Section 4 presents
our results, compared with data obtained using previous
methods. We finish the paper with a critical discussion and
conclusions.

2. COMPUTATIONAL AND THEORETICAL
BACKGROUND
2.1. Molecular Dynamics (MD) Simulations. We tested

the BW-DCF approach using molecular dynamics trajectories
generated in our previous works.19,33 We simulated 1-
palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POCP) and
1,2-dipalmitoyl-sn-glycero-3-phosphocholine bilayers (DPPC)
bilayers in water, modeled using the MARTINI force field.34

The intrinsic sampling method (ISM) used in our earlier
studies19 relies on regular-grid Fourier transforms of the
smooth surfaces corresponding to each lipid monolayer. Here,
we perform a cross comparison of the results obtained with the
ISM and the BW-DCF methods using exactly the same MD
trajectories. This analysis provides a good reference to assess
the accuracy of both methods.
We have performed in this work two additional simulations:

(a) MARTINI molecular dynamics simulations of DPPC:Cho-
lesterol with a (50:50) composition, corresponding to the Lo
phase,35 and (b) full atomistic simulations of DPPC bilayers
using the CHARMM36 force field.36 The simulations with the
MARTINI model were performed at 320 K and those with
CHARMM36 at 323.15 K for consistency with previous
studies using the same atomistic force field.37 Furthermore, we
performed simulations at zero and nonzero surface tensions.
All the simulation details are discussed in the SI. A summary of
the system sizes and applied surface tensions for each system
are compiled in Table 1 of SI.
2.2. ISM and the Density Correlation Function. Both

the ISM and BW-DCF methods use the coordinates of the
phosphorus atoms in the lipid head groups, ri⃗ = (xi⃗, zi). We do
not track any order parameters associated with the lipid
aliphatic chains, such as their orientation or conformation. The
ISM quantifies mesoscopic fluctuations of the two lipid
monolayers by Fourier transforming the smooth surfaces19

∑ξ ξ= ⃗ = ̂
⃗

±

| |<
⃗

± ⃗· ⃗z x e( )
q q

q
iq x

u (1)

which define the instantaneous mesoscopic shapes of the two
(±) lipid layers, in terms of their Fourier components ξq⃗̂

+ and
ξq⃗̂
−. Details of the ISM method are given in previous works19

and the SI of this paper.
The BW-DCF method does not require the intrinsic

sampling, and it is therefore more computationally efficient.
Instead, the BW-DCF approach requires the calculation of the
phosphorus density profiles ρ(z) in the direction normal to the
bilayer plane, and the Fourier transform of the density
correlation function (DCF), G(z1, z2, q), on the bilayer

plane, XY, where = +q q qx y
2 2 defines the wavevector. The

density profiles and DCFs are obtained as the usual statistical
averages along the MD trajectory,

∑ρ δ= −
=

z
A

z z( )
1

( )
i

N

i
o 1 (2)

where Ao is the projected area of the bilayer (XY plane) and

∑ δ δ

ρ δ δ ρ ρ

= − −

+ − −

≠ =

⃗· ⃗

⃗

G z z q
A

z z z z e

z z z z z

( , , )
1

( ) ( )

( ) ( ) ( ) ( )

i j

N

i j
iq x

q

1 2
o 1

1 2

1 1 2 0, 1 2

ij

(3)

where xi⃗j = xj⃗ − xi⃗. The last term in eq 3, with Kronecker delta
δ0,q, contributes only for q = 0. This term is not included in our
analysis, since the BW-DCF method requires q > 0. The
second term in eq 3 is independent of q, and represents the
self-correlation term (i = j) excluded from the sum in the first
term of eq 3.
The phosphorus density profiles (see Figure 1 in SI) consist

of two symmetric peaks, which can be described by Gaussian
functions, whose width increases with system size and
decreases with the applied interfacial tension γo. For
membranes consisting of N ≲ 4000 lipid molecules the two
(±) peaks are clearly separated, even in the tensionless state.
Hence, the density profiles corresponding to each lipid layer
can be resolved easily. We will denote the total density profile
as ρ(z) = ρ+(z) + ρ−(z). For very large systems (N ≈ 8000
lipids) in the tensionless state, the density profiles of the two
monolayers start overlapping with each other (see Figures 5
and 6 in SI). Even in this case, it is easy to evaluate the density
contributions from each lipid layer, as the lipids do not
undergo flip-flop motion during the typical times employed in
our simulations, 0.1−1 μs. For the DCF, we considered
intralayer, G++(z1, z2, q) = G−−(z1, z2, q), and interlayer, G

+−(z1,
z2, q) = G−+(z2, z1, q), contributions.
The structure factor is a function of the 3D wavevector (|q⃗|,

qz), defined by the Fourier transform of the DCF G(z1, z2, q)
with respect to z12 = z2 − z1 and normalized by the number of
lipid molecules

∫ ∫

∑ δ δ

=

= + ⃗ − ⃗ ⃗ − ⃗
≠ =

⃗· ⃗ +

S q q
A
N

dz dz G z z q e

N
r r r r e

( ; ) ( , , )

1
1

( ) ( )

z
iq z

i j

N

i j
i q x q z

o
1 2 1 2

1
1 2

( )

z

ij z ij

12

(4)

We note that the BW-DCF approach uses G(z1, z2, q), and
there is no need to evaluate the structure factor. Nevertheless,
we use it here to test the validity of the main hypothesis of the
method. Moreover, the structure factor provides a crucial link
with X-ray and neutron diffraction experiments,2,9,38,39 when
one accounts for the fact that the experimental data include the
form factor with the scattering section of the full molecules,
and contributions from the water bath. Unlike the experiments,
BM-DCF includes only the phosphorus atoms located in the
lipid polar heads and therefore the interlayer and intralayer
contributions to the structure factor can be easily separated by
calculating the sum in eq 3 over lipids in the same (intra) or
different (inter) layers.
In the results presented below, we calculate the averages, eqs

2−4 using 5000 equilibrated and evenly spaced configurations
along the MD trajectory.

2.3. Bedeaux−Weeks Theory. Bedeaux and Weeks30

(BW) analyzed the contribution of the interfacial fluctuations

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.2c00099
J. Chem. Theory Comput. XXXX, XXX, XXX−XXX

C

https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.2c00099/suppl_file/ct2c00099_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.2c00099/suppl_file/ct2c00099_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.2c00099/suppl_file/ct2c00099_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.2c00099/suppl_file/ct2c00099_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.2c00099/suppl_file/ct2c00099_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.2c00099/suppl_file/ct2c00099_si_001.pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.2c00099?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


to the density correlation function G(z1, z2, q), expressing
height fluctuations as density correlations. They used the
Capillary Wave Theory (CWT) to describe the surface
fluctuations, in terms of a q-dependent surface tension, γ(q).
The main assumption in the CWT is that the Gaussian
fluctuations acting on a surface z = ξ(x)⃗, shift the local position
of an intrinsic density profile ρI(z). These surface fluctuations
are characterized by the mean square values of the Fourier
components ⟨|ξq⃗̂|

2⟩ and their dependence with the wavevector
modulus q is often described through,

γ
ξ

≡
⟨| ̂ | ⟩⃗

q
kT

q A
( )

q o
2 2

(5)

interpreted as the free energy cost per unit of increased area,
required to produce a corrugation with wavevector q. γ(q) can
be obtained from the simulated ⟨|ξq⃗̂|

2⟩, using the ISM19 or
alternative methods.
In the range of q-vectors where the Helfrich surface

Hamiltonian γ(q) = γo + κq2, applies.40 We note that using
γ(q) as a generic function, rather than using just γo and κ, is
important for the description of lipid membranes, since for q ≳
0.3 nm−1, beyond the typical HH range, the complex elastic
behavior of membranes requires additional elastic constants.
As presented in Figure 1, different (x) definitions of the
mesoscopic surface z = ξx(x)⃗ used in (5) result in quite
different functions γx(q).

