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We present the results of an explicit numerical computation of a novel instanton in Georgi-Glashow SU
(2) theory. The instanton is physically relevant as a mediator of Schwinger production of ’t Hooft–
Polyakov magnetic monopoles from strong magnetic fields. In weak fields, the pair production rate has
previously been computed using the worldline approximation, which breaks down in strong fields due to
the effects of finite monopole size. Using lattice field theory we have overcome this limit, including finite
monopole size effects to all orders. We demonstrate that a full consideration of the internal monopole
structure results in an enhancement to the pair production rate, and confirm earlier results that monopole
production becomes classical at the Ambjørn-Olesen critical field strength.
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I. INTRODUCTION

Magnetic monopoles are hypothetical particles consist-
ing of a single, isolated magnetic pole. Though commonly
omitted from Maxwell’s equations, there are no known
theoretical barriers to their existence, and they are predicted
by a wide range of theories extending the Standard Model.
A recent review of the theoretical and experimental status
of magnetic monopoles can be found in Ref. [1].
Magnetic monopoles can be included in a theory as

elementary particles [2–6], or they can appear as solitonic
excitations in a wide class of non-Abelian gauge theories
[7,8]. This work focuses primarily on solitonic monopoles,
though the issue of finite size corrections is still present for
elementary monopoles due to quantum effects [9,10]. In
some models, the existence of dualities [11] means that the
distinction between elementary and solitonic excitations is
not well defined: in such theories, our results may also
apply to elementary particles.
In order to use the negative results of past experimental

monopole searches to constrain the properties of the
Universe, it is vitally important to gain a theoretical
understanding of the mechanisms by which monopoles
may be produced. Perturbative calculations, however, are
doomed by the Dirac quantization condition [2]:

eg ¼ 2πn; ð1Þ

where e and g denote the quanta of electric and magnetic
charge, respectively, and n is an integer. The perturbative
nature of the electric coupling means that magnetodynamics
is necessarily nonperturbative. This means that it is not
possible to compute the monopole production cross section
in collisions of elementary particles using existing methods.
Furthermore, it has been argued [12,13] that the production
of solitonic monopoles in proton-proton collisions is sup-
pressed by a factor of∼e−4=α ≈ 10−236. This is due to the fact
that solitons may be thought of as a coherent state of many
elementary particles: with a small number of degrees of
freedom in the initial state, the formation of a final state with
many degrees of freedom is vanishingly unlikely.
A process of monopole-antimonopole pair production

that circumvents both this suppression and the need for a
perturbative expansion in the monopole coupling is the
Schwinger effect [14,15]. This is, at least in weak fields, a
quantum mechanical process, by which a field is unstable
to production of charged particle-antiparticle pairs. There
are many methods of calculating the Schwinger production
rate Γ, but the method best applicable to strongly coupled
particles is the instanton method [16,17], which computes
the rate semiclassically. In weak fields, and when monop-
oles may be modeled as point particles, the result for
magnetic monopoles is

Γmm̄ ∝ exp

�
−
πM2

gB
þ g2

4

�
; ð2Þ

where M is the monopole mass and B is the strength of the
(constant) external field. This is valid in the semiclassical limit
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g3B
4πM2

≪ 1 ð3Þ

and is accurate to all orders in the magnetic charge g. The
semiclassical limit can equivalently be viewed as the stipu-
lation that the external field must be weak in units set by the
monopole mass.
In this paper, we have computed the instanton solution

for ’t Hooft–Polyakov monopole pair production in the
Georgi-Glashow SU(2) theory at all relevant field strengths,
thereby extending the calculation of Refs. [16,17] beyond
the worldline approximation, which is only valid in the
weak field limit. We confirm our earlier result [18] that
monopole production becomes a classical process at the
Ambjørn-Olesen critical field strength [19]

Bcrit ¼
m2

v

e
; ð4Þ

where mv is the charged vector boson mass and e is the
gauge coupling. Furthermore, we show that, in constant
fields, the higher order corrections appear to universally
enhance the exponential dependence of the monopole
production rate.
The structure of this paper is as follows: in Sec. II we

outline the theoretical background behind our calculation,
including the worldline instanton method and Georgi-
Glashow SU(2) theory. In Sec. III we present the lattice
formulation of the theory and the numerical methods used
to find the instanton solutions. In Sec. IV we give our
results, and in Sec. V we conclude our arguments, with
particular focus on the implications for deriving monopole
mass bounds from heavy-ion collision.

