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Abstract—Edge computing, as one of the key technologies in
6G networks, establishes a distributed computing environment by
deploying computation and storage resources in proximity to end-
users. However, the dense deployment of base stations, cellular
dead zones, and high dynamic of mobile devices may cause
serious interference issues and weak signal propagation, which
will severely affect the transmission efficiency of edge computing
and cannot support low-latency applications and services. Recon-
figurable intelligent surface (RIS) is a new technology that can
enhance the spectral efficiency and suppress interference of wire-
less communication by adaptively configuring massive low-cost
passive reflecting elements. In this paper, we introduce RIS into
edge computing to support low-latency applications, where edge
computing can alleviate the heavy computation pressure of mobile
devices with ubiquitously distributed computing resources, and
RIS can enhance the quality of wireless communication link
by intelligently altering the radio propagation environment. To
elaborate the effectiveness of RIS for edge computing, we then
propose a deep reinforcement learning (DRL)-based computation
offloading scheme to minimize the total offloading latency of
mobile devices. Numerical results indicate that the RIS-aided
scheme can improve wireless communication data rate and
reduce task execution latency.

Index Terms—Reconfigurable intelligent surfaces, low-latency
edge computing, 6G, deep reinforcement learning

I. INTRODUCTION

The proliferation of Internet of Things (IoT) devices and
Artificial Intelligence (AI) applications brings totally differ-
ent features, such as data-driven, intelligence support, and
computation-intensive, and poses more stringent requirements
(i.e., lower latency, denser connectivity, higher data rates)
that current 5G cannot satisfy. The future six-generation (6G)
wireless communication network is expected to evolve itself by
integrating emerging technologies in wireless communication
and networking to support various new and unknown services.
Edge computing, as one of the critical emerging technologies,
is proposed to provide distributed computation, storage, and
powerful data-processing capability close to users. In edge
computing, devices can offload their computation-intensive
tasks to nearby distributed base stations (BSs) to process.

Low-latency for 6G is of capital importance as it is essential
to ensure punctual and accurate end-to-end latency for future
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use cases. By deploying computation resource on the edge
servers, edge computing can shorten the distance to access
computation resource for mobile devices, thus reducing task
transmission delay. There has been a considerable amount of
work focusing on low-latency edge computing. The authors in
[1] proposed to offload computation tasks to lightweight and
distributed vehicular edge servers to minimize task processing
latency in vehicular edge computing networks. The authors in
[2] integrated digital twin and federated learning in edge com-
puting, in which devices can migrate real-time data processing
and computation to the edge plane to process. The authors
in [3] considered the latency and reliability requirements of
mission-critical applications and proposed a two-timescale task
offloading scheme where user–server association is decided in
the long timescale and dynamic task offloading is executed in
the short timescale. The authors in [4] formulated the delay
that offloaded task experiences and then designed a dynamic
task offloading and scheduling strategy with the heterogeneous
latency constraints of IoT applications to make the offloading
decision. Although edge computing can reduce latency by
shortening transmission distance and providing in proximity to
user processing capability, the dense deployment of BSs may
cause serious network interference and weak signal propaga-
tion, thus resulting in very low wireless transmission rate and
very high task transmission delay. With the popularity of edge
computing, there will inevitably be more task transmission
requirements, but current low wireless transmission rate will
severely limit the efficiency of edge computing.

Recently, reconfigurable intelligent surface (RIS) has been
envisioned as a revolutionary technique in wireless commu-
nication to enhance spectral efficiency and suppress interfer-
ence [5]. RIS consists of massive passive reflecting elements,
which can be considered as antenna elements to modify the
signal propagation environment. Specifically, by intelligently
adjusting both amplitude and phase shift of passive reflecting
elements, it can enhance the received signal power, thus
improving wireless transmission rate [6]. Compared to tra-
ditional active relay techniques, RIS can control the reflective
coefficients in real-time to achieve signal reflection without
interference and passively reflect the incident signals without
power amplification. Moreover, the low hardware cost of
RIS elements allows for their easy and dense deployment in
wireless networks with high array/passive beamforming gain.
All the above appealing advantages have motivated plenty of
researchers to integrate RIS into conventional wireless net-
works to enhance communication performance. For example,
the authors in [7] considered an RIS-based downlink multi-
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user communication from a multi-antenna BS and developed
an optimization algorithm to optimize RIS phase shifts and
downlink transmission powers for maximizing system energy
efficiency. The authors in [8] proposed RIS-assisted unmanned
aerial vehicle (UAV) systems to improve the coverage and
reliability of UAV communication by installing RIS on a
building to reflect the signals transmitted from a ground UAV.

