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Assistive robots have the potential to support people with disabilities in a vari-

ety of activities of daily living (ADL), including dressing. In the present work,

we develop a dressing pipeline intended for bedridden people who have com-

pletely lost their upper limb movement functionality, and experimentally val-

idate it on a medical training manikin. The pipeline is comprised as follows:

the robot would grasp a hospital gown hung naturally on a rail, fully unfold

the gown, navigate around a bed, and lift up the user’s arms in sequence to

finally dress the user. To automate this pipeline, we address two fundamental

challenges: (i) learning manipulation policies to bring the garment from an

uncertain state into a configuration that facilitates robust dressing; (ii) trans-

ferring the deformable object manipulation policies learned in simulation to

real world to leverage cost-effective data generation, which is sensitive to fabric

physical properties. We tackle the first challenge by proposing an active pre-

grasp manipulation approach that learns to isolate the garment grasping area

prior to grasping. The approach combines prehensile (i. e., grasping) and non-
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prehensile actions, and thus bypasses grasping-only behavioral uncertainties

(e. g., multiple-layer garment grasping). We bridge the sim-to-real gap of de-

formable object policy transfer by approximating the simulator to real-world

garment physics. A contrastive neural network is introduced to compare pairs

of real and simulated garment observations, measure their physical similar-

ity and account for simulator parameters inaccuracies. The proposed method

enables a bi-manual robot to put back-opening hospital gowns onto a medical

manikin with reliability greater than 90%.

Summary This work uses sim-to-real transfer to learn garment physics and manipulation for

robot-assisted dressing.

Introduction

Dressing assistance is a basic assistive activity in the daily life of elderly people, and people

who suffer from impairments. Studies indicate that although over 80% of people in skilled

nursing facilities require assistance with dressing (1), there are growing concerns regarding the

increased costs of daily care and lack of nursing staff (2). A cross-sectional study (3) of 14,500

Medicare beneficiaries shows that 8.2% of those beneficiaries have reported difficulties with

dressing. (3) also reports that of all activities of daily living, dressing has shown the highest

burden on caregiving staff and the lowest use of assistive technologies. This work focuses on

robot-assisted dressing, which is a growing area of research that has the potential to alleviate

this problem.
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Background and challenges

Recent state-of-the-art research has made great progress towards addressing the challenges of

using a robot to perform dressing (4–19). This work focuses on developing a pipeline towards

dressing bedridden people who have completely lost the ability to move their limbs, and vali-

dating the approach on a medical training manikin.

Dressing a bedridden person is an essential clinical skill in the Certified Nursing Assistant

(CNA) Practice Test, which is a compulsory exam that defines training standards for nurse

assistants who work in nursing homes or hospitals (20). For reference, public tutorial videos of

dressing bedridden people in CNA tests can be found here (21, 22). In this work, we endeavor

to equip a robot with the equivalent ability to provide dressing assistance in putting on back-

opening hospital gowns for bedridden people in a manner that emulates a CNA. We use the

same settings as in the CNA test, including back-opening gowns normally used in hospitals and

a professional training manikin lying on a hospital bed, to simulate an adult bedridden person.

The patient care manikin (weighting 18kg), equipped with natural movement of the joints, arms

and legs for realistic positioning, represents a life-sized adult (174cm). Movie 1 shows the

complete dressing sequence: the robot would grasp a hospital gown hung naturally on a rail,

fully unfold the gown, navigate around a bed, lift up the manikin’s arms in sequence to finally

dress the manikin.

Several state-of-the-art surveys have identified open challenges on perceiving and handling

deformable objects (23–25), two of which are faced in this work as well to endow robots with

the ability to autonomously execute such a dressing pipeline: 1) manipulation of the garment,

which has complex dynamical and high-dimensional states, to bring it from an uncertain state

into a configuration that facilitates robust dressing. In our case, the proposed pipeline involves

learning six grasping/manipulation policies in sequence to fulfill the dressing task (Fig. 1).

Simulation is leveraged to learn garment grasping/manipulation policies, and thus reduce the
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constraints of costly real data collection or robot experiments (26–28). However, this introduces

a second challenge: 2) deformable object policies learned in simulations suffer from a lack of

transferability onto the real world, especially in the physical domain.

For the first challenge of manipulating a garment that has large dimensional configuration

space, most studies on robot-assisted dressing setup the initial robot configuration before dress-

ing by manually attaching the garments on the robot end-effector (11–14). Recent work on

grasping has formulated this problem as computing suitable grasping points on garments, ei-

ther through learning grasping points in a supervised end-to-end manner (29–33), or using rein-

forcement learning to self-explore grasping points (34,35). In these approaches, only prehensile

action (i. e., grasping) is adopted prior to any garment manipulations, which could lead to issues

including multiple-layer garment grasping. Unlike the successful garment hanging or folding

tasks in the above research, such issues could induce the occlusions of the sleeve opening, and

consequently cause garment dressing failures. Multi-step manipulation that combines both pre-

hensile and non-prehensile (e. g., pushing) is an area of research that has received less scientific

attention (23). Typical combinations applied on rigid objects include push-and-grasp (36) and

slide-to-wall-and-grasp actions (37). Deploying manipulation-and-grasp policies is especially

challenging for deformable objects because garment manipulation induces further deformations

during the manipulation procedure. Solutions to this problem include garment grasp-and-fling

actions for unfolding (38) and edge trace-slide-and-grasp strategies (39, 40).

Our second challenge, that of deformable object policy transfer, is an area of research that

has been less explored (41). One solution of bridging the simulation and reality gap is to syn-

thesize realistic-looking images with generative models or domain randomization aiming to use

robust representations in the visual domain (42–44). However, visual appeal does not equate

to physical realism as a visually realistic garment could behave in a physically unrealistic man-

ner due to occasional object details deletion and addition (45). Therefore, (23) has pointed
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out another potential solution, which is to accurately modeling garment states in simulation by

identifying the underlying physics correspondence between simulated and real observations.

