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The medical algorithmic audit
Xiaoxuan Liu, Ben Glocker, Melissa M McCradden, Marzyeh Ghassemi, Alastair K Denniston*, Lauren Oakden-Rayner*

Artificial intelligence systems for health care, like any other medical device, have the potential to fail. However, 
specific qualities of artificial intelligence systems, such as the tendency to learn spurious correlates in training data, 
poor generalisability to new deployment settings, and a paucity of reliable explainability mechanisms, mean they can 
yield unpredictable errors that might be entirely missed without proactive investigation. We propose a medical 
algorithmic audit framework that guides the auditor through a process of considering potential algorithmic errors in 
the context of a clinical task, mapping the components that might contribute to the occurrence of errors, and 
anticipating their potential consequences. We suggest several approaches for testing algorithmic errors, including 
exploratory error analysis, subgroup testing, and adversarial testing, and provide examples from our own work and 
previous studies. The medical algorithmic audit is a tool that can be used to better understand the weaknesses of an 
artificial intelligence system and put in place mechanisms to mitigate their impact. We propose that safety monitoring 
and medical algorithmic auditing should be a joint responsibility between users and developers, and encourage the 
use of feedback mechanisms between these groups to promote learning and maintain safe deployment of artificial 
intelligence systems.

Introduction
Advances in artificial intelligence have attracted 
substantial interest for their potential applications in 
health care, particularly systems based on deep learning 
and neural networks. A large body of literature has been 
published proposing solutions based on artificial 
intelligence or machine learning for disease detection, 
classification, or prediction, or even as therapeutic 
interventions, including titration of drug dosages or 
offering mental health support through artificial 
intelligence chatbots.1,2

In the past 2 years, there has been a shift in emphasis 
from reporting impressive performance results to active 
investigation of algorithmic errors and failure modes.3–6 
Indeed, the analysis of error cases is a minimum 
reporting requirement of the SPIRIT-AI (Standard 
Protocol Items: Recommendations for Interventional 
Trials–Artificial Intelligence) and CONSORT-AI 
(Consolidated Standards of Reporting Trials–Artificial 
Intelligence) guidelines for clinical trial protocols and 
reports of artificial intelligence interventions.7,8 This 
change in focus from evaluating the best performance 
an artificial intelligence system can achieve, to 
identifying the worst mistake it could make, aligns with 
the foundational maxim embedded in medical safety: 
first, do no harm. The question of medical artificial 
intelligence safety is being asked at a crucial time, when 
this is no longer a theoretical concern but an immediate 
issue as, increasingly, artificial intelligence systems are 
receiving regulatory approval and being implemented in 
clinical care.

Why are artificial intelligence systems different from 
other medical interventions? Concerns have been raised 
that, unlike other interventions, artificial intelligence 
systems can yield errors that are difficult to foresee or 
prevent, due to the very nature of these systems. Modern 
artificial intelligence systems, particularly those based on 
deep learning, establish complex and opaque 
mathematical relationships between the input data and 

the output predictions, with little to no human control 
over how predictions are generated. Although this gives 
rise to a powerful machinery for learning patterns in the 
data, there is also a considerable risk of learning spurious 
correlations: relationships that appear useful in training 
but are unreliable when applied to real-world data. For 
example, an artificial intelligence system might learn to 
detect surgical skin markings to diagnose skin cancer, 
rather than looking for features related to the lesion 
itself.9 Importantly, the errors of artificial intelligence 
systems appear to be quite distinct from the errors of 
human experts. In medical imaging, the majority of 
human errors (60–70%) are related to perceptual failure, 
caused by factors such as the subtlety of visual findings, 
incomplete search of the entire image, and so-called 
satisfaction syndrome (in which finding an abnormality 
makes the reader less likely to find a second one).10 By 
contrast, artificial intelligence is not susceptible to 
incomplete searches or satisfaction syndrome. In this 
context, it is entirely reasonable to expect that artificial 
intelligence systems of equal performance to human 
readers will produce different errors, which can lead to 
different clinical outcomes.

The concept known as the artificial intelligence perfor
mance gap can be caused by a variety of factors, including 
those related to the algorithm’s development, the input 
data, and interactions with users and the deployment 
environment. During development, the model design 
and training strategies, as well as the choice of training 
data (eg, poorly labelled or under-representative data) 
can directly influence the algorithm’s performance. 
Mismatch or incompatibility of input data used during 
deployment can arise from various types of dataset shift 
(including population shift, annotation shift, prevalence 
shift, manifestation shift, and acquisition shift).11 
Interactions with users and the deployment environment 
are subject to automation bias, human error, and 
unintended or intended misuse.12 Additionally, the 
reasons for unexpectedly poor performance can be 

http://crossmark.crossref.org/dialog/?doi=10.1016/S2589-7500(22)00003-6&domain=pdf


e385	  www.thelancet.com/digital-health   Vol 4   May 2022

Viewpoint

non-obvious even after human inspection, and subtle or 
even unnoticeable differences in the input data might 
lead to catastrophic failure. This occurrence relates to the 
underlying mathematical approximations that artificial 
intelligence systems use to map input data (eg, a medical 
scan) to target outputs (eg, a diagnostic label). Generally, 
we can assume that artificial intelligence systems will 
operate well within the space mapped out by the training 
data (a process called interpolation), but perform poorly 
on out-of-distribution data that require extrapolation. 
Intuitively, the further an input sample is away from the 
statistical distribution of the training data, the more 
unpredictable becomes the behaviour and outputs of the 
artificial intelligence system. Unfortunately, given the 
complexity of most medical data, it can be difficult to 
define which cases are in-distribution and which are out-
of-distribution. Furthermore, this drop in performance 
might not be obvious at the aggregate level of typical 
artificial intelligence testing, but rather in subsets of the 
target cohort or specific strata within the input data, a 
concept that has been described as hidden stratification.13 
These factors all contribute to the performance gap 
between preclinical testing and real-world deployment, 
and current evaluation strategies are ill-suited to 
identifying the problem.14

We define algorithmic errors as any outputs of the 
artificial intelligence system which are inaccurate, 
including those which are inconsistent with the expected 
performance and those which can result in harm if 
undetected or detected too late. Within these, there is a 
category in which the output might be correct but the 
algorithm is clearly informed by a flawed decision-
making process. We suggest that these should also be 
considered algorithmic errors, because they indicate a 
high risk of future errors and should therefore be treated 
with similar levels of caution to standard output errors. If 
there is a pattern or systematic nature to the occurrence 
of errors, we refer to this as a failure mode: the tendency 
to malfunction in the presence of certain conditions. 
Whereas an error can be a single occurrence, failure 
modes represent errors which will repeatedly occur and 
often have similar consequences. Although individual 
errors might not always result in direct harm, their 
frequency or the summation of multiple errors could 
reach above an acceptable threshold and result in overall 
harm. By proactively investigating algorithmic errors and 
failure modes, the auditor becomes better placed to 
monitor artificial intelligence systems effectively and to 
understand the potential failure modes and their 
consequences.

