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Abstract— This paper proposes an approach to model order
reduction of convergent Lur’e-type models, which consist of a
linear time-invariant (LTI) block and a static nonlinear block
that is placed in feedback with the LTI block. In the proposed
approach, we match a finite number of moments of the LTI
block and keep the static nonlinear block to approximate the
moments of the Lur’e-type model. The benefits of this approach
are that the Lur’e-type structure is preserved after reduction,
that the reduction method has an interpretation in terms of
the frequency response function of the LTI block and that
global exponential stability properties of the full-order model
are preserved. The effectiveness of the approach is illustrated
in a numerical example.

I. INTRODUCTION
Model order reduction aims at reducing the complexity

of dynamical models allowing for analysis, controller design
and implementation. For linear time-invariant (LTI) models,
many different methods, such as balanced truncation [7],
Hankel-norm approximations [5] and the interpolation ap-
proach [4], have been proposed in the literature. The moment
matching method, see [1], has the property that moments of
reduced-order LTI model are equal to the moments of the
full-order LTI model. Traditionally, the moment matching
method is interpreted as a problem of interpolation of points
on the complex plane. In particular, moments are the co-
efficients of the Laurent series expansion of the frequency
response function (FRF) at a set of user-defined frequencies.
Consequently, the moment matching property is particularly
useful in applications where it is known at which frequencies
the full-order LTI model is going to be excited and thus an
accurate response of the reduced-order LTI model at those
excitation frequencies is needed.

In [2], a time-domain interpretation of moment match-
ing in terms of matching the steady-state response of the
reduced-order LTI model to the steady-state response of the
full-order LTI model for a specific class of input signals
is given. This interpretation allows for a straightforward
definition of moment matching for nonlinear models; namely,
matching the steady-state response of the reduced-order
nonlinear model to the steady-state response of the full-order
nonlinear model for a specific class of input signals [3], [9].
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Fig. 1: Left: Full-order Lur’e-type model Σ. Right: Reduced-
order Lur’e-type model Σr with the same nonlinear mapping
ϕ as in Σ.

Although a solution to the moment matching problem for
nonlinear models is given in [3], [9], there are still many open
questions of which we list three here. The first open question
is how to preserve the structure of the full-order nonlinear
model. For example, if the full-order nonlinear model is of
Lur’e-type form, then a straightforward application of the
method proposed in [3], [9] produces a nonlinear reduced-
order model that is not of Lur’e-type form. The second open
question relates to an FRF interpretation of the reduction
method. As mentioned earlier, traditional moment matching
for LTI models is interpreted as an interpolation problem of
points in the complex plane, which has a clear interpretation
in terms of the FRFs of the full-order and reduced-order
LTI models, see [4]. In the scope of moment matching for
nonlinear models [3], a full characterization of nonlinear
model reduction by moment matching in the frequency
domain is still missing. The third open question is how to
preserve global exponential stability properties of the full-
order nonlinear model. There are moment matching methods
that guarantee global exponential stability of reduced-order
LTI models and local exponential stability of reduced-order
nonlinear models, see [3], [9]. However, in the scope of mo-
ment matching for nonlinear models, it is an open question
how to enforce a form of global exponential stability on the
reduced-order nonlinear model, especially in the presence of
time-varying inputs.

In this paper, we deal with the three open questions listed
above for a practically relevant class of nonlinear models,
namely Lur’e-type models, see [6], that are exponentially
convergent, see [8]. Lur’e-type models contain LTI dynamics
that are captured in an LTI block and nonlinearities that are
captured in a static nonlinear block placed in feedback with
the LTI block, see Figure 1. Exponentially convergent Lur’e-
type models enjoy a global stability property that, loosely
speaking, ensures that for any bounded input signal, the
model response forgets its initial condition and converges



exponentially to a uniquely defined bounded steady-state
solution [13]. Lur’e-type models naturally arise in, e.g.,
electronic circuits with local nonlinear elements, mechanical
systems with nonlinear actuator/sensor characteristics and
spatially discretized partial differential equations with local
nonlinear elements.

