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Abstract
We investigate the use of density-based topology optimization for the aeroelastic design of very flexible wings. This is 
achieved with a Reynolds-averaged Navier–Stokes finite volume solver, coupled to a geometrically nonlinear finite element 
structural solver, to simulate the large-displacement fluid-structure interaction. A gradient-based approach is used with deriva-
tives obtained via a coupled adjoint solver based on algorithmic differentiation. In the example problem, the optimization 
uses strong coupling effects and the internal topology of the wing to allow mass reduction while maintaining the lift. We 
also propose a method to accelerate the convergence of the optimization to discrete topologies, which partially mitigates the 
computational expense of high-fidelity modeling approaches.
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1 Introduction

Topology optimization (TO) has been successfully applied 
to aircraft structures for more than one decade. So far, 
industrial-type applications have mainly used the decoupled 
approach where a particular component is designed in isola-
tion and for fixed loads (Krog et al. 2004; Chin and Kennedy 
2016; Zhu et al. 2016). Some researchers have started in 
parallel to explore TO based on fully-coupled simulations of 
fluid-structure interactions (FSI). The components targeted 
tend to be larger, such as wing boxes (James et al. 2014; 
Dunning et al. 2015; Kambampati et al. 2020) or ribs and 
spars (Maute et al. 2002; Maute and Allen 2004), and the 
optimizations have mainly focused on structural objectives 
(e.g. weight and compliance), while other variables, such 
as angle of attack or twist distribution, are used to maintain 
trim.

A shared characteristic of the previous examples is the 
use of medium-fidelity fluid models, namely vortex lat-
tice methods or the Euler equations, and of linear elastic-
ity for the structure. While they reduce the computational 
cost, lower-fidelity models can also result in unfeasible 

designs. This is chiefly for two reasons. From an aerody-
namic design point of view, TO applied to whole structure 
tends to produce surface irregularities as the wing deforms, 
as we have shown in Gomes and Palacios (2020). An invis-
cid fluid model does not penalize those solutions, but those 
irregularities may have a significant impact on viscous drag 
even under subsonic conditions. From a structural point of 
view, linear models artificially increase surface area as the 
wing deforms. A geometrically nonlinear structural model 
is then required to enforce inextensionality constraints. It 
also allows local buckling to be implicitly taken into account 
during the optimization process.

Other aerodynamically richer applications have been 
studied in the literature, showing that TO can be used to 
radically alter the aerostructural characteristics, e.g., to pro-
duce load alleviation (or augmentation), either passively or 
synergistically with an active system, or to obtain specific 
flutter characteristics (Maute and Reich 2006; Stanford and 
Ifju 2009; Stanford and Beran 2011; Stanford et al. 2013; 
Townsend et al. 2018; Stanford 2021). However, relatively 
small computational models have been used for these appli-
cations, since aerodynamic-driven problems create addi-
tional challenges for TO that ultimately increase the cost of 
the optimizations.

For density-based methods, a major challenge is that 
aerodynamic objectives do not necessarily benefit from a 
discrete material distribution (one without intermediate den-
sities). In fact, even when lower fidelity models are used, the 
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distributed nature of aerodynamic loads makes the resulting 
topologies highly sensitive to the resolution of the grid, since 
it may be more efficient to support a pressure loading with 
a large number of small structures that a small number of 
large ones. Note that this mesh sensitivity aspect also affects 
level-set approaches (Kambampati et al. 2020). Taking vis-
cous effects into consideration increases the challenge due 
to their close dependency with small irregularities on the 
wing surface, as we have mentioned above. Furthermore, as 
deformations increase, so does the influence of the internal 
structural topology on the aerodynamic quantities since, for 
example, the structure is able to adapt passively to different 
operating conditions. It is therefore important to understand 
the structural mechanisms that appear in optimizations to 
produce certain aerodynamic effects (for example, aug-
menting load), for they are likely to develop when multiple 
operating points are considered, and regardless of whether 
this is desired or not. Simultaneously, it is also relevant to 
propose methods to accelerate the convergence of this type 
of computationally expensive problem.