Here, we propose an audit-based approach for 
investigating algorithmic errors. An algorithmic audit 
focuses on developing processes and embedding 
organisational principles and values in the algorithm 
design, and these values can vary widely depending on 
the organisation and context of the deployment. In 
medical artificial intelligence, the audit process focuses 

closely on the safety and quality of medical systems, the 
outcomes and perceptions of the patient and the general 
public, the responsible use of health-care resources, and 
the equitable distribution of health care and health-care 
outcomes.

Principles underpinning the medical algorithmic 
audit
The importance of safety and quality for medical 
algorithms is embedded in the principles of medical 
ethics, which describe the obligations of clinicians to 
patients and the general public. Evidence-based practice 
reflects the ethical imperative to act to promote the 
patient’s best interests (beneficence) while minimising 
harm (non-maleficence), with empirical data forming 
part of the foundation upon which these judgments are 
made in consort with patient values. Typically, the 
information gathered through the process of prospective 
evaluation is contextualised to a clinical setting based on 
factors relating to each individual patient.15 For 
interventions like drugs, the intervention itself is 
identical for all iterations (eg, the chemical structure of a 
single pharmaceutical agent is the same for every patient 
who takes it) and it is within individuals that responses 
vary. With artificial intelligence systems, the intervention 
is acutely sensitive to between-individual and within-
individual feature variation, because the very power of 
the computational technique is in its ability to use feature 
variations to make individual-level predictions. However, 
artificial intelligence systems cannot apply clinical 
knowledge and domain expertise (including previous 
experience, contextual understanding, and causal 
knowledge) or common sense to distinguish between 
relevant feature variation due to disease versus irrelevant 
feature variation due to other biological confounders or 
non-biological sources, potentially resulting in unreliable 
predictions. Therefore, to translate algorithms into 
clinical practice, more nuanced information is required 
on the algorithm’s performance across a range of relevant 
features, which is the goal of medical algorithm auditing. 
This information then guides effective and beneficial 
translation of interventions.15

An often overlooked concern with artificial intelligence 
is that of fairness. As long as bias and social determinants 
of health exist, these patterns will entrench themselves 
within health care machine learning. In many cases, the 
performance of an artificial intelligence model differs 
across patient identities or social determinants of health 
(often proxies for identities), which can pose a threat to 
another core ethical principle: justice. In this case, we 
might consider distributive justice as a desirable property 
of artificial intelligence-enabled care delivery (ie, whether 
the benefits afforded by machine learning are conferred 
equally to all). Distributive justice also points us to the 
necessity of redressing disparities. If an audit reveals 
disparate performance among certain groups, 
compensatory mechanisms might help to ensure these 
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patients are not disadvantaged by use of the algorithm. 
Medical algorithmic auditing can reveal areas in which 
these mechanisms are required and point to how 
potential disadvantages may be redressed (panel 1).

Elements of a medical algorithmic audit
Here, we build on the algorithmic audit approach 
proposed by Raji and colleagues,19 who describe a qualit
ative structured audit process applying the SMACTR 
framework (scoping, mapping, artifact collection, testing, 
and reflection) to artificial intelligence, as a general 
purpose technology. Although this framework was 
originally proposed as a way of assessing whether 
artificial intelligence development was conducted in 
alignment with the principles of an organisation, its 
structure is highly applicable to local auditing of artificial 
intelligence performance due to its orientation towards 
internal auditing (and thus led by those closest to 
implementation). Each step of the SMACTR framework 
has its own set of documentation requirements, thus 
facilitating accountability and iterative, ongoing safety 
monitoring. There is also emphasis on other established 
auditing practices in medicine and other industries, 
including process mapping, failure modes and effects 
analysis (FMEA), risk prioritisation, and planning 
mitigating actions. We adapt this framework for use in 
medical artificial intelligence applications (figure 1) and 
approach the problem from two perspectives: that of the 
developer, who can modify the artificial intelligence 
system in response to audit results; and that of the user, 
who cannot modify the artificial intelligence system but 
has the means to implement risk mitigation plans 
specific to the deployment setting. We apply the 
principles of the FMEA tool, a known mechanism in 
engineering, to facilitate assessment, prioritisation, and 
mitigation of risk. For illustrative purposes, an example 
of an audit for a hip fracture detection algorithm is 
published as supplementary information in a study by 
Oakden-Rayner and colleagues,20 alongside a detailed 
breakdown of the FMEA. The benefits of performing the 
FMEA is to initiate and guide a critical thought process, 
rather than to establish whether the artificial intelligence 
system is acceptable or unacceptable or to provide 
certainty that all risks can be anticipated and minimised. 
FMEA has previously been applied to clinical settings, 
although it must be interpreted with care due to issues 
around reproducibility and incompleteness.21

The medical algorithmic audit might be conducted by 
developers but it is also likely to be conducted by 
stakeholders with no involvement in algorithm design, 
such as health-care workers. During deployment, a 
myriad of human factors combined with a poor 
understanding of artificial intelligence systems could 
create a situation in which all errors are assumed to be a 
fault of the algorithm’s design. Therefore, clinical 
auditors must have the necessary tools to identify error 
sources that are preventable (input data factors or user 

factors) and not preventable (factors that are intrinsic to 
the algorithm itself). Although those outside the 
development team might have no opportunity to change 
the algorithm, they might be able to control or influence 
the circumstances under which it is deployed, which is 
intrinsically tied to the likelihood of errors, as well as the 
ability to avoid them. To consider the medical algorithmic 
audit from both perspectives, table 1 describes tasks 
undertaken by users and developers for each audit step.