In this paper, we propose an RIS-empowered framework for
edge computing to support low-latency applications, in which
edge computing can alleviate the heavy computation pressure
of mobile devices and reduce task processing latency with
ubiquitously distributed edge servers. RIS can enhance the
quality of wireless communication links in the computation
offloading process by intelligently altering the radio propaga-
tion environment. The main contributions of this paper can
be summarized as follows:
• We propose an RIS-empowered edge computing frame-

work. By leveraging RIS to enhance the signal prop-
agation environment, this framework can reduce task
transmission time, while also improving the accessibility
of edge computing service.

• We present the typical edge computing scenarios, i.e.,
mobile edge computing (MEC), vehicular edge comput-
ing (VEC), and digital twin edge networks (DITEN), and
elaborate the benefits of RIS for these networks.

• We exploit an advanced DRL algorithm to design an
RIS-assisted computation offloading scheme to minimize
the total task execution latency of mobile devices by
jointly optimizing RIS coefficients, computation resource,
and offloading policy. Numerical results demonstrate the
effectiveness of the RIS-assisted offloading scheme.

The rest of this article is organized as follows. The next
section proposes an RIS-empowered framework for edge com-
puting, along with the main characteristics and key challenges.
Then, an RIS-assisted computation offloading scheme to min-
imize the total task execution latency is designed. In section
IV, numerical results demonstrate the proposed DRL scheme.
The final section concludes the article.

II. RIS EMPOWERED LOW-LATENCY EDGE COMPUTING

The emerging applications, such as location-based vir-
tual/augmented reality, real-time online gaming, and ultra-
high-definition video streaming, are computation-intensive and
latency-critical. To support the high quality-of-service (QoS)
requirement of these applications, edge computing moves the
computation/storage capabilities from cloud servers to the
edge of wireless networks for avoiding the long transmission
delay between mobile devices and cloud servers. However,
edge computing only shortens the distance to access the com-
putation resource, but does not involve the performance im-
provement on wireless communication links. The recent pro-
posed RIS can change the wireless propagation environment
to enhance the spectral efficiency with potentially significant
benefits such as high energy-efficient, high-speed, massive-
connectivity, and low-latency. In this paper, we propose an
RIS-aided edge computing for 6G to support low-latency
services and applications, as shown in Fig. 1.

The proposed framework consists of two layers: the RIS-
aided communication layer and the AI-supported edge in-
telligence layer. In the RIS-aided communication layer, RIS
elements are distributively installed on the surface of building
facades, to improve the propagation conditions and increase
the quality of wireless communications. The edge intelligence
layer is constructed of diverse distributed edge servers. With
the combination of edge resources and AI algorithms, these
edge servers are cooperated to enable intelligent police design-
ing, QoS requirement perception, resource management, and
network topology monitoring. In the following, based on the
specific characteristics of terminals and enabling technologies,
we consider three typical edge computing scenarios, i.e., MEC,
VEC, and DITEN, and describe how RIS improving the
performance of these networks.

A. RIS for Mobile Edge Computing

In an MEC network, there are three types of distributed
network entities. The first type is mobile devices, such as
smartphones. Each mobile device is equipped with plenty
of intelligent applications, which have strict requirements on
computation and caching resources (i.e., CPU, GPU, and
memory). Although current powerful devices have a certain
amount of local computation and caching resources, it is still
insufficient to run some machine learning-based applications
with a required low latency. The second type of network
entity in the MEC network is BSs and access points (APs).
Different from traditional radio access points, these BSs and
APs are equipped with computing and storage resources, so
that they not only can provide radio interfaces to mobile
devices for enjoying instant wireless communication but also
can cooperate to offer sufficient computational capacity and
powerful data-processing ability. In MEC networks, devices
can enjoy ubiquitous edge computing and caching services.