Understanding of the underlying physics is pertinent to deformable object manipulation as their

deformations are sensitive to the physical properties of the object itself (46–55). Recent work

focuses on inferring garment physical attributes by either comparing handcrafted garment fea-

tures (56–59), or directly from visual observations of object dynamic behaviors using deep

learning method (60–63). However, both methods remain challenging as the physical models

of garments tend to have high numbers of unknown parameters, and bear intricate coupling of

intrinsic and extrinsic forces. Even fewer studies have explored sim-to-real transfer deformable

object policies (41, 64). Instead of physics understanding, these approaches focus on the dy-

namics randomization, which could be biased by the expertise of the practitioner.

Contributions

To overcome the first challenge, we propose an active pre-grasp manipulation learning frame-

work, which aims to isolate the garment grasping area prior to actual grasping. Different to

most state-of-the-art work on deformable object grasping that only adopts prehensile action,

our pre-grasp manipulation policy continuously learns to select among motion primitive be-

haviors that combines both non-prehensile and prehensile actions, including move-left-grasp,

move-right-grasp and direct-grasp, as shown in Fig. 2. The approach involves interactively

training pixel-wise neural networks that map from multi-view visual observations of the gar-

ment to affordance-based pre-grasp manipulation actions through robot exploration and ex-

ploitation. Our proposed approach bypasses uncertainties of the grasping-only behavior (e. g.,

multiple-layer garment grasping, sleeve opening occlusion), and thus facilitates robust dressing

pipeline.

In regards to the second challenge, we propose to tailor the simulator to the real-world
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garment physics by selecting more realistic simulator parameter values. Our solution is to

compare pairs of real and simulated garment observations, learn their physical similarity and

account for simulator parameters inaccuracies. We propose to learn the garment physical sim-

ilarity metric using contrastive loss (65), which could efficiently map pairs of physically sim-

ilar observations to nearby points, whereas dissimilar pairs are pushed apart in the embedding

space. This loss leverages the easily-acquired simulated garment physics information to learn

the physical similarity, without observing a real-world manifestation of the phenomenon. Then,

we refine physics simulations from a single real-world observation towards maximizing the

physical similarity between the real-world behavior and its simulated counterpart. Our experi-

mental results will show that this method outperforms several state-of-the-art methods in terms

of creating a realistic physical simulation that facilitates a more efficient sim-to-real garment

grasp/manipulation policy transfer.

With the above proposed methods, we finally introduce a dressing pipeline for bedridden

people. Each grasping/manipulation policy in Fig. 2 is learned in a sim-to-real manner: in the

physics domain, physical attributes of the real gown have been learned through our proposed

contrastive learning approach, and applied to the synthetic gown in simulation; while in the

image domain, classic domain randomization is employed to change colors and textures of the

garment, manikin, bed and rail when synthesizing data. The pipeline and the corresponding

garment manipulation in each stage could be summarized as follows:

1. Stage A: the robot would grasp a gown (Fig. 1A) that is naturally hung on a rail with the

hanging point randomly around the collar, while the gown is segmented out using a Mask

R-CNN network (66);

2. Stage B: the robot would fully unfold the gown (Fig. 1B), while the manipulation policy

is learned using our proposed active pre-grasp manipulation approach;
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3. Stage C: the robot would navigate around the bed to grasp the garment (Fig. 1C), lift up

and dress the user’s arms in sequence, while the garment grasping policy is learned using

supervised pixel-wise Convolutional Neural Networks (CNNs);

4. Stage D: the robot would spread the gown to cover user’s upper body (Fig. 1D), while the

garment segmentation is learned in the manner as Stage A.

The main contributions of this paper can be summarized as follows:

1. A robot-assisted dressing pipeline intended for bedridden people, which is comprised

of a series of garment grasping and manipulation, robot navigation and user upper-body

dressing, and validated on a medical training manikin.

2. An active pre-grasp manipulation approach that learns to isolate the garment grasping

area prior to grasping to facilitate a more robust dressing.

3. A contrastive learning method to create a realistic physical simulation that facilitates a

more efficient sim-to-real garment grasp/manipulation policy transfer.

Results

This section is divided into three main experiments. The first experiment evaluates the overall

dressing pipeline on a medical manikin, followed by the second and third experiments respec-

tively performing statistical comparisons of the proposed garment contrastive physics learning

and pre-grasp manipulation methods against several ablations and state-of-art baselines.

Experiments on dressing a medical training manikin

In this experiment, we evaluate the performance of the complete dressing pipeline on a medical

manikin. Three back-opening hospital gowns are used in our experiments. For each gown, its
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physical attributes are estimated using the proposed contrastive learning methods, and the pre-

grasp manipulation policy (stage B) as well as other grasping policies (stage A, C and D) are

trained in the sim-to-real manner.

First, we carry out ablation studies of each stage in the pipeline. To evaluate the performance

of each stage independently, for each stage, we assume its previous stage has been completed.

For example, in stage C of dressing, we manually put the garment flatly on the manikin to

simulate that the stage B of garment unfolding has been achieved. 200 trials of each stage

execution have been carried out independently. Table 1-second row presents the success rates

of each stage.

Then, 200 trials of the complete pipeline are carried out. To finish the whole dressing

pipeline, all intermediate stages have to be performed correctly to be considered as a success.

For instance, if stage B fails, then stage C would not be executed. The experimental results

show that 181 trials have been successful, yielding a overall success rate of 90.5%. Here, we

also present the actual success rate of each stage in this overall experiment, which is measured as

(successful trials / totally executed trials of each stage, specifically 198/200 of stage A, 192/198

of stage B, 183/192 of stage C and 181/183 of stage D), as shown in Table 1-third row.

