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Abstract

An increasing number of multi-view data are being published by studies in several fields. This
type of data corresponds to multiple data-views, each representing a different aspect of the same
set of samples. We have recently proposed multi-SNE, an extension of t-SNE, that produces a
single visualisation of multi-view data. The multi-SNE approach provides low-dimensional embed-
dings of the samples, produced by being updated iteratively through the different data-views. Here,
we further extend multi-SNE to a semi-supervised approach, that classifies unlabelled samples by
regarding the labelling information as an extra data-view. We look deeper into the performance, lim-
itations and strengths of multi-SNE and its extension, S-multi-SNE, by applying the two methods
on various multi-view datasets with different challenges. We show that by including the labelling
information, the projection of the samples improves drastically and it is accompanied by a strong
classification performance.

Key Words: Data visualisation, Dimensionality reduction, Semi-supervised classification, t-SNE,
Multi-view data, Manifold learning

1. Introduction

Multi-view data are usually described as a collection of data taken from different sources on
the same samples. It is now very common for multi-view data to be generated in different
fields; for example multi-omics datasets in biomedical studies [19], crystal structure data
in the field of chemistry [4], data sources in social science [12] and cyber-security [13].
In biomedical studies multiple omics datasets, e.g. proteomics, genomics, transcriptomics,
are generated on the same individuals. Through these studies the researchers are interested
in understanding the relationships between the omics datasets, the underlying biology, and
also enhance their relationship with the studied disease (e.g. classifying patients as healthy
or not). In this manuscript, we focus on the latter, and specifically on the task of classifying
samples by utilising the multi-view data. We propose a semi-supervised learning approach,
named S-multi-SNE, that incorporates the labelling information of the training set alongside
the multi-view data (training and test) to visualise all samples and classify the labels of the
test set.

S-multi-SNE is an extension of our recent work on multi-view visualisation approach,
multi-SNE that produces a single representation of the samples by incorporating the infor-
mation of all data views. Multi-SNE is a multi-view extension of the widely used dimen-
sionality reduction approach, t-distributed Stochastic Neighbour Embedding (t-SNE) [23],
that has gained great popularity over the last years as it provides a comprehensible low-
dimensional projection of the samples in a single-view setting. Multi-SNE was found to
have superior performance in the visualisation of the samples and identification of any
underlying structure when compared with the competitive extension of t-SNE, named m-
SNE [25], and other multi-view manifold learning approaches [18].

The proposed adaptation of the multi-SNE approach focuses more in producing a good
data visualisation by incorporating the labelling information of the samples, which is con-
structed as a binary matrix of size N × C, where C presents the total number of classes of
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the samples and N is the number of samples. The cell (i, j) of the matrix takes the value 1
if sample i belongs to class j and zero otherwise. For example, in a multi-omics experiment
on cancer patients and controls, the labelling matrix will have two columns, one column for
the cancer patients, and another one for the controls. Similarly, in a cancer subtypes study
where the samples are patients with different cancer types (for example [24]), each column
of the labelling matrix will correspond to each cancer type.

The proposed approach, S-multi-SNE, combines labelling information of the training
samples, with the training and test sets of the multi-view data, for classifying the labels
of the test samples. This is done by applying the multi-SNE algorithm on the available
data and applying a classification algorithm on the projected low-dimensional embeddings
produced by the algorithm. S-multi-SNE is a transductive algorithm, as it does not build
a generic predictive model. Such algorithms tend to make predictions on a specific test
set [21]. If a new data point is added to the test set, then the algorithm has to re-run from the
beginning to train the model and then to predict the labels. Transductive learning algorithms
are preferred when multiple test (query) sets are available with different characteristics.

The S-multi-SNE projections are treated as features in the classification algorithm that
predicts the classes of the test samples. Different classification algorithms can be utilised
for this purpose. Through a series of experiments we illustrate that the K-Nearest Neigh-
bours (KNN) [10] classification algorithm has a good performance. An advantage of KNN
is that a good classification score ensures a good visualisation of the data. That is, because
KNN separates different classes into neighbourhoods and classifies the samples in the test
set by looking at their neighbours [10].

