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Abstract— We present a review of some recent contributions
to the theory and application of nonlinear model order reduc-
tion by moment matching. The tutorial paper is organized
in four parts: 1) Moments of Nonlinear Systems; 2) Playing
with Moments: Time-Delay, Hybrid, Stochastic, Data-Driven
and Beyond; 3) The Loewner Framework; 4) Applications to
Optimal Control and Wave Energy Conversion.

I. INTRODUCTION

Dynamic models are essential for analysis, estimation,
and control of modern systems and physical behaviors.
Unfortunately, high-fidelity requirements dictate an increase
in dimensionality and complexity of such models and require
powerful computational platforms. This has maintained the
computational needs at the top or over the available possibili-
ties. A possible approach to mitigate such problem is provided
by the use of reduced order models. The model reduction
problem can be informally formulated as the problem of
finding a simplified description of a dynamical system in
specific operating conditions, preserving at the same time
specific properties. For linear systems the problem has been
addressed from several viewpoints. The additional difficulties
of the reduction of nonlinear systems carry the need to develop
different or “enhanced” techniques.

Aim of this tutorial paper is to survey model reduction
methods for nonlinear systems which rely on the notion
of moment and to demonstrate, via a specific application,
that moments provide a powerful tool to formulate and
solve complex control problems using numerical efficient
algorithms. While we acknowledge that there are several
methods to construct reduced order models, for linear and
nonlinear systems, and these have been widely studied, the
focus of the paper is on a specific method, and we refer the
reader to the literature, for example using [1] as a pointer
for linear systems and [2] as a pointer for nonlinear systems.

A fundamental preliminary result for the development of
model reduction by moment matching for nonlinear systems
has been to recognize that the problem of determining the
moments of a system corresponds to the problem of solving a
particular Sylverster equation, see [3] and [4]. Exploiting this
property, the notion of moment has been revisited for linear
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systems and extended to nonlinear systems firstly in [5] and
then in [6], [7], [8]. The method presented in this tutorial
paper is based on the framework pioneered in [8] which
has been extended in multiple directions and has contributed
to a number of applications, see for example [9], [10]. On
the basis of the definition of moment given in [8], it has
been shown, under suitable assumptions, in [11] that the
Loewner framework of [12] can be viewed as a special
case of a two-sided moment-matching procedure. Hence the
Loewner framework presents an alternative method for left-
and right-sided interpolation, that is for matching twice as
many moments of the underlying system as the moments that
can be matched with the result in [8]. Note that, to date, a
nonlinear enhancement of the Loewner framework has not yet
been fully developed. Enhancements for some mild classes
of nonlinearities have been given in [13], [14], and [15].

The rest of the paper is divided into four parts. The notion
of moment for nonlinear systems is introduced in Section II,
which is then followed by Section III in which such a notion
is developed to time-delay, hybrid, and stochastic systems and
the basic ideas of data-driven model reductions are described.
Section IV introduces the so-called Loewner framework for
model reduction of nonlinear systems, while the application
of the notion of moment to optimal control problems, and in
particular to problems arising in wave energy conversion, is
discussed in Section V.

Notation. We use standard notation. C<0 (C≥0) denotes
the set of complex numbers with negative (non-negative)
real part. R<0 (R>0) denotes the set of negative (positive)
real numbers. The symbol I denotes the identity matrix and
σ(A) denotes the spectrum of the matrix A ∈ Rn×n. The
symbol |v|, with v ∈ Rn, indicates the Euclidean norm of the
vector v. The vectorization of a matrix A ∈ Rn×m, denoted
by vec (A), is the nm × 1 vector obtained by stacking the
columns of the matrix A one on top of the other, namely
vec (A) = [a>1 , a

>
2 , . . . , a

>
m]>, where ai ∈ Rn is the i-th

column of A and the superscript > denotes the transposition
operator. The convolution between two functions f and g over
the set Ω ⊂ R, i.e.

∫
Ω
f(τ)g(t − τ)dτ is denoted as f ∗ g.

The symbol ⊗ indicates the Kronecker product, whereas the
symbol ⊕ indicates the direct sum. Given two functions,
f : Y → Z and g : X → Y , with f ◦ g : X → Z we denote
the composite function (f ◦ g)(x) = f(g(x)) which maps
all x ∈ X to f(g(x)) ∈ Z.

II. MOMENTS OF NONLINEAR SYSTEMS

The point of departure for the theory of model reduction
by moment matching is the notion of moment. Moments have



been traditionally defined in terms of the value of a function
of a complex variable, for example the transfer function of a
linear (not-necessarily finite-dimensional) system, at a regular
point of the function.

Unfortunately, the class of systems that can be described
using transfer functions is fairly limited. Hence, extending
the notion of moments to nonlinear systems requires an
alternative, albeit equivalent in the linear case, definition.
To achieve this objective, we initially re-interprete the notion
of moment for linear systems using a state-space formulation,
that is we consider a linear, single-input, single-output1,
continuous-time system described by equations of the form

ẋ = Ax+Bu,
y = Cx,

(1)

with x(t) ∈ Rn, u(t) ∈ R, y(t) ∈ R, together with its
associated transfer function

W (s) = C(sI −A)−1B. (2)

The following assumptions hold throughout the paper
whenver we refer to linear systems.

Assumption 1. The triple of matrices (A,B,C) is a minimal
realization, that is the underlying linear system is reachable
and observable.

Definition 1. [1] The 0-moment of system (1) at s? ∈ C is
the complex number

η0(s?) = C(s?I −A)−1B.

The k-moment of the system (1) at s? ∈ C is the complex
number

ηk(s?) = (−1)k

k!

[
dk

dsk

(
C(sI −A)−1B

)]
s=s?

= C(s?I −A)−(k+1)B

Remark 1. While moments are classically defined only at
regular points of the transfer function (2), the paper [16] has
shown that the definition can be extended to singular points.

The following result provides the sought after alternative
definition.

Lemma 1. [3], [8] Consider the system (1) and s? ∈ C.
Suppose s? 6∈ σ(A). Then the moments η0(s?), . . . , ηk(s?)
are in one-to-one relation with the matrix CΠ, where Π is
the (unique) solution of the Sylvester equation

AΠ +BL = ΠS, (3)

with S any non-derogatory2 real matrix such that

det(sI − S) = (s− s?)k+1, (4)

and L such that the pair (L, S) is observable.

1Similar considerations can be performed for multi-input, multi-output
systems.

2A matrix is non-derogatory if its characteristic and minimal polynomials
coincide.

This characterization lends itself to a natural nonlinear
enhancement. As a matter of fact the equation (3) reveals
that the cascaded system

ω̇ = Sω,
ẋ = Ax+BLω

(5)

has a well-defined invariant set described by the equation
x = Πω and the restriction of the system (5) to the invariant
set is a copy of the system ω̇ = Sω. This means that one
could define the moment of the system (1) at σ(S) (with all
eigenvalues counted with their multiplicity) by means of a
specific invariant set (in the case of linear systems it is a
subspace). This point of view leads naturally to the following
developments.

Consider a nonlinear, single-input, single-output,
continuous-time system described by equations of the form3

ẋ = f(x, u),
y = h(x),

(6)

with x(t) ∈ Rn, u(t) ∈ R, y(t) ∈ R, a signal generator
described by the equations

ω̇ = s(ω),
θ = l(ω),

(7)

with ω(t) ∈ Rν and θ(t) ∈ R and the interconnected system

ω̇ = s(ω),
ẋ = f(x, l(ω)),
y = h(x).

(8)

Suppose, in addition, that f(0, 0) = 0, s(0) = 0, l(0) = 0
and h(0) = 0. The signal generator captures the requirement
that one is interested in studying the behaviour of system
(6) only in specific circumstances. However, for this to make
sense and to provide a generalization of the notion of moment,
we need the following assumptions and definitions.

Assumption 2. There is a unique mapping π(ω), locally
defined in a neighborhood of ω = 0, which solves the partial
differential equation

f(π(ω), l(ω)) =
∂π

∂ω
s(ω). (9)

Assumption 2 implies that the interconnected system (8)
possesses an invariant manifold, described by the equation
x = π(ω). Note that the (well-defined) dynamics of the
system restricted to the invariant manifold are described by
ω̇ = s(ω), i.e. are a copy of the dynamics of the signal
generator (7).

Assumption 3. The signal generator (7) is observable and
excitable [17].

Definition 2. Consider system (6) and the signal generator
(7). Suppose Assumptions 2 and 3 hold. The function h(π(·)),
with π(·) solution of equation (9), is the moment of system
(6) at s(·).