The method that we propose consists of two steps. First,
we construct a family of reduced-order LTI models in which
the contributions of the full-order LTI block and of the
nonlinear block are clearly partitioned. In particular, the
nonlinear block can be interpreted as an approximation of
the nonlinear moment of the Lur’e-type model by a finite
number of linear moments of the LTI block. The first step
allows preserving the Lur’e-type structure of the full-order
Lur’e-type model, which is particularly important given that
many analysis and synthesis results exist for this class of
models [6]. Furthermore, the first step allows for an FRF
interpretation of the LTI part of the full-order and reduced-
order Lur’e-type model. Since this step provides a family of
reduced-order models with a specific parametric freedom, we
introduce a second step in which this freedom is exploited to
preserve the desired stability property, i.e., exponential con-
vergence, of the reduced-order Lur’e-type model by solving a
constraint optimization problem. This optimization problem
also fits the FRF optimally at prescribed frequencies, which
is important in the scope of matching the moments of the
nonlinear Lur’e-type model.

To summarize, the main contribution of this paper is a
model order reduction technique for exponentially conver-
gent Lur’e-type models that:

• preserves the Lur’e-type structure;
• matches the FRF of the LTI block at a set of frequencies

and minimizes the mismatch between the FRFs of the
LTI blocks of the full-order model and the reduced-
order model at another set of frequencies; and

• guarantees that the reduced-order Lur’e-type model is
also exponentially convergent.

The remainder of this paper is structured as follows. Sec-
tion 2 introduces the considered class of Lur’e-type models,
recalls sufficient conditions for exponential convergence and
poses the model order reduction problem. Section 3 presents
the proposed approach to solve the model order reduction
problem. Section 4 describes the results of a numerical study
that illustrates the application and benefits of our approach.
Section 5 gives the concluding remarks.

II. PROBLEM SETTING

A. Convergent Lur’e-type models

Consider the class of Lur’e-type models described by the
following state-space equations:

Σ : ẋ = Ax+B1u+B2ϕ(y), y = Cx, (1)

where x(t) ∈ Rn is the state, u(t) ∈ R is the input, y(t) ∈
R is the output, ϕ : R → R is a nonlinear mapping and
model matrices A ∈ Rn×n, B1, B2 ∈ Rn×1, C ∈ R1×n. The

associated FRFs are defined as follows:

Gi(jω) := C(jωI −A)−1Bi, i = 1, 2. (2)

In many engineering applications, a form of model stabil-
ity is desired. Hereto, we introduce the following notion of
stability of models (1), where U is the set of continuous and
bounded functions.

Definition 1 ([8]): The model (1) is said to be globally
exponentially convergent if for every input u ∈ U , there
exists a solution x̄ to (1) satisfying the following conditions:
• x̄ is defined and bounded on t ∈ R,
• x̄ is globally exponentially stable.

The solution x̄ is called the steady-state solution and depends
on the applied input u. Independent of the initial conditions,
all solutions of exponentially convergent models converge to
the globally exponentially stable steady-state solution x̄. The
following theorem presents conditions that guarantee global
exponential convergence of (1).

Theorem 2 ([8]): Consider model (1). Suppose that for
some constant γ > 0 the nonlinear function ϕ satisfies the
following incremental sector condition:∣∣∣∣ϕ(y2)− ϕ(y1)

y2 − y1

∣∣∣∣ ≤ γ, ∀ y1, y2 ∈ R. (3)

Denote A−γ := A − γB2C and A+
γ := A + γB2C. If there

exists a Q = Q> � 0 such that

QA−γ + (A−γ )>Q ≺ 0 and QA+
γ + (A+

γ )>Q ≺ 0 (4)

hold, then model (1) is globally exponentially convergent
according to Definition 1.

B. Definition of a moment

Consider the signal generator

τ̇ = Sτ, u = Lτ (5)

with state τ(t) ∈ Rv , output u(t) ∈ R and matrices S ∈
Rv×v , L ∈ R1×v . The input u to model (1) is generated
by the output of the signal generator (5). The interconnected
model reads as follows:

τ̇ =Sτ,

ẋ =Ax+B1Lτ +B2ϕ(y),

y =Cx.

(6)

Next, we impose the following two assumptions on the
interconnected model (6) consisting of (1) and (5).

Assumption 1: The model (1) satisfies the conditions of
Theorem 2 for γ = γ? for some γ? > 0 and is, therefore,
exponentially convergent according to Definition 1.

Assumption 2: The matrix S of (5) has simple eigenvalues
that are located on the imaginary axis. In addition, it is
assumed that the pair (L, S) is observable.
These two assumptions guarantee the existence of a globally
exponentially stable invariant manifold, as stated in the
following lemma.

