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Abstract
As the tidal energy industry moves from demonstrator arrays comprising just a few tur-

bines to large-scale arrays made up of potentially hundreds of turbines, there is a need to
optimise both the number of turbines and their spatial distribution in order to minimise cost
of energy. Optimising array design manually may be feasible for small arrays, but becomes
an impractically large approach when the number of devices is high, especially if taking into
account both the cost effectiveness of each turbine and also the coupled nature of the turbine
locations and the local as well as far-field hydrodynamics.

Previous work has largely focused on producing computational tools to automatically de-
sign the size and layout of large-scale tidal turbine arrays to optimise power. There has been
some limited preliminary work to incorporate costs into these models, in order to improve the
economic viability of tidal arrays. This paper provides the first in depth implementation and
analysis of economic functionals, based upon metrics such as break even power and levelised
cost of energy, used for design of explicit array sizing and spatial variation.

The addition of these new economic functionals introduces complexity by increasing the
number of inputs to the model, each of which are subject to their own uncertainty in value.
For this reason, sensitivity analysis becomes both more important as well as more difficult
to undertake. This paper presents a novel rapid methodology for deriving the optimal array
design (number of turbines and their spatial distribution throughout the farm area) to minimise
cost functionals, and its sensitivity to variations in the economic inputs. Importantly, the new
aspects of this method introduced here do not rely on repeated model runs and iterative
optimisation, two aspects that typically prove to be impractically expensive computationally.
This more readily allows for the impact of changes in investor priorities to be investigated.
It is also shown that, while the optimal solution varies greatly with uncertainty in the input
parameters, this uncertainty is reduced significantly through Monte Carlo analysis.

1 Introduction
In recent years the price of offshore wind has fallen dramatically, with record-low prices of £39.65/MWh
seen in the UK’s third Contracts for Difference auction [1]. Currently, tidal stream and other ocean
energies must compete against offshore wind for subsidies and other forms of government support,
however tidal stream is at a much earlier stage of development. As a result of this, tidal energy is
currently a higher cost technology and needs further development pathways to remove this barrier
to market penetration [2]. Commercial-scale tidal stream energy arrays have yet to be deployed,
and so the emerging industry needs to rely on models to help understand the factors affecting
array performance, including coupled interactions to the hydrodynamics. Laboratory experiments
have practical limitations and have only tested limited configurations, e.g. comprising two to ten
three-bladed rotors, notably by Stallard et al. [3] and Mycek et al. [4], so computational models
must be relied on as the number of turbines in an array increases. This motivates the need for
innovative tools, which can be used to optimise the array design to reduce the cost of tidal energy
[5, 6, 7, 8, 9].
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As the tidal energy industry develops, cost reductions are anticipated to come in many forms,
some from improved technological solutions such as cheaper or easier to install foundations or
higher rated rotors [10]. In order to achieve commercial viability in an open market, reductions in
the cost of energy must also come through improved array design using existing technology. Many
tools have been created which can predict and maximise the yield of tidal stream arrays. Optimal
array design can take advantage of the economies of volume that result from larger scale arrays and
can lead to higher yields from intelligent micro-siting of the turbines to minimise negative blockage
effects. For example [6] found that the yield of an optimised array layout in an open channel
increased by up to 38%, compared to a regular grid layout, and that in a strait between an island
and a landmass the yield increased by 22%. Similarly, [5] demonstrated optimisation of layout
within a square basin and found the power production of 152 turbines in a regular non-staggered
grid layout increased by 104% from 41.4MW to 84.5MW when using an irregular optimised layout.

More recently, hydrodynamic models of potential tidal array sites have been implemented in
Thetis — coastal ocean modelling software which allows the array design to be coupled with the flow
and enables gradient-based optimisation through the availability of an adjoint mode [5, 6, 11, 12].
Earlier iterations of these tools focused on optimising with respect to power alone [7, 8, 13].
However, modelling array power alone does not take into account the diminishing returns in yield
per device as the number of turbines in an array increases. This decrease in the average power per
device is due to both blockage effects and turbine spacing requirements which lead to additional
turbines being placed in lower flow areas. Therefore there is a need to incorporate the balance of
costs associated with adding turbines to an array against the additional yield gained from them,
to decide on both an optimal number of turbines and suitable locations.

Later adaptations of these tools incorporated costs by introducing a break even power, PBE,
to the optimisation functional, such that there is an effective capacity factor that turbines must
achieve in order to be cost efficient to install [14, 15]. Introducing a break even power into the
functional is a simple way to bring the balance of maximising power vs minimising costs into the
optimisation of array design. However, this approach relies on a lot of assumptions, and does not
account for many factors which may make one array design more advantageous over another. For
example, in the form used in previous work, break even power is assumed to be independent of the
number of turbines. In practice there may be economies of volume, such that the effective costs of
turbines, and therefore PBE, decreases as the number of turbines increases. This paper provides
a new understanding of how economies of volume impacts upon optimal array design by applying
a factor to decrease the break even power with the number of turbines. Choosing an appropriate
value for this factor and the break even power itself relies on a complex balance of metrics not
explicitly included, such as the lifetime of array, discounted cash flow analysis and the balance of
CAPEX and OPEX.

This paper furthers these investigations into break even powers, by using more holistic economic
indicators as the optimisation functional. It advances on previous array optimisation studies,
through a novel approach to explicit array sizing and spatial distribution with respect to a realistic
model for profitability. There are a number of different ways to express the profitability of a tidal
stream array, including the Net Present Value (NPV), Internal Rate of Return (IRR), Return
on Investment (ROI), Payback Period (PP) and Levelised Cost of Energy (LCOE). All of these
metrics take into account the sum of energy generated over an array’s lifetime, and the sum of
costs incurred over the lifetime. These metrics each have different advantages and times when they
may be more appropriate to use. Policy makers often use LCOE as a simple metric to enable like-
for-like comparisons of the performance of different energy technologies. This is the most common
metric used by institutions such as the Offshore Renewable Energy Catapult (OREC), the Centre
for Climate Finance & Investment (CCFI) and Green Investment Bank (GIB) [16, 17, 18], and
thus is investigated in Section 6.3.

More holistic economic indicators bring in many more parameters for a better representation
of true array financing, however this large parameter space also adds uncertainty. It becomes
intractable to perform optimisations over all possible sets of costs inputs. To overcome this problem,
this paper describes the development of a new emulator approach which enables rapid testing of
the functional over a large range of parameters. The construction of the novel emulator method
is based on the realisation that despite the many forms the economic models and their associated
functional(s), they can typically be reduced to a bi-objective trade-off between number of turbines
and realisable power output with the optimal result for any given functional being Pareto efficient.
The emulator is then combined with Monte Carlo based sensitivity analysis to allow for better
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understanding of the uncertainty by defining a P10 to P90 confidence interval.
Section 2 describes the inputs for the financial models and the ways that costs of tidal energy

may fall. Section 3 presents the model for break even power and LCOE. Section 4 gives the details
of the idealised model used as a simple representation of a typical tidal site. Section 5 shows the
results of optimising a farm within this simple channel, over different break even powers. Section
6 describes how the results from optimising over a range of break even powers can be used to
build an emulator for the rapid evaluation of the LCOE (or other economic models) over many
different combinations of cost inputs. Section 6.1 outlines the process that can be used to apply
the developed emulator method to real-world array design. An application of the methodology
developed in this paper appears in [19], showing that it can be used to predict the LCOE that can
be achieved in the Alderney Race for different levels of deployment. This shows that the methods
developed and validated in this paper can be applied for assessment of the economic viability of
real-world tidal sites.

2 Inputs and cost reduction pathways
The Offshore Renewable Energy Catapult (OREC) describe a number of potential mechanisms for
cost reduction in the tidal stream energy sector [16]. The three main categories for cost reduction
described are economies of scale, economies of volume and learning rates. It is important to be
aware of the distinction between the different types of cost reduction, since some of them can
be exploited through optimal location and numbers of turbines and others cannot. For clarity,
economies of scale will refer to the cost reductions that can be achieved by moving towards higher
rated power or larger rotor devices. Economies of volume will refer to the cost reductions achievable
from higher numbers of turbines in arrays, such as benefits of mass-manufacturing (as per the
convention set by OREC).

Learning rates refer to how the costs fall due to learning by doing. This can include; optimised
installation and maintenance processes learnt through repeated operations, technology innovations
learnt from previously installed arrays or even other forms of offshore energy, and improved com-
mercial terms due to previously installed arrays providing proof of concept, reducing the perceived
risk to investors. This paper will distinguish between learning cost reductions versus economies of
volume, as costs falling due to an increase in installed cumulative capacity versus costs falling due
to increased number of turbines within one array [20].