Bedeaux and Weeks used a generic function, γ(q), to
describe through eq 5 the fluctuations of the surface, z = ξ(x)⃗
and obtain the CW contribution to the density correlation
given by the series:

∑ ρ ρ
=

̂

!=

∞

G z z q
q

n
z

z
z

z
( , , )

( ) d ( )
d

d ( )
dn

n
n

n

n

nBW 1 2
1

1

1

2

2 (6)

where n denotes the order of the derivatives of ρ(z) and

∫̂ ≡ ⃗ ⃗ ⃗· ⃗q x x e( ) d ( )n
n iq x2

(7)

is the Fourier transform of the n-power height−height
c o r r e l a t i o n f un c t i o n ξ ξ= ⟨ ⃗ ⃗ ⟩x x x( ) ( ) ( )12 1 2 . S i n c e

ξ γ̂ ≡ ̂ = ⟨| ̂ | ⟩ ≡⃗q q A kT q q( ) ( ) /( ( ) )q1
2

o
2 , all the coefficients

̂ q( )n appearing in eq 6 can be calculated from γ(q).
The BW theory was originally developed for liquid surfaces,

but it may be applied to any mesoscopic surface, ξx(x)⃗, and its
corresponding γx(q). We use here a truncated BW series by
setting an upper limit n ≤ nBW to the sum of eq 6. For nBW = 1,
we recover the Wertheim’s prediction of the density
correlation function41

ρ ρ
βγ

=
′ ′

G z z q
z z

q q
( , , )

( ) ( )
( )W 1 2
1 2

2
(8)

where ρ′(z) is the derivative of the density profile. Eq 8
predicts a ∼q−2 divergence for G(z1, z2, q) at low q. This has
been shown to be a reasonable approximation for the typical
sizes employed in the MD simulations of liquid surfaces.42

However, for the lipid membranes studied here and also for
graphene sheets,31 the contributions from higher-order terms
are very important. Hence, to ensure convergence, we included
up to nBW = 20 terms in the calculations of the BW series. The
n ≥ 2 terms are regular at q = 0 but they depend strongly on
system size, while eq 8 is independent of the system size.
The BW series in eq 6 gives the contribution of the

mesoscopic surface fluctuations to the DCF. The MD result for
G(z1, z2, q), in eq 3 includes also contributions arising from
fluctuations at molecular length-scales.42 We will refer to these
contributions as the correlation background, Gb = G − GBW,
which includes contributions arising from peristaltic fluctua-
tions of the membrane thickness and the 2D compressibility
modes of the lipid bilayer.
The BW expression for the structure factor S(q, qz) follows

from the Fourier transform of GBW(z1, z2, q)

∫

∑=
|Φ |

!
̂

=
|Φ |

⃗ −

=

∞

⃗· ⃗ | ⃗ |

S q q
q

q

q

n
q

q

q
xe e

( , )
( )

( )

( )
d ( 1)

z
z

z n

z
n

n

z

z

iq x q x

BW

2

2
1

2

2

2
2 ( )z

2

(9)

where all the derivatives of the density profile are included in
the surface structure factor

∫ ρΦ =q z
z

z
e( ) d

d ( )
dz

iq zz

(10)

The BW series can be generalized to include other fluctuation
modes, like the coupled undulatory CU mode.19 In this case,
S(q, qz) can be written in terms of intralayer and interlayer
contributions, with Φ+(qz)Φ+(−qz)+Φ−(qz)Φ−(−qz) for intra-
layer and Φ+(qz)Φ−(−qz)+Φ−(qz)Φ+(−qz) for interlayer
contributions. The intralayer term is a smooth function of qz,
while the interlayer term is oscillatory, with a period 2π/d,
where d is the distance between the head groups in the two
lipid layers.

3. BEDEAUX−WEEKS DENSITY CORRELATION
FUNCTION (BW-DCF) METHOD FOR THE ELASTIC
MODULI OF LIPID BILAYERS

Sections 3.1 and 3.2 below, provide theoretical support and
numerical validation of the main hypothesis used to develop
the BW-DCF method. We discuss the ISM results for the

Figure 1. ISM-MD results for the surface tensions (in β−1 = kT units)
as a function of the wavevector q, for a POPC membrane under
tensile stress γo = 15.2 mN/m and N = 2000. The circles show the
simulation results: (red) coupled undulatory mode γCU(q); (blue)
undulatory γU(q), and (black) monolayer γm(q). The red line is a
guide to the eye.
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different fluctuations modes of the lipid bilayer19 and compare
the MD and BW results for the DCF and the structure factor.
The reader interested in the practical use of the BW-DCF
method may skip these sections and move directly to section
3.3, which contains eqs 13−16, describing the method to
obtain γCU(q) from the MD data (eq 3 for the DCF). The
least-squares fit of these data to eq 19 gives access to the
bending and tilt moduli, described in section 4.1.
3.1. Undulatory, Monolayer, and Coupled Undula-

tory Modes. In preparation for our discussion of the density
correlation function, it is important to explore the dependence
of γ(q) with the definition of the mesoscopic surface, z = ξx(x)⃗.
Figure 1 shows the ISM results, eq 5, for γx(q) using the
undulatory mode (x = U) and the monolayer (x = m), as a
function of q. Here we consider the q-values accessible in the
simulation of a bilayer consisting of N = 2000 POPC lipids.
The q = 0 term is not included in eq 5, but the data for γU(q)
and γm(q) converge to the same q → 0 limit (see Figure 1).
The quadratic fit γx(q) ≈ γo + κq2 to γU(q) and γm(q)

obtained from the ISM-MD results might predict inaccurate
bending moduli, κ, since γU(q) and γm(q) include contribu-
tions from protrusions. The coupled-undulatory mode (x =
CU) was introduced19 to tackle this issue. The mean square
average ⟨|ξq⃗̂

x|2⟩ in eq 5 was replaced by the interlayer correlation
⟨ξq⃗̂

+ξ−̂q⃗
− ⟩. The corresponding γCU(q) does not feature the

downward curvature observed in γm(q) and γU(q) (see Figure
1). The quadratic fitting to γCU(q) provides a better estimate of
κ, using the ISM-MD data at larger q. The difference between
these functions at high q (wavelengths shorter than ∼20 nm)
provide information on the peristaltic fluctuations of local
membrane thickness.19 The CU description describes the
decoupling of the two lipid monolayers with the rapid increase
of γCU(q), providing a natural upper limit for the wavevector
range at which the membrane thermal fluctuations conform to
those of a single surface.
3.2. Density Correlation Function and Its Mesoscopic

Bedeaux−Weeks Representation. In the following, we
examine the general dependence of the density correlation
function and assess the accuracy of the BW series to describe
the simulation results both from the ISM results for γU(q) and
for γCU(q). The top panels in Figure 2 represent the Fourier
transform of the simulated DCF, G(z1, z2, q), for POPC
bilayers under tension γ0 = 15.2 mN/m. We have represented
results for three different wavevectors q. Note that the self-
correlation term, ρ(z1)δ(z1 − z2) in eq 3 is not included in the
plots. The left column in Figure 2 shows the results for the
lowest nonzero wavevector (q = 0.237 nm−1) compatible with
our MD simulation box size. This low q is in the pure
undulatory regime, where γU(q) ≈ γCU(q) ≈ γm(q) (see Figure
1). The right column in Figure 2 shows the results for a larger
wavevector, q = 1.18 nm−1, corresponding to a weak coupling
between the fluctuations of both lipid monolayers. In this
regime, γx(q) depends (see Figure 1) on the choice of x = U,
CU or m. The middle column corresponds to q = 0.71 nm−1,
an intermediate regime, with significant (but not full) coupling
between the two lipid monolayers. We chose to present the
DCF for a membrane under tension to isolate and better
visualize the four quadrants describing the intralayer and
interlayer contributions to G, that is, the correlations between
lipids in the same or in different monolayers. For larger or
tensionless membranes (see Figure 6 in SI), the four quadrants
in G(z1, z2, q) would spread over a larger domain in the (z1, z2)
regions and they could overlap with each other.