Lemma 3 ([8]): Under Assumptions 1 and 2, there exists
a unique continuous mapping Π : Rv → Rn : τ 7→ Π(τ)
that is invariant with respect to the interconnected model (6)



and such that x̄(t) = Π(τ(t)) is the globally exponentially
stable steady-state response of the interconnected model (6).
Lemma 3 allows defining the moments for the Lur’e-type
model (1) in accordance to the framework introduced in [3].

Definition 4: Consider the interconnected model (6) and
suppose Assumptions 1 and 2 hold. The function CΠ, with
Π in Lemma 3, is the moment of the model (1) at (S,L).

C. Moment matching problem

In the moment matching literature, the aim is to match
the moments of the reduced-order nonlinear model to the
moments of the full-order nonlinear model at (S,L) [3], [9].
However, in those approaches, the structure of the full-order
nonlinear model is generally not preserved. The problem
that we formulate below aims at preserving the Lur’e-type
structure of the model. As we will show in the subsequent
sections, preservation of the model structure comes at the
expense of the reduced-order Lur’e-type model not matching
the moments of the full-order Lur’e-type model (1) exactly,
but rather approximating them.

The mismatch between the moments of the reduced-order
model and the full-order model becomes clear if the steady-
state output ȳ of the full-order Lur’e-type model is written
in frequency domain as follows:

Ȳ (jω) = G1(jω)U(jω) + G2(jω)R̄(jω), ∀ω ∈ R, (7)

where G1(jω) and G2(jω) are given in (2). The vari-
ables Ȳ (jω), U(jω), R̄(jω) denote the Fourier transforms
of ȳ(t), u(t), ϕ(ȳ(t)), respectively. Due to the nonlinearity
ϕ, the variable R̄(jω) is non-zero at an infinite number
of frequencies, i.e., the signal u(t) = ϕ(y(t)) contains
an infinite number of frequencies. To solve the moment
matching problem, the FRF G2 should be matched at the
infinite number of frequencies that are contained in R̄(jω),
i.e., an infinite number of interpolation points in the moment
matching problem. While some methods have been proposed
to match moments at infinitely many interpolation points, see
[10], it is unclear if and how these methods can be general-
ized to the current setting (because, e.g., these methods do
not preserve the Lur’e-type structure of the full-order model).

Consider the reduced-order Lur’e-type model Σr:

Σr : ξ̇ = Fξ +G1u+G2ϕ(ζ), ζ = Hξ, (8)

with state ξ(t) ∈ Rm, input u(t) ∈ R, output ζ(t) ∈ R, the
same nonlinear mapping ϕ : R → R as in (1) and model
matrices F ∈ Rm×m, G1, G2 ∈ Rm×1, H ∈ R1×m. Note
that Σr in (8) preserves the structure of Σ in (1). The FRFs
associated with the LTI part of (8) read as:

Γi(jω) := H(jωI − F )−1Gi, i = 1, 2. (9)

Let us present some intuition behind the approximate
moment matching problem, before we formally introduce the
problem. Suppose that U(jω) in (7) excites η1 frequencies
that are contained in Ω0

1 ∈ Rη1 , which implies that at those
frequencies, the FRF Γ1 of the reduced-order model should
equal the FRF G1 of the full-order model. Again from (7),
we observe that the FRF G2 is excited at the frequencies

contained in R̄(jω). To find out which frequencies are
excited by R̄(jω), consider the following property.

Property 5 ([8]): Suppose model (1) is exponentially con-
vergent according to Definition 1. If the input u is periodic
with period T , then the corresponding steady-state output ȳ
is also periodic with the same period T .
Property 5 ensures that if u is periodic with period T , then so
is ȳ, which implies that r̄ = ϕ(ȳ) is also periodic with period
T . Thus, R̄(jω) contains the same frequencies Ω0

1 as U(jω),
but also an infinite number of higher harmonic frequencies
(multiples of the frequencies in Ω0

1) and an infinite number of
intermodulation frequencies (frequencies combine to produce
new frequencies). As mentioned above, only a finite number
of frequencies of G2 can be matched by Γ2 and these fre-
quencies should be wisely chosen. Firstly, we can choose the
frequencies in Ω1

