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Abstract: Mobile-cloud-based healthcare applications are increasingly growing in practice. For in-
stance, healthcare, transport, and shopping applications are designed on the basis of the mobile cloud.
For executing mobile-cloud applications, offloading and scheduling are fundamental mechanisms.
However, mobile healthcare workflow applications with these methods are widely ignored, demand-
ing applications in various aspects for healthcare monitoring, live healthcare service, and biomedical
firms. However, these offloading and scheduling schemes do not consider the workflow applications’
execution in their models. This paper develops a lightweight secure efficient offloading scheduling
(LSEOS) metaheuristic model. LSEOS consists of light weight, and secure offloading and scheduling
methods whose execution offloading delay is less than that of existing methods. The objective of
LSEOS is to run workflow applications on other nodes and minimize the delay and security risk
in the system. The metaheuristic LSEOS consists of the following components: adaptive deadlines,
sorting, and scheduling with neighborhood search schemes. Compared to current strategies for delay
and security validation in a model, computational results revealed that the LSEOS outperformed all
available offloading and scheduling methods for process applications by 10% security ratio and by
29% regarding delays.

Keywords: neighborhood search; secure offloading; dynamic approaches; workflow healthcare
applications; LSEOS; healthcare; scheduling

1. Introduction

The development of digital healthcare using the Internet of Medical Things (IoMT)
expands day by day as the number of technologies in practice increases [1]. The IoMT
is an architectural infrastructure consisting of user, edge, and cloud layers. The user
layer consists of sensor devices connected to devices such as mobile devices and smart
watches. The edge layer is cloud resources implemented at the edge network, with less
communication delay. The cloud layer consists of rich resources and exists multiple hops
away from user devices. Many healthcare applications are designed on the basis of service-
oriented architecture (SoA) and run in these three layers. These medical applications
connect to various biosensors, and send their information to cloud and edge servers for
additional evaluation. Heartbeat ECG, EEG, blood pressure, and oxygen levels in the
human body, for example, can be monitored by biosensors, and application information is
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sent to nearby hospital servers for analysis [2]. To fulfil the healthcare monitoring purpose
in the system, the IoT network incorporates diverse elements such as healthcare sensors,
wearable networks, and mobile cloud services [3]. The IoT network offloads and shares data
of healthcare applications to the different layers, such as network and computing layers,
for processing based on their given constraints. However, there are many risks due to
other layers in the network [4]. Natural hazards are data security, delays, workload failure
due to attacks, and the unavailability of data in the system. Therefore, security-enabled
data offloading and processing are important challenges in IoT networks for healthcare
applications [5].

Many IoT network-enabled algorithms were suggested for healthcare applications to
protect data and store them cryptographically [6]. These static heuristics, such as hetero-
geneous earliest finish time, genetic algorithm, simulated annealing, and particle swarm
optimization, are widely implemented to run healthcare applications in polynomial time [7].
Local and global searches (e.g., simulated annealing and tabu search) are fundamental
guided candidate solutions to the aforementioned algorithms to achieve optimal results
of healthcare applications in heterogeneous fog cloud networks [8]. There are two types
of edge cloud networks widely implemented in the literature, namely, homogeneous and
heterogeneous nodes. On the basis of nodes, different studies suggested static and dy-
namic approaches based on heuristic and guided random search for combinatorial convex
optimization research problems of healthcare applications in both heterogeneous and ho-
mogeneous environments. Security algorithms implemented inside these heuristics include
SHA-256, MD5, CRC32 based on AES and RSA keys in the heterogeneous fog cloud nodes
for healthcare applications [9–12].

However, these algorithms present many research challenges when they are imple-
mented inside distributed heterogeneous fog cloud networks for delay-optimal and adap-
tive healthcare applications in the network. (i) Existing scheduling approaches only focused
on resource availability, energy, and security mechanisms in healthcare applications’ het-
erogeneous fog cloud nodes. Static and dynamic scalability can be managed with these
methods. However, these methods consume much more resources and energy when they
integrate the security mechanism into an IoT network for healthcare applications. (ii) All
existing IoT networks have approaches to execute datasets, including healthcare workloads,
and they widely ignore workflow healthcare applications in a heterogeneous network.
Therefore, IoT network approaches for workflow applications need to be designed in
heterogeneous and homogeneous environments for execution. (iii) All existing security
approaches are static and consume much more resources in a cryptoprocess on offloaded
data from applications. Therefore, a lightweight and adaptive security approach must be
designed for healthcare applications in the network.

