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Abstract

We study properties of the turbulent/non-turbulent interface (TNTI) between two layers of strat-

ified fluids through direct numerical simulations (DNS). Zero mean shear forcing creates moderate

turbulence in one of the layers with the Taylor microscale Reynolds numbers in the mixed region

of Reλ = 35, 44. We focus on the similarities and differences of the properties of stratified TNTIs

due to two distinct types of forcing: a) convection due to a boundary heat source, and b) agitation

resembling a vertically oscillating grid experiment.

Similarly to other stratified flows, the small scale dynamics of the TNTI in the present DNSs

differ from what would be expected in comparable yet unstratified TNTIs. The interface cannot

be indeed uniquely identified by the commonly used vorticity ω. Instead, the potential enstrophy

Π2 is shown to be the most appropriate marker in these flow cases. It is emphasized that the

Kolmogorov lengthscale ηK ∼
√
ν/ω is not representative of the small scale dynamics of the

interface. Hence, a new lengthscale, ηΠ, is defined, in analogy to the Kolmogorov scale, based on

the potential enstrophy, ηΠ = (ν3/Π∗)
1/6, being Π∗ = |g/ρ0Π|. The conditionally-averaged profiles

of potential enstrophy Π2, enstrophy ω2, and turbulent kinetic energy dissipation ε of the two

distinctly different turbulence forcing cases collapsed when scaled by ηΠ at different time instants

in each simulation. This implies not only the self-similarity of the small scale statistics of the

TNTI in either of the two cases, but also the similarity between the statistics of the two different

turbulent flows in the proximity of TNTI.
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I. INTRODUCTION

Entrainment across turbulent/non-turbulent interfaces (TNTI) in stratified fluids is im-

portant for a vast set of applications, such as the dynamics of the ocean, atmospheric

pollution dispersion, and the spread of contaminants [1]. Entrainment is responsible for the

mixing and exchange of mass, energy, momentum and scalar quantities between the fluid

regions [2, 3].

In unstratified cases, the turbulent flow can propagate into the irrotational region, moving

the TNTI by viscous action, defined by small Kolmogorov-sized scales [4, 5]. The TNTI

itself can be subdivided into viscous sublayer (VSL), as proposed by [4] with an estimated

thickness of the order of the Kolmogorov lengthscale ηK , and turbulent sublary (TSL) [5–7],

depending on the relative magnitude of viscous diffusion and turbulent vorticity, ω.

The VSL is a result of the process by which vorticity diffuses into the quiescent region.

The lengthscale associated with this phenomenon is controlled by the viscosity ν and the

dissipation (the squared rate of strain), which is comparable in magnitude to enstrophy,

ω2. Therefore, the lengthscale, after appropriate dimensional analysis, could be
√
ν/ω, that

corresponds to ηK up to a multiplicative factor of 2 [8–10]. The thickness of the TSL,

responsible for the increase in vorticity between the viscous sublayer and a fully turbulent

region, is defined as the thickness of the enstrophy jump. Results in [11–14] show that

the turbulent sublayer thickness is of the order of magnitude of the Taylor lengthscale, λ.

More recently, [15] demonstrated theoretically and experimentally, that specifically in non-

equilibrium turbulence the entrainment velocity scales with the Taylor velocity vλ, rather

than Kolmogorov velocity scale.

In general, the TNTI can be defined using the sharp change in magnitude of enstrophy,

by a passive scalar or density/temperature [16, 17]. Differences may arise in the interface

identification by different markers [18]. This is explained by different governing processes

near the TNTI: viscous diffusion versus molecular diffusion. The differences depend on the

values of Prandtl or Schmidt numbers and for high Pr, Sc� 1 this may affect the statistics

conditioned on TNTI [19–21].

In stratified fluids the flow physics is more complex because turbulence is also respon-

sible for the irreversible mixing of the entrained fluid that changes its properties [22, 23].

Substantial insight into stratified mixing without mean shear was obtained in experiments
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with employed a vertically oscillating grid in a two-fluid layer system [24–26].