3All functions and mapping are sufficiently smooth.



The above definitions allow to derive a connection between
moments and the steady-state output response.

Theorem 1. Consider system (6) and the signal generator (7).
Assume Assumption 3 holds. Assume the zero equilibrium
of the system ẋ = f(x, 0) is locally exponentially stable and
system (7) is Poisson stable.

Then the moment of system (6) at s(·) coincides with the
(locally well-defined) steady-state response of the output of
the interconnected system (8).

To obtain an existence condition in the case in which
the underlying system does not have an exponentially stable
equilibrium at the origin and/or the signal generator is not
Poisson stable one has to resort to a different approach,
which relies on a nonlinear enhancement of the non-resonant
condition which guarantees existence of the solution of the
Sylvester equation (3). This approach, and the corresponding
technicalities, see e.g. Definition 7, are detailed in Section IV.

With the definition of moment at hand, one can introduce
the notion of reduced order model and characterize the
solution of the model reduction problem by moment matching.

Definition 3. The system

ξ̇ = φ(ξ, u), ψ = κ(ξ), (10)

with ξ(t) ∈ Rν , is a model at s(·) of system (6) if system (10)
has the same moment at s(·) as (6). In this case, system (10) is
said to match the moment of system (6) at s(·). Furthermore,
system (10) is a reduced order model of system (6) if ν < n.

Theorem 2. Consider the system (6), the system (10) and
the signal generator (7). Suppose Assumptions 2 and 3 hold.
System (10) matches the moments of (6) at s(·) if the equation

φ(p(ω), l(ω)) =
∂p

∂ω
s(ω) (11)

has a unique solution p(ω) such that

h(π(ω)) = κ(p(ω)), (12)

where π(·) is the solution of equation (9).

The above result allows constructing a parameterized family
of reduced order models. To this end, note that to construct
a reduced order model it is necessary to determine mappings
φ(·, ·), κ(·) and p(·) such that equations (11) and (12) hold,
where π(ω) is the solution of equation (9).

Consider now the following assumption.

Assumption 4. There exists mappings κ(·) and p(·) such that
k(0) = 0, p(0) = 0, p(ω) is locally differentiable, equation
(12) holds and

det
∂p(ω)

∂ω
(0) 6= 0,

i.e. the mapping p(·) possesses a local inverse p−1(·).

Remark 2. Assumption 4 holds selecting p(ω) = ω and
k(ω) = h(π(ω)).

A direct computation shows that a family of reduced order
models, all achieving moment matching, provided equation
(11) has a solution p(·), is described by

ξ̇ = φ0(ξ) +
∂p(ω)

∂ω
φ1(ξ)u,

ψ = κ(ξ),

where κ(·) and p(·) are such that Assumption 4 holds,

φ1(ξ) = φ̃1(p−1(ξ)),

where φ̃1(·) is a free mapping, and

φ0(ξ) =

[
∂p(ω)

∂ω

(
s(ω)− φ1(p(ω))l(ω)

)]
ω=p−1(ξ)

.

In particular, selecting p(ω) = ω yields the family of reduced
order models described by

ξ̇ = s(ξ)− φ1(ξ)l(ξ) + φ1(ξ)u,

ψ = h(π(ξ)),
(13)

where φ1(·) is a free mapping.
It is possible to use the free parameter φ1(·) to achieve

specific properties of the reduced order model. For example,
model reduction by moment matching with a stability con-
straint can be achieved selecting, if possible, the free mapping
φ1(·) such that the zero equilibrium of the system

ż = s(z)− φ1(z)l(z)

is locally asymptotically stable. This is possible, for example,
if the pair (

∂l(ω)

∂ω
(0),

∂s(ω)

∂ω
(0)

)
is observable, or detectable. Note, however, that this is not
necessary.

Note that, in general, the computation of moments and
the solution of the model reduction problem requires the
solution of a partial differential equation. This is however not
the case if one is interested in the model reduction problem
with 0-moment matching at s? = 0. Such a problem can be
solved, under specific assumptions, without the need to solve
any partial differential equation, as detailed in the following
statement.

Proposition 1. Consider system (6) and the signal generator
ω̇ = 0, θ = ω. Assume the zero equilibrium of the system
ẋ = f(x, 0) is locally exponentially stable. Then the zero
moment of system (6) is (locally) well defined and given
by h(π(·)), with π(·) the unique solution of the algebraic
equation f(π(ω), ω) = 0. Finally, a reduced order model, for
which the zero equilibrium is locally asymptotically stable is
given by

ξ̇ = −φ1(ξ)(ξ − u), ψ = h(π(ξ)),

with φ1(ξ) such that φ1(0) > 0.

We conclude this preliminary section with a few observa-
tions. The notion of moment expressed in Definition 2 has
led to extensive investigations in the last decade. While some



of these are summarized in the remainder of this tutorial, it
is worth noting the development of a dual theory in which
the signal generator is driven by the system the moment of
which are to be computed [18]; the definition of moments for
nonlinear time-delay systems [19] and for systems driven
by infinite dimensional generators [20]; the solution of
structure/mode preserving model reduction problems [21],
[22]; the definition of a nonlinear enhancement of the notion
of phasors applicable to the study of circuits with switched
mode power electronic components [23]; and a fully data-
driven approach [24], [25].

III. PLAYING WITH MOMENTS: TIME-DELAY, HYBRID,
STOCHASTIC, DATA-DRIVEN AND BEYOND

This part of the tutorial has two objectives. The first is
to provide a guessing technique to determine the moments
of general systems. The second is to provide a numerical
method to compute the moments of nonlinear systems.

A. Introduction

It should be clear by now that the model reduction method
presented in this paper relies on the solution of two equations.
The first is an invariance equation that defines the moments,
e.g. (3) or (9). The second is a moment matching condition
that imposes that the moments of the system and of the
reduced order model are identical e.g. (12). Consider now a
system Syx,u described by the generic evolution law

Syx,u : σx = F(x, u), y = H(x), (14)

where x is the state, u is the input and y is the output. σ is
a generic operator that may indicate a derivative, a jump, a
differential and so on. F and H are generic maps that may
apply time-delays, describe a hybrid dynamics, a stochastic
dynamics and so on. The only requirement that we impose
on (14) is that the state x satisfies the superposition principle.
We refer to (14) as “any linear system”. Moreover, if (14)
describes a time-delay system, then we say that we are in the
“time-delay framework”; if (14) describes a hybrid system,
then we say “hybrid framework”, and so on. We call the
framework of Section II, the “standard framework”.

Let Suω be any linear signal generator with state ω, no
input and output u and Syx,u be any linear system with state
x, input u and output y. We indicate with

Suω
u=Lω→ Syx,u (15)

the interconnected system in which the input u of Syx,u
is given by u = Lω, where L is a vector of the right
dimension. Under framework-dependent assumptions the
interconnection (15) will have a well-defined steady-state
xss which is described by a relation of the type

xss = P · ω, (16)

where P is a framework-dependent object, i.e. it may be a
constant matrix, a function, a stochastic process and so on
(the symbol · indicates matrix to vector multiplication and
can be omitted). Then the “moments of any linear system

Syx,u at any linear signal generator Suω” are the elements of
the vector

H ◦ P (17)

where P is such that the invariance equation

σ(P · ω) = F(P · ω,Lω) (18)

holds for all ω.
We now show that a simple guessing method which allows

extending the characterization of moments to any new linear
framework consists of:

1) making a guess for P in (16);
2) and writing down equation (18).

Remark 3. What follows are not proofs that the moments
in each of the analysed frameworks are defined in the way
that we find using this guessing technique. The objective of
the tutorial is different; namely it is to show that making
a guess for (16) and using the relation (18) is a powerful
technique to quickly find the moment-defining equation in a
new framework. It turns out that these guesses are correct, as
shown through additional work in each of the corresponding
works cited in the following.

Remark 4. Despite calling all the frameworks of this section
“linear”, we point out that traditionally the term linear refers
only to the standard framework. Thus, this part of the tutorial
is “beyond linearity” in the sense that we are beyond the
standard framework.

Remark 5. The same guessing technique can be applied to
any nonlinear system. We restrict ourselves to linear systems
for simplicity and to save space. We refer the reader to the
cited works for the nonlinear versions of most of the results
presented herein.

Citations to the works where each of these results were
first developed are provided in the titles of the sections. A
unified reference is the monograph [2].