This study develops the LSEOS metaheuristic, which contains several phases: adaptive
sequencing and internal deadlines, adaptive two-way security validation, adaptive task
scheduling, and neighborhood search. The goal of the research was to reduce application
delays, such as mobile, edge, and cloud execution times. The study examines workflow
applications for a variety of jobs, including mobile, edge, and cloud workloads. At the
design and development of apps, the tasks are annotated. This research takes into account
heterogeneous computing nodes, namely, mobile, edge, and cloud computing.

The manuscript is organized as follows. Section 2 discusses existing IoT network efforts
for healthcare applications in homogeneous and heterogeneous fog cloud environments.
Section 3 describes the study’s proposed architecture and problem formulation. Section 4
shows the flow of proposed heuristics and their steps for the problem solution. Section 5
shows how the proposed work was implemented, and optimal results were obtained
compared to existing studies. Section 6 shows the contribution and achievements of the
proposed lightweight scheme, and a future road map of the current research.



Sensors 2022, 22, 2379 3 of 18

2. Related Work

This part discusses the literature approaches (e.g., static and dynamic) of IoT networks
for healthcare applications. Fundamental methods are offloading and scheduling to monitor
and schedule healthcare tasks in a system. Metrics and constraints of existing studies are
represented in Table 1.

Table 1. Existing Internet of Medical Things approaches in IoT networks.

Studies Approaches Workload Fog-Cloud Environment

[1,2] Genetic Algorithm-SHA-256 Coarse-Grained Homogeneous

[3,4] HEFT-PSO-MD5-256 Fine-Grained Homogeneous

[5,6] Ant-Colony-CRC-256 Coarse-Grained Homogeneous

[7,8] Simulated-Brute-Force-256 Coarse-Grained Heterogeneous

[9,10] Genetic Algorithm-DES-256 Coarse-Grained Heterogeneous

[11,12] Genetic Algorithm-3DES-256 Coarse-Grained Heterogeneous

[13,14] Genetic Algorithm-SHA-256 Coarse-Grained Heterogeneous

[15,16] Genetic Algorithm-SHA-256 Coarse-Grained Heterogeneous

[17,18] Genetic Algorithm-SHA-256 Coarse-Grained Homogeneous

[19,20] Genetic Algorithm-SHA-256 Coarse-Grained Heterogeneous

[21,22] LSTM and WMC Coarse-Grained Homogeneous

[23,24] WFMS Coarse-Grained Heterogeneous

[25–30] KNN-DES-256 Coarse-Grained Heterogeneous

In [1,2], the authors investigated the task offloading and scheduling problem on the
basis of a polynomial. These studies suggested genetic-algorithm-based solutions with a
secure hashing algorithm (256 bits) for healthcare applications in IoT technologies. These
studies obtained different objectives such as response time, tardiness, and network delay.
An integrated particle swarm optimization-enabled scheme was presented by [3,4,15,17],
where a message digest (MD5) scheme was integrated with a particle swarm optimization
(PSO) algorithm to secure healthcare tasks in the IoT network. The goal was to minimize
security risks in the network, and these studies considered fine-grained tasks and homoge-
neous networks in their models. The authors in [5,6] suggested a static improved algorithm
based on an ant-colony metaheuristic, and integrated a cryptography algorithm to protect
and share secure data between nodes. The considered computing nodes were homogeneous
in the IoT network, where these nodes are placed at the edge of the user network.

In [7–16], the authors suggested local and global searching (simulated annealing and
genetic algorithm)-enabled dynamic approaches to solve the offloading and and scheduling
problem in IoT networks. The main goal was to reduce local and global search times
for scheduling on heterogeneous fog and cloud nodes in the system, establish a secure
environment among connected nodes, and minimize attack risk in the IoT network. These
dynamic approaches can identify anomalies and resource performance of applications, but
there was still uncertainly of heterogeneous nodes in terms of scalability [17–20].

Machine-learning-enabled convolutional neural network (CNN), k-nearest neighbors
(KNN) and support vector machines (SVM) are machine-learning algorithms that sup-
port security in adaptive and learning ways. On the basis of these methods, a security
mechanism was introduced in IoT networks for the healthcare applications in different
works. These studies implemented closely related existing schemes in the simulation, for
instance, delay optimal long short-term memory (LSTM) [21], workflow metaheuristic
system (WFMS) [22], and workflow metaheuristic cloud (WMC) [23]. These studies are
closely related to our work to execute workflow applications on heterogeneous nodes in
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cloud computing. In [24–30], the authors suggested dynamic approaches to deal with
runtime anomalies and security risks in IoT networks. However, these methods consumed
too many resources and had much delay during encryption and decryption in resource
allocation.