A characteristic feature of stably stratified fluids is the presence of internal waves that

are triggered by the turbulent agitation and propagate through the fluid at angles that are

determined by the local stratification. Researchers addressed the internal waves generated

by the turbulent wake of a sphere moving horizontally in a linear stratification both ex-

perimentally [27, 28] and numerically [29]. Internal waves due to turbulence mechanically

activated by grids were studied in the laboratory and simulations in a linearly stratified

fluid [30, 31].

Internal waves in stratified fluids can produce vorticity in the previously quiescent

zone [32]. Therefore, vorticity is not anymore a reliable marker of the turbulent/non-

turbulent interface [19]. Therefore, in stratified turbulent flows, the potential vorticity

Π = ω ·∇ρ (where ρ is density), which is not transferred by the internal waves [33], was

suggested to identify turbulent regions [31]. Even if its advantage in the study of the

atmospheric convective boundary layer has been questioned [34], because the enstrophy

varies several orders of magnitude between the turbulent side and the gravity waves in the

free troposphere, Π has been successfully used to mark the non-turbulent and turbulent re-

gions [31]. Potential enstrophy was also used in conjunction with enstrophy to identify TNTI

in DNS of turbulent stratified wake [19]. Recently Π was effectively used to detect the TNTI

in shear-driven, linearly stratified, turbulent flow DNS [35]. The authors [35] performed

in-depth analysis of ω and Π budgets, and estimated the interface thickness, studying flow

properties near TNTI as the function of the buoyancy Reynolds number, Reb = (LO/ηK)4/3,

which accounts for the effects of turbulence and buoyancy, where LO =
√
ε/N3 is the

Ozmidov lengthscale, and epsilon, N are the turbulent kinetic energy dissipation rate and

buoyancy frequency, respectively.

One of the open questions in respect to the physics of the stratified fluids interfaces, is

whether a large-scale forcing on the turbulent side affects small-scale TNTI properties. We

studied this aspect numerically through a comparative analysis of two stratified turbulent

flows: one generated by a convective forcing through a boundary buoyancy flux, and another

using a mechanical type of forcing, analogous to a vertically oscillating grid, both without

mean shear.

We demonstrate that the statistics in the VSL scaled with the lengthscale ηk [4] has to

be adjusted for the stratified turbulent cases. At least in the range of the Reynolds numbers
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of this work and for shearless forcing types we present. Another small-scale lengthscale, ηΠ,

defined with ν and Π, is developed. We then present the statistics scaled with ηΠ, that show

the small-scale self-similarity in the TNTI region for the two different flow cases, irrespective

of their large scale forcing type.

II. METHODS

Two cases with shearless turbulence are simulated: an oscillating grid turbulence case

(hereafter denoted as G) and a convective boundary layer case (C). The direct numerical

simulation is performed using the SPARKLE software, which integrates the incompressible

Navier-Stokes equations in the Boussinesq approximation [36, 37]:

∂ui
∂t

+ uj
∂ui
∂xj

= − 1

ρ0

∂p

∂xi
+ ν

∂2ui
∂x2

j

+ bδi3 (1)

∂b

∂t
+ uj

∂b

∂xj
= κ

∂2b

∂x2
j

(2)

∂ui
∂xi

= 0 (3)

where ui is the velocity vector, b = g(ρ0−ρ)/ρ0 is the buoyancy, ν is the kinematic viscosity

and is κ the molecular diffusivity, g is the gravitational acceleration and ρ0 is a reference

density. Eqs. (1)-(3) use Einstein notation, where i = 1, 2 represent the horizontal com-

ponents, x, y, and i = 3 is the vertical direction, z. The code is fully parallelised, making

use of domain decomposition in two directions. The spatial differential operators are discre-

tised using second-order, symmetry preserving central difference [38] and time integration is

carried out with an adaptive second-order Adams-Bashforth method [36].

