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Quantifying high-order interdependencies on individual patterns via the local O-information:
Theory and applications to music analysis
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High-order, beyond-pairwise interdependencies are at the core of biological, economic, and social complex
systems, and their adequate analysis is paramount to understand, engineer, and control such systems. This paper
presents a framework to measure high-order interdependence that disentangles their effect on each individual
pattern exhibited by a multivariate system. The approach is centered on the local O-information, a new measure
that assesses the balance between synergistic and redundant interdependencies at each pattern. To illustrate the
potential of this framework, we present a detailed analysis of music scores from J. S. Bach, which reveals how
high-order interdependence is deeply connected with highly nontrivial aspects of the musical discourse. Our
results place the local O-information as a promising tool of wide applicability, which opens other perspectives
for analyzing high-order relationships in the patterns exhibited by complex systems.
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I. INTRODUCTION

The analysis of interdependence is crucial for understand-
ing the staggering complexity of structures and behaviors
manifested in biological, economic, and social systems. The
unprecedented amount of data available for scientific scrutiny
provides unique opportunities to deepen our understanding
of multivariate coevolving complex systems, including the
orchestrated activity of multiple brain areas, the interactions
between different genes, and the relationship between various
econometric indices. Importantly, what allows these systems
to be more than the sum of their parts is not to be found in the
material nature of their parts, but in the fine structure of their
interdependencies [1].

Information theory provides an ideal framework to study
interdependencies in multivariate systems, which establishes
the notion of information as a common currency under which
diverse systems can be measured and compared [2]. A par-
ticularly promising approach for analyzing the structure of
interdependencies is the partial information decomposition
(PID), which distinguishes different “modes” of information
that multiple predictors convey about a target variable [3–5].
Two paradigmatic examples of such modes are synergy and
redundancy [6–10]: redundancy corresponds to information
which can be retrieved independently from more than one
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source, while synergy corresponds to statistical relationships
that exist in the whole but cannot be seen in the parts—this be-
ing rooted in the elementary fact that variables can be pairwise
independent while being globally correlated.

Despite continuous efforts to develop PID, the precise way
in which synergies and redundancies should be calculated
is still being revised [11–24]. One way to circumvent this
challenge is to avoid computing the full decomposition, and
study mixtures of PID atoms that can be captured by linear
combinations of Shannon measures. One such measure is
the O-information [25], which has been shown to effectively
capture the overall balance between redundant and synergistic
modes. The effectiveness of the O-information in practical
analyses has been verified by recent applications on popula-
tions of spiking neurons [26], and the relationship between
neural patterns and aging [27].

An important limitation of the O-information is that it
characterizes a multivariate system with a single number,
which summarized to the aggregated effect of various pat-
terns. Building on the rich literature of pointwise information
measures [28–30], in this paper we introduce the local O-
information, which evaluates each pattern separately—such
that its ensemble average recovers the O-information. More
specifically, the local O-information constitutes an overall
measure that characterizes the high-order interdependencies
between the parts of a multivariate system at each possible
pattern of activity. Put differently, the local O-information
evaluates the “statistical quality” of each realization of
collections of random variables, providing a signed scalar that
assesses the balance between redundancies and synergies at
each individual pattern.
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This paper presents the theory behind the local O-
information, and then illustrates its rich capabilities by
analyzing the scores of the chorales of J. S. Bach. Our
results show how the local O-information is capable of re-
vealing subtle musical relationships, including properties of
different intervals, chord dispositions, harmonic depth, and
the relationship between music and text. Thanks to its abil-
ity to uncover such highly nontrivial relationships, the local
O-information is a valuable addition to the toolkit of data
analysts interested in the study of complex systems.

The rest of the paper is organized as follows. Section II
provides background information about the O-information,
introduces the new local O-information, and then illustrates
its basic properties on small spin systems. Then, Sec. III
presents a detailed analysis of the local O-information on the
chorales of J. S. Bach, and finally Sec. IV summarizes our
main conclusions.

II. A LOCAL MEASURE OF INFORMATION QUALITY

Let us consider a scientist interested in studying a sys-
tem of n elements described by the random vector X n =
(X1, . . . , Xn), who has enough data to reliably estimate its
statistics, which is denoted by p(X n). A question of interest
is how to leverage the statistics encoded in p(X n) in order
to deepen our understanding of the structure of interdepen-
dencies between the elements of X n. Such understanding can
lead either to the building of statistical markers to characterize
different systems or different states of the same system, or
to compare seemingly heterogeneous systems based on the
similarity of their relational structure.

Through this section, random variables are denoted by
capital letters (e.g., X,Y ) and their realizations by lowercase
letters (e.g., x, y). Random vectors and their realizations are
denoted by capital and lowercase boldface letters, respec-
tively.

A. O-information

Shannon’s mutual information is a popular metric of inter-
dependency, which overcomes the limitations of correlation
metrics such as Pearson’s in that it captures both linear and
nonlinear relationships and is applicable to ordinal data. How-
ever, the mutual information can only assess the relationships
between two (sets of) variables, being unable to fully explore
the rich interplay that can take place within triple or higher-
order interactions.

Two multivariate extensions of the mutual information are
the total correlation (TC) [31] and the dual total correlation
(DTC) [32], which are defined as

TC(X n) :=
n∑

i=1

H (Xi ) − H (X n),

DTC(X n) := H (X n) −
n∑

i=1

H
(
Xi | X n

−i

)
.