B. Time-delay systems [19]

Consider a linear, single-input, single-output, continuous-
time, time-delay system with constant delays4 described by
the equations

Eẋ(t− τE) = Ax(t− τA) +Bu(t− τB),
y(t) = Cx(t− τC),

(19)

with x(t) ∈ Rn, u(t) ∈ R, y(t) ∈ R, E ∈ Rn×n, A ∈ Rn×n,
B ∈ Rn×1, C ∈ R1×n, τE ∈ R≥0, τA ∈ R≥0, τB ∈ R≥0

and τC ∈ R≥0. We also assume that x and u are equipped
with the required initial histories. Consider a signal generator
described by the equations

ω̇ = Sω, u = Lω, (20)

4The same procedure can be applied to distributed delays and multiple
delays.



with ω(t) ∈ Rν , S ∈ Rν×ν , L ∈ R1×ν . In this framework,
we expect that the steady state xss of x obeys (if it exists) a
relation of the type

xss(t) = Πω(t), (21)

where Π ∈ Rn×ν . Then by applying the guessing technique
we obtain the following result.

Theorem 3. Assume the guess (21) is correct. Then the
matrix Π is the unique solution of the equation

AΠe−SτA − EΠSe−SτE = −BLe−SτB . (22)

Moreover, then the moments of system (19) at the signal
generator (20) are the elements of CΠe−SτC .

Proof. Note that ω̇(t) = Sω(t) with ω(t0) = ω0 has solution
ω(t) = eS(t−t0)ω(t0). Consider now t0 = t−τ . Then ω(t) =
eSτω(t− τ), which implies ω(t− τ) = e−Sτω(t). Since at
steady state we assume x(t) = Πω(t), it follows that

x(t− τ) = Πω(t− τ) = Πe−Sτω(t).

Moreover ẋ(t − τ) = Πω̇(t − τ) = ΠSω(t − τ) =
ΠSe−Sτω(t). Thus equation (18) in this framework becomes

EΠSe−SτEω(t) = AΠe−SτAω(t) +BLe−SτBω(t).

As this must hold for all ω, the first statement follows.
Similarly, noticing that yss = Cxss(t−τC) = CΠe−SτCω(t),
we obtain the form of (17).

C. Systems in explicit form [23], [20], [26], [27]

Consider again the linear system (1), but now we consider
a periodic signal generator described by the equation

ω(t) = Λ(t)ω0, u = Lω,
Λ(t) = Λ(t− T ), t ≥ T, (23)

with ω(t) ∈ Rν , u(t) ∈ R, L ∈ R1×ν , Λ(t) ∈ Rν×ν such
that Λ(0) = I , and T ∈ R>0 the period of the signal u.
Note that (23) provides a very general class of models which
contains the implicit model ω̇ = Sω (when periodic), but that
can describe several other signal generators. For instance, it
can represent signals generated by a time-varying system of
the form

ω̇ = S(t)ω, u = Lω, (24)

with S(t) ∈ Rν×ν , in which case Λ is the transition matrix
associated to (24).

Equation (23) can also represent a signal generator de-
scribed by some classes of hybrid systems of the form

ω̇(t, k) = Sω(t, k), uc=Lcω,
ω(t, k + 1) = Jω(t, k), ud=Ldω,

(25)

with J ∈ Rν×ν , Lc ∈ R1×ν , Ld ∈ R1×ν , uc(t) ∈ R and
ud(t) ∈ R, which jumps and flows on some hybrid time
domain R× Z. In general, note that any periodic signal that
can be written as the product of a function of time “times”
the initial condition can be described by (23). For instance, if
we consider a square wave u(t), then u(t) can be generated
by a nonlinear system, i.e Λ(t) = sign(sin(t)) or by the

hybrid system (25), i.e Λ(t) = Jb
t
T ceSt. It is evident that

the characterization of the moments for the explicit signal
generator (23) would solve the problem of model reduction by
moment matching for many different classes of input signals,
not necessarily linear.

In this framework, we expect that the steady state xss of
x obeys (if it exists) a relation of the type

xss(t) = Π(t)ω(t), (26)

where Π(t) ∈ Rn×ν is a time-varying matrix. Then by
applying the guessing technique we obtain the following
result.

Theorem 4. Assume the guess (26) is correct. Then the
matrix Π(t) is defined by

Π(t) = (I − eAT )−1

[∫ t

t−T
eA(t−τ)BLΛ(τ)dτ

]
Λ(t)−1.

(27)
Moreover, then the moments of system (1) at the signal
generator (23) are the elements of CΠ(t).

Proof. The solution of system (1) is x(t) = eA(t−t0)x(t0) +∫ t
t0
eA(t−τ)Bu(τ)dτ . Using the change of variable t0 = t−T ,

the guess xss(t) = Π(t)ω(t), and recalling that Λ(t) =
Λ(t− T ) yields

Π(t)Λ(t)ω(t0) = eATΠ(t− T )Λ(t)ω(t0)+

+

∫ t

t−T
eA(t−τ)BLΛ(τ)ω(t0)dτ.

Since the input to (1) is periodic, so is its steady-state. This
implies that Π(t) = Π(t − T ). Now, since the previous
equation must hold for any ω(t0), we obtain

(I − eAT )Π(t) =

∫ t

t−T
eA(t−τ)BLΛ(τ)Λ(t)−1dτ,

from which (27) follows.

If T ⊂ R>0 is an interval of time on which Λ is
differentiable, then Π(t) solves the equation

Π̇ = AΠ +BL−ΠΛ̇Λ−1,

for all t ∈ T . The proof is omitted for reasons of space, see
[2] for a complete discussion.

D. Stochastic systems [28]

Consider a linear, single-input, single-output, continuous-
time, stochastic system described by the equations

dxt = (Axt +But)dt+ (Fxt +Gut)dWt, yt = Cxt,
(28)

with A ∈ Rn×n, B ∈ Rn×1, F ∈ Rn×n, G ∈ Rn×1 and
C ∈ R1×n. Here xt is a stochastic process defined on some
probability space (Ω,G,P) where Ω is the set of events,
F is a σ-algebra on Ω and P is a probability measure
on the measurable space (Ω,G). Wt indicates a standard
Wiener process defined on (Ω,G,P). All stochastic differential
equations are interpreted with the Itô convention.



Consider a signal generator described by the equations

dωt = Sωtdt+ JωtdWt, ut = Lωt, (29)

with S ∈ Rν×ν , J ∈ Rν×ν and L ∈ R1×ν .
In this framework, we expect that the steady state xss of

x obeys (if it exists) a relation of the type

xsst = X t ωt, (30)

where X t ∈ Rn×ν is a stochastic process. Then by applying
the guessing technique we obtain the following result.

Theorem 5. Assume the guess (30) is correct. Then the
matrix X t is the steady-state solution of the equation

dX t =
(
AX t−X t

(
S − J2

)
− F X t J +BL−GLJ

)
dt

+ (F X t−X t J +GL) dWt,
(31)

namely

X t=Φt

[∫ t

−∞
Φ−1
τ (BL− FGL)Στdτ+

∫ t

−∞
Φ−1
τ GLΣτdWτ

]
Σ−1
t ,

(32)
where Φt is the fundamental matrix of the homogeneous
equation corresponding to (28). Moreover, the moments of
system (28) at the signal generator (28) are the elements of
C X t.

Proof. Using the stochastic product rule we have

d(X t ωt) =dX t ωt+X t dωt+dX t dωt
=dX t ωt+X t(Sωtdt+JωtdWt)+[X t]WJωtdt,

where the notation [X t]W indicates the diffusion coefficient
of dX t (the component which multiplies dWt). On the other
hand

dxsst = (AX t +BL)ωtdt+ (F X t +GL)ωtdWt .

Since the previous two equations must hold for any ωt, we
obtain

dX t +[X t]WJdt

= (AX t−X t S +BL)dt+ (F X t−X t J +GL)dWt

from which it follows that [X t]W = F X t−X t J+GL, thus
proving (31). We omit the derivation of (32) for reasons of
space, see [28] for a complete proof.

E. On-line moment estimation from data [24], [25]

Solving equation (9) with respect to the mapping π is a
difficult task even when there is perfect knowledge of the
dynamics of the system, i.e. the mapping f . When f is not
known, equation (9) may be solved numerically requiring
information on the state of the system. In practice, only
measurements of the output y may be available which further
complicates the task of determining π. In this section we
develop an algorithm to determine the moment of nonlinear
systems using measurements of the output. Note that all the
results of the chapter exploit the relation between moments
and steady-state response.

Recall that under the assumptions of Theorem 1, the
equation

y(t) = h(π(ω(t))) + ε(t), (33)

where ε(t) is an exponentially decaying signal, holds. We
introduce the following standard assumption.