Both simulations have periodic boundary conditions applied at the lateral walls and free-

slip conditions at the upper and bottom boundaries. At t = 0, the fluid is at rest and has a

two-layer stratification with its interface at z = h0 ≡ h(t = 0). h corresponds to the mixing

layer depth, described in Section II D. We choose ρ0 to be the density of the bottom layer,

which leads to b0 = 0 for z < h0 and bref = ∆b for z > h0.

A. Grid turbulence simulation

The grid-generated turbulent flow (case G) is a DNS in a cuboidal domain of size Lx ×

Ly ×Lz = h0 × h0 × 2h0, on the 360× 360× 720 mesh. The oscillating grid is implemented
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using a standard immersed boundary method, with a motion of the form

zgrid(t) = zgrid0 + 0.5S sin(2πft), wgrid = 0.5S 2πf cos(2πft), (4)

which is imposed by setting the velocity in the region occupied by the grid equal to

(0, 0, wgrid), a qualitative representation of case G is showed in fig. 1a. To preserve the

incompressibility of the fluid, the Poisson solver for pressure is called right after the compu-

tation of eq. 4. Similar simulations with this forcing type were implemented several times

in different contexts [39–41].

Key parameters of the oscillating grid case are the mid-stroke position of the grid,

zgrid0/h0 = −0.467, the stroke length S/h0 = 0.267 and the dimensionless oscillation fre-

quency f t∗ = 42, where t∗ = L/u′RMS is the turnover time, u′RMS the horizontal (longitudinal

u′ and transverse v′) velocity fluctuations root mean square, and L is the integral length-

scale [42]. The thickness and the mesh size of the grid are a/h0 = 0.03 and M/h0 = 0.2,

respectively. These were chosen to resemble an oscillating grid with solidity of 0.31, similar

to the experiments performed in [43]. The parameters are set to develop a well mixed

turbulent layer in proximity of the initial buoyancy discontinuity located at h0.

The Reynolds number is computed similarly to the experimental studies as Re =

u′RMSL/ν = Kgβg/ν [42, 43], where Kg is the so-called grid action, and βg is an em-

pirical constant that depends on the grid characteristics S, f,M [44]. This approach is

based on empirical relationships that define u′RMS and L with the oscillating grid character-

istics: u′RMS = Kg/d , L = βgd , where d ≡ z− zgrid0
is the distance from the grid mid-stroke

position. The results of the model [42] for Kg and βg are shown in Fig. 1.b-c, respectively.

B. Convective boundary layer simulation

The convective case (C) is simulated with a steady vertical heat flux qw = −κ∂θ/∂z

applied at the bottom boundary. The three-dimensional volume has Lx × Ly × Lz = 4h0 ×

4h0×2h0 size, with a computational resolution of Nx×Ny×Nz = 720×720×360. Similarly

to G, this case also develops a fully mixed region between the turbulence source at the

boundary and the initial density jump at h0. In the case C the characteristic velocity of the

convective mixed layer is U = (βgqwh0)1/3 [45], with β the thermal expansion coefficient,

and the characteristic lenghtscale is L = h0. The Reynolds number for the case C is
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FIG. 1. Oscillating grid DNS case G: (a) 3D representation of the grid within the domain at

t/t∗ = 3.8, the colored fields represent the fluid vertical velocity; (b) spatial distribution of u′RMS

and (c) longitudinal integral length scale as function of the distance from the grid d.

Re = UL/ν = 1260.

C. Further simulation details

Both simulations were performed for a period trun, but all the results in section-III are

computed after trun/2 in order for the system to reach quasi-stationary condition. Details

are summarized in table I. In addition to the domain sizes Ni=x,y,z,Li=x,y,z and the large scale

Reynolds number Re, table I reports other key parameters: the Taylor micro-scale Reynolds

number, Reλ = uTλ/ν, and buoyancy Reynolds number, Reb, which are more relevant for

comparison of the well mixed layers due to different large scale forcing, and near the TNTI,

respectively. Both parameters are given for two locations: at z = h, and closer to the

turbulence source, in the well mixed region, where stratification effect is negligible (LO �

ηK). Reλ is computed using the Taylor micro-scales uT ≈
√

2k/3 and λ =
√

10νk/ε, utilising
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TABLE I. The DNS cases main features.

