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Abstract
This study uses data acquired from three-dimensional discrete element method simulations to reconsider what measure of 
state can be used to predict stiffness in granular materials. A range of specimens with linear and gap-graded particle size 
distributions are considered and stiffness is measured using small amplitude strain probes. Analysis of the data firstly con-
firms that the void ratio, which is typically used as a measure of state in experimental soil mechanics, does not correlate well 
with shear stiffness. However, the empirical expressions developed by Hardin and his colleagues can capture variations in 
stiffness, provided an appropriate state variable is used. The study then highlights that the contribution of individual contacts 
to the overall stiffness is highly variable, depending on both the contact force transmitted and the particle size. Analyses 
explore how the stress transmission both within and between the different size fractions affects the overall stiffness. This 
heterogeneity in stiffness relates to the heterogeneity in the stress transmission amongst the different fractions. By consider-
ing the heterogeneity of stress distribution amongst different particle size fractions, a new semi-empirical stress-based state 
variable is proposed that provides insight into the factors that influence stiffness.

Keywords 3D discrete-element modelling · Microstructure · Gap-graded materials

1 Introduction

The particle size distribution ( PSD ), is a basic character-
istic of a granular material and is known to strongly affect 
its overall mechanical behaviour. The small-strain or elastic 
stiffness, G0 , is important in geotechnical engineering design 
and in the interpretation of geophysical seismic test data. 
Based on studies of clean, natural quartz sands, Hardin & 
Richart [6] proposed the following empirical expression to 
describe the relationship between G0 , the global void ratio, 
e , and the mean effective stress, p′:

where the function F(e) quantifies how the density state 
of the material influences stiffness independently of the 
mean effective stress, and A and n are fitting parameters. 
For smooth elastic spheres, n can be taken as 0.33 follow-
ing Hertzian theory [25]; the larger n values observed in 

experiments on sands may be attributed to finite surface 
roughness and non-spherical particle geometry [4, 25]. 
Referring to Mitchell & Soga [21], a number of expressions 
for F(e) have been proposed in the literature. For both uni-
form and well-graded sands, experimental data support use 
of the form proposed by Hardin & Richart [6]:

where c is an empirical constant which depends upon the 
particle characteristics. Based upon their experimental data, 
Hardin & Richart [6] suggested c = 2.97 for angular sands 
and c = 2.17 for rounded sands. In Eq. (2), e is taken as 
a measure of the material state. A number of researchers 
have highlighted a link between the PSD and the empiri-
cal (fitting) parameters adopted in Eqs. (1) and (2). Payan 
et al. [26], Menq [19], Wichtmann & Triantafyllidis [40] and 
Senetakis et al. [31] have all proposed relationships between 
A and the uniformity coefficient ( Cu).

It has long been accepted that in gap-graded soils finer 
particles may exist in the void space formed by the coarse 
fraction without transmitting stress and several variables 
have been proposed to describe the state of gap-graded soils. 

(1)G0 = AF(e)(p�)n

(2)F(e) =
(c − e)2

1 + e
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DEM-generated data presented in Liu et al. [14] show that 
there can also be a finite number of inactive particles in 
materials that have continuous gradings with a high Cu and 
trimodal materials comprising a mixture of three distinct 
size ranges. In these cases, it is difficult to support the use 
of e as a measure of state that can determine the mechanical 
behaviour. Mitchell (1976) assumed that the finer fraction 
does not contribute at all to stress transmission and proposed 
an intergranular void ratio, eg:

where Gf  and Gc are the specific gravities of finer and coarse 
grains, respectively. Given that Gf  and Gc are equal, Ffiner is 
the proportion of the overall mass (or volume) that is made 
up of finer grains. More recently, researchers including The-
vanayagam [36], Thevanayagam et al. [35] and Ni et al. [22] 
have argued that a valid measure of state should account for 
the proportion of the finer fraction that is active in stress 
transmission. Thevanayagam [36] therefore proposed an 
equivalent void ratio:

where b denotes the proportion of the finer grains that 
actively engage in contacts. Some researchers (e.g. [5, 30] 
proposed that b may depend upon Ffiner and the size ratio 
between the coarse particle diameter ( Dc,10 ) and finer par-
ticle diameter ( df ,50 ). However, contrasting opinions are 
expressed in other studies (e.g. [42] around whether e∗ is an 
appropriate state variable because the contribution of the 
finer fraction to overall stress transmission cannot be meas-
ured experimentally.

Recent experimental research has highlighted the chal-
lenges of directly applying Eqs. (1) and (2) to gap-graded 
soils. Wichtmann et al. [39] proposed correlations amongst 
c , n , A and Ffiner. Yang & Liu [41] highlighted the limitations 
of using Eq. (1) with gap-graded materials and proposed a 
relationship between A and Ffiner , i.e. A = 95.39e−Ffiner . Payan 
et al. [27] also observed a systematic variation in A with 
Ffiner (noting that they use a different functional form for 
F(e) ). Liu & Yang [16] indicated that curve fitting should 
be used to find A for a given Ffiner , and that at a given Ffiner , 
A depends on the difference in size between the coarser and 
finer fractions.

Working with discrete element method ( DEM ) data, 
Otsubo [23] proposed a mechanical void ratio, em , which 
only considers active grains:

(3)eg =
e
(
Gf − GfFfiner + GcFfiner

)
+ GcFfiner

Gf

(
1 − Ffiner

)

(4)e∗ =
e + (1 − b)Ffiner

1 − (1 − b)Ffiner

(5)em =
Vv + Vina

Va

where Vv is the volume of voids, Vina is the volume of inac-
tive particles (i.e. particles with no or 1 contact which do 
not transmit stress), and Va is the volume of the remaining 
“active” particles. The definition of em is similar to that of 
eg (Eq. (3) above) in that both state variables em and eg con-
sider inactive particles as part of the void space. Consider-
ing a number of gap-graded DEM specimens, Otsubo et al. 
[24] found a correlation between em and G0 that holds over a 
range of Ffiner values, suggesting that em may be a state vari-
able that better correlates with G0 , compared to e.