Related work

In the last few years, a number of multi-view semi-supervised learning approaches have
been proposed [2, 15, 16, 26]. Bo et al. (2019) [2] conducted a simulation study where
they compared the performance of the recently published semi-supervised multi-view clas-
sification approaches: Auto-weighted Multiple Graph Learning (AMGL) [16], Multi-view
Learning with Adaptive Neighbors (MLAN) [15] and Latent Multi-view Semi-Supervised
Classification (LMSSC) [2]. In their study, Bo et al.( 2019) demonstrated that LMSSC was
superior to the other algorithms, under different scenarios. The LMSSC approach classifies
the test samples in two steps: (a) constructs a graph, with samples as nodes and weighted
edges based on similarities among all data-views, and (b) uses label propagation to infer the
labels on unlabelled samples. Following the results of Bo et al. (2019), we have compared
our proposed S-multi-SNE approach with the LMSSC approach.

The popularity of t-SNE attracted many researchers who proposed several variations
and extensions of the algorithm. Recently, Cheng et al. (2020) proposed St-SNE [5], a
supervised extension of t-SNE. Similarly to our proposal, St-SNE considers the labelling
information as an additional data-view. In contrast to S-multi-SNE, the unlabelled samples
are classified differently. They proposed three strategies for classification, one of which
uses Neural Networks (nSt-SNE) and it is similar to the parametric t-SNE [22]. Another
strategy (dSt-SNE) implements St-SNE twice to predict the classes of unlabelled samples.
The latter strategy was used to compare a single-view approach (St-SNE) against a multi-
view approach (S-multi-SNE) and to highlight the benefits of incorporating multiple data-
views in the analysis.

A comparative study between S-multi-SNE, LMSSC and St-SNE was conducted to
explore and assess their classification performance. All three algorithms were implemented
on 10%, 20%, 50%, and 80% of the samples in training, covering both semi-supervised and
supervised scenarios. The focus of the comparison with St-SNE lies on 80% training rate,
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while the emphasis against LMSSC falls on the low training rates (10%, 20%, 50%). We
show that S-multi-SNE performs closely to LMSSC and outperforms St-SNE. In particular,
S-multi-SNE was superior on 80% training/test rate and it was found to outperform LMSSC
on datasets with imbalanced labels or small sample size per class.

In the following section, we describe the proposed S-multi-SNE approach and the multi-
view datasets used. Through a series of experiments we illustrate and discuss:

• the performance of visualising samples when labelling information is included

• the choice of the classifier algorithm and how it affects the performance of S-multi-
SNE

• the performance of S-multi-SNE versus LMSSC and St-SNE

• the performance of S-multi-SNE and LMSSC on datasets with imbalanced labels and
small sample size per class

2. Materials and Methods

In this section, multi-SNE is described and its extension, S-multi-SNE is introduced. The
classification algorithms and datasets used in this study are then reported.

2.1 Multi-SNE

Suppose that X is a multi-view dataset that containsM data-views. LetX(m) ∈ RN×pm de-
note the mth data-view, with x(m)

i being the ith data point of X(m), where m = 1, · · · ,M .
Let Y ∈ RN×d represent the low-dimensional embedding of the original data obtained as
the output of multi-SNE; yi is the ith data point of Y and d = 2 was set throughout the
paper.

For data-view m, multi-SNE measures the probability distribution, P (m), of each data
point, x(m)

i , as follows: For every sample i, a sample j is taken as its potential neighbour
with probability p(m)

ij , given by:

p
(m)
ij =

exp (−(d(m)
ij )2)∑

k 6=i exp (−(d
(m)
ik )2)

, (1)

where d(m)
ij =

||x(m)
i −x(m)

j ||2

2σ2
i

represents the dissimilarity between points x(m)
i and x(m)

j . The

obtained probability distribution P (m)
i =

∑
j p

(m)
ij has a fixed perplexity, which refers to

the effective number of local neighbours. Perplexity is defined as Perp(P (m)
i ) = 2H(P

(m)
i ),

where H(P
(m)
i ) = −

∑
j p

(m)
ij log2 p

(m)
ij is the Shannon entropy of P (m)

i , typically taking
values between 5 and 50. The results presented in this manuscript are taken with optimized
perplexity.

A probability distribution in the low-dimensional space follows Student’s t-distribution
with one degree of freedom [23] and it is computed as follows:

qij =
(1 + ||yi − yj ||2)−1∑
k 6=l(1 + ||yk − yl||2)−1

,

which represents the probability of point i selecting point j as its neighbour.
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The Kullback-Leibler divergence (KL-divergence) provides a measure of how differ-
ent a probability distribution, G is from a second probability distribution, H , denoted by
KL(G||H) [14]. If KL(G||H) = 0, then the probability distributions G and H are iden-
tical. The induced embedding output, yi, represented by probability distribution, Q, is
obtained by minimising the sum of all KL-divergence measures between Q and the distri-
butions of every data-view m = 1, · · · ,M . In other words, multi-SNE minimises the cost
function given by equation (2).