The theoretical mesoscopic predictions GBW(z1, z2, q)
(middle row in Figure 2) were calculated using eq 6, with
the derivatives of the mean density profile (at any order n)
obtained from Gaussian fits to the density profiles of each
individual lipid layer. We used the ISM function γU(q) of the U
mode to represent the fluctuations of the whole bilayer
membrane. The numerical convergence of the BW series
requires at least nBW = 12 terms, and even up to nBW = 20
terms, for larger systems or lower surface tension. The perfect
symmetry of the four quadrants in GBW emerges from the BW
assumption that the intrinsic density profile of the whole
bilayer follows strictly the undulations of the z = ξU(x)⃗ surface.
Therefore, GBW does not distinguish between intra and
interlayer correlations. The left column of Figure 2 shows
that this assumption is fairly accurate for the lowest q, for
which the theoretical GBW and the MD result for G are in very
good agreement. In this regime, the main contribution to GBW
comes from the first (Wertheim’s) term in the BW series, eq 6.
That term results in the vertical/horizontal boundaries
between positive/negative values of G (within each quadrant),
since the product ρ′(z1)ρ′(z2) changes sign at z1,2 = ±d/2.
Increasing q (middle and right columns in Figure 2), the shape
of the density−density correlation maps become skewed
because the n ≥ 2 terms of BW series are more important
and GBW(z1, z2, q) is not proportional to ρ′(z1)ρ′(z2). Within
each quadrant, we find a sharp dependence on z1 − z2, with
positive correlations for z1 − z2 ≈ 0, and negative correlations

Figure 2.Maps for G(z1, z2, q), the Fourier transform on the XY plane
of the density correlation function (DCF) in the POPC lipid
membrane under tension γ0 = 15.2 mN/m and N = 2000, for three
wavector values: Left column q = 0.237 nm−1, middle column q = 0.71
nm−1, and right column q = 1.18 nm−1. Top row: MD results. Middle
row: Bedeaux−Weeks (BW) theoretical prediction using the
undulatory mode (U) γU(q), that is, the fluctuations of the mean
surface between the two lipid monolayers. Bottom row: Difference G
− GBW that represents the correlation background, that is, molecular
fluctuations missed by the mesoscopic BW description. Notice that
the color scale (top) is kept fixed along each column, and the values of
the correlation background are very similar for all the cases, but we
keep the same color-scale along each column to better visualize the
relative influence of that background with respect to the BW term.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.2c00099
J. Chem. Theory Comput. XXXX, XXX, XXX−XXX

E

https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.2c00099/suppl_file/ct2c00099_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00099?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00099?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00099?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00099?fig=fig2&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.2c00099?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


for larger |z1 − z2|. Along the other diagonal (i.e., changing (z1
+ z2)/2), we observe a smoother dependence of G(z1, z2, q),
without changes of sign.
We define the correlation background (b) as the difference Gb

= G − GBW between the MD results and the prediction of the
BW series (see bottom row of Figure 2). This background
includes all the density fluctuations that cannot be described as
local shifts of an intrinsic density profile following the
undulations of z = ξU(x)⃗, being the fluctuations due to the
(2D-like) compressibility on each of two monolayers the main
contributions to this background. The shape of Gb (as a
function of z2 and z2) is very different in the intralayer and the
interlayer quadrants. This indicates that the MD result for G
does not have the perfect symmetry observed in GBW. The
dependence of Gb(z1, z2, q) with the transverse wavevector is
very weak, the values for the three wavevectors q shown in
Figure 2 are quite similar. Since the color scale in that figure is
adjusted by columns, the color fading of Gb at the lowest q (left
column) indicates that Gb becomes small in relation to the
much larger GBW(z1, z2, q) contribution.
To quantify the differences between G and GBW, we

calculated the structure factors eq 4 and the corresponding
BW prediction eq 9. Figure 3 presents S(q, qz) − 1 (black

lines) and the contributions from the intralayer (S+2 + S−−, red
lines) and interlayer (S+− + S−+, blue lines) quadrants in G(z1,
z2, q), as functions of qz at fixed q = 1.18 nm−1. The MD results
(top) and the BW series (bottom) feature very different
behavior. At qz = 0 the BW series vanishes, as expected since
Φ(0) = 0 for bilayer membranes, leaving only the trivial self-
correlation value SBW(q, 0) = 1. In contrast, the MD result for
G shows a negative S(q, qz) − 1 < 0, which gives the
(background) density correlations within each lipid layer. The

correlations from lipids in different layers show the same
qualitative behavior in the MD and BW results, with
oscillations ∼cos(qzd) reflecting the mean distance between
the two lipid layers, and the broad envelop that vanishes both
at low and high qz; but the amplitude of the oscillations is
larger in SBW than in the MD result for S. The symmetry of the
quadrants in GBW indicates that the envelop of the oscillations
in SBW

+− + SBW
−+ is equal to the smooth shape of SBW

++ + SBW
−− − 1.

This does not apply to the MD results. At the transverse
wavevector q = 1.18 nm−1 (the highest in Figure 2), SBW(q, qz)
is quite different from the MD result S(q, qz), both at low and
at intermediate qz values. Lower values of q (as in the left and
central columns in Figure 2) give much larger SBW, while the
background contribution remains similar for all q, and the BW
prediction becomes much more accurate to represent the full
S(q, qz) (see SI).
To calculate the bending modulus κ from the DCF we have

to interpret G(z1, z2, q) or S(q, qz) beyond their divergent
contributions at low q, which are controlled just by the limit
γ(0) = γo;

31 but at the same time, the contributions from the
correlation background have to be small, that is, G ≈ GBW,
because only in that case we may expect that the function γ(q)
= γo + κq2 + ... (contained in the mesoscopic BW prediction)
may be extracted from the full DCF given by the MD
simulation. The results in Figure 3 show that we cannot fulfill
these conditions by using the U mode as a description of the
bilayer mesoscopic undulations. The background Gb is already
visible for the smallest q and its relative weight in G grows fast
with q. To extract κ from the simulated DCFs, we need to
improve the mesoscopic description, that is, reduce the
correlation background to ensure GBW ≈ G over a wider q
range. This problem is similar to what had been observed in
the tilt-based DFT method.26

The key to achieve a good agreement between the MD
result eq 3 for the DCF and its mesoscopic description eq 6 is
to focus on the interlayer component using the BW series and
the CU mode. Using the ISM γCU(q) and the density profiles
of the two lipid layers, we get

∑ ρ ρ
≈
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and, from the Fourier transform, the corresponding interlayer
structure factor SBW

+− (q, qz). Figure 4 compares the interlayer
structure factors obtained from this CU-BW approach (dashed
line), the U-BW (dotted line), and the MD result (full line).
Clearly, the CU-BW predictions are much closer to the MD
results, and for wavevectors q ≳ 1 nm−1. Similar agreement
between the CU-BW and MD results is obtained in tensionless
POPC and DPPC bilayers (see SI).
In summary, Figure 4 shows that interlayer density

correlations, with the CU version of the BW series, eq 11,
provides the most accurate approach to model the simulated
DFCs and the surface fluctuations described by γCU(q). In our
previous work,19 we concluded that the CU mode was the best
approach to represent the HH regime for the fluctuations of
the lipid bilayer membrane as a single surface. Here, we show
that the x = CU mode γx(q) is the best choice to link the
surface fluctuations with the DCF.

3.3. BW-Deconstruction of the MD Interlayer DCF to
Get γCU(q). To calculate the DCF using the BW series (eqs
6,11)) one needs the density profiles ρ(z) = ρ+(z) + ρ−(z) and
the mean square surface fluctuations, γx(q). Assuming that this

Figure 3. Interlayer structure factor S(q, qz) of the POPC under
tensile stress γo = 15.2 mN/m and N = 2000 at q = 1.18 nm−1. Top
panel: Direct MD results. Bottom panel: Bedeaux−Weeks (BW)
theoretical prediction (see eq 9), using the undulatory mode (U)
γU(q). Black line: Total structure factor. Blue line: Interlayer
component. Red line: Intralayer component.
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mesoscopic prediction describes accurately the simulation
result, it should be possible to obtain a function γ(q) that
fulfills GBW ≈ G. This would circumvent the need to compute
the surfaces z = ξ±(x)⃗ with the ISM, for each molecular
configuration. We have shown that for lipid membranes, this
task should be possible by considering the interlayer
component of the DCF, that is, the correlations between
lipid molecules in opposite sides of the bilayer membrane,
which gives γCU(q).
A difficulty in the implementation of the approach proposed

here is that one needs to define a method to deconstruct the full
BW series eqs 6 and 11) and obtain γCU(q) from the DCF. For
liquid surfaces, this problem has often be addressed using the n
= 1 (Wertheim’s) term in the BW series. This approach gives a
DCF contribution eq 8 that can be easily inverted using the
first derivative of the density profile. However, to describe the
DCF in a lipid bilayer one must include many other terms in
the BW series to ensure convergence. In that case the function
γCU(q) will appear in a convoluted way in GBW