Although MEC can efficiently avoid the long transmission
latency from BSs to remote cloud servers, it is still quite
challenging to provide ultra-low latency services. On one hand,
with the dense deployment of edge servers, there will be
more and more data transmission requirements in the process
of computation offloading, edge caching, and content deliv-
ery, which may aggravate network interference and increase
transmission delay. On the other hand, MEC cannot improve
the quality of wireless communication links because it does
not consider the adjustment of the wireless channel and radio
propagation environment. In current wireless communication,
there are three typical methods to increase wireless communi-
cation data rate. The first one is to deploy more heterogeneous
nodes such as small base stations (SBSs) to increase access
availability and spectrum utilization. The second one is to
add more antennas at the BSs to enhance channel gain with
massive multiple-input-multiple-output (MIMO). The third
one is utilizing a higher frequency band such as millimeter
wave to expand the available bandwidth. These techniques are
promising but they incur high hardware and energy cost, and
complicated signal processing issues.

In MEC networks, we utilize RIS to enhance the perfor-
mance of wireless communication. A typical RIS is a planar
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Fig. 1: The framework of RIS-aided edge computing

surface with a large number of passive, low-cost, and low-
energy consuming reflecting elements. It is usually deployed
on the facade of a high-rise building to assist wireless commu-
nication. However, there is a big difference between RIS and
BS. That is, BS has computing and AI-processing capabilities,
but RIS is a just signal propagation device. Due to this
difference, we consider RIS as the third type of network entity
in the proposed networks. Although RIS can passively reflect
the impinging signals, it possesses an appealing advantage for
mobile edge computing. As shown in the first block of Fig. 1,
the deployment of RISs in both urban and rural environments
can enhance the effectiveness of wireless communication and
edge services:

• In an urban environment, a large number of buildings
and the big size of each building may become a very
troublesome obstacle to block the signals between mobile
devices and BSs. Even if a device is located in the
coverage of a BS, the device and the BS cannot directly
communicate with each other. By deploying RIS in such
an urban environment, RIS can build a device-RIS-BS
link to enhance the accessibility of wireless communica-
tion.

• In a rural environment, many devices may be located
outside the coverage of a BS. End users in such an area
cannot enjoy the attractive computing, caching, and AI-
based services which are provided by edge servers. Due
to low hardware and energy cost, RIS is cost-effective
and can be densely deployed in this area to expand the
coverage of wireless transmission and edge services.

B. RIS for Vehicular Edge Computing

To reduce traffic accidents and improve traffic efficiency,
VEC is proposed to support intelligent transportation appli-
cations such as road safety monitoring, automatic driving,
and collision avoidance [9]. Vehicles in a VEC network
have the following features: (1) sensing: vehicles can sense
surrounding traffic with on-board devices, such as cameras,
radars, and GPS; (2) communication: vehicles can exchange
traffic information with each other via V2X communication,
which includes vehicle-to-vehicle (V2V), vehicle-to-pedestrian
(V2P), and vehicle-to-infrastructure (V2I) communications;
(3) computing and caching: vehicles can execute parts of the
data-processing tasks and store its own sensed information
locally. Road-side units (RSUs) in a VEC network are located
along a road to act as edge servers. RSUs are responsible for
receiving the information sent from vehicles and processing
the collected traffic information. Different from BSs, RSUs
are equipped with some vehicular applications, such as path
navigation, collision reminder, and traffic control.

Compared with the traditional MEC, the feature of high
mobility makes VEC face the following challenges. Firstly,
the high mobility of vehicles leads to highly frequent and
dynamic topology changes. Thus, wireless links are easily
disconnected, which will seriously deteriorate communication
quality. Secondly, vehicles may switch among different edge
servers, resulting in frequent handover. Frequent handover may
cause service interruption and increase delay, thereby degrad-
ing user experience. Thirdly, massive sensing information,
such as the current position of a vehicle and road condition
in a specific area, is only valid in a specific duration or area.
Therefore, a vehicle should complete task offloading or data
transmission before leaving the specific area or data expiration.
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To realize this, robust connection and high quality of V2X
communication are required.