Theoretical approaches have applied to derive general 
expressions for G0 . Chang & Liao [2] proposed an Effec-
tive Medium Theory ( EMT ), which developed a relationship 
between G0 and both the granular material properties and the 
stress level by assuming a uniform strain field (kinematic 
assumption). Also adopting the kinematic assumption pro-
posed by Chang & Liao [2], Otsubo [23] proposed that the 
stiffness of a granular material is strongly associated with 
Z∕(1 + e) so that:

where vp and Gp are the particle Poisson’s ratio and parti-
cle shear modulus, respectively. The coordination number 
Z , is the average number of contacts per particle. Otsubo 
et al. [24] found that for bimodal soil mixtures, the shear 
wave velocity, Vs correlates more strongly with the ratio 
Zm∕(1 + em) rather than Z∕(1 + e) . Equation (6) is based 
upon a mean response of the material and does not consider 
the details of the distribution of force amongst the different 
contacts. Following Hertzian contact mechanics, the stiff-
ness of individual contacts depends upon the contact force.

In Eqs.  (5) and (6), for gap-graded soils both active 
coarse and finer particles are considered equivalent in the 
calculation of Zm and em . However recent studies [14, 33, 
34]) have shown that active coarse and finer particles do 
not make equivalent contributions to stress transmission. 
Besides, other communities have studied the granular mix-
tures. Voivret et al. [38] have studied highly polydisperse 
packings and stated that the strong force chains tend to pass 
through the larger particles, with the smaller particles acting 
to support these strong force chains. Jongchansitto et al. [11] 
highlighted the significant effect of particle size and particle 
number ratios on stress transmission for granular compos-
ites. Shaebani et al. [32] also showed a strong relationship 
between microscale quantities and their macroscale counter-
parts for granular assemblies. Mean packing properties such 
as average coordination number may be strongly associated 
with its stiffness tensor.

(6)
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5(2 − vp)

⎡⎢⎢⎣

√
3√

2�(1 − vp)

⎤⎥⎥⎦

2∕3

G2∕3
p

p
�1∕3

�
Z

(1 + e)

�2∕3



A semi‑empirical re‑evaluation of the influence of state on elastic stiffness in granular…

1 3

Page 3 of 22    56 

Reflecting on the lack of consensus amongst prior 
research studies, and drawing on recent research into stress 
transmission in granular mixtures, this contribution aims to 
reassess what state variable can be used to determine G0 . In 
contrast to previous studies, a range of gradations including 
both continuous and gap-graded specimens are considered. 
The paper firstly describes the DEM simulation approach 
adopted, prior to describing how the data were analysed and 
demonstrating how regression analyses were used to explore 
which state variable determines G0 . Then the fundamental 
mechanisms that underlie the link between the PSD shape 
and G0 are explored by quantifying the contribution of indi-
vidual contacts to G0.

2  Numerical Simulation Approach

The DEM simulations were conducted on cubic specimens 
using a modified version of the open-source molecular 
dynamics code Granular LAMMPS [28]. Periodic boundary 
conditions were employed to reduce boundary effects (e.g. 
[33, 37]. and so no gravitational body force was applied. 
A simplified Hertz-Mindlin contact model was used with 
a particle shear modulus of Gp = 29.17 GPa and a particle 
Poisson’s ratio of �p = 0.2 following Huang et al. [8]. These 
parameters are similar to the elastic properties of quartz and 
have been used in a number of prior DEM studies (e.g. [8].

The grains were initially placed randomly in non-con-
tacting positions using an in-house placement code, and 
then subjected to periodic isotropic compression to a target 
mean effective stress (p′) following [3]. Similar to the data 
presented in [14], specimen sizes of up to 636,871 parti-
cles were used to ensure representative element volumes 
were attained. Three p′ values (i.e. 100 kPa, 500 kPa, 1000 
kPa) were applied. Once the target p′ value was attained, a 
relaxation stage was performed in order to reach a stable, 
quasi-static condition. It was confirmed that the coordina-
tion number, Z (the average value of contacts per grain), 
remained stable (i.e. any variation was less than 0.001) for 
approximately 500,000 simulation cycles prior to terminat-
ing the compression stage of the simulations. For all simula-
tions presented, the unbalanced force ratio was lower than 
0.001 at this stage [15].

Following Shire et al. [33], to investigate density effects, 
three inter-particle friction coefficients (�) were used during 
isotropic compression: (1) “dense” specimens were gener-
ated using � = 0.001; (2) “medium-dense specimens” were 
generated using � = 0.1; (3) “loose” specimens were gen-
erated using � = 0.3. This approach to specimen genera-
tion allows for a consistent generation of different packing 
configurations. However, the loose and dense specimens 
generated are not directly equivalent to physical labora-
tory specimens with relative densities of 0% and 100% 

respectively. Following isotropic compression, � was set to 
be 0.3 and additional equilibration cycles were applied. Tri-
axial compression simulations with a constant radial stress 
and small increments in the axial strain were then carried out 
to explore the elastic behaviour of granular materials. While 
the simulation approach considers a highly ideal scenario, it 
allows for observation of the fundamental link between G0 
and the PSD as particle are spherical and all specimens are 
subjected to an isotropic stress condition.

Figure 1 summarizes the gradings considered. Some of 
these gradations were also considered in [14]. Five “linear” 
specimens whose PSDs plot as a straight line (on the semi-
log axes) with Cu values ranging between 1.2 and 4.8 are 
presented in Fig. 1a. The minimum particle diameter, dmin , 
used in each linear specimen was 0.076 mm(i.e. a fine sand), 
the maximum particle diameter increased with increasing 
Cu . For the bimodal gap-graded specimens (Fig. 1b), SR 
(i.e. Dc,50∕df ,50 ) values of 3.7, 8.4, 14.5 and 18.1 were con-
sidered, where Dc,50 and df ,50 are the median diameters of 
the coarse and finer fractions, respectively. The dmin values 
were also 0.076 mm so that the maximum diameters, Dmax , 
increase with increasing SR. Ffiner values of 5%, 10%, 15%, 
20%, 25%, 30%, 35% and 50% were considered. The SR 
and Ffiner are used to identify each specimen, for example, 
SR14.5Ffiner50 indicates a bimodal specimen with SR = 14.5 
and Ffiner = 50%. Trimodal specimens were considered in 
the study; these specimens are characterised by a Ffiner (by 
mass), a Fcoarser and an additional Fint (Fig. 1(c)). Each tri-
modal specimen had a uniform finer particle diameter of 
0.076 mm , an intermediate particle diameter of 0.425 mm 
and a coarse particle diameter of 0.985 mm . These speci-
mens are named TriA_B , where A represents the specimen 
Ffiner and B represents the specimen Fint so that Tri10_60 
indicates a trimodal specimen with Ffiner = 10% and a Fint 
= 60%. Overall, the study considered 5 linear PSDs , 32 
bimodal gap-graded PSDs , and 22 trimodal gap-graded 
PSDs.