Assumption 5. The mapping h ◦ π belongs to the function
space identified by the family of continuous basis functions
ϕj : Rν → R, with j = 1, . . . ,M (M may be ∞), i.e. there
exist Γj ∈ R, with j = 1, . . . ,M , such that

h(π(ω)) =

M∑
j=1

Γjϕj(ω),

for any ω.

In other words, we are assuming that the mapping h ◦ π
can be decomposed as a weighted sum of basis functions.
To determine the family of basis functions in Assumption 5
we can implement a trial and error procedure or use prior
knowledge (e.g. use functions belonging to the same class as
the ones generated by the signal generator).

Let

Γ =
[

Γ1 Γ2 . . . ΓN
]
,

Ω(ω(t)) =
[
ϕ1(ω(t)) ϕ2(ω(t)) . . . ϕN (ω(t))

]>
,

with N ≤ M . Using a weighted sum of basis functions,
equation (33) can be written as

y(t) =

N∑
j=1

Γjϕj(ω(t))+e(t)+ε(t) = ΓΩ(ω(t))+e(t)+ε(t),

where e(t) =
∑M
N+1 Γjϕj(ω(t)) is the truncation error

resulting by cutting the vectors in ΓΩ at N . Let Γk be
an on-line estimate of the matrix Γ computed at Twk =
{tk−w+1, . . . , tk−1, tk} with 0 ≤ t0 < t1 < · · · < tk−w <
· · · < tk < · · · < tq, with w > 0 and q ≥ w, namely
computed at the time tk using the last w instants of time
ti and assuming that e(t) and ε(t) are known. Since this
last assumption does not hold in practice, consider the
approximation

y(t) ≈
N∑
j=1

π̃jϕj(ω(t)) = Γ̃Ω(ω(t)), (34)

which neglects the truncation error e(t) and the transient error
ε(t). Let Γ̃k =

[
π̃1 π̃2 . . . π̃N

]
be the approximation,

in the sense of (34), of the estimate Γk. Let Ũk ∈ Rw×N
and Υ̃k ∈ Rw, with w ≥ ν, be time-snapshots defined as

Ũk =
[

Ω(ω(tk−w+1)) . . . Ω(ω(tk−1)) Ω(ω(tk))
]>

(35)
and

Υ̃k =
[
y(tk−w+1) . . . y(tk−1) y(tk)

]>
. (36)

If Ũ>k Ũk is full column rank, then we can compute this
approximation as

vec(Γ̃k) = (Ũ>k Ũk)−1Ũ>k Υ̃k. (37)



It turns out that the property that the elements of Twk can be
selected such that Ũ>k Ũk is full column rank is a property of
persistence of excitation which can be characterized in terms
of the dimension at ω(0) of the distribution of

E = span
{
ω, ω(1), . . . , ω(k), . . .

}
.

This property is called excitation rank condition, see [17] for
a detailed discussion.

To ease the notation we introduce the following definition.

Definition 4. The estimated moment of system (6) at (s, l)
is defined as

h̃◦πN,k(ω(t)) = Γ̃kΩ(ω(t)), (38)

for all t ∈ R, with Γ̃k computed using (37).

Then, under technical assumptions, it is possible to show
that

lim
t→∞

(
h(π(ω(t)))− lim

N→M
h̃◦πN,k(ω(t))

)
= 0,

i.e. the formula (37) provides an approximation of the
moment.

Up to this point we have considered one trajectory ω(t).
While this is sufficient in a linear setting, in which local
properties are also global, it may be restrictive in the nonlinear
setting. To overcome this limitation, we introduce the so-
called “U/Y” variation. This is a modification of the formula
(37) operating with multiple trajectories. To this end, it
suffices to implement the algorithm replacing the matrices
Ũk and Υ̃k with the matrices

U =
[
Ũ1>
k Ũ2>

k . . . Ũq>k

]>
,

Y =
[

Υ̃1>
k Υ̃2>

k . . . Υ̃q>
k

]>
,

(39)

respectively, where Ũ ik and Υ̃i
k are the matrices in (35) and

(36), respectively, sampled along the trajectory of system (7)
starting from the initial condition ω(0) = ωi0 ∈ Rν , with
i = 1, . . . , q, q ≥ 1, where the ωi0 are selected to span a
desired set W̄ ⊂ Rν .

To conclude this part of the tutorial, we have seen that the
framework introduced in [29] can be extended to very general
classes of systems in a simple manner. More fundamental
than the method per se are the ideas behind the connection
of moment matching with the concepts of invariance and
steady-state. These allow the extension of the framework
beyond linear deterministic delay-free differential equations
and the derivation of efficient numerical algorithms.

IV. THE LOEWNER FRAMEWORK

As noted earlier, it has been shown in [11] that the
Loewner framework presented in [12] can be viewed as
a two-sided moment-matching procedure. In this section
of the tutorial we discuss an extension of the Loewner
framework presented in [12] for linear systems to affine
nonlinear systems. The extension utilizes the interconnection-
based interpretation of the Loewner matrices introduced in

[30]. To accomplish this, Loewner functions are introduced
as generalizations of Loewner matrices, which are then used
to construct models which can produce the exact same left-
and right-Loewner functions, thus achieving interpolation
in the Loewner sense. Locally the original model and
the interpolating model produce the same response when
interconnected with generators derived from the Loewner
functions and appropriate initial conditions are chosen.

The method that we discuss has also been utilized to extend
the Loewner framework to linear time-varying systems in [31],
and to affine nonlinear systems with more general nonlinear
generators in [32].

A. Preliminaries

Classically, the Loewner framework has been defined for
descriptor systems (see e.g. [12]). Herein, as in [30], we
consider the special case in which the plant is described by
equations of the form

ẋ = Ax+Bu, (40)
y = Cx, (41)

with state x(t) ∈ Cn, u(t) ∈ Cm, y(t) ∈ Cp, and matrices A,
B, and C of appropriate dimensions. For ease of presentation
we consider complex-valued signals and matrices. These
signals and matrices are obtained via linear coordinate
transformations of real valued signals and matrices.

To pose an interpolation problem, and to introduce the
Loewner framework, one requires tangential data (see e.g.
[33]). Tangential data consist of right tangential data and left
tangential data. The right tangential data are written compactly
as

Λ = diag
[
λ1, . . . , λρ

]
∈ Cρ×ρ,

R =
[
r1 . . . rρ

]
∈ Cm×ρ,

W =
[
w1 . . . wρ

]
∈ Cp×ρ,

and the left tangential data are written compactly as

M = diag
[
µ1, . . . , µv

]
∈ Cv×v,

L =

`1...
`v

 ∈ Cv×p, V =

v1

...
vv

 ∈ Cv×m .

The following assumption is required to guarantee uniqueness
of solution to a number of Sylvester equations arising in the
Loewner framework.

Assumption 6. The matrices A, Λ, and M have no common
eigenvalues, that is

σ(A) ∩ σ(Λ) = ∅, σ(A) ∩ σ(M) = ∅, σ(M) ∩ σ(Λ) = ∅.

The goal of the realization problem is to determine a state-
space representation of the form (40)-(41) such that the
corresponding rational transfer matrix H(s) = C(sI−A)−1B
obeys the right interpolation conditions

H(λi)ri = wi, i = 1, . . . , ρ, (42)



and the left interpolation conditions

`jH(µj) = vj , j = 1, . . . , v. (43)

The Loewner matrix, L, and the shifted Loewner matrix, σL,
are defined in terms of the tangential data as the unique (by
Assumption 6) solution to the Sylvester equations [34]

LΛ−ML = LW − V R,

and
σLΛ−MσL = LWΛ−MVR.

It is also shown in [12] that σL − LΛ = V R and that
σL−ML = LW .

The tangential generalized observability matrix, Y , and the
tangential generalized controllability matrix, X , are defined
as the unique (by Assumption 6) solution to the equations

Y A+ LC = MY, (44)

and
AX +BR = XΛ, (45)

respectively. Having defined the matrices Y and X , the
matrices W and V can be expressed as

W = CX, V = Y B.

Finally the Loewner matrix and the shifted Loewner matrix
can be expressed as

L = −Y X, σL = −Y AX.

Remark 6. The matrices W and V contain the moments of
the system (40)-(41) at the eigenvalues of Λ and M if the
following conditions hold: (Λ, R) is observable, (M,L) is
reachable, R has a right inverse, and L has a left inverse
[35].