Previous work [21] identified a range of cost parameter estimates, by reviewing publicly available
information on tidal energy costs. There is a wide range in values for each cost parameter, in part
because very few tidal-stream turbines or arrays have been installed at the time of writing and
in part because cost information is commercially sensitive. The review calculated a pessimistic,
typical and optimistic value for each parameter, shown in Table 1.

In this study only economies of volume will be explicitly investigated. Economies of volume
are implemented through the distinction between fixed and turbine-dependent costs in Table 1.
Turbine-dependent costs, CAt and Ot, are the costs that increase linearly with the number of
turbines, such as the price of the turbines themselves or the inter-array cabling. Fixed costs, CAf

and Of , are the costs that are independent of the number of turbines, such as site assessments and
any costs charged at a flat rate. As the number of turbines is increased these fixed costs are split
over more devices, and therefore the costs per MW falls due to economies of volume. The use of
these different cost components to mimic the cost curves found in literature is described in greater
detail in [21].

Economies of scale cannot be considered because it is assumed that at the start of the design
optimisation process that the size and rating of the turbines is specified. This is necessary because
the optimisation method used accounts for the coupled effect of the array design and the hydro-
dynamics, and therefore the size and rating must be known so that the power and drag can be
calculated from the appropriate power and thrust curves.

Learning rates will be subject to the cumulative installed capacity, and developers will have no
influence over this at the point of designing an array. Furthermore it is hard to predict the extent
to which technology innovation and decreased cost of capital can be achieved. While not explicitly
calculated in this work, the three scenarios in Table 1 are investigated and it is likely that learning
rates will be the mechanism by which costs within the industry fall from the pessimistic and typical
range towards the optimistic scenarios.
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All economic models used in this paper are evaluated using a typical year, where the revenue
is assumed to be constant year-on-year and is a product of

Revi = Pavg × ti × Te, (1)

where Pavg is the time averaged power in MW, which is assumed to be constant each year, ti is
the number of hours generating in year i and Te is the electricity tariff in £/MWh.

The MeyGen project reports a project-wide availability of 95% [22]. However, this assumption
was made before the array was operational and it was anticipated that the turbines would exceed
their target performance in practice. Due to the lack of publicly available and validated estimates,
this paper assumes 100% availability, so ti = 365× 24 hours, however the model user can replace
this with their own, potentially commercially sensitive values in practice. The electricity tariff,
Te, is likely to remain constant because in its early stages tidal energy will rely on fixed-price
subsidies such as Contracts for Difference (CfDs). However, the power generation is time varying
and even if yield is averaged on a yearly basis it will fluctuate due to the 18.6 year lunar nodal cycle
[23, 24]. The number of generating hours will also vary because the number of faults and need for
maintenance will likely increase as the devices age, as has been seen in the offshore wind industry
[25, 26]. This study assumes a constant value of generating hours to reflect the ‘average’ year
because when demonstrating the methods on an idealised test case, the year the array goes into
production is not known. Also at the time of writing, tidal arrays have not yet been in production
long enough to build an accurate model of the anticipated increase in downtime with time.

The presence of turbines in the flow can have unintended negative environmental and ecological
impacts on the surrounding area. Neil et al. demonstrated that commercial-scale arrays in the
vicinity of a headland could have significant impact on nearby sandbanks through disrupting the
sediment transport [27]. Studies by du Feu et al. [8, 13] demonstrate how environmental impact
can be incorporated into an array optimisation functional through the addition of a penalty term
to the array profit. This approach could easily be combined with the revenue given in Equation 1
to optimise the trade-off between economic performance and environmental impact, but this paper
focuses on economics alone.

The sum of all array expenditure incurred in year i, Exi, is assumed to be split into Capital
Expenditures (CAPEX) incurred in year zero and Operational Expenditures (OPEX) incurred
every year after installation, such that i ∈ [1, L] where L is the lifetime of the array. Vazquez et al.
[28] estimated that the CAPEX for a tidal stream array typically break down into 41% device costs,
26% foundations costs, 15% installation costs, 13% cable costs and 5% grid connection costs. This
is comparable to the CAPEX breakdown reported by MeyGen, except the foundations accounted
for only 11% [29]. OPEX is primarily comprised of maintenance costs (with planned and unplanned
accounting for 15% and 21% of the MeyGen annual OPEX budget respectively [29]). Lease and
insurance costs (32%) and spare parts (14%) make up 46% of the OPEX outlay. Similarly to
power generation, OPEX is assumed to be constant each year in this model, however in practice
it could be adjusted to increase with time, assuming failure rate increases. Development costs are
not included in this work because access to data is limited and these costs are expected to be a
relatively low proportion of costs in comparison to CAPEX and OPEX. A more detailed review of
tidal costs and the methods used to obtain the estimates in Table 1 is given in [21].

Typically CAPEX and OPEX are modelled as a cost per MW installed, which falls as the
number of turbines in an array increases [30, 31]. [21] demonstrated how this is equivalent to
assuming that each expenditure type linearly increases with the number of turbines. The CAPEX
can therefore be written as

Exi=0 = CAPEX = CAf + CAt × nt (2)

and similarly the OPEX is estimated by

Exi>0 = OPEX = Of + Ot × nt, (3)

where nt is the number of turbines and CAf , CAt, Of and Ot are the fixed and turbine-dependent
components of CAPEX and OPEX, estimates for which are summarised in Table 1. The use of
this linear relationship helps to model economies of volume. In real arrays the relationship is not
likely to be exactly linear but it is a good approximation and can be used to demonstrate the
effectiveness of the following array optimisation methods. If used in practice tidal developers could
easily replace these cost assumptions with their own internal financial models.
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2.1 Turbine specifications
The cost inputs in Table 1 are all from calculations made in [21], which are calculated using the
assumption that the turbines are 16m in diameter and 2MW rated power. This is based on the
amount of cost information available for different turbine sizes, and an average of the most common
turbine specifications [32, 20, 10, 33].

The turbines are assumed to have a thrust coefficient below rated of CT = 0.8 [34] and a power
coefficient below rated of CP = 0.41 [20]. Again this is based on commonly found values in the
literature, however all these parameters could be readily updated in order to optimise an array of
turbines with different specifications.

3 Economics modelling methods
In the following section the increasingly detailed methods used to bring economic considerations
into the array optimisation process are discussed. Initially break even power is added as a proxy
for the costs of the turbines, then the break even power is adapted to account for economies of
volume. Finally a model of the Levelised Cost of Energy (LCOE) of the array is implemented as
the functional instead. Each model makes a number of assumptions, outlined below.

3.1 Break even power
The break even power is the average power over all turbines that needs to be generated in order
for the array to break even over its lifetime, such that

L∑
i=0

PBE × Te × ti × nt − Exi = 0, (4)

where PBE is the break even power in MW, Te is the electricity tariff, i.e. the price per MWh the
electricity generated is sold at, i is the year the costs are being evaluated over, L is lifetime of
the array in years, ti is the number of hours generating in year i and Exi is the sum of all array
expenditure incurred in year i. The concept is discussed in more detail in [21].

For the array to generate a profit the average total power generated by the array must be
more than the average break even power per device, multiplied by the total number of devices.
It is therefore simple to include these economic considerations into the optimisation functional of
interest, J , such that

max
P,nt

J(P, nt) = P − PBE × nt. (5)

If an appropriate PBE is chosen to reflect all of the costs that comprise Exi in Equation (4), this
choice of functional effectively maximises the profit and penalises the addition of turbines which
do not generate enough power to outweigh their costs.

Section 5.1 demonstrates the impact of varying the break even power from PBE = 0, such that
the functional optimises power alone, increasing to find the maximal value of PBE, such that the
turbines become so expensive that the optimal array design contains no turbines.

3.1.1 Break even power with economies of volume

The functional shown in Equation 5, would result in a design with the optimal number of turbines
if the break even power were constant over arrays of all sizes. However, in practice economies of
volume would result in a lower PBE required to break even for large-scale arrays than for small
scale arrays. This is discussed in greater detail in [21]. For simplicity this paper investigates a
PBE that linearly decreases with the number of turbines, at a rate of EV. EV is varied through
0.00005, 0.0001, 0.00015 and 0.0002 MW. For example, if an array of 2MW turbines has a PBE of
0.8MW, the minimum required capacity factor for one turbine to be economically viable is 40%
(=0.8MW/2MW). However, with an EV of 0.0001MW and an array with 100 turbines would have
a reduced the break even power of 0.6MW (=0.8MW-100×0.0001MW) the capacity factor would
need to be just 30% (=0.6MW/2MW). This results in the following functional

max
P,nt

J(P, nt) = Pavg − (PBE − EV × nt)× nt = Pavg − PBE × nt + EV × n2t , (6)
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where PBE and EV are the break even power and economies of scale to be specified in the functional,
J , and P and nt are the power and number of turbines in the array design being optimised.