The e , em, Z and Zm data for the linear specimens are 
presented in Fig. 2. As illustrated in Fig. 2a, similar to the 
observation by Youd [44], who considered experimentally 
measured maximum and minimum void ratios, the void 
ratios of the loose and dense specimens decrease with 
increasing Cu , and a similar trend can be observed for em . 
The offsets between the e and em data show that even for 
specimens with a continuous grading, a finite proportion 
of the particles may not be active in stress transmission; 
the offset is greater for the loose specimens and increases 
with increasing Cu . Figure 2b indicates that Z decreases with 
increasing Cu , while, for a given density level, Zm does not 
vary much with Cu.

Figure 3 presents the e , em, Z and Zm data for the bimodal 
gap-graded specimens. The observed trends in the varia-
tion of e and em with Ffiner differ for the case of SR = 3.7 in 
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comparison to the data for SR of 8.4 and 18.1; this can be 
explained by the fact that only when the SR > 6.5 can the 
finer grains in a purely bimodal material fit inside the voids 
formed by the coarse grains. Referring to Fig. 3a, for SR 

= 3.7 both the loose and dense e values initially decrease 
with increasing Ffiner and achieve a global minimum when 
Ffiner≈ 20%. When Ffiner ≥ 20% , both the loose and dense e 
values exhibit a slight increase with increasing Ffiner . The 

(a) (b)

(c)

Fig. 1  Particle size distributions: a Linear specimens; b Bimodal gap-graded specimens with increasing SR; c Trimodal gap-graded specimens
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offset between the e and em values reduce with increasing 
Ffiner . Different trends are observed when SR ≥ 8.4; Fig. 3b, 
c show that the loose and dense e values initially reduce with 
increasing Ffiner to attain a global minimum and then sub-
sequently increase with increasing Ffiner . These data agree 
with prior experimental observations (e.g. [45]. In contrast, 
the em values initially increase with increasing Ffiner before 
exhibiting a sharp drop indicating a marked change of soil 
fabric; subsequently em increases with increasing Ffiner.

The variation in Z with Ffiner for SR = 3.7 is distinct from 
the trends observed for the other SR values. For SR = 3.7, 
Z decreases to attain a local minimum when Ffiner ≈ 15% , 
and subsequently increases with further increases in Ffiner

(Fig. 3d). However, for a given packing density level, there is 
little variation in Zm with Ffiner . Figure 3e, f show that when 
SR ≥ 8.4 initially, the Z values reduce to a very low value, 
so that Z ≈ 0.05, indicating that a large number of inactive 
particles. Contrasting the Z values in Fig. 3e and f, with the 
e values in Fig. 3b and c, the change in Z is much steeper 
than the change in e once the finer grains start to engage in 
stress transmission. For all three SR values considered, the 

Zm values show little variation with Ffiner in either the dense 
or loose specimens.

3  Stiffness measured in small strain probes

The shear stiffness, G0, was measured from triaxial compres-
sion tests with a constant effective radial stress, �′

r
 , where a 

small increment in axial strain ( �a ≤ 5 × 10
−6 ) was applied 

so that the specimen response could be considered isotropic 
and elastic. G0 is calculated as:

where �q is the increment in deviatoric stress, and ��e
q
 , the 

incremental elastic deviatoric strain is:

��e
z
= �a is the applied strain in the z direction, ��e

x
 and 

��e
y
 = �r are the incremental strains in the x− and y− direc-

tions, respectively.
To illustrate how G0 was determined, data for a repre-

sentative specimen are presented in Fig. 4; the linear speci-
men considered has Cu = 1.2, ��

3
= 1000 kPa and is in the 

medium-dense density condition. Figure 4a illustrates the 
linear stress–strain behaviour observed for the applied small 
increment in axial strain ( �a ≈ 5 × 10

−6 ). Figure 4b then 
shows the relationship between the deviatoric strain �q and 
G0 , confirming a constant G0 for this increment in strain.

4  Linear specimens

Figure 5a shows the relationship between G0 and e for the 
linear specimens at ��

3
= 500 kPa . A state-dependent behav-

iour is evident; for a given Cu , G0 decreases systematically 
with increasing e . In line with the experimental research 
highlighted above, the data indicate that the relationship 
between G0 and e is dependent upon Cu ; the datasets for 
each Cu are distinct and the data points shift to the left as Cu 
increases. There is not a unique overall relationship between 
G0 and e . In contrast, Fig. 5b shows a relatively good lin-
ear correlation between em and G0 , unifying the data for all 
5 Cu values considered. Figure 5c shows that, in line with 
EMT  , a (weak) correlation exists when G0 is plotted against 
Z∕(1 + e) . However, Fig. 5d shows that Zm∕(1 + em) can 
better capture the variations in G0 amongst the linear speci-
mens. The same conclusion was drawn for the data obtained 
when �′

3
 = 100 kPa and 1000 kPa.

(7)G0 =
�q

3��e
q

(8)��e
q
=

2

3

[
��e

z
− 0.5

(
��e

x
+ ��e

y

)]
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Fig. 2  Variations of (a) e , em and (b) Z , Zm with Cu and density for 
linear specimens
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5  Bimodal specimens

Figure 6 presents the variation in G0 with e for three bimodal 
SRs (i.e. SRs of 3.7, 8.4, 18.1) when p′ is 500 kPa . As before 
the trends observed when SR = 3.7 differ from the cases 
where SR = 8.4 and 18.1. WhenSR ≥ 8.4 , the G0 values 
vary with both e and Ffiner. As Ffiner increases, three distinct 
responses in G0 can be observed. When 5% ≤ Ffiner ≤ 20% 
(data plotted in blue), the G0 values exhibit similar sensitiv-
ity to changes in e and the data shift towards the left with 
increasingFfiner . When20% ≤ Ffiner ≤ 35% , (data plotted in 
orange), the G0 values are much more sensitive to changes 

ine . When Ffiner is approximately 50%, there is a notice-
able reduction in the sensitivity of G0 toe . These three cat-
egories identified ( 5 ≤ Ffiner ≤ 20%,20 ≤ Ffiner ≤ 35% and 
Ffiner > 35%) agree with the fabric classification boundaries 
proposed in Shire et al. [33] who considered the distribu-
tion of stress amongst the finer and coarser fractions. The 
agreement indicates that the distribution of stress amongst 
the different size fractions may have a significant influence 
on G0 in the case of gap-graded soils. As before, similar pat-
terns are observed for �′

3
 = 100 kPa and 1000 kPa.