+− (z1, z2, q),
through the functions Sn

CU(q). A deconstruction method to
extract the full function γ(q) from the simulation result for
G(z1, z2, q) has been successfully implemented for graphene
sheets.31 We adapt this method here to study lipid membranes.
We assume that the MD interlayer DCF G+−(z1, z2, q) has

the functional form given by eq 11 and project it on the n−
order derivatives of ρ+(z1) and ρ−(z2) for any n up to a value
nBW. These derivatives are calculated using a Gaussian fit

ρ ρ πα= α± − ∓z e( ) / 2z d
o

( /2) /22
, with the 2D density ρo, the

mean thickness of the membrane d, and the mean square width
α obtained from the simulated ρ(z) (see eq 2). Notice that any
global displacement of the bilayer is eliminated by setting the
center of mass of all the phosphorus atoms as the origin z = 0
for each molecular configuration.
With the Gaussian fit, the derivatives at any order may be

evaluated with the recursion relation:
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Then, we define two nBW × nBW matrices, and ⃗q( ), with
elements

∫ ρ ρ= ∂ ∂+ +A z z zd ( ) ( )nm n m1 1 1 (13)
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that uses the atomic coordinates along the MD simulation,
with the index i running over the lipid molecules of one layer
and the index j over the other. The first line in eq 14 requires
the previous calculation of G+−(z1, z2, q) from the MD
trajectory, with a binning for z1 and z2. Alternatively, we may
use the second line in eq 14 to calculate directly the
contribution of each lipid pair to Bnm(q⃗), without storing
G+−(z1, z2, q). The accuracy of the statistical sampling along
the MD simulation may be assessed from the results for the
different wavectors with the same modulus q = |q⃗|, which are
accumulated in a mean q( ).
From eq 11 we get the matrix equation = · ·q q( ) ( ) ,

where q( ) is a diagonal matrix with elements

δ=
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C q
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that may be obtained through the inverse matrix −1, as
= · ·− −q q( ) ( )1 1. Note that is independent of q, and

its inverse has to be calculated only once.
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vector dependent surface tension of the CU mode follows
directly from the C11(q) element of the matrix , as

∑
γ

ξ ξ≡ ⟨ ̂ ̂ ⟩ =
+

−
−

=

− −kT
q q

A A B q A
( )

( )q q
n m

n

n nm m2 CU o
, 1

1
1

1
1

BW

(16)

The accuracy of the method depends on the truncation of the
series at a finite order, n ≤ nBW, the BW series in eq 11. To
achieve convergence the results for γCU(q), the minimum
number of terms in the series should increase with the system
size, while it may be decreased for increasing γo. The
requirement for using many terms in the series, up to nBW ≈
12, to achieve robust results for γCU(q) highlights the
importance of using the full Bedeaux and Weeks theory (eqs
6 and 11), rather that the much simpler Wertheim’s relation eq
8 that describes the DCF just in terms of the first derivative of
the density profile.

4. RESULTS
The results for γCU(q) are presented in Figure 5 for the same
POPC lipid membrane as in Figures 2−4 (top panel), and for
tensionless POPC membranes of different sizes (bottom
panel). For tensionless membranes the low q behavior is
better analyzed21 through q2/γCU(q) (see Figure 6), which is
used to estimate κ−1 from the extrapolation to q = 0. In all
cases we compare the results from the ISM identification of the
mesoscopic surfaces z = ξ±(x ⃗) and those from the
deconstruction of BW series eq 16 for the simulated DCF eq

Figure 4. Interlayer structure factor S+−(q, qz) with q = 1.18nm−1 of
the POPC under tensile stress γo = 15.2 mN/m and N = 2000. The
MD result (full line) is compared with BW predictions SBW

+− (q, qz)
(calculated up to nBW = 20 order) with γCU(q) (dashed line) and
γU(q) (dotted line). In the SI, we show the same figure for the DPPC
membranes.
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3. For all systems and all sizes, we observe very good
agreement between the ISM and the BW-DCF results, up to
wavevectors q ≲ 1 nm−1. This transverse wavevector is well
below the value qu ≈ 2.6 nm−1 for which the CWT
assumptions for the intrinsic density profile were valid, but

here, we are asking the theory for a stronger requirement on
the DCF, and we cannot expect that the condition GBW ≈ G,
still holds when γCU(q) becomes very large and therefore GBW
decays below the background. The results for γCU(q) with
other systems and force fields are shown in the SI (see section
VI).

4.1. Bending and Tilt Moduli Obtained from the BW-
DCF γCU(q). We have shown above that γCU(q) can be
calculated over the discrete set of wavevectors (2π/L ≤ q ≲ 1
nm−1) either using the ISM19 or the BW-DCF method
proposed here eq 16. Since in the MD simulations with the
MARTINI force field we have used rather large systems (up to
6000 lipid molecules), we could in principle calculate the
bending modulus κ by using a least-squares fitting γCU(q) ≈ γo
+ κq2. However, such fitting will in general underestimate the
true bending modulus, because for tensionless membranes, and
the system sizes employed in the simulations, the fitting gives
too little weight to the wavevector domain 2π/L ≤ q ≲ 0.3
nm−1, that is truly representative of the Helfrich Hamiltonian
regime.
The tilt-curvature approaches20−23,43 have highlighted the

effects beyond the κq4 energetic cost of the softest fluctuation
mode tensionless membranes at low q. In that mode the
molecules follow the undulations of the surface z = ξ(x)⃗, with
the lipid hydrocarbon tails adopting a local orientation normal
to the surface. Hence, the chains are locally tilted with respect
to the direction z ̂ normal to the mean plane of the membrane.
A different fluctuation mode that keeps the molecules along z ̂
(without local tilt) has an energetic cost κθq

2, where κθ is a new
parameter with units of surface tension.44 At κ κ≪ θq / , that
is, in the Helfrich’s regime, the true bending modulus κ

describes the softest fluctuation mode. At κ κ≳ θq / , the
untilted mode may be softer and therefore more relevant, and
γ(q) ≈ κθq

2.
The usual approach to obtain an accurate result for κ in

tensionless membranes is by considering the low q limit of
ξ γ κ⟨| ̂ | ⟩ ≡ = +q kTA q q q/( ) / ( ) 1/ ( )q

4 2
o

2 2 . The tilt modu-
lus κθ appears as the quadratic term in the expansion of the
undulatory mode21,22,44

γ κ κ
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If we use the ISM results for the U mode, this (truncated)
expansion may be used to get a good fit over a broad range of q
beyond the HH regime, and to determine κ. Although we did
not do it in our earlier ISM analysis,19 the coefficient κθ may
also be identified over the wavevector range 0.3 nm−1 ≲ q ≲
0.6 nm−1, and we may even get a quartic coefficient (as used in
the most recent TC-SA analysis23). Notice that in the ISM
approach we keep track only of the lipid head groups, not of
the lipid tail orientations. Hence, we do not obtain κθ in eq 17
by fitting the simulated tail orientations. However, very
different approaches, theoretical and experimental,45 provide
evidence for the need of including a q2/κθ term in eq 17 and
give similar values for the coefficient κθ.
The BW-DCF route introduced in this work, eq 16, is not

applicable to the undulatory mode, γU(q), since it contains a
large contribution from the non-BW background to the DCF.
Hence, only the CU mode may be obtained directly from the
interlayer DCF because it has very little correlation back-

Figure 5. Wavevector dependent surface tension γCU(q). Top panel:
POPC under tension γo = 15.2 mN/m with N = 2000 and bottom
panel, tensionless POPC with N = 6000. The full lines represent the
results from the BW-deconstruction (using nBW = 20 terms of the
series) of the MD results for G+−(z1, z2, q). The symbols represent the
ISM-MD results: circles, γCU(q), and squares, γU(q).