Scoping
Scoping is the process of defining the intended purpose 
of the artificial intelligence system and anticipating 
potential harms. In the work by Raji and colleagues,19 the 
framework is intended for any domain in which artificial 
intelligence might be applied. In the setting of medical 
artificial intelligence, the scope of the audit is more 
clearly defined: the ethical and clinical motivation is 
common across medical artificial intelligence studies, 
with the intention to improve health-care outcomes 
(ie, quality and length of life, financial outcomes, and 
organisational outcomes) and to promote distributive 
justice. Therefore, scoping in medical algorithmic audit 
should focus on two key elements: the intended use and 
the intended impact.

The intended use is a regulatory requirement22,23 that 
describes how the algorithm (as a medical device) is to be 

Panel 1: Why should we monitor for algorithmic errors?

Within the broader mandate to ensure artificial intelligence systems are safe, undertaking 
regular systematic analyses of the observed errors is helpful for a number of reasons:
•	 It is an essential component of safety monitoring and adverse event reporting.16,17

•	 It allows quantification of risk for the artificial intelligence system, which can be 
weighed against the potential benefits, to inform decision making around whether it is 
appropriate to apply the model clinically. Benchmarks might already exist within clinical 
practice (eg, estimated human radiologist error rates for a diagnostic task), which would 
inform the risk–benefit ratio for deploying the artificial intelligence system.

•	 It could reveal unknown failure modes of the artificial intelligence system, such as a 
tendency to produce higher error rates in certain populations, diseases, or settings, or 
in the presence of specific input data characteristics.9,11,18

•	 Before deployment, it can be used to derive a measurable adverse event rate, which 
can inform how closely safety monitoring and post-deployment auditing should be 
performed. It can also provide a baseline measurement against which ongoing 
performance can be benchmarked.

•	 It can inform risk mitigation strategies so that those overseeing deployment of the 
artificial intelligence system can anticipate errors if the conditions known to trigger 
failure do occur, implement measures to avoid failure modes, and pre-emptively set 
hard stop thresholds in high-risk situations.

•	 It can provide valuable feedback and information for future artificial intelligence 
development and model improvement, and also highlight the potential need for 
post-deployment calibration or localisation of artificial intelligence systems.

•	 It can reveal systematic differences in performance across features mapping onto a 
protected identity or social determinant. Insight into these performance differences 
can prevent a systematic disadvantage to those groups resulting from the 
implementation of the algorithm.
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applied. The US Food & Drug Administration premarket 
approval guidance states: “Indications for use for a device 
include a general description of the disease or condition 
the device will diagnose, treat, prevent, cure, or mitigate, 
including a description of the patient population for which 
the device is intended. Any differences related to gender, 
race/ethnicity, etc should be included in the labeling.” The 
intended use specification is defined by the developer, who 
has knowledge of any previous evidence supporting 
indications for legal and safe use. It should also be known 
to the user, who decides whether the intended use 
statement matches the clinical task and clinical pathway in 
which the algorithm is intended to be deployed. For 
example, in the hip fracture audit,20 scoping of the intended 
use refers to the function of the algorithm (detecting 
proximal femoral fractures) as well as its integration into a 
clinical pathway (in which detection leads to admission 

under an orthopaedic team and booking of further imaging 
if necessary). Other considerations include any limits on 
the health-care environment for use (eg, inpatient or 
outpatient) and the intended users or oversight (eg, health 
professionals, patients, or autonomous). A clear 
understanding must be established as to whether the 
current application falls within the artificial intelligence 
system’s intended use, or if there are areas of ambiguity 
(eg, from missing or poorly defined intended use 
descriptions). Identified mismatches can motivate a 
targeted error analysis during the algorithmic audit.

The intended impact identifies the clinical or health-
care target of the artificial intelligence system, 
accompanied by the ensemble of information that 
describes the boundaries within which the system is 
efficacious.15 This statement describes how the artificial 
intelligence system will affect health-care outcomes if it is 

Figure 1: Overview of the medical algorithmic audit
(A) Overview of the internal audit framework, reproduced from Raji and colleagues.19 Grey boxes represent processes; red boxes represent documents produced by the auditors; blue boxes represent 
documents produced by the engineering and product teams; and green boxes represent jointly developed documents. (B) Proposed modifications for the medical algorithmic audit. FMEA=failure 
modes and effects analysis.
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working as intended. The developer might be able to 
define, in theory, the intended impact, but the user is 
better placed to consider this. The hip fracture audit20 has 
several intended impacts, including reduced time to 
admission and surgery, reduced resource use in the 
emergency department and unnecessary imaging, and 
downstream improvement in health outcomes. Different 
users of the same algorithm might have different target 
impacts specific to their health setting and needs. They 
might choose to implement the algorithm in different 
ways to produce different results and therefore their 
measures of success (and failures) will also be different. 
The auditor should define any unacceptably high-risk 
outcomes or adverse events; such events in medical safety 
are distinct, because they are considered so severe that 
they should never occur, such as surgical procedures 
performed on the wrong limb. It could be helpful to 
consider possible risks in the context of non-artificial 
intelligence systems with similar intended use and 
intended impacts.

Both the intended use statement and intended impact 
statement are used during the next phase (mapping), 
because they define the scope of algorithmic errors 
related to use of the artificial intelligence system.

Mapping
The mapping phase considers two main topics: the 
mapping of personnel and resources necessary for the 
audit, and the mapping of the risks and known 

vulnerabilities of the intended use as the first stage of the 
FMEA.

Personnel who might be helpful for a medical 
algorithmic audit include developers, users, and domain 
experts, particularly those who have experience with 
the artificial intelligence system. Developers have a 
substantial role to play in terms of providing periodic 
evaluations to guarantee expected performance, as is the 
case with other medical devices such as medical scanners, 
which often include 24-h service and support plans to 
ensure the device continues to meet operational, 
regulatory, quality, and safety requirements. If possible, 
developers should design mechanisms which allow users 
to carry out audits independently, at a local level. 
Resources required include, but are not limited to, access 
to suitable training or testing data and the associated 
labels (including non-target labels such as demographic 
information and hospital process factors); access to 
model predictions on the test data; access to any 
interpretability tools produced for use with the artificial 
intelligence model; and access to the model itself if a 
more in-depth introspection or further data challenges 
(such as adversarial testing) are required.