Section 5.2 investigates how adding different extents of economies of volume to the break even
power impacts upon optimal array design.

3.2 LCOE
A more robust way to include economies of volume in the functional is to calculate the levelised
cost of energy (LCOE). The LCOE is a proxy for the average price of energy, Te [£/MWh], that
an array must receive in order to break even over its lifetime. The LCOE allows all of the costs to
be summed up, in this case based on the assumed relationship between number of turbines from
Equations 2 and 3. It also uses discounted cash flow analysis, such that a discount rate, r, is
applied annually to account for the decreasing time value of money to investors. It can therefore
be calculated from

LCOE =
discounted cost

discounted energy
=

∑L
i=0

Exi

(1+r)i∑L
i=0

Ei

(1+r)i

. (7)

where Exi is the sum of all array expenditure incurred in year i, Ei is the energy generated by the
array in year i, and L is the lifetime of the array in years.

If using the approximation to CAPEX and OPEX found in Equations 2 and 3, this can be used
as a functional to optimise, such that

min
P,nt

J(P, nt) = LCOE =
CAf + CAt × nt +

∑L
i=1

Of+Ot×nt

(1+r)i∑L
i=1

Ei

(1+r)i

. (8)

CAf , CAt, Of and Ot are the fixed and turbine-dependent components of CAPEX and OPEX,
which are defined in Equations 2 and 3 with typical estimates for their values summarised in Table
1. A full comparison of LCOE to other metrics such as Net Present Value, Internal Rate of Return
and Payback Period is given in [21].

4 Idealised model set-up
In this work, the above economic optimisation methods are applied to an idealised channel set-up.
Draper et al. [35] characterised coastal sites that are especially suitable for tidal stream energy
extraction due to accelerated flow via four generic coastline configurations. These sites are a strait
between two infinite ocean basins, a headland, an enclosed bay, and a strait between an island and
a semi-infinite landmass.

Many tidal energy resource studies focus on the Alderney Race as a potential site, due to
it’s highly concentrated energy potential [36]. SIMEC Atlantis and the Development Agency for
Normandy have a joint venture plan to install up to 2GW of tidal capacity in the Race. Much
like the generic idealised site of flow between an island and a semi-infinite landmass, the flow is
accelerated as it is confined between the Isle of Alderney and Cap de la Hague in France. The
velocities can reach up to 5 m s−1, resulting in an estimated maximum average power potential
of 5.1 GW [37]. Since the Alderney Race is most similar to Draper et al.’s final idealised case,
this study focuses on the optimisation of a tidal arrays within the strait between an island and a
landmass. Peréz-Ortiz et al. [38] recently investigated power extraction by narrow arrays (similar
to tidal fences) spanning across such a strait. This work extends upon that by optimising array
design and studying large-scale arrays rather than tidal fences, so there is more freedom in where
the turbines can be placed. The following sections describe the setup of this idealised model. UK
wide resource assessments have identified that ‘first generation’ tidal-stream sites require peak
spring tidal velocities in excess of 2.5 m s−1 and depths between 25 and 50 m [39, 40]. Both the
Alderney Race and this idealised setup satisfy those conditions.

4.1 Numerical model in Thetis

A flexible finite-element based coastal ocean model, Thetis, is used to solve the shallow water
equations on an unstructured triangular mesh [12]. Thetis is built using the Firedrake framework
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Figure 1: Idealised geometry for a model of flow through a channel with an island of diameter
Øi = 2 km and a tidal site of area Af = Bf × Lf where turbines can be added. The depth is
increased linearly from h0 to 75h0 to mimic the conditions at the continental shelf. Ld = 140 km
is the length of the channel and Bd = 40 km is the width. s = 2 km is the minimum distance from
the island to the southern landmass. This matches the setup used used in [14] (not to scale).

(https://www.firedrakeproject.org/), which automates the generation of optimised low level
application code from high level descriptions of finite element discretisations specified using the
domain-specific Unified Form Language (UFL) [41]. Thetis is the coastal ocean modelling package
chosen for use here since it is open-source and the adjoint mode allows the array design process to
be coupled with the hydrodynamic model [5, 6, 11, 12], enabling optimisation of the functionals
defined in Equations 5, 6 and 8.

Flow through the channel is modelled here using the nonlinear shallow water equations which
are considered here, in the non-conservative form:

∂η

∂t
+∇× (Hu) = 0,

∂u

∂t
+ u · ∇u− ν∇2u + g∇η + Cd

|u|u
H

= 0,

(9)

where η is the free surface perturbation, t is time, H is the total water depth (the sum of η and the
still water depth), u = (u, v) is the 2D depth-averaged velocity vector, ν is the kinematic viscosity
of the fluid which here is set to a value of 10−4 m2 s−1, g is acceleration due to gravity, and Cd

is a dimensionless quadratic drag coefficient for seabed friction, set to 0.0025. Due to simplifying
assumptions Coriolis, wind and wave conditions, and atmospheric pressure are not included in this
work.

4.2 Simplified model parameterisation
The geometry of the channel and the island is adapted from [38], and uses the same values as
their setup where the channel in this domain is is Ld = 140 km long and Bd = 40 km wide, with
a circular island of diameter Øi = 2 km located in the middle of the channel. It has a minimum
distance from the island to the southern landmass of s = 2 km. This is shown is Fig. 1.

The farm area, Af , is Lf = 1 km long and Bf = 1.92 km wide, as shown Fig. 2. This is to
approximately represent the dimensions of the Alderney Race tidal lease plots available to build
on, spanning across about half of the length of the island and the whole width of the strait, with
a 0.4 km buffer to the edge of the southern land mass and the island. In the region between 20 km
and 10 km from from the eastern and western boundaries, the water depth is linearly increased
in the streamwise direction from h0 = 40 m, which is the depth throughout the majority of the
domain, to 75h0 in the band within 10km of the boundaries. This depth profile, shown alongside
the computational mesh in Fig. 2, was chosen by [38] to mimic the conditions at the edge of the
continental shelf and help prevent spurious reflections at the boundary.

4.3 Tidal forcing and boundaries
The domain shown in Fig. 1 has solid boundaries which correspond to a semi-infinite landmass, at
the northern and southern sides of the domain, Γ2 & Γ3, on which a free slip boundary condition
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Figure 2: Multi-scale triangular computational mesh across the idealised domain. This is overlaid
on a map of depths which increase from 40m to 3000m at the open boundaries. An enlarged view
of the regular isosceles triangular mesh used within the farm area is shown on the right. This
domain and mesh are identical to those used in [15] and are adapted from the setup used in [38].

is applied. A free slip boundary condition is also applied to the solid boundary of the circular
island, Γ5. There are open boundaries on the western and eastern side of the channel, Γ1 & Γ4

respectively. Here M2 tidal forcing is applied to the free surface perturbation variable, which has
an amplitude of a = 3 m and a frequency of ωt = 1.41× 10−4 rad s−1, such that

η = a0a sin(ωtt). (10)

The multiplier a0 = 0.5(1− cos(ωtt/4)) is used to ramp up the tidal signal over the first two tidal
cycles. The model is run for seven tidal cycles in total, with the third and fourth being excluded
to allow for spin up once the model has fully ramped up and time averages are only taken over the
final three tidal cycles.

4.4 Discretisation of the model
Many discretisation options are available in Thetis due to the flexibility afforded by the use of the
Firedrake mesh generation framework. In this work piecewise-linear, discontinuous basis functions
are used to represent both the velocity and the free surface fields (the P1DG−P1DG velocity-pressure
finite element pair). The shallow water equations are solved on an unstructured triangular mesh,
which is generated by defining the element edge length on each boundary region.

The element edge length used in the unstructured part of the mesh is coarsest on the northern
landmass, Γ2, to a value of πØi = 6.28km. It is set finer along the southern landmass, Γ3, at
πØi/6 = 1.05km due to proximity to the array area. The finest resolution in the unstructured
part of the mesh is specified around the island boundary, Γ5, at a value of πØi/28 = 0.22km. A
regular grid of 20 by 40 right isosceles angled triangles is used in all meshes for the tidal farm
area, corresponding to an edge length of 48m by 50m. This results in a mesh with 5010 elements
overall. The boundaries, Γ1 : 5, are specified in Fig. 1 and tidal farm area and resultant mesh are
shown in Fig. 2. As far as the hydrodynamics are concerned, the numerical setup is identical to
the model used in [15] and [14] and therefore the mesh convergence study used to decide on this
mesh resolution is not repeated here.