Figure 6. Inverse of the coupled undulatory surface tension, γCU(q),
for the DPPC membranes analyzed in this work. Left panel:
MARTINI tensionless DPPC with N = 2048 (black), and MARTINI
tensionless DPPC−cholesterol with N = 2304 (red). Right panel:
CHARMM36 all-atom simulations of tensionless DPPC with N =
1800 (blue) and N = 1000 (green) The symbols represent the
simulation data for the ISM results (empty symbols) and the results
from the BW deconstruction BW to order nBW = 20 of the simulated
data, G+−(z1, z2, q) (full symbols). The solid lines show the fittings to
the ISM (for the all-atoms N = 1800 of the BW) data to eq 19 in the
range 0 < q < 0.9qd. The same figure for the POPC membranes is
shown in SI (see Figure 13). Numerical data for the fitting coefficients
are collected in Table 1.
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ground over its BW series. The U and CU modes are identical
up to the quadratic expansion (eq 17), since
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in terms of the elastic spring constant uP = [βAo⟨(d −
⟨d⟩)2⟩]−1 for the q → 0 limit of the peristaltic (P) fluctuations
in the membrane thickness.19 However, as shown in Figure 6,
the shape of q2/γCU(q) is much more complex than the
(nearly) quadratic result for the U mode. Their difference,
from the q4 and higher order terms in the expansion, emerges
from the gradual decoupling of the fluctuations of the two lipid
layers as q increases. We may define a function,

γ γ κ= = − +D q q q q u q( ) ( )/ ( ) 1 /(4 ) ( )p
U CU 4 6 , to quantify

the decoupling. Then, the CU version of eq 17 is
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where a single parameter qd includes the q
4 terms in D(q), to

represent the typical q value at which the two monolayers in
the membrane become uncoupled. The full shape of D(q) may
be obtained from the ISM analysis of the U and CU modes,
showing that D(q) goes to zero in the large q limit (see SI for
details). However, the simple parametric form (eq 19) allows
us to extract κ, κθ, and qd directly from the BW analysis of the
interlayer DCF. The three parameters can be extracted from a
least-squares fit in the range 2π/L ≤ q ≲ qd. Hence the
minimum practical system size we can use with the BW-DCF
analysis is determined by the value of qd. As commented below
and in SI, the parametrization (eq 19), with the explicit use of
the tilt mode elastic constant κθ, becomes more accurate and
generic than our earlier proposal19 developed and tested with
the ISM for pure lipid membranes and the MARTINI force
field.

4.2. Comparison with Previous Results. We illustrate
our BW-DCF method, eqs 16−19, by analyzing MD
trajectories of DPPC membranes described with two different
force fields: coarse grained MARTINI and all-atom
CHARMM36. We have also used the MARTINI force field
to simulate tensionless POPC membranes, POPC membranes
under tension, and a DPPC−cholesterol mixture with 1:1
composition in DPPC:CHOL. For all the cases presented in
Figures 5 and 6 and Table 1 and in SI, we compare the BW-
DCF analysis for γCU(q), from eq 16 with the results obtained
with the ISM.19 The ISM gives direct access to both γU(q) and
γCU(q), over a longer q range, but it requires the definition and
calculation of the smooth surfaces representing the instanta-
neous shape of the lipid membrane. In contrast, the γCU(q) can

Table 1. Bending Modulus κ and Tilt Modulus κθ for POPC and DPPC Bilayers Simulated with the Coarse-Grained MARTINI
and the All-Atom CHARMM36 Force Fieldsa

N model method βκ κθ (mN/m) qd (nm
−1)

POPC under tension βγ0 = 3.39 nm−2

2000 MARTINI MISM 23.6 ± 1 210 ± 30 1.07 ± 0.05
MBW‑DCF 23.4 ± 1 160 ± 30 1.07 ± 0.05

POPC free
6000 MARTINI MISM 25.7 ± 1 160 ± 20 1.17 ± 0.05

MBW‑DCF 25.7 ± 2 135 ± 20 1.14 ± 0.05
648 CHARMM36 C36TC‑SA

23 23.3 ± 1.4 50.6−62.1
416 CHARMM36 C36RSFA

10 28.4 76.8
416 CHARMM36 C36RSFA

24 24.3 82.0
stacks X-rays9 24.6 ± 2.6 69 ± 17

DPPC free
2048 MARTINI MISM 29.4 ± 1 124 ± 20 1.15 ± 0.05

MBW‑DCF 29.5 ± 2 113 ± 20 1.07 ± 0.05
1800 CHARMM36 C36ISM 26.2 ± 1.5 61 ± 5 0.82 ± 0.05

C36BW‑DCF 25.7 ± 2 56 ± 5 0.82 ± 0.05
648 CHARMM36 C36TC‑SA

23 27.2 ± 1.8 37.0−51.4
2048 MARTINI MTC‑SA

22 33.7 110
416 CHARMM36 C36RSFA

24 30.1 108.3
2048 MARTINI MRSFM

10 31.9 103.2
stacks X-rays9 28.8 ± 4.5 44 ± 16

DPPC cholesterol free
2304 MARTINI MISM 40.8 ± 3 248 ± 10 2.0 ± 0.2

MBW‑DCF 40.4 ± 3 225 ± 10 2.2 ± 0.2
aN represents the total number of lipids, and βγ0 is the surface tension applied to the membrane. The calculations with the ISM and BW-DCF were
performed fittings the coupled-undulatory γCU(q) mode (eq 19).19 qd represents the decoupling parameter. We compare our results with
experimental data obtained using X-rays,9 and previous simulations, using tilt-curvature methods (TC). The “Spectral Analysis” (TC-SA) results
were obtained using the height spectra (κ) and the lipids director fluctuations (κθ), with atomistic23,46 and coarse-grained22 force fields. We also list
results obtained with the Real Space Instantaneous Surface Method for atomistic (RSFA)

10,24 and coarse-grained simulations (RSFM).
10
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be obtained directly from the simulated density profiles and
density correlations with the BW-DCF method, using a
straightforward approach, summarized by eqs 14−16 and a
least-squares fit to eq 19. The error-bars in Table 1 and Figure
7 are estimated considering: (a) the quality of the statistical

sampling, which may be assessed by the difference between the
results of γCU(q) for different q⃗ with the same modulus q and
(b) the set of q values chosen for the least-squares fit, which
depend on the system size and the value of qd. Both (a) and
(b) can be systematically improved (as with any other analysis
method) at the computational cost of using larger system sizes
and longer simulation times. However, we note that the BW-
DCF approach is free of methodological uncertainties
associated with the use of mesoscopic height and tilt fields.
The ISM and BW-DCF results for the bending modulus κ

are always very close to each other (within one percent) and
feature clear trends among the simulated systems (see final
section for a discussion). The results for κθ also very similar,
albeit they have larger uncertainties. This is due to the similar
values of qd and the tilt-threshold κ κθ/ , which leads to a
mixing of modes that introduced uncertainty in the fitted
values of κθ and qd. The simulations of a DPPC−cholesterol
membrane (at 1:1 concentration) provide a good example of a
system where these two effects are well separated. The high
concentration of cholesterol results in an increase of the
bending and tilt moduli with respect to the pure DPPC
membrane, but κ κθ/ remains approximately the same in the
pure DPPC (0.93 nm−1) and DPPC:CHOL bilayers (1.12n−1).
However, in the membrane with cholesterol the value of qd is
twice as large as in the pure DPPC membrane. At least within

the MARTINI model, the cholesterol molecules influence the
fluctuations of the two DPPC layers, which remain coupled
over a range 1 nm−1 ≲ q ≲ 2 nm−1, which is dominated by the
tilt modulus, instead of the bending modulus. Again, for pure
DPPC or POPC membranes the thresholds for the ±
decoupling and tilt-bending are very similar. The need to
improve our earlier empirical proposal19 for a fit to the CU,
which did not include an explicit κθ parameter, became evident
with the effects of cholesterol in the DPPC MARTINI model.
The bending modulus predicted by the MARTINI and all-

atom CHARMM36 force fields are similar. We also find
reasonable agreement with previous computations by other
authors (see Table 1 and Figure 7). Our κθ results for pure
DPPC bilayers do, however, feature significant differences for
CHARMM36 and MARTINI force fields, even when we
account for the uncertainties in the results, which are
significant for the MARTINI model. This difference might
be associated with the very different representation of the
aliphatic chains in coarse grained and atomistic models.
Establishing this as the origin of the difference reported here
requires additional work. We note that previous simulations
using the RSFA and RSFM approaches reported smaller
differences in the tilt modulus obtained with CHARMM36
and MARTINI force fields (c.f., DPPC free N = 416 and N =
2048 results in Table 1), although the system sizes employed
were very different. Indeed, the system size required to obtain a
good estimate of the elastic constant is expected to depend on
the specific force field employed. For DPPC membranes
modeled using all-atom CHARMM36 the value of qd is ∼25%
lower than in MARTINI, that is, the limited flexibility of the
coarse-grained molecular tails maintains the two lipid
monolayers correlated with each other over a longer q range.
Consequently, to achieve a similar fitting accuracy using eq 19,
the simulations with CHARMM36 need to be performed with
larger systems than in the case of MARTINI. The N = 1800
system molecules reported in Table 11 is close to the smallest
size that may be practically used with all-atoms force field to
obtain elastic constants with a 5% precision. Another practical
issue we have found in our MD simulations, which should
apply to any method, is concerned with the atomistic
description of the lipids, which results in low-q fluctuation
modes that are much slower than the corresponding one in the
coarse-grained MARTINI force field. Hence, the all-atom force
fields require the use of both larger systems and longer runs, as
compared with coarse-grained force fields. Although, our all-
atom simulations involve trajectories spanning 660 ns for the N
= 1800 membrane, we expect that the statistical sampling of
the lowest q modes might still be improved by performing
longer runs.
We compare in Table 1 and Figure 7 our results for the

