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Abstract
This article provides a survey of key papers that characterise computable functions, 
but also provides some novel insights as follows. It is argued that the power of algo-
rithms is at least as strong as functions that can be proved to be totally computable 
in type-theoretic translations of subsystems of second-order Zermelo Fraenkel set 
theory. Moreover, it is claimed that typed systems of the lambda calculus give rise 
naturally to a functional interpretation of rich systems of types and to a hierarchy of 
ordinal recursive functionals of arbitrary type that can be reduced by substitution to 
natural number functions.
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1  Introduction

This paper concerns the sorts of functions that can be computed by a human or a 
finite machine. For the sake of definiteness, computable functions have to start with 
a finite input (coded as a natural number) and produce a finite output (a natural num-
ber again). This paper will concentrate on functions which always produce natural 
number output given natural number input (that is to say, the total functions), since 
they can be characterised in terms of logical systems more readily, and are desirable 
in practice (since no-one wants a program which given some input gets stuck in an 
endless loop and never returns any output).The emphasis is on the computable func-
tions themselves in systems of the typed lambda calculus and corresponding logical 
systems. This paper does not include any material on higher order recursion theory, 
which is a very rich area (see Longley (2005) for a survey), primarily because of the 
emphasis of higher order recursion theory on relative rather than absolute computa-
bility, but also because higher order computations require a hypercomputer to realize 
(see Koepke and Seyfferth (2009) for a realization of ordinal recursion on an ordinal 
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computer with an infinite tape indexed by transfinite ordinals). That is not to say that 
computable total natural number functions do not involve higher order structures 
(such as impredicative logical systems and transfinite ordinals), but the emphasis is 
on what a finite computer (with unbounded memory) could actually compute. There 
is a fine line here, but the distinction lies at any point where the results of a previous 
computation that could not be performed by a finite computer (Turing machine) are 
required to complete a computation.

There is a focus in this paper on typed systems of lambda calculus. To informally 
introduce the typed lambda calculus, a type is a property of a set of objects. It is 
usual to allow that types and their objects are definable by finite expressions, the 
finite expressions defining objects being called terms. Terms in the lambda calculus 
are variables and (in some systems) constants, functions (written using the lambda 
symbol) and the application of functions to previously defined terms. The process 
of moving from the application of a function to a variable to the function is called 
abstraction, and is the inverse of application. In typed systems of lambda calculus, 
each term has a type. For example, (�x ∶ A)(y ∶ B) is a term representing the func-
tion that takes term (variable) x of type A to term (variable) y of type B. In some 
typed systems of lambda calculus types are only ever represented by variables, while 
in others constants are allowed, and in some systems expressions involving variables 
and constants are allowed. There is further explanation in this paper, but texts such 
as (Geuvers and Nederpelt 2014) and (Guallart 2015) provide a good introduction. 
For this paper another central concept is that of reduction of a lambda term. The idea 
is that a term is simplified as far as possible using function application (although 
there are often other rules, to deal with equality for example) and an irreducible nor-
mal form results. For example (�x ∶ A)(y ∶ B)(a ∶ A) reduces to y for y : B if y is a 
variable, while (�x ∶ A)(�y ∶ B)(yx)(a ∶ A) reduces to (�y ∶ B)(ya) for a : A.

Typed systems of lambda calculus form a bridge between computer programs on 
the one hand and axiomatic deductive systems on the other. When lambda terms 
are reduced or in general converted to other terms, the process forms a computer 
program, while the rules for reduction or conversion correspond to logical rules (see 
Sect. 4 below). All the systems of typed lambda calculus described in this paper can 
give rise to functional programming languages.

The style of this paper is to discuss and build on key papers in the literature of 
computation theory and formal logic to show what has been achieved and then to 
make suggestions on how the computational systems described in these papers can 
be extended. These suggestions aim to characterise the sorts of formal systems and 
programming languages which could be developed to extend existing computational 
paradigms. The original content in this paper is contained in Sects 7 and 10, and 
comprises a translation of sets to types, the characterisation of a recursion schema 
that results by substitution in computable functions and the views on the limits of 
ordinal complexity that can be used to define computable functions. Sects 2–6 com-
prise a literature survey of what might be called modern type theory, while Sects 8 
and 9 are critical reviews of homotopy type theory (an intensional theory of types) 
and the untyped lambda calculus respectively.
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2 � Gödel and Kleene: General Recursion and the Undecidability 
of Totality

It is a well known result due to Kleene (see Kleene (1943)) that computations in a 
formal language can be decided accurate or otherwise given the computation and the 
program instructions in a primitive recursive way by coding the input and output, 
the program and the computation as natural numbers. Kleene showed that any com-
putable function that returns a value can be written as primitive recursive function 
that operates on a formally verified computation, usually written as U((�y)T(e, x, y)) 
for primitive recursive function U, input x, computation of least ( � ) code y, program 
of code e and primitive recursive computation checking predicate T.

If we consider programs that always have a natural number output given natural number 
input, called total programs, we see that this fact can be expressed as (∀x)(∃!y)(f (x) = y) 
for program f, where (∃!z)P(z) ∶= (∃z)(P(z) ∧ (∀w ≠ z)¬P(w)) . We can clearly re-write 
this formula as (∀x)(∃!y)(∃!z)(z = U(y) ∧ T(e, x, y) ∧ (∀w < y)¬T(e, x,w)) , where e is 
a numerical program code for f, indicating that totality of a program has logical com-
plexity 

∏0

2
(i.e. can be written in the form (∀x)(∃y)… , where the ellipses contain no 

further quantifiers), while the set of terminating programs and inputs has logical com-
plexity 

∑0

1
 (i.e. can be written in the form (∃x)… ). Gödel showed in Gödel (1931) that 

no formal axiomatic proof system (that has quantifiers and can represent addition and 
multiplication of natural numbers), which is a type of computation system, can decide 
the truth of every proposition of quantifier complexity 

∏0

1
 or richer (so 

∏0

2
 , or 

∑0

2
 for 

example). Kleene showed that the characteristic function corresponding to (∃y)T(x, x, y) 
has undecidable totality (often called the “halting problem” and first shown undecidable 
for computers by Turing in Turing (1937)).

As important as these theorems are (and they are arguably the foundational 
results in mathematical logic and computability theory in the 20th Century), we 
must not overlook what Kleene (Kleene 1943) showed en route as far as computer 
programs are concerned. That is, deciding whether a computation is correct (via 
Kleene’s T predicate) is in general computationally (far) easier in general than per-
forming a computation (since computational correctness is decidable in primitive 
recursive arithmetic or weaker as it is expressible as a Δ0

0
 proposition, i.e. the propo-

sition can be written with quantifier values bounded by the length of the expression, 
whereas the least y returned by f(x) is an unbounded search operation. Ackermann 
in Ackermann (1928) showed that there are total programs which grow faster than 
any primitive recursive total program (as a nested double recursion)1; and it is pos-
sible to execute such a program, even though it will quickly exhaust the memory of 
actual computers. In fact Kleene’s result shows that what makes a computable func-
tion hard to compute is the rate of growth of the function.