Many studies [31–35] mobility-enabled fog and edge cloud networks devised for
healthcare applications to offer mobility-aware services to mobile patients. The goal was
to minimize location offloading risk and unavailability of services in the network. In
these works, models offered online remote services from different locations and supported
mobility-aware services to patients.

To the best of our knowledge, lightweight secure offloading and scheduling for work-
flow applications has not been studied yet. The novelty of secure offloading is that the
proposed method is lightweight, and consumes fewer resources and time to process security
mechanisms and offloading in a mobile edge cloud network. Existing security offloading
techniques consume much more resources and time when processing IoT healthcare appli-
cations in a network. Therefore, the dynamic and secure offloading scheme is lightweight
and robust, and meets the requirements of IoT healthcare applications in the network.
Generally, dynamic scheduling methods are those in which tasks are prioritized at runtime
in the system.

3. Proposed LSEOS Metaheuristic and Architecture

As illustrated in Figure 1, a lightweight and delayed optimal secure Internet of Medical
Things (IoMT) network was devised for workflow healthcare applications. The goal was
to provide optimal offloading and scheduling in a network that are both secure and
delay-optimal. The suggested architecture comprises layers for IoT (i.e., IoMT) workflow
applications, management, and resources. At the design time of applications, the program
was the workflow and consisted of three processor tasks in the system, namely, local, fog,
and cloud tasks. Local tasks must be completed on mobile devices with the least delay and
amount of time while sharing data with the system’s edge node tasks.

Edge Node

IoMT Agent

1

62 4 53

7 8 9

10

Public Cloud NodeMobile Device Node

Task Sequencing

Homomorphic Security 
Offloading Engine

Initial Scheduling

VNS Based Searching

IoMT Workflow Applications Layer

1

62 4 53

7 8 9

10

Surfing

Network 
Monitoring

a1

P

Inputs

1 3

7 2 4 5 6 9 101a1

P

3

7 2 4 5 6 9 8 10

Resource Layer

8

Deadline Division

Security 
Tasks

Delay-
Sensitive 

Tasks

Delay-
Tolerant 

Tasks

Management Layer DoS Profiling

Figure 1. LSEOS metaheuristic and architecture.

Edge tasks are simultaneously scheduled at available edge nodes for further process-
ing and data collection from local tasks before being executed. The cloud tasks merely store
the application’s data-intensive results in the cloud without compromising the system’s
application performance. The IoMT network’s management layer comprises various dy-
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namic offloading and scheduling methods. The IoMT agent, which is more adaptive and
handles all application operations at any time in the system, was devised in this study. The
IoMT agent is the primary handler and combines several approaches: deadline division,
topological order sequencing, a fully homomorphic mechanism, preliminary task assign-
ment (initial scheduling), and variable neighborhood adaptive resource seeking for tasks.
Denial of service (DoS)-aware techniques were developed on the basis of network surfing
and system monitoring without compromising the system’s application performance. The
problem’s symbolic notations and descriptions are defined in Table 2.

Table 2. Problem notations.

Symbol Purpose

P Number of workflow applications
A Particular workflow application
mi Mobile tasks of workflow application a (local tasks)
i Specific task of application a
ei Edge tasks of workflow a (delay-sensitive tasks)
ci Cloud computing tasks of workflow application a (delay-tolerant tasks)
wa Workload of workflow application a
deadlinea Deadline of workflow a
m Mobile node
e Edge/fog node
c Cloud node
Mmi

e Execution time of a task at mobile device
Eei

e Execution time of a task at edge computing
Cci

e Execution time of a task at cloud computing
ζm Mobile computing node
εm Resource of mobile node
ζk Edge node speed
εk Resource of edge node
ζc Cloud computing node
εc Resource of cloud computing node
me Communication time between mobile and edge nodes
ec Communication between edge computing and cloud computing
xmi=1 Assignment of tasks to mobile device
xei=2 Assignment of tasks to edge computing
xci=3 Assignment of tasks to cloud computing

3.1. Problem Formulation and System Model

The problem was formulated as follows. The execution scenario of workflow applica-
tions in an IoMT network was first discussed as shown in Figure 2.