POPC and DPPC membranes, with previous simulations by
other authors. Those simulations were obtained different tilt-
curvature (TC) approaches: (a) The real space functional
(RSF) method,24 which has been used to study very small
system sizes containing few hundred lipids. This method was
developed as an alternative to Fourier transform methods,
which require larger systems sizes. The RSF method has been
applied to study POPC and DPPC membranes and the
MARTINI force field,10 as well as membranes modeled with
the all-atom CHARMM36 force field.10,24 (b) The spectral
analysis (TC-SA), which uses a regular-grid Fourier transform
for the mesoscopic surface (as the ISM) and for the tail-
orientation field. The most advanced version of this method

Figure 7. Visual representation of the values of bending κ and tilt κθ
modulus shown in Table 1. Orange, blue, and green highlight results
obtained with MARTINI, all-atom force field, and X-ray experiments.
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has been applied to POPC and DPPC bilayers using the all-
atom CHARMM36 force field,23,46 while an early version of
the method was applied to coarse-grained MARTINI
membranes.22

The results obtained with the TC methods depend on the
mesoscopic definition and on the specific choice for the
analysis. The most recent TC analysis23 give different values
for κ and κθ, obtained from the height or from the tilt
spectrum, and under one or another hypothesis. Our BW-DFC
(and ISM) results show better agreement with the TC-SA data.
The SA version of the TC method relies on the analysis of the
height spectrum with a κθ obtained normalizing to unit the z
component of the tilt vector. As discussed above the BW-DFC
method proposed here is more computationally efficient, since
it does not require the construction of a height and tilt
smoothed fields. The bending moduli might change depending
on the criterion employed to construct the fields. This
uncertainty is not present in the BW-DCT, and this represent
in our view a definite advantage of the method.
Regarding the results obtained with the RSF methods, the

bending modulus appears to be overestimated by about 10%,
with respect to the TC-SA and our BW-DCF and ISM results.
The difficulty of RSF method to get κθ has been discussed
before24 and this is reflected in the inability of this approach to
reproduce the important differences (up 100% increase)
between the MARTINI and the CHARMM36 force fields.
See for instance our results for BW-DCF or ISM for DPPC
“free” bilayers (and the results using TC-SA), with the
MARTINI force field predicting a much higher κθ. Instead, the
RSF approaches predict essentially the same κθ.
The X-ray results for κ and (with larger error bars) for κθ,

based on the analysis of the height−height fluctuations,9 are in
fair agreement with our results for CHARMM36-DPPC and
also with the results obtained with latest version of the TC-SA
method. Clearly the all-atoms force field are accurate
predicting the elastic properties of phospholipid membranes,
considering uncertainties of the experimental and computa-
tional results. Also, note that the MARTINI force field
provides a good estimate of the bending modulus but, based
on our results, clearly overestimates the tilt modulus.

5. DISCUSSION
The state of the art methods to compute the bending modulus
of in silico lipid bilayers rely on the construction of mesoscopic
height-surfaces19 and tilt-vector fields20−23,43 as key steps to
predict membrane elasticity from molecular degrees of
freedom. The application of these mesoscopic descriptions
requires the removal of many molecular details, hence opening
several questions on what degrees of freedom must be
discarded, and what theoretical framework must be used to
analyze mesoscopic fields using a small set of elastic constants.
A recent review on the tilt-curvature spectral analysis (TC-

SA)23 provides an illuminating discussion of the key problems
associated with the computation of bending moduli and how
these problems motivate the development of theoretical
methods, which can predict disparate bending moduli (see
Table 2 in ref 23). In order not to have to subtract the
nontrivial lateral correlations, the TC-SA descriptions have to
use smooth mathematical representations for the instantaneous
membrane shape and Fourier transform them using a regular
grid. To circumvent the use of regular grids, the so-called
direct Fourier transform (DFT) method26 relies on the
analysis of atomic positions in real space. Such analysis can

be used to obtain the density correlation function (DCF) of
the lipid molecules. A link between the bending modulus, κ,
and the DCF was suggested a long time ago,47 but a practical
implementation was missing. The DFT and any direct use of
the DCF to get κ face the difficulty to separate the lateral
correlation structure from the height−height correlations.27
We have proposed in this article an alternative method, eqs

16−19, that relies on the analysis of the DCF extracted directly
from molecular dynamics (MD) simulations (eq 3). The main
ingredients of our method are (a) the Bedeaux−Weeks (BW)
theory for the DCF of fluctuating interfaces eq 6 and (b) the
coupled undulatory (CU) mode introduced in ref 19. The CU
mode disentangles the mixing of mesoscopic undulations from
fluctuations appearing at high-q modes, such as lipid
protrusions. Within the CU approach, we have set a limit, q
< qd in eq 19, for the wavevector range corresponding to
correlated fluctuations of the two lipid monolayers. The BW
theory, designed initially to describe liquid surfaces, might be
adapted to link the CU fluctuations in a lipid membrane with
the interlayer component of the corresponding DFC. In this
way, we circumvent the difficulties associated with the initial
DFT approach23 since the DCF of lipid molecules in different
layers provides a natural filter for the lateral correlation
background. The BW-DCF method presented here eliminates
the computational cost and, more importantly, the conceptual
difficulties associated with the definition of mesoscopic height
and tilt fields. In addition, the BW-DCF method only requires
selecting an atom in the lipid head as the descriptor of the lipid
position. Here, we showed that the phosphorus atom provides
a good choice in POPC and DPPC lipids. We expect that other
choices of atoms in the lipid head groups would have little
impact on the results presented here (see Figure 6 in the
Supporting Information of ref 19).
We have discussed the foundations of the BW-DCF method,

proposed here to computer bending moduli. The good
agreement between the description of the CU modes by
ISM and BW-DCF, as reported here, supports the accuracy of
our hypotheses. The major advantages of the BW-DCF
method are the ease of implementation, higher computational
efficiency, and reduction of the uncertainty in the computed
results, associated the use of specific criteria to define the
undulating surfaces. The function γCU(q) can be directly
obtained from eqs 14−16. The bending, κ, and tilt moduli, κθ,
follow from a least-squares fit to eq 19.
A potential limitation of the BW-DCF method is that, since

it relies on the CU mode, it cannot be used to describe the
elastic properties of the membrane at q higher than the
decoupling threshold given by qd in eq 19. The U mode, that
is, the fluctuation of the mean surface between the two lipid
monolayers, may be used for higher wavevectors. However, we
may question its physical interpretation as “membrane
undulations” for very high-q values since, in that regime, the
fluctuations of the lipid monolayers are almost entirely
uncorrelated. In contrast, our function γCU(q) consider that
the description of the membrane as a single sheet, should be
limited to the domain q ≲ qd.