1  See Tait (1961); Fairtlough and Wainer (1992) for the ordinal complexity of the Ackermann function 
and other nested recursions relative to primitive recursion. We can in fact see that n-nestd recustions for 
natural number n can be written as nested ordinal recursions up to �n and therefore as un-nested ordinal 
recursions up to ��n . Smorynski (1980) gives an overview of computable functions which grow much 
faster than the Ackermann function.
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3 � Gödel’s System T and Girard’s System F

The provably total functions (i.e. the programs which always return a result when 
given input and which can be proved to have that property in a formal axiomatic 
theory) of first-order Peano Arithmetic (including Ackermann’s function that grows 
faster than any primitive recursive function) are precisely the hierarchy of func-
tions reducible by application from primitive recursive functionals of finite type 
over the natural numbers (a result proved by Gödel in his famous Dialectica article 
Gödel (1958), Gödel (1994)) in a quantifier-free higher-order computation system 
called System T. To be more precise, Gödel showed that it is possible to compute 
a sequence of terms which witness any theorem of first-order Heyting arithmetic2 
(which applies equally to first-order Peano arithmetic by using Gödel’s double nega-
tion translation or the direct method due to Shoenfield in Shoenfield (1967)), and 
since every non-empty term without free variables can be reduced by function appli-
cation to a numeral and not to an empty term (a term in the empty type, the type of a 
contradiction),3 first-order Peano arithmetic is consistent (see (Avigad and Feferman 
1998) 4.2).4 In the 1970s an extension of Gödel’s System T of primitive recursive 
functionals of finite type led the way as a foundation for computing. Girard’s System 
F (see Girard (1989)) is an extension of System T5 which allows variables over and 
abstraction over types (known as type polymorphism). System F is a very powerful 
impredicative system6 of the typed lambda calculus, having the same provable total 
natural number functions as second-order Peano arithmetic with a comprehension 
axiom for any formula of second-order arithmetic (see Girard (1989), Avigad and 
Feferman (1998)).

2  First-order Heyting arithmetic is first-order Peano arithmetic with first-order intuitionistic logic.
3  The reduction of any term without free variables to a numeral requires transfinite induction up to �0 , 
see (Tait 1965b; Howard 1970), and for a generalisation to higher epsilon numbers for subsystems of 
second-order Peano arithmetic see (Howard 1980b).
4  There is a game-theoretic version of the Dialectica interpretation in (Olivo 2008) which establishes the 
consistency of first-order Heyting arithmetic given System T.
5  It is not clear cut whether System F is an extension of System T from Girard’s Girard (1989) as it is 
described as the second-order type lambda calculus, but I follow Avigad and Feferman (1998) in taking 
System F to include all the axioms of System T.
6  A formal system is impredicative if it is possible to define a predicate of the system in terms of a for-
mula which includes the same predicate in the domain of the quantifiers of the formula. Impredicative 
systems can be inconsistent because Cantor style diagonal arguments are possible, but the remedy is to 
allow that the type of the diagonalized type is larger than the base type. Most impredicative definitions 
are mathematically fruitful, such as defining the least upper bound of a bounded set of real numbers 
defined as the intersection of all sets of real numbers which are upper bounds and fixed-points of mono-
tone increasing operators. Poincaré, Weyl and Feferman (see Feferman (1988)) have argued impredica-
tive definitions should be avoided, but they increase the power of a formal system greatly and do not lead 
to inconsistency unless you restrict the size of types. Of course, impredicative definitions do assume that 
the domain of quantification is well formed, and that the act of definition is actually picking out some 
particular object.
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4 � Curry‑Howard Isomorphism

System F also explicitly pursues an idea due to Curry in Curry (1934) and Howard 
in Howard (1980a), that all computer programs can be regarded as a way of verify-
ing the type of the data associated with a program. This idea is known as the Curry-
Howard isomorphism. The same idea can be expressed in terms of proofs: a proof of 
a logical expression corresponds to a means of verifying the well-formed-ness of a 
type corresponding to the logical expression.

To be more specific, the logical rules enabling the formation, introduction and 
elimination of propositions and predicates in a natural deduction formulation of 
logic (see Gentzen (1969a), Prawitz (2006)) correspond to the rules enabling the for-
mation, introduction and elimination of types, which in turn correspond to the rules 
for term rewriting in some typed version of lambda calculus. In Howard’s Howard 
(1980a) he is able to show that a fragment of first-order predicate logic (actually 
intuitionistic Heyting Arithmetic in the second part of the paper) comprising ∧ , → 
and ∀ corresponds to pairing and projection and lambda abstraction and application 
introduction and elimination rules for implication for term (not type) variables (with 
it being possible to add other logical connectives).7 It is also possible to represent 
types as propositions in first-order propositional logic (i.e. without quantification 
over propositions) for ∧ and → but not for ∀ . In System F Girard extends this cor-
respondence at propositional level to introduction and elimination rules for universal 
and existential quantification for type variables by allowing lambda abstraction over 
types (written �),8 which corresponds to “second-order” propositional logic with 
quantification over propositions. In fact since terms9 can be coded as numbers, types 
are properties of numbers, and polymorphism allows the type of the natural numbers 
to be defined and quantified over (at least in the sense that “if the natural number 
structure exists, then ...).10 System F is powerful enough to represent second-order 