The achieved overall success rate is lower than the performance of each stage in the pipeline

because failures can occur in various stages and affect the complete process. These failures

include but not limited to: 1) stage B: inaccurate estimation of manipulation actions in some

challenging scenarios, for example, the manipulation area is partially or completely occluded by

the other parts of the gown, and 2) stage C: the sleeve getting caught by the manikin’s inflexible

hand. Details of failure analysis are presented in the supplementary materials.

Patient safety is one of the priorities that have been taken into account during the design of

our dressing pipeline. We have taken into account four aspects of user’s safety: 1) The robot is

operated in a moderate speed, taking into account a tradeoff between the safety consideration
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and the user’s comfort. Thus most of experimental time is spent by robot physical movements,

but not by perception or reasoning. 2) We design the motion of the robot lifting the manikin’s

arm to be perpendicular to the real-time tracked arm posture, which is executed in a slow speed

for 5 seconds to ensure that no large force is applied to the user’s arm and shoulder joint. 3)

A moderate maximum grip force of the gripper is set to ensure that the gripper is firm enough

to hold and lift the user’s arm, without applying large force on the user. 4) The robot dressing

motion planning is realized using the hierarchical controller proposed in our previous work (19).

This controller has described the dressing task as two hierarchical subtasks. The high-priority

subtask adapts robot motions to minimize the force applied between the user and the robot.

The low-priority subtask completes the real-time updated dressing trajectory without affecting

user’s comfort and safety.

Contrastive learning real garment physics evaluation

Fig. 3-top illustrates the framework of the proposed garment physics learning method in two

phases. In the first phase, depth video clips of garment dropping, generated in the Blender

simulation engine with various physical properties, are used as visual observations of garment

dynamic behaviors. These videos are mapped onto the embedding space with contrastive loss

to learn garment physical similarity. In the second phase, the parameter error is learned from

the embedded representations in a supervised manner. The real-world garment observations are

then mapped onto the same embedding space for physical properties estimation.

Ablation studies of garment physical similarity learning and properties estimation

We first investigate the performance of physical similarity learning in phase one. It has been

observed in our preliminary experiments that some properties have larger impact on garment

deformation in this particular physical phenomenon of garment dropping. Therefore, six phys-
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ical properties are selected as the input of the simulation in our experiments, as presented in

Table 2. The simulation properties dataset is described as:

Θs ≡ {θ
i
s = [P

i
1, . . . , P

i
6]}

i=1,2,⋯,N

where [P1, . . . , P6] denotes six physical properties, θs is one set of properties, and N denotes

the number of sets.

The contrastive loss consists of two “opposing forces”: positive and negative (67). As sim-

ilar properties always lead to similar garment behaviors in the simulation, we define that video

clips generated from similar physical properties are considered as positive pairs, while nega-

tive pairs have dissimilar physical parameters. In total, 100 classes of simulation properties are

generated as isotropic Gaussian blobs with 300 sets of properties in each class. Properties in

the same class are considered to be similar, whereas dissimilar properties are from different

classes. We use these properties to generate 30,000 video clips in Blender simulation engine,

which are split with a 60%-20%-20% percentage for training, validation and testing respec-

tively. All properties are generated between [0,1] and mapped to the actual value afterwards.

The standard deviation of the clusters is set as 0.005 for each set of parameters to make sure pa-

rameters in the same class are closer to each other than to other classes. Fig. 4A-left visualizes

the generated simulation properties using 2D t-SNE (68).

Fig. 4A-right shows the 2D t-SNE visualization of a subset of the learned embedding space

using the training dataset. It can be observed that the learned embeddings with the same color

(i. e., video clips sharing similar physical parameters from the same class) tends to be closer

to each other. This demonstrates that the proposed method with contrastive loss is capable of

efficiently mapping physically similar garment data near to each other, while dissimilar data

being pushed further. We then evaluate the performance of parameter residual estimation in

the second phase. Mean absolute percentage error (MAPE) is adopted as the metric due to the
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different value scale of each physical property, which is described as:

Meg = dis(θe,θg) =
1

N

N

∑
k=1
∣
P k
g − P

k
e

P k
g

∣ ,

where θg is the ground truth simulation parameters, and θe denotes the estimated parameters.

Our experiments on the testing dataset show that the parameter residual network achieves 1.57%

median value of MAPE on 6,000 synthetic testing dataset, which shows a high accuracy of

physics inference.

Comparisons with baselines

Next, we benchmark the proposed method against five baselines, including: 1) B1: parameter

identification using a classic supervised neural network (69); 2) B2: parameter identification

with contrastive loss (70); 3) B3: parameter residual estimation without contrastive loss (71);

4) B4: manually tuned parameters (26); and 5) B5: randomized parameter (41, 64). For com-

parison purposes, the embedding functions are all formatted as the same network structures in

the above baselines.

We first use only synthetic data to evaluate the performance of physics learning in this ex-

periment. Fig. 4C presents the results of estimated physical attributes. Three conclusions

can be drawn from this figure: 1) The proposed method achieves the smallest MAPE (1.57%);

2) Baseline 3, which estimates physical parameter residual without contrastive loss, obtains

78.99% median value of MAPE on the synthetic testing dataset. Instead of training the network

with contrastive loss in two phases, baseline 3 uses the classic Mean Squared Error loss and

trains the network in one phase. This result can be explained by the effectiveness of contrastive

loss, which maps physically similar examples to nearby points in the embedding space, and

thus guarantees that the small parameter residual (residual network output) also corresponds

to the embedded representations that are close to each other (residual network input). The

embedding space in baseline 3 without contrastive loss may not capture such information; 3)
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Baseline 2 obtains 13.88% median value of MAPE on the 6,000 synthetic testing dataset. In

baseline 2, instead of using a nearest-paired embedded sample to estimate parameter residual in

phase two, it predicts the parameters directly from embedded representations. This is usually

achieved by a supervised neural network or Bayesian optimization methods. This result reflects

the nature of contrastive loss that it learns ‘how similar’ the input data are, instead of ‘how dif-

ferent’. The contrastive loss function ignores the distances among the different negative classes

and thus, does not assure the optimization among the different negative class embeddings (72).