6. CONCLUSIONS
We have introduced the BW-DCF methodology to compute
the bending modulus of lipid bilayers, eqs 16−19. We have
illustrated the method by analyzing molecular dynamics
trajectories of POPC and DPPC lipid membranes using
coarse-grained and fully atomistic force fields. We have
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investigated membranes under tension and in a tensionless
state. In addition to pure bilayers, we investigated mixed
DPPC: cholesterol bilayers at 1:1 composition. We conclude
the following:

• The BW-DCF predicts bending moduli in excellent
agreement with results obtained using the more involved
intrinsic sampling method (ISM). In contrast to BW-
DCF, the ISM method requires the construction of
intrinsic surfaces for each configuration and performing
the corresponding fixed-grid Fourier transform. The
BW-DCF results agree, within the uncertainty of our
computations, with earlier simulations using the tilt-
curvature spectral analysis (TC-SA),23 which also
requires the definition of a tilt vector field.

• The results obtained with the coarse-grained MARTINI
force field should be taken with caution since the
comparison with all-atoms CHARMM36 show that the
MARTINI force field overestimates κ by about 8% and
κθ by a much larger amount (it can be up to 100%).
While the bending modulus could be improved by
adjusting the force field parameters, the differences in κθ
might reflect the significantly different flexibility of lipid
molecules modeled with coarse-grained or all-atom force
fields. This is an important aspect that requires further
investigation. We note that the simplest (real-space)
methods using the tilt-curvature analysis10,24 do not
reproduce the differences observed between coarse-
grained and fully atomistic models. Hence, these
methods require revision.

• Our CHARMM36-DPPC results are in fair agreement
with those obtained with the most advanced TC-SA
versions.23 The experimental X-ray data for DPPC
stacks9 are in very good agreement with our
CHARMM36 results for κ and well within the error
bars for κθ.

• The coarse-grained force field overestimates also the q-
vector range q < qd for correlated fluctuations of the two
lipid layers. Accurate estimates of κ and κθ using the all-
atom CHARMM36 force field can only be obtained
using lower q values. In practice, accessing these low q
vectors requires system sizes for all-atom force fields (N
≥ 1500) that are larger than those employed using the
MARTINI force field.

On the basis of our simulations of the MARTINI force field,
we also conclude the following:

• POPC membranes are more flexible than DPPC ones.
POPC gives κ ∼15% lower and κθ ∼20% higher than
DPPC. Upon application of tension, the POPC bending
decreases, ∼8% for surface tension of ∼15 mN/m.
However, κθ may be larger in the tensed membrane.

• Addition of cholesterol to DPPC bilayer in a
concentration (1:1), corresponding to Lo phase regime
results in a significant increase in the bending and tilt
moduli. Moreover, cholesterol acts as a linker between
the lipid layers. We find that the range of correlated
fluctuation expands to much higher vectors q ∼ 2 nm−1

than in pure bilayers (∼1 nm−1).

The points listed above are important for developing better
force fields. Looking into the future, we recall that the BW-
DCF method relies on separating the intralayer and interlayer
contributions in the DCF and the structure factor. Hopefully,
this idea might be applied and extended to interpret X-ray and

neutron diffraction experiments. The analysis of graphene
layers31 indicates that a direct link between the theoretical BW
analysis and the experimental diffraction data is feasible.
Additional work is in progress to account for all the internal
fluctuation modes in lipid bilayers, including the extension of
the BW treatment to include inter- and intralayer fluctuations.
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Jose Hernández-Muñoz − Departamento de Física Teórica de
la Materia Condensada, IFIMAC Condensed Matter Physics
Center, Universidad Autónoma de Madrid, Madrid 28049,
Spain

Fernando Bresme − Department of Chemistry, Molecular
Sciences Research Hub, Imperial College, W12 0BZ London,
United Kingdom; orcid.org/0000-0001-9496-4887

Pedro Tarazona − Departamento de Física Teórica de la
Materia Condensada, IFIMAC Condensed Matter Physics
Center and Instituto Nicolás Cabrera de Ciencia de
Materiales, Universidad Autónoma de Madrid, Madrid
28049, Spain

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.jctc.2c00099

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
We acknowledge the support of the Spanish Secretariat for
Research, Development, and Innovation (Grants No.
PID2020-117080RB, FIS2017-86007-C3, and FPU2015/
0248) and from the Maria de Maeztu Programme for Units
of Excellence in R&D (CEX2018-000805-M). F.B. acknowl-
edges the Leverhulme Trust (Grant RPG-2018-384) and the
Imperial College High Performance Computing Service for
providing computational resources.

■ REFERENCES
(1) Alberts, B.; Johnson, A.; Lewis, J.; Raff, M.; Roberts, K.; Walter,
P. Molecular Biology of the Cell; Garland Science, Taylor-Francis
Group, 2014.
(2) Fragneto, G.; Charitat, T.; Daillant, J. Floating lipid bilayers:
Models for Physics and Biology. Eur. Biophys. J. 2012, 41, 863.
(3) Helfrich, W. Elastic properties of lipid bilayers: theory and
possible experiments. Z. Naturforsch. C 1973, 28, 693.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.2c00099
J. Chem. Theory Comput. XXXX, XXX, XXX−XXX

L

https://pubs.acs.org/doi/10.1021/acs.jctc.2c00099?goto=supporting-info
https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.2c00099/suppl_file/ct2c00099_si_001.pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Enrique+Chaco%CC%81n"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0003-0212-1634
mailto:echacon@icmm.csic.es
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jose+Herna%CC%81ndez-Mun%CC%83oz"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Fernando+Bresme"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0001-9496-4887
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Pedro+Tarazona"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00099?ref=pdf
https://doi.org/10.1007/s00249-012-0834-4
https://doi.org/10.1007/s00249-012-0834-4
https://doi.org/10.1515/znc-1973-11-1209
https://doi.org/10.1515/znc-1973-11-1209
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.2c00099?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(4) Evans, E.; Rawicz, A.; Smith, B. Back to the future: mechanics
and thermodynamics of lipid biomembranes. Faraday Discuss. 2013,
161, 591−611.
(5) Nagle, J. Basic quantities in model biomembranes. Faraday
Discuss. 2013, 161, 11−29.
(6) Nagle, J.; Tristram-Nagle, S. Structure of lipid bilayers.
Biochimica at Biophysica Acta 2000, 1469, 159−195.
(7) Bassereau, P.; Sorre, B.; Levy, A. Bending lipid membranes:
Experiments after W. Helfrich’s model. Adv. Colloid Interface Sci.
2014, 208, 47−57.
(8) Dimova, R. Recent developments in the field of bending rigidity
measurements on membranes. Adv. Colloid Interface Sci. 2014, 208,
225−34.
(9) Nagle, J. F. Experimentally determined tilt and bending moduli
of single-component lipid bilayers. Chem. Phys. Lipids 2017, 205, 18−
24.
(10) Allolio, C.; Haluts, A.; Harries, D. A local instantaneous surface
method for extracting membrane elastic moduli from simulation:
Comparison with other strategies. Chem. Phys. 2018, 514, 31−43.
(11) Opdenkamp, J. A. Lipids asymmetry in membranes. Annu. Rev.
Biochem. 1979, 48, 47−71.
(12) Bishop, W. R.; Bell, R. M. Assembly of the endoplasmic
reticulum phospholipid bilayer: the phosphatidylcholine transporter.
Cell 1985, 42, 51−60.
(13) Seelig, J.; Seelig, A. Lipid conformation in model membranes
and biological membranes. Quaterly Reviews in Biophysics 1980, 13,
19−61.
(14) Braun, A.; Sachs, J.; Nagle, J. Comparing Simulations of Lipid
Bilayers to Scattering Data: The GROMOS 43A1-S3 Force Field. J.
Phys. Chem. B 2013, 117, 5065.
(15) Lundbaek, J. Regulation of membrane protein function by lipid
bilayer elasticity-a single molecule technology to measure the bilayer
properties experienced by an embedded protein. J. Phys.: Condens.
Matter 2006, 18, S1305−S1344.
(16) Neder, J.; West, B.; Nielaba, P.; Schmid, F. Coarse-grained
simulations of membranes under tension. J. Chem. Phys. 2010, 132,
115101.
(17) Lindahl, E.; Edholm, O. Mesoscopic Undulations and
Thickness Fluctuations in Lipid Bilayers from Molecular Dynamics
Simulations. Biohysical Journal 2000, 79, 426−433.
(18) Marrink, S.; Mark, A. Effect of undulations on surface tension
in simulated bilayers. J. Phys. Chem. B 2001, 105, 6122.
(19) Tarazona, P.; Chacón, E.; Bresme, F. Thermal fluctuations and
bending rigidity of bilayer membranes. J. Chem. Phys. 2013, 139,
094902.
(20) Hamm, M.; Kozlov, M. Elastic energy of tilt and bending of
fluid membranes. Eur. Phys. J. E 2000, 3, 323.
(21) Watson, M.; Penev, E.; Welch, P.; Brown, F. Thermal
fluctuations in shape, thickness, and molecular orientation in lipid
bilayers. J. Chem. Phys. 2011, 135, 244701.
(22) Watson, M.; Brandt, E.; Welch, P.; Brown, F. Determining
Biomembrane Bending Rigidities from Simulations of Modest Size.
Phys. Rev. Lett. 2012, 109, 028102.
(23) Erguder, M. E.; Deserno, M. Identifying systematic errors in a
power spectral analysis of simulated lipid membranes. J. Chem. Phys.
2021, 154, 214103.
(24) Doktorova, M.; Harries, D.; Khelashvili, G. Determination of
bending rigidity and tilt modulus of lipid membranes drom real-space
fluctuation analysis of molecular dynamics simulations. Phys. Chem.
Chem. Phys. 2017, 19, 16806−16818.
(25) Johner, N.; Harries, D.; Khelashvili, G. Implementation of a
methodology for determining elastic properties of lipid assemblies
from molecular dynamics simulations. BMC Bioinformatics 2016, 17,
161.
(26) Brandt, E. G.; Braun, A.; Sachs, J.; Nagle, J.; Edholm, O.
Interpretation of Fluctuations Spectra in Lipid Bilayer Simulations.
Biophys. J. 2011, 100, 2104.