Figure 7 shows the performance of the four state variables 
considered in Fig. 5 for the bimodal specimens with SR of 
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8.4 at �′
3
 = 500 kPa. Figure 7a indicates no clear correla-

tion between e and G0 . In general, the G0 − e relationship 
observed for both linear and bimodal gap-graded soils agrees 
with the prior DEM and experimental studies for granular 
materials. Figure 7b indicates some correlation between em 
and G0 , however the R2 for this linear fit is approximately 
0.80, this may be attributed to the inability of em to differ-
entiate contributions by particles or contacts transmitting 
different amounts of stress. Again, the correlation is poor 
where the original EMT ratio, i.e. Z∕(1 + e) is used (Fig. 7c). 
In contrast, the ratio Zm∕(1 + em) gives a reasonable linear 
correlation, with a R2 of 0.87.

Figure 8 explores the applicability of Eq. (1) to bimodal 
gap-graded soils of SR of 8.4. In Fig. 8a the parameters A 
and c are identified by regression analysis using e , and taking 
n = 0.33; the correlation is very poor ( R2 ≈ 0.46). However, 
Fig. 8b shows that if the ratio of Zm∕(1 + em) is used in lieu 
of e in Eq. (2), (still assuming n = 0.33), a good fit to the 
data is attained, with R2 ≈ 0.92. This result indicates that the 
ratio Zm∕(1 + em) may be a better state variable to predict 
G0 than e.

Data for the trimodal specimens are presented in Fig. 9. 
The data on Fig. 9a confirm that for soil comprising a mix-
ture of distinct particle sizes, e does not correlate well with 
G0 . In contrast, Fig. 9b shows a linear correlation between 
Zm∕(1 + em) and G0 with R2 ≈ 0.84. However, comparing 
the data on Fig. 5d with the data on Figs. 7d and 9b, the 
ratio Zm∕(1 + em) gives a measurably stronger correlation 
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Fig. 6  State-dependent behaviour for bimodal specimens with increasing SR (500 kPa ): G0 versus e when (a) SR = 3.7; b SR = 8.4; c SR = 18.1
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for the linear specimens than for the bimodal and trimodal 
specimens.

Figure 10 combines data from all of the linear, bimodal 
and trimodal specimens considered. The poor predictive 
capacity of Eqs. (1) and (2) is observed when e is taken 

as the state variable (Fig. 10a). In contrast, the reaspon-
able fit to the data can be attained by subsituting the ratio 
Zm∕(1 + em) for e in Eq. (2). These data support the use of 
the functional forms presented by Hardin & Richart [6], 
however the controlled, ideal dataset generated here con-
firm that extrapolating the correlation of G0 with e beyond 
the continuous PSDs that they considered is not appropriate 
for a unified study.

6  Heterogeneity of Contributions 
to Stiffness

If we accept the state variable that determines the stiffness 
of a soil is Zm∕(1 + em) , we are not considering the fact, 
apart from the case of a lattice packing of uniform spheres, 
each contact has a different stiffness, and each particle trans-
mits a different amount of stress. For the relatively simple 
smooth frictional spheres with uniform elastic properties 
that are considered here, the contact stiffness depends upon 
the force transmitted and the radii of the two transmitting 
particles [7, 10]). A measure of state such is as Zm∕(1 + em) 
assumes either (i) each active contact and each active par-
ticle has equal weight or (ii) that the average properties are 
representative. However, these assumptions may be appro-
priate for linear specimen and not for gap-graded soils. This 
could partially explain the reason why the ratio Zm∕(1 + em) 
gives a measurably stronger correlation for the linear speci-
mens than for the bimodal and trimodal specimens. Here 
we challenge the general applicability of any measure that 
considers Zm and em by exploring how the particle size dis-
tribution influences the distribution of stress amongst the 

Fig. 8  Performance of state variables for bimodal specimens within Hardin’s equation: a e ; b Ratio Zm∕(1 + em)
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Fig. 9  Performance of state variables for trimodal specimens (p′ = 
500 kPa ): G0 versus (a) e ; b Zm∕(1 + em)
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active particles and the distribution of stiffness amongst the 
force-transmitting contacts, especially for gap-graded soils.

7  Distribution of Contact Stiffnesses

A Hertzian contact model is used here and so the normal 
(incremental) stiffness ( kN) depends on the diameters of the 
contacting particles and the contact force, as follows:

where � is the contact overlap and R∗ = (1∕R1 + 1∕R2)
−1 , R1 

and R2 are the radii of the contacting particles. The equiva-
lent Young’s modulus of the two contacting particles,E∗

p
 is:

where Ep1 and Ep2 are the Young’s moduli of the contacting 
particles, and vp1 and vp2 are the Poisson’s ratios of the con-
tacting particles. The tangential or shear contact stiffness is:

where G∗
p
 , the equivalent shear modulus of the two contact-

ing particles is:

and Gp1 and Gp2 are the shear moduli of the contacting 
particles and the radius of the circular contact are a =

√
R∗�.

(9)kN = 2E∗
p
R∗0.5�0.5

(10)E∗
p
=

(
1 − v2

p1

Ep1

+
1 − v2

p2

Ep2

)−1

(11)kT = 8G∗
p
a

(12)G∗
p
=

(
2 − vp1

Gp1

+
2 − vp2

Gp2

)−1

Figure 11a is a scatter plot of the normal stiffness, kN , val-
ues versus the normal force value for each contact point for 
the dense linear specimens. In all cases, the contact normal 
stiffness increases with increasing normal force, however 
there is a wide range of stiffness values and there is no clear 
difference amongst the linear specimens considered here. 
Figure 11b shows the cumulative distribution of the normal 
stiffnesses, while Fig. 11c shows the data normalised by the 
mean normal stiffness respectively. While no significant 
differences can be identified amongst these specimens, the 
range of kN values increases with increasing Cu.