Therefore, using the combination of the test data and its nearest embedding could include more

useful information for parameter residual estimation than using whole embedded representa-

tions. Similar approaches have also been adopted by state-of-the-art research (73,74) to predict

deformable objects states transitions by finding the close embeddings in the latent space that

are learned in a contrastive manner, instead of the whole embedded data.

Real garment physics estimation analysis

A depth video clip of one real garment dropping has been collected, as shown in Fig. 4B.

The garment physical parameters are respectively predicted using the proposed method and

the five baselines described in last section. Fig. 4D visually shows a depth image of the real

garment from one point of view, and the depth images of synthetic garments animated in the

simulation engine using the estimated garment physics achieved by the proposed method and

five baselines. It can be observed that our method simulates a more similar shape to the real

garment than the five baselines. Fig. 4B shows the garment dropping snapshots from the real

garment and the synthetic garment with our estimated physics, which also indicates identical

deformation. As the ground truth parameters of the real garment are challenging to obtain, in

the following experiments, we will quantify the performance of real garment physics learning

using garment manipulation success rate on physical robots.
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Garment pre-grasp manipulation evaluation

Fig. 3-bottom illustrates the framework of the proposed active pre-grasp manipulation learner.

Multi-view RGB-D images of the hospital gown are fed into three fully convolutional networks

to respectively infer pixel-wise affordance for three motion primitive behaviors. The robot

action space is defined as a set of end-effector-driven motion primitives. Each pixel represents

a different location on which to execute the primitive, and each camera view orientation defines

the primitive orientation. The action with highest affordance is selected for robot execution with

ϵ-greedy exploration strategy. Our system bootstraps its learning of the affordance function

from demonstration data to guide and accelerate the agent towards good behaviors. The full

learning process is: 1) the policy is pre-trained using simulation demonstration data and fine-

tuned with trial and error in simulation; 2) based on the training in simulation, the policy is

transferred to real world by training with real demonstration data and finally fine-tuned with

trial and error with the real robot and garment.

Effect of active learning

We compare our method with three ablations: 1) A1: training using only real demonstration

data; 2) A2: training using only real active trial; and 3) A3: training using only real demon-

stration data and active trial. For our method, 3,000 sets of demonstration states (2,000 data

in simulation, 1,000 in real world, 3,000 ∗ 6 RGB-D images in total) have been collected by

five human participants. For the ϵ-greedy exploration strategy, ϵ is initialized at 0.5 in simu-

lation and annealed over time, while initialized at 0.1 in real world to highlight the immediate

performance of sim-to-real policy transfer.

Fig. 5-top presents the training process of learning a manipulation action (Fig. 1B-1) on one

hospital gown. The performance is measured by the pre-grasp success (reward=1) rate over the

last j = 200 attempts. From the lines of A1-A3 ablations and the proposed method in this figure,
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we could draw four conclusions: 1) The proposed method is capable of learning effective pre-

grasping policies – achieving a success rate more than 92% in real-world experiments; 2) For

ablation 1, we train the network using only real demonstration data and test on 1500 trials on the

real robot. It achieves a success rate that is approximately 22.5% lower than ablation 3, which

demonstrates that the active exploration steps enable the algorithm to explore other pre-grasp

solutions beyond what it has learned from demonstrations; 3) Through the comparisons between

ablation 2 and ablation 3, we can see that the demonstration data not only helps the algorithm

learn faster (higher performance in the early training stage), but also helps the algorithm learn

better (higher performance after active trial); 4) The comparisons between ablation 3 and the

proposed method show that learned policy from simulation has been transferred to the real

world, especially when real-world data is insufficient.

Comparisons with a grasping-only policy

We also investigate whether the proposed pre-grasp manipulation leads to more robust dressing

than the grasping-only policy. For the latter method, we train a supervised CNN network to

estimate the grasping point directly from each image with same amount of demonstration data

as in our method. This method has also been adopted in (27, 29). We test both methods on

the physical robot performing the stage B of garment unfolding and stage C manikin dressing

in sequence. For each method, 50 replications of trials have been carried out. The results in

Fig. 5-bottom show our proposed pre-grasp manipulation (represented as a star) significantly

outperforms the grasping-only policy (green dot) in terms of dressing success rate. This result

is expected as the grasping-only policy may successfully grasp the garment, but could cause

multi-layer cloth grasping that occludes sleeve openings and thus yield dressing failures.
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Sim-to-real pre-grasp manipulation analysis

In this experiment, we investigate how the estimated real garment physics affect garment un-

folding performance. We deploy the estimated physical properties from our method and five

baselines to train the garment pre-grasp manipulation policies respectively following the same

procedure. From the lines of B1-B5 baselines and the proposed method in Fig. 5-top, we can

see a drop of success rate at the beginning stage of real data training for each method. This

result is expected as garment deformation is a complicated mechanism that is unlikely to be

fully represented by six physical parameters. The internal garment modeling in the simulation

engine could affect the behavior of deformation. We also need to consider the sim-to-real gap

in the visual domain. However, the pre-grasping performance using the estimated parameters

achieved by our approach still surpasses that of the other five baselines, which shows more

gained knowledge from simulation has been transferred to the real world.

Sim-to-real robotic-dressing analysis

Lastly, we deploy the above learned policies on the physical robot to perform dressing. Specif-

ically, the robot performs the stage B (unfolding) and C (dressing) of the pipeline in sequence.