II. THEORY

A. Instantons for Schwinger production

Instanton methods were first applied to Schwinger
production in Refs. [16,17] to calculate the production
rate of strongly coupled particles in weak fields. While the
computation of the Schwinger production rate is possible
by many methods, worldline instantons—which are appli-
cable when the produced particles can be considered
pointlike—are particularly useful because they can be used
for strongly coupled particles, inhomogeneous external
fields [20–22], and finite temperatures [23].
The starting point for the calculation, for both point

particles and solitons, is the expression for the pair
production rate

VΓ ¼ −2 Im log
Z

D½ϕ�e−SE ; ð5Þ

where SE is the Euclidean action of the theory (including
the external field), V is a spacetime volume, and D½ϕ� is
used to denote the path integral over all fields in the theory.

This may be approximated using the method of stationary
phase; the dominant contribution to this path integral is
from the lowest lying stationary point of the action that
gives the action an imaginary part. This is a saddle
point solution to the equations of motion with a single
negative mode—an instanton. Using the dilute instanton
gas approximation, one finds that

Γ ∝ expð−SinstÞ; ð6Þ

where Sinst is the Euclidean action evaluated on the
instanton solution to the equations of motion.
The approach of the worldline instanton method is to

formally reexpress the path integral over fields as an
integral over all charged particle worldlines. This may
be done exactly for scalar or spinor QED, and under certain
approximations becomes analytically tractable. It can there-
fore be used to calculate the Schwinger production rate for
point monopoles, or for ’t Hooft–Polyakov monopoles in
the limit where the monopole size is small compared to the
instanton size.
In a constant external field the worldline instanton

solution may be found analytically: the worldline path is
circular with radius

rinst ¼
M
gB

: ð7Þ

The corresponding action is

Sinst ¼
πM2

gB
−
g2

4
: ð8Þ

The negative mode is a “breathing” mode, increasing or
decreasing the instanton radius.
The worldline instanton solution is valid providing the

monopole size is small compared to the size of the
instanton. The classical monopole radius, in the case of
both pointlike and solitonic monopoles, is

rm ∼
g2

4πM
: ð9Þ

This suggests that the small monopole condition rm ≪ rinst
is equivalent to the semiclassical limit (3). In fact, we will
show in Sec. IV that, for ’t Hooft–Polyakov monopoles,
finite size effects begin to become apparent somewhat
before semiclassicality breaks down.

B. Georgi-Glashow SU(2) theory

The purpose of this work is to overcome the limitations
of the worldline approximation by computing the instanton
solution numerically, taking the internal structure of the
monopole into account. In order to achieve this we must
specify a field theory admitting finite energy magnetic
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monopole configurations. We choose the canonical exam-
ple of Georgi-Glashow SU(2) theory [24], which may be
embedded in any grand unified theory (GUT) that contains
the Standard Model.
The theory consists of an SU(2) gauge field Aμ with an

adjoint scalar field Φ: the four-dimensional Euclidean
Lagrangian is

L ¼ 1

2
TrFμνFμν þ TrDμΦDμΦþ VðΦÞ; ð10Þ

where

DμΦa ¼ ∂μΦa þ ieεabcAb
μΦc; ð11Þ

Fa
μν ¼ ∂μAa

ν − ∂νAa
μ þ ieεabcAb

μAc
ν; ð12Þ

VðΦÞ ¼ λðTrðΦ2Þ − v2Þ2: ð13Þ

Here μ, ν ¼ 1, 2, 3, 4 are the Euclidean spacetime indices,
and a, b, c ¼ 1, 2, 3 are SU(2) Lie algebra indices. The
theory has two dimensionless parameters: the gauge cou-
pling e and the scalar field self-coupling λ, and the scalar
field vacuum expectation value (VEV)