Figure 12a–c are scatter plots of the kN values versus 
the normal force for each contact point for representative 
bimodal gap-graded specimens with SR = 8.4, and with 
Ffiner of 10%, 25% and 50% respectively. There is a clear 
difference between the three different contact types in these 
specimens. For all three Ffiner values considered, the maxi-
mum contact force between two coarse particles ( C − C ) is 
significantly larger than the maximum contact force between 
a coarser and finer particle ( C − F ) which in turn is larger 
than the maximum contact force between two finer parti-
cles ( F − F ). Each contact type exhibits a different relation-
ship between normal force and normal stiffness, so that, at a 
given normal force, the C − C contacts have the highest nor-
mal stiffness and the F − F contacts have the lowest contact 
stiffness. This heterogeneity reflects a complex interdepend-
ency of force and stiffness; kn depends upon on the effective 
radius. However, assuming that there is no generation and 
no loss of contacts when a small increment in uniform strain 
is applied, the increase in force at the stiffer contacts will 
be larger. Figure 12d presents the cumulative distribution, 
by number of contacts, of the normal stiffness for the dense 
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Fig. 10  Performance of state variables for linear, bimodal and trimodal specimens: a e ; b Ratio of Zm/(1 + em)
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bimodal specimens with SR of 8.4; a distinct behaviour can 
be observed between the underfilled specimens (i.e. Ffiner of 
5%, 10%, 15% and 20%) and overfilled conditions ( Ffiner of 
25%, 30%, 35% and 50%). The significantly higher contact 
stiffness values when Ffiner < 20%, reflect the large stiffness 
values associated with the C − C contacts. At Ffiner = 20%, 
the cumulative distribution indicates a mix of small con-
tact stiffnesses and large contact siffnesses. Then for Ffiner ≥ 
20%, there is a more continuous distribution showing nor-
mal stiffness, while these finer related contacts show rela-
tively small normal stiffness values in the overfilled case. 

Figure 12e presents the results for the loose condition with 
similar trends being identified. These data highlight the 
fact that contacts between particles of differenct sizes have 
measurable differences in stiffness; this has not always been 
considered in attempts to develop frameworks to predict G0.

7.1  Stiffness matrix approach to consider 
contributions of contacts to overall stiffness

While looking at the distribution of stiffness values amongst 
the contacts gives useful insight into the system, these values 

Fig. 11  Normal stiffness characteristics for linear specimens: a Normal stiffness versus normal force; b Cumulative distribution of normal stiff-
ness; c Cumulative distribution of normalised normal stiffness
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cannot be directly related to the overall shear stiffness and 
the orientation of the contacts relative to the overall defor-
mation field is not considered. Contacts in a physical gran-
ular material form a relatively complex network and the 
properties of the network edges depend upon the contact 
orientations, the effective radii, and the transmitted contact 
forces. These characteristics cannot be directly captured 
considering only the contact stiffness values. To further 

advance our understanding we used a stiffness-matrix based 
approach to consider the contribution of each contact to the 
global stress field when a uniform strain field is assumed 
to describe the motion of all the particles. In this approach, 
following the procedure outlined in Itasca Consulting Group 
[9], a local stiffness matrix kab is defined for the contact 
between particles a and b . For clarity, a representative 12 
× 12 element stiffness matrix in the case where the contact 
normal is orientated along the x− axis is given here as:

(13)kab,nx =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

KN

0 KT

0 0 KT
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0 R∗KT 0

0 symmetry

0 R∗2KT

0 0 R∗2KT

−KN 0 0

0 −KT 0

0

0
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0
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0
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Fig. 12  Normal stiffness characteristics for bimodal specimens with SR = 8.4 : a Ffiner of 10%; b Ffiner of 25%; c Ffiner of 50%; d Cumulative dis-
tribution of normal stiffness in the dense condition; e Cumulative distribution of normal stiffness in the loose condition
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The increment in the contact force vector induced by an 
increment in displacement of the two grains is given by:

where the incremental displacements of the two contacting 
particles are given by 
�xab =

[
Δxa

1
Δxa

2
Δxa

3
Δ �a

1
Δ�a

2
Δ�a

3
Δxb

1
Δxb

2
Δxb

3
Δ �b

1
Δ�b

2
Δ�b

3

]
 , 

and the vector �f ab gives both the increments in forces and 
moments at the interaction between particles a and b.

Referring to Thornton [37], in a periodic cell, if the strain 
rate tensor applied to the periodic cell is given by �̇�ij , then in 
a timestep Δt the incremental displacement of particle a due 
to the global strain field, Δxa

i
 is Δxa

i
= �̇�ijx

a
i
Δt , where xa

i
 is 

the vector describing the location of particle a . In a similar 
manner, if an increment of strain Δ�ij is applied to the sys-
tem, the incremental displacement is given by:

For simplicity, supposing that a deformation is small 
and assuming that the increment of branch vector Δlj ≈ 0 , 
ΔV ≈ 0 , and there are no newly generated contacts. If each 
contact experiences an incremental force, Δf c

i
 , then the 

resulting increment in stress is given by:

In engineering or Voigt notation the elasticity tensor Dij 
is given by:

(14)�f ab = kab�xab

(15)Δxa
i
= Δ�ijx

a
i

(16)Δ�ij =
1

V

Nc∑
c=1

Δf c
i
lc
j

This is a symmetric tensor and only the upper right-hand 
side of the tensor is given here. Here the stiffness matrices 
for each contact were determined from the data generated 
in the DEM simulations. The particle displacements due a 
specified Δ�ij were determined from Eq. (15) and the incre-
ment in force for each contact was determined using Eq. (14) 
before applying Eq. (17) to determine the increment in stress 
and hence elements of the stiffness matrix.