Three back-opening hospital gowns with similar style but different physical attributes are used

in our experiments. We respectively estimate their physical properties using our method and

five baselines, and train the corresponding pre-grasping policies. The inferred embeddings of

the three gowns are visualized in Fig. 4A-right. For each learned policy, 50 trials of garment

unfolding and dressing have been carried out. Fig. 5-bottom shows our method outperforms all

other five baselines. Note here that the open-loop robot dressing motion is designed as the robot

pulling the gown along the arm from the real-time tracked hand to elbow and shoulder positions

in sequence. Thus the dressing performance is highly dependent on whether the garment is

properly unfolded in stage B and if the grasping point is accurately estimated in stage C.
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Discussion

This work has addressed necessary subtasks for a complete dressing pipeline intended for

bedridden people and validated on a medical manikin. Experiments have shown high success

rates with various hospital gowns considering the complexity of the pipeline. Since no a priori

knowledge has been assumed on the dynamic models of the robot for our proposed dressing, it

is envisaged that the method could be readily transferred to different dual-arm mobile robotic

platforms.

In terms of dressing robustness, the presented garment pre-grasp manipulation substantially

advances the grasping-only policy. Our method is based on a pixel-wise version of deep net-

works that combines active learning with affordance-based manipulation. The pixel-wise pa-

rameterization of both state and action enables convolutional features to be shared across loca-

tions and orientations instead of explicitly memorized by the network. Thus the policy could be

more easily trained and extended to new state and action pairs. Such model-free pixel-wise pa-

rameterization also allows the proposed method to be easily generalized to different deformable

objects manipulation tasks by only redefining motion primitives without changing the learning

framework.

Our method for measuring intrinsic and extrinsic physical correspondence between real and

simulated garment effectively reduces the sim-to-real gap of transferring deformable object

policies in the physics domain. We have used a dropping motion to represent garment dynamic

behaviors. It is envisaged that other dynamic observations, for instance wind blowing the cloth,

might lead to similar physics estimation using the same approach. Another strength of this

approach lies in modeling physical similarity in an intuitive way that is realistic enough to

achieve high precision, while keeping tractability in mind. Thus, the approach has the potential

to be generalized to different simulation engines and physical properties, even other sim-to-real
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tasks dealing with soft objects, such as garment dragging and folding, fluid pouring or granular

materials gathering.

Limitations and future work

We also see limitations and opportunities for future work. In our pre-grasp manipulation ap-

proach, we have shown that having human demonstration data is more effective on pre-training

manipulation policies than using only trial and error data from the robot since the demonstration

data contains significantly more diverse and successful pre-grasping examples. An interesting

question for future work is to investigate how to significantly decrease the amount of required

demonstration data with reinforcement learning, or even completely remove demonstration so

that the robot could learn the pre-grasp manipulation policy with self-supervised learning.

For garment physics learning, our method leverages only simulation data to learn garment

physical similarity, and thus requires only one-time training before perceiving real garments

with similar styles but different physical attributes. An interesting question for future work

could be rapidly learning a generic model to capture the morphological properties between dif-

ferent types of garments. We train the pre-grasp manipulation policy for each gown in simula-

tion with its estimated physics and efficiently transfer the policy to the real world. In our future

work, we would investigate whether other approaches (e.g., transfer learning) could generalize

the learned physics and manipulation policies to held-out gowns.

As the procedures of the dressing pipeline are designed empirically in this work, one possi-

ble extension would be incorporating real-time reasoning approaches (e. g., high-level temporal

logic language), performed concurrently with manipulation. The proposed pipeline comprises

specific scenarios, including a hospital gown with short sleeves hung on a rail with the hang-

ing point randomly around the collar of the gown. One interesting research direction would be

investigating on relaxing these prerequisites, for instance, picking up different types of clothes
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from a pile of crumpled garments.

We have used a life-sized, professional training manikin weighting 18kg to simulate bedrid-

den people with weak or contracted arms, as in the Certified Nursing Assistant (CNA) Practice

Test. In our future work, we intend to extend our experiments to include real end-users with

physical impairments. Note here that most robotic arms (including Baxter robot) suffer from

limited payload to lift up the real user’s arm to dress the upper body or hold the real end-user’s

whole upper body to tie the hospital gown on the back. Thus we would require robot platforms

with higher payload for real human’s experiments. Additional safety measures would be re-

quired for experiments on end-users. For instance, we might consider adding foam on the robot

gripper’s surface or using soft grippers to lift the user’s arm to ensure comfort and safety. We

could also implement fail-safe strategies to recover the robot from failures like sleeves caught

on the user’s arm. A more complex pipeline could be explored considering potentially bent

elbows of real patients.

Materials and Methods

Dressing pipeline learning details

We use a dual-arm robot (Baxter) equipped with a mobile base (Clearpath Ridgeback), two

grippers (Robotiq 2F-85) and two RGB-D cameras (Realsense LiDAR L515) to execute the

dressing pipeline. The medical manikin meets the international technical standards of medical

equipment (75).

Stage A of grasping the garment on the rail

A map of the room is pre-built using the LiDAR for robot navigation (Ridgeback navigation

stack (76)), while three waypoints are annotated near the garment rail and two sides of the

bed respectively. In stage A, the robot navigates to the first waypoint, captures a RGB image,
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segments out the gown using Mask R-CNN (66), and randomly selects a grasping point (Fig.

1A) near the hanging point on the segmented garment (between 70 and 80 pixels away from the

hanging point).