FMEA is a prospective risk analysis tool which first 
maps out a process or task, and then is used to identify 
foreseeable failures that could occur. In the mapping 
phase, there are two important elements of FMEA: 
mapping of the artificial intelligence system itself and 
mapping of the health-care task.

Developer and user actions Developer actions User actions

Scoping ·· Define intended use
Anticipate intended impact(s)

Identify intended use
Define intended impact(s)

Mapping Mapping of the artificial intelligence system 
Define data flow 
Summarise risks in a risk priority number

Identify known risks of the artificial 
intelligence system in existing 
published and unpublished evidence 
and through knowledge of the training 
data

Identify known risks of the artificial intelligence system in existing 
published evidence
Identify known risks of the health-care task
Mapping of the health-care task, including elements before and after the 
artificial intelligence system in the clinical pathway, such as: relevant 
patient or data subgroups; potential sources of atypical input data; and 
relevant outcomes to be measured and how they will be captured in the 
audit

Artifact 
collection

Intended use statement
Intended impact statement
Failure modes and effects analysis: clinical pathway mapping, 
clinical task risk analysis, and risk priority number document
Data flow diagram
The artificial intelligence system
Model summary
Data for direct assessment, including explainability artifacts and 
adversarial testing artifacts 
Previous evaluation materials (including performance testing or 
user experience artifacts)

Datasheet for datasets (training and 
test data)

Datasheet for datasets (deployment data)

Testing Exploratory error analysis: false positives and false negatives, 
and explainability methods (saliency maps and feature weights)
Subgroup testing: patient-specific subgroup analysis and task-
specific subgroup analysis

Adversarial testing Adversarial testing if possible

Reflection Compile algorithm audit summary report and share with 
relevant stakeholders

Risk mitigation actions: retrain the 
model, modify the model threshold, or 
modify the workflow or intended use

Risk mitigation actions: continue use with additional human oversight, 
modify or limit use, or withdraw use

Table 1: Actions for developers and users at each stage of the medical algorithmic audit
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Mapping of the artificial intelligence system itself is a 
detailed expansion on the intended use statement and 
analysis of previous evidence documenting risks intrinsic 
to the artificial intelligence system by design, or which 
the artificial intelligence system has encountered 
previously. It could include an evaluation of the existing 
literature on known risks, or a scoping of other artificial 
intelligence systems with similar intended use for 
potential risks. Mapping the artificial intelligence system 
also involves mapping any prerequisite steps or minimal 
requirements that are essential to achieving expected 
performance. Crucial to this is the process for handling 
and selecting input data, which is sometimes 
underspecified and poorly reported.1

Mapping of the health-care task is a contextualised 
analysis of the artificial intelligence system as a com
ponent of clinical care. It requires clinical knowledge of 
the use-case, the clinical workflow (including existing 
safeguards for detecting errors), user behaviour (health-
care provider, patient, and the general public), and 
knowledge about potential consequences of errors. This 
knowledge can complement mapping of the artificial 
intelligence system, to anticipate when and how failure 
modes can arise. Mapping the clinical pathway can 
identify upstream factors that might increase the chances 
of algorithmic error, and downstream consequences that 
could occur because of algorithmic error. It also involves 
identifying important patient or data subgroups and 
specific features of the input data that are atypical.

It can be helpful to map the artificial intelligence 
system in relation to the clinical task and intended 

impacts in the form of a causal diagram, to determine 
the direction of causality between variables measured in 
the audit.24 This will inform the metadata required for the 
artifact collection phase and can help auditors in making 
sense of relationships between relevant components of 
the health-care task in the reflection phase.

The risks which are mapped out are summarised in a 
risk priority number, which ranks the identified risks 
(panel 2). It is crucial to understand that the actual risk 
priority number value is not a measure of safety, nor 
should there be an attempt to create arbitrary thresholds 
to determine the acceptability of risks. Rather, the risk 
priority number enables relative ranking of all risks to 
prioritise those which need urgent attention and to serve 
as a baseline for re-evaluation in future audits.

Artifact collection
The artifact collection phase involves gathering 
documents and materials identified in the mapping 
phase that might inform the audit (table 1). There are 
three components to consider for medical artificial 
intelligence systems (aside from those already identified 
in scoping and mapping): relevant datasets (training 
data, previous evaluation data, or prospectively collected 
audit data for the current audit); the model itself; and 
results of previous evaluations of the model or task.

The datasets are of primary importance in determining 
both the performance of the artificial intelligence system, 
and the potential limitations and failure modes. Various 
datasets are used throughout the development, evaluation, 
and monitoring of artificial intelligence systems, and all 
are relevant for the algorithmic audit, but they might 
reveal different information about errors and failure 
modes. The relevant datasets are the algorithm training 
data (for developing the algorithm, which might include 
data for internal validation), previous test data (for 
evaluation or validation of the algorithm), and deployment 
data (data generated as a by-product of the algorithm 
being used). Both the test data and deployment data can 
be used in an algorithmic audit, but the information 
provided within them might vary. Note that evaluation 
data, and in particular labelled evaluation data, can be 
difficult or impossible to obtain in live deployment 
situations (or in certain evaluation designs, such as 
randomised controlled trials of effectiveness), in which 
the ground truth for each case is not routinely collected. 
In these settings, the identification of sources of weak 
labels (such as adverse event registers and user feedback) 
will be important, and the limitations of these labels 
should be clearly indicated.

There is often little relationship between errors on the 
training set and errors that occur during deployment; 
therefore, access to the complete training data is a low 
priority in an algorithmic audit. Although training data 
might be used for conducting exploratory error analyses 
(discussed later), deep learning models can achieve 
negligible training errors but still perform poorly in a test 

Panel 2: The risk priority number

The risk priority number is an arbitrary value calculated 
through ranking and combining three elements: severity 
(severity of the failure effects), occurrence (likelihood of 
occurrence), and detection (effectiveness of mechanisms to 
detect the failure before it results in adverse consequences). 
The ranking of each item is subjective, but a scale should be 
defined so that risk priority numbers in future audits can be 
compared.