ffiffiffi
2

p
v, which sets

the scale.
The theory admits ’t Hooft–Polyakov monopole solu-

tions [7,8] with magnetic charge

g ¼ 4π

e
; ð14Þ

i.e., two units of Dirac charge quanta. The classical mass of
this monopole is

M ¼ 4πmv

e2
fðβÞ; ð15Þ

defining the boson mass ratio β ¼ ms=mv. For all values of
β, fðβÞ ∼ 1 [25]. The theory also admits higher charge
monopoles and dyons [26], the latter being responsible for
subleading contributions to the Schwinger production rate.
In this analysis we focus only on the lightest monopole
excitations, without electric charge: these are responsible
for the dominant contribution to the Schwinger effect.
It is interesting to note that substitution of the ’t Hooft–

Polyakov monopole mass and charge into the weak field
condition (3) at the point of equality gives

B ¼ m2
vfðβÞ2
e

: ð16Þ

This is, to within an Oð1Þ constant, equal to the Ambjørn-
Olesen critical field strength [19]

Bcrit ¼
m2

v

e
; ð17Þ

where there is a classical instability in the magnetic field.
In Ref. [18] we demonstrated that this instability leads to
monopole production via a classical process, and that at
B ¼ Bcrit the energy barrier to Schwinger production
vanishes. We therefore expect that, in the field theory,
Sinst will vanish at Bcrit.

III. NUMERICAL METHODS

A. Symmetry of the instanton

The instanton solution we are searching for is a saddle
point of this action with a single negative mode, in a
constant, homogeneous background magnetic field.
Choosing the magnetic field to point along the x3 direction,
with field strength B, the background U(1) field tensor is

fextμν ¼ ðδμ1δν2 − δμ2δν1ÞB: ð18Þ

It is clear that this is invariant under rotations in the x3 − x4
plane (Euclidean boosts). As a consequence, if instanton
solutions exist at all, there must be an instanton solution to
the field equations that obeys this symmetry. In weak fields
this is the circular worldline instanton identified in
Ref. [16] and described in the previous section. We proceed
by exploiting this symmetry, changing to “cylindrical”
coordinates

x ¼ x1;

y ¼ x2;

ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x23 þ x24

q
;

χ ¼ arctanðx4=x3Þ: ð19Þ

As noted in Ref. [16], the symmetry of the system means
that one may choose a gauge such that all fields are
independent of χ, and the gauge field component Aχ

vanishes. Such a field configuration has the action

S ¼ 2π

Z
ρ dx dy dρ½1

2
TrFijFij þ TrDiΦDiΦþ VðΦÞ�;

ð20Þ

where i, j represent x, y, ρ. This action is similar to the three-
dimensional energy density we used in Ref. [18] to study
static field configurations, differing only in the Jacobian. We
are therefore able to use similar methods to compute the
desired instanton solutions, working on a three-dimensional
lattice with three gauge field components.

B. Lattice discretization

In order to solve the equations of motion that arise from
varying (20), we must discretize the action. The symmetry
of the problem means that we only need to consider a three-
dimensional grid of points x⃗ ¼ ðnx; ny; nρÞa, where
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ðnx; ny; nρÞ are integers and a is a fixed lattice spacing.
Because the coordinate curves of x, y, and ρ form a
Cartesian lattice, the nontrivialities that usually occur when
performing a lattice discretization in curvilinear coordi-
nates are circumvented.
In our lattice theory, the scalar field Φðx⃗Þ is defined on

lattice sites, while the gauge field is defined via link
variables Uiðx⃗Þ. The discretized form of Eq. (20) is the
lattice action