Above, H (Xi ) = −∑
xi

p(xi ) log p(xi ) corresponds to the
Shannon entropy, H (Xi|Xj ) = H (Xi, Xj ) − H (Xj ) is the con-
ditional Shannon entropy, and X n

−i is the vector of all variables
except Xi [i.e., X n

−i = (X1, . . . , Xi−1, Xi+1, . . . , Xn)]; hence,

the term H (Xi | X n
−i ) quantifies how Xi is independent from

the other n − 1 variables. As the mutual information, both
TC and DTC are non-negative quantities (see Appendix A),
being zero if and only if all variables X1, . . . , XN are jointly
statistically independent, i.e., if p(X n) = ∏n

i=1 p(Xi ).
Despite the similarities between TC and DTC, these two

metrics provide distinct but complementary views on the
strength of the interdependencies in a multivariate system.
Specifically, the TC accounts for the effect of collective
constraints, which refer to regions of the phase space that
the system explores less [33], while the DTC measures the
amount of shared randomness between the variables, i.e., the
amount of information that can be collected in one variable
that also refers to the activity of another [25]. An attractive
way to exploit these complementary views is by considering
their difference,

�n(X n) = TC(X n) − DTC(X n), (1)

which is known as the O-information [25]. The O-information
can be seen as a revision of the measure of neural complexity
proposed by Tononi et al. in [34], which provides a mathemat-
ical construction that is closer to their original desiderata [33].
In effect, the O-information is a signed metric that captures
the balance between high- and low-order statistical constraints
[35]. By construction, �(X n) < 0 implies a predominance
of high-order constraints within the system X n, a condition
that is usually referred to as statistical synergy. Conversely,
�(X n) > 0 implies that the system X n is dominated by low-
order constraints, which imply redundancy of information.
This nomenclature is further supported by the following key
properties:

(1) It captures genuine high-order effects, as it is zero
for systems with only pairwise interdependencies: if the
joint distribution of X n−1 (for n odd) can be factor-
ized as pX n (xn) = ∏n/2

k=1 pX2k ,X2k+1 (x2k, x2k+1), then �(X n)
= 0.

(2) The O-information is maximized by redundant dis-
tributions where the same information is copied in multiple
variables, and is minimized by synergistic (“n-bit paritylike”)
distributions: e.g., for binary variables, � is maximized by
the “n-bit copy” where X1 is a Bernoulli random variable
with parameter p = 1/2 and X1 = X2 = · · · = XN , and is min-
imized when X1, . . . , XN−1 are independent and identically
distributed fair coins and XN = ∑N−1

j=1 Xj (mod 2).
(3) The O-information characterizes the dominant

tendency, being additive over noninteractive subsys-
tems: if the system can be factorized as pXN (xN ) =
pX1,...,Xm (x1, . . . , xm) × pXm+1,...,XN (xm+1, . . . , xN ), then �(X n)
= �(X1, . . . , Xm−1) + �(Xm, . . . , Xn).

For more details related to the O-information, we refer the
reader to Ref. [25].

B. Local O-information

Building on the properties of the O-information reviewed
in the previous section, one can design a measure that can
capture these effects on a state-by-state basis. In effect,
the O-information provides a single scalar that characterizes
the interdependencies of a system on average. However, in
many systems of interest this average represents a midpoint
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between highly heterogeneous states, which could potentially
be of limited value to understand the role of individual re-
alizations of the corresponding variables. In this section we
introduce a pointwise measure that allows one to calculate the
O-information on individual states.

As a first step, let us introduce a local total correlation and
local dual total correlation which are given by

tc(xn) :=
n∑

j=1

h(x j ) − h(xn), (2)

dtc(xn) := h(xn) −
n∑

j=1

h
(
x j

∣∣xn
− j

)
, (3)

where h(xn) = − log p(xn) is the information content of the
state xn [28]. These quantities capture how the strength of
the multivariate interdependencies vary with the state of the
system, providing a generalization to the pointwise mutual
information introduced in Ref. [36].

Using these definitions, we can define the local O-
information as follows (see Appendix B):

ω(xn) := tc(xn) − dtc(xn) (4)

= (n − 2)h(xn) +
n∑

j=1

[
h(x j ) − h

(
xn

− j

)]
. (5)

In contrast to �(X n), which provides a single value for the
random variable, ω(xn) assigns a number for each possible
state xn. In particular, the local O-information has the follow-
ing useful properties:

(1) �(X n) = E{ω(x)}.
(2) infx ω(x) � �(X n) � supx ω(x).
Generally speaking, the local O-information provides more

information than its global counterpart as, technically, ω(X n)
is a random variable whose mean value is �(X n). Therefore,
the whole range of values of ω(X n) can naturally provide a
more fine-grained description of the system than its mere first
moment.

Additionally, note that Lemma 3 of Ref. [25] provides
upper and lower bounds for �(X ) when the variables take
values in a finite alphabet; in particular, if Xj ∈ X for all j,
then

−(n − 2) log |X | � �(X n) � (n − 2) log |X |. (6)

Note that these bounds do not apply to the local O-
information; they apply to its average value, but extreme
values can be larger than it. Nonetheless, the quantity (n −
2) log |X | establishes a natural bound which that, when sur-
passed, values of ω can be considered to be particularly large.
This provides a useful rule of thumb to interpret the ranges of
values obtained by evaluations of ω.

C. Proof of concept

A useful way of employing ω is to classify states among
different types. In particular, building on the properties of the
O-information, we say that a state xn for which ω(xn) > 0 is
redundancy dominated, while if ω(xn) < 0 we say the state is
synergy dominated. In this section we illustrate this capability

FIG. 1. Concerning the Ising toy model of three spins, � is
plotted versus the coupling J (top panel). The values of ω for the
eight possible configurations of the three spins are shown for the
unfrustrated case when J = 1 (middle panel) and for the frustrated
case, when J = −1 (bottom panel).

of the local O-information by using it to analyze a small Ising
system.