7  To r ∶ P → Q; p ∶ P ⟹ rp ∶ Q corresponds (P → Q),P ⊢ Q ; to (x ∶ P ⟹ qx ∶ Q) ⟹ (�x)qx ∶ P → Q 
corresponds if P ⊢ Q then ⊢ P → Q ; to p ∶ P; q ∶ Q ⟹ ⟨p, q⟩ ∶ P × Q corresponds P,Q ⊢ P ∧ Q ; 
to ⟨p, q⟩ ∶ P × Q ⟹ p ∶ P corresponds P ∧ Q ⊢ P ; to qx ∶ Q ⟹ (�x)qx ∶ (∀x)Q , corresponds if 
⊢ Q in the case where x is not free in any type symbol of a free variable of q ∶ (∀x)Q then ⊢ (∀x)Q ; 
and to (�x)qx ∶ (∀x)Q ⟹ qx ∶ Q corresponds if ⊢ (∀x)Q then ⊢ Q . For existential quantification, 
to ⟨t, qt ∶ Q⟩ ⟹ (�x)qx ∶ (∃x)Q corresponds to Q ⊢ (∃x)Q for t such that qt  :  Qt is replaced by x in 
(�x)qx ; and to (�x)qx ∶ (∃x)Q ⟹ ⟨t, qt ∶ Q⟩ for some term t, where term t replaces x in qx, corresponds 
(∃x)Q ⊢ Qt in the case where t is not free in any type symbol of a free variable of q ∶ (∃x)Q . We can 
define ∨ by taking existential quantification over a finite domain (or taking the disjoint union of two 
types), and ¬P ∶= P → ⊥ , where ⊥ is the empty type, i.e. the type with no terms. Howard himself in 
Howard (1980a) distinguishes between weak and strong existential quantification, weak existential quan-
tification being equivalent to ¬(∀x)¬P(x).
8  We can define A ∧ B ∶= (ΠC)((A → B → C) → C), A ∨ B ∶= (ΠC)((A → C) → (B → C) → C) and 
¬A ∶= (ΠC)(A → C) . Quantifier rules follow Howard in Howard (1980a) but taking (ΛX)p ∶ (ΠX)P and 
⟨U, u ∶ P(U∕X)⟩ ∶ (ΣX)P and (ΣX)P ∶= (ΠY)((ΠX)(P → Y) → Y) , where Π is the universal type binder, 
Σ is the existential type binder and P(U/X) means that U is substituted for free variable X in term P, see 
Girard (1989) Chapter 11.
9  Terms of finite type of over the natural numbers can be written as finite sequences of functionals (with 
use of abstraction, function application and recursion).
10  The natural numbers have type (ΠX)(X → (X → X) → X) and 0 ∶= (ΛX)(�x ∶ X)(�y ∶ X → X)x and 
s(t) ∶= (ΛX)(�x ∶ X)(�y ∶ X → X)y(tXxy) , where tX is the application of ΛX to term t and Π is the type 
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Heyting Arithmetic as a deductive theory (with comprehension for arbitrary formu-
las in the language of second order arithmetic).

In Girard (1989) Girard showed System F to be a conservative extension for com-
putable total functions of second-order Heyting Arithmetic (and therefore second-
order Peano arithmetic). Girard’s proof is very interesting because second-order 
Heyting Arithmetic (like System F) is an impredicative theory. Girard showed that 
a normal form always exists for all terms in System F and a reduction sequence 
that has a numeral as a normal form can be represented and proved to terminate in 
second-order Heyting Arithmetic, and conversely that all provably total functions in 
second-order Heyting Arithmetic correspond to reduction sequences in System F. 
Girard’s argument quantifies over all sets of what he called reducibility candidates, 
which are reductions that avoid lambda abstraction, pairing and non-logical type 
construction (see Girard (1989), Pistone (2018)), the main argument being by induc-
tion on formula complexity, the comprehension axiom schema being used to show 
that sets of reduction candidates can be parameterized.

5 � Martin‑Löf’s Intuitionistic Type Theory

Martin-Löf went further than Girard in Martin-Löf (1984) by allowing that types 
could be defined for any formula expressed in terms of logical connectives over indi-
viduals but not types (allowing that a type can mix types and terms, which is known 
as a dependent type). An example is that (∀x ∶ A)(Px → Qx) is a type, often written 
(Πx ∶ A)(Px → Qx) , where Π is the type binder corresponding to universal quanti-
fication. Similarly, (∃x ∶ A)(Px → Qx) is a type, often written (Σx ∶ A)(Px → Qx) , 
where Σ is the type binder corresponding to existential quantification. It is the job 
of the mathematician according to Martin-Löf to show that a type (called a “proof” 
type) is non-empty using the standard (Heyting) interpretation of intuitionistic logic 
(see van Dalen (2001) for a description using the lambda calculus),11 which estab-
lishes the validity of the inference represented by the type (under the Curry-How-
ard isomorphism). To be clear, according to this conception of type theory proofs 
inhabit types (represented by terms) and provide a validation of the logical inference 
represented by the type. This resulting theory, known as Intuitionistic Type Theory, 
is actually weaker in its mature form12 than System F because type abstraction is 

11  Proofs of existential propositions in intuitionistic logic must exhibit/construct at least one instance 
of the existential quantifier, while the rules for implication and universal quantification are methods for 
transforming a proof of the antecedent into a proof of the consequent. A proof of a conjunction of propo-
sitions is a pair of proofs of each conjunct, while the proof of a disjunction of propositions is a proof of 
either one of the disjuncts together with an indicator for which disjunct has been proved.
12  Originally Martin-Löf had a universal type V with the property V : V, that is, that the type of V is V, 
which makes Intuitionistic Type Theory very powerful, although Girard showed in Girard (1972) that the 
resulting system was inconsistent.

Footnote 10 (continued)
binder for universal quantification. System F can also define the Boolean type and the empty type. These 
and more complex types are defined in Girard (1989) Chapter 11. It can be seen that natural numbers in 
System F are explicitly symbolically constructed, so System F is not a purely logical system because it 
has the same domains of (first-and second-order) quantification as second-order Heyting Arithmetic.
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not permitted. Intuitionistic Type Theory is a very clean foundation for intuition-
istic mathematics in terms of computable functions because proofs are computa-
tions. Intuitionistic Type Theory includes inductively defined types (see Martin-Löf 
(1984) p. 42 et seq). An inductively defined type (or inductive type) is any type where 
terms of the type can be defined in respect to previous terms by a finitely definable 
relationship in a formal language, that is well-founded, i.e. every chain of defini-
tions of terms is finite and returns a definite value.13 Intuitionistic Type Theory with 
inductively defined types is a powerful theory (although the induction may need to 
terminate at the first non-recursively definable ordinal without the ability to form 
variables over types, in the sense of System F)14.

Intuitionistic Type Theory also led to a view of the Curry-Howard isomorphism 
that is often called “Propositions as types”,15 that is to say that propositions corre-
spond to types and proofs of propositions correspond to proofs of a type being non-
empty by exhibiting a term that inhabits the type. The reason for this correspondence 
is that in Intuitionistic Type Theory every well formed first-order intuitionistic logi-
cal term has a type and vice versa, and closed terms correspond to propositions.16

Martin-Löf’s Intuitionistic Type Theory is a beautiful foundational theory for 
computation and mathematics. The value of introducing dependent types should not 
be underestimated. With dependent types comes the ability to create transfinite types 
that System F17 does not have. For example, if [0] ∶= N and [n + 1] ∶= [n] → N , 
then (�n ∶ N)[n] is a transfinite type (see Avigad and Feferman (1998) 10.1), and a 
function (term) t ∶ (�n ∶ N)[n] will be such that t(n) : [n], i.e. the return type of the 
function is dependent on the value of natural number n. Dependent types also enable 
all logical connectives to be defined in a unified way.18