For example, in the hip fracture audit,20 severity and 
occurrence were scored between 1 to 4. A severity score of 4 
was catastrophic (failure could cause injury or death, and 
extreme loss of trust) and 1 was minor (no intervention 
needed and no injury to patient). An occurrence score 
of 4 was frequent (several times in 1 day) and 1 was remote 
(maximum frequency of once in 6 months). The auditor 
should decide whether all three elements (severity, 
occurrence, and detection) are applicable to the artificial 
intelligence system, and whether there are additional 
elements that should be added. In the hip fracture audit, only 
severity and occurrence elements were included because 
most risks could not be easily detected in the current clinical 
workflow (resulting in homogeneous scoring).
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or deployment environment. Access to training data can 
also be problematic for users and external auditors, given 
the commercial value of these data and the sheer size of 
datasets.

Although direct access to the relevant data is likely to 
be useful, understanding the data processes is equally 
important. This information can be formalised with a 
datasheet25 and a data flow diagram. A datasheet provides 
an extensive description of the data generating process, 
dataset collection, dataset composition, and dataset 
processing and labelling. Datasheets can be extremely 
valuable during an audit, because the dataset composition 
(in particular, the training data composition) can suggest 
likely failure modes (for example, patient subgroups that 
are under-represented in the training data). Access to 
datasheets rather than the dataset itself should not be 
problematic and should be provided by the developers 
whenever possible. In addition to the datasheet, a data 
flow diagram should be available, which outlines the 
handling of data from point of acquisition to presentation 
to the algorithm. This flow diagram should include any 
preprocessing steps, such as data transformation and 
normalisation, as well as exclusions based on data quality 
and a traceability mechanism for unusable or discarded 
data.

The model itself is also important in the audit process. 
Basic information about the model design, version, and 
model developers should be collected as a minimum. 
Such information can be summarised in a model card.26 
If the artificial intelligence system consists of multiple 
components (eg, a segmentation step followed by a 
classification step27), artifacts should be collected for each 
individual component. If multiple audits have been 
conducted over time spanning updated versions of the 
artificial intelligence model, documentation regarding 
changes between updates and any published evaluations 
since the last audit should also be collected.

Although direct access to the model code and 
parameters (known as a white box audit) can be useful—
for example, by performing stress-testing of the artificial 
intelligence system by intentionally modifying input 
data to induce errors—this is rarely possible due to 
intellectual property concerns. Most of the benefit that 
access would provide can be equally obtained with the 
ability to test the model on new cases and receive model 
outputs, usually via a web portal or application 
programming interface (known as a black box audit). 
Developers should provide such a mechanism for users 
to perform independent local testing using represen
tative data samples, to ensure performance is as 
expected.

The evaluations performed previously on a given 
artificial intelligence system are extremely important 
during the preparation of an algorithmic audit. Typically, 
medical artificial intelligence development goes through 
several phases of evaluation, and artifacts of this process 
include internal and external evaluation summaries, 

published materials on preclinical and proof-of-concept 
testing, and summaries of any previous qualitative 
assessments or audits. Qualitative assessments might 
include developer and user experience materials, such 
as interviews, surveys, or other forms of feedback. Any 
results from previous explainability methods, such as 
saliency or attention maps, per-case feature importance 
measures, or feature visualisations, should also be 
collected at this stage.

In the context of the hip fracture audit,20 the com
ponents of the scoping and mapping phases were all 
collated, but additionally, the auditor secured access to 
the validation and test datasets with explainability 
artifacts or saliency maps for these cases, the hip fracture 
model itself, and documents related to model devel
opment and previous testing,28,29 including design 
documents for each component of the algorithm.

Testing
The most important part of the audit process, other than 
the implementation of recommendations, is the testing 
phase. It is also the hardest part of the process to 
standardise, because each artificial intelligence system 
faces different risks. Institutions are accountable for the 
choice to incorporate artificial intelligence systems into 
their clinical pathways, which necessitates the need to 
ensure their appropriateness and functionality for the 
patients they serve. Should an algorithm not perform as 
expected or if harm were to occur, an audit would provide 
a clear mechanism of showing institutional accountability.

We suggest several key components of testing of 
medical artificial intelligence systems during an 
algorithmic audit: exploratory error analysis, subgroup 
testing, and adversarial testing.

Exploratory error analysis
The auditors will review each example of algorithm 
error that has been provided (either from previous 
evaluations, or from detected errors or adverse events in 
deployment). Auditors will systematically examine false 
positive and false negative groups in the case of 
classification systems, or outliers with high numerical 
errors in the case of regression models. The aim of this 
process is to identify common elements among the 
errors (ie, specific types of case that might be more 
prone to error, as shown in the hip fracture detection 
example in figure 2), as well as examples of surprising 
errors (eg, a fracture detection model missing an 
extremely obvious fracture, as shown in figure 2E, F). 
Given the contrastive nature of this method, access to 
cases correctly analysed by the artificial intelligence 
system can also be helpful.

Because this analysis is exploratory in nature, access to 
additional tools can be useful, which might require access 
to the algorithm itself or support from the algorithm 
developers. Examples of useful tools include artificial 
intelligence explainability methods, such as saliency 
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maps and feature visualisations for image data, attention 
maps, feature weights, or importance measures for text 
and tabular data. Similarly, data clustering methods have 
been shown to be useful for some audit tasks, such as 
cryptic subset detection.30 An example of the use of data 
visualisation is shown in figure 3A, where, in the absence 
of data normalisation, the largest modes of variation in 
brain MRI data after principal component analysis on the 
input images is between hospital sites. There is a high 
risk that a disease classification model trained on such 
data might pick up features associated with the site rather 
than the pathology (for example, if one site contributes 
more cases than controls). A careful data normalisation 
pipeline could mitigate such site differences, as shown in 
figure 3B. A model trained on the normalised data might 
be more robust when employed on new data. Although 
these exploratory tools are not powerful for risk 
assessment in isolation, they can be very useful during 
exploratory error analysis.

Subgroup testing
Subgroup testing, or secondary performance analysis, is 
widely used in medical and epidemiological research to 
investigate the possibility of confounding or stratification: 
patient or data variables that indicate a subset of cases in 
which performance will significantly differ from the 
overall cohort.

Importantly, subgroup analysis is not performed to test 
hypotheses. Given the reduction in power due to the 
lower sample sizes in subsets, as well as the inflated 

type 1 error rate (false positives) caused by multiple 
testing, these results should not be considered reliable or 
definitive in the same way that a primary analysis might 
be. Instead, the goal is to identify possible high-risk 
subpopulations within the target group. Although the 
subgroup analyses can be useful for identifying possible 
error patterns, these findings should be confirmed 
through investigation in a sufficiently powered sample.