For the temporal discretisation a Crank-Nicolson time stepping method is used, with ∆t = 800 s.
This was also chosen as an appropriate time step size in a previous study [15], through a time step
independence test for ∆t varying from 1600 s down to 100 s.

4.5 Turbine representation
This work uses a continuous approach for turbine representation, as proposed in [5], where a
spatially varying turbine density field, d(x), is optimised. This approach, which does not attempt to
represent individual turbines rather their ‘concentration’, is suitable for coarser mesh resolutions. It
optimises the total number of turbines and their location (in an averaged sense) together within one
optimisation loop. This greatly reduces the computational cost, which is important for modelling
large-scale arrays.
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Figure 3: Power curve of a typical generic tidal turbine assumed for this work.

Turbines are only allowed to be placed within the predefined farm area, Af , and are modelled
through the inclusion of an additional bottom friction term of the form

ct
ρH
||u||u, (11)

which is added to the left hand side of the Shallow Water Equations (9). ρ is the water density.
The bottom friction coefficient, ct, can be found from the turbine density field d(x) via

ct(d(x)) =
1

2
CTAT d(x), (12)

where AT is the swept area of the turbines, which in this study is based on the 16 m diameter
2 MW OpenHydro turbines or 1.5 MW turbines installed in the MeyGen project. The turbine
density is given a maximum allowable upper limit which is chosen to represent a high but still
plausible, upper bound density of turbines. It corresponds to a minimum inter-device spacing of 2.5
turbine diameters centre-to-centre laterally and 5 turbine diameters in the stream-wise direction,
or equivalently a 1.25 diameter lateral spacing and 10 diameter downstream spacing. The turbines
have a cut in speed of 1m/s and a cut out speed of 4.5m/s. CT , the turbine thrust coefficient,
which corresponds to the idealised thrust curve shown in Fig. 3, is 0.8 below rated and is scaled by
u3
rated

u3 above rated speed. In reality the drag force will be increased partly due to the rotor thrust
represented in Equation (11) and in part due to the drag of the turbine structure system. The
latter is not included explicitly in this work, because the drag of the structure is relatively small
compared to the rotor thrust and this work considers a highly idealised example to demonstrate
this new method of economic optimisation. Furthermore, the calculation of the support structure
drag depends on design chosen by manufacturers, so this paper remains generalised by simply
using a high CT [42]. The implications of this assumption and a method for handling the turbine
structure drag is discussed in Section 7.

The turbine density can be integrated over the array area to find the total number of turbines,
nt, such that ∫

Af

d(x) dx = nt. (13)

The power is found similarly

P =
1

2
ρAT

∫
Af

CP d(x) ||u||3 dx, (14)

and is then time averaged before use in the optimisation functional, to help quantify the financial
success of the array. CP , the turbine power coefficient, is 0.41 below rated [20] and is scaled by
u3
rated

u3 above rated speed, as also show in in Fig. 3.
Experiments were carried out in [43], to investigate the validity of using a depth-averaged con-

tinuous drag method of representing turbines for tidal resource analysis. Porous fences spanning
the width of a recirculating flume were used to simulate the added drag of a large, multi-row,
uniformly-distributed array of tidal turbines. Load cells were used to measure the thrust force on
each porous fence, and these measurements were compared to the results of the continuous drag
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method. The level of agreement between the depth-averaged flow speeds used in Equation (11)
and the local flow through the turbine rotor (represented by the porous fences) determines the
accuracy of the depth-averaged continuous drag method for representing turbines. This agreement
was shown to be dependent on the level of wake recovery and longitudinal spacing between rows
and the magnitude of the ambient turbulence, which aids the mixing between the wakes and the
accelerated bypass flow. Bed mounted ADCPs have shown that while the turbines are opera-
tional the turbulence intensity at the MeyGen 1A site is 10–12% [44]. Actuator disc experiments
have found these turbulence intensities to correspond to an approximately 40% wake deficit at 5
diameters downstream and an approximately 20% deficit at 10 diameters downstream [45].

Further studies [46, 47, 48] demonstrate that wake impingement on downstream turbines in
relatively dense arrays causes depth averaged flow speeds to overestimate the true flow speeds
through the turbine rotor. The maximum array density has been specified to allow for sufficient
longitudinal spacing between rows, to address this effect and allow for wake recovery. The European
Marine Energy Centre (EMEC) recommend a greater spacing of 2.5 turbine diameters centre to
centre and 10 diameter downstream, however they acknowledge that this can be shown to be
a conservative spacing requirement once detailed wake effect modelling is undertaken [49]. The
maximum allowable turbine density is therefore chosen to be slightly higher than this guideline,
and to allow for designs with decreased lateral spacing between turbines. Numerical simulations
in idealised channel flows by Consul et al. [50] showed that yield increases of up to 23% could be
achieved by increasing blockage ratios and the recently developed Orbital O2 tidal device consists
of two 1MW 20m diameter turbines mounted either side of a floating superstructure, with a 25m
distance centre-to-centre. This is equivalent to a 1.25 diameter spacing laterally, so the upper limit
on the turbine density used in this paper in that case would be equivalent to imposing a minimum
spacing of 10 turbine diameters downstream. This work demonstrates the method of optimising
arrays to minimise the LCOE on an idealised domain. When applying this method to modelling
real tidal sites the limitations on the turbine spacing can be updated as relevant information
becomes available for a given site. An appropriate upper limit on the turbine density for any given
site can be chosen once site specific ambient turbulence has been characterised, since turbulence
intensity and length scales relative to rotor diameter have been shown to have a significant impact
on wake recovery rate [45].

4.6 Adjoint-based optimisation
Optimisation of the array design, with respect to the different economic functionals outlined above,
is performed using d(x) as the control parameter. The optimisation procedures begins with zero
turbines everywhere, then on each iteration the forward model is run (solving the shallow water
equations coupled with the turbine friction to find the power and other array characteristics,
as described above), then the functional values are recalculated. The adjoint is calculated (via
http://pyadjoint.readthedocs.io/ library), to find the sensitivity of the functional to changes
in the turbine density, while coupled to changes in the hydrodynamics. This information is fed
into a L-BFGS-B based optimisation algorithm, to update the turbine density field in such a way
so as to optimise the economic functional of choice. An optimal design is converged upon and the
algorithm is completed, typically for this scenario within 5 to 20 iterations.

5 Array optimisation
An idealised set-up is used to test the impact of different functionals, which account for economic
factors in increasing levels of detail, on optimal array design. First, the impact of varying break
even power is investigated, followed by an optimisation where the break even power depends on
the number of turbines employed through economies of volume. Similar studies that vary break
even power [15] and economies of volume [14] are extended here over a greater range, to form the
basis of the new optimisation procedure developed in the next section.

5.1 Varying break even power
The array design is optimised within the farm area, Af , where the flow is accelerated in the vicinity
of the island in the constricted channel setup shown in Fig. 1. Fig. 4 shows how the optimal array
design varies as the break even power increases, using the functional described in Equation (5).
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In Fig. 5 it is shown that as the break even power increases the net average power of the array
and the number of turbines in the optimal array design decreases, because turbines are effectively
more expensive to install, while the power per device increases, because fewer turbines result in
lower blockage.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 4: Array designs optimised for J = P − PBE × nt, with a break even power of (a) 0, (b)
0.1, (c) 0.2, (d) 0.3, (e) 0.4, (f) 0.5, (g) 0.6, (h) 0.7, (i) 0.8 and (j) 0.9 MW. The farm boundary is
shown in red, areas with maximum turbine density are shown in yellow and no turbines shown in
blue.

The break even power is varied from PBE = 0MW to 1.3MW. 1.3MW is the highest break
even power that can be specified before the optimal design consists of no turbines because the
flow is not high enough for any one turbine in any location within Af to generate more than
1.3MW. The optimisation is also performed in the other extreme for PBE = 0MW. While this
is possible numerically, in reality the break even power would never be zero, because that would
mean that the turbines are free. Setting the break even power to zero thus changes the functional
from an economic one to one that optimises for power alone. This is commonly used in some
array optimisation studies ([6, 51, 52]) and is sensible if there is already a fixed number of turbines
chosen. However, having a non-zero and appropriately chosen break even power becomes crucial
if the number of turbines varies, because this allows the right balance between maximising power
and minimising costs to be found. Including this as a case has two benefits, firstly to demonstrate
the limit of no economic penalty and investigate financial models over a broad range of sample
points, even extreme ones.