Cmulti−SNE =
∑
m

∑
i

w(m)KL(P
(m)
i ||Qi)

=
∑
m

∑
i

∑
j

w(m)p
(m)
ij log

p
(m)
ij

qij
, (2)

where w(m) provides a weight value for each data-view, and
∑

mw
(m) = 1. Here, we have

taken equal weights on all data-views, i.e. w(m) = 1
M , ∀m = 1, · · ·M .

2.2 S-multi-SNE

The iterative property of multi-SNE provides the option to modify the algorithm in a way
that includes the labelling information and consequently make predictions on unlabelled
samples. In this section, we propose such a modification, named S-multi-SNE. The algo-
rithm of this approach can be found in the supplementary material.

Suppose that M data-views are available, and assume w.l.o.g. that the last data-view,
denoted by X(l) = X(M), contains the labelling information in a binary matrix format.
For m = 1, · · · ,M , let X(m)

TR ⊂ X(m) be the training set (contains information on labelled
samples) andX(m)

TE ⊂ X(m) be the test set (with unlabelled samples). The low-dimensional
embeddings of the data points in the training set are computed by using all available data-
views, including X(l)

TR. On the other hand, the embeddings of the data points in the test set
do not consider X(l)

TE , since that information is missing (X(l)
TE = ∅).

Let I(l) ∈ RN×N be defined by:

I
(l)
ij =

{
1 if {D(l)

i = 1} ∧ {D(l)
j = 1}

0 otherwise

where D(l) ∈ RN denotes the missing data, defined by:

D
(l)
i =

{
0 if x(l)i is missing

1 if x(l)i is observed

The cost function of S-multi-SNE is given by:

CS−multi−SNE =

M−1∑
m

∑
i

∑
j

w(m)p
(m)
ij log

p
(m)
ij

qij
+

+ I
(l)
ij w

(l)p
(l)
ij log

p
(l)
ij

qij

]
(3)

In every experiment of this study, the data were normalised via PCA, before the im-
plementation of S-multi-SNE. In particular, for each data-view, the first c principal com-
ponents (PC) that describe 80% of the variance were taken as input in the algorithm. This
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dimensionality reduction pre-processing step speeds up the algorithm and suppresses some
noise, without distorting the distances between data points. Normalisation via PCA is com-
monly used as a pre-processing step for t-SNE, since it was implemented in the original
proposal of the algorithm [23].

T-SNE and by extension its variations, including S-multi-SNE, require a perplexity
value, which needs to be tuned. All projections presented in this manuscript are taken with
optimised perplexity, which was selected qualitatively by reviewing the data visualisations
of each method on a range of perplexity values, S = {2, 10, 20, 50, 80, 100, 200}. A quan-
titative evaluation on the classification task assisted in identifying the optimised perplexity.

2.3 Classification algorithms

The output of S-multi-SNE, Y ∈ RN×d, are low-dimensional embeddings of all samples,
including the ones in the test set. These projections can then be treated as input features into
classification algorithms. In a practical manner, any general-purpose classifier can be used
to predict the classes of the unlabelled samples. In this paper, several standard classifiers
were explored: (a) Support Vector Machine (SVM) [6], (b) Linear Discriminant Analysis
(LDA) [9], (c) Decision Trees (DT) [17], (d) Random Forests (RF) [3], (e) Neural Network,
via Multi-Layer Perceptron (NN) [20], and (f) K-Nearest Neighbours (KNN) [10].

Each of these classifiers require tuning of one or more parameters. For example, dif-
ferent kernel functions were explored in SVM, and and different solver functions were
assessed in LDA. The number of trees, forests, layers and neighbours were optimised in
DT, RF, NN and KNN, respectively. A grid search cross-validation framework was imple-
mented to tune the parameter values in each classifier.

The following steps were taken to test the performance of the classifiers on S-multi-
SNE, applied on a multi-view dataset X.

1. Randomly split the samples in training/test sets with 10%, 20%, 50% and 80% of
samples lying in the training set. The split is performed in proportion to each class
size within a dataset.

2. Implement S-multi-SNE on X.

3. Implement a classifier algorithm (e.g. KNN) on the low-dimensional embeddings
produced by S-multi-SNE to classify the samples in the test set.