13  Inductive definitions can be thought of as the least fixed point of a monotone operator on a set, see for 
example (Aczel 1977).
14  See the discussion in the “Definable Types” section of this paper.
15  There is a view that if a type is a proposition and a proposition has a type, then a type should have a 
type. The problem is that a type is not identical to a proposition, precisely because they have different 
properties such as a type applies to terms while a proposition does not apply to terms. The Curry-Howard 
isomorphism does of course establish that types under abstraction and application rules correspond to 
propositions making logical inferences.
16  In Tait (2006) Tait argues by using the “propositions as types” correspondence in Intuitionistic Type 
Theory that Heyting’s intuitionistic semantics is clear and not impredicative, and that intuitionistic 
semantics has a clearer foundation than System T. But in my view the axioms of System T are clear since 
they are designed to produce computations of terms witnessing the values of primitive recursive func-
tionals, and they can be used in classical and intuitionistic systems.
17  Transfinite types are not possible in Girard’s more powerful System F� described in Section 6.
18  As in System F we can define A ∧ B ∶= (ΠC)((A → B → C) → C), A ∨ B ∶= (ΠC)((A → C) → (B → C) → C) 
and ¬A ∶= (ΠC)(A → C) , and for predicate logic (∀x ∶ S)P(x) ∶= (Πx ∶ S)P(x) and (∃x ∶ S)P(x)

(ΠC)((Πx ∶ S)(P(x) → C) → C) , where (Πx ∶ S)P(x) is the dependent product type of types P(x) for x : S, 
see Geuvers and Nederpelt (2014). As noted in Footnote 8 it is possible to perform quantification in Sys-
tem F, but quantification over types in System F is most naturally understood as propositional quantifica-
tion via the Curry-Howard isomorphism.
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6 � Girard’s System F
!

 and Coquand’s Calculus of Constructions

It is possible to extend System F to allow types to be defined with functional vari-
ables from any finite type to finite type, that is of the form A → B , where A and B 
are built up from base types such as (generic type variable) ∗19 (which is known 
as allowing type constructors over finite types), which gives the System F� . Type 
constructors can be regarded as defining a type variable by a formula involving type 
variables and type constants. In the same way that System F has the same prov-
ably total computable functions as second-order Peano Arithmetic, System F� has 
the same provably total computable functions as the union of all higher finite order 
deductive systems of Peano Arithmetic (see Girard (1973), Girard (1986)).

One of the most powerful type based system is Coquand’s Calculus of Construc-
tions in Coquand and Huet (1988),20 which allows abstraction over terms, types 
and type constructors (see Geuvers and Nederpelt (2014) for a clear recent exposi-
tion). The Calculus of Constructions is a strict extension of System F and System F� 
because it allows types to depend on terms (allowing the introduction of transfinite 
types, see Sect. 5 above), as well as allowing abstraction over types and type con-
structors. The Calculus of Constructions is very elegant because of the symmetries 
between types and terms, in the sense that terms can be defined from terms (as in 
the simply typed lambda calculus)21, terms can be defined from types (as in System 
F), types can be defined from terms (as in Intuitionistic Type Theory) and types can 
be defined from types (as in System F� ). The Calculus of Constructions is at the top 
right of what is known as the Barendregt Cube (see Barendregt (1991) and Guallart 
(2015) for an overview).

There is a question though of whether there should be a correspondence between 
types and generic terms of those types (as the mapping between terms and a type is 
many-to-one). For example, if you allow a universal or generic type variable “Type” 
or “*”, what is the generic term variable corresponding to the type “*”? The only 
sensible answer is that * is the type of a universal term variable “Term”. But then 
you have to allow that Term is not also a type variable. In Coquand and Huet (1988) 
Coquand makes clear that the type of * is not *, but that does beg the question of 
what the type of * is. You could say that the smallest type of * is ** (or the “Type of 
Type”), but it is not difficult to see that you will end up with ramified types (admit-
ting *, **, *** etc.), see Russell (1908), or with Russell’s paradox (if you allow a 
type to be its own type). It is possible to say that the smallest type of * is something 

19  It is standard currently have a generic or universal type *, types such as ∗→∗ known as kinds by using 
type constructors, and a sort which is a universal kind in the formulation of System F� , see Geuvers and 
Nederpelt (2014).
20  There is a further generalisation of the typed lambda calculus due independently to Berardi in Berardi 
(1988) and Terlouw in Terlouw (1989) called Pure Type Systems, but the generalisation does not always 
result in systems that have a consistent logic.
21  The name comes from a typed lambda calculus that only allows abstraction over term variables and 
includes first-order predicate logic due to Church in Church (1950), but nowadays the name refers to a 
typed lambda calculus that includes a fragment of first-order propositional logic with the implication 
connective, see Geuvers and Nederpelt (2014) Chapter 2.
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else, a sort say (often written ⋄ ). rather than a type **; but then the same regress 
occurs when you ask what is the sort of the sort ⋄ . There is no suggestion that as a 
formal system that the Calculus of Constructions is inconsistent (after all “*” does 
not have to have a type), but for such a powerful type theory it is incomplete in 
terms of type assignment.22 It is possible to create a hierarchy of types (often called 
a type universe) in the case where types are defined predicatively in terms of other 
types, and a hierarchy of universes emerge in order to refer to all of the types in the 
preceding universes.

It is tempting to say that “Type” and “Proposition” are large types (that is the 
type equivalent of a proper class), while individual types and propositions are small 
types. If that were the case then Proposition would not be a member of Type (or 
more naturally Proposition would not be a Type) because both would be the size 
of proper classes, which do not form a hierarchy of increasing cardinality (assum-
ing the Axiom of Limitation of Size, see von Neumann (1925)). There are further 
strengthenings of the Calculus of Constructions such as the Calculus of Inductive 
Constructions Paulin-Mohring (2015), the Extended Calculus of Constructions Luo 
(1989) and the Extended Calculus of Constructions with inductive definitions Ore 
(1992), which add features to the universe of types to the Calculus of Construction 
(a countably infinite hierarchy of predicative types and a single impredicative layer 
of propositions that is lifted to the predicative type hierarchy).

7 � Definable Types

In my view Intuitionistic Type Theory with impredicative type and functional vari-
able (or type constructor) quantification and inductive type definitions would be a 
reasonable foundation of computation, which is equivalent to the Calculus of Con-
structions with inductive definitions.23 One could allow any type for which an induc-
tive definition could be given in terms of existing types, which can be used in further 
definitions of types. It is possible in Intuitionistic Type Theory to define well-ordered 
linear orderings which can be computed, the order types of which are represented 
by ordinals less than the first non-computable ordinal. The limit of complexity of 
computable linear orderings is the first non-computable ordinal, but tree structures 
(which are partial orders) can be much richer. Even a binary tree will define a type 
which for a tree of countably infinite height has 2ℵ0 branches when each node has 
two successor nodes. Now 2ℵ0 branches cannot be computed, but a complete binary 
tree with branches of height � (often called a universal fan)24 can be characterised 
uniquely as the smallest structure obtained by quantifying universally over all trees 

24  Strictly a universal fan allows for all choice sequences of natural numbers, but all natural numbers can 
be expressed as finite binary sequences.