By densely deploying RISs in VEC networks and smart
tuning the phase shift and amplitude of these reflecting el-
ements, wireless environment, and network connectivity can
be intelligently controlled and programmed. As shown in the
second block of Fig. 1, the deployment of RISs can enable
robust vehicular communication and flexible edge services:
• In a V2V scenario, RIS assists two vehicles to commu-

nicate with robust connections and high QoS of wireless
links. Firstly, in an RIS-aided V2V scenario, a vehicle
can communicate with another vehicle via the traditional
V2V link and the added vehicle-RIS-vehicle link. Since
the received signal is enhanced, the QoS of the V2V link
is improved. Secondly, due to the highly dynamic of the
vehicular network topology, the direct V2V link is easily
blocked by other vehicles, as shown in the front case of
the second block. In such a case, vehicle-RIS-vehicle can
be acted as the main signal transmission link to maintain
a robust connection. Moreover, different from current
V2V communication that vehicles can only communicate
with the nearest vehicle, RIS can expand the effective
communication distance between vehicles and extend the
maximum duration for allowing vehicles to accomplish
task offloading and data transmission.

• In a V2I scenario, with the assistance of RIS, RSUs
with edge computing and caching resources can sup-
port flexible computation offloading, full-duplex based
data transmission, and large-scale emergency information
broadcasting. In an RIS-aided V2I scenario, except for the
single-hop communication between vehicles and RSUs,
multi-hop RIS-assisted communications, such as vehicle-
RIS-RSU, vehicle-RSU-RIS, and vehicle-RIS-RIS-RSU,
are coexistence. Multi-hop communication enables flex-
ible computation offloading and provides vehicles more
offloading choices. That is, vehicles can choose the RSU
with more computation resource instead of the nearest
RSU to perform computation offloading. Further, RIS
can operate in the full-duplex mode without any antenna
noise amplification and self-interference. Thus, vehicles
can upload the collected data and download content
simultaneously via uplink and downlink, respectively.
The parallel transmission will greatly increase network
utility and user experience. Since RIS can make the signal
evenly cover all vehicles in a specific area, it can help
information broadcasting. That is, once finding a risk,
RIS can notify as many surrounding vehicles as possible
via broadcasting to avoid traffic hazards.

C. RIS for Digital Twin Edge Networks

DITEN is a new paradigm that utilizes digital twin to
monitor real-time states of physical objects through software
definition and accurately virtual modeling [10]. The concept
of the digital twin was firstly presented by Grieves with
three components, i.e., physical objects, virtual models, and
the interconnection of data and information between them.
Physical objects are responsible for providing their real-time

features, properties, behaviors, and rules to construct virtual
models. Virtual models are defined to record real-time states
of physical objects, monitor dynamic changes of a physical
network, extract the key features of physical components,
and carry out optimization and prediction to improve the
performance of the physical system.

The proposed DITEN consists of physical network entities
layer and digital twin-empowered virtual layer. The physical
layer is similar to the above two edge networks. But, there is
a prominent difference between the above two networks and
DITEN, that is DITEN has the virtual layer. In a DITEN,
we consider each physical entity has a digital transformed
model, namely DT model. There are two types of DT models.
The first DT model is about the mobile device. This type of
model mainly records the type of the collected data, the buffer
size of the local dataset, the current location of a mobile
device, and latency or computation resource requirement of
on-device applications. The second type of DT model is about
radio access points (i.e., BSs and UAVs) with the ability of
edge intelligence. This type of model can predict real-time
available communication, computing, and caching resources,
monitor current wireless links to construct network topology,
and execute policy decision-making. These DT models are
not only highly consistent with the physical objects in terms of
geometry and structure, but also able to simulate their spatio-
temporal status, behaviors, functions, which is like a mirror of
the physical objects. In addition, multiple DT models can inter-
communicate with each other to realize global information
sharing. Through global information sharing, we can have a
relatively complete state of the physical network and can well
predict, estimate, and analyze the network.

In a DITEN, since virtual models need a lot of data to
perceive the real-time state of the network, the volume of
data far exceeds a general edge network, and the speed to
generate data is also faster than the general edge network.
Therefore, the transmission pressure of the wireless link in
DITEN is naturally greater. Moreover, to realize accurate DT
modeling, the data of devices and BSs need to be transmitted
without loss because any loss of important data may result
in model distortion and failure mirror. Therefore, compared
with MEC and VEC, DITEN has a more strict requirement
on wireless transmission. To this end, we add RIS in DITEN
to form a reliable communication link, as shown in the third
block of Fig. 1. That is, the UAV transmission channels
to the user compose the UAV-user link, the UAV-RIS links,
and the RIS-user links. Since the UAV-RIS links and the
RIS-user links build another wireless channel between UAVs
and users to enhance the signal-to-noise ratio and decrease
outage probability, it can provide reliable data transmission
for distributed users. Since RIS is a kind of physical entity,
we still need to construct a DT model for it. The phase shift
and amplitude of reflecting elements are the key features of
an RIS. Thus we consider the DT model of each RIS records
real-time phase shift and amplitude of its reflecting elements.