4. Repeat steps 1− 3, for a Niter = 100 times.

2.4 Data Description

The aim of the study is to explore the performance of S-multi-SNE and compare it against
existing approaches. In order to test the robustness of the algorithm, it is important to
explore datasets with distinct attributes. Four real and one synthetic datasets were anal-
ysed. The different characteristics (e.g. high-dimensionality, heterogeneity, number of
data-views, samples and classes) of each dataset allow us to evaluate the methods in a range
of real-life situations with noisy data. The real datasets are classified as heterogeneous due
to the nature of their data; the synthetic dataset is classified as non-heterogeneous, since it
was generated under the same conditions and distributions. The datasets analysed in this
paper are described below:
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Handwritten Digits 1 [7]: Extracted from a collection of Dutch utility maps.
Number of classes: 10 [Handwritten numerals (0− 9)].
Number of data-views: 6: (a) Fourier coefficients of the character shapes (p1 = 76 ), (b)
profile correlations (p2 = 216 ), (c) Karhunen-Love coefficients (p3 = 64 ), (d) pixel aver-
ages in 2 x 3 windows (p4 = 240 ), (e) Zernike moments (p5 = 47 ) and (f) morphological
features (p6 = 6 ).
Number of samples: 2000 [200 patterns per class ].

Caltech7 2 [8]: Subset of Caltech-101.
Number of classes: 7 [Pictures of 7 different objects].
Number of data-views: 6: (a) Gabor (p1 = 48 ), (b) wavelet moments (p2 = 40 ), (c)
CENTRIST (p3 = 254 ), (d) histogram of oriented gradients (p4 = 1984 ), (e) GIST (p5 =
512 ), and (f) local binary patterns (p6 = 928 ).
Number of samples: 1474: Imbalanced dataset with samples per class: {A: 435, B: 798, C:
52, D: 34, E: 35, F: 64, G: 56}.

Cancer Types 3 [24]: Multi-omics.
Number of classes: 3 [Cancer types (breast, kidney, lung)].
Number of data-views: 3: (a) genomics (p3 = 10299 ), (b) epigenomics (p2 = 22503 ) and
(c) transcriptomics (p3 = 302 ).
Number of samples: 253: 65 patients with breast cancer, 82 with kidney cancer and 106
with lung cancer.

Reuters 4 [1]: Text documents.
Number of classes: 6 [E21, CCAT, M11, GCAT, C15, ECAT].
Number of data-views: 5: Words from the original documents (English) and from four
translations ((a) Italian, (b) French, (c) German and (d) Spanish). All five data-views con-
tain 2000 features (words).
Number of samples: 1200 : [200 documents per class ]. .

Noisy Data-view Synthetic data (NDS) [18]: Synthetic dataset.
Number of classes: 3 [A,B,C].
Number of data-views: 4: p1 = 100, p2 = 100, p3 = 100, p4 = 1000
Number of samples: 300 : [100 samples per class ].

The synthetic dataset (NDS) aims to justify the use of the algorithm and its ability to
capture the true underlying classes of the samples, even when they are not well-represented
in each data-view. The data follow the noisy data-view scenario described by Rodosthenous
et al. (2021) [18] and were generated as follows. Each sample follows a normal distribu-
tion with mean µ and standard deviation σ = 1. To distinguish the classes, different µ
values were used for each data-view. Further, noise (ε ∼ N (µε, σε)) was added to increase
randomness within the data-views. Lastly, polynomial functions were applied on the sam-
ples to express non-linearity and ensure that linear dimensionality reduction methods (e.g.
PCA) would not succeed in identifying the classes.

In NDS, the first data-view separates only cluster A from the others, the second view
separates only cluster B and the third view separates only cluster C. The first three data-
views have pv = 100 features. The last data-view represents a noisy data-view (all data
points lie in one cluster) with pv = 1000 features to intensify the noise. The data structure
in NDS highlights the importance of multi-view analysis, since each data-view describes
a distinct clustering, none of which describes accurately the synthetic truth. An effective
multi-view algorithm would distinguish the three clusters while it avoids the noise of the

1https://archive.ics.uci.edu/ml/datasets/Multiple+Features
2https://github.com/yeqinglee/mvdata
3http://compbio.cs.toronto.edu/SNF/SNF/Software.html
4https://github.com/lzu-cvpr/multiview-learning/blob/master/multiview DataSets.md
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4th data-view.

2.5 Performance evaluation

The classification performance of each method, was evaluated by three common measures:
(A) Accuracy, (B) Precision, and (C) Recall. Let T ∈ RN×k denote the true classes of a
dataset with N samples. For each 1 ≤ i ≤ N , Ti ∈ T = {0, 1}k, with 1 referring to its
true class. Similarly, let P ∈ RN×k denote the predicted classes.