Real practical scenarios of healthcare hospitals as different organizations (Org) were
considered. Many healthcare sensors were connected with varying healthcare organizations,
and their data were offloaded for processing via access points at edge computing. Local
tasks were executed in the IoT (mobile devices), and edge tasks were offloaded to the edge
computing layer for execution. At the same time, delay-tolerant tasks were offloaded to the
cloud via the Internet, as shown in Figure 2.

The mathematical formulation of the study was as follows. P number of workflow
applications were represented by a directed acyclic graph. The workflow application
had starting tasks i and j, and there was communication between them. Each workflow
application had workload wa and deadline deadlinea.

Three different computing nodes were considered: mobile device m, edge server e, and
cloud computing c. Each node had a different processing speed ζm, ζe, ζc, and resources
εm, εe, εc in the system.
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Figure 2. IoMT system model.

3.2. Task Annotation at Design Time

The application divides the workload into three task types: mobile, edge, and cloud
tasks. Mobile tasks must be locally executed on mobile devices. These tasks are locally
encrypted and decrypted with the proposed secure algorithm. Then, encrypted data are
offloaded to edge tasks for execution. After executing tasks, the data are offloaded to cloud
computing to complete cloud tasks in the system.

3.3. Workflow Application Characterization

The considered application contained three different task types: mobile (represented
by blue nodes), edge (yellow nodes), and cloud (red nodes) tasks, as shown in Figure 3.

Figure 3a denotes the sequence execution of tasks from local to cloud tasks with
different requirements. Due to data security, local tasks encrypt and decrypt locally at the
local machine, and then offload their cipher data to edge tasks for further execution. Cipher
data are never interpreted at edge nodes, and computation is applied on the cipher data to
complete their process. Edge nodes, on the other hand, send their executed cipher data to
the cloud node for further storage as shown in Figure 3b.

(1) Local Tasks

(2) Edge Tasks

(3) Cloud Tasks

Data

Encrypted Data

Encrypted Data(a)
(b)

Figure 3. Workflow applications on distributed mobile ege cloud networks in Proposed Architecture.
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3.4. Mobile Computing Assignment

In this section, we determine the execution time of mi tasks at local devices, which
locally had encryption and decryption time at mobile devices. Local execution time is
determined for local mobile tasks in the following way.

Mmi
e =

a

∑
mi=1

Enc
ζm

+
Dec
ζm
× xmi=1 (1)

Equation (1) determines the encryption and decryption time of local tasks at mobile
device. For homomorphic encryption, cryptographic modeling was suggested on the basis
of the El Gamal scheme. The homomorphic mechanism consists of three main elements: (1)
key generation, (2) encryption time, and (3) a decryption-time-based asymmetric public
key. Encryption and decryption based on an asymmetric public key are locally determined
in the following way.

Enc = Pk← datai ← SHA− 256. (2)

Equation (2) determines the encryption time (PK(public key) in the system.

Dec = PV ← Enc← datai. (3)

Equation (3) determines the decryption time with the private key (PV) in the system.

3.5. Edge Computing Assignment

Data are offloaded from the mobile device to the edge node in the form of cipher text.
Therefore, the execution time on the edge nodes consists of communication and processing
times between mobile devices, and the edge is determined in the following way.

Eei
e =

a

∑
ei=1

Enc
ζe

+
datai ← Enc

bwupload
↔ datai ← Enc

bwdownload
× xei=2. (4)

Equation (4) determines the execution time of encrypted tasks, and the communication
between mobile device and edge with both uploading and downloading data.

3.6. Cloud Computing Assignment

Cloud computing only stores generated data from the edge nodes. Therefore, exe-
cution on encrypted executed data for uploading and downloading is determined in the
following way.

Cci
e =

a

∑
ci=1

Enc
ζc

+
datai ← Enc

bwupload
↔ datai ← Enc

bwdownload
× xci=3 (5)

Equation (5) determines the execution time of encrypted tasks, and communication
between cloud and edge with both uploading and downloading data. The total execution
and communication times of all tasks on all nodes are determined in the following way.

Delay =
P

∑
a=1

a

∑
mi=1

A

∑
ei=1

A

∑
ci=1

Mmi
e + Eei

e + Cci
e , ∀a = 1, . . . , P. (6)

Equation (6) calculates the total delay time of workflow application a at different
computing nodes. The problem formulation based on linear programming was designed
in the following way.

min Delay, a = 1, . . . , P. (7)
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Equation (7) is the combinatorial convex objective of the considered problem in the system.

mi,ei,ci

∑
a=1

datai ≤ εm,e,c. (8)

Equation (8) ensures that, before execution on the application, there are enough
resources in all computing nodes for the processing.