Slat ¼ 2π
X
x⃗

�X
i<j

ρ□ijðx⃗Þ½2 − TrUijðx⃗Þ�

þ 2
X
i

ρ̄iðx⃗ÞTr½Uiðx⃗ÞΦðx⃗þ {̂ÞU†
i ðx⃗Þ −Φðx⃗Þ�2

þ ρðx⃗ÞVðx⃗Þ
�
: ð21Þ

Here, Uij is used to denote the standard Wilson
plaquette,

Uijðx⃗Þ ¼ Uiðx⃗ÞUjðx⃗þ {̂ÞU†
i ðx⃗þ |̂ÞU†

jðx⃗Þ: ð22Þ

We also define appropriately averaged Jacobian factors:

ρ□ijðx⃗Þ ¼
1

4
½ρðx⃗Þ þ ρðx⃗þ {̂Þ þ ρðx⃗þ {̂þ |̂Þ þ ρðx⃗þ |̂Þ�;

ρ̄iðx⃗Þ ¼
1

2
½ρðx⃗Þ þ ρðx⃗þ {̂Þ�: ð23Þ

In order to perform calculations it is necessary to impose
boundary conditions at ρ ¼ 0 and ρ → ∞. This is com-
plicated slightly by the fact that the Uρðx⃗Þ links are located
between lattice points: in our notation the link
Uρðnx; ny; nρÞ is located at ðnx; ny; nρ þ 1

2
Þ. We choose a

discretization such that nρ takes half-integer values in
½− 1

2
; R − 1

2
�, where R ∈ Z is the number of lattice points

in the ρ direction. We then impose boundary conditions at
the origin that are compatible with the instanton solution:

Φ
�
x; y;−

1

2

�
¼ Φ

�
x; y;

1

2

�
;

Ux;y

�
x; y;−

1

2

�
¼ Ux;y

�
x; y;

1

2

�
;

Uρ

�
x; y;−

1

2

�
¼ I2: ð24Þ

In the continuum limit this is equivalent to imposing
symmetry about the origin on Φ and Ax;y, and imposing
antisymmetry about the origin on Aρ.

At nρ ¼ R we impose reflecting boundary conditions

Φ
�
x; y; Rþ 1

2

�
¼ Φ

�
x; y; R −

1

2

�
;

Ux;y;ρ

�
x; y; Rþ 1

2

�
¼ Ux;y;ρ

�
x; y; R −

1

2

�
: ð25Þ

In the x and y directions we impose periodic boundary
conditions: for nx and ny taking integer values in ½0; L�,

ΦðLþ 1; y; ρÞ ¼ Φð0; y; ρÞ;
Ux;y;ρðLþ 1; y; ρÞ ¼ Ux;y;ρð0; y; ρÞ;

Φðx; Lþ 1; ρÞ ¼ Φðx; 0; ρÞ;
Ux;y;ρðx; Lþ 1; ρÞ ¼ Ux;y;ρðx; 0; ρÞ: ð26Þ

After symmetry breaking, the theory retains a U(1)
symmetry that defines the electromagnetic field. On the
lattice, one can define the operator [27]

Πþðx⃗Þ ¼
1

2

�
I2 þ

ϕðx⃗Þ
jΦðx⃗Þj

�
ð27Þ

that projects out this subgroup. AU(1) link variable may be
defined

uiðx⃗Þ ¼ Πþðx⃗ÞUiðx⃗ÞΠþðx⃗þ {̂Þ: ð28Þ

This may then be used to define an Abelian field strength
tensor

fijðx⃗Þ ¼
2

e
arg Truiðx⃗Þujðx⃗þ {̂Þu†i ðx⃗þ |̂Þu†jðx⃗Þ: ð29Þ

Our goal is to find saddle points of the action (21) with an
external magnetic field present. This poses the question of
how such an external field can be fixed without adding
unphysical terms to the action or equations of motion.
The solution to this is to take advantage of the periodic
boundary conditions in the x and y directions: these
quantize the magnetic flux