Accuracy: The proportion of correctly predicted labels to the total number of labels
(predicted and actual).

Accuracy =
1

N

N∑
i=1

|Ti ∩ Pi|
|Ti ∪ Pi|

(4)

Precision: The proportion of correctly predicted labels to the total number of actual
labels.

Precision =
1

N

N∑
i=1

|Ti ∩ Pi|
|Ti|

(5)

Recall: The proportion of correctly predicted labels to the total number of predicted
labels.

Recall =
1

N

N∑
i=1

|Ti ∩ Pi|
|Pi|

(6)

All three evaluation measures lie in the range [0, 1], with 0 referring to a complete
misclassification of the unlabelled samples, while 1 refers to a classification that is perfectly
aligned with the ground truth.

3. Results

In this section, the performance results of S-multi-SNE are presented. Section 3.1 com-
pares several classification algorithms to assess whether the choice of a classifier influ-
ences the performance of the algorithm. In Section 3.2, S-multi-SNE is compared against
LMSSC and St-SNE to explore the performance of our proposal against recent related
semi-supervised algorithms. Both LMSSC and St-SNE require parameter tuning. The re-
sults presented in this section are obtained with optimal tuning parameters, which were
selected according to their respective publications. Section 3.3 investigates two specific
scenarios, commonly observed in real scenarios: (i) imbalanced data, and (ii) datasets with
small sample size.

3.1 Classifier selection

The different classification algorithms mentioned in Section 2.3 are assessed on their pre-
dictive performances to evaluate the impact of the classifier on S-multi-SNE.

Following the process described in Section 2.3, all six classifiers performed well on
every dataset, with SVM, RF and KNN being the most consistent (Table 1 depicts their
evaluation performance with 50% training samples). In particular, KNN performed equally
well, or outperformed the other classifiers on all datasets.
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Classifier
Handwritten

Caltech7
Cancer

Reuters NDS
digits types

Accuracy

SVM 0.97 (0.005) 0.94 (0.009) 0.90 (0.024) 0.74 (0.029) 0.95 (0.005)
LDA 0.97 (0.008) 0.90 (0.018) 0.89 (0.027) 0.54 (0.093) 0.92 (0.005)

DT 0.95 (0.011) 0.93 (0.011) 0.87 (0.029) 0.72 (0.025) 0.91 (0.013)
RF 0.97 (0.006) 0.95 (0.007) 0.91 (0.024) 0.73 (0.021) 0.92 (0.007)
NN 0.73 (0.060) 0.92 (0.009) 0.89 (0.025) 0.71 (0.041) 0.92 (0.006)

KNN 0.98 (0.005) 0.95 (0.009) 0.90 (0.023) 0.75 (0.021) 0.96 (0.004)

Precision

SVM 0.98 (0.004) 0.96 (0.010) 0.96 (0.019) 0.86 (0.031) 0.98 (0.004)
LDA 0.98 (0.005) 0.94 (0.020) 0.95 (0.021) 0.70 (0.095) 0.94 (0.004)

DT 0.97 (0.007) 0.96 (0.011) 0.93 (0.028) 0.84 (0.043) 0.94 (0.009)
RF 0.98 (0.005) 0.97 (0.007) 0.95 (0.020) 0.85 (0.020) 0.96 (0.005)
NN 0.83 (0.061) 0.94 (0.014) 0.95 (0.020) 0.84 (0.046) 0.94 (0.005)

KNN 0.99 (0.004) 0.97 (0.008) 0.96 (0.017) 0.86 (0.024) 0.98 (0.004)

Recall

SVM 0.98 (0.005) 0.98 (0.007) 0.94 (0.021) 0.84 (0.030) 0.98 (0.003)
LDA 0.98 (0.007) 0.96 (0.011) 0.93 (0.025) 0.71 (0.098) 0.97 (0.003)

DT 0.97 (0.010) 0.97 (0.011) 0.93 (0.028) 0.83 (0.035) 0.97 (0.010)
RF 0.98 (0.005) 0.98 (0.011) 0.93 (0.021) 0.85 (0.021) 0.97 (0.005)
NN 0.87 (0.092) 0.98 (0.011) 0.93 (0.023) 0.82 (0.043) 0.97 (0.004)

KNN 0.98 (0.004) 0.98 (0.011) 0.94 (0.019) 0.85 (0.022) 0.98 (0.002)

Table 1: Classifiers performance. The mean (and standard deviation) accuracy, precision
and recall of SVM, LDA, DT, RF, NN and KNN with 50% training bootstrap resamples
from the handwritten digits, caltech7, cancer types, Reuters and NDS datasets. For each
evaluation measure, the classifier with the best performance on each dataset is highlighted
with bold.