There are three main forms of subgroup testing: 
patient-specific subgroup analysis, task-specific subgroup 
analysis, and exploratory error analysis-discovered 
subgroup analysis.

In a patient-specific subgroup analysis, the baseline 
characteristics table is used to describe important forms 
of variation in the dataset that might cause confounding 
relationships within the data or have wider implications 
on the results. Almost all studies report demographic 
and non-demographic characteristics of the study 
population, such as age, sex, ethnicity, socioeconomic 
status, disease severity, and comorbidities, and some 
studies also include information on geographical location 
and study site. Because these variables are often reported 
in the first table of a study manuscript, this is sometimes 
referred to as a table 1 subgroup analysis. These variables 
are highlighted during audit because they have well-
known stratifying relationships with disease and 
treatment outcomes, and, if they are included in a table, 
the data are readily available and the subgroup analysis is 
straightforward to perform. Many studies already report 
this information31–33 and an example is shown from the 
evaluation by Ting and colleagues31 of a retinal imaging 
artificial intelligence system (table 2).

The number of possible confounding and stratifying 
factors in medical artificial intelligence evaluation is near 
to infinite. A task-specific subgroup analysis seeks to 
analyse the most concerning of these factors and is 
informed by the FMEA risk analysis and risk priority 
number. Like the patient-specific subgroup analysis, the 
subgroups in the task-specific subgroup analysis are 
defined prospectively, based on an understanding of the 
clinical task, often informed by domain experts. The 
main difference between a patient-specific subgroup 
analysis and a task-specific subgroup analysis is that the 
subgroups are often cryptic (unlabelled) in task-specific 
subgroup analysis. It is often necessary to undertake 
additional labelling to identify data that are part of the 
subgroup of interest. Because it might require 
considerable time and resources to undertake the 
labelling of relevant data, the risk prioritisation 
performed in the FMEA might inform which additional 
labelling should be prioritised. Factors that might be 
considered in task-specific subgroup analysis include 
collision groups (such as a combination of features from 
the patient-specific subgroup analysis) and process 
variables, such as the scanner used to obtain medical 
images or the presence of artifacts of medical care within 
the data (eg, a chest drain on a chest x-ray for a patient 

Figure 2: Audit of a hip fracture detection system
An example audit of a hip fracture detection system20 showed that cases with abnormal bones or joints (Paget’s 
disease and femoral head deformity) were overrepresented among the errors. The overall error rate was 2·5%, 
but the error rate for this subset was 50%. (A, B) True negatives. (C) True positive. (D) False positive. (E, F) False 
negatives.
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being treated for pneumothorax [figure 4],13 or a surgical 
mark on the skin of a patient suspected of melanoma9). 
Special consideration should be given to data subgroups 
which would not be captured in a typical patient-specific 
subgroup analysis, such as visually distinct subsets in a 
medical image analysis task (eg, subsolid vs solid lung 
nodules).34 The task-specific subgroup analysis might 
also be informed by important clinical implications 
associated with certain subgroups, such as the need for 
diagnostic certainty when differentiating infectious from 
non-infectious skin lesions (because the treatment for 
non-infectious lesions, topical steroids, will often worsen 
infectious lesions and might make subsequent diagnosis 
more difficult).35

During the exploratory error analysis process, distinct 
subgroups of error cases or error features might be 
identified, which are not considered during patient-
specific subgroup analysis or task-specific subgroup 
analysis. Of note, whereas the subgroups in a task-specific 
subgroup analysis are defined prospectively based on 
expert knowledge, exploratory error analysis might 
identify new subgroups, which should then be evaluated 
as if for a task-specific subgroup analysis or a patient-
specific subgroup analysis. However, unlike prospectively 
defined subgroups, subgroup cases identified during the 
exploratory error analysis are even less likely to be labelled 
and the auditor might need to invest time and resources 
to carry out further targeted labelling of the audit dataset. 
The risk priority number is helpful in this context, to help 
the auditor rationalise whether this investment is 
necessary. In the hip fracture detection audit,20 the 
discovery of algorithmic errors in cases with abnormal 
bones prompted an additional labelling exercise of all 
hips with abnormal bones and joints to find that the error 
rate in those cases was 50%, compared with 2·5% in the 
overall dataset (figure 2).

Adversarial testing
Major unpredictable changes to input data are generally 
less of a concern in medical settings (in which data 
generation and processing are heavily standardised and 
monitored), but considering worst-case scenarios for 
targeted testing can be useful. The term adversarial here 
means actions that a hostile actor might take to break the 
artificial intelligence system, but in the medical context 
we could consider adversarial testing analogous with 
counterfactual reasoning, in which users can explore or 
simulate changes in data inputs to observe how the 
model behaves. This can be done in a safe environment 
to simulate high-risk situations and their potential 
consequences. For example, DeGrave and colleagues36 
used multiple adversarial testing approaches for a 
COVID-19 detection model for chest radiographs to show 
that the model can be misled by laterality markers and 
shoulder positioning.

Unlike subgroup analyses, adversarial testing might 
require access to the model itself. It could also be tested 

empirically through gathering real-world examples of 
specific subgroups for which performance is known to 
be poor, or by the use of simulated data that are expected 
to challenge the model. Although this is more common 
in tabular data, recent advances in generative models 
can allow for the simulation of more complex data, such 
as images and text. With either real-world or simulated 
data, the purpose of adversarial testing is to better 
understand the prevalence and source of errors in worst-
case subgroups.
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Figure 3: Principal component analysis of brain MRI data, without (A) and with (B)  data normalisation, 
across four hospital sites
Cam-CAN=Cambridge Centre for Ageing and Neuroscience dataset. IXI=information extraction from images 
dataset. UK Biobank data were accessed under application number 12579; Cam-CAN data were made available 
upon application; the IXI datasets are publicly available.
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Reflection
The final stage of the audit is a reflection on test results 
in light of the intended use and the intended impact as 
outlined in the scoping step. A final assessment of risk is 
formalised at this stage, risk mitigation strategies are 
proposed, and recommendations are made on whether 
the errors fall above the threshold for continued use of 
the artificial intelligence system. This decision will be 
specific to the clinical setting and the ability of the 
responsible team to mitigate risks. Those overseeing the 
algorithmic audit should be vigilant to deviations from 
the artificial intelligence system’s intended use. It might 
become apparent during testing when a mismatch 
between intended use and actual use has occurred, but 
additional auditing measures such as root cause analysis 
might be required to retrospectively determine whether 
errors were due to gaps between the intended and actual 
use. In any case, errors should be reported to the relevant 
regulatory bodies, especially if the errors found invalidate 
the artificial intelligence system’s intended use claims. It 
is also important to report errors even if adverse 
outcomes were mitigated through other measures in the 
health system (ie, near misses), because other deploy
ment sites might not have the same mitigation measures 
in place.