P

∑
a=1

datai ≤ deadlinea, a = 1, . . . , P. (9)

All applications must be executed before their deadlines as defined in Equation (9).

4. Proposed Security Efficient Offloading and Task-Scheduling (LSEOS)
Metaheuristic Approach

The combinatorial convex optimization problem for heterogeneous tasks and parallel
computing nodes is always challenging. This study also considers different workflow tasks
such as mobile, delay-sensitive, and delay-tolerant, and heterogeneous computing nodes
such as mobile devices, edge nodes, and cloud computing in the system. The goal was to
execute workflow applications on different nodes in order to minimize the total delay of
applications. Existing offloading schemes [1,4,7] only focused on coarse- and fine-grained
applications. Therefore, there are no particular architectures and schemes for workflow
applications. This study devised a lightweight security-enabled efficient offloading and
scheduling (LSEOS) algorithm framework that consists of different schemes to minimize
the delay of applications in the architecture. The proposed SEOS, as shown in Algorithm 1,
comprises different schemes, and was determined as follows.

Algorithm 1: LSEOS metaheuristic.
Input : P = {a = 1, . . . , aP}, m, e, c
Output : min Delay;

1 begin
2 foreach (a in P) do
3 Call-Internal-Task-Sequence Scheme;
4 Call Two-Way Homormorphic Scheme;
5 Call Two-Way Data Validation Scheme;
6 Call Adaptive Variable Neighborhood Structure Scheme;
7 Call Adaptive Scheduling Scheme;

Figure 4 shows the LSEOS metaheuristic process from the initial to the end component
for the considered problem. It starts from input and ordering all tasks on the basis of their
quality-of-service (QoS) requirements in the system. The primary goal of the sequence is to
order all tasks on the basis of their priorities such as deadlines and delays in the system.
Once the tasks are sorted, there is two-way homomorphic encryption. This encryption
mechanism encrypts and decrypts data at local devices. Fog and cloud nodes process these
tasks on the basis of their ciphtertext instead of plaintext in the system. Two-way validation
ensures the validation of data between nodes. The candidate solution is the searching
mechanism inside LSEOS that finds random optimal solutions and replaces the existing
scheduling solution when its status is “Yes”. If tasks are failed, it generates a “No” status
and reprocesses all tasks from start in the system, as shown in Figure 4.
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Figure 4. LSEOS metaheuristic algorithm for the considered problem.

4.1. Adaptive Task Sequencing Rule Scheme

There are many sorting techniques that are widely exploited in the workflow applica-
tions, for instance, deadline-enabled sorting, earliest deadline finish time, earliest finish
time, and smallest workload first. However, these techniques only sort tasks on a single
group of same applications. However, workflow application tasks are divided into three
sets: local, delay-sensitive, and delay-tolerant tasks. Therefore, these methods cannot be
directly applied on different sets of tasks, and internal adaptive task sequencing rules are
suggested in which all tasks are sorted according to sets.

Algorithm 2 initially assigns a deadline to tasks at different levels, such as mobile,
delay-sensitive, and cloud tasks, on the basis of their execution time. All tasks are sorted on
the basis of their deadlines. Assigned deadline and sorting are adaptive rules that assign
the deadline and sorting to workflow applications at the runtime of submission in the
system. Algorithm 2 determines the deadline and sequencing rules in the following way.
Deadline: a = {i = 1← 30 s, i = 3← 40 s, i = 2← 30 s, i = 4← 50 s, i = 5← 60 s, i = 6
← 30 s, i = 9, i = 8, i = 10← 89 s}. After deadline assignment, tasks are sorted as follows:
a = {i = 1, i = 3, i = 2, i = 4, i = 5, i = 6, i = 9, i = 8, i = 10} ∀a = 1, . . . , A.
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Algorithm 2: Adaptive task sequencing rule scheme.
Input : P = {a = 1, . . . , aP}

1 begin
2 foreach (a in P) do
3 Determine execution time of task i based on Equation (1);
4 Assign deadline of a task on the basis of execution time.

dmi = xi,m ← deadlinea ← A;
5 All tasks are ordered on the basis of their assigned deadline;
6 Determine the execution time of task i on the basis of Equation (4);
7 Assign deadline of a task on the basis of their execution time.

dei = xi,e ← deadlinea ← A;
8 All tasks are ordered on the basis of their assigned deadline;
9 Determine the execution time of task i on the basis of Equation (5);