Figure 5: Variations in the total array power generated and the number of turbines for the optimal
design as PBE is increased, adapted from [15]. The black line shows that the average power per
device (in red) always stays higher than the PBE chosen in the functional.
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Secondly it helps demonstrate the impact of global blockage. In Fig. 4a, even though there
is no cost associated with the turbines because PBE = 0MW, there are no turbines added in the
semi-circular region around the island. Adding turbines here creates so much blockage that the
power generated by the additional turbines is offset by the losses experienced by the other turbines.
This array design represents a hypothetical maximum of how much power could be extracted if
cost were not an issue, but in reality would never be economically practical.

A qualitative shift can be observed for 0.2 ≤ PBE ≤ 0.4MW, where the optimal array design
paradigm shifts between a barrage or fence-like design that spans across the whole width of the
channel (to exploit the benefits of channel-scale blockage control) to a cluster of turbines close to
the island just taking advantage of the locally high flow velocities. This can be seen clearly though
the sharp drop in net average power and optimal number of turbines, shown in Fig. 5. In this
region small changes to the functional result in large changes to the optimal array design. This is
problematic for array design, because there may be uncertainty in the appropriate choice of PBE
and it may vary with array size due to economies of volume. These results are discussed in more
detail in [15].

5.2 Break even power with economies of volume : results
Next, realism is added to the functional, by making the break even power decrease linearly with
number of turbines, such that PBE ⇒ PBE − EV × nt, where EV is a parameter representing
economies of volume. Fig. 6 shows how the macro array parameters, such as optimal number of
turbines, total array power and average power per device, vary with the break even power and
economies of volume.

Figure 6: Variations in the average power generated and the number of turbines for the optimal
design as PBE and ev are increased.

Fig. 6 demonstrates that as the economies of volume are increased, the optimal number of
turbines increase and therefore the total array power increases, since higher numbers of turbines
result in lower costs per turbine. However, the power per device decreases, because through
economies of volume the turbines are effectively cheaper and therefore do not need to generate as
much power to be worth installing.

A key result of both of these pieces of work is that the optimal array design is greatly dependent
on the choice of functional, and especially sensitive to small changes in the break even power for
mid range values in the region 0.2 ≤ PBE ≤ 0.4. Changes to the scaling parameter EV , make
relatively little impact on the optimal array design outside of this range and a significant impact
within it. This shows that the optimal array design is very sensitive to changes in PBE at mid-
range values (for more details see [14]). Since both functionals used are a simplification of the true
profitability of an array, there is a need to optimise for a more complete financial model.

6 Economic Emulator
Each of the optimisation scenarios presented in Section 5 are obtained through running the full
hydrodynamic model in a computationally expensive optimisation loop. This paper presents an
original method, where those optimisation runs can be performed in order to generate data to
construct an emulator. The emulator can be used for the rapid assessment of optimal array
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parameters (such as number of turbines, array power and power per device) over a large range of
functionals. This emulator is demonstrated by optimising LCOE over a variety of cost inputs. In
order to validate the emulator predictions of optimal LCOE and number of turbines, the LCOE
formula defined in Equation (8) is used as the functional in a fully coupled hydrodynamic model
and optimisation in Thetis. This is the first instance of coupling a hydrodynamic model of an array
design in Thetis with a complex financial model of the array, such as LCOE, used as the functional
of interest.

6.1 Schema of emulator-based methodology for the economic analysis
of array design

The following sections present, in detail, the development and validation of an emulator method,
which is demonstrated to be fast and flexible at identifying optimal array characteristics. The
process developed can be applied to real world array design. A simplified summary of the steps to
optimise a tidal array design in practice is as follows:

1. Build and validate a hydrodynamic model of the region of interest in Thetis.

2. Perform adjoint optimisation of the array design with respect to J = Pavg −PBE ×nt over a
range of sufficiently many (approximately ten to twenty here) different values of PBE . This
yields a set of turbine densities and corresponding optimal power versus number of turbines
data points.

3. Interpolate between those data points to build an emulator to predict the optimal power that
can be achieved over all possible numbers of turbines.

4. Use the emulator to feed Pavg and nt values into an economic model of choosing, such as
LCOE, Net Present Value, Internal Rate of Return or Payback Period. Choose the array
size which optimises the metric of interest.

5. Perform Monte Carlo sensitivity analysis over the full range of uncertainty in the cost inputs
used in the economic model, obtain P50, P10 and P90 values, which translate to the median
value and 80% confidence interval.

6. Use this more detailed analysis to decide on an array size that keeps the P10, P50 and P90
predictions within a desirable range.

7. Perform a final full adjoint optimisation of the array size chosen to produce a map of the
spatial distribution of turbines and validate the predictions of the emulator.

6.2 Building an emulator by finding the Pareto frontier
In Section 5.1 three parameters appear in the functional for break even power alone; P , nt and
PBE, where in this work both P are nt are found as a function of the turbine density field d(x) and
are obtained through the optimisation process. This is true for the extended scenario in Section
5.2 also, with the addition of a fourth parameter for economies of volume, EV . There are therefore
one or two parameters (PBE or PBE and EV) in each of the previous sections, which need to be
decided upon before running the optimisation, each of which has uncertainty involved in the choice
of parameter value. When there are only one or two input parameters to vary it is relatively easy to
investigate the impact of this uncertainty. The optimisation process can simply be run repeatedly
so that the impact that changes in parameter values over their plausible range make on the optimal
design can be investigated.

However, when optimising for LCOE or other economic models which are derived from Net
Present Value (NPV) analysis there are a large number of uncertain input parameters. NPV
calculations require not only P and nt to be known, but also r, L, Te and all of the costs across
all of the years of the array’s lifetime. In this work those costs are simplified to be represented
by only four parameters, Ct, Cf , Ot and Of , by the assumptions made in (2) and (3). Even with
this simplification, this would still require varying the chosen input parameters within a seven
dimensional space to test the impact of uncertainty. This reduces to six dimensional space when
using LCOE models instead of NPV, by removing the need to specify Te — the input with arguably
the most uncertainty [21] — through optimising at the break even point, NPV = 0. Full uncertainty
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quantification via the variation of all input parameters, would be prohibitively expensive because
it would require an optimisation to be performed for every set of parameters.

This creates a need for a simpler, computationally cheaper proxy model, with which the un-
certainty analysis can be performed through consideration of a great range of parameter values.
In all of the economic models considered in this work, the costs are assumed independent of the
turbine locations. Therefore, for the scenario considered here there will be an optimal array design
which achieves maximal power for each possible number of turbines – from 0 to 576 (the number
of turbines at which maximal power can be generated). With the maximum density, d(x) and
farm area, Af , specified in Fig. 1, up to 600 turbines could be installed, but any more than 576
would generate less power than the optimal solution for PBE = 0, from Fig. 4a. While there are
no location-based costs, the optimisation procedure can be reduced to a bi-objective optimisation
problem of choosing the optimal balance between number of turbines (corresponding to the costs of
the array) and net average power (corresponding to the revenues of the array). Further work could
include location-based costs at the site-scale by adjusting the CAPEX and OPEX appropriately for
the average distance to shore and depth, using the spatial tool developed by Vazquez and Iglesias
[28].

Therefore, the optimal power that can be achieved for a given number of turbines can be plotted
against number of turbines, as shown in Fig. 7 (a). If a curve can be fitted between these points,
each of which is found through the Thetis optimisation of the spatially-varying turbine density,
then a bi-objective trade-off curve is found, where improving either the power or number of turbines
deteriorates the other parameter. Any formulation of the functional, which monotonically increases
with power for a fixed nt and, reversely, monotonically decreases with nt for a fixed power, will
have an optimal solution which falls somewhere along this trade-off curve. In multi-objective
optimisation, this is known as a Pareto frontier, where the points on the trade-off curve form the
set of all Pareto efficient solutions. Pareto efficiency is a condition where no performance criterion
can be improved upon without a trade-off making at least one other criterion worse. In this case,
each optimal solution shown in Fig. 7 (a) is Pareto efficient because the power can not increase
without the number of turbines (and therefore the cost) increasing, and vice versa. The different
economic models and choice of input parameters values just shift the weighting between the two.