Here, these aspects are demonstrated by a flexible wing 
where, by optimizing its internal topology, the same aero-
dynamic performance can be maintained by an overall more 
flexible, hence lighter, structure. The work is carried out 
within the SU2 open-source suite, which provides a high-
fidelity simulation environment that has been well described 
in the literature, both in terms of basic methods (Economon 
et al. 2016; Burghardt et al. 2020), and recent numerical 
improvements (Gomes et al. 2021) that have contributed to 
the feasibility of this work. Section 2 outlines the most rel-
evant features of the models and their implementation. To 
alleviate the aforementioned discrete-topology challenges, 
a two-material topology is sought (similarly to Stanford 
(2021)), therefore the entire structure is solid, and guaran-
tees that the outer layer is never left without support. Such 
a structure, built from a combination of flexible and stiff 
material, may also be easier to manufacture in certain condi-
tions, than one with hollow regions (for example, if additive 
manufacturing techniques are used, auxiliary support struc-
tures are not needed since the two materials support each 
other). The focus of the numerical example in Sect. 3 is on 
the static characteristics of wings with large deformations, 
as a proof of concept of a new design strategy for wings built 
using additive manufacturing.

2  Methodology

A partitioned approach is used to solve the FSI problem. 
In particular, a Newton–Krylov method is used to solve the 
Reynolds-averaged Navier–Stokes (RANS) equations on 
the fluid side, Newton iterations are used for the nonlinear 
structural equations, and the fluid mesh is deformed based 

on a pseudo-elasticity problem (Sanchez et al. 2018; Gomes 
and Palacios 2020). The transfer of fluid loads and struc-
tural displacements is based on isoparametric interpolation. 
Gradient-based methods are used for numerical optimization 
since these are the only cost-efficient alternative for general 
large-scale optimization problems. The gradients of func-
tions (objective and constraints) are obtained using a coupled 
discrete adjoint solver based on algorithmic differentiation 
(AD) (Albring et al. 2016; Burghardt et al. 2020). Similarly 
to the primal problem, a Krylov approach is used on the 
fluid side and a block Gauss–Seidel (BGS) method is used 
for coupling the fluid and structural problems. SU2 is used 
for primal and adjoint computations. The main methods and 
their implementation are described in the references above 
and are only succinctly described below. The emphasis of 
this section is on the key methodological improvements, in 
particular, the Krylov approaches, developed for this work.

2.1  Fluid problem

A RANS formulation is used to describe the fluid dynamics. 
A Newtonian fluid assumption is considered to compute the 
viscous stress tensor, and bulk viscosity effects are ignored. 
Turbulence is modeled as an increased viscosity using the 
”noft2” variant of the Spalart–Allmaras turbulence model 
with first-order convective fluxes (Spalart and Allmaras 
1994). Pressure and temperature are related to the conserva-
tive variables via the ideal gas equation of state. Finally, a 
finite-volume discretization with median-dual grid is used, 
which results in a semi-discrete integral equation for each 
volume �i of the form (Economon et al. 2016)

where w is the vector of conservative variables. In particular, 
convective fluxes are computed using Roe’s scheme with 1% 
entropy correction, the second-order reconstruction of flow 
variables uses Green–Gauss gradients and Venkatakrishnan 
and Wang’s limiter. The residual Ri is obtained by summing 
the discretized fluxes for all faces of the control volume and 
integrating the volumetric sources. To obtain a steady-state 
solution, equation (1) is marched implicitly in pseudo time 
( � ), that is, the new solution w∗ is obtained by solving

where the tilde indicates that the linearization of the residual 
is approximate. Equation (2) is solved using a backwards-
Euler discretization in time. For second-order upwind 
schemes, the most common approximation is to consider 
only the influence of direct neighbors, which simplifies the 