As shown in [12], if the matrices L, σL, V , and W
associated to the system (40)-(41) are known and L is non-
singular, then an interpolating system (i.e. a system which
matches the tangential data conditions (42) and (43)) with
state r(t) ∈ Cρ, input ur(t) ∈ Cm, and output yr(t) ∈ Cp is
given by

ṙ(t) = L−1σLr(t)− L−1V ur(t), (46)

yr(t) = Wr(t). (47)

To allow extending the Loewner framework to more general
systems the notion of left-Loewner and right-Loewner ma-
trices has been introduced in [30]. The left-Loewner matrix,
L`, is defined as the unique (by Assumption5 6) solution to
the Sylvester equation

ML` − L`Λ = V R, (48)

and the right-Loewner matrix, Lr, is defined as the unique
solution to the Sylvester equation

LrΛ−MLr = LW. (49)

5We omit this statement for the remainder of this section.

It follows trivially that

L = L` + Lr.

Analogously, the shifted left-Loewner matrix and the shifted
right-Loewner matrix, σL` and σLr respectively, are defined
as the unique solution to the Sylvester equations

MσL` − σL`Λ = MVR, (50)

and

σLrΛ−MσLr = LWΛ. (51)

Once again, it follows that

σL = σL` + σLr.

Moreover, by uniqueness of the solution to (48), (49), (50),
and (51) we have that

σL` = ML`, σLr = LrΛ.

The left- and right-Loewner “objects” yield an
interconnection-based interpretation of the Loewner
matrices for the system (40)-(41) and its associated
tangential data. To show this we introduce two auxiliary
systems, defined using the right and the left tangential
interpolation data, as6

ζ̇r(t) = Λζr(t) + ∆(t), (52)
v(t) = Rζr(t), (53)

and

ζ̇`(t) = Mζ`(t) + Lχ(t), (54)
η(t) = ζ`(t), (55)

with states ζr(t) ∈ Cρ and ζ`(t) ∈ Cv , inputs ∆(t) ∈ Cρ and
χ(t) ∈ Cp, and outputs v(t) ∈ Cm and η(t) ∈ Cv. We then
consider the cascaded system defined by the interconnection
equations u = v and χ = y. This system has a state-space
realization given byζ̇rẋ

ζ̇`

 =

 Λ 0 0
BR A 0
0 LC M

ζrx
ζ`

+

I0
0

∆, (56)

η =
[
0 0 I

] ζrx
ζ`

 . (57)

To expose an important property of the Loewner matrices
consider the coordinates transformation [30]zrzc

z`

 =

 I 0 0
−X I 0
L` Y I

ζrx
ζ`

 .
6Assuming the matrices Λ and M are diagonal is restrictive in practice. It

turns out that these matrices do not need to be diagonal when implementing
reduced order models. For a discussion of the topic see Appendix A in [32].



The system in the new coordinates is described by the
equationsżrżc

ż`

 =

Λ 0 0
0 A 0
0 0 M

zrzc
z`

+

 I
−X
L`

∆, (58)

η =
[
Lr −Y I

] zrzc
z`

 . (59)

Thus the Loewner matrices can be viewed as the input and
output “gains” of three systems connected in parallel such that
the impulse response is the same as that of the interconnected
system (56)-(57).

We now provide a definition which is crucial for the
construction of reduced order models in the Loewner sense.

Definition 5 (Loewner Equivalence). Let Σ and Σ be two
systems with left- and right-Loewner matrices L`, Lr, and L`,
Lr, respectively, associated to the matrices Λ, R, M , and L.
Then Σ and Σ, are called Loewner equivalent at (Λ, R,M,L)

if L` = L` and Lr = Lr.

The fact that two systems (with transfer functions H(s) and
H(s)) are Loewner equivalent at (Λ, R,M,L) is equivalent
to both systems satisfying the conditions (42) and (43).

Considering (58)-(59), and assuming that ∆ is bounded and
converges to zero, A has only eigenvalues with negative real
part, and Λ and M have eigenvalues on the imaginary axis, it
is easy to see that the response of the system interconnected
with the generators is dependent entirely on the generator
states and the left- and right-Loewner matrices. Thus, if
two exponentially stable systems are Loewner equivalent at
(Λ, R,M,L) then there exists an initial condition such that
the two systems interconnected with the generators have the
same response.

We can now formally define what a reduced order model
in the Loewner sense is.

Definition 6 (Reduced Order Model). Let Σ and Σ be two
systems of order n and v, respectively. Σ is called a reduced
order model of Σ in the Loewner sense if Σ and Σ are
Loewner equivalent at (Λ, R,M,L) and v < n.

Remark 7. Consider the interconnected system (56)-(57)
with associated Loewner matrices L`, Lr, and L. Let X and Y
be the tangential generalized controllability and observability
matrices, and L` and Lr be the left- and right-Loewner
matrices, for the system given by the equations (46)-(47)
interconnected with the generators (52)-(53) and (54)-(55).
Then the following is true: X = I , Y = −L, L` = L`, and
Lr = Lr. Therefore given the moments W = WX = W
and V = Y (−L−1V ) = V of the reduced order model in
the Loewner sense, it is easy to see that the matrices, and
therefore the moments of the system (40)-(41), are matched
at the eigenvalues of Λ and M .

We conclude this preliminary section recalling a definition
which is instrumental to prove the existence of solution to a

number of PDEs arising in the nonlinear framework and which
is the nonlinear counterpart of the non-resonance condition
in Assumption 6.

Definition 7 ([36, Def. 2]). Given an n× n matrix F , with
spectrum σ(F ) = λ = (λ1, . . . , λn), and constants C > 0
and v > 0 we say that a complex number µ is of type (C, v)
with respect to σ(F ) if for any vector m = (m1,m2, . . . ,mn)
of nonnegative integers we have

|µ−m · λ| ≥ C

|m|v
,

where |m| =
∑
mi > 0.

B. Problem formulation

In the rest of this section we focus on nonlinear systems
described by equations of the form

ẋ(t) = f(x(t)) + g(x(t))u(t), (60)

y(t) = h(x(t)), (61)

with state x(t) ∈ Cn, input u(t) ∈ Cm, and output
y(t) ∈ Cp, and functions f : Cn → Cn, g : Cn → Cn×m,
and h : Cn → Cp of appropriate dimensions, and such
that f(0) = 0, g(0) = 0, and f(·) is differentiable. Let
A := ∂f

∂x (0). For ease of presentation we consider complex
valued mappings and signals which are obtained via linear
coordinates transformations of real valued mappings and
signals. In addition, with some abuse of terminology, we say,
for example, that the zero equilibrium of ẋ = f(x), with
x(t) ∈ Cn and f : Cn → Cn, is locally asymptotically stable
if the zero equilibrium of the underlying “real” system is
locally asymptotically stable.

Assumption 7. The unforced system ẋ = f(x) is locally
exponentially stable at the origin, that is all eigenvalues of
A are in C−.

The goal of this section is to extend the interpolation
methods of [12], which has been revisited in Section A, to
nonlinear systems of the form (60)-(61) using the state-space
interpretation given in [30]. To do this we introduce the notion
of Loewner functions which are, in turn, used to introduce the
concept of Loewner equivalence at given operating conditions.
It is important to note that the following statements regarding
the existence of the Loewner functions are local.

C. Interconnection with linear generators

To exploit the state-space interpretation of the Loewner
matrices given in [30] we begin by constructing two systems.
We start with a simple setup given by two systems of the
form

ζ̇r(t) = Λζr(t) + ∆(t), (62)
v(t) = Rζr(t), (63)

and

ζ̇`(t) = Mζ`(t) + Lχ(t), (64)
η(t) = ζ`(t), (65)



with states ζr(t) ∈ Cρ and ζ`(t) ∈ Cv , inputs ∆(t) ∈ Cρ and
χ(t) ∈ Cp, and outputs v(t) ∈ Cm and η(t) ∈ Cv , and with
matrices Λ ∈ Cρ×ρ, R ∈ Cm×ρ, M ∈ Cv×v , and L ∈ Cv×p.

The following assumption is imposed to restrict the analysis
to bounded signals.

Assumption 8. The matrices Λ and M have all eigenvalues
on the imaginary axis, and these eigenvalues have geometric
multiplicity one.

Consider now the interconnection of the system (60)-(61)
with the generators (62)-(63) and (64)-(65), defined via the
interconnection equations u = v and χ = y, which yields the
state-space representationζ̇rẋ

ζ̇`

 =

 Λζr

f(x) + g(x)Rζr

Mζ` + Lh(x)

+

I0
0

∆, (66)

η = ζ`, (67)

with state
[
ζ>r x> ζ>`

]>
, input ∆, and output η.