0. Secondly, we can choose harmonics of the
frequencies in Ω1

0. Thirdly, we can choose intermodulation
frequencies, i.e., combinations of frequencies in Ω1

0. Lastly,
we can choose frequencies associated to important model
characteristics, such as, e.g., 0 Hz for equilibrium behavior
and frequencies corresponding to resonance peaks. These
frequencies are collected in Ω2

0 ∈ Rη2 with the goal of
matching the FRF Γ2 of the reduced-order model at those
frequencies to the FRF G2 of the full-order model. To obtain
an accurate match between the moments of the reduced-
order and full-order Lur’e-type model, it is important that the
mismatch between the FRFs Γi and Gi, for i = 1, 2, is also
minimized at other frequencies, i.e., those not contained in
Ωi0, i = 1, 2. The mismatch between Γi and Gi is minimized
at the frequencies collected in ΩiMi

∈ RMi , i = 1, 2.
Before formally presenting the problem statement, we

define the mismatch in the FRFs as follows:

Υi(jω) := Gi(jω)− Γi(jω), for i = 1, 2, (10)

where Gi(jω),Γi(jω) are defined in (2), (9), respectively.
Problem 6: Consider given sets of frequencies Ωi0 ∈

Rηi ,ΩiMi
∈ RMi for i = 1, 2. The model order reduction

problem is to find F,G1, G2 and H that define the reduced-
order Lur’e-type model (8) with state dimension m = 2(η1+
η2), i.e., ξ(t) ∈ Rm, such that

1) the reduced-order Lur’e-type model (8) is exponen-
tially convergent according to Definition 1;

2) at the set of frequencies ωi ∈ Ωi0, the mismatch

Υi(jω
i) = 0, for i = 1, 2. (11)

3) at the set of frequencies ωi ∈ ΩiMi
, i = 1, 2, the

mismatch quantified by the following cost function:

J(F,G1, G2, H) :=

2∑
i=1

Mi∑
k=1

∣∣Υi(jω
i
k)
∣∣2 (12)

is minimized, where ωik is the k-th element of ΩiMi
for

i = 1, 2.
Problem 6 has the following interpretation. Item 1) guar-

antees that the reduced-order Lur’e-type model (8) preserves
the convergence property of the full-order Lur’e-type model
(1). Item 2) ensures that the FRFs Gi and Γi are equal at the



set of user-defined frequencies Ωi0, i = 1, 2. Item 3) ensures
an optimal fit between Γi and Gi at user-defined frequencies
ΩiMi

, for i = 1, 2, for example, a logarithmic grid over a
range of frequencies. The next section presents the proposed
solution to Problem 6.

III. MODEL ORDER REDUCTION APPROACH

A. Conceptual description

The reduction approach works as follows. First, the LTI
part of the full-order Lur’e-type model is decoupled from
the Lur’e-type model. Then, for the full-order LTI model, a
family of reduced-order LTI models is given such that Item
2) of Problem 6 is satisfied. As will be shown, this step
yields freedom in parameters G1, G2, which is exploited to
solve a constrained optimization problem that minimizes the
cost function (12), hence satisfying Item 3), and ensures that
the conditions of Theorem 2 are satisfied, hence satisfying
Item 1. The reduced-order Lur’e-type model consists of
the reduced-order LTI model placed in feedback with the
nonlinear mapping ϕ of the full-order Lur’e-type model.

B. Family of reduced-order LTI models satisfying Item 2) of
Problem 6

The family of reduced-order models is found by applying
moment matching for SISO LTI models, as described in
[9], for each transfer function Gi(jω), i = 1, 2, individually
and then stacking the two reduced-order LTI models in a
single state-space model. The result is summarized in the
next theorem, where the notation σ(Si) ' Ωi0, i = 1, 2,
means that the signal generator defined by (Si, Li) generates
the frequencies in Ωi0 ∈ Rηi , i.e., if α ∈ Ωi0 with α ∈ R,
then ±jα ∈ σ(Si), where σ(Si) denotes the spectrum of
Si ∈ Rvi×vi , vi = 2ηi, i = 1, 2 [3].