The values from the break even power study are just used as an example of how the Pareto
frontier can be explored using a simple functional and by varying one parameter. Increasing PBE

from 0 to rated power ensures that there are samples distributed across the Pareto frontier. Once
the sample points are obtained, for example from the break even power study, an emulator for
the optimal achievable power for each number of turbines can be created, here through the use
of quadratic (cubic giving essentially the same result) spline interpolation between each successive
pair of points. Quadratic spline interpolation is sufficient to produce a smooth curve between the
optimal points found from the break even power study and increasing to cubic spline interpolation
had little impact on the shape of the curve fitted. This curve can be used to predict the optimal
net power that can be achieved as a function of the number of turbines in an array, i.e. P ≡ P (nt).
Therefore, the optimisation can be considered a problem in just one dimension – choosing the
optimal number of turbines for the economic functional chosen.

Fig. 7 (a) demonstrates how this interpolation, for the fourteen data points obtained from
optimisation runs when break even power varies from 0 to 0.8 MW, can be used to build an
emulator to predict the net average array power and other related characteristics such as power
per device. The emulator is used to produce the curve of predicted net powers, shown in blue, and
predicted average powers per device, shown in red. The predictions generated by this emulator
are compared in Fig. 7 (b) to the results obtained when optimising for break even power with
economies of volume, based on the functional (6). This testing demonstrated that quadratic spline
interpolation is more than sufficient to match the Thetis model data. It can be seen that running
the computationally expensive Thetis optimisation model only fourteen times is enough to obtain
good predictions for these 84 optimisation scenarios. A user may be able to reduce the number
of optimisation model runs needed if some minimum array power level is required to make a
significant energy contribution, which would allow the minimum number of turbines considered to
be increased above the low numbers included in this example, for example.
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(a) (b)

Figure 7: (a) The fourteen data points from the break even power study (shown in green) and
the emulator for optimal power that can be generated from these as a function of the number
of turbines. (b) The emulator compared to the optimised array parameters from 36 simulations
optimising for break even power with economies of volume added (shown in magenta). For both
studies the optimised array power is marked by a dot and the optimised power per device is marked
by a cross.

6.3 LCOE Results
Once the emulator has been generated, instead of re-running the expensive optimisation loop in
Thetis, the LCOE can be estimated across all possible nt values, with the corresponding P (nt)
values found from the emulator. The nt which minimises the LCOE can then be obtained. Fig.
8 shows this approach for finding the optimal LCOE and corresponding number of turbines for
three different sets of parameter values. The first set uses the typical values shown in Table 1, the
second set uses the highest L values and the lowest values for all other parameters in order to find
the optimal LCOE in the best case scenario given the uncertainty in parameter values, and the
final set uses the reverse to find the optimal LCOE in the worst case scenario.

(a) (b)

Figure 8: The emulator prediction for LCOE across all nt values from 0 to 600 and a snapshot
around the optimal values. The optimal LCOE for each set of parameter values is shown as a black
dot, and the input parameters are chosen to match the pessimistic, typical and optimistic values
shown in Table 1.

Results presented in Appendix A demonstrate how the emulator can be used to enable the
prediction of the optimal array design for LCOE under a large range of parameter values. The
main findings are that the CAPEX has more influence on the LCOE and optimal array features
than the OPEX, due to CAPEX accounting for a higher percentage of the lifetime costs, especially
when a high discount rate is applied. The turbine-dependent components of the costs, CAt and Ot,
have more impact on the LCOE than the fixed components. This is despite the fixed components
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having a greater uncertainty range to vary over (the pessimistic estimate for CAf is 2.5 times the
optimistic estimate, whereas the pessimistic estimate for CAt is 1.8 times the optimistic estimate)
and the fixed components being approximately three times the size of their respective turbine
dependent components (CAf is 2.3, 2.8 and 3.2 times the size of CAt in the optimistic, typical
and pessimistic cases respectively. Similarly Of is 2.9, 2.1 and 3.3 times the size of Ot in the
optimistic, typical and pessimistic cases). This is because the turbine dependent components of
the costs are multiplied by the number of turbines, so becomes more dominant as the number
of turbines increases. The results presented in Appendix A also demonstrate that when the cost
parameter values change the LCOE varies a lot more than the optimal number of turbines. Overall
it demonstrates that the variability of the optimal solution with different parameter choices is
interconnected with other parameter choices. This is an example of in depth sensitivity analysis
that would be computationally prohibitive to perform using direct optimisation over a vast number
of different functionals.

6.3.1 Emulator validation for LCOE results

Fig. 9 shows how the number of turbines and LCOE for the final iterations of the Thetis optimi-
sation procedure compare to the curve found using the emulator for the optimal LCOE that can
be achieved for each number of turbines in the array. The optimal LCOE and corresponding num-
ber of turbines from the emulator is marked as a black dot, with the final iteration of the Thetis
optimisation marked with a black cross. Three scenarios are compared – when all the parameters
are set to their typical value from Table 1 and when all are set to their typical value except CAt,
which is set to the maximum and minimum value.

This comparison demonstrates how the selection of the optimal design differs between the two
methods; the emulator starts by estimating the LCOE for the optimal design for each number of
turbines, then selects the number of turbines that minimises this, the Thetis model starts with
an initial turbine density field then optimises it until the LCOE improves no more. The final
iterations are included in Fig. 9 to make the point that each iteration will always be on or above
the curve from the emulators. This is because the Thetis model starts with a non-optimal turbine
configuration and improves the density field until it ends up on the configuration that optimises
the given functional, whereas the emulator starts with the Pareto frontier, where the turbine
configuration maximises the power generation for any given number of turbines, and from this
information selects the nt which optimises the functional.

Fig. 10 compares the optimal solution obtained via the Thetis model to the predictions of
the emulator. Since the emulator is much cheaper to run, predictions across the whole range of
parameters from max to min are shown, whereas only the max, min and typical values are shown
for the Thetis model. These results show that the predictions for LCOE are quite accurate and
the emulator is suitable for predicting LCOE. However, they also show that the predictions for the
optimal number of turbines has a much greater error. Inspection of Fig. 9 shows that the LCOE
curves are relatively flat and very insensitive to changes in the number of turbines near to the
optimal solution. This shows that the optimal solution may be a robust one, however accuracy in
nt predictions may be harder to obtain because of this. Furthermore the magnitude of the error is
approximately one turbine or less, except for the optimistic CAf scenario, where it is almost two
turbines.

Fig. 11 shows how each of the solutions obtained via the Thetis model lie on (or very close to)
the Pareto frontiers for optimal array power and power per device, obtained from the emulator.
This further supports the conclusion that the emulator can be used to accurately find the set of
array designs with an optimal trade-off between number of turbines and power.

6.3.2 Monte Carlo evaluation of LCOE predictions

Since there is a significant degree of uncertainty in the input parameters from Table 1, there is a
drastic difference between the LCOE predictions in the optimistic and pessimistic scenarios shown
in Fig. 8. This LCOE variation is so large partly due to the fact that the costs are commercially
sensitive so it is hard to obtain an academic prediction of them. They are also subject to change
with time, because costs in the industry will fall due to learning rates. However, variation is also
exaggerated due to the pessimistic and optimistic scenarios being the combination of all inputs at
their most extreme values, when in practice this is very unlikely.
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Figure 9: The emulator prediction for how LCOE varies with nt, shown as a dashed line, compared
to the final iterations of the Thetis optimisation, shown as coloured crosses. The optimal LCOE
from the final iteration of the Thetis optimisation for each set of parameter values is shown as a
black cross. The optimal LCOE from the emulator is marked as a black dot. The results for where
CAt is set to its max, min and typical values are shown, while all other parameters set to their
typical values.

The traditional static and deterministic financial models, such as that described in Equation 8,
produce a single value of LCOE or NPV for each energy project. Stochastic methods, such as Monte
Carlo analysis, can capture the impact that uncertainty in the input variables has on the economic
viability [53]. Monte Carlo simulations consist of repeated random sampling and statistical analysis
of the results to capture sensitivities to the inputs. Monte Carlo simulations take all uncertain
variables and assign a random variable to each according to an assumed distribution. In this case
the uncertain variables are the inputs in Table 1 and a uniform distribution is assumed between their
most pessimistic and optimistic values. The result (in this case the LCOE) is then re-calculated
with the new random variables and this process is repeated many times with new random sampling
each time. Ten thousand re-samplings of the LCOE within a Monte Carlo simulation ensures here
that the mean and median across samples are stable each time the Monte-Carlo analysis is re-
run, and is computationally practical due to the efficiency of the new emulator method. This
is a novel feature of the emulator method developed in this paper, compared to other numerical
methods of optimising array design which would be too computationally expensive to generate a
sufficient number of samples for Monte Carlo analysis to be stable. The LCOEs found in each of
the resamples can then be ordered so that the 10th, 50th (i.e. the median) and 90th percentile can
be found, these are termed the P10, P50 and P90 values. 90% of the resampled LCOE predictions
are better (lower) than the P90 values, whereas only 10% of the resampled LCOE predictions are
better than the P10 values.