(27) Albert, J.; Ray, L.; Nagle, J. Testing procedures for extracting
fluctuation spectra from lipid bilayer simulations. J. Chem. Phys. 2014,
141, 064114.
(28) Kopelevich, D.; Nagle, J. Correlation between length and tilt of
lipid tails. J. Chem. Phys. 2015, 143, 154702.
(29) Israelachvili, J.; Wennerstrom, H. Entropic Forces between
Amphiphilic Surfacein Liquids. J. Phys. Chem. 1992, 96, 520.
(30) Bedeaux, D.; Weeks, J. Correlation functions in the capillary
wave model of the liquid-vapor interface. J. Chem. Phys. 1985, 82, 972.
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(42) Hernández-Muñoz, J.; Chacón, E.; Tarazona, P. Density
correlation in liquidsurfaces: Bedeaux−Weeks high order terms and
non capillary wave background. J. Chem. Phys. 2018, 149, 124704.
(43) Terzi, M. M.; Deserno, M. Novel tilt-curvature coupling in lipid
membranes. J. Chem. Phys. 2017, 147, 084702.
(44) May, E.; Narang, A.; Kopelevich, D. Role of molecular tilt in
thermal fluctuations of lipid membranes. Phys. Rev. E 2007, 76,
021913.
(45) Nagle, J.; Jablin, M.; Tristram-Nagle, S.; Akabori, K. What are
the true values of the bending modulus of simple lipid bilayers? Chem.
Phys. Lipids 2015, 185, 3−10.
(46) Levine, Z.; Venable, R.; Watson, M.; Lerner, M.; Shea, J.;
Pastor, R.; Brown, F. Determination of Biomembrane Bending
Moduli in Fully Atomistic Simulations. J. Am. Chem. Soc. 2014, 136,
13582−13585.
(47) Szleifer, I.; Kramer, D.; Ben-Shaul, A.; Gelbart, W. M.; Safran,
S. A. Molecular Theory of Curvature Elasticity in Surfactant Films. J.
Chem. Phys. 1990, 92, 6800−6817.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.2c00099
J. Chem. Theory Comput. XXXX, XXX, XXX−XXX

M

https://doi.org/10.1039/C2FD20127E
https://doi.org/10.1039/C2FD20127E
https://doi.org/10.1039/C2FD20121F
https://doi.org/10.1016/S0304-4157(00)00016-2
https://doi.org/10.1016/j.cis.2014.02.002
https://doi.org/10.1016/j.cis.2014.02.002
https://doi.org/10.1016/j.cis.2014.03.003
https://doi.org/10.1016/j.cis.2014.03.003
https://doi.org/10.1016/j.chemphyslip.2017.04.006
https://doi.org/10.1016/j.chemphyslip.2017.04.006
https://doi.org/10.1016/j.chemphys.2018.03.004
https://doi.org/10.1016/j.chemphys.2018.03.004
https://doi.org/10.1016/j.chemphys.2018.03.004
https://doi.org/10.1146/annurev.bi.48.070179.000403
https://doi.org/10.1016/S0092-8674(85)80100-8
https://doi.org/10.1016/S0092-8674(85)80100-8
https://doi.org/10.1017/S0033583500000305
https://doi.org/10.1017/S0033583500000305
https://doi.org/10.1021/jp401718k?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp401718k?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1088/0953-8984/18/28/S13
https://doi.org/10.1088/0953-8984/18/28/S13
https://doi.org/10.1088/0953-8984/18/28/S13
https://doi.org/10.1063/1.3352583
https://doi.org/10.1063/1.3352583
https://doi.org/10.1016/S0006-3495(00)76304-1
https://doi.org/10.1016/S0006-3495(00)76304-1
https://doi.org/10.1016/S0006-3495(00)76304-1
https://doi.org/10.1021/jp0103474?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp0103474?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1063/1.4818421
https://doi.org/10.1063/1.4818421
https://doi.org/10.1007/s101890070003
https://doi.org/10.1007/s101890070003
https://doi.org/10.1063/1.3660673
https://doi.org/10.1063/1.3660673
https://doi.org/10.1063/1.3660673
https://doi.org/10.1103/PhysRevLett.109.028102
https://doi.org/10.1103/PhysRevLett.109.028102
https://doi.org/10.1063/5.0049448
https://doi.org/10.1063/5.0049448
https://doi.org/10.1039/C7CP01921A
https://doi.org/10.1039/C7CP01921A
https://doi.org/10.1039/C7CP01921A
https://doi.org/10.1186/s12859-016-1003-z
https://doi.org/10.1186/s12859-016-1003-z
https://doi.org/10.1186/s12859-016-1003-z
https://doi.org/10.1016/j.bpj.2011.03.010
https://doi.org/10.1063/1.4892422
https://doi.org/10.1063/1.4892422
https://doi.org/10.1063/1.4932971
https://doi.org/10.1063/1.4932971
https://doi.org/10.1021/j100181a007?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/j100181a007?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1063/1.448474
https://doi.org/10.1063/1.448474
https://doi.org/10.1103/PhysRevB.100.195424
https://doi.org/10.1103/PhysRevB.100.195424
https://doi.org/10.1038/nrm.2017.138
https://doi.org/10.1038/nrm.2017.138
https://doi.org/10.1063/1.4926938
https://doi.org/10.1063/1.4926938
https://doi.org/10.1063/1.4926938
https://doi.org/10.1021/jp071097f?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp071097f?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.chemphyslip.2014.07.011
https://doi.org/10.1016/j.chemphyslip.2014.07.011
https://doi.org/10.1016/j.chemphyslip.2014.07.011
https://doi.org/10.1021/jp101759q?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp101759q?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.chemphyslip.2015.07.014
https://doi.org/10.1016/j.chemphyslip.2015.07.014
https://doi.org/10.1073/pnas.0504588102
https://doi.org/10.1073/pnas.0504588102
https://doi.org/10.1140/epje/i2010-10578-2
https://doi.org/10.1140/epje/i2010-10578-2
https://doi.org/10.1103/PhysRevE.84.051914
https://doi.org/10.1103/PhysRevE.84.051914
https://doi.org/10.1063/1.433352
https://doi.org/10.1063/1.5049874
https://doi.org/10.1063/1.5049874
https://doi.org/10.1063/1.5049874
https://doi.org/10.1063/1.4990404
https://doi.org/10.1063/1.4990404
https://doi.org/10.1103/PhysRevE.76.021913
https://doi.org/10.1103/PhysRevE.76.021913
https://doi.org/10.1016/j.chemphyslip.2014.04.003
https://doi.org/10.1016/j.chemphyslip.2014.04.003
https://doi.org/10.1021/ja507910r?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja507910r?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1063/1.458267
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.2c00099?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