Stage B of fully unfolding the garment

The second stage is to fully unfold the gown in the air. The robot navigates to the second way-

point on the map, estimates the manipulation actions (Fig. 1B) on the left and right side of

the garment in sequence to unfold the garment. The two manipulation actions (3D positions,

orientations and action primitives) are learned using our proposed sim-to-real active pre-grasp

manipulation approach. These points are localized approximately at two corners of the gar-

ment collar respectively, which facilitates full unfolding. The unfolding reduces the number of

possible configurations when the gown is picked up randomly from the rail. The robot then

recognizes the correct side of the garment using a binary classification convolutional neural

network, moves closer to the manikin and places the garment roughly flat on the hospital bed

with the correct side facing up. Here the mobile robot moves closer to the bed without changing

its orientation to place the gown flatly on the bed, which guarantees that the grasping points in

stage C (Fig. 1C) are visible to the camera in most cases. The robot stops when the manikin’s

head is detected in the camera view to ensure the whole upper limb is within the robot manip-

ulation workspace. The manikin’s postures are real-time tracked using HRNet library in real

time (77).

Stage C of dressing the user’s arms

In this stage, the robot localizes the grasping point (Fig. 1C-1), grasps the garment with its

right gripper, lifts up the user’s arm with its left gripper, and pulls the hospital gown along the

arm to finish dressing. Then the robot moves back to the second waypoint, navigates to the

third waypoint in the map, slides closer to the user, detects the grasping point (Fig. 1C-2) and
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performs the user’s left arm dressing assistance in the same procedure.

Three key motions in this stage are garment grasping, user’s arm lifting and dressing: 1) As

the garment has been fully unfolded into a spread-out configuration, a grasping-only policy is

robust enough in this stage for dressing the user. We use supervised pixel-wise CNN Networks

to estimate the grasping points. The ground truth of the grasping points is approximately local-

ized at the middle of the sleeve opening edge for a robust dressing. 2) Imitating a human nurse

who offers external support to hold the bedridden person’s paralyzed/contracted arm, the robot

also lifts up the manikin’s arm during dressing. The robot gripper grasps the manikin’s upper

arm near the elbow position with 4Dof top-down movements and lifts it up. The grasping yaw

orientation is calculated according to the upper arm posture. 3) Then the robot pulls the gown

along the real-tracked arm using the hierarchical controller proposed in our previous work (19).

Stage D of spreading the garment to cover the upper body

Lastly, the robot spreads the gown to cover the user’s upper body. The garment is grasped at a

random location on the segmented garment near the collar (Fig. 1D, localized within 150 pixels

away from the user’s right shoulder position) and pulled to the user’s shoulder. This process

can be repeated on the contralateral of the garment to fully cover the upper body. Here garment

segmentation is learned in the same sim-to-real manner as in stage A.

Contrastive learning garment physics framework

Fig. 3-top illustrates the framework of the proposed learning algorithm in two phases: 1) learn-

ing garment physical similarity in phase one, inspired by (70) which has successfully measured

physical properties for cloth in the wind; 2) learning physics residual from embedded represen-

tations in a supervised manner in phase two, inspired by (71) which estimates the parameter

difference between two models using a single observation.
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Garment in simulation

In this work, the Blender simulation is used to model garment dynamics using its in-built solver

with Bullet Physics Engine. Visual observations of garment dropping behaviors are presented as

depth video clips x (i. e., a sequence of depth images for their invariance to color and texture).

The following manipulations are executed to observe the garment dynamic physical behaviors:

1) the garment is initially hung by two grasping vertices; 2) one grasping vertex is released and

the garment falls based on the simulated gravity, as shown in Fig. 4B. Details of the simulation

environment are presented in the supplementary materials.

To define the parameter values search base to generate input video clips, the default material

‘Cotton’ in Blender is selected as the base material as it closely resembles the real hospital gown

in this work. The range of the parameters are restricted by multiplying the base material param-

eters by 10−1 and 5 to obtain the most flexible and stiffest material respectively, as presented

in Table 2. Given each set of parameters θis, the corresponding depth video clips of garment

falling xs ∈ RN×H×W are generated from simulation. The camera frame rate in Blender is set as

same as the real camera (30Hz). To match the dynamics among different video clips, we extract

same 15 frames in each video clip using the timestamp of the first image in the series.

Physical similarity learning

We use simulation data xs to train the embedding network. The contrastive loss is described as:

L(Y,X1,X2) = (1 − Y )
1

2
D2 + Y

1

2
{max(0,m −D)}

2

where X1,X2 are the pair of inputs, Y is a binary label assigned to this pair (Y = 1, if negative

pair; Y = 0, if positive pair), m is the margin that is usually set as 1, D denotes the Euclidean

distance between embedded representations of X1,X2:

D = ∥fe(X
1), fe(X

2)∥
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where fe(x) denotes the embedding network.

A Siamese network structure is used as the embedding network to map the generated video

clip, instead of single frames, onto the embedding space. The Siamese network adopts two

symmetrical embedding neural networks sharing the same weights for the input pairs (78).

Modified from the structure of LRCN (79), the embedding function fe(x) is formatted as a

deep neural network combining ImageNet-pretrained Densenet-121 with LSTM (80).

Parameter residual learning

We estimate the parameter error directly based on the two embedded representations, using

a supervised fully-connected network fp. Parameter residual estimation performs better at

estimating small deltas due to its nature of difference transformation. The input of the pa-

rameter residual estimation network is the concatenation of the two embedded representations

(fe(xis), fe(x
j
s)), and the output is the parameter ∆θs. The ground truth of the output is calcu-

lated as ∆θs = θis − θ
j
s.