Based on the uniform strain approach assumption, the 
relative contributions of the different contact types to the 
stiffness can be estimated. Firstly, the overall stiffness Dall

ij
 is 

estimated, then the contribution of each of the networks can 
be isolated: CC contribution: 

DCC
ij

Dall
ij

 ; CF contribution: 
DCF

ij

Dall
ij

 ; FF 

contribution: 
DFF

ij

Dall
ij

.

Based up on the Love-Weber formula:

For simplicity, supposing that a deformation is small and 
assuming that Δlj ≈ 0 , ΔV ≈ 0 , and no newly generated 
contacts:

(17)

⎡⎢⎢⎢⎢⎢⎢⎣

Δ�11

Δ�22

Δ�33

Δ�23

Δ�31

Δ�12

⎤⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎣

D11 D12

D22

D13 D14

D23 D24

D15 D16

D25 D26

D33 D34

D44

D35 D36

D45 D46

D55 D56

D66

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

Δ�11
Δ�22
Δ�33
2Δ�23
2Δ�13
2Δ�12

⎤⎥⎥⎥⎥⎥⎥⎦

(18)

�all
ij

=
1

V

∑Nc

c=1
filj =

1

V

(∑NCC
c

cCC=1
filj +

∑NCF
c

cCF=1
filj +

∑NFF
c

cFF=1
filj

)

(a) (b)

Fig. 13  Comparison between probe and matrix methods for linear specimens with different Cu values: a G0 values for these two methods when p′ 
is 500 kPa ; b Normalized stiffness of G500kPa

0
∕G100kPa

0
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For example, a strain field Δεij > 0,Δεother = 0 is imposed 
to the system.

In this case, based on elastic theory, G0 can be calcu-
lated as 0.25 × (D13 + D31) , where D13 and D31 are defined 
in Eq. (17). This stiffness matrix method therefore estimates 
the G0 over the whole specimen. And the stiffness contribu-
tion of each fraction (i.e. coarse and finer fraction) can also 
be estimated. Figure 13 compares the stiffness values from 
the probe and the matrix method. For the dense specimens, 
as shown in Fig. 13a, the probe and the matrix methods 
give similar trends when the variation in G0 with Cu is con-
sidered. However, the stiffness values obtained from the 
matrix method consistently exceed those obtained from the 
probe method. This may be attributed to the uniform strain 
assumption underlying the stiffness matrix approach. Yim-
siri & Soga [43] and Magnanimo et al. [17] amongst others 
have highlighted the inability of EMT  to accurately cap-
ture the variation in stiffness amongst soil specimens. The 
limitations of this kinematic assumption [12, 13, 18] likely 
explain the overestimation of the stiffness values. However, 
upon normalization, the matrix approach predicts the same 
state-dependency stiffness as observed in the data acquired 
using the probe method. Referring to Fig. 13b, if the G0 
data obtained at 500 kPa are normalized by the data at 100 
kPa , the responses are equivalent for both probe and matrix 
methods.

(19)Δ�all
ij

=
1

V

⎛
⎜⎜⎝

NCC
c�

cCC=1

Δfilj +

NCF
c�

cCF=1

Δfilj +

NFF
c�

cFF=1

Δfilj

⎞
⎟⎟⎠

(20)Dall
ij

=
Δ�all

ij

Δ�ij

Figure 14a shows the variation in the G0 values from both 
probe and matrix methods for the bimodal specimens with 
SR = 8.4. As in the case of the linear specimens Gmatrix

0
 values 

are consistently larger than the G0 data obtained using the 
probe method. However, G0 and Gmatrix

0
 values exhibit simi-

lar trends. This is confirmed in Fig. 14b. Figure 14b shows 
that at a givenFfiner , the G0 values at 500 kPa normalized by 
the G0 values at 100kPa , i.e. G500kPa

0
∕G100kPa

0
 , obtained using 

both methods are very similar. Both approaches predict very 
similar trends. Overall, while this matrix method overesti-
matesG0 , it can capture the variation in G0 with state and the 
key factors that contribute to this overall stiffness.

7.2  Heterogeneity of stress amongst particles

To link the stiffness distribution to the particle-scale stress 
distribution, two approaches were used to quantify the distri-
bution of stress amongst the different particle sizes in these 
specimens. In the first, particle-based approach, the overall 
stress tensor can be determined from the stress tensors for 
the individual particles as:

where �′
ij
 is the effective overall stress tensor for the speci-

men, Nt is the total number of stress-transmitting particles, 
�
a

ij
 is the average stress tensor within particle a , and Va is the 

volume of particle a (e.g. [29]. The contribution of an indi-
vidual particle, a , to the overall stress, �̂a

ij
 is then given by:

(21)��
ij
=

1

V

Nt∑
a=1

(
�
a

ij
Va

)

(22)�̂a
ij
=

�
a

ij
Va

V

(a) (b)

Fig. 14  Comparison between the probe and matrix methods for bimodal gap graded soils (p′ = 500 kPa ): a SR of 8.4; b Normalized stiffness of 
G500kPa

0
∕G100kPa

0
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In the second, contact-based approach, the contact force 
data were used to calculate the stresses in the virtual speci-
men so that the 3D stress tensor is given by:

where Nc,V is the total number of contacts in volume V  , f c
i
 

is the force vector for contact c and lc
j
 is the branch vector, 

i.e. the vector joining the centroids of the particles which 
contact at c (e.g. [1]. The contribution of contact c to the 
overall stress,�̂c

ij
 is:

Figure 15a shows the PSDs for all the linear specimens 
considered, where the particle diameter is normalized by the 
maximum particle size, i.e. dp/dp

M
 . By adopting Eq. (22), the 

cumulative distribution of each particle to the macro-scale 
mean effective stress ( �′

ij
 ) is presented in Fig. 15b, defined 

as  PSDstress. By adopting Eq. (23), the cumulative distribu-
tion of the contribution of each contact to macro-scale mean 
effective stress ( �′

ij
 ), CSDstress is presented in Fig. 15c. The 

x– axis is the branch vector length normalised by the 

(23)��
ij
=

1

V

Nc,V∑
c=1

f c
i
lc
j

(24)�̂c
ij
=

f c
i
lc
j

V

maximum branch vector identified for the relevant simula-
tion, |lc|∕|||l

pc

M

|||.
In the stiffness matrix approach, the overall stiffness is 

determined from a summation over all of the contacts, and 
so the contribution of each of contact can be isolated. These 
data can be used to plot the cumulative distribution of the 
contribution of contacts with different branch vector lengths 
to the overall stiffness, CSDstiffness . By adopting Eq. (20), the 
cumulative distribution of the contribution of each contact 
to the overall stiffness is presented in Fig. 15d. For the linear 
specimens, these cumulative distributions are clearly linked 
to the PSDs ; as the Cu increases the distribution becomes 
broader. Comparing Fig. 15d to Fig. 15a–c, it is clear that 
there are clear similarities between the shapes of CSDstiffness 
and its PSD , PSDstress , and CSDstress . This suggests that the 
contribution of each individual contact to the overall stiff-
ness relates to its contribution to the overall stress. In addi-
tion, the stiffness transferred by each individual particle 
may also be proportional to its volume fraction for linear 
specimens.