22  Of course set theory has exactly the same problem as type theory, which is why there is a “proper 
class of all sets” rather than “a set of all sets”.
23  Intuitionistic Type Theory and System F, both subsystems of the Calculus of Constructions, have 
inductive types, see Girard (1989) s. 11.5, p. 88 and Martin-Löf (1984), and Paulin-Mohring (2015) 
explicitly adds Inductive Types to the Calculus of Constructions.



	 Axiomathes

1 3

that satisfy the inductive definition.25 This could be achieved in System F or in an 
impredicative system which allowed quantification over dependent types (such as 
allowing type (ΠP)(Πx ∶ X)…P(x)… to be formed from type P that depends on x, 
where Π is the type binder corresponding to ∀ ). In such a system very rich structures 
could be defined as types. For universal quantification over all structures satisfying 
a definition this means admitting lambda abstraction over types that represent the 
structures, which is a reasonable step to take. In practice the construction of a type 
does not need to specify the universal quantification explicitly, as this can be left 
implicit in the construction. For the purposes of computation this is sufficient, since 
a computer with any finite runtime would describe a universal fan of finite depth, 
which in the limit would give the universal fan. Admittedly the universal fan is not 
computable, but it is definable as a type.

The main reason why definable structures are relevant to computable functions 
is due to the relationship between formal deductive systems and computability. We 
know that structure definitions give rise to axioms that characterise those structures, 
and that any sufficiently rich formal deductive theory is incomplete with respect to 
deduction (see Sect. 2). Exactly the same is true of typed systems of lambda cal-
culus. New structures (types) mean new terms to rewrite and to (try to) generate a 
normal form.

Tree based types can be used as a representative of power types (the type-theo-
retic version of the set of all subsets of a set, the power set, introduced in Cardelli 
(1988) as a way to capture the notion of generic subtype). By a process of iteration 
and abstraction at ordinal limits (producing a limit type), a type theoretic view of the 
cumulative hierarchy of set theory can be reproduced. If type identity is treated as 
extensional (that is, if two types have the same extension, namely x : A if and only 
if x  : B for any term x of type A or of type B, then A = B),26 and any sequence of 
term reductions is finite, then type theory is no different from set theory with the 
Axiom of Foundation27, although types themselves and abstraction and application 
operators are more readily viewed as logics (via the Curry-Howard isomorphism) 
and functional construction processes than is the cumulative hierarchy of sets. The 
correspondence is presented in the table below. The axioms in the table are not a 
minimal set of axioms (as the Axiom schema of Replacement implies the Axiom 
schema of Separation), and the Axiom of Choice is not usually considered a core 

25  Here “all trees” is understood in the naive sense, but it is well known that second-order quantifiers can 
be interpreted as a fixed subset of the second-order domain of quantification, trees in this case if indi-
viduals are branches, see Väänänen (2001) for example for a discussion of Henkin semantics.
26  Functions are not naturally extensional when considered as constructions as two constructions with 
the same extension are still distinct constructions, see Feferman (1985), and likewise for a type consid-
ered as a domain of functions. But it is harmless to consider functions with the same extensions on all 
domains as equivalent.
27  In Krivine (2001) Krivine has shown how to extend the typed lambda calculus to Zermelo Fraen-
kel set theory (ZF) by translating formulas of ZF with an additional “strong membership” relationship 
into types, and Werner in Werner (1997) has shown how to interpret the Calculus of Constructions with 
inductive constructions in ZF set theory and vice versa.
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axiom of first-order Zermelo Fraenkel set theory. The axioms cited however do cor-
respond to distinctive types (Table1):

Type theory is also easier to use than set theory (see Farmer (2007)), although 
richer type theories (such as the Extended Calculus of Constructions and type theo-
ries with an intensional view of identity) can be extremely complicated. My own 
view is that mathematics is almost exclusively concerned with constructions car-
ried out by functions, and type theory is correspondingly a natural foundation for 
mathematics and for computable functions in particular.28 Type abstraction can be 
viewed as carrying the least amount of information greater than the information in 
any application of the type,29 which is natural for types because abstraction requires 
the notion of a generic instance of a type30 (for example a variable that comprises as 
a term of that type) but is not natural for sets viewed as collections.

8 � Homotopy Type Theory

A recent development in type theory has been homotopy type theory (see Awodey 
(2012, 2013)). The basic premiss of homotopy type theory is that in the same way 
as there is a correspondence between propositions and types there is a correspond-
ence between types and homotopy spaces. An homotopy space is a topological 
space equivalent up to homotopy (which roughly means that any two families of 
n-dimensional open neighbourhoods that cover the space can be deformed continu-
ously into one another).31 The promise of this approach is that new axioms of type 
theory will emerge that are fundamentally topological in nature. An example from 
Awodey (2013) is Whitehead’s Principle (that a point-wise isomorphism between 
homotopy groups on well-behaved topological spaces is equivalent to the homotopic 
equivalence between the two spaces) applied to homotopy types. Homotopy type 
theory is also part of what is known as the univalence foundational programme for 
mathematics. Univalence seems to be the view that (homotopic) equivalence is what 
is meant by identity. That is to say, if identity is understood intensionally and iden-
tity of two terms needs a type, introduction and elimination rules and proof that 
terms are equal, then identity proofs of identity of terms can be viewed as paths in 
an homotopy space, identity between proofs of identity can be viewed as an homot-
opy between paths, and so on up the hierarchy of higher-order identities (of types, 
types of identity over types and so on) (see Awodey and Warren (2009)). This makes 

28  Of course category theory is also a function-theoretic foundation, but it is fundamentally algebraic 
rather than logical.
29  An example is that for finite number n we can decide whether a binary sequence x of length n is a 
member of a set X of binary sequences of length n by means of a binary search with X in lexicographical 
order in n steps if the set is ordered lexicographically, whereas by adding another bit to the sequence the 
membership function applied to generic x can be decided in n + 1 bits.
30  There is a link via the emphasis on terms rather than objects with the views in Parsons (1972), 
although Parsons does not explicitly consider the terms of systems of the lambda calculus.
31  Strictly an homotopy type is a ∞-groupoid, which is a category in higher category theory that can be 
used to describe (among other things) homotopy between an �-sequence of categories.
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sense if identity of two terms is treated as needing a topological explanation that 
does not reduce to the syntactic equality of the two terms or to one term being a 
shorthand for another. But given that “propositions as homotopy spaces” is an anal-
ogy (or functor in category theory terms) in the same way “propositions as types” is, 
it is arguable that the term rewriting rules are as clear an explanation of identity of 
terms as it is possible to get.

It is difficult to judge how successful homotopy type theory will be, although 
there is no reason in type theory why a type should not be a geometrical or topologi-
cal space, and it is unclear what the advantage is of treating every type as though it 
were a homotopy space (other than having a means to handle intensional identity of 
terms and types). There is no doubt a desire to put to use some very rich mathemati-
cal structures described in category theory which do not seem to be reducible to sets 
and have an inherent geometrical structure, but it is not yet known whether homot-
opy type theory introduces any new classes of computable function over and above 
those introduced by axiomatizations of existing areas of mathematics.