Nx Ny Nz Lx Ly Lz/h
3
0 Pr Re trun/t

∗ Reλ(z = h) Reλ(z = 0.7h) Reb(z = h) Reb(z = 0.7h) Ri ∆z/ηK

C 7202 × 360 42 × 2 1.25 1260 16 13 44 0.210 105 240 0.91

G 3602 × 720 12 × 2 1.25 92 6 8 35 0.125 21000 30 1.44

the turbulent dissipation rate, ε, and the turbulent kinetic energy k = 1
2
(u′2 +v′2 +w′2). The

buoyancy Reynolds number Reb, commonly representing turbulence intensity in stratified

flows relates the influence of buoyancy and small-scales turbulence. The Ozmidov scale is

computed with the frequency N defined as (g db/dz)1/2. The strength of the stratification

is estimated with the bulk Richardson number Ri. It is defined as Ri = ∆bh/k, where

k = k(z = 0.7h). The Prandtl number is set to Pr = 1.25, for both (G) and (C), to increase

viscosity over molecular diffusivity.

D. Horizontally-averaged statistics

Before presenting the conditional analysis, the basic statistics of the two cases are dis-

cussed. Fig. 2 shows the spatial distributions of key flow properties of the two DNSs empha-

sizing their common features and differences. The horizontally-averaged profiles of buoyancy

b, turbulent kinetic energy k, the diffusive flux κφB (being φB = db/dz), and the turbulent

buoyancy flux w′b′, are shown for the two DNSs (C in the top row and case G in the bottom

row). The quasi-stationary temporal evolution of these quantities is shown by color shades

as explained in the legends. The profiles are horizontally averaged, with further averaging

over one turn-over time scale t∗. Since the emphasis of this paper is on the entrainment

properties of different flows, the profiles are normalised by the value at the mixed layer

depth h. The mixed layer depth h is diagnosed via the minimum of the diffusive buoyancy

flux φB (or equivalently the inflection point of the mean buoyancy). bφE and kφE are then

the buoyancy and the turbulent kinetic energy, sampled at z = h. The entrainment flux φE

was determined following [46] by extrapolating the linear profile of the total buoyancy flux

to the boundary layer depth h.

The horizontal dotted lines in G case (Fig. 2e-h, at -0.6 and -0.33), mark the stroke of

the grid. Since the fluid velocity in this region is directly affected by the oscillating grid

motion, the corresponding volume is excluded from the conditional analysis in section III B.
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(e) (f) (g) (h)

(a) (b) (c) (d)

FIG. 2. Vertical profiles of case C (upper row), and G (lower row) over time: (a)-(e) buoyancy;

(b)-(f) turbulent kinetic energy; (c)-(g) diffusive flux; (d)-(h) turbulent flux.

The negligible differences between the curves with different shades, corresponding to the

prescribed time intervals emphasize that the systems have reached their quasi-steady state

regimes, for all the relevant quantities. Moreover, Fig. 2a,e and 2c,g show that both simu-

lation results have similar profiles for buoyancy and diffusive fluxes. This is one of the key

similarity points of the two cases. It is also clear that, in the time needed to reach quasi-

steady condition, the molecular diffusion causes the buoyancy profile to transition from the

initial step function profile, with discontinuity at z = h0, to a continuous profile with a

transitional region at about z ≈ h. The existence of this layer supports a region in which

internal waves can propagate.

Despite the similarity in flux profiles, the two cases are different in their mechanisms:

the convective C case produces turbulence via buoyancy w′b′ over the entire mixed layer

(apart from the entrainment zone in which w′b′ is negative), whilst for the grid case G, the

turbulence is generated at the grid and then transported through the mixed layer. Here,

the buoyancy flux is negative throughout the mixed layer, which goes at the expense of

the turbulence kinetic energy. This is evident in the profiles of turbulence kinetic energy,
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which are substantially different (Fig. 2b,f). Fig. 2b presents relatively large values of

k throughout the bottom half of the domain before a sharp drop at (z − h)/h < −0.2.