D. Technical Challenges
RIS plays a critical role in constructing a flexible wire-

less communication environment and improving the quality
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Objective Channel Brief descriptions
Minimize transmit power AP-RIS-User + AP-user link Jointly optimize transmit beamforming and RIS reflect beamforming [6]
Maximize energy efficiency BS-RIS-User link Jointly optimize RIS phase shifts and downlink transmit powers [7]
Improve coverage Source-RIS-destination link Performance impact of RIS on outage probability, bit-error rate, and capacity [8]
Improve coverage RIS-assisted multi-hop Jointly optimize beamforming vectors and RIS phase shift [11]
Increase wireless data rate BS-RIS-User + BS-User link Jointly optimize transmit power, beamforming vectors and RIS phase-shift matrix [12]
Increase wireless data rate BS-RIS-User + BS-User link Jointly optimize device selection, beamforming nd RIS phase shifts. [13]
Increase wireless data rate AP-RIS-User + AP-User link Jointly optimize RIS reflection coefficients, beamforming and energy partition [14]

TABLE I: Brief descriptions of RIS-assisted wireless communication.

of wireless communication links. Table I provides a brief
summary of the most representative previous studies on RIS-
assisted wireless communication, which refers to improve en-
ergy efficiency, expand communication coverage, and increase
wireless communication data rate, respectively. However, de-
ploying RIS in low-latency required edge systems imposes
new challenges, which are discussed as follows:
• Intelligent RIS design: The optimal/sub-optimal reflecting

coefficients are derived based on various optimization
objectives, e.g., transmit power minimization, energy ef-
ficiency maximization, and rate maximization. However,
due to the non-convexity of the objective function and
constraints, it is challenging to use standard convex opti-
mization techniques to design reconfigurable coefficients.
Machine learning is an emerging tool which can intelli-
gently learn and determine reconfigurable coefficients to
achieve optimal operational decision.

• The combination of RIS and edge computing: The combi-
nation of RIS and edge computing aims to provide mobile
devices with low-latency edge services. However, how
to exploit and deploy RIS in edge computing to strike
the best possible trade-off between latency and the QoS
requirements of devices needs to be studied. Further, the
inter-connection between RIS coefficients variables and
edge computing variables also needs to be studied.

• Heterogeneous resource allocation: The process of RIS-
aided edge computing may involve heterogeneous re-
source allocation and decision making, namely, com-
munication, computation, RIS, and offloading. To im-
prove resource utilization while satisfying low-latency
requirement of devices, the joint optimization scheme
should simultaneously determine offloading decision and
allocate computation and communication resources for
each device.

III. RIS-AIDED COMPUTATION OFFLOADING

Recent advances in programmable meta-materials facilitate
the construction of RISs to enhance spectral-efficiency with
low energy and hardware cost. An RIS consists of an RIS
controller and many passive reflecting elements, where each
RIS reflecting element is able to dynamically program both
the amplitude and the phase shift of the reflected signals for
achieving signal enhancement and interference suppression.
If RIS is deployed in an edge computing network, RIS can
enhance wireless channel gain and increase the communication
data rate between mobile devices and edge severs, thus reduc-
ing the offloading delay. In this section, we design an RIS-
aided computation offloading scheme to minimize the total
task execution latency of mobile devices.

As shown in Fig. 2, the network consists of a multi-
antenna BS and K single-antenna mobile devices. The BS is
equipped with an edge server for providing edge computing
via wireless communications. The communications between
mobile devices and the BS are assisted by a single RIS
with N passive reflecting elements. Each mobile device has a
computation-intensive task, which requires high computational
capability as well as low execution latency to satisfy the
requirement of QoS. The task can be denoted as (Dk, Ck)
where Dk is the data size of task k, Ck is the required
computation resource for computing unit bit. We consider each
task can be divided into two parts, one part is processed locally
(i.e., 1− xk) while the other part is offloaded to the edge
server to process (i.e., xk). Thus, the task execution latency
is determined by the local computation and computation
offloading. Among them, local computation latency is mainly
related to the computational capability of each mobile device
(i.e., f lk). The latency of computation offloading involves task
transmission time and edge computation time. Since the two
parts are parallel executed (i.e., local computation conducts
simultaneously with the process of computation offloading),
the total task execution latency is equal to the maximal value
of the two processes.