9 � The Untyped Lambda Calculus and Domains

An alternative to systems of typed lambda calculus is to move away from the require-
ment of provable totality of functions and embrace programs which do not always 
terminate. In the untyped lambda calculus (due to Church) terms do not reduce to a 
minimal normal form in finitely many steps. This is attractive in light of the unde-
cidability of the halting problem because the untyped lambda calculus is equiva-
lent to a universal Turing machine in its power. Introducing a partial ordering where 
there is a tree of partial functions ordered by inclusion and having programs which 
always terminate as their limit is a powerful idea (due to Scott in Scott (1976), Scott 
(1993)). In fact Scott produced a model of the untyped lambda calculus (as a term-
rewriting system not as a logic), showing that there are partially ordered sets which 
have the same structures as the continuous functions from the partially ordered set 
into itself (see Turner (1990) for a clear account). The problem is that the untyped 
lambda calculus does not always result in a normal form when the lambda terms are 
rewritten using a reduction rule (see Geuvers and Nederpelt (2014)), and does not 
result in a consistent logic. It is possible to produce a lattice based logic based on 
domains (see Abramsky (1991), Scott (1993) for example), but the significance of 
the axioms (or rules) is unclear as the axioms reflect the lattice structure rather than 
a logical inference system.32

32  Of course Boolean and Heyting algebras are based on lattices of the same names, and any logic 
should have a notion of “or” and of “and”.
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10 � What Might Type Theory Look Like?

As suggested in Sect. 7, type theory should include a type-theoretic version of Zer-
melo Fraenkel set theory, arguably with intuitionistic logic.33 Intuitionistic logic has 
the great advantage over classical logic that when an existence claim is made there 
must be a concrete method for constructing an object. But at this point we are going 
to abandon intuitionistic logic. The reason is that we can define double negation 
elimination (i.e. the inference ¬¬A to A) as an elimination rule for negation, which 
is true of “truth” if not of “proof”. Doing that introduces a symmetry to the status 
of the “there exists” and “for all” quantifiers, i.e. (∃x ∶ B)P(x) ∶= ¬(∀x ∶ B)¬P(x) 
and (∀x ∶ B)P(x) ∶= ¬(∃x ∶ B)¬P(x).34 We can define dependent type 
(Σx ∶ B)P(x) ∶= [(∀x ∶ B)(P(x) → ⊥) → ⊥] , and a term t ∶ (Σx ∶ B)P(x) would have 
the form g[(�x ∶ B)(�p ∶ P(x))f (p)] for terms f and g of type (Πx ∶ B)(P(x) → ⊥) 
and (Πx ∶ B)(P(x) → ⊥) → ⊥ respectively, but this is problematic because no 
term has type ⊥ . It is better to define t ∶ (Σx ∶ B)P(x) in a second order way as 
(�A)(g[(�x ∶ B)(�p ∶ P(x))f (p)]) , for type variable A, dependent type P(x) and terms 
f and g of type (Πx ∶ B)(P(x) → A) and (Πx ∶ B)(P(x) → A) → A respectively, which 
is the Russell-Prawitz-Girard approach (see Rathjen (2018)). While ¬(∀x ∶ B)¬P(x) 
is not the same as (∃x ∶ B)P(x) it is equivalent via double negation elimination.35 It 
is also well known that classical negation can be interpreted in programming terms 
as a context continuation, i.e. capturing state information and then passing that as a 
parameter to a program (see Griffin (1989)).

Table 1   The correspondence 
between sets and types

a Intersection sets/conjunctive types can be defined using the Axiom 
of Separation and the empty set.
b Functional types are defined from types and parameters (types or 
terms), where types and terms correspond to sets in set theory.

Set theoretic axiom Type theoretic equivalent

Empty set Empty type
Union set Disjunctive typea

Power set Power type/Subtype
Separated set Subtype defined by properties
Replacement set Functional and limit typesb

Choice set Choice type
Infinite set Natural number type

33  There are two well known axiomatic formulations of constructive or intuitionistic logic, Constructive 
Zermelo Fraenkel set theory, see Aczel (1978); Myhill (1973).
34  Geuvers and Nederpelt in Geuvers and Nederpelt (2014) use intuitionistic negation translated into the 
Calculus of Constructions and add the law of the excluded middle and double negation elimination as 
(alternative) axioms.
35  That is ¬(∃x ∶ B)P(x) → (∀x ∶ B)¬P(x) by noting that P(t) → ⊥ for any witness term t (the details can 
be worked through using a Beth tableau for example, and then applying contraposition and double nega-
tion elimination, see Bell and Machover (1977) Chapter 9).
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For the purposes of computation, any operation that we introduce must be com-
putable in the sense that given a natural number input after finitely many steps we 
arrive at a natural number output (see Introduction above). The question arises how 
to treat functionals of higher type than N → N . The view taken here is a functional 
needs to be absolutely computable in the sense that with constant previously defined 
input values (which could also be functionals of lower type) the natural number 
output can be computed in finitely many steps by means of a recursion in a well-
founded structure indexed by ordinal numbers. In order to be computable a func-
tional is replaced by a term in the typed lambda calculus and the ordinal recursion 
must have the form that the ordinal of the reduct of a term is strictly less than the 
ordinal of the term. In general form we admit the following recursion schema for 
ordinal recursive functionals (commas not being used and brackets only used to keep 
the text readable):36

Fgf0 ∶= f  and Fgf� ∶= g�(�� ∶ �)Fgf � , where f has type T, g has type 
� → (� → T) → T  and Fgf has type � → T  for any type T over the natural numbers, 
N, and � an infinite ordinal, and term Fgf� is a function of finitely many terms Fgf � 
depending on the choice of g� for 𝛽 > 0 and of f for � = 0 . � , F , f and g may contain 
parameters, which are taken to be the same parameters for each absorbed into type 
T.

Box 1: Recursion schema for computable functionals
The idea of this recursion schema is to incorporate a computable finite-branching 

finite-depth tree for the value of F at ordinal � . Using a technique made explicit in 
Terlouw (1982), a well-ordering ≺ of order type � can be thought of as a well-order-
ing ≺∗ of order type 2� (using ordinal exponentiation) understood as follows. If ≺ is a 
well ordering of the ordinal numbers < 𝛼 , a limit ordinal for simplicity, then ordinal 
codes (under a primitive recursive coding function ⌈⌉ such as the ordinal sum) of 
finite (strictly descending) sequences of ordinals ⟨xi<n<𝜔⟩ such that xj ≺ xk if j > k 
can be given a lexicographical ordering ≺∗ defined as follows. 