10 Assign deadline of a task on the basis of their execution time.
dci = xi,c ← deadlinea ← P;

11 All tasks are ordered on the basis of their assigned deadline;

4.2. Two-Way Secure Offloading Scheme

Algorithm 3 determines the two-way homomorphic security mechanisms where denials of
service are monitored via network profiler scheme before offloading any data from any node.
Surfing is a mechanism that generates the report of intrusion nodes in the system. Algorithm 3
determines the stability of nodes before offloading any data to any node. Data for the encryption
are computed on the basis of a 256-bit public key, and two random long integers always generate
random keys on given task data in the algorithm. The network profiler always checks the status
of security in the algorithm. The data can be decrypted on the basis of a private key at the mobile
devices, and results are accessed from the cloud node.

Algorithm 3: Lightweight two-way homomorphic security scheme.
Input : P = {a = 1, . . . , aP}, m
Output :min Delay;

1 begin
2 Initially, Key− Gen (256-bits) numbers;
3 p, q are random long integers;
4 Network monitoring NW;
5 Dos profiling DP;
6 Surfing SR;
7 foreach (a in P) do
8 a = {i = 1, i = 3, i = 2, i = 4, i = 5, i = 6, i = 9, i = 8, i = 10 ∈ A};
9 Compute encryption on the basis of a public key;

10 Encryption[datai, a ∈ P] = (datai, m, Key− Gen, p, q, Public− Key)← a
Equation (2);

11 if (NW← DP||SR == valid) then
12 Offload← Encryption[datai, m];

13 else
14 Cannot offload data to the edge node;

15 a = {i = 1, i = 3, i = 2, i = 4, i = 5, i = 6, i = 9, i = 8, i = 10 ∈ A};
16 Compute encryption on the basis of a public key;
17 Decryption[datai, m, Key− Gen, p, q, Private− Key]← a

Equation (3)=Encryption[di, a ∈ P];
18 if (NW← DP||SR == valid) then
19 Offload← Encryption[datai, m];

20 else
21 Cannot download data from cloud node;
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4.3. Adaptive Task Scheduling and Neighborhood Structure

The two ways of offloading are from mobile devices to edge node and from edge
node to cloud computing. Adaptive task scheduling is a mechanism where execution
time is divided among mobile devices, edge nodes, and cloud computing. There are
many existing algorithms that can schedule different nodes in the literature, for instance,
heterogeneous earliest finish time algorithm, genetic algorithm, PSO, and ant colony. With
these algorithms, heterogeneous jobs can be run on heterogeneous cloud nodes. However,
these algorithms cannot work with encryption at the edge and cloud nodes to process
workflow applications. Workflow applications have different requirements, for instance,
encryption can be performed on one node, and other nodes must compute the encrypted
data and not the plaintext. A novel task-scheduling and variable neighbour-searching
scheme, Algorithm 4, was devised.

Algorithm 4: Adaptive task-scheduling and variable neighbor-searching scheme.
Input : m, e, c, Encryption[datai, m]

1 begin
2 Sort all resources by their available resources;
3 based on Equation (8);
4 Schedule all tasks on the basis of Equation (9);
5 Compute m, e, c, Encryption[datai, m];
6 if (Encryption[datai, m] ≤ di) then
7 Apply computation on ciphertext on the basis of Equation (4);
8 result=Encryption[datai, m] ∈ a ∈ A;
9 Optimize Delay← result on the basis of Equation (7);

10 After 100 s, resources are rearranged again;
11 Find new solution data′ on the basis of Equation (6);
12 if (data′ ≤ data) then
13 replace data← data′;
14 Current solution is data′;

15 else
16 Running solution data is optimal;

17 End of Inner

18 End of Main;

5. Performance Evaluation

In this section, existing performance workflow schemes [15,17,19,20] are compared
with proposed scheme LSEOS on the basis of the performance of workflow applications.
The IFogsim framework was used, where proposed and existing approaches were efficiently
implemented and their performance in the architecture was evaluated. Table 3 shows the
parameter settings of the proposed architecture, which was implemented on the basis of
IFogsim for the experiments.
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Table 3. Lfogsim-based experimental parameters.

Simulation Parameters Values

Setup IFogsim
Workflow Healthcare config file
Evaluation Methods Statistical median
Mobile Node HTC G17 and Samsung 1997
Edge Node Intel 5 laptop, AndroidX86
Public Node AndroidX86 Amazon t2.medium
me 10–30 ms
ec 100 ms

Performance criteria Security and delay, deadline, and data validation
based on Equations (6) and (9).