For the G case, Fig. 2f, TKE decays with the reciprocal of the distance from the grid as

k1/2 ∼ u′RMS = Kg/(z − zgrid0
) [42, 47], right below the region of the direct agitation by the

oscillating grid.

III. RESULTS

A. Definition of the turbulent/non-turbulent interface position

As mentioned in the introductory section, there are several possible definitions of TNTI.

In unstratified cases, vorticity is used to separate rotational from irrotational fluid, based

on either vorticity or enstrophy thresholds, ω2 ≥ ω2
th. An appropriate threshold is chosen

such that the conditional statistics near the TNTI do not significantly depend on its value,

e.g. [5, 8]. It is typically supported by the plot of the turbulent volume as a function of

enstrophy, which exhibits a plateau at a properly chosen ω2
th. It is also possible to visualize

the interface position; its shape that should not vary strongly depending on the value of ω2
th,

see e.g. [6, 48].

In stratified cases, vorticity can be produced in the environment by internal waves [32, 49].

This situation complicates the use of ω2
th as a TNTI marker. This may be especially relevant

for low and moderate Reynolds numbers [34]. Conversely to ω2, Π2 is produced by viscous

and diffusive effects [19]. Initially irrotational fluid regions, may acquire potential enstrophy

only by turbulence-related mechanisms (like entrainment) but not through internal waves.

Figs. 3.a-b and 3.d-e show a 2D vertical cross-section (C) and (G) simulations, respec-

tively, presenting the potential enstrophy (fig. 3.a-d, and enstrophy (fig. 3.b-e with the

former exhibiting a clear boundary between the turbulent and non-turbulent fluids. Note

that the vertical axis is relative to the mixed layer depth h defined in the previous section,

and it is clear that the instantaneous TNTI is situated about 20% higher than h. The

instantaneous values of ω2 can be seen to extend even further up, and are a result of the

smooth stratification produced by molecular diffusion and to the relatively low values of Re

which allow internal waves to propagate into this region. We experimented with a large

number of indicators for TNTI, including enstrophy, and hybrid indicators [19], but in all
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FIG. 3. Case C (upper row) and G (lower row): vertical cross-section of (a)-(d) normalised Π2, (b)-

(e) normalised ω2, (c)-(f) turbulent volume fraction as function of Π2. Black lines mark: threshold

(solid), 1/5 of threshold (dashed), 1/10 of threshold (dotted)

other cases the results were unacceptably sensitive to the chosen threshold. Only potential

enstrophy turns out to be a robust indicator for the TNTI, provided that the threshold is

chosen sufficiently small. Fig. 3.c-f shows the turbulent volume fraction VT as a function of

Π2, normalized by its mean value 〈Π2〉 computed over the turbulent and quiescent regions

(excluding the volume spanned by the oscillating grid in G). It is clear that VT is only weakly

dependent on the exact value near the chosen threshold: 4× 10−6〈Π2〉 for case C DNS and

1.6× 10−6〈Π2〉 for case G.

B. Comparison of the near-interface dynamics between the two cases

It is generally expected that the significant properties for the near- interface turbulent

dynamics, driven by the viscous diffusion of vorticity into the irrotational region, are the
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kinematic viscosity ν and vorticity ω [4, 8, 9]. The most relevant lengthscale in this region

is the Kolmogorov scale, ηK ∼
√
ν/ω (derivable from the more common expression ηK =

(ν3/ε)1/4 using the relation: ε = 2νω2, valid in homogeneous isotropic turbulence [50, 51]).

Therefore, for the following comparison of the small-scale near-interface dynamics of the two

DNS cases in Fig. 4-5 we normalize the distance to the interface, z∗ = z− zI where zI is the

interface position, by ηK computed at the TNTI. We want to check if some similarities in

the conditional profiles of Π2, ω2, k, and ε in Fig. 4(a,c,e,g) can be found. These quantities,

scaled by ηK do exhibit good self-similarity in time for each DNS separately. The conclusion

one has to draw from these results is that the two simulations – despite both being driven by

shearless turbulence - do not produce the same dynamics near the TNTI, with the turbulent

quantities in C changing much more slowly as a function of z∗/ηK than G.