�
⟨xi<n⟩

�
≺∗

�
⟨yi<m⟩

�
 if 

(∃k < n)[(∀l < k)(xl = yl) ∧ (xk ≺ yk)] or (∀l < n)(xl = yl) ∧ n < m , �⟨xi<n⟩
�
=∗

�
⟨yi<m⟩

� 
if (∀l < n)(xl = yl) ∧ n = m and 

�
⟨yi<m⟩

�
≺∗

�
⟨xi<n⟩

�
 otherwise. We can think of a 

computation tree of ordinal complexity 2� as a tree where all F(�) terms of ordi-
nal 𝛾 < 𝛽 are substituted into g, the well-foundedness of the computation of F(�) 
following from 2≺-induction (≺-induction for each descending finite sequence 
of terms). We can replace the ≺∗ well ordering with a higher type and well order-
ing ≺ as follows, after Terlouw (1982) for ordinals less than �0 (the first ordi-
nal � such that �� = � using ordinal exponentiation)37: H(Fgf0�)(�) = Fgf � if 
𝛾 ≺∗ 𝛽 , H(Fgf0𝛽)(𝛾) = g𝛾(𝜆𝛿 ≺∗ 𝛾)Fgf (𝛿) if � = � , H(Fgf0�)(�) = 0T if 𝛽 ≺∗ 𝛾 , 
H(Fgf ��)(�) = H(H(Fgfp(� , �)�)p(� , �)(� + 2p(�,�)))(�) if p(𝛾 , 𝛽) ≺ 𝜁 , and 
H(Fgf ��)(�) = 0T if � ⪰ p(� , �) , where p(� , �) is the least � such that 𝛾 < 𝛽 + 2𝜈+1 . 

36  The usual definition is in terms of a primitive recursive total ordering of an ordinal notation, see Tait 
(1965a), but this will not be possible fo uncountable ordinals. Of course, uncountable ordinals are not 
computable, but a countably infinite set of ordinal notations can be used, which name countably many 
uncountable ordinals.
37  Terlouw uses numerical encodings of the well orderings ≺ and ≺∗ , which makes the notation more 
complicated, but means that limit ordinals do not need to be considered.
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0T is a representation of the natural number 0 in type T. HFgf has a higher degree 
than Fgf as degree(a → b ) is defined by max(degree(a) + 1, degree(b)) , and 
Fgf has type � → T  and HFgf has type � → 2� → (� → T) → � → T  , and so 
degree(HFgf ) = max(degree(� → T) + 1, degree(2�) + 1) ≥ degree(Fgf ) + 1 . What 
the recursion H does is to start from � = 0 the definition of F by ≺∗ recursion and 
nests the recursion along ≺ in the case of a successor ordinal p(�, �) + 1 , corre-
sponding to the double application of H needed to achieve 2p(�,�)+1 = 2p(�,�) + 2p(�,�) 
in the ≺∗ recursive definition. While this specific functional recursion only works 
for ordinals less than �0 , it does show that wherever there is a finite computation 
tree defined by a partial ordering on a well ordering � , an in general nested recur-
sion can be performed along � by substitutionof previously computed terms while 
at the same being performed by unnested recursion along the ordering of the finite 
computation sequences, which has ordinal 2� (or ��) (see (Tait 1961; Fairtlough and 
Wainer 1992)).

In general a recursive functional, G say, may not result in a computable func-
tion since in principle for every limit ordinal G(�) for � ≥ � has infinitely many 
predecessor terms, G(�) for 𝛾 < 𝛽. (This is not true of H because the function p is 
strictly decreasing for suitable ordinal input.) To make G computable (when reduced 
by substitution to a function N → N ) we require that G(�) depends on finitely many 
predecessor terms. We could use an ordinal notation system where every ordinal can 
be written as a computable function of smaller ordinals and find a suitable “prede-
cessor” function (as in the discussion above), or we could follow a hierarchy of total 
recursive functions. In the latter case the standard way to enforce the finite ordi-
nal dependency is to treat any ordinal 𝛽 < 𝛼 as a term representing a monotonically 
increasing one-to-one computable function N → � such that � is the least upper 
bound of �(n) for n ∈ N (called a fundamental sequence) such that 𝛽(n) < 𝛽 for all 
𝛽 < 𝛼 . Then for a limit ordinal � we could have G(�)(n) = G(�n)(n) . In a similar 
vein, it is possible to treat � as a term which accepts natural number or higher type 
input (which can be reduced to a natural number type by substitution). By treat-
ing an ordinal as a term, we can see that nesting functionals corresponds to ordi-
nal exponentiation and for hierarchies of total computable functions diagonaliza-
tion corresponds to limit ordinals.38 The study of these computable functions and 
functionals has a very rich and current literature, see for example Fairtlough and 
Wainer (1992) and Rathjen (2006), and it is worth noting that ordinals in this litera-
ture are countable ordinals described in a notation system, and that having notations 
for (countably many) uncountable ordinals extends the hierarchy of total computable 
natural number functions.

There is a natural upper bound to recursions given by the informa-
tion content of a typed lambda term when represented as a quantificational 

38  An example of diagonalization at limit ordinals is as follows. If type S is defined as follows, S(0) = � , 
S(1) ∶= N → N, S(n + 1) ∶= N → S(n) for n : N then (�n ∶ N)Sn has ordinal � . If f ∶ (�n ∶ N)(Sn) then 
the diagonal function g(m, x) = 1 + fmmx for x ∶ S(m − 1) and m ≥ 1 cannot be = feyx for some e  : N , 
where y : N, because we can set m ∶= e and y ∶= e to get feex = 1 + feex , contradiction. (Function appli-
cation is left associative so that fmmx = (((fm)m)x).)
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deductive theory. Information content is defined by transfinite recursion over 
the type of natural numbers, N, by info(N) ∶= ℵ0 , info(P → Q) ∶= info(P) + 1 , 
where + is cardinal addition. For a dependent type R(a) for some term a of type 
T, Info(R(a)) = Card(T) , Info(Πx ∶ T)R(x)) = Info(Σx ∶ T)R(x)) = Card(T) + 1 and 
Info(ΠR ∶ T)R) = Info(ΣR ∶ T)R) = Card(T) + 1 , where Card(T) is the cardinal-
ity of type T. The reason for this definition is that predicates can be thought of as 
Boolean functions, i.e. as functions with value True or False. Functions are many-
to-one in general, and thus the information in a function cannot be less than the 
information in the domain of the function. In the case of an infinite type T, taking 
the least upper bound of ordinals that could be assigned to a term of type T in the 
domain of a Boolean function, yields info(T → {True,False}) = Card(T) + 1.39 The 
information content has the property that it forms a natural upper bound for transfi-
nite induction determined by the cardinality of the type. The idea is that any finite 
sequence of functional applications which reduces the type of the term to N can be 
viewed as reducing the information content from Card(T) + 1 to ℵ0 in finitely many 
steps. Any recursion on a term of type T that has finitely many steps from an initial 
value has only finitely many additional steps over Card(T) + 1 and can therefore be 
regarded as a transfinite recursion up to Card(T) + 1.