External validation dataset: 
non-referable eyes

External validation dataset: referable eyes Diagnostic performance of artificial 
intelligence system in external validation

No diabetic 
retinopathy

Mild non-
proliferative 
diabetic 
retinopathy

Moderate non-
proliferative 
diabetic 
retinopathy

Severe non-
proliferative 
diabetic 
retinopathy

Proliferative 
diabetic 
retinopathy

Diabetic 
macular 
oedema

Ungradable AUC 
(95% CI)

Sensitivity 
(95% CI)

Specificity 
(95% CI)

Community-based

Guangdong 5665 1235 737 0 154 0 108 0·949 
(0·943–0·955)

98·7 
(97·7–99·3)

81·6 
(80·7–82·5)

Population-based

Singapore Malay Eye 
Study

1143 215 113 18 9 53 28 0·889 
(0·863–0·908)

97·1 
(95·1–99·9)

73·3 
(70·9–75·5)

Singapore Indian Eye 
Study

1639 422 125 5 17 71 48 0·917 
(0·899–0·933)

99·3 
(95·1–99·9)

73·3 
(70·9–75·5)

Singapore Chinese Eye 
Study

759 131 60 1 7 17 10 0·919 
(0·900–0·942)

100 
(92·5–100·0)

76·3 
(72·7–79·6)

Beijing Eye Study 493 4 11 4 0 12 2 0·929 
(0·903–0·955)

94·4 
(72·7–99·9)

88·5 
(85·4–91·2)

African American Eye 
Disease Study

807 50 37 5 16 28 41 0·980 
(0·971–0·989)

98·8 
(93·5–100·0)

86·5 
(84·1–88·7)

Clinic-based

Royal Victoria Eye and 
Ear Hospital

432 121 159 123 191 249 125 0·984 
(0·972–0·991)

98·9 
(97·5–99·6)

92·2 
(89·5–94·3)

Mexican 38 284 192 51 18 223 3 0·950 
(0·934–0·966)

91·8 
(88·4–94·4)

84·8 
(80·4–88·5)

Chinese University of 
Hong Kong

224 114 235 43 11 96 0 0·948 
(0·921–0·972)

99·3 
(97·3–99·8)

83·1 
(77·9–87·3)

University of Hong Kong 1984 1485 155 14 0 214 1 0·964 
(0·958–0·970)

100 
(99·0–100)

81·3 
(80·0–82·6)

These data are taken from a study by Ting and colleagues31 and show the performance of their artificial intelligence model stratified by the clinical origin of the data. Reproduced with permission from 
JAMA 2016; 316: 2402–10. Copyright © 2016 American Medical Association. All rights reserved. AUC=area under the receiver operating characteristic curve.

Table 2: Example of a patient-specific subgroup analysis by dataset source or setting

Figure 4: Example of a task-specific subgroup analysis for a model detecting 
pneumothorax on chest radiographs
In this example, reproduced from Oakden-Rayner and colleagues,13 the artificial 
intelligence model learns to detect the artifacts of clinical care (chest drains) and 
fails to adequately learn the features of the pathology itself. AUC=area under the 
receiver operating characteristic curve.
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The feasibility of risk mitigation strategies will be 
specific to the deployment setting and they require 
regular review as clinical systems change over time. The 
measures that can be put in place also depend on who 
the auditor is and which aspects of the artificial 
intelligence system and health-care system they are able 
to modify. Developers might be limited by legal 
requirements, such that substantial changes to the 
artificial intelligence model, deployment infrastructure, 
or the intended use could require reconsideration by 
regulatory agencies.

Developer actions
Potential risk mitigation strategies to be taken by 
developers include modifying the artificial intelligence 
model, modifying the model threshold, or modifying the 
instructions for use or intended use.

Modifications of the artificial intelligence system 
could target any part of the system, but they might 
involve targeted retraining of the model itself. In 
general, the intention would be to train an improved 
version of the artificial intelligence model using more 
diverse and representative data, targeting areas of 
weakness by enriching the training dataset with 
examples of cases associated with errors. If further data 
are not available, a similar effect might be achieved by 
reweighting training examples (amending the attributed 
value of one case versus another) or rebalancing the 
training data to increase the relative value of these cases 
(amending the number of positive and negative cases), 
or by producing simulated examples of these error 
cases.

The model threshold in classification systems 
determines the cutoff to discriminate between positive 
and negative cases, and it is also known as the operating 
point. This can be altered without retraining the model—
for example, if user feedback suggests that the model 
produces too many false positives, shifting the threshold 
can reduce these (at the expense of increasing the rate of 
false negatives). The operating point of a model might be 
prespecified or suggested by the developers, but could 
also need tuning after deployment based on the specific 
clinical needs or performance at a particular site.

Modifications can also affect the non-model compon
ents of the deployed infrastructure and artificial intelli
gence workflow. These could include changes to data 
acquisition and preprocessing steps, or, in more extreme 
cases, modifying the intended use of the system. Such 
modifications could involve excluding some types of 
input data from the artificial intelligence system, 
changing how the model outputs are presented to the 
users, or even redefining the intended user group (eg, by 
increasing training requirements for users).

Clinical actions
Clinical actions can also be taken to mitigate risk, 
including continuing use with additional human 

oversight, modifying or limiting use of the model, or 
withdrawing its use. Some errors might be acceptable for 
continued use if the likelihood of harm is very low, or if 
the consequences can easily be mitigated given adequate 
human oversight. Depending on the use-case, reducing 
the level of autonomy of the artificial intelligence system 
and necessitating human verification might be sufficient 
to mitigate risks. In the FMEA, the risk prioritisation 
number could be informative because such errors would 
score low for severity or high for detection (or both). 
Human oversight might be implemented for all use or 
reserved for certain subgroups in which performance is 
known to be lower.