This gives a much more realistic representation of how much the LCOE is likely to vary with
respect to uncertainty in the inputs from Table 1. The results of such analysis are shown in Fig.
12. In practice the inputs are more likely to be distributed normally, which would result in even
less variation between the P10 and P90 results. However, the standard deviation of the input errors
in this paper are not known, so a more conservative uniform distribution is assumed instead.

As discussed in [21], the variability between the Optimistic, Typical and Pessimistic costs
scenarios likely reflects the great rate at which costs have already fallen from the first demonstrator
projects and are anticipated to fall with learning in the industry [16]. It is likely that as the
cumulative installed capacity for tidal increases further the LCOE will fall from the P90 to P50
to P10 values. It is also noticeable that in the optimistic, typical and pessimistic cases, once the
optimal number of turbines is exceeded, the LCOE increases, but slowly. A developer may see
modest increases in LCOE as acceptable in order to produce more energy.
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Figure 10: The impact that varying each of the input parameters, from the optimistic (x) to
pessimistic (+) value given in Table 1, has on the optimal LCOE and number of turbines. This
demonstrates the small errors between the optimal solution obtained through the emulator, shown
as a line evaluated over all intermediate values too, and from the Thetis optimisation, shown as
crosses. The line for L decreases in steps because the years increase discretely.

Figure 11: The net time-averaged array power and the average power per device generated in
each of the optimal array designs obtained in Thetis as each of the input parameters are varied
from their optimistic (×) to pessimistic (+) value, as given in Table 1. This demonstrates that
all optimal solutions lie on the line of emulator predictions for the relationship between number of
turbines and optimal power that can be achieved.

The optimal LCOE found in the pessimistic, typical and optimal scenarios are £149/MWh,
£76/MWh and £37/MWh respectively. Applying Monte Carlo analysis reduced this range to
a P90, P50 and P10 value of £107/MWh, £83/MWh and £64/MWh respectively. The optimal
number of turbines always remained between 11 and 14, highlighting that optimal array design
lies between the PBE = 0.7 and 0.8MW designs shown in Fig. 4h and 4i. In all scenarios it can be
seen that increasing the number of turbines past the optimal number does not increase the LCOE
dramatically. Therefore there is a lot of flexibility for developers hoping to install an array of a
larger size, while keeping the LCOE below a maximal acceptable value.
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Figure 12: Predictions for the optimal LCOE that can be achieved for each number of turbines, and
the resultant array design that minimises it, for the pessimistic, typical and optimistic scenarios
outlines in Table 1, as well as the P10, P50 and P90 values obtained through a Monte Carlo
simulation assuming uniform distributions of uncertain parameters.

7 Limitations and applications
This paper presents the optimisation and in depth economic assessment of large-scale tidal arrays as
well as a new method enabling rapid assessment of the LCOE for arrays of different sizes, through
the use of an emulator. A number of assumptions and simplifications are made in this work to
demonstrate the development of this method, without focusing on the specifics of any particular
real world tidal site. This work is presented on a highly idealised domain, with very simplified
tidal forcing that could be considered an approximation of an M2 tide. As such the LCOE values
presented in this paper should not be taken as a prediction the cost of energy that can be achieved
for tidal deployments, but instead as a demonstration of how this method can be used to predict
LCOE when applied in more detail to real tidal domains.

Future work should apply this approach to the assessment of real world tidal sites with more
complex bathymetry and flow. The rapid emulator method will help to increase the scope of
economic analysis that can be performed without scaling up the computational expense, which will
be especially important in more complex models. A more complex application of the methodology
developed in this paper appears in [19]. There it is used to predict the LCOE that can be achieved
in the Alderney Race as the installed capacity is increased; this demonstrates that the process
works for more complex realistic sites.

The modelling approach employed here does not distinguish between the force of the rotor
thrust given in Equation 12 and the drag due to the turbine structure system. A simple approach
to include this, which is compatible with the depth-averaged continuous turbine modelling approach
used in this paper, is presented in [42]. The total drag force is found via

F (u) =
1

2
ρ(ATCt(||u||) +AsupportCsupport)||u||u, (15)

where Asupport is the cross-sectional area of the support structure and Csupport is its drag coeffi-
cient. Various different support structure designs are available, but taking a 3m diameter monopile
installation as an example, on a 16m diameter turbine with a tip to seabed clearance of 4m, the
cross sectional area is Asupport = 3 × (4 + 8) = 36m2. [42] assumed a drag coefficient for a pylon
structure of Csupport = 0.7, a typical value for flow past a cylinder at high Reynolds numbers. At
the maximum turbine density allowed in this paper, this additional support drag term results in
a dimensionless drag coefficient of 0.0039, which is small compared to the equivalent rotor drag
coefficient of 0.025 (below rated for CT = 0.8) but a notable increase on the standard physical
bottom friction term’s value of 0.0025. When applied to a real array the drag term should be
updated to include the support structure of the turbine design chosen. This will result in a higher
drag added by the presence of the turbines, leading to a greater impact of global blockage effects,
with few turbines installed at each break even power and more significant diminishing returns as
the number of turbines increases.

Another limitation and scope for further study is that this work only tests one maximum
turbine density and one turbine diameter and rated power. Studies should be carried out to test
the impact of varying the maximum allowable turbine density on the optimal design. This is
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especially important because the wakes of each turbine are not modelled explicitly, so it may be
necessary to increase the spacing requirements enforced to ensure accuracy of the depth-averaged
continuous drag method [43]. Modelling the impact of changes in the turbine scale (rotor diameter
and rated power) on the economics is also an important extension on this work, because it has
been shown that the LCOE could reduce significantly even with small increases in turbine scale
[54].

There is potential to extend this approach from continuous representation to discrete modelling
of individual turbines. This would allow for the effects of accelerated bypass flow and local blockage
to be investigated, which can have a substantial impact on the yield of an array [50]. The emulator
based approach could substantially reduce the number of iterations needed to find the optimal
number of turbines in a discrete approach, but resolving the turbines individually still requires
requires a much finer mesh and is much more computationally expensive. To reduce this expense a
two stage optimisation as described in [5] could be used, where the continuous optimisation provides
a good initial layout, so that the discrete turbine micro-siting optimisation requires overall fewer
iterations to converge. However, the emulator method would need to be validated again for testing
it’s accuracy at predicting the optimal power and LCOE in a discrete model.

8 Conclusions
It has been shown that an emulator can be built for rapid prediction of optimal array characteristics,
with respect to many different economic models. It can be built using the results of computationally
expensive adjoint optimisations over a simple functional, such as J = P −PBE × nt. Only a small
number of these results spread across a range of different nt values enables us to accurately emulate
a Pareto frontier between the two dominant criterion affecting the success of an array design;
minimising cost, i.e. reducing nt and maximising revenue, i.e. increasing Power generation.

The emulator that approximates this Pareto frontier has been shown to be effective at quickly
evaluating a large number of functionals based on different economic metrics and different input
parameters. Validation has shown this method accurately produces very similar optimal array
characteristics to performing the relatively computationally expensive adjoint optimisation within
Thetis. The fact that this emulator can accurately predict the nt, P , LCOE and other parameters
of the optimal array design very quickly enables the evaluation of the functional over a large
range of input parameters and uncertainty analysis which would be unfeasibly computationally
expensive otherwise. This includes the calculation of P10 and P90 confidence parameters over
10,000 Monte Carlo samples. Without building the emulator, each sample would have taken
days to complete using an adjoint Thetis optimisation and Monte Carlo analysis would have been
impossible. Although the underlying hydrodynamic model configuration in this paper is idealized,
it should be noted that once constructed the cost of evaluating the emulator is independent of the
complexity of the hydrodynamic model. Thus this approach makes it feasible to apply the same
analysis to more realistic cases based on model setups with high levels of detail and accuracy.

In order to effectively test this method the LCOE was the main economic metric evaluated,
however it can be applied to a vast range of other functionals including Internal Rate of Return,
Payback Period and Net Present Value. The necessary economic inputs have been estimated using
a review of existing literature [21], to give an estimate of how the LCOE of large-scale tidal energy
arrays could be reduced with costs which fall with experience, time, economies of volume and smart
array design.