P
x

P
y fxyðx; y; ρÞ to integer

multiples of 4π=e. Providing the gradient descent updates
(described in detail in the next section) are sufficiently
small, the deformation of the fields is essentially continu-
ous, so the magnetic flux through the lattice is unchanged
under gradient flow (unless a monopole-antimonopole pair
is formed or annihilated). We therefore only need to choose
initial conditions with the desired magnetic flux to give a
solution with the desired external field.
In practice, we impose the unitary gauge Φðx⃗Þ ¼

φðx⃗Þσ3, where fσ1; σ2; σ3g are the Pauli matrices. In this
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case, uiðx⃗Þ ¼ ½Uiðx⃗Þ�11, and a constant magnetic flux
through the x − y plane may be added to any given initial
field configuration by linearly superposing the field

Uxðx⃗Þ ¼ expðiByσ3Þ;
Uyðx⃗Þ ¼ expð−iBxσ3Þ: ð30Þ

C. Saddle point solutions in lattice gauge theory

The problem of finding saddle point solutions of the action
is a farmore difficult task thanminimization due to the effects
of the negative mode. A naïve gradient descent algorithm, for
example, will diverge from the desired solution along the
negative mode until a local minimum is found.
In previous work [18,28] we have adapted an algorithm

[29] used to find bounce solutions in cosmology. This is an
appealing choice because it requires only first order
gradient information and is relatively simple to implement.
However, it has drawbacks due its nonmonotonic conver-
gence, and the sensitivity of its convergence to the choice of
hyperparameters.
In this work, we choose instead to use gradient squared

descent: rather than extremize the action Slat, we instead
choose the objective function

G2½Φ; Ui� ¼
X
x⃗

�
Tr

�
1

ρðx⃗Þ
∂Slat
∂Φðx⃗Þ

�
2

þ
X
j

Tr

�
i

ρðx⃗Þ
∂Slat

∂Ujðx⃗Þ
�

2
�
; ð31Þ

obtained by taking an inner product of the gradient of the
action with itself. In the above, the partial derivative with
respect to the link variables includes a projection onto the
tangent space to SU(2). A similar technique was used to
find electroweak sphaleron configurations on small lattices
in Ref. [30].
G2½Φ; Ui� has global minima at all stationary points of

the action. These may be identified as saddle points by the
fact that they are not minima of the action, and distin-
guished from spurious local minima of G2 by the vanishing
of the objective function. Given appropriate initial con-
ditions, a gradient descent algorithm minimizing G2 will
converge on the desired instanton solution. In the case of
the Schwinger instanton, suitable initial conditions can be
generated from single monopole solutions using our knowl-
edge of the instanton in the weak field limit.
While the algorithm is simple to state, its implementation

can be difficult due to the complexity of the objective
function G2. The full expression for the function is too long
to state here, and its efficient calculation can be challeng-
ing. To overcome these difficulties, we make use of the
automatic differentiation tools available in the TensorFlow
library [31]. These enable computation of the derivatives of

arbitrarily complicated functions by algorithmically apply-
ing the chain rule to elementary operations. This is distinct
from numerical differentiation using, for example, finite
differences, which introduce a discretization error. It is also
distinct from symbolic differentiation because it stores only
the values of intermediate expressions, rather than express-
ing the derivative as a function. This memoization can
result in a significant improvement in efficiency compared
to symbolic differentiation: the computational cost of
evaluating the automatic derivative of a function is linearly
related to the cost of the function itself [32], with a
proportionality constant of less than 10 [33]. A review
of the use and implementation of automatic differentiation
can be found in Ref. [34].
To find the instanton solutions, we used a gradient

descent algorithm with momentum [35] to minimize the
gradient squared function (31). To further speed conver-
gence in regions where the gradients are shallow, the
gradients of the scalar field and link variables were
normalized at each step; the gradient descent update was
(omitting the momentum term for brevity)

Φðx⃗; τþΔτÞ ¼ Φðx⃗; τÞ

−
ΔτffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

x⃗0 ½ 1
ρðx⃗0Þ∂ΦG2Þ�2

q
þ ϵ

1

ρðx⃗Þ∂ΦðG2Þ;