(1)∫
�i

�w

�t
d� + Ri(w) = �,

(2)
(|𝛺i|

𝛥𝜏i
𝛿ij +

𝜕R̃i

𝜕w

)
(w∗ − w) = −Ri,
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computation of the Jacobian matrix and reduces its density 
(especially for median-dual discretizations). However, this 
simplification can have the adverse effect of reducing the 
robustness of the solution method, which is highly relevant 
for numerical optimization to avoid divergence of intermedi-
ate designs. Moreover, adequate convergence of the primal 
problem has been shown to improve the convergence of the 
adjoint (Xu et al. 2015). Newton–Krylov (NK) methods can 
be implemented in a matrix-free manner by obtaining Jac-
obian-vector products using finite differences, the forward 
mode of AD, or the complex-step method. The accuracy 
of the Jacobian is then only limited by the differentiation 
strategy. For this work, a finite-difference-based NK method 
based on Wang et al. (2021) has been implemented for the 
flow equation, while turbulence is solved by a quasi-Newton 
method in a segregated manner. The linear preconditioner 
used for the NK approach is the ILU(0) factorization of the 
approximate Jacobian matrix. Currently, this is the bot-
tleneck of the numerical implementation, namely with the 
maximum CFL number that can be used ( ≈ 100 ) it is not 
advantageous to use a fully coupled approach between flow 
and turbulence equations.

In what follows, we represent this fluid solution process 
by the fixed-point iteration

where u are the structural displacements, responsible for the 
deformation of the fluid mesh. Finally, and for the purposes 
of the fixed-point representation, the turbulence variables 
are considered to be part of w.

2.2  Solid mechanics

A finite-strain formulation is used in the solid domain, which 
is written in weak form as

where �E is the variation of the Green–Lagrange strain ten-
sor corresponding to �u , S is the second Piola–Kirchhoff 
stress tensor and � the external (fluid) tractions. �r refers to 
the reference (undeformed) configuration and Γc to the cur-
rent configuration on the surface. A library of materials has 
been implemented in SU2 and, for the analysis in this work, 
Neo-Hookean constitutive relations are considered (Bonet 
and Wood 2008). Equation (4) is linearized around the cur-
rent configuration before being discretized with finite ele-
ments (Sanchez et al. 2016) (only linear elements are avail-
able in SU2). The solution is then iteratively found via the 
Newton–Raphson method, where the updates obtained with 
the tangent stiffness matrix are solved using the direct sparse 
solver in PaStiX (Hénon et al. 2002).

(3)w = F(w,u),

(4)∫
�r

�E ∶ S d� − ∫Γc

�u ⋅ � dΓ = 0

Noting that the tractions are computed based on the fluid 
variables, this process is also formulated as a fixed-point 
iteration, namely

The coupled problem is solved by a BGS approach by alter-
nating between fluid (3) and structural (5) iterations. Both 
displacements and fluid tractions at the interface are inter-
polated using an isoparametric approach. A fixed relaxation 
factor (0.6–0.8) is applied to the transferred displacements 
to improve stability. We found this relaxation to be impor-
tant during optimization iterations where the structure may 
become too flexible. However, designs that meet the target 
deformation constraints (described later) are not sensitive to 
the relaxation factor.

2.3  Coupled discrete adjoint sensitivities

Consider now a function of interest, J, which depends on 
the solution variables, x = (w,u) , and on the parameters 
of the problem, � , namely, undeformed mesh coordinates, 
local material properties, etc. From the solution of the FSI 
problem, it is x = x(�) and the total derivatives of J with 
respect to � can be obtained via the discrete adjoint method 
as (Albring et al. 2016; Burghardt et al. 2020)

where P = (F,S) is the fixed-point iterator of the coupled 
problem, and subscripts denote partial derivatives. The 
adjoint variables � = (w,u) , where overbars denote the 
adjoints of the associated primal solution variables, are 
obtained by solving

Similarly to the primal problem, the solution of the coupled 
adjoint problem can be obtained by a BGS method with 
inner iterations on the fluid and structural adjoint subprob-
lems. Using the block structure of Px , we first rewrite (7) in 
partitioned form as

Each subproblem in (8) is a fixed-point iteration with a 
contribution on the right-hand side due to the FSI cou-
pling. For computational efficiency, those coupling terms 
are not updated while each discipline fixed point is con-
verged. For example, the fluid contribution to the structural 
adjoint, FT

u
w , is only computed on the last inner iteration 

for w . Noting that updating Fu involves a mesh deformation, 
this approach results in substantial computational savings 
overall.