Appendices
A Sensitivity with respect to LCOE inputs

A.1 Sensitivity with respect to cost estimates
Fig. 13 shows how the LCOE of the optimal array design varies as different values of CAt, CAf ,
Ot and Of are tested in the economic (LCOE) model used for the optimisation functional. The
parameters which are not being varied are set to their average values from Table 1, with the lifetime
of the array set to 20 years and the discount rate set to 10%. CAt, CAf , Ot and Of are all varied
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Figure 13: The optimal LCOE that can be achieved changes as each of the cost parameters are
varied.

from their minimum to maximum estimates supported by the literature, from [21]. As expected,
it can be seen that as each of the cost parameters is increased the optimal LCOE also increases,
as energy becomes more expensive to produce.

Since Capital costs make up a higher percentage of the lifetime costs than Operational ones,
especially once discounting is taken into account, varying the CAPEX parameters has more impact
on the optimal LCOE than varying the OPEX parameters. This is seen despite the greater relative
range of uncertainty in the OPEX parameter estimates than in the CAPEX ones. For both CAPEX
and OPEX, varying the turbine-dependent component has more impact on the optimal LCOE than
varying the fixed component of the costs. This is again despite the fact that the range of uncertainty
in the fixed component parameter estimates is much greater than the range of uncertainty in the
turbine-dependent parts. This is because although CAf is approximately three times the size of
CAt, CAt is multiplied by the number of turbines in an array, so it soon becomes the dominant
factor as nt increases.

Depending on the combination of input cost parameters the optimal LCOE that could be
achieved varied from around £60/MWh to £100/MWh. By comparison the OREC 2018 analysis
[16], predicted that tidal stream in the UK has the potential to reach an LCOE of £150/MWh at
100MW cummulative capacity and £80/MWh by 2GW cummulative capacity. While this model
is of an idealised channel, it has velocities similar in magnitude to potential tidal sites such as
the Alderney Race and Pentland Firth, so it seem promising that the LCOE predictions are of a
similar magnitude, although slightly optimistic.

Figure 14: The number of turbines, nt, in the array design that results in the optimal LCOE, as
each of the cost parameters are varied.

Fig. 14 shows how the corresponding number of turbines in the optimal array design varies as
different values of CAt, CAf , Ot and Of are considered. Predictably, as the turbine-dependent
costs are increased the optimal number of turbines decreases, since they are more expensive to
install. However, as the fixed costs increase the optimal number of turbines increases. As CAf

becomes larger with respect to CAt, the impact of economies of volume becomes more significant
and more turbines are required to spread the initial fixed costs over. Similarly, the optimal nt
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increases as Of increases with respect to Ot. Again, the uncertainty in OPEX estimates have
less impact on the optimal number of turbines than the uncertainty in CAPEX estimates. This is
despite there being greater variation in OPEX, due to CAPEX being a higher factor in the lifetime
discounted costs of an array. However, the optimal number of turbines varies by a similar very
amount over the minimum to maximum range of fixed costs compared to turbine-dependent costs,
despite the LCOE being more sensitive to variation in turbine-dependent costs.

Figure 15: The total array power of the design that results in the optimal LCOE as the cost
parameters are varied.

Figure 16: The average power per device in design that results in the optimal LCOE as the cost
parameters are varied.

Fig. 15 and Fig. 16 show how the total array power and the average power per device of the
optimal array designs vary with different values of CAt, CAf , Ot and Of , respectively. They show
that as the fixed costs increase (for both CAPEX and OPEX), the total array power increases, but
the average power per device decreases. This corresponds to the increase in the number of turbines
with increased fixed costs shown in Fig. 14. The higher the fixed costs the more power needs to
be generated to compensate for it, even if this comes at the expense of more turbines and a lower
return per turbine. Conversely, as the turbine-dependent costs increase the total power decreases
but the average power per device increases. As the turbines become the more costly part of the
array expenses, fewer turbines should be installed, allowing a higher percentage of them to fit in
the fastest flowing locations. Similarly to LCOE and nt, varying the CAPEX has a greater impact
on the total array power and average power per device than varying the OPEX.

A.2 Sensitivity with respect to array lifetime and discount rate
Similarly, the sensitivity of the optimal design to change in L and r with respect to one another
can be investigated. Fig. 17 shows how varying both parameters impacts the optimal LCOE and
the number of turbines at which the optimal LCOE is found. Varying the discount rate has a
bigger impact on the optimal LCOE than varying the lifetime of the array and as the discount
rate increases the impact of the lifetime on both the LCOE and the number of turbines decreases.
This is because discounting minimises the impact of the revenue and expenditure in the final years
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Figure 17: The total LCOE and number of turbines in the array design that results in the optimal
LCOE as the lifetime of the array, L, and the discount rate, r, are varied.

of the array on the LCOE and the greater the discount rate the less impact increasing the lifetime
will have.

While lifetime has relatively little impact on the LCOE, the discount rate has an impact of
similar magnitude to varying the cost inputs, shown in Fig. 13. However both the discount rate
and the lifetime of the array have very little impact on the optimal number of turbines, compared to
the costs shown in Fig. 14. This is because the balance of fixed to turbine-dependent costs changes
the extent to which there are economies of volume, and therefore moves the optimal number of
turbines more, whereas L and r shift the LCOE vs nt curve (such as that shown in Fig. 8) up and
down, but do not change its shape much.

Figure 18: The total array power and the average power per device in the design that results in
the optimal LCOE as the lifetime of the array, L, and the discount rate, r, are varied.

Fig. 18 shows how the total array power and the average power per device of the optimal array
designs vary with different values of L and r. Again it can be seen that the discount rate has
more impact than the lifetime on the total and average power generation, but both have much less
impact than varying CAt, CAf , Ot and Of , as shown in Fig. 15 and Fig. 16. Since varying these
parameters has very little impact on the number of turbines, it is not changing the array design,
and therefore the power generated by much, it is just changing the profitability (and therefore
LCOE) of the array. Throughout the whole range of L and r values found in Table 1, the optimal
number of turbines remains between 11 and 12, corresponding to the array design shown in Fig.
4i and thus the power generated remains roughly the same.
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Nomenclature
Acronyms

CAPEX Capital Expenditure
OPEX Operational Expenditure
NPV Net Present Value
IRR Internal rate of return
ROI Return on investment
PP Payback period
LCOE Levelised cost of energy
OREC Offshore Renewable Energy Catapult
CCFI Centre for Climate Finance Institute
GIB Green Investment Bank
UFL Unified Form Language
ADCP Acoustic Doppler current profiler
P10 10th percentile in probabilistic Monte Carlo resampling
P50 50th percentile (the median) in probabilistic Monte Carlo resampling
P90 90th percentile in probabilistic Monte Carlo resampling

Symbols
CAt Turbine-dependent CAPEX (per year)
Ot Turbine-dependent OPEX (per year)
CAf Fixed CAPEX (per year)
Of Fixed OPEX (per year)
r Discount rate
L Lifetime of array
Revi Revenue in year i
Exi Total expenditure in year i
nt Number of turbines
Pavg Average array power
PBE Break even power (per turbine)
ti Number of hours generating in year i
Te Electricity tariff
CT Thrust Coefficient
CP Power Coefficient
AT Swept area of turbine rotor
Csupport Drag coefficient of turbine support structure
Asupport Cross-sectional area of turbine support structure
J Optimisation functional
EV Economies of volume rate
η Free surface perturbation
t Time
H Total water depth
u 2D depth averaged velocity vector
ν Kinematic viscosity
Cd Dimensionless drag coefficient
Ld length of domain
Bd Width of domain
i Island diameter
s Minimum distance from island to southern landmass
Af Farm area
Lf Farm length
Bf Farm width
h0 Depth in main part of domain
a Amplitude of free surface perturbation
ωt Frequency of free-surface perturbation
d(x) Spatially varying turbine density field
ct Turbine bottom friction coefficient
urated Rated speed
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Table 1: Estimates for the parameters used in the economic models, and the amount they vary.
Taken from [21].

Symbol Description Value range Units
Optimistic Typical Pessimistic

CAf Fixed CAPEX 5.6 9.2 14.4 £m
CAt Turbine-dependant CAPEX 2.4 3.3 4.4 £m/turbine
Of Fixed OPEX 0.27 0.32 0.87 £m/year
Ot Turbine-dependant OPEX 0.094 0.15 0.26 £m/year/turbine
r Discount rate 0.05 0.10 0.15 N/A
L Lifetime of an array 30 25 20 years
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