On the other hand, LDA had the most inconsistent performance across the datasets.
This observation is particularly noted on Reuters and caltech7, for which classification is
a more challenging task than for the other datasets. Further, DT and NN had the highest
variability in performance on all three measures.

Additionally, the performance of the algorithms improve as the number of training
samples increases, and all classifiers tend to have similar performances (Figure 1). This
observation does not come as a surprise, since it is reasonable to expect better classification
performance with a larger training set.

Overall, we found KNN to have the most consistently good performance. For that rea-
son, the classification task for the experiments that follow was performed by KNN. Based
on the foundation of KNN, i.e. finding neighbourhoods in the sample space, and since
the embeddings are two-dimensional, there is a direct relationship between its quantitative
(classification) and qualitative (visualisation) performances. A good quantitative perfor-
mance from KNN suggests a good two-dimensional projection of the data, since nearest
neighbours belong to the same class.

3.2 Semi-supervised classification

A comparative study between S-multi-SNE, LMSSC and St-SNE was conducted to assess
the performance of S-multi-SNE against similar state-of-the-art algorithms. The aim of
this section is two-fold. The comparison with LMSSC demonstrates the performance of
S-multi-SNE against a state-of-the-art multi-view semi-supervised classification method,
while the comparison with St-SNE highlights the benefits of incorporating multiple data-
views in contrast to single-view classification and visualisation.

S-multi-SNE outperformed St-SNE in any combination of datasets and training rates
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Figure 1: Classifiers performance on caltech7 and cancer types. (A-C) Heatmaps of
accuracy, precision and recall, respectively, on caltech7 with different training samples.
(D-G) Box-plots of accuracy on cancer types with 10%, 20%, 50%, 80% training rates,
respectively. On each plot, the performances of all six classifiers are depicted.

(Table 2). St-SNE is not a semi-supervised approach and a good performance on low
training rates was not expected. On 80% training rate, the performance of St-SNE did
not match the ones from LMSSC or S-multi-SNE which can be explained by the lack of
multiple data-views. Concatenating the features of all data-views before implementing St-
SNE does not improve its performance. Fu et al. (2008) [11] argue that this is because the
information conveyed by different features is not equally represented, since the data-views
are described by different data distributions and variation patterns.

As expected, the accuracy of all methods increases when more training samples are
available (Table 2). On handwritten digits, Reuters and cancer types, and on low train-
ing rates (10%, 20%, 50%) the performance of S-multi-SNE was slightly lower, but still
comparable to LMSSC. However, with 80% training rate, S-multi-SNE surpasses the per-
formance of LMSSC. The performance of the methods is influenced by the quality of the
data, especially on low training rates (Figures 2 and 3 ). When training is performed on
just 10% of the samples, S-multi-SNE projects the unlabelled samples in Reuters mostly as
noise instead of signal (Figure 2 in supplementary material), whereas in handwritten digits,
the distinction between classes is successfully achieved (Table 2 and Figure 2).

The analysis on cancer types agrees with the conclusions made on handwritten digits
and Reuters. On the other hand, S-multi-SNE on caltech7 outperforms LMSSC on all
training rates (Table 2). The split between training and test was performed proportionally
to the class sizes. This means that with 10% training, we would only have 4 − 6 labelled
samples for five out of seven classes. S-multi-SNE overcomes this challenge with a better
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Dataset Algorithm
Training rate Training rate Training rate Training rate

10% 20% 50% 80%

Handwritten
S-multi-SNE∗ 0.952 (0.016) 0.966 (0.008) 0.983 (0.004) 0.991 (0.004)

LMSSC 0.978 (0.002) 0.983 (0.003) 0.989 (0.002) 0.991 (0.004)
BSV St-SNE∗ 0.682 (0.022) 0.745 (0.027) 0.803 (0.025) 0.866 (0.014)

Concat. St-SNE∗ 0.713 (0.026) 0.812 (0.019) 0.855 (0.022) 0.919 (0.020)

Reuters
S-multi-SNE∗ 0.554 (0.019) 0.632 (0.019) 0.767 (0.017) 0.906 (0.018)

LMSSC 0.589 (0.025) 0.654 (0.022) 0.857 (0.017) 0.899 (0.012)
BSV St-SNE∗ 0.173 (0.058) 0.281 (0.030) 0.498 (0.028) 0.657 (0.051)