Uiðx⃗; τþΔτÞ ¼ Uiðx⃗; τÞ

−
ΔτffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

x⃗0;j½ i
ρðx⃗0Þ∂Uj

ðG2Þ�2
q

þ ϵ

1

ρðx⃗Þ∂Ui
ðG2Þ;

ð32Þ

where ϵ is a small, positive parameter to avoid divide-by-
zero errors and

∂ΦðG2Þ ¼ ∂ðG2Þ
∂Φðx⃗Þ ;

∂Ui
ðG2Þ ¼ ∂ðG2Þ

∂Uiðx⃗Þ
: ð33Þ

The first instanton configurations, in weak fields, were
generated using single monopole configurations as the
initial condition. Subsequent instanton solutions in stronger
fields were generated incrementally by varying the VEV
and lattice spacing in the theory.
The full code used to find the instanton solutions is

publicly available as part of the TFMONOPOLES PYTHON

package [36].

IV. INSTANTON FOR ’T HOOFT–POLYAKOV
MONOPOLES

Using the methods described in Sec. III, we computed
the instanton solution relevant to Schwinger production at
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magnetic field strengths up to the critical value, for three
values of the boson mass ratio: β ¼ 0.5, β ¼ 1, and β ¼ 2.
Our calculations were performed on a 643 lattice, and an
external magnetic flux was fixed by the periodic boundary
conditions in the x and y directions as described in Sec. III.
The field strength in units ofm2

v was varied by incrementally
changing the scalar field VEV, while keeping β constant.
For weak fields the instanton solutions strongly resemble

the pointlike approximation; the solution is a circular ring
of magnetic charge with localized energy density. An
example can be seen in Figs. 1(a) and 2(a); the energy
contours trace a “doughnut” shape. The scalar field drops to
a minimum on a ring of roughly the worldline instanton
radius (7) (in the continuum the scalar field magnitude
would vanish), and returns to near the vacuum in the center
of the instanton.
As the field strength increases, the overall extent of the

instanton initially stays close to the worldline instanton
radius (7), but the instanton becomes less localized: the
hole of the doughnut begins to fill in [see Figs. 1(b)
and 2(b)]. At high external field strengths, the instanton
size is significantly larger than the worldline radius [see
Figs. 1(c) and 2(c)]. The minima of the scalar field move
closer to the center of the instanton, until eventually there is
a single minimum instead of a ring. At this point, the
instanton contains no separated magnetic charges.
As the external field approaches the critical value Bcrit,

the scalar field magnitude continuously approaches the

VEV and the instanton action continuously approaches
zero. At the critical field and above, the saddle point
solution and the vacuum coincide for all investigated
values of β.
To compare the instanton actions it is useful to rewrite

the worldline instanton action (8) in terms of dimensionless
parameters: defining

κ ¼ g3B
4πM2

; ð34Þ

the action in the worldline approximation is

Sinst ¼
g2

4

�
1

κ
− 1

�
: ð35Þ

The instanton action as a function of κ is plotted in Fig. 3.
For all values of β investigated, the instanton action agrees
well with the worldline prediction when κ is small, and
plateaus at Sinst ¼ 0 when B ¼ Bcrit. Note that for different
values of β, B ¼ Bcrit corresponds to a different value of κ:

κðBcritÞ ¼
1

fðβÞ2 ; ð36Þ

where fðβÞ is defined in Eq. (15). Using the results of the
high precision calculations in Ref. [25], this gives κðBcritÞ ≈
0.313 in the limit β → ∞. In the β → 0 limit, κðBcritÞ ¼ 1.