5.1. Parameter Settings of Simulation Environment of the Considered Problem

In this part, the study showed the simulations parameters of the considered prob-
lem and showed how to conduct the experiments based on the proposed and baseline
approaches.

To evaluate the performance of IoMT workflow tasks, we designed different flows
of different types of workflow tasks, namely, a set of security, delay-sensitive, and delay-
tolerant tasks at design time. Security must be locally executed with private encrypted and
decrypted keys, delay-sensitive tasks are offloaded to the edge node for execution, and
delay-tolerant tasks should be executed onto the remote cloud. All types are represented
by different nodes. Blue nodes are security tasks, light yellow nodes are delay-sensitive
tasks, red circles show delay-tolerant tasks, and other types were randomly designed.

Table 4 denotes the workflow applications and their tasks. Each workflow application
consisted of three types of tasks, as shown in Table 4: mobile, edge, and cloud tasks; they
are processed at different nodes in the system. All tasks were part of a workflow, some had
original data, and some shared their data for processing. All tasks were constrained by
their predecessor and successor in the system.

Table 4. Workflow tasks.

Workflow Application Mobile Tasks Edge Tasks Cloud Tasks File

a1 100 500 1000 Configuration
a2 50 400 700 Configuration
a3 90 600 800 Configuration

The objective function of the study, that is, delay measured in terms of microseconds
(ms) for workload assignment to the distributed nodes. We now compare the results
of IoMT workflow tasks with the proposed framework, its components, and existing
offloading and scheduling frameworks. Component results are discussed below.

5.2. Delay Optimal Result Comparison

Obtained results were based on delay that was calculated in microseconds (ms), as
shown in Table 5. Execution delay (ms) and deadlines for all applications are shown in
Table 5. LSEOS outperformed all existing methods in terms of delay and deadline, as
shown in Figure 5.
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Table 5. Delay optimal workload assignment.

Application Methods Delay (ms) Deadline (ms)

a1 LSEOS 1000 899
a1 LSTM Metaheuristic 1300 899
a1 WMC 1500 899
a1 WFMS 1000 899

a2 LSEOS 700 1000
a2 LSTM Metaheuristic 850 1000
a2 WMC 1200 1000
a2 WFMS 1100 1000

a3 LSEOS 320 500
a3 LSTM Metaheuristic 450 500
a3 WMC 700 500
a3 WFMS 670 500

5.3. Workflow Task Deadline Division

The workflow divided deadlines into tasks on the basis of their execution and commu-
nication time. This technique helps in how to execute all tasks under their deadlines onto
different nodes. In the experiment, we divided the single workflow into task deadlines on
the basis of Algorithm 2. All divisions were peformed before offloading and scheduling in
the system.

5.4. Task Sequencing Rules of Workflow Tasks

The tigthness of values start from 0.2 not 0 because, in our model we show that 0.2 is
the inital deadline and 0 means not scheduled in the distributed mobile edge cloud network.
The task sequence component is important before task scheduling onto heterogeneous
computing nodes. Different topological task sequencing rules are proposed that consist
of EDD, SPD, and SSTF rules. Due to the different characteristics of tasks, the deadline,
security, and availability of resources sorting all tasks with one rule is not enough. Therefore,
we sorted all tasks into three sequence rules. All tasks were first sorted on the basis of
EDD, and then they were sorting-based SPD. Lastly, on the basis of the best availability
of resources, we sorted all tasks on the SSTF rule as shown in Figure 5a; EDD worked
excellently as compared to others.
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Figure 5. Task sequencing Tightness Rules With Different Rules.

5.5. Assignment Delay Performance

These studies implemented as the baseline approaches that are closely related ex-
isting schemes in the simulation, for instance, delay optimal long short-term memory
(LSTM) [21], workflow metaheuristic system (WFMS) [22], and workflow metaheuristic
cloud (WMC) [23]. These studies are closely related to our work to execute the workflow
applications on the heterogeneous nodes in mobile edge cloud computing.



Sensors 2022, 22, 2379 14 of 18

5.6. Lightweight Secure Offloading

The lightweight mechanism shows the less delay execution during secure offloading
between nodes in the study. The study devises the two secure lightweight homomorphic
encryption secure scheme which only encrypt and decrypt data at the mobile devices
instead of fog node and cloud. The main goal is to minimize the security delay at different
level of nodes as existing static [11] and dynamic [1] offloading did in for the workflow
applications. Figure 6 shows that, the proposed two ways lightweight homomorphic
secure scheme outperformed all existing schemes for the mobile workflow applications in
the system.
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Figure 6. Lightweight Secure Offloading of Workflow Applications.