Concat. St-SNE∗ 0.175 (0.54) 0.298 (0.041) 0.526 (0.032) 0.753 (0.048)

Caltech7
S-multi-SNE∗ 0.924 (0.010) 0.935 (0.006) 0.961 (0.007) 0.981 (0.008)

LMSSC 0.829 (0.040) 0.852 (0.019) 0.878 (0.011) 0.889 (0.011)
BSV St-SNE∗ 0.768 (0.014) 0.790 (0.19) 0.823 (0.022) 0.878 (0.20)

Concat. St-SNE∗ 0.798 (0.016) 0.817 (0.14) 0.845 (0.015) 0.890 (0.16)

Caltech7-balanced
S-multi-SNE∗ 0.928 (0.012) 0.950 (0.007) 0.977 (0.006) 0.991 (0.006)

LMSSC 0.629 (0.025) 0.719 (0.032) 0.804 (0.027) 0.843 (0.047)
BSV St-SNE∗ 0.492 (0.005) 0.567 (0.006) 0.722 (0.006) 0.868 (0.006)

Concat. St-SNE∗ 0.515 (0.010) 0.681 (0.009) 0.819 (0.011) 0.910 (0.007)

CancerTypes
S-multi-SNE∗ 0.661 (0.042) 0.769 (0.030) 0.914 (0.024) 0.977 (0.017)

LMSSC 0.783 (0.036) 0.883 (0.038) 0.957 (0.015) 0.973 (0.012)
BSV St-SNE∗ 0.318 (0.044) 0.568 (0.021) 0.688 (0.034) 0.792 (0.028)

Concat. St-SNE∗ 0.290 (0.052) 0.442 (0.054) 0.656 (0.055) 0.774 (0.048)

Table 2: Semi-supervised classification. The mean (and standard deviation) accuracy on
bootstrap resamples with different training rates from handwritten digits, Reuters, caltech7
and cancer types data. Bold highlights the method with the best performance on each
training rate within each dataset. BSV St-SNE refers to the best single-view performance
by St-SNE, while Concat. St-SNE implements St-SNE on the concatenated features of all
data-views.

accuracy than LMSSC. This observation could suggest that S-multi-SNE is more robust
than LMSSC on imbalanced datasets.

To investigate this claim further, a balanced subset of caltech7 was created, by reducing
the sample size of classes A and B to 50 samples. Even though this under-sampling process
defeats the obstacle of imbalanced samples, a new challenge arises; overall, a small sample
size per class is observed. This new challenge reduced the accuracy of LMSSC, while the
performance of S-multi-SNE was unaffected (agrees with the performance of multi-SNE
on a similar experiment [18]). This observation could suggest that S-multi-SNE can be
used more effectively than LMSSC when the dataset contains a small sample size per class.

3.3 Imbalanced and small sample size

The comparison study between S-multi-SNE and LMSSC in the previous section and
specifically on caltech7 dataset, suggests that the former algorithm is more effective than
the latter, when the dataset has imbalanced labels or each class has a small number of
samples. To explore these two hypotheses further, two subsets of NDS were taken: (A)
NDSim: Represents an imbalanced dataset, with 150 samples; all 100 samples from class
A were part of the subset, while 20 and 30 samples were randomly selected from classes B
and C, respectively. (B)NDSsss: Represents a small sample size dataset, with 30 samples;
10 samples per class were randomly selected.

S-multi-SNE outperformed LMSSC on the synthetic dataset and its subsets (Table 3).
This performance can be explained by the noise of the 4th data-view, which had a bigger
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Figure 2: Data visualisation of handwritten digits with different training rates. (a-d)
Unlabelled samples are presented with black squares. (e-h) True labels. The training rates
are as follows: (a),(e) 10%, (b),(f) 20%, (c),(g) 50%, and (d),(h) 80%.

influence on LMSSC than on S-multi-SNE. Both algorithms had a similar and comparable
classification scores on both NDSim and NDSsss. On all scenarios, S-multi-SNE was
slightly more accurate than LMSSC, except on NDSsss with 50% training rate.

Throughout all experiments, S-multi-SNE classified the test samples more accurately,
when 80% of the samples were in training, but for the remaining training rates, the perfor-
mances of S-multi-SNE and LMSSC were interchangeable. Although, none of the algo-
rithms showed an evident advantage over the other in the classification task, S-multi-SNE
has the benefit of providing an auxiliary comprehensible projection of all samples. This
feature may be desirable by researchers who want to explore visually the classes within
their data, in addition to the corresponding classification predictions.