FIG. 1. Lagrangian density contours for instanton solutions for β ¼ 1 (ms ¼ mv), with the background field subtracted, at different
external field strengths. In the upper plots, the x2 dimension is suppressed; in the lower plots, the x4 dimension is suppressed. Note the
difference in scale between the (a), (b) plots and the (c) plots. Lagrangian density values in units of m−4

v are shown in the color bars.
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Though computing the instanton in these limits is beyond the
reach of our current methods, there may be simplifications
that render the calculation more tractable in future work,
particularly in the BPS limit β → 0, where the ’t Hooft–
Polyakov monopole solution can be found analytically.
It is interesting to note that the calculated action diverges

from the worldline prediction at κ ≈ 0.3 for all three values

of β, but the curves for different values of β remain
consistent until κ ≈ 0.5. This could be because the world-
line prediction only accounts for the Coulomb interaction,
while ’t Hooft–Polyakov monopoles also participate in
short-range interactions mediated by the scalar and massive
vector bosons. Accounting for these forces could result in a
worldline prediction that is accurate at higher values of κ,

FIG. 2. Surface plots of scalar field magnitude on slices through the instanton center for different external field strengths, with β ¼ 1
(ms ¼ mv). Upper plots show the x3 − x4 plane, while lower plots show the x2 − x3 plane. Note the difference in scale between the (a),
(b) plots and the (c) plots.

FIG. 3. Scaled instanton action plotted against the dimension-
less parameter κ ¼ g3B=ð4πM2Þ for different values of β. The
dotted black curve gives the worldline approximation, and
vertical dashed lines indicate the values of κ at which B ¼ Bcrit.

FIG. 4. Logarithmic scale plot of scaled instanton action as the
external field approaches Bcrit. Dashed lines show fits to the
power law regions with exponents given in Table I. The points
used to generate the fits are indicated with filled or thick markers.
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though such a calculation is nontrivial due to nonlocal
worldline self-interactions.
Another important property shown in Fig. 3 is the fact

that the instanton action for ’t Hooft–Polyakov monopoles
is lower than that for point particles for all values of β.
This suggests that the finite size effects only enhance the
monopole pair production rate when compared to the
pointlike approximation.
The instanton action against 1 − B=Bcrit is plotted on a

logarithmic scale in Fig. 4. For all three values of β, there
appears to be power law scaling as the external field
approaches its critical value. From the plot the exponents
appear to be similar for all three values of β, though a
numerical fit shows a slight decrease in the exponent with
increasing β. The fitted exponents are given in Table I.

V. CONCLUSIONS

We have computed the instanton solution relevant to
Schwinger production of ’t Hooft–Polyakov monopoles,
at external field strengths ranging from the weak field limit
to the critical field strength where the instanton energy
vanishes. We have confirmed that in the weak field limit,
approximating monopoles as point particles with Coulomb
interactions gives accurate results. We have also confirmed
our earlier result [18] that at the Ambjørn-Olesen critical
field strength Bcrit ¼ m2

v=e, monopole production occurs
via a classical process.
In Ref. [18], we noted that the experimental bounds on

the mass of heavy charged bosons can be used to place a

lower bound on the critical field strength required for
unsuppressed monopole production in physical units: this
was found to be Oð1023 TÞ–Oð108 GeV2Þ. This bound is
unchanged following our most recent analysis and is far in
excess of any known source of magnetic field, so our results
are not directly applicable to the observation of GUT
monopoles in the near future. However, some extensions of
the Standard Model predict monopole masses in the TeV
range [37–40]. Extending our calculation to these theories
is a promising avenue for future investigation.
Our work is also relevant to the ongoing effort to bound

monopole masses using experimental data. If monopoles
were sufficiently light, they should be produced via the
Schwinger effect in heavy-ion collisions, which generate
some of the strongest electromagnetic fields in the Universe
[41]. In Ref. [42], we showed that the worldline instanton
method is not valid in the spacetime dependent fields of
heavy-ion collisions due to effects from the finite monopole
size. This calculation shows that finite monopole size
effects universally enhance Schwinger production of
monopoles, meaning that the predictions from the world-
line approximation are suitable for generating lower bounds
on monopole masses. A key extension to this calculation,
planned for future work, is to recompute the instanton in
the spacetime dependent fields present in ultrarelativistic
heavy-ion collisions. This will provide the first reliable
prediction of the cross section for magnetic monopole
production in high energy particle collisions.
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