In general we would have to use infinitary rules for computing the truth of a quan-
tified proposition, so to be computable the best one can hope for is to extend Gödel’s 
Dialectica interpretation to evaluate the truth value of a quantified proposition as a 
definition of a recursive functional by a finite process of term reduction. This is pos-
sible if the induction axiom of first-order Peano arithmetic is replaced by a principle 
of transfinite induction up to a certain ordinal, � ≤ Card(T) + 1 , and all quantifiers 
are treated as many-sorted first-order variables. Then the Dialectica interpretation 
will result in quantifier-free ordinal recursive functionals up to the same ordinal, � , 
in the form of the schema in Box 1, since at limit ordinals in applications of the prin-
ciple of transfinite induction the finite dependency condition must apply to ensure a 
finite sequence of terms witnessing theorems in the theory.

This Dialectica-based (System T) approach does not address impredicative axi-
oms such as comprehension axioms except insofar as ordinals can be defined impre-
dicatively. This may be sufficient if every type is isomorphic to an ordinal, which 
requires the Axiom of Choice and reduces a type to a set; but in general we should 
use an impredicative dependent type system of the typed lambda calculus such as 
the Calculus of Constructions with inductive definitions to define recursive func-
tionals of transfinite type in the form of the schema in Box  1. To be clear, what 
is being suggested is an impredicative, dependent type extension of Gödel’s Sys-
tem T where the impredicativity is used to define structures (such as ordinals) and 
the dependent types enable the hierarchy of transfinite types to be extended to these 
impredicative structures.

The table below gives some upper bounds on definition by transfinite recursion in 
various systems of the typed lambda calculus, comparing (Table 2) the (in general 

39  An example is that in a countably infinite domain T, each term can be labelled with a countable ordi-
nal. The least upper bound on the information in T is the first uncountable ordinal, identified with the 
cardinal ℵ1.
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uncountable) cardinal bound with the countable ordinal bound (the proof-theoretic 
ordinal) of the computable functions (where known).40

It may be surprising to see uncountable cardinals (and therefore ordinals) in this 
table, but they are present because in impredicative, higher order systems of the 
typed lambda calculus, and in the corresponding deductive theories, such ordinals 
are definable as types. 2ℵ0 was defined in Section 7 above, and ℵ1 can be defined 
impredicatively as the intersection of well orderings ≤ 2ℵ0 which include an uncount-
able well ordering. The computation of the value (or normal form) of a particular 

40  Countable ordinal notations may include labels for uncountable ordinals, but the notational system is 
collapsed back to a countable ordinal in order to be computable.

Table 2   A comparison of the cardinal and ordinal strength of theories of the typed lambda calculus

a We can use the Curry-Howard isomorphism to note that the simply typed lambda calculus is a frag-
ment of intuitionistic propositional logic. and note that Gentzen’s proof of the consistency of intuitionis-
tic propositional logic uses mathematical induction to show that cuts (detours in a derivation that involve 
propositions not in the premisses of the derivation) can be removed (see Gentzen (1969a)).
b System T was constructed to prove the consistency of first-order Peano Arithmetic, which has proof-
theoretic ordinal �0 as proved by Gentzen in Gentzen (1969b). The normalization process can also be 
assigned the ordinal �0 , by assigning ordinals to terms in a reduction sequences, see Howard in Howard 
(1970).
c This is Intuitionistic Type Theory (ITT) with n many predicative universes for all natural number n > 0 
without inductive types, see Rathjen (2018) Theorem  7.1. With inductive types the proof-theoretic 
strength of ITT is the same as Kripke-Platek set theory with n many recursively inaccessible ordinals for 
all natural number n > 0 , see Rathjen (2018) Corollary 6.7.
d Girard proved that System F has the same provably total recursive functions as full second-order Peano 
arithmetic, see Girard (1989). There is a partial result in Hinman (1978) VIII Theorem 3.7 that Δ1

2
 sets of 

natural numbers are characterised by ordinal recursion up to ℵ1 , where it is assumed that an oracle could 
compute Δ1

2
 sets of natural numbers.

e The reason why the Calculus of Constructions (CoC) is stronger than System F� is that CoC has 
dependent types that allow transfinite types to be formed. In Werner (1997) it is shown that CoC with 
inductive definitions (the Calculus of Inductive Constructions) is inter-interpretable with Zermelo Fraen-
kel Set Theory with countably infinite many inaccessible cardinals.
f Rathjen has claimed in Rathjen (2017) that the Calculus of Constructions with inductive definitions is 
equivalent in proof-theoretic strength to Intuitionistic Zermelo Fraenkel Set Theory with double negation 
forms of the Power Set and Separation axiom schemas, which may be weaker than Intuitionistic Zermelo 
Fraenkel Set Theory.
g This is clearly not a system of the typed lambda calculus, but it is added only for comparison.

Theory Cardinal upper bound Computable bound

Simply typed lambda calculusa ≤ ℵ0 �

System Tb < ℵ1 �0

ITTc < ℵ1 ≥ Γ0

System Fd < ℵ2 Not known
Systemd ≤ ℵ𝜔 Not known
CoCe ≤ Proper classf Not known
Zermelo Fraenkel Set Theoryg Proper class Not known
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term involving types will always be a finite computation involving term rewriting, 
but there is no ordinal limit on the types of the terms involved. The reason why all 
the systems of the typed lambda calculus do not complete the set of Π0

2
 arithmetical 

truths (and therefore the set of arithmetically definable total functions) is simply that 
all the term rewriting or deduction systems can be coded as operations on numbers, 
and all richer and richer types add is the ability to frame larger and larger sets of 
total functions of the natural numbers. The set of computably functions is countably 
infinite because there are countably infinite many finite computer programs, but the 
set of computable functions cannot be computable, otherwise it would be possible to 
diagonalize out of the set to produce a computable function not in the set.

11 � Conclusions

This paper has argued that computable functions can be identified with the functions 
that correspond to reduction sequences of terms at least as strong as the the Calcu-
lus of Constructions. What one ends up with ultimately (at least with extensional 
identity of types) is a version of Zermelo Fraenkel set theory with restricted transfi-
nite recursion and a functional rather than collection based semantics operating on 
generic variables or constants of a given type (which could be an inductively defined 
type such as a power type or a limit type). It is possible to go further and look at the 
computable functions of subtheories of second-order Zermelo Fraenkel set theory 
(that is with a second-order replacement axiom), but it is necessary to treat the set 
theoretic universe as a determinate whole, as a proper class. New set formation prin-
ciples do arise from the theory of proper classes (see for example Hellman (1989), 
Welch and Horsten (2016) and Roberts (2017)), but given that the literature on large 
cardinals and reflection principles is very large, it is sufficient here to note that com-
putable functions are not bounded by any deductive theory or system of the typed 
lambda calculus, only by the requirement that they form a non-computable count-
ably infinite set.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as 
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is 
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission 
directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​
ses/​by/4.​0/.
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