In the process of computation offloading, the offloaded
task transmitted from mobile devices to edge servers via
wireless channel may suffer high propagation loss due to
random channel fading and interference issues. To establish
effective and stable communication, in Fig. 2, RIS is de-
ployed in the system to assist computation offloading for a
higher wireless communication rate. With the presence of
the RIS, the wireless channel does not only includes the
direct device-BS link, but also includes the reflected device-
RIS-BS link. Because of adding the reflected device-RIS-
BS link, the received power gain and the channel capacity
gain can be increased. Thus, RIS can improve the wireless
transmission rate. Here, we denote the channel vector of the
direct device-BS link as hdk. The reflected channel of the
device-RIS-BS link has three components, i.e., device-RIS
link, RIS reflection with phase shifts, and RIS-BS link. We
denote the channel vectors of the device-RIS link and RIS-BS
link as hrk and hH respectively. The reflection-coefficients of
RIS can be denoted as Θ = diag(β1e

jθ1 , β2e
jθ2 , ..., βNe

jθN ),
where βn and θn are the amplitude and phase shift of n-th
RIS element, respectively. Since the channel from the device
to the BS includes both the direct link (device-BS link) and
the reflected link (device-RIS-BS link), the effective channel
gain can be expressed as gk = hdk + hHΘhrk, where hdk is
the channel gain of the device-BS link and hHΘhrk is the
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Fig. 2: RIS-aided Computation offloading with DRL

channel gain of the device-RIS-BS link. Thus, the maximum
achievable wireless transmission data rate can be written as
Rk = B log2(1 +

pk|wHk gk|2∑K
j=1,j 6=i pj |wHi gk|2+σ2 ) where B is the

bandwidth of the system. By properly adjusting phase shift
and amplitude of RIS elements, the wireless communication
rate for computation offloading can be improved. To minimize
the total task execution latency, it is imperative to jointly opti-
mize both communication and computation. The minimization
problem to jointly optimize RIS configuration, computation
resource, and offloading partition can be formulated as

min
x,f,β,θ

∑
k∈K

max{DkCk
1− xk
f lk

, DkCk
xk
fsk

+Dk
xk

Rk(gk)
}

s.t.
∑
k∈K

fsk 6 F s, 0 6 fsk 6 F s, k ∈ K (1a)

xk, βn ∈ [0, 1], k ∈ K, n ∈ N (1b)
0 6 θn 6 2π, n ∈ N (1c)

where fsk and F s are the computation resource that BS
allocated to task k and the total computation resource that BS
has. Constraint (1a) ensures that the total computation resource
of the BS allocated to all tasks cannot exceed F s. Constraint
(1b) and Constraint (1c) specify the range of the offloading
partitions, the range of the amplitude and phase shift of the RIS
elements, respectively. The formulated problem is generally a
non-convex programming problem. It is difficult to solve it in
real-time with traditional optimization technique, due to high
computational complexity. The emerging DRL technique has
great potential to address the complex optimization problem
by applying adaptive modelling and intelligent learning. Thus
we use recent advanced Actor-Critic based DRL to solve the
formulated latency minimization problem.

We first reformulate the above optimization problem as DRL
form with system state, action, and reward:

1) State: The state in DRL is a space to reflect the
environment. The state consists of five components S =
(Dk, Ck, f

l
k, Fs,Θ). In the environment, the BS assembles

these information as a state and sends it to the DRL agent.
2) Action: The objective of an agent is to map the space

of states to the space of actions. In this system, the action
consists of four parts: A = (xk, f

s
k , βn, θn), where xk is the

offloading variable, βn and θn are RIS reflection coefficients.
3) Reward: Based on current state and action, DRL

agent obtains a reward from the environment. Since re-

ward function is related to the objective function, in
this scenario, the total task execution latency can be re-
garded as the reward function (i.e.,Rimm(s(t), a(t)) =
−
∑
k∈Kmax{DkCk

1−xk
f lk

, DkCk
xk
fsk

+Dk
xk

Rk(gk)
}).