D. Loewner functions

Before presenting the main results we define the nonlinear
enhancements of the tangential generalized controllability and
observability matrices and of the Loewner matrices. These are
defined in terms of the functions and matrices appearing in the
interconnected system (66)-(67). The tangential generalized
controllability function, X : Cρ → Cn, is defined as
the solution, provided it exists, to the PDE with boundary
condition
∂X

∂ζr
Λζr = f(X(ζr)) + g(X(ζr))Rζr, X(0) = 0. (68)

The following existence conditions are direct consequences
of Assumptions 7 and 8 and of the center manifold theory,
see [37], and of Lemma 1 in [32].

Proposition 2 (Existence of X). Consider the PDE (68)
with the boundary condition X(0) = 0. Suppose Assumption
7 and Assumption 8 hold. Then there exists a function X :
Cρ → Cn satisfying the partial differential equation (68) with
the given boundary condition.

Proposition 3 (Existence of X). Consider the PDE (68)
with the boundary condition X(0) = 0 and suppose that f
is analytic and the map g is constant. Suppose there exist
constants C > 0 and v > 0 such that all eigenvalues of A
are of type (C, v) with respect to σ(Λ). Then there exists
a function X : Cρ → Cn satisfying the partial differential
equation (68) with the given boundary condition.

Note that while Proposition 2 implies that x = X(ζr) is a
local attractive center manifold, Proposition 3 has no such
center manifold implication.

The tangential generalized observability function, Y :
Cn → Cv, is defined as the solution, provided it exists,
to the PDE with boundary condition

∂Y

∂x
f(x) = MY (x)− Lh(x), Y (0) = 0. (69)

The following claim holds by Lemma 1 in [32].

Proposition 4 (Existence of Y ). Consider the PDE (69) with
the boundary condition Y (0) = 0 and suppose that f and
h are analytic. Suppose there exist constants C > 0 and
v > 0 such that all eigenvalues of M are of type (C, v) with
respect to σ(A). Then there exists a function Y : Cn → Cv
satisfying the partial differential equation (69) with the given
boundary condition.

The following corollary is a consequence of Definition 7.

Corollary 1. Suppose that Assumptions 7 and 8 hold. Then
the eigenvalues of A are of type (C, v) with respect to σ(Λ)
and the eigenvalues of M are of type (C, v) with respect to
σ(A).

It follows by Corollary 1 that Proposition 4 holds by
Assumptions 7 and 8, and Proposition 3 holds by Assump-
tions 7 and 8 when g(·) is constant.

Having defined the tangential generalized observability and
controllability functions, the nonlinear enhancements of the
matrices of moments V and W are given by

V (ζr) :=
∂Y

∂x
(X(ζr))g(X(ζr)), W (ζr) := h(X(ζr)).

The nonlinear Loewner function is defined in terms of
the tangential generalized controllability and observability
functions as

L(ζr) := −Y (X(ζr)).

The left-Loewner function, L` : Cρ → Cv, is defined as
the solution, provided it exists, to the PDE with boundary
condition

∂L`

∂ζr
Λζr = ML`(ζr)− V (ζr)Rζr, L`(0) = 0, (70)

and the right-Loewner function, Lr : Cρ → Cv , is defined as

Lr(ζr) := L(ζr)− L`(ζr).

The next claim follows by a direct application of the main
theorem of [36] (see also Lemma 1 in [32]).

Proposition 5 (Existence of L`). Consider the PDE (70)
with the boundary condition L`(0) = 0 and suppose that
V is analytic. Suppose there exist constants C > 0 and
v > 0 such that all eigenvalues of M are of type (C, v) with
respect to σ(Λ). Then there exists a function L` : Cρ → Cv
satisfying the partial differential equation (70) with the given
boundary condition.

Remark 8. The preceeding existence conditions utilizing
Definition 7 have the advantage that the PDEs (68), (69),
and (70) have solutions even for unstable systems. Namely,
unstable nonlinear systems can be analyzed in the nonlinear
Loewner framework by abstaining from Assumptions 7 and
8. However, when considering unstable systems the relation
with the steady-state response is lost.

The definitions introduced thus far show that the Loewner
and right-Loewner functions satisfy the PDEs with boundary



conditions
∂L
∂ζr

Λζr = ML(ζr) + LW (ζr)− V (ζr)Rζr, L(0) = 0,

and
∂Lr

∂ζr
Λζr = MLr(ζr) + LW (ζr), Lr(0) = 0.

The shifted Loewner function, σL : Cρ → Cv, is defined in
terms of the left- and right-Loewner functions as

σL(ζr) := ML`(ζr) +
∂Lr

∂ζr
Λζr,

which implies that

σL(ζr) = ML(ζr) + LW (ζr) =
∂L
∂ζr

Λζr + V (ζr)Rζr

and

σL(ζr) = −∂Y
∂x

(X(ζr))f(X(ζr)).

Remark 9. If the system (60)-(61) is linear then the solution
to the PDEs (68), (69), and (70) becomes X(ζr) = Xζr,
Y (x) = Y x, and L`(ζr) = L`ζr, where X , Y , and L` are
the solutions to the Sylvester equations (44), (45), and (48).
Thus the linear Loewner objects are recovered.

E. Loewner coordinates

To expose the relation between the Loewner functions and
the interconnection of systems (66)-(67) we select a specific
set of coordinates.

Theorem 6. Consider the system (66)-(67). The coordinates
transformationzrzc

z`

 :=

 ζr
x−X(ζr)

ζ` + Y (x) + L`(ζr)


is such that the system in the new coordinates is described
by the equationsżrżc

ż`

 =

Λ 0 0

0 Ã
(
zc +X(zr), zr

)
0

0 G̃
(
zc +X(zr), zr

)
M

zrzc
z`



+


I

−∂X
∂ζr

(zr)

∂L`

∂ζr
(zr)

∆,

η = Lr(zr)− Ỹ
(
zc +X(zr)

)
zc + z`,

where zr(t) ∈ Cρ, zc(t) ∈ Cn, z`(t) ∈ Cv, and where
Ã : Cn×Cρ → Cn×n, G̃ : Cn×Cρ → Cv×n, and Ỹ :
Cn → Cv×n.

Note that, by Assumption 7, for any sufficiently small
x(0) and ζr(0), the solutions of the interconnected systems
approach the center manifold x = X(ζr) exponentially fast,
hence zc approaches zero provided ∆ is sufficiently small
and converges to zero, and the system has a converging input

converging state property. On the center manifold, that is for
x = X(ζr), or zc = 0, one has

żr = Λzr + ∆,

ż` = Mz` +
∂L`

∂ζr
(zr)∆,

and
η = Lr(zr) + z`,

that is the system restricted to the center manifold contains
only information on the Loewner functions.

F. Loewner equivalent model

In this section the concept of reduced order model in
the Loewner sense for nonlinear systems is introduced. In
addition, a nonlinear system, reminiscent of the linear system
(46)-(47), which interpolates the Loewner functions defined
by the PDEs (68), (69), and (70), is constructed. Given that
the frequency domain interpretations of (42) and (43) hold
little meaning in the nonlinear context, we start by describing
what we mean by an interpolant when referring to nonlinear
systems.

Definition 8 (Loewner Equivalence). Let Σ and Σ be
two systems described by equations of the form (60)-(61)
admitting left- and right-Loewner functions L`(·), Lr(·), and
L`(·), Lr(·), respectively, associated to the matrices Λ, R,
M , and L. Then Σ and Σ are called Loewner equivalent at
(Λ, R,M,L) if L`(ζr) = L`(ζr) and Lr(ζr) = Lr(ζr) in a
neighbourhood of the origin.

Consistently, we say that a nonlinear system interpolates an-
other nonlinear system (in the Loewner sense) at (Λ, R,M,L)
if the two systems are Loewner equivalent at (Λ, R,M,L).
That is, for the same matrices Λ, R,M,L, the interpolating
system possesses the exact same left- and right-Loewner
functions.

The property of Loewner equivalence has a strong im-
plication on the steady-state behavior of the system. By
Theorem 6, recalling Assumptions 7 and 8, assuming the
foregoing stability conditions hold, ∆ is sufficiently small,
bounded, and converges to zero, and the plant state x has
not left the region of attraction of the origin (i.e. x still
approaches the center manifold X(ζr)), it is easy to see that
the response of the system interconnected with the generators
is dependent entirely on the generator states and the left- and
right-Loewner functions. Thus, if two locally exponentially
stable systems are Loewner equivalent at (Λ, R,M,L) then
there exist initial conditions corresponding to points on the
manifold x = X(ζr) such that the two systems interconnected
with the generators have the same response.

We can now define what a reduced order model is in the
Loewner sense.