Data equivalent to those shown in Fig. 15 are presented 
in Fig. 16 for the gap-graded specimens. Figure 16a–d pre-
sent the results for the SR of 3.7, while Fig. 16e–h show 
the results for the SR of 8.4. The contribution of contacts 
in each of the three sub-networks in a bimodal specimen 

(a) (c)

(b) (d)

Fig. 15  Typical results for linear specimens under the densest condition: a PSD plots; b PSDstress plots; c CSDstress plots; d CSDstiffness plots
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Fig. 16  Typical results for bimodal specimens under the densest condition for SR = 3.7 : a PSD plots; b PSDstress plots; c CSDstress plots; d 
CSDstiffness plots; for SR = 8.4 : e PSD plots; f PSDstress plots; g CSDstress plots; h CSDstiffness plots
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Fig. 17  Stiffness distribution when p′ = 500 kPa for SR = 3.7 : a in the dense condition; b in the loose condition; For SR = 8.4 : c in the dense 
condition; d in the loose condition

(a) (c)

(b) (d)

Fig. 18  Representative results for trimodal specimens when Ffiner = 25% : a Stress distribution of Tri 25_15; b Stiffness distribution of Tri 25_15; 
c Stress distribution of Tri 25_45; d Stiffness distribution of Tri 25_45 (D, M and L denotes dense, medium-dense and loose conditions)
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can also be isolated. Figure 17a and b show that for the SR 
of 3.7, the contribution of the F − F contacts to the overall 
stiffness is negligble when Ffiner ≤ 15% , and subsequently 
increases with increasing Ffiner , while the contribution of 
the C − C contacts to the overall stiffness decreases with 
increasing Ffiner . In contrast, the contribution from the C − F 
contacts increases significantly and reaches approxmately 
65% when Ffiner is 50%. For the SR of 8.4 (Fig. 17c, d), a dif-
ferent behaviour is observed when Ffiner ≤ 20% , where both 
the F − F and C − F contacts have a negligible contribution 
to the overall stiffness at all packing densities. Figure 17c 
and d also indicates that the C − F have a contribution of 
80% to the overall stiffness when Ffiner is approximately 
50%. These stiffness distribution data clearly indicate that 
different classes of contact make a distinct contribution to 
the stiffness, which again supports the idea that particle 
scale stress distribution may significantly affect the macro 
scale stiffness of gap-graded soils. These data put into doubt 
whether Zm and em are relative measures of state to predict 
the behaviour of mixtures, since these two parameters con-
sider all active contacts and grains as to be equivalent.

For the trimodal specimens, there are six different types 
of contact: coarse-coarse contacts ( C − C ); coarse-inter-
mediate contacts ( C − I ); coarse-finer contacts ( C − F ); 
intermediate-finer contacts ( I − F ); intermediate-interme-
diate ( I − I ); finer-finer contacts ( F − F ). Figure 18a and c 
shows the distribution in the proportion of stress transmit-
ted by these different contact classes for sample Tri25_15 
and Tri25_45 , respectively. While Fig. 18b and d illustrates 
the distribution of the contribution to the overall stiffness 
amongst the different contact types for these two sam-
ples. Differences between CSDstress and CSDstiffness can be 
observed. For instance, for Tri25_15 in the dense condition, 
the C − F contacts transfer approximately 34% stress while 
the contribution of the C − F contacts to the overall stiffness 
is approximately 66%. A significant density effect is also 
observed for both the Tri25_15 and Tri25_45 specimens in 
considering both the stress and stiffness data. This strong 
density effect is similar to that observed for bimodal gap-
graded soils, which may be one of the key characteristics 
for gap-graded soils.

7.3  Measure of state that accounts 
for heterogeneity in stress transmission

As discussed above, active finer and coarse particles are 
given equal weighting in the calculation of em , while refer-
ring to Fig. 12, the C − C contacts are much stiffer. Accept-
ing that the general framework proposed by Hardin & Rich-
art [6] is valid, we empirically explored a measure of state 
in which the contribution of different contacts or particles 
is weighted. Identifying a contact-based measure of state 
is nontrivial, contacts are not associated with a volume. 

Consequently, we focussed on developing a rational measure 
of state that weights the contribution of the particles by the 
stress they transmit by adopting the stress reduction factor 
� proposed in Shire et al. [33]. Following Shire et al. [33], 
this factor quantifies the stress contribution amongst the dif-
ferent particle size fraction and it is used here to weight the 
contribution of the finer or coarse fraction in a modified 
void ratio, we term e� . When � ≤ 1 the relative contribution 
of finer fraction is lower than its volume fraction, the stress 
reduction factor of finer fraction, �f  can be then estimated 
as below:

(25)p
�

finer
= �f p

�

(a)

(b)

Fig. 19  Variation in stress reduction factors with Ffiner for bimodal 
specimens: a SR of 3.7; b SR of 8.4
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The p′
finer

 is the effective stress transferred by the finer 
fraction, np is specimen porosity, Np,finer is the number of 
active finer particles. The new measure of state is then given 
as:

(26)p
�

finer
=

(1 − np)∑
Np,finer

Va

Np,finer�
a=1

(paVa)

where the Vt is the total volume of specimen, the Vc is the 
volume of active coarse grains, the Vf  is the volume of active 
finer grains. While when �f ≥ 1 , as illustrated in Shire et al. 
[33], the material is overfilled, the stress contribution of finer 
fraction is larger than its volume fraction. The stress contri-
bution of coarse fraction is smaller than its volume fraction 