However, in the choice of the threshold indicator, it was quite clear that the enstrophy

was not suitable for these cases. Since the potential enstrophy Π2 was shown to be a robust

TNTI indicator, it stands to reason to define a new local lengthscale

ηΠ =

(
ν3

Π′

)1/6

(5)

where Π′ is defined as

Π∗ = |ω · ∇b| = | g
ρ0

ΠI | (6)

and ΠI the square root of the threshold of potential enstrophy. ηΠ defines the relevant scale in

cases when the vorticity evolves not only through viscous diffusion, but also by stratification

effects. In stratified cases Π2 can only enter the non-turbulent region via molecular effects.

Therefore, applying a dimensional analysis using Π and ν to obtain a length-scale, ηΠ is the

natural small-scale lengthscale.

The flow properties scaled with ηΠ for both DNSs are reported in Fig. 4(b,d,f,h). The

key result is that the two simulations exhibit remarkably similar behaviour near the TNTI,

when scaled based on ηΠ. Indeed, for Π2, ω2 and ε, the profiles of (G) and (C) are nearly

indistinguishable for z∗/ηΠ > −10. Only the kinetic energy for the two cases deviates deeper

into the non-turbulent layer (z∗/ηΠ > 5).

Comparison of profiles of potential enstrophy and enstrophy in Fig. 4b,d further high-

lights the effectiveness of the proposed method for TNTI detection and the use of the new

lengthscale. Not only Π2 presents a larger magnitude in the “jump” across the interface as

in [35], Π2 curves also show a clear change in slope, with the presence of the inflection point
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 4. Vertical conditional profiles of: (a)-(b) Π2, (c)-(d) ω2, (e)-(f) k, (g)-(h) ε scaled with ηK

(left column) and ηΠ (right column). G: black curves; C: red curves.

at z∗ ≈ 0, and a distinct boundary between the turbulent and the non-turbulent regions

which is sharper as compared to ω2.

To provide a precise value for the TNTI thickness δI we followed the procedure proposed

in [35] based on a fit of Gaussian shape to ∂Π2/∂z. This procedure yields δI ∼ 10ηΠ for

both C and G. It is noteworthy that, in the stratified shear driven flow [35] δI increased

with decreasing Reb, as the flow evolved in time. It remains to be studied whether this effect

is present in shearless stratified cases on a larger range of Reb.

For completeness, we also computed the TNTI thickness with the Kolmogorov length ηK

scaling: both DNSs present constant behaviour in time, however the difference in δI is larger
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(a) (b)

(c) (d)

FIG. 5. Vertical conditional profiles of: (a)-(b) Reε, (c)-(d) w′b′ scaled with ηK (left column) and

ηΠ (right column). C: red curves; G: black curves.

between C and G than the results obtained from the ηΠ. In case G δI = 10ηK , while in C

we obtain δI = 15ηK .

We further compare the two cases and the scaling with the viscous lengthscale versus

the new lengthscale in Fig. 5 presenting the turbulent Reynolds number Reε = k2/(νε) and

the turbulent buoyancy flux w′b′. Here, no collapse is observed in either of the lengthscales.

Both turbulence Reynolds numbers are O(1) at the TNTI; the convective driven case C

is more strongly agitated compared to the grid case G in the turbulent region, leading to

higher values of Reε. This is possibly caused by the different nature of forcing type. The

turbulent fluxes shown in Fig. 5c-d reflect, similarly to Reε, the different types of turbulent

agitation of the two cases in the turbulent regions and the change from negative to positive

values of w′b′ that leads to a local maxima in the interfacial layer.
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C. Vorticity structure in the near TNTI region

One of the key questions is whether the vorticity dynamics is different between the two

cases. We address this question by studying the alignment of vorticity vectors with the TNTI

isosurface, conditionally sampled at different distances from the interface. The alignment

of two three-dimensional vector fields can be characterised through the alignment angle θ,

which is defined as cos θ = ω · n/|ω||n|, where n is the normal to the TNTI surface [52]. The

alignment is analysed through the conditional mean profiles and PDFs of cos θ, in Fig. 6.