Let us consider three coupled spins denoted by (S1, S2, S3),
whose joint probability distributions follow a Boltzmann-
Gibbs distribution of the form

p(s1, s2, s3) = eJ (s1s2+s1s3+s2s3 )

Z
, (7)

where Z = ∑
s1,s2,s3 eJ (s1s2+s1s3+s2s3 ) is a normalization factor.

For positive values of J , the configurations with all the spins
in agreement (i.e., ↑↑↑ and ↓↓↓) satisfy all bonds, and hence
the system may be seen as a small ferromagnet. In contrast,
for negative J the system is said to be “frustrated” as there is
not a configuration satisfying all bonds simultaneously.

By analyzing Eq. (7) via the O-information, one finds
that ferromagnetic behavior is redundancy dominated while
frustrated systems are synergy dominated (see Fig. 1). Inter-
estingly, the local O-information shows that configurations of
spin agreement are redundancy-dominated states, while the
six configurations with disagreement are synergy dominated;
this for both positive and negative values of J . This let us
conclude that what makes the system redundancy or synergy
dominated for different values of J is the different frequency
with which either redundancy- or synergy-dominated config-
urations are visited.

This toy example shows how the local O-information can
reveal different qualities of various states—in this case, either
states with agreement or disagreement. Furthermore, this ex-
ample also reveals an intriguing connection between synergy
and frustration in spin models, which will be further investi-
gated in a future publication.
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III. CASE STUDY: HIGH-ORDER RELATIONSHIPS
IN BACH’S CHORALES

To illustrate the usefulness of the local O-information for
practical data analysis, this section presents a study of the mul-
tivariate statistics of musical scores from the Baroque period.
Reference [25] provided an analysis of music scores based
on the global O-information; however, such analyses could
not provide information about individual chords, and hence
could not explore further musical aspects related to harmony
and tonality. Here we show how the local O-information can
greatly expand this type of analyses, revealing subtle aspects
of the musical discourse that are reflected in the high-order
interactions.

In the following, Sec. III A describes the procedure to
obtain and analyze the data, and Sec. III B discusses our main
findings.

A. Processing pipeline

1. Data preprocessing

Our analysis focuses on the chorales for four voices
(soprano, alto, tenor, and bass) written by J. S. Bach
(1685–1750). These works are characterized by an elaborate
counterpoint between the melodic lines that leads to rich har-
monic progressions, which in turn results in a broad range
of chords displayed along the repertoire. An additional point
of interest of these pieces is that, as typical in the Baroque
period (approximately 1600–1750), they display a balance in
the interest and richness of each of the four voices. This con-
trasts with the subsequent Classic (1730–1820) and Romantic
(1780–1910) periods, where higher voices tend to take the
lead while the lower voices provide mere support.

Our analysis is based on the electronic scores publicly
available [37], a website that hosts professionally curated
digital scores [38]. Our preprocessing pipeline is the same as
in Ref. [25], which we describe here for completeness. The
scores were preprocessed in Python using the Music21 pack-
age [39], which allowed us to select only the pieces written
in Major mode. Each chorale was transposed to C Major, and
each melodic line was transformed into a time series of 13
possible values (one for each note plus one for the silence),
using a small rhythmic duration as common time unit. This
resulted in a total of 172 chorales, which gave ≈4 × 104

four-note chords. It is worth remarking that our analyses focus
on a specific portion of Bach’s corpus—namely, his four-voice
chorales—that provides a large and relatively uniform dataset.
In particular, the style of Bach’s chorales is known to not
change significantly throughout his life.

With this data, the joint distribution of the values for the
four-note chords was estimated using their empirical fre-
quency [40]. This leads to a probability assigned to each
four-note chord, which simply assesses the odds of picking
that chord when randomly selecting one out of the whole
repertoire. One can express this probability as the multivariate
statistic p(x1, x2, x3, x4), with each variable corresponding to
the different voices.

Finally, we used p(x1, x2, x3, x4) to calculate the local
O-information ω(x) for each chord x using Eq. (5), which
determines the dominant statistical behavior (in terms of syn-
ergy and redundancy) associated with each chord. The overall

FIG. 2. Processing pipeline. Top: each chorale was selected
among those written in major mode and then transposed in C major.
Middle: each melodic line was transformed into a time series of
13 possible values. Bottom: for each four-note state the local O-
information was calculated using Eq. (5).

pipeline starting from the music score and arriving to the local
O-information is illustrated in Fig. 2.

2. Research questions and tools

We studied the multivariate properties of each of the possi-
ble four-note chords of Bach’s chorales. Our analysis focuses
exclusively on harmony and chords, leaving melodic and
rhythmic properties to future studies. We focus on the question
of what harmonic properties of the music tend to give rise to
synergistic or redundant high-order relationships between the
four voices [41].

Let us denote by X = (X1, X2, X3, X4) the random vector
that follows the statistics encapsulated by p(x1, x2, x3, x4).
Following standard musical practice, we follow the conven-
tion that the variables go from lower to higher range, so that X1

corresponds to the bass and X4 is the soprano. Moreover, we
use the shorthand notation CEGE when referring to the chord
(x1, x2, x3, x4) = (C, E, G, E).

Note that X can adopt 134 = 28 561 possible values, and
that p is generally not invariant under changes of order-
ing between the four voices. Since X1, . . . , X4 take values
among alphabets of cardinality |X | = 13, we do all calcu-
lations using logarithms to base 13, so that H (Xk ) � 1 for
all k ∈ {1, . . . , 4}—we call this unit a mut, for musical bit.
Equation (6) implies that −2 < �(X ) < 2, and hence most
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values of ω are expected to have absolute value less than 2
muts—which gives a sense of how to interpret the magnitude
of local O-information values.

We expected to find a correspondence between tonality and
O-information values. In particular, we hypothesize that the
principal tonal chords (C, F, and G major) would be associated
with redundant behavior, while chords that are farther away
from the tonal center (i.e., involve many sharp or flat alter-
ations) would be related to synergistic events. Additionally,
we expect dissonance to be associated with less redundancy,
as it involves more complex combinations of notes.

B. Results

Here we report analyses that explore various aspects
of musical phenomena from the perspective of the local
O-information. In the following, Sec. III B 1 first explores
properties of the most redundancy- and synergy-dominated
chords, providing insights that are then refined in Sec. III B 2
by probing how ω is related with consonant and disso-
nant intervals. Climbing the ladder of musical complexity,
Sec. III B 3 studies the relationship between ω and various
aspects of harmony, and finally Sec. III B 4 investigates the
role of lyrics.

1. Analysis of the extreme values of the local O-information

Out of the 134 possible chords, we found that only 1715 of
them were observed at least once in the chorales, correspond-
ing to only 6% of the possibilities, reflecting the specificity of
the chord choices used in Bach’s chorales. A weak correlation
is observed between frequency and local O-information: more
frequent chords tend to have a higher ω, which suggests that
more visited chords tend to be made by more redundant parts
(see Fig. 3).

Some interesting observations can be made by observing
the most positive (redundant) and the most negative (syner-
gistic) states in terms of ω, which are presented in Table I.
First, the most redundant states tend to contain few alter-
ations (sharp notes, denoted in the table with the symbol �)
and mostly consonant intervals [42]. In contrast, synergistic
chords tend to contain more alterations and dissonant inter-
vals, which in the Western culture are typically associated
with harshness and unpleasantness. For example, the most
synergistic chord contains a major seconds (D-E), while the
second most synergistic has one minor second (F�-G) and
one major second (E-F�). The “chord” with highest local
O-information is found to be RRRR, where the redundancy can
be interpreted as a consequence of the voices doing the same
thing—not signing.

2. The role of intervals

The results reported in the previous section imply a link
between the musical (i.e., harmonic) properties of a chord and
the type of statistical interdependencies among its constituent
notes. In particular, results suggest that synergistic interdepen-
dencies may be associated with the presence of dissonances,
while redundancy may be related to consonance. A consonant
interval occurs when the ratio of the frequencies between two
notes is very simple, such as (1 :2) for the octave, (2 :3) for
the perfect fifth, or (4 :5) for the major third. In the West-

FIG. 3. Scatter plot of the logarithm of the probability of each
state versus ω. Almost all the states have ω between −2 and +2, i.e.,
the bounds for �. The outlier in redudancy corresponds to the chord
RRRR.

ern culture, consonance is typically associated by listeners
with pleasantness and acceptability [43]. In Westerner music
theory, dissonant intervals typically include the major second
(8 :9) and minor second (15:16), the major seventh (8 :15) and
minor seventh (9 :16), and the augmented fourth (so-called
“tritone” or diabolus in musica).

To further explore the relationship between high-order
statistics and harmony, we studied how the local O-
information depends on the number of dissonant intervals
(either seconds/sevenths or augmented fourths) a chord pos-
sesses. Results are depicted in Fig. 4. An analysis of variance
with Bonferroni correction revealed a significant dependency
between the number of dissonances and ω for all number

FIG. 4. Dissonance vs local O-information. Each box represents
a state with a different number of dissonant intervals. Each category
is statistically different from the one with no dissonance (pure con-
sonant intervals).
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TABLE I. Chords with the highest (redundance) and lowest
(synergy) local O-information. Letters refer to the standard music
nomenclature (plus R is for silence), and the ordering of the voices is
Bass-Tenor-Alto-Soprano—from left to right.

Redundancy Synergy

Chord ω Chord ω

R R R R 3.443 A E D D −2.916
G D G D 2.736 G B F E −2.836
F C F C 2.484 B F B B −2.725
A C A C 2.311 A� E E A −2.688
C G C C 2.23 G F� F� A −2.613
E G E G 2.228 G C B A −2.581
C G C G 2.127 F A� G F −2.559
A A E A 1.93 G C C A� −2.522
F D G D 1.921 G E C� A −2.432
D D A A 1.824 G G G� C −2.396
G D G G 1.782 R G R E −2.388
D D A D 1.748 G� F G� C −2.311
D F C A 1.688 A� F G� C −2.276
G G D G 1.674 G A F G −2.245
F F C F 1.594 E G A F −2.238
E C E C 1.586 E F� C D −2.221
A C A D 1.544 F� F� C� A −2.219
F F C D 1.532 G F F A� −2.185
R R R A 1.522 E A G D −2.176
G F G D 1.512 C� G G B −2.173

of chords—except for the contrast between three and four
dissonances, arguably due to the small number of chords with
four dissonances. The results of all the comparisons are shown
in Table II. The chords that contain three or more dissonant
intervals are presented in Appendix D (Table VII), most of
which exhibits negative values of ω while the only two chords
with ω > 0 can be identified as part of G major with added
seventh, which is the most frequent dissonant chord in classi-
cal harmony.

A question that arises from the results shown in Fig. 4 is
how can purely consonant chords be dominantly synergistic—
as shown by the variance of the values of ω for zero
dissonance. For example, the chord ω(CEGC) = 0.42 is re-
dundant while ω(EGCC) = −0.45, being both C major chords

TABLE II. Statistical analysis of Fig. 4. Each row tests the null
hypothesis that chords with a different number of dissonances have
the same ω.

Dissonances p-value Cohen’s d

0-1 <0.0001 0.432
0-2 <0.0001 0.738
0-3 <0.0001 1.187
0-4 <0.0001 1.556
1-2 <0.0001 0.317
1-3 <0.0001 0.821
1-4 <0.0001 1.272
2-3 <0.0001 0.488
2-4 0.0004 0.924
3-4 0.5865 0.447

FIG. 5. The effect of chord inversions on the local O-
information. Root form occurs when the root note of the triad is in
the bottom (e.g., CEG), first inversion when the third note of the triad
is the bass note (e.g., EGC), and second inversion when the fifth note
is in the bass (e.g., GCE).

but having a different pitch in the bass (the fundamental note
in the first case, and the third in the second). Leveraging
music theory, a possible explanation from this can be built
from the notion of “chord inversion”: a triad chord is in first
inversion if the third (either major or minor) is in the bass,
it is in second inversion if the fifth is in the bass, and it is
in root position if the first/fundamental note is in the bass. In
Western classical music each inversion tends to be associated
with specific sensations; the first inversion gives a sense of
lightness, while the second inversion and root position are
typically associated with instability and stability, respectively.

Building on the above considerations, one can conjecture
that the realizations of chord inversions may display a trend
towards synergy-dominated statistics. By considering the val-
ues of ω corresponding to different inversions, a t test shows a
tendency towards lower values of ω in chords in first (Cohen’s
d � 0.36) and second (Cohen’s d � 0.31) inversion when
compared to chords in root position, as shown in Fig. 5.

Finally, as a complementary way to study the role of inter-
vals on the O-information, we considered the average value
of ω for given notes at specific voices—averaging over all
possible notes adopted by the other two voices. The results
are shown in Fig. 6. It was found that redundancy (i.e., the
most positive values of O-information) is “localised” in few
intervals, taking place mainly between notes involving the
tonic (C major, CEG) or dominant (G major, GBD) chords,
or between silences. Also, most redundancy in the bass is
associated to the fundamental note of each chord—either C
or G. In contrast, synergy (i.e., the most negative values of
O-information) are much more widespread. Interestingly, the
redundancies between the two extreme voices (soprano and
bass) are relatively weak (except between their silence), while
synergies between them are not. Please note that the extreme
voices tend to carry an important role in Bach chorales—the
soprano carrying out the main melody, and the bass leading
the harmony.

3. Harmonic depth

While the previous section focused on the role of single
intervals, now our analyses focus on harmonic considerations.
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FIG. 6. Networks of redundant (orange) and synergy-dominated (blue) relationships in Bach’s chorales. For each pair of voices the link
between two notes was created by averaging the local O-information of all chords containing those two notes.

Harmony is organized around a tonality (also called “key”),
which plays the role of center of gravity around which music
discourse revolves. The axial pitch of a tonality is called
the root, which in turn gives name to the tonality, e.g., C
is the root of the tonality of C major. In classical Western
music there are 12 different major tonalities, one for each
of each pitch. Also, each major tonality has an associated
minor tonality, which is located a minor third below (e.g., C
major is associated with A minor). Each of these 12 major
tonalities is made of seven distinct pitches, and are naturally
ordered by a notion of proximity depending on how many
pitches they have in common. This gives rise to the circle
of fifths: major keys separated by a fifth have only one note
different. For example, C and G major are only distinguished
by the note F, which is sharp for the latter but natural for the
former.

A simple way to explore the impact of harmony on the
high-order statistics is by analyzing the dependency between
ω and the number of alterations (sharps or flats) that a chord
has. In effect, please recall that all the chorales analyzed are
in major mode, and have been shifted to C (see Sec. III A).
Moreover, chords belonging to C major have no alterations,
while chords for more distant tonalities have progressively
more alterations—either sharps if going up the cycle of
fifths, or flats otherwise. Therefore, we ran statistical analyses
(t test corrected for multiple comparisons) on the effect of the
number of alterations on ω, whose results are shown in Fig. 7.
Results revealed significant decreases of ω (p < 0.01) for
states with one (Cohen’s d � 0.41) or two (Cohen’s d � 0.44)
alterations with respect to chords without any alterations.

In order to deepen our understanding of how harmony
and O-information are related we introduced the notion of
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FIG. 7. The local O-information is related to the number of alter-
ations (sharps and flat notes) inside each state. States with one and
two alterations have ω significantly lower (p < 0.05) than states with
no alterations.

harmonic depth. Harmonic depth corresponds to the smallest
number of steps (going clockwise or anticlockwise) in the
circle of fifths that are required to go from C major to a given
tonality, or from A minor in the case of minor tonality. For
example, the chord D major has an harmonic depth of +2,
while the chord F minor (denoted as Fm) has a harmonic depth
of +4.

We are interested to study the relationship between ω and
harmonic depth. For this purpose, we consider the values of
ω for triads that belong to a specific tonality, regardless of the
arrangement of notes between the voices For example, deter-
mining a chord is C just accounts for triads containing only the
pitches C,E,G, regardless of how they are arranged among the
voices. Results are shown in Fig. 8, and show that the value of
ω decreases as soon as the tonality moves away from C major,
being this difference is more pronounced in minor chords.
This suggests that synergy may also be associated with more
complex harmonic explorations involving more harmonically
distant chords.

4. Lyric analysis

As a final step in our analysis, we investigated the relation-
ship between the values of ω and the corresponding chords
during which a given word is sung as part of the lyrics.

For this purpose, we consider the different values of ω

that correspond to each time a given word is sung. In cases
of melismas (i.e., when many notes are sung under the same
syllable), the values of the whole progression were averaged
and counted as one realization of the word.

As a first analysis, we calculated a word cloud where
words associated with negative or positive values of ω are
represented in red and blue, respectively. As shown in Fig. 9,
many of the most common words (like Gott, Herr, Sohn) are
redundant, with the exception of Jesu, which is synergistic.
As the majority of the chords explored by Bach are syner-
gistic (the average O-information is negative; see Fig. 3), this
prevalence of redundant words is highly nontrivial.

Another insight that can be drawn from the word cloud is
that words that are not the subject of the phrase seem to be

FIG. 8. The effect of harmonic distance. The figure shows the
mean values (and confidence intervals) of ω for musical states in
every different major (top) and minor (bottom) chord. The purple line
indicates purely consonant triads, while the yellow line corresponds
to chords with one or more dissonances.

more synergistic. To verify this, we evaluated the effect on ω

of words being in root form (nominative case) with respect to
all others [44]. The results confirmed our conjecture, showing
that words in root form have a tendency towards higher values
of ω (see Fig. 10). As a speculation, this may be interpreted by
noting that root form words correspond to the most important
part of the sentence, and hence a redundant underlying har-
mony might contribute to an easier comprehension. The most
frequent cases of words for which we found both the root and
the nonroot word are shown in Table III.

Further results are provided in in Appendix D, where the
most frequently encountered chords are shown in Table IV,
while the ω extreme values and the most common tonal chords

FIG. 9. Word cloud of Bach’s chorales lyrics. Most common
words found in text, with their size representing their frequency and
their color their local O-information sign (plus or minus).
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FIG. 10. Root vs nonroot words. Each box shows the distribution
of local O-information ω for each category. A statistical comparison
between the two populations has been carried out with a two sample
t -test, which rejected the null hypothesis with p < 0.01; the effect
size can be expressed as Cohen’s d � 0.26.

TABLE III. Most common words and their average local O-
information ω.

Root ω No Root ω

Gott 0.008 Gottes −0.233
Gotte −0.002
Gotts −0.256

Herr 0.096 Herre −0.007
Herren −0.152

Christ −0.127 Christen −0.442
Christe −0.092

Christenheit −0.342
ewig −0.159 Ewigkeit −0.024

ewiglich −0.264
Geist 0.098 Geistern −0.866
soll −0.042 sollen −0.111

sollst −0.444
solls −0.009

Himmel −0.188 Himmels −0.314
Seel −0.02 Seele −0.044
Gnad 0.084 Gnaden 0.052

Gnade 0.066
Seel −0.02 Seelen 0.083
voll −0.068 voller −0.458
Mensch −0.07 Menschen −0.16
hoch 0.059 höchsten −0.224

Höchsten −0.158
höchster −0.201

Ehr −0.277 Ehren −0.222
Licht 0.137 Lichtes −0.288
Ehr −0.277 Ehre −0.107
ohn −0.214 ohne −0.336
Trost −0.286 Tröster −0.236
End 0.106 Ende 0.074
Herz 0.175 Herzen 0.132

Herzens −0.149
Herze 0.32

are listed in Tables V and VI, respectively. Please note that an
analysis done on time-shuffled surrogate data shows that bias
correction is not necessary on this data (see Appendix C).

5. Music analysis based on frequencies

As a control, in Appendix E we investigated the possibil-
ity of retrieving similar results using just the frequencies of
occurrences. For this purpose, we redo each analysis using
p instead of ω versus the musical quantities of interest. The
results of such analyses can be seen in Fig. 11, and Table VIII
compares the statistical results obtained when studying the
various musical properties in terms of the frequencies or ω.
Overall, there are some associations that also replicate with
the frequencies, but in general the significance is weaker and
the effect sizes are smaller. This let us conclude that ω pro-
vides information about these aspects of music that cannot be
retrieved from the frequency of occurrence.

IV. CONCLUSIONS

This paper introduces a framework to study the high-order
interdependencies observed in complex multivariate systems,
which is capable of disentangling their effects on individ-
ual patterns of activity. The approach is centered on the
local O-information, a measure that quantifies the balance
between redundancy and synergy at each pattern. Because
of its information-theoretic nature, this measure is widely
applicable, being suitable to assess systems with categorical,
discrete, and continuous variables.

The capabilities of the proposed framework were show-
cased in an analysis of the scores of the chorales of J.S.
Bach, which illuminated the high-order relationships that exist
between the different voices. In particular, our results showed
that synergy-dominated interdependencies tend to be associ-
ated with complex musical elements, including dissonances,
chord inversions, and harmonic distance from the tonal center
[45]. Taken together, our findings provide converging evi-
dence about the relationship between statistical synergy and
the complexity of the musical discourse.

These findings have interesting parallels with recent
studies on the human brain, which are revealing a close
relationship between synergistic interdependencies in neural
activity and high cognitive functions. Historically, the no-
tion of synergistic information was originated in theoretical
neuroscience as an effort to characterize aspects of complex
neural activity [6,7,34,46–48]. Moreover, recent empirical
work has shown that synergy characterizes the interactions
between areas of the human brain that have undergone a
more pronounced evolutionary expansion [49], and is also
associated with changes in brain function due to anaesthesia
and disorders of consciousness [50]. Under the light of these
findings, the results presented in this work let us speculate that
elaborated musical discourse may have key similarities with
the type of neural activity that underpins high brain functions.
One possible commonality could be the presence of emergent
phenomena, which have been recently characterized formally
in terms of statistical synergy [51]. This would not be the first
time music is shown to share some of the hallmark properties
of complex systems; in effect, properties of musical discourse
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FIG. 11. Musical analysis using probabilities instead of local O-
information ω.

have been shown to be related to nonlinear fluctuations and
self-organized criticallity [52,53], and also to entropy produc-
tion and irreversibility [54].

Pointwise information measures, initially proposed in
Ref. [29] with respect to the local transfer entropy, are a
promising set of techniques that can provide a detailed de-
scription of information transfer mechanisms in complex
systems. Recently this paradigm has been applied to im-
plement the local Granger causality [30], which has shown
interesting results on physiological and neural data. The fine
descriptions allowed by the formalism introduced in this paper
bring another perspective over high-order interdependencies,
which complement existent pointwise information decompo-
sition approaches (e.g., Ref. [16]) by being applicable to larger
systems, hence greatly extending their domain of practical
applicability. The extension of these ideas to dynamical in-

formation decomposition, such as the integrated information
decomposition framework [55], constitutes a promising direc-
tion for future research.
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APPENDIX A: PROOF OF NON-NEGATIVITY
OF TC AND DTC

The TC and DTC leverage relationships between three
building blocks: the joint entropy [H (X n)] and the sum of—
conditioned or not—marginal entropies [

∑n
i=1 H (Xi|X n

−i ) and∑
i H (Xi ), respectively]. This Appendix provides proofs for

TABLE IV. Most common chords.

Chord ω Frequency

C E G C 0.4201 1881
C G C E 0.226 1405
G G B D 0.3887 1106
G B D G 0.3019 715
G B G D 0.0464 674
C C G E −0.1328 649
G D B G −0.0182 517
C G E C −0.2457 516
A E A C 0.0517 514
G D G B −0.0189 421
R R R R 3.4431 388
E G C G −0.0938 361
C E C G −0.5384 359
G F B D 0.3229 350
B D G D −0.0342 311
E C G C −0.2682 298
E G C E 0.2924 286
C C E G −0.2694 286
B G D G −0.0387 272
D A D F 0.1538 271
A A C F 0.2383 260
F C F A 0.2522 257
G G C D −0.3909 250
F F C A −0.058 241
F F A C −0.1293 226
F A C D −0.2281 220
D F A D 0.0358 217
A A C E 0.0617 214
A C E C 0.0578 203
A A E C −0.2498 190
C E G E 0.307 177
F A C F 0.1666 175
G G D B −0.491 174
B G D F −0.0853 172
D D F# A 0.5305 170
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TABLE V. First states with the highest (redundance) and lowest
(synergy) ω values. The letters refer to the standard nomenclature of
notes in music (R is for rest) and the order of the voices is Bass-
Tenor-Alto-Soprano, from left to right.

Redundancy Synergy

Chord ω Chord ω

R R R R 3.443 A E D D −2.916
G D G D 2.736 G B F� E −2.836
F C F C 2.484 B F B B −2.725
A C A C 2.311 A� E E A −2.688
C G C C 2.23 G F� F� A −2.613
E G E G 2.228 G C B A −2.581
C G C G 2.127 F A� G F −2.559
A A E A 1.93 G C C A� −2.522
F D G D 1.921 G E C� A −2.432
D D A A 1.824 G G G� C −2.396
G D G G 1.782 R G R E −2.388
D D A D 1.748 G� F G� C −2.311
D F C A 1.688 A� F G� C −2.276
G G D G 1.674 G A F G −2.245
F F C F 1.594 E G A F −2.238
E C E C 1.586 E F� C D −2.221
A C A D 1.544 F� F� C� A −2.219
F F C D 1.532 G F F A� −2.185
R R R A 1.522 E A G D −2.176
G F G D 1.512 C� G G B −2.173
F G C D 1.508 G A C� A −2.173
F� A C A 1.506 A D� A D −2.144
B G B G 1.5 E E F� A −2.143
C C G A 1.482 F� B E E −2.142
F A A F 1.46 A G A� F −2.115
G B G B 1.446 F A C� G −2.114
C C G C 1.435 F B G� C −2.103
G G D D 1.361 F� E B D −2.099
G F A D 1.318 G E D A� −2.09
C A D E 1.315 C� E F� B −2.086

basic inequalities between these terms, which guarantee the
non-negativity of the TC and DTC.

Let us first show that H (X n) � ∑
i H (Xi ). This inequality

follows directly from the chain rule applied to the joint en-
tropy, as follows:

H (X n) =
n∑

i=1

H (Xi|Xi−1, . . . , X1) �
n∑

i=1

H (Xi ),

where the inequality follows from the fact that conditioning
cannot increase the entropy.

Let us now show that H (X n) � ∑n
i=1 H (Xi|X n

−i ). This can
be proven using again the chain rule, but in a different manner:

H (X n) =
n∑

i=1

H (Xi|X1, . . . , Xi−1)

�
n∑

i=1

H (Xi|X1, . . . , Xi−1, Xi+1, . . . , Xn).

TABLE VI. Most common tonal chords.

Chord ω Occurrence

C E G C 0.42 1881
C G C E 0.226 1405
C C G E −0.133 649
C G E C −0.246 516
E G C G −0.094 361
C E C G −0.538 359
E C G C −0.268 298
E G C E 0.292 286
C C E G −0.269 286
C E G E 0.307 177
E G C C −0.452 132
E C G G −0.302 122
E C G E 0.015 113
E G G C −0.577 102
E E G C 0.37 99
G G C E 0.149 90
E E C G 0.002 78
E G E C −0.045 74
E C E G 0.093 71
E C C G −0.467 52
C C E C 0.442 52
C C E E 0.033 44
C E C E 0.774 41
C G E G −0.106 37
G G E C −0.812 35
G E C E −0.977 26
C C G C 1.435 26
E E G G −0.16 25
C G E E 0.538 24
G E C C −1.132 22

APPENDIX B: PROOF OF EQ. (5)

Here we provide an explicit derivation of the local O-
information formula. By recalling the definitions of local
total correlation and dual total correlation, and that h(xi ) =
− log p(xi ), one can find that

ω(xn) := tc(xn) − dtc(xn)

=
[

n∑
j=1

h(x j ) − h(xn)

]

−
[

h(xn) −
n∑

j=1

h
(
x j

∣∣xn
− j

)]

=
n∑

j=1

h(x j ) − 2h(xn) +
n∑

j=1

h
(
x j

∣∣xn
− j

)

= − 2h(xn) +
n∑

j=1

[
h(x j ) + h

(
xn

) − h
(
xn

− j

)]

= (n − 2)h(xn) +
n∑

j=1

[
h(x j ) − h

(
xn

− j

)]
.

013184-11



TOMAS SCAGLIARINI et al. PHYSICAL REVIEW RESEARCH 4, 013184 (2022)

TABLE VII. Most common dissonant chords (only chords with three or more dissonant intervals are shown).

Chord ω Occurrence

G G B F −0.2391 81
D D F� C −0.4532 28
G F G B −0.8748 27
C A� C E −0.1148 27
D D C F� −0.5139 26
G G F B −0.8308 25
G F B G 0.226 25
G B G F −0.7421 24
B A C F −0.455 22
E F B D −0.3088 22
D F� D C −0.713 18
D C D F� −0.7643 17
E D G� E −0.262 17
B C A F −0.7095 16
G B F G 0.2502 16
E F B G −0.4072 14
C C E A� −0.2633 14
C E D E −0.7414 13
G F B C −0.8746 12
D F C E −0.5583 12
C D F� D −1.0235 10
E E D G� −0.7605 10
D C F� D −0.1526 10
F B F A −0.1821 9
B C F C −1.8124 8
G F A� A −1.5336 8
E D E G� −0.7108 8
A E A� C −0.6605 8
F G C� E −0.5848 8
B C F A −0.5059 8

TABLE VIII. Comparison between each musical analysis done using probability and O-information.

Probability O-information

p-value Cohen’s d Significant p-value Cohen’s d Significant

Dissonances
0-1 <0.0001 0.331 1 <0.0001 0.432 1
0-2 <0.0001 0.446 1 <0.0001 0.738 1
0-3 <0.0001 0.387 1 <0.0001 1.187 1
0-4 0.0395 0.338 0 <0.0001 1.556 1
1-2 1 0.198 0 <0.0001 0.318 1
1-3 1 0.482 0 <0.0001 0.821 1
1-4 1 0.503 0 <0.0001 1.272 1
2-3 1 0.274 0 <0.0001 0.489 1
2-4 1 0.372 0 0.0004 0.924 1
3-4 1 0.38 0 0.5865 0.447 0
Root inversion
root-1st 0.7603 0.1069 0 0.0032 0.3562 1
root-2nd 0.4917 0.1443 0 0.0085 0.3139 1
1st-2nd 1 0.0267 0 1 0.047 0
Diesis
0-1 <0.0001 0.2242 1 <0.0001 0.4061 1
0-2 0.0332 0.2463 0 <0.0001 0.4434 1
1-2 1 0.3109 0 1 0.0568 0
Words
root - noRoot 0.0178 0.1493 0 <0.0001 0.2553 1
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APPENDIX C: BIAS CORRECTION

In this work, we estimate all the information-theoretic
quantities by first estimating the underlying joint probabil-
ity of occurrences of four-note chords. As mentioned in
Sec. III A 1, we estimate these probabilities directly from the
frequency of occurrences, without employing regularization
methods, as some chords are not representative of the Baroque
repertoire and hence will never appear, irrespective of the
sample size.

Estimators of information-theoretic quantities can suffer
from bias if the sample size is small. To estimate the bias in
our scenario, we constructed a null model by time shuffling
the original series, which effectively destroys the interdepen-
dencies while preserving the marginal statistics of each of the
four voices. By calculating the average of ω for multiple re-
alizations of these shuffled series, results show that the values
are usually of the order of 10−1, being one order of magnitude
smaller than the typical values of ω observed in our analyses
(see Fig. 12). For this reason, adding a bias correction would
not alter our results.

APPENDIX D: TABLES

In Tables IV–VIII, we provide a series of further results
that complete the musical analysis presented in the text.

FIG. 12. Bias estimation for the musical analysis. Each realiza-
tion of the null model was built by shuffling the original musical
scores and then by calculating the values of ω as done in the text.
The histogram shows the distribution of the average of ω for each
realization, showing a bias of ≈−10−1—significantly smaller than
the typical values of ω reported in our results.

APPENDIX E: COMPARISON WITH PROBABILITY

In Fig. 11, we present the results of each analysis per-
formed in the text using the frequencies of occurrence instead
of the local O-information.
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