Dataset Algorithm
Training rate Training rate Training rate Training rate

10% 20% 50% 80%

NDS
S-multi-SNE 0.884 (0.03) 0.903 (0.02) 0.960 (0.09) 0.984 (0.03)

LMSSC 0.714 (0.05) 0.733 (0.04) 0.887 (0.07) 0.923 (0.05)

NDSim
S-multi-SNE 0.686 (0.03) 0.738 (0.04) 0.775 (0.06) 0.833 (0.04)

LMSSC 0.669 (0.02) 0.670 (0.03) 0.767 (0.05) 0.800 (0.09)

NDSsss
S-multi-SNE 0.354 (0.03) 0.455 (0.07) 0.589 (0.08) 0.797 (0.13)

LMSSC 0.345 (0.06) 0.412 (0.08) 0.673 (0.05) 0.705 (0.09)

Table 3: Imbalanced and small sample size classification. The mean (and standard
deviation) accuracy on bootstrap resamples with different training rates on NDS, NDSim
and NDSsss. Bold highlights the algorithm with the best performance on each training
rate within each dataset.
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Figure 3: Data visualisation with 50% training samples. (A) Cancer types, (B) caltech7
and (C) NDS projections of S-multi-SNE. The training samples are presented with circles
and test samples with squares.

4. Discussion

In this work, we propose S-multi-SNE, a semi-supervised learning algorithm for data visu-
alisation and classification. S-multi-SNE produces low-dimensional projections which are
used as input features in a classification algorithm to classify the test samples. Although,
we found that the classifiers do not have a big effect on the performance of S-multi-SNE,
KNN produced the most consistently good predictions out of all six standard classification
algorithms tested in this manuscript. Compared against a state-of-the-art multi-view semi-
supervised classification approach, S-multi-SNE performed equally well. Specifically, it
outperformed LMSSC on caltech7, synthetic dataset NDS, and their subsets, which cover
two scenarios: (a) Balanced against imbalanced samples, and (b) small number of samples
per class. In addition to its strong classification performance, S-multi-SNE has the desir-
able feature of producing a comprehensible projection that splits all samples (training and
test) to their corresponding classes. On all datasets, S-multi-SNE outperformed a recently
proposed supervised variation of t-SNE. This comparison emphasizes on the benefits and
importance of performing multi-view analysis over single-view, when available.

Although it was not tested explicitly in this study, S-multi-SNE can be applied on
single-view data as well. In this scenario, two data-views would be considered: the first (i.e.
X(1)) would represent the single-view dataset and the second would contain the labelling
information (i.e. X(2) = X(l)).

In some real datasets, it is possible to have samples with missing information in one or
more data-views. This can be a result of technical, human or other errors. For example, in
a study on genomics, transcriptomics and epigenomics, experimentalists may be unable to
get the epigenomics measurements from several patients, but they can have transcriptomics
and genomics data. Note that the entire information of a sample would be missing, and
not just some values from selected features that got lost. In such situations, a sample
with missing information is often entirely excluded from a multi-view analysis, since such
analyses require the same number of samples from all data-views. The algorithm of S-
multi-SNE can be generalised to allow the analysis of data-views with missing samples.
We refer to this generalisation as G-multi-SNE and its cost function is given by:
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CG−multiSNE =
∑
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∑
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∑
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(m)
ij w(m)p

(m)
ij log

p
(m)
ij

qij
, (7)

where I
(m)
ij = 1{{D(m)

i = 0} ∧ {D(m)
j = 0}} and D(m)

i = 1{x(m)
i is missing} ∈

RN , ∀m = 1, · · ·M .
G-multi-SNE, has the potential of increasing the overall sample size, by including,

instead of ignoring, samples with missing information. By implementing this approach,
researchers could classify the unlabelled samples and at the same time visualise them along
with labelled samples and samples with missing information (a visualisation example of G-
multi-SNE applied on NDS is displayed in supplementary material).

In this study, we have shown that S-multi-SNE can perform comparably well with a
state-of-the-art semi-supervised multi-view classification method, while producing a com-
prehensive visualisation on two dimensions.

Reproducibility

The public multi-view datasets used in this manuscript can be found by following the links
provided in the main body of the paper. We refer the readers to follow the code and func-
tions provided in the link below to reproduce the findings of this paper:
https://github.com/theorod93/S_multi_SNE . The R package multiSNE
contains the code and functions required to run both multi-SNE and S-multi-SNE. It can
be installed through GitHub (and devtools) from the repository found in: https:
//github.com/theorod93/multiSNE.
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