Theorem 7: Consider given sets of frequencies Ωi0 ∈
Rηi , i = 1, 2, and suppose that σ(Si) ' Ωi0, i = 1, 2.
Furthermore, suppose Assumption 1 holds for the full-order
Lur’e-type model (1) and Assumption 2 holds for both
(Si, Li), i = 1, 2. Consider the following reduced-order LTI
model:[

ξ̇1
ξ̇2

]
=

[
F1 0
0 F2

]
︸ ︷︷ ︸

F

[
ξ1
ξ2

]
+

[
G1
0

]
︸ ︷︷ ︸
G1

u+

[
0
G2

]
︸ ︷︷ ︸
G2

r,

ζ =
[
H1 H2

]︸ ︷︷ ︸
H

[
ξ1
ξ2

]
,

(13)

where ξ1(t) ∈ Rv1 , ξ2(t) ∈ Rv2 , u(t) ∈ R, r(t) ∈ R, ζ(t) ∈
R and with

Fi = Si − GiLi, Hi = CΠi, (14)

where Πi ∈ Rn×vi is the unique solution of the Sylvester
equation:

ΠiSi = AΠi +BiLi, (15)

for i = 1, 2. For any Gi ∈ Rvi×1 that satisfies

σ (Si − GiLi) ∩ σ(Si) = 0, (16)

the FRF Γi in (9) of the reduced-order LTI model (13) is
equal to the FRF Gi in (2) of the full-order model (1) at
frequencies Ωi0, for i = 1, 2, i.e., Υi(jω

i) = 0 for ωi ∈ Ωi0,
for i = 1, 2, and, hence, Item 2) of Problem 6 is solved.

Proof: The proof is omitted for the sake of brevity.
The family of reduced-order LTI models is given in (13).

We would like to note that even if Gi is selected such that
(16) is satisfied, the reduced-order Lur’e-type model Σr in
(8) is not guaranteed to be exponentially convergent, as the
conditions in Theorem 2 might not be satisfied. In the next
section, we present a method to find a G1, G2 such that Items
1) and 3) of Problem 6 are also satisfied.

Remark 8: The specific parametrization in (13) leaves the
ξ1, ξ2 dynamics decoupled. Consequently, when the user
wants to match the same frequencies in G1 and G2 by Γ1 and
Γ2, respectively, then these frequencies should be included
in S1 and repeated in S2, which raises the order of the
reduced-order model. Future work aims at coupling the ξ1, ξ2
dynamics, such that one, possibly, can eliminate repeating the
frequencies of S1 in S2 and vice versa.

C. Constrained Optimization Satisfying Items 1) and 3) of
Problem 6

The family of reduced-order Lur’e-type models is given
in (8) with F,G1, G2, H as in (13) in Theorem 7 and free
parameters G1, G2. In [3], a similar freedom in G1, G2 is
exploited to, for example, place the poles of the reduced-
order LTI model at desired locations or to enforce passivity
of the reduced-order LTI model. In [11], a similar type of
freedom, albeit with a different model parametrization than
(14), is used to match the transient response in an optimal
way by solving a nonlinear optimization problem. In this
section, the freedom in G1, G2 is exploited to (i) minimize the
mismatch between FRFs Γi(jω

i) and Gi(jωi) at frequencies
ωi ∈ ΩiMi

, for i = 1, 2; and (ii) enforce that the reduced-
order Lur’e-type model in (8) satisfies the conditions of The-
orem 2, which guarantees global exponential convergence.

1) Constrained Gradient-Based Optimization: The sets
ΩiMi

∈ RMi contain the frequencies at which an optimal fit
between the FRFs Gi and Γi is desired. For example, one can
take for ΩiMi

a grid of Mi points in a certain frequency range.
Given the user-defined sets of frequencies ΩiMi

, we present
a method to minimize the cost function J(F,G1, G2, H)
in (12). However, since the only free parameters in J
are G1, G2, we can reparametrize J (with slight abuse of
notation) as follows:

J(G1, G2) :=

2∑
i=1

Mi∑
k=1

∣∣Υi(jω
i
k)
∣∣2 , (17)

where ωik is the k-th element of ΩiMi
, for i = 1, 2. Besides

minimizing J , we would like to preserve the convergence
property that the full-order Lur’e-type model enjoys. There-
fore, we would like to choose G1, G2 such that the conditions
of Theorem 2 are satisfied. To this extent, we formulate

G̃1, G̃2 = arg min
G1,G2∈G

J(G1, G2), (18)



where G is the set of G1, G2 for which there exists a Q =
Q> � 0 such that the LMIs

QF (G1, G2)−γ? + (F (G1, G2)−γ?)>Q ≺ 0,

QF (G1, G2)+γ? + (F (G1, G2)+γ?)>Q ≺ 0,
(19)

are satisfied with F (G1, G2)±γ? := F (G1, G2)± γ?G2(G2)H
and γ? as in Assumption 1. We would like to note that for
any G1, G2 ∈ G, condition (16) is satisfied, since satisfaction
of (19) guarantees that F is Hurwitz.