Definition 9 (Reduced Order Model). Let Σ and Σ be two
systems of order n and v, respectively. Σ is called a reduced
order model of Σ in the Loewner sense if Σ and Σ are
Loewner equivalent at (Λ, R,M,L) and v < n.



We now construct a nonlinear system which is Loewner
equivalent at (Λ, R,M,L) to (66)-(67), given that the
Loewner functions of (66)-(67) are known.

Theorem 7. Consider the interconnected system (66)-(67)
with ρ = v. Let L`(·), Lr(·), L(·), σL(·), V (·), and W (·)
be the associated Loewner functions. Assume that ∂L

∂ζr
is

non-singular. Define the system

∂L
∂ζr

(r)ṙ = σL(r)− V (r)ur, (71)

yr = W (r), (72)

with state r(t) ∈ Cρ, input ur(t) ∈ Cm, and output
yr(t) ∈ Cp. Then the system (71)-(72) is Loewner equivalent
at (Λ, R,M,L) to the system (60)-(61).

Remark 10. Similarly to Remark 7, consider the intercon-
nected system (66)-(67) with associated Loewner functions
L`(·), Lr(·), and L(·). Let X(·) and Y (·) be the tangential
generalized controllability and observability functions, and
L`(·) and Lr(·) be the left- and right-Loewner functions, for
the system given by the equations (71)-(72) interconnected
with the generators (62)-(63) and (64)-(65). Then X(ζr) = ζr,
Y (r) = −L(r), L`(ζr) = L`(ζr), and Lr(ζr) = Lr(ζr).
Therefore given the moments

W (ζr) = W (X(ζr)) = W (ζr)

and

V (ζr) = −∂Y
∂r

(X(ζr))
( ∂L
∂ζr

(X(ζr))
)−1

V (X(ζr)) = V (ζr)

of the reduced order model in the Loewner sense, it is easy
to see that the Loewner functions, and therefore the moments
of system (60)-(61), are matched at (Λ, R,M,L).

We conclude this section noting that we have presented a
new method for the model reduction of nonlinear systems.
This method extends an interconnection-based interpretation
of the Loewner framework developed in [30]. In addition to
matching the Loewner functions, the reduced order model in
the Loewner sense matches the moments of the original model.
Note, finally, that the interconnection-based interpretation has
also been utilized to extend the Loewner framework to linear
time-varying systems in [31], and to affine nonlinear systems
with nonlinear generators in [32].

V. APPLICATIONS TO OPTIMAL CONTROL AND WAVE
ENERGY CONVERSION

This part of the tutorial shows that, besides being a powerful
tool for model reduction purposes, the parameterisation of the
steady-state response of a system in terms of moments can be
useful to approximate optimal control problems (OCPs). In
particular, we illustrate this claim by solving the WEC energy-
maximising OCP using a moment-based representation,
where the moment-based parameterisation is particularly
well matched to the application, where steady-state energy-
maximisation is of paramount importance, resulting in an
efficient control implementation.

Before discussing wave energy systems, and their associ-
ated OCP, the following definition is introduced.

Definition 10. Let Σ be a SISO (stable) LTI system described
in state-space by the set of matrices (A,B,C), with output
y. We also call the matrix Y = CΠ, with Π solution of (3),
the moment-domain equivalent of y.

A. Wave energy systems

We begin this section by recalling that the equation of
motion for a controlled WEC, under the assumptions of
linear potential flow theory (see, for instance, [38]), can be
expressed in terms of Cummins’ equation [39], i.e.7

mẍ = fr + fre + fe − u, (73)

where m is the mass of the device, x : R≥0 → R the device
excursion (displacement), fe : R≥0 → R, the wave excitation
force (uncontrollable input), fre the hydrostatic restoring force,
fr the radiation force, and u the exerted control (PTO) force.
The linearised hydrostatic force can be written as fre(t) =
−shx(t), where sh = ρgD denotes the hydrostatic stiffness,
with ρ the water density, D the characteristic area of the
device, and g the gravitational constant. The radiation force
fre is modelled based on linear potential theory and, using
the well-known Cummins’ equation [39], can be written as

fr(t) = −µ∞ẍ(t)−
∫
R≥0

kr(τ)ẋ(t− τ)dτ, (74)

where µ∞ = limω→+∞ Ã(ω) > 0 is the so-called added-
mass at infinite frequency, Ã(ω) is the radiation added mass8

and kr : R≥0 → R is the (causal) radiation impulse response
function containing the memory effect of the fluid response.
Finally, the equation of motion of the WEC is given by

Σ :

{
ẍ =M−1 (−kr∗ ẋ− shz + fe − u) ,

y = ẋ = v,
(75)

with M = m + µ∞, and y = ẋ = v is the output of
Σ (assuming the velocity as the measurable output of the
device). We note that equation (75) is of a Volterra integro-
differential form, specifically of the convolution class (see
[40]).

Remark 11. The internal stability of (75) is guaranteed, in
the Lyapunov sense, for any physically meaningful parameters
and impulse response mapping kr involved (see [38]).

B. Moment-based representation of a WEC

We begin by rewriting the equation of motion (75) in a
more suitable structure for the upcoming discussion, as

Σ :
{
ẇ = Aw +B(−kr∗Cw + fe − u), y = Cw, (76)

for t ∈ R≥0, where w(t) =
[
x(t) ẋ(t)

]ᵀ ∈ R2 contains
displacement and velocity for the (single) degree-of-freedom

7In what follows the dependence on t is dropped whenever convenient.
8See [38] for the definition of Ã(ω).



involved in the equation of motion, and the (constant) matrices
A ∈ R2×2, B ∈ R2 and Cᵀ ∈ R2 are defined as

A =

[
0 1

−Msh 0

]
, B =

[
0
M−1

]
, C =

[
0
1

]ᵀ
. (77)

Following the moment-based theory presented in Section
II, the mappings corresponding to both external inputs, i.e.
the wave excitation fe, and control force u, are written in
terms of an autonomous single-output signal generator, i.e.

ω̇ = Sω, fe = Leω, u = Luω, (78)

for t ∈ R≥0, with ω(t) ∈ Rν , S ∈ Rν×ν and {Lᵀ
e , L

ᵀ
u } ∈ Rν .

The standard assumption for the mathematical repre-
sentation of wave excitation forces in ocean engineering
applications is that fe can be written as a finite sum of
harmonics of a so-called fundamental frequency f0 [41]. In
the light of this, the dynamic matrix S in equation (78) is
defined in block-diagonal form as

S =

f̃⊕
p=1

[
0 pf0

−pf0 0

]
, (79)

where ν = 2f̃ , and hence σ(S) ⊂ C0.
Given that the input to the WEC system is composed of

a (linear) combination of both the wave excitation force fe

and the control law u, the following assumption is required
to have a well-posed definition of moments (i.e. analogous
to Assumption 3).

Assumption 9. The triple of matrices (Le − Lu, S, ω(0)) is
minimal, i.e. observable and excitable.

Remark 12. Note that the previous assumption is without
loss of generality as the signal generator is user-defined and
so it can always be constructed such that the assumption
holds.

The following ‘step’ is to compute the parameterisation of
the steady-state output response of system (76) in terms of
the corresponding moments, i.e.

vss(t) = V ω(t), (80)

where V is the moment-domain equivalent of the output v of
the WEC system. Such a representation is explicitly used to
solve the WEC optimal problem in Section V-C. Nonetheless,
a direct application of Lemma 1 is not possible, given the
presence of the non-parametric convolution operator in (76).
This issue is briefly discussed in the following.

Adopting similar theoretical arguments to those in Lemma
1, the moment of the WEC system Σ at the signal generator
(S,Le−Lu) can be computed by solving a specific invariance
equation, which can be written, for the WEC case, as

AΠ +B (Le − Lu −Kr) = ΠS, (81)

where Π ∈ R2×ν and Kᵀ
r ∈ Rν is the moment-domain

equivalent of the radiation convolution term.

Remark 13. If Assumption 9 holds, then the moment-domain
equivalent of v can be directly expressed as V = CΠ.

The term Kr clearly depends9 on Π, hence one cannot yet
solve (81), until it is properly defined. In the following, we
recall the definition of Kr from [10], to later solve (81).

Lemma 2. [10] The moment-domain equivalent of the
convolution integral in (76) can be computed as

Kr = VR, (82)

where the operator R ∈ Rν×ν is a block-diagonal matrix10

defined in terms of the Fourier transform of the impulse
response mapping kr, evaluated at the set σ(S).