Physics identification of the real garment

The last step is to identify the parameters of the real garment. Following the same procedure in

simulation, a real video clip xr is collected using a depth camera. The clip xr is then mapped

onto the same embedded space using embedding network fe(xr). Its nearest neighbour in

the embedded space is found fe(xnr ), where xnr is the corresponding simulated video clip.

fe(xr) and fe(xnr ) are treated as the input of the parameter residual estimation network. The

parameters of the real garment θr are obtained as:

θr − θ
n
r = fp(fe(xr), fe(x

n
r ))

where θnr is the corresponding simulation parameters of the video clip xnr .
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Active pre-grasp manipulation learning framework

The proposed method is formatted in a simplified deep Q-learning formulation to learn a state-

independent policy, inspired by (36) which has successfully learned object push-and-grasp poli-

cies. The agent makes only one attempt per episode to myopically maximize immediate reward

(discount factor = 0), as shown in Fig. 3-bottom.

State representations

On pre-grasp attempt t, multi-view RGB-D image representations of the gown are observed to

serve as the state st. Specifically, six RGB-D images covering 180 degree around the garment

(different multiples of 30 degree) are captured on the x-y plane. In the simulation environment,

6 cameras are placed around the garment to capture RGB-D images from various points of view.

In real-world experiments, we set the robot to rotate the garment six times to capture multi-view

images from one on-board camera. In our case, each pixel spatially represents approximately a

32mm vertical column of 3D space in the agent’s workspace.

Primitive actions

We parameterize each action at as a pre-grasp manipulation primitive behavior ψ (i. e., move-

left-grasp ψl, direct-grasp ψg and move-right-grasp ψr) executed at the 3D location q of pixel

p in one of k = 6 orientations. We account for different primitive orientations using the orien-

tations of camera views. We have six camera views γic∣i=1,2,...,6 covering 180 degree around the

garment on the x-y plane. Thus, we define six discretized primitive action orientations on the

x-y plane as γip = γic+∆γ, where ∆γ is manually designed as 15 degree in our case. Therefore,

each action is designed as 4Dof motion (x, y, z, and x-y orientation):

a = (ψ,q,γ)∣ψ ∈ {ψl, ψg, ψr},q,γ ↠ p ∈ st

The pre-grasp manipulation primitive behaviors are defined as:
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• move-left-grasp: q denotes the starting position of a 5cm moving left prior to grasping in

one of k = 6 orientations. q physically corresponds to the middle position of the fingertips

of an open two-finger gripper. The trajectory of moving left is orthogonal to the primitive

orientation γip on the x-y plane, while γip is decided by the view of the image that pixel p

belongs to.

• direct-grasp: q denotes the middle position of the fingertips of an open two-finger gripper

in one of k = 6 orientations.

• move-right-grasp: The definition is similar to move-left-grasp behavior except that the

gripper moves right 5cm to isolate the grasping area.

Learning pre-grasp affordance functions

The robot plans a pre-grasp action at using a policy π(st). The pre-grasp affordance functions

are formatted as three feed-forward fully convolutional networks (Densenet-121 (81)) ψl, ψg

and ψr, one for each pre-grasp primitive behavior. Each fully convolutional network (FCN)

takes the RGB-D image representation of the state st as input and outputs a dense pixel-wise

map of affordance, where each individual affordance value prediction at pixel p represents the

expected reward of executing primitive ψ at 3D location q and the corresponding orientation γ

where q,γ ↠ p ∈ st.

Therefore, in total k = 6 sets of RGB-D images are fed into each FCN in sequence, the output

is 18 pixel-wise affordance maps (as in Fig. 3). The action that maximizes the affordance is the

pixel with the highest affordance across all 18 pixel-wise maps: argmax(ψ,q,γ)(ψl(st), ψg(st), ψr(st)).

The action at is then selected as the pixel with highest estimated affordance with ϵ-greedy ex-

ploration.
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Policy learning from demonstration

Training policies on complex tasks with sparse rewards is usually challenging. Inspired by the

method of deep Q-learning from demonstration (82), we use demonstration data to guide and

accelerate the agent towards good behaviors. On pre-grasp attempt t, multi-view RGB-D images

are captured. A human participant is asked to annotate the pixel p. Then the robot executes at

the 3D location q of pixel p in its corresponding orientation. A binary reward is given by the

participant, depending on whether there is a clear single-layer garment grasping. Note here that

a set of RGB-D images containing the state of the gripper and gown after the action are also

collected for the reward learning detailed in the next section. Five people are involved to collect

both positive and negative data, to make these demonstrations a more effective data source.

These demonstration data, including a set of states, actions and rewards (S,A,R), are stored

in an additional buffer RD for pre-training the network π(st). Then at active learning time, we

draw ND samples from this demonstration buffer along with environment interaction data from

main buffer in batches for policy training.

FCNs are trained at each iteration i using the classic Huber loss function:

Lf = Lh(Fπ(si,ai) − rai
(si))

where Fπ is the policy function to estimate affordance, and rai
(si) is the received award and

the action executed. In this loss, we pass gradients only through the single pixel p from which

the value predictions of the executed action ai was computed. All other pixels at iteration i

backpropagate with 0 loss.

Similar to (82), an additional supervised loss Ls, in a Mean Squared Error function, is used

as an auxiliary loss to train the network on the positive demonstration samples in the data and

defined as,

Ls = Lmse(Fπ(si,a
′
i) −Hπ(si,aD))
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where a′i represents the set of all available actions, aD is the positive action the expert demon-

strator took in state si, and Hπ(si,aD) is a heat map affordance of demonstration data with

a 2D Gaussian blob centered on the pixel of demonstrated action. This loss forces the affor-

dance values of the other actions to be at least a margin lower than the value of the positive

demonstration action. Adding this loss makes the greedy policy induced by the value function

to imitate the demonstrator. Therefore, we define a hybrid loss for network training combining

the supervised loss and affordance loss with weighting parameter λ:

L = Lf + λLs

Rewards

Upon executing at, the robot receives a reward rat(st) = 1 if it successfully grasps the gown

with a clear single layer and rat(st) = 0 otherwise. The reward is described as:

rat(st) =

⎧⎪⎪
⎨
⎪⎪⎩

1, if single-layer garment grasping
0, if otherwise

Formally, our learning objective is to iteratively minimize the error δt of estimated affordance

Fπ(st,at) to the actual received reward rat(st).