The constraints (19) are derived from the statements in
Theorem 2 and are linear in Q for fixed G1, G2, hence
(19) are LMIs. Since J in (18) is nonlinear in G1, G2, by
gradient-based optimization, a local minimum of J can be
found, which solves Item 3) of Problem 6. Publicly available
optimization packages, such as SeDuMi [12] for Matlab, can
be employed to solve (19) in a gradient-descent fashion. The
resulting G̃1, G̃2 render the reduced-order Lur’e-type model
exponentially convergent, hence solving Item 1) of Problem
6. In order to start a gradient-based search, initial G0

1 , G
0
2 are

required that satisfy the constraints (19), which is the topic
of the next section.

2) Exponentially Convergent Starting Point: The follow-
ing theorem presents an LMI-based method to find a G0

1 , G
0
2

such that the conditions of Theorem 2 are satisfied.
Theorem 9: Suppose Assumption 1 holds for a certain γ?

and consider the reduced-order Lur’e-type model (8) with
parametrization (13). If there exist positive definite matrices
Q1 = Q>1 � 0, Q2 = Q>2 � 0, matrices X1 ∈ Rv1 , X2 ∈
Rv2 , such that the following two LMIs are satisfied:[

M1

(
M−2

)>
M−2 M−3

]
≺ 0,

[
M1

(
M+

2

)>
M+

2 M+
3

]
≺ 0 (20)

with

M1 =Q1S1 −X1L1 + S>1 Q1 − L>1 X>1 ,
M±2 =± γ?X2H1,

M±3 =Q2S2 −X2L2 ± γ?X2H2

+ S>2 Q2 − L>2 X>2 ± γ?H>2 X>2 .

Then, the conditions of Theorem 2 are satisfied and the
reduced-order Lur’e-type model (8) is globally exponentially
convergent according to Definition 1 with model matrices
G0
i = Q−1i Xi, i = 1, 2,. Furthermore, condition (16) is

satisfied.
Proof: The proof is omitted for the sake of brevity.

The LMIs in Theorem 9 can be solved for Q1, Q2, X1, X2

by publicly available solvers such as SeDuMi [12]. Although
studying feasibility of the LMIs is a topic for future work, in
our experience, these LMIs are always feasible and a solution
can always be found. Once solved, the initial model matrices
G0
1 and G0

2 can be retrieved from Q1, Q2, X1, X2 and used to
launch a gradient-based search to minimize the constrained
optimization problem (18).

D. Overview of the reduction method

An overview of the reduction method is presented in
Algorithm 1 below.

Algorithm 1 Model Order Reduction Algorithm
Input: Full-order model Σ in (1) and the sets of frequencies
Ωi0,Ω

i
Mi
, i = 1, 2.

1: Define the signal generators (Si, Li), i = 1, 2, in (5)
such that σ(Si) ' Ωi0.

2: Compute the matrices CΠi, i = 1, 2, from (15).
3: Define the reduced-order model matrices F,G1, G2, H ,

as in (13).
4: Compute initial G0

i , i = 1, 2, using Theorem 9.
5: Using ΩiMi

, i = 1, 2, solve the constrained optimization
problem (18), starting at G0

1 , G
0
2 .

Output: Reduced-order model Σr in (8).

IV. ILLUSTRATIVE EXAMPLE

In this example, we consider a convergent Lur’e-type
model (1) with state dimension n = 100 for the LTI part
and a deadzone nonlinearity defined as follows:

ϕ(y) = sign(y) max(0, |y| − 0.05). (21)

The nonlinear function ϕ outputs 0 for |y| ≤ 0.05 and has a
slope of 1 for |y| > 0.05. The matrices of the LTI block are
generated randomly by Matlab’s function rss.m, and the
B1 matrix is adapted in magnitude such that the Lur’e-type
model is exponentially convergent and satisfies Assumption
1 for γ? = 1. The Bode magnitude diagram of the full-order
LTI model is depicted in the solid blue curve in Figure 2.