(5)u = S(u,w).

(6)d�J = J� + �T
P� ,

(7)�T = Jx + �T
Px.

(8)
w = (JT

w
+ S

T
w
u) + F

T
w
w,

u = (JT
u
+ F

T
u
w) + S

T
u
u.
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This fixed-point formulation naturally fits the reverse 
mode of AD and, more importantly, allows a generic treat-
ment of any type of solver (Burghardt et al. 2020) by differ-
entiating its entire primal fixed-point iteration (the program, 
or code path, used to obtain a new solution iterate). There 
are however some drawbacks to this strategy. Effectively this 
solution is a right-preconditioned version of the more con-
ventional left-preconditioned adjoint fixed-point approach 
(Giles et al. 2003). That means that the preconditioner is 
applied to the adjoint variables, instead of to the residual 
of the adjoint linear system. Note that the preconditioner 
is effectively the transposed (by AD) solution method of 
the recorded primal iteration, e.g. a quasi-Newton strategy. 
When this embedded preconditioner consists in the solution 
of a linear system by a Krylov solver, it is then necessary (in 
general) to converge such iterative processes to higher accu-
racy than in the primal solver (Gomes and Palacios 2021). 
Furthermore, it is well known that fixed-point approaches 
(either left- or right-preconditioned) may suffer from sta-
bility issues (Campobasso and Giles 2003; Xu et al. 2015; 
Kenway et al. 2019), even when the primal problem shows 
sufficient convergence. Krylov-based adjoints are commonly 
used to both accelerate convergence and improve stability. 
They can be seen as the dual operation of the NK methods 
for the primal (nonlinear) equations (Kenway et al. 2019). 
To cast (7) as a linear system, we simply write it as

which can be solved by any matrix-free method, such as 
GMRES. However, if Px is updated between iterations, it 
is not guaranteed that the Krylov solver will minimize the 
adjoint residuals. In Gomes and Palacios (2021) we have 
found that to solve (9) using GMRES, it is advantageous to 
use a fixed number of a Richardson iterations (20–30) with 
suitable relaxation (0.4–0.7) so that the residual is reduced 
between 1 and 2 orders of magnitude, as the smoother in 
the primal quasi-Newton process (2) recorded with AD 
(this is in contrast with the conventional primal strategy of 
using a Krylov method). Because this type of smoothing 
guarantees the linearity of Px , it makes the adjoint-GMRES 
approach highly effective for fluid problems (compared with 
the fixed-point approach). The structural adjoint problem can 
be solved by the fixed-point method without issues, its pre-
conditioner (effectively the inverse of the tangent stiffness 
matrix) is very close to the inverse of the Jacobian Su , and 
thus around five iterations are typically sufficient.

2.4  Density‑based topology optimization

A density-based approach with continuous variables is used 
in this work. It specifies a design density at discrete locations 
of the solid domain (the element centroids), with the local 

(9)(PT
x
− I)� = −JT

x
,

elasticity modulus being a function of it. Here, the modi-
fied SIMP (Simplified Isotropic Material with Penalization) 
formulation is used to relate the elasticity modulus with the 
design variable as described in Bendsøe (1989). For a two-
phase material we have

where E1 is the elasticity modulus of the more flexible mate-
rial phase, and it is greater than zero even for solid-void 
problems to avoid a singular stiffness matrix. E2 elasticity 
modulus of the stiffer material phase. To avoid checker-
boarding in the solution, a discrete filtering operation (Bruns 
and Tortorelli 2001) is applied to the design density vari-
ables ( � ) exposed to the optimizer. This results in