(27)e� =
Vt −

(
Vc + �f Vf

)
(
Vc + �f Vf

)

R² = 0.91
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in this case. The stress reduction factor �c is therefore pro-
posed to reflect this case.

and the new measure of state is defined as:

The e� can be estimated from Eqs. (27) and (30). Fig-
ures 19a and b show the variation in �f  and �c with Ffiner for 
SRs of 3.7 and 8.4, respectively. When SR = 3.7, �f  values 
remain approximately equal to 0.25 when Ffiner ≤ 20% . In 
contrast, when SR is 8.4, the �f  values are close to 0 when 
Ffiner ≤ 20% ; this observation holds for SR values of 14.5 
and 18.1. Then the �f  values increase with increasing Ffiner . 
The �c values are also presented in Fig. 19; for instance, in 
the dense condition ( SR = 8.4) , when Ffiner is 35% and 50%, 
the stress transferred by the coarse fraction is lower than its 
volume fraction, the �c rather than �f  is then presented in 
Fig. 19b.

Figure 20a illustrates the variation in G0 with e� for all the 
specimens with SR = 8.4 at the �′

3
 of 500 kPa , the correlation 

can be approximated relatively well by a straight line with R2 
≈ 0.91. In contrast, the correlations were much weaker when 
e ( R2 ≈ 0.27 ) and em ( R2 ≈ 0.80 ) were considered (subsets 
of the data on Fig. 7). Figure 21a shows that the relation-
ship between e� and Zm∕(1 + em) is linear (for R2 = 0.92) 
considering all the bimodal and trimodal specimens. For 
the trimodal specimens, the active coarse and intermediate 
fractions are combined to estimate e� . Figure 21b also show 
that a reasonable fit data is obtained using e� as the state 
variable in Eq. (2) and taking n = 0.33 . These results clearly 
indicate that the distribution of stress amongst the different 

(28)p
�

coarse
= �cp

�

(29)p
�

coarse
=

(1 − np)∑
Np,coarse

Va

Np,coarse�
p=1

(paVa)

(30)e� =
Vt −

(
�cVc + Vf

)
(
�cVc + Vf

)

size fractions has a significant influence on G0 in the case of 
gap-graded soils.

8  Perspective

The key measures of state identified here, i.e. em , Zm , e� can-
not be directly quantified in experiments. However, the data 
presented here have implications for experimental studies. 
Firstly, the current results clearly demonstrate use of the 
global void ratio, e , in Eq. (2) will not give accurate esti-
mates and cannot be used to predict G0 because the propor-
tion of inactive particles may be large, particularly in the 
case of soil mixtures. The efficacy of e also decreases when 
packing density shifts towards looser conditions.

To complete our analysis, we explore the potential to fit 
the parameters of Eq. (2) to see if it can be used for a particu-
lar PSD . Table 1 summarizes the results of our regression 
analyses taking n = 0.33 and c = 1.28 (following Otsubo & 
O’Sullivan [25]. In agreement with Yang et al. [42] and Liu 
& Yang [16], the fitted A values decrease with increasing 
Ffiner for Ffiner < 25% and A increases when Ffiner ≥ 25% . 
In contrast, when 25% ≤ Ffiner ≤ 35% , the curve fitting is 
relatively poor (e.g. R2 ≈ 0.27 when Ffiner = 30%) . The fabric 
of soils could change from being underfilled to overfilled 
when 25% ≤ Ffiner ≤ 35% . Therefore, the data indicate that 
for Ffiner outside of this transitional region, e may be adopted 
in Eqs. (1) and (2) provided A is determined for the particu-
lar PSD under consideration.

9  Conclusions

This study has presented a DEM investigation into the 
appropriate state variable to predict the small-strain stiff-
ness of granular materials. A total of 218 specimens were 
considered including specimens with linear gradings and 
bimodal and trimodal gap-graded specimens, comprising 
two and three size fractions respectively. For each gradation, 
three packing densities were considered. The DEM simula-
tions exploited high performance computing capabilities to 
achieve representative element volumes and used periodic 
boundaries to ensure homogeneous specimens.

The distribution of contact stiffness amongst the contacts 
in the specimens was considered from a particle-scale per-
spective. A theoretical stiffness-matrix method is used to 
analyse the contribution of each contact to the macro-scale 
stiffness. Even though the study is highly ideal (gravity free 
environment, spherical particles and isotropic fabric and 
stress), the following main points can be made based upon 
the data presented:

For specimens with a linear grading, there is a clear 
link between the particle size distribution and its stiffness 

Table 1  Results of regression 
analyses to determine 
parameters in Eq. (2) for 
bimodal specimens with SR = 
8.4

Ffiner c A R2

0 1.28 160.5 0.95
5 1.28 98 0.91
10 1.28 79.32 0.86
15 1.28 66.11 0.87
20 1.28 43.6 0.74
25 1.28 88.49 0.43
30 1.28 88.6 0.27
35 1.28 105.8 0.61
50 1.28 107.7 0.77
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distribution. The state variables em and Zm∕(1 + em) are 
capable of describing the variation in stiffness amongst these 
linear specimens with greater accuracy than simply using e.

For bimodal and trimodal gap-graded specimens, the 
variations in stiffness cannot be captured by correlating the 
data with e or em . However, the ratio Zm∕(1 + em) , which 
relies upon particle-scale data, can effectively describe the 
variations in G0 amongst the specimens considered here.

A new stiffness-matrix approach was proposed to isolate 
the contributions of specified groups of particles to the over-
all stiffness. Based on this method and consideration of the 
distribution of contact stiffnesses, we showed that the C − C , 
C − F and F − F contacts each make measurably different 
contributions to the overall material stiffness.

A new semi-empirical state variable e� was proposed to 
account for the non-uniformity in stress and contact forces 
within granular materials. The distribution of stress amongst 
the different size fractions is expressed by means of stress 
reduction factors and in turn has a significant influence on 
G0 in the case of gap-graded soils.

It is not possible to measure em , Zm or e� experimentally. 
Our data support an empirical approach that uses regres-
sion analyses to determine the parameters in Eq. (1) for the 
particular material under consideration.
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