The signal generators are defined by the triples
(Si, Li, τ

0
i ), i = 1, 2, as follows:

Si = blockdiag (Ξ1, . . . ,Ξηi) ,

Ξk =

[
0 ωik · 2π

−ωik · 2π 0

]
Li = τ0i =

[
1 0 . . . 1 0

]> ∈ Rvi ,

(22)

where ωik is the k-th element of Ωi0 ∈ Rηi and τ0i is the
initial condition of the signal generator. If both Ωi0 do not
contain repeated frequencies, then Assumption 2 holds for
both signal generators i = 1, 2. In this specific example, we
choose the following set of five frequencies:

Ω1
0 =

[
0.01 0.1 0.38 1.32 4.1

]>
,

Ω2
0 =

[
0.01 0.1 0.38 1.27 4.1

]>
.

(23)

In each Ωi0, i = 1, 2, the first frequencies are low frequencies
and the latter three correspond to the resonance peaks visible
in Figure 2. Taking five frequencies in each Ωi0, i = 1, 2, i.e.,
η1 = η2 = 5, results in a dimension of m = 2(η1 +η2) = 20
for the state ξ of the reduced-order Lur’e-type model (8).

First, we solve the LMIs in Theorem 9 to obtain G0
1 , G

0
2 ,

that, together with (14), constitute the initial convergent
reduced-order Lur’e-type model Σ0

r in (8). The Bode mag-
nitude diagram of Σ0

r is shown in Figure 2 in the dashed red
curve. It can be observed that the FRFs of the LTI part of
Σ and Σ0

r match at the frequencies Ω1
0,Ω

2
0 in the left and

right subfigures, respectively. However, for other frequencies,
there is a significant mismatch.



Fig. 2: Bode magnitude diagram of Σ,Σ0
r and Σr.

Next, we solve the constrained optimization problem (18),
starting at the initial G0

1 , G
0
2 . Hereto, we define the sets

Ω1
M1

= Ω2
M2

= 2π·10κ =: ΩM with κ ∈ RM linearly spaced
with M = 100 elements between -2 and 2, implying that ΩM
is logarithmically spaced between 0.01 Hz and 100 Hz. The
resulting G̃1, G̃2 define the (final) convergent reduced-order
Lur’e-type model Σr in (8). The Bode magnitude plot of
Σr is depicted in the dotted yellow curve in Figure 2. With
respect to Σ0

r , a significant improvement of the fit of Σr to
Σ can be observed at almost all frequencies.

Finally, we present time-domain simulation results to
illustrate the quality of the reduced-order Lur’e-type model
in terms of approximating the steady-state response of the
full-order Lur’e-type model. For the signal generator in (5)
with S = S1, L = L1, τ

0 = τ01 , the steady-state output ȳt of
the full-order interconnected model (6) is depicted in Figure
3, where the subscript t refers to training data. The steady-
state response ζ̄t of the reduced-order Lur’e-type model (8)
is also depicted in the same figure. It can be observed the
steady-state response ȳt is approximated accurately by ζ̄t.
For validation, Figure 3 also presents a similar result for a
validation input signal generated by (22) that now generates
Ω0

3 =
[
0.02 0.25 2 4

]
Hz. Again, it can be concluded

that the steady-state response ζ̄v accurately approximates ȳv ,
where the subscript v refers to validation data. The mismatch
is dominant in the frequencies in Ω0

3 due to the mismatch in
the FRF at those frequencies, see Figure 2.

V. CONCLUSIONS

This paper presents a model order reduction technique
for exponentially convergent nonlinear models of Lur’e-
type form. One of the benefits of our approach is that the
Lur’e-type structure of the full-order model is preserved
in the reduced-order model. Furthermore, our approach has
the interpretation in terms of frequency response functions
(FRFs). Namely, the FRF of the LTI block of the reduced-
order Lur’e-type model equals the FRF of the LTI block of
the full-order Lur’e-type model at user-defined frequencies.
Furthermore, the mismatch between the FRF of the LTI block

Fig. 3: Top: Steady-state output of Σ and Σr. Bottom:
Mismatch between the steady-state output of Σ and Σr. Sub-
scripts t, v refer to training and validation data, respectively.
The mean of the responses is corrected for visualization.

of the reduced-order model and the full-order model is mini-
mized at another user-defined set of user-defined frequencies.
Moreover, our approach guarantees that the reduced-order
model also enjoys the exponentially convergent property of
the full-order Lur’e-type model. In a numerical example, we
illustrated the effectiveness of our approach.
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