Remark 14. As explicitly expressed in Lemma 2, this
moment-based strategy does not require an a-priori parametric
approximation of the radiation force (convolution) term, but
actually provides an analytical description of the convolution
operation in moment-domain.

Lemma 3. [10] Suppose Assumption 9 holds. Then, the
moment-domain equivalent of the output y of system (76)
(the velocity of the device v) can be uniquely determined as

V = (Le − Lu)Φᵀ
R, (83)

where the matrix ΦR ∈ Rν×ν is defined as

ΦR = (Iν ⊗ C)Φ−1(Iν ⊗−B),

Φ = S ⊗ I2 + Iν ⊗A+ Rᵀ ⊗−BC.
(84)

C. A linear energy-maximising control solution

The WEC optimal control design entails an energy-
maximisation criterion, where the objective is to maximise
the absorbed energy from ocean waves over a finite time
interval T = [0, T ] ⊂ R≥0. This energy-maximising control
procedure can be cast as an optimal control problem, with
objective function J , defined as

J (u) =
1

T

∫
T
u(τ)v(τ)dτ, (85)

where u : T → R denotes the control (PTO) force. In
addition, constraints on both the displacement and velocity
of the WEC, x and v, and the exerted control force u, are
considered, as

C : {|x(t)| ≤ Xmax, |v(t)| ≤ Vmax, |u(t)| ≤ Umax, (86)

with t ∈ T , and where {Xmax, Vmax, Umax} ⊂ R+.
Given the control objective function defined in (85), the

governing dynamics of the WEC in (76), and the set of
state and input constraints defined in (86), the constrained
energy-maximising OCP can be posed as follows.

9Note that the convolution operator depends on the velocity of the WEC.
10The specific expression of R can be found in [10].



Problem 1 (Energy-maximising OCP). Find an optimal
control input uopt : T → R such that

uopt = arg max
u
J (u),

subject to:{
WEC dynamics Σ (76),
state and input constraints C (86).

(87)

The results presented in Section V-B can be used to
approximate the energy-maximising OCP of Problem 1,
making explicit use of the connection between moments and
the steady-state behaviour of system (76). In the following,
we provide a definition of the so-called moment-based energy-
maximising OCP. Note that we do not yet include the set of
state and input constraints defined in (86). These are explicitly
incorporated in Section V-C.1.

Problem 2 (Moment-based energy-maximising OCP). Sup-
pose Assumption 9 holds. Find the optimal control input
ũopt = Lopt

u ω such that

Lopt
u = arg max

Lᵀ
u∈Rν

1

T

∫
T
Luω(τ)V ω(τ)dτ,

subject to:
V − (Le − Lu)Φᵀ

R = 0,

(88)

The main idea behind Problem 2 relies on substituting
the integro-differential (equality) constraint, corresponding
with the WEC dynamics (76), by the algebraic equation (83).
In other words, the moment-based OCP posed in Problem
2 explicitly utilises the steady-state (output) behaviour of
system (76), parameterised in terms of V , i.e. vss = V ω(t)
(see equation (80)), to solve for the corresponding optimal
control input ũopt, in terms of the signal generator (78). The
main advantage of Problem 2, as opposed to Problem 1, is
that it can be solved in terms of a tractable finite-dimensional
quadratic program (QP), as recalled in the following.

Lemma 4. [10] Suppose Assumption 9 holds. Then, the
solution of the (motion unconstrained) moment-based energy-
maximising OCP, posed in Problem 2, can be computed as
ũopt = Lopt

u ω, where Lopt
u is the solution of the QP problem

Lopt
u = arg max

Lᵀ
u ∈Rν

−1

2
LuΦᵀ

RL
ᵀ
u +

1

2
LeΦ

ᵀ
RL

ᵀ
u . (89)

Remark 15. As shown in [10], the moment-based QP
problem (89) is strictly concave for the WEC case, hence
systematically guaranteeing a unique global maximiser.

1) Handling of state and input constraints: Using the
moment-based representations developed throughout Section
V-B, the set of state and input constraints (86) can be mapped
using their respective moment-domain equivalents11, as

C 7→


|V S−1ω(t)| ≤ Xmax,

|V ω(t)| ≤ Vmax,

|Luω(t)| ≤ Umax.

(90)

11Note that the moment-domain equivalent of the displacement x can be
expressed as V S−1, following [9].

Let Tc ⊂ T , be a finite set of (specified) uniformly-spaced
time instants. The constraints defined in (90) can be enforced
at the set Tc, i.e. using a collocation approach. This gives
origin to a set of linear inequality constraints in Lu, i.e.

LuAx ≤ Bx, LuAv ≤ Bv, LuAu ≤ Bu, (91)

which can be directly incorporated to the QP problem of
Lemma X. We omit the explicit definition of the pairs of ma-
trices (Ax,Bx), (Av,Bv) and (Au,Bu), which corresponds
with displacement, velocity and control input, respectively,
for economy of space. These can be found in [10], [42].

2) Case study: To demonstrate the performance of the
moment-based energy-maximising control of Section V-C,
the CorPower-like wave energy device, presented in Figure
1, is considered, and constrained to oscillate in heave. SWL
denotes the still water level and indicates the equilibrium
position of the device. The set of state and input constraints
in (86) is such that, Zmax = 2 [m], Vmax = 2 [m/s], and
Umax = 1× 106 [N].

Fig. 1. Full-scale CorPower-like device. The acronym SWL stands for still
water level and the letter G is used to denote the center of gravity.

We consider input waves generated stochastically from
a JONSWAP spectral density function [43] with a fixed
significant wave height H̄w of 2 [m], varying peak period
T̄w ∈ [5, 12] [s] and peak enhancement factor γ = 3.3. The
total time-length (fundamental period) of each wave record
is set to of T = 120 [s].

Figure 2 presents performance results, in terms of energy
absorption, under both displacement and velocity constraints,
for both the moment-based approach presented in this tutorial,
and a state-of-the-art impedance-matching-based controller
(data extracted from [44]). Note that the latter family of
controllers is indeed the most frequently-used approach for
this energy-maximising application. As discussed in [44],
not only this moment-based approach outperforms well-
established strategies in the field in terms of energy-absorption
(as can be appreciated in Figure 2), but it can be efficiently
solved in real-time, given the nature of the objective function
when using a moments.

Finally, Figure 3 illustrates the (steady-state) WEC motion
(a) under optimally controlled conditions, along with the
corresponding moment-based energy-maximising control law
(b), for a particular sea state, characterised by a JONSWAP
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Fig. 2. Constrained (displacement and velocity) energy absorption for the
moment-based energy-maximising controller and a state-of-the-art impedance-
matching-based controller (data extracted from [44])

spectrum with H̄w = 2 [m] and T̄w = 8 [s]. As can be
appreciated from Figure 3, the moment-based strategy is
able to maximise energy absorption while systematically
respecting both state and input constraints, according to the
control design objective.
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Fig. 3. Motion results for irregular wave excitation. (a) shows displacement
(left axis, solid), velocity (left axis, dashed) and wave excitation force input
(right axis, dotted), for the WEC system. (b) presents the moment-based
control input (left axis, solid), used to elicit the corresponding motion results,
along with the wave excitation force input (right axis, dotted). The horizontal
dash-dotted lines represent constraint limits.

D. Towards nonlinear and robust control

While the system model in (75) and the control solution
presented in Section V-C focus on linear dynamics, a main
attraction of moment-based representation and control is the
relatively straightforward extension to the nonlinear case,
following the development in Section II. Indeed, particularly
under controlled conditions, which tend to exaggerate device
motion [45], hydrodynamic nonlinearities become active and
need to be addressed.

To this end, progress has been made in the application
of nonlinear moment-based control to wave energy systems
[46], demonstrating that a convex nonlinear program can
be attained, under mild assumptions about the nature of the
nonlinearity. Model nonlinearity could also potentially be
addressed using a robust control, based around a nominal

linear model, and progress on this has been reported in [47].
However, both the nonlinear and robust wave energy control
applications are beyond the scope of this tutorial paper.

VI. CONCLUSIONS

This tutorial paper has presented an overview of the state-
of-the art on model reduction by moment matching for
nonlinear systems. The fundamental notion of moment for
nonlinear systems has been recalled and this has been used
to define moments for a wide class of dynamical systems. It
has also been shown that this notion is the stepping stone
for developing reduced order models both analytically and
from measured data. In addition, we have revisited the linear
theory; we have discussed recent results on model reduction
for hybrid and stochastic systems; we have presented the
Loewner framework for nonlinear model reduction; and we
have discussed how these ideas and tools can be exploited in
optimal control problems, with special attention to problems
arising in wave energy conversion.
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