Engineering reward functions is generally challenging when image observations are in-

volved (83). Inspired by (84), we train a binary reward classifier without manual engineering.

The RGB-D images captured during the data collection phase with the labeled reward, which

contains the states of the gripper and gown after the action executed, are used to train a binary

reward classifier.

Robot-garment interaction in simulation and real-world environment

In the simulation environment, we use blendtorch open-source library (85) which integrates

Blender simulation engine with OpenAI Gym (86) and PyTorch. We place a Robotiq 2F-85

26



gripper model in simulation to interact with the environment. Camera parameters in the simula-

tion (e. g., horizontal and vertical viewing angles, focal length, the distance to the garment) are

set to be the same as real ones. The garment is initially hung by two grasping points (one ap-

proximately localized at the collar, one randomly positioned on the garment). Then we release

the latter point so that the garment could fall naturally based on simulated gravity to obtain dif-

ferent garment configurations at each state. While in real-world experiments, various garment

configurations at each state are achieved by either human interfere or robot arm shaking.
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Movie 1. Overview of the dressing pipeline intended for bedridden people. Following the

Certified Nursing Assistant Practice Test guidance, we use a professional training manikin to

simulate a bedridden person, and design the pipeline as following stages: (A) The robot would

navigate to the rail and grasp a hospital gown is naturally hung on a rail. (B) The robot would

fully unfold the garment in the air. (C) The robot would navigate around the hospital bed, lift

up and dress the user’s both arms; (D) The final operation spreads the gown to cover the upper

body.
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Figure 1: Illustration of six grasping/manipulation points (orange dot/heat map) on the garment
to achieve the dressing pipeline in real-world (Top) and simulation environments (Bottom). (A)
The grasping point in stage A for picking up the garment on the rail, chosen randomly near the hanging
point on the segmented garment. (B) Two manipulation points in stage B for fully unfolding the garment
in the air, localized by our proposed active pre-grasp manipulation learner along with their manipulation
orientations and motion primitives. (C) Two grasping points in stage C for upper-body dressing, learned
by pixel-wise supervised neural networks. (D) The last grasping point in stage D for spreading the gown
to cover upper body, chosen randomly near the collar on the segmented garment.

Table 1: Performance of the complete dressing pipeline and its each stage.

Stage A:
Garment Grasping

Stage B:
Garment Unfolding

Stage C:
Robotic-dressing

Stage D:
Garment Spreading Overall

Success Rate
(Independent Trial) 98% 94.5% 91.5% 97.5% −
Success Rate
(Overall Trial) 99% 96.9% 95.3% 98.9% 90.5%
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Figure 2: The framework of the dressing pipeline with sim-to-real garment grasping and manip-
ulation. For each grasping/manipulation policy learning, simulation with learned garment physics using
the proposed contrastive learning approach is leveraged to either generate cost-effective labeled data for
neural network training (stage A, C, D), or learn the proposed pre-grasp manipulation policy directly in
simulation before transferring to real systems (stage B).
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Figure 3: Proposed framework of active pre-grasp manipulation policy learned in a sim-to-real
manner. (Top) Sim-to-real garment physics learning. From simulation only, garment physical similar-
ity is learned in the embedding space with contrastive loss, and the parameter error is learned from the
embedded representations in a supervised manner. Then the learned embedding function is used to mea-
sure physical parameters from real-world garment behavior by comparison to its simulated counterpart.
(Bottom) Active pre-grasp manipulation. Multi-view RGB-D images of the hospital gown are fed into
three fully convolutional networks to respectively infer pixel-wise affordance for three motion primitive
behaviors. The chosen pixel is decoded into pre-grasp actions.
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Figure 4: Results of contrastive learning garment physics. (A) Results of ablation studies. The
left figure shows the 2D t-SNE visualization of the generated simulation properties clustered into 100
classes. The right figure shows the 2D t-SNE visualization of a subset of the corresponding learned
embedding space. Number annotations represent different classes. Embedding points from the same
class are depicted with the same color. For clarity, first 50 classes are shown in this figure and 10 colors
are used iteratively. Stars (near class 6, 43, 48) here represent the embeddings of the three real gowns.
(B) This panel shows the snapshots of the simulated and real garments dropping. The simulated garment
is animated using the physics estimated by our method. (C) Results of comparisons with baselines. The
boxplot pictures MAPE of estimated garment physical properties using the proposed method and five
baselines. The central dot corresponds to the median value of the errors, while the sides of the box refer
to the first and third quartiles of the data. (D) Visual examples of simulated garment from one point of
view, generated using the estimated real garment parameters achieved by the proposed method and five
baselines respectively.
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Figure 5: Results of sim-to-real garment pre-grasp manipulation evaluation against ablations
and state-of-the-art baselines. (Top) Training process of pre-grasp manipulation policy learning on one
hospital gown. This panel shows the comparison results against ablations of active learning and baselines
of sim-to-real garment manipulation policy transfer. (Bottom) Effects of pre-grasp manipulation and
sim-to-real physics learning on garment unfolding (stage B) and dressing (stage C) performance.
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Table 2: Blender Garment Simulation Parameters

Parameter Explanation Search
Space

Cloth Mass (kg) − [0.03,1.5]
Tension Stiffness stiffness of tension springs [1.50,75]
Compression Stiffness stiffness of compression springs [0.15,2.5]
Shear Stiffness stiffness of shear springs [0.15,2.5]
Bending Stiffness stiffness of bending springs [0.15,2.5]
Friction friction with self-contact [0.50,25]
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