5.7. Adaptive Task Scheduling

The scheduling schemes DHEFT [1] and genetic algorithm [5] suggested the static and
dynamic scheduling algorithms to run the workflow applications in mobile edge cloud
network. The study devises the initial scheduling at different nodes gain the lower delay
as shown in Figure 7a gain lower delay as compared to existing both DHEFT and genetic
scheduling schemes. Figure 7b shows the adaptive delay optimal searching nodes based
neighborhood searching enabled scheduling in the distributed mobile fog cloud network.
The result shows that, the proposed adaptive searching technique search the delay optimal
nodes at the run time of workflow applications in the system.
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5.8. Delay Optimal Task Assignment

Figure 8 (a) analyzes the delay performance of all offloading and schemes on workflow
applications in a heterogeneous mobile cloud environment. Proposed scheme LSEOS
outperformed all existing schemes of LSTM, WMC, and WFMS metaheuristics with all
workflow applications in terms of delay and workload assignment in mobile fog cloud
networks. There are many reasons why these schemes have higher delay as compared
to that of the proposed scheme. These studies suggested workflow schemes based on
single node either on the mobile device, edge node or cloud computing. Due to the high
complexity of workflows and their intermediate task dependency, the workflow application
could not be at same place because their applications are so much heavier. For instance,
mobile devices cannot run these applications alone at the local device due to resource-
constraint issues. However, edge nodes can only run the workflow with minimal delay, as
data cannot be stored on edge nodes due to their limited resources in the network. Therefore,
cloud computing can store data, but due to the long distance, the cloud has longer execution
and communication delay for workflow applications. The LSEOS divided applications
into three different parts and achieved less delay due to the division of applications and
executing them under their deadline.
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Figure 8. Lightweight workflow task assignment delay performance.

5.9. Lightweight Secure Adaptive Offloading and Scheduling Approaches

This section outlines the achievements of methods that are lightweight secure adaptive
offloading and scheduling approaches in the system.

Figure 9a–c show the lightweight workflow task assignment performance with the
security validation and their deadline in the heterogeneous mobile edge cloud. The result
shows that, the LSEOS outperformed all existing schemes because of the lightweight
security scheme as compared existing secure offloading and scheduling in terms of delay
for the healthcare workflow applications. LSEOS only encrypts and decrypts on local
devices; therefore, it achieved a high security ratio, and edge and cloud nodes do not need
to decrypt them. In this way, encryption and decryption time, and security validation
can be widely improved for workflow applications when they are executed on different
heterogeneous nodes.
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Figure 9. Lightweight secure adaptive offloading and scheduling workflow task performance:
(a) Mobile Assignment Delay, (b) Edge Assignment Delay, (c) Cloud Assignment Delay.

5.10. Findings and Limitations

This paper devised the lightweight, secure offloading and task scheduling (LSEOS)
algorithm framework, consisting of different schemes. The objective is to run workflow
applications on other nodes and minimize the delay and security risk in the system. An
adaptive deadline, sorting, and scheduling with neighborhood search schemes are sug-
gested in the proposed model. This study found the following: (1) a lightweight security
method was designed that minimized the security resources and time for the applications;
(2) processing delays were minimized during offloading and scheduling in the system;
(3) different sequencing rules were devised that satisfied the deadlines, priorities, and
quality of service of applications. However, there are a few limitations to the proposed
work. The study only supported the workflow application and did not support the coarse-
and fine-grained workload in the system. Furthermore, the processing cost and security
cost enabled constraints are very important during offloading and scheduling and were
not considered in the system.

6. Conclusions and Future Work

This paper devised the lightweight secure offloading and task scheduling (LSEOS)
algorithm framework, which consists of different schemes. The objective is to run workflow
applications on other nodes and minimize the delay and security risk in the system. The
adaptive deadline, sorting, and scheduling with neighborhood search schemes are sug-
gested in the proposed model. The simulation results showed that the SEOS outperforms
all existing offloading and scheduling methods for the workflow applications compared
to current techniques for the delay and security validation in the model. There are many
challenges exist in the current manuscript version that did not consider the block to block
type security and validation in the proposed architecture. Mobility aspects of users were
not investigated in the current architecture; therefore, future work will consider node to
node validation and mobility of the users in the proposed architecture.
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