If modifiable risks are identified (eg, confounding 
visual features, such as laterality markers on chest 
radiographs), processes can be implemented to prevent 
recurrence (in this example, by standardising placement 
or the removal or digitisation of laterality markers in 
chest x-ray images). Thus, modifying the input data 
acquisition protocol or integrating additional pre
processing steps into the workflow to minimise the 
effects of spurious input data elements might be 
required.

If modifications are unfeasible or insufficient, limiting 
use of the artificial intelligence system on certain input 
data or subgroups that are prone to errors is another 
option. This strategy can be implemented if the subgroup 
can be identified upstream in the clinical pathway 
(eg, subgroups of certain demographic, input data type, 
or known task-specific feature variants that could be 
identified by the imaging technicians performing a scan) 
and those patients can be routed to an alternative care 
pathway. In the hip fracture detection audit,20 the risk of 
false positives in cases of femoral deformities was found 
to require further monitoring, with a potential 
modification of the intended use (to exclude cases with 
deformities) as an appropriate mitigation action, if they 
were confirmed to cause a failure mode. However, this 
option is not always feasible if the subgroups are not 
readily identifiable prior to analysis by the artificial 
intelligence system. There should also be consideration 
as to whether such modifications inadvertently legitimise 
a two-tier health system, with particular groups receiving 
worse care, compromising the principle of distributive 
justice.

The last option is withdrawal of the artificial intelligence 
system altogether and reverting to previous care models. 
If the likelihood of errors is so severe that continued use 
of the algorithm is no longer safe or ethical, the only 
option is to stop use of the artificial intelligence system 
until modifications can be made. The potential harms of 
sudden and complete withdrawal of the artificial 
intelligence system should be weighed against the harms 
caused by continued use with or without modifications 
and limitations.

An alternative method to consider is the use of so-
called hard stop thresholds, which are common 
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components of medical device deployments.37 These 
involve prespecified minimum performance levels, and 
if performance falls below the threshold during ongoing 
and active monitoring, then the device is immediately 
removed from use. These thresholds can be jointly 
agreed with all relevant stakeholders and informed by 
relevant organisational values (including equity and 
justice). Prespecification of actions can simplify the often 
complex decisions on whether to stop use if the hard stop 
threshold is met.

Algorithmic audit summary report
Findings of the medical algorithmic audit are sum
marised in a report, which includes all collected artifacts, 
the FMEA, datasets, test results, risk mitigation plans, 
and final decisions made. Any learning derived from the 
audit process that extends beyond the current application 
should be recorded to assist future artificial intelligence 
evaluations or deployments. Key audit findings that carry 
direct implications on clinical care should also be 
disseminated to users. Updates or changes made to the 
artificial intelligence system should be made apparent to 
the user, ideally with reasons reported. A frequent and 
open dialogue of findings from the algorithmic audit 
summary report should be shared between developers 
and users.

Conclusions
Artificial intelligence systems for health care could bring 
considerable benefits to patient care, but, like any other 
medical intervention, they also have the potential to 
cause harm. For artificial intelligence systems, the nature 
of errors might make them particularly difficult to 
identify, explain, and mitigate. At a time when artificial 
intelligence systems are being rapidly adopted into 
clinical care, providing a framework for ongoing 
performance monitoring and scrutiny of error and harm 
is essential. Implementation of artificial intelligence 
systems can be especially high risk, given that it often 
coincides with the establishment of new clinical pathways 
with no clear comparators for expected outcomes or 
standards for quality (such as the creation of new 
telemedical and virtual care pathways).

Of note, although many artificial intelligence systems 
are supported by evidence showing superior or equivalent 
performance compared with human experts, such 
monitoring of human performance is not routinely 
carried out in a task-specific fashion in clinical practice. 
In fact, whereas clinical artificial intelligence evaluations 
have provided valuable insights into human performance 
by measuring and benchmarking human performance at 
specific diagnostic tasks, routine monitoring of human 
grader accuracy, such as those introduced by UK national 
screening programmes for diabetic retinopathy38 and 
breast cancer screening,39 is not performed for most 
other clinical tasks. Gaining an understanding of human 
performance will not only reveal for which tasks artificial 

intelligence systems truly provide value, but should also 
drive improvements to the standards of care among 
clinicians.

The medical algorithmic audit proposed here is a 
process to investigate and pre-empt errors and harms 
that could be caused by artificial intelligence systems. 
It is a general framework which promotes thoughtful 
interrogation of errors and unexpected results in evalu
ations both before and during real-world deployment. 
Performing the audit requires clinical and technical 
expertise and contextual knowledge for anticipating the 
potential effects of the deployment environment, which 
might expose vulnerabilities of the algorithm and 
increase the likelihood of errors.

One question yet to be answered is who should 
conduct the medical algorithmic audit. The skills and 
knowledge required to undertake such an audit cross 
computational, bioinformatics, and clinical skill sets, 
and are not taught in combination in standard medical 
curricula. In order to fulfil this responsibility, health 
providers need to invest in upskilling clinical personnel 
to oversee the piloting, deployment, and ongoing 
monitoring of artificial intelligence systems, broadly 
described as the science of algorithmovigilance.40 In 
the UK, the need to invest in digital leaders with the 
necessary capabilities (such as clinical information 
officers) has been recognised by the National Health 
System and Health Education England.41,42 In Australia, 
the Royal Australian and New Zealand College of 
Radiologists have recommended that medical imaging 
departments and practices appoint a responsible 
radiologist with the necessary skills and knowledge to 
perform regular algorithmic audits of artificial intel
ligence systems in deployment.43 In both nations, 
concerns have been raised that appropriately trained 
clinicians are rare, and that there remains considerable 
work to build an artificial intelligence-ready workforce. 
Structured processes and guidelines, such as the 
ones described here, are necessary to accelerate the 
development of quality and safety assurance capabilities 
for artificial intelligence in clinical settings.

Ultimately, the responsibility and benefits of 
investigating and improving the safety of the artificial 
intelligence system is shared between developers, health-
care decision makers, and users, and should be part of a 
larger oversight framework of algorithmovigilance to 
ensure the continued efficacy and safety of artificial 
intelligence systems. For the medical algorithmic audit 
to have the highest chance of success, we advocate for the 
process being carried out jointly between these 
stakeholders, so that each party enables the other in 
developing a deeper and more contextualised insight into 
the findings and possible mitigation strategies.
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