We observe a strong alignment between vorticity and the TNTI surface, similar to the

results in [52]. This is expected at the TNTI interface, including stratified flow cases,

since according to Helmholtz second theorem a vortex filament either extends to the fluid

boundaries or forms a closed path [53], hence vortical tube-like structures, associated to

turbulence, could not end inside the fluid. Evidence for the above statement is shown in

Fig. 6a: a plateau at −10 < z∗/ηΠ where the minimum value of 〈cos θ〉 is approximately 0.3

for both DNSs.

The PDFS of cos θ at three distance intervals are shown in Fig. 6b,c,e. The PDFs in

the interval [−20,−15]ηΠ show that in the turbulent regions the vorticity angles are almost

uniformly distributed and there is no preferential alignment. A lower Reynolds number in

the G case compared to the C case is probably the reason for the small bias in the alignment.

However, when getting closer to the TNTI, as in panels Fig. 6c,d that represent the intervals

[−10,−5]ηΠ and [−2.5, 2.5]ηΠ respectively, we observe that the most frequent angle between

ω and n is cos θ = 0 similarly to [52], confirming a tendency of ω to align with the TNTI.

IV. SUMMARY AND CONCLUSIONS

We presented a DNS study of the TNTI in shearless stratified turbulent flows, with a

buoyancy jump between two layers. We focus on the question of similarity at small scales

in the proximity of the interface of two fluid cases, forced by two distinctly different ways:

convective forcing using a constant heat flux versus an agitation resembling an oscillating

grid.

We confirmed that in the stratified cases considered here, the common approach to iden-

tify the TNTI based on the enstrophy threshold is not reliable, since ω2 is no longer repre-
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(a)

(b) (d)(c)

FIG. 6. Alignment of ω with the TNTI normal n. C: red curves; G: black curves. (a) vertical

profiles of 〈cos θ〉. PDFs of cos θ at different intervals height: (b) −20 < zI/ηΠ < −15; (c)

−10 < zI/ηΠ < −5; (d) −2.5 < zI/ηΠ < 2.5.

sentative of the viscous processes across the turbulent/non-turbulent boundary alone, but

can also contain contributions from internal waves. The latter were caused by the interac-

tion of the turbulence with a stratified layer which developed due to molecular diffusion.

Hence the potential enstrophy Π2, which is not affected by stratification related phenomena,

need to be used to define TNTI in both shearless cases, similarly to [19, 35]. Based on the

analogy between the enstrophy ω2 and potential enstrophy Π2 we defined a new lengthscale

ηΠ. Using this lengthscale, the basic TNTI statistics for the two cases collapsed onto each

other. Furthermore, the lengthscale clearly distinguished between the turbulent region and
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the near-TNTI region in the slopes of the profiles of turbulent properties. The near-TNTI

region defined by the new lengthscale also reflects the fact that the vortical structures realign

to the interface within this region (while being randomly oriented in the turbulent core).

However, there were also indicators that did not collapse onto one curve, such as Reε and

the turbulent heat-flux w′b′.

In light of the intriguing results for the new lengthscale ηΠ, it will be crucial to explore

the behaviour for these flow cases at higher Reb and also for other canonical flows, such as

a stratified wake. Furthermore, it may be interesting to analyse the various terms of the

potential enstrophy equation, to obtain more detailed description of the physical phenomena

that influence Π2, similar to the study of [35]. It is also interesting to test if this scale has

presence in the small-scale dynamics of turbulent linearly stratified flows.
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[9] M. Holzner, A. Liberzon, N. Nikitin, B. Lüthi, W. Kinzelbach, and A. Tsinober, A lagrangian

investigation of the small-scale features of turbulent entrainment through particle tracking

and direct numerical simulation, J. Fluid Mech. 598, 465 (2008).
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