According to the state, action, and reward, we exploit asyn-
chronous actor-critic DRL to solve the formulated problem.
The asynchronous actor-critic DRL is an asynchronous learn-
ing algorithm which utilizes multiple agents to interact with
its own environment and each agent contains a replica of the
environment [15]. Specifically, the asynchronous actor-critic
DRL consists of a global agent and several learning agents.
The global agent accumulates all parameters of the learning
agents and shares the updated parameters. The learning agent
is Actor-Critic based, where Actor is used to generate actions
and Critic is used to evaluate and criticize the current policy
by processing the reward obtained from the environment. The
Actor network is a deep neural network and the parameter
is updated using policy gradient method. That is, at each
training step, the parameter of Actor network is updated based
on θπ ← θπ + απ

∑
t5θπ log π(s(t)|θπ)Aπ(s, a)] where απ

is the learning rate of the actor network and Aπ(s, a) =
Rimm(s(t), a(t)) + δvθv (s(t + 1)) − vθv (s(t)). The Critic
network is also a deep neural network and it updates the pa-
rameter based on : θv ← θv+αv

∑
t5θv (Rimm(s(t), a(t))+

δvθv (s(t+ 1))− vθv (s(t)))2 where αv is the learning rate of
the critic network.

IV. NUMERICAL RESULTS

In this section, we provide the numerical results to validate
the effectiveness of the RIS-assisted computation offloading.
We consider the network comprises a BS, 4 devices, and an
RIS with multiple passive reflected elements. The path loss
exponents for the channels from device to BS, device to RIS,
and RIS to BS are set as 3.2, 2.8, and 2.8, respectively. The
bandwidth is 5 MHz. The data size and required computation
resources of each task are 800 KB and 2 GHz, respectively.
The CPU cycles of devices and edge servers are 0.5 GHz and
5 GHz, respectively. We use TensorFlow to evaluate the Actor-
Critic DRL algorithm, which has three fully-connected hidden
layers with 128 neurons and one output layer with 8 neurons.
To demonstrate the benefit of RIS in edge computing networks,
we consider two benchmarks. The first benchmark is to offload
computation tasks without RIS assistance. i.e., only through
the direct device-BS link. The second benchmark is to offload
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Fig. 3: Wireless transmission data rate v.s. number of reflecting
elements with different schemes.

Fig. 4: Cumulative task execution latency under different
schemes.

computation tasks via both device-BS link and device-RIS-BS
link but the RIS configurations are set as random values.

Fig. 3 illustrates the comparison of wireless transmission
data rate with respect to the number of reflecting elements
under different RIS configuration schemes. From Fig. 3, it is
first observed that the wireless transmission data rates of both
RIS-aided schemes are higher than the wireless transmission
data rate of the scheme without RIS-aided, which implies that
RIS can assist in computation offloading. Secondly, the gap
of wireless transmission data rate between without RIS-aided
scheme and RIS-aided schemes increases with the number of
reflecting elements. The reason is that increasing the number
of reflecting elements can improve channel gain, which leads
to a better data rate. Finally, due to the jointly optimize phase
shift and amplitude, the wireless transmission data rate of the
scheme with optimized RIS configures is higher than that of

the scheme with random RIS configures.
Fig. 4 shows the total task execution latency of computation

offloading under different RIS configuration schemes. Firstly,
we can see the proposed DRL-based computation offloading
algorithm converges in all cases and the cumulative task execu-
tion latency reduces with the number of episodes. Furthermore,
the latency of RIS-aided offloading is lower than the latency
without RIS-aided. The reason is that RIS-aided offloading
with a higher transmission data rate can lead to a lower
transmission latency. On the other hand, the lower transmission
latency conversely results in more computation tasks being
offloaded to the edge server, which leads to a further task
execution latency reduction.

V. CONCLUSION

In this article, to support low-latency applications, we pro-
posed RIS-aided edge computing to provide nearby computing
service and high quality of wireless transmissions. In the pro-
posed framework, RIS can enhance the coverage of wireless
communication, support robust connection, and reduce data
transmission pressure for edge computing. To clearly elaborate
the effectiveness of RIS for edge computing, we proposed an
RIS-assisted edge computing scheme to minimize the total
offloading latency with actor-critic DRL algorithm. Numerical
results indicated that RIS-aided scheme can efficiently improve
wireless communication data rate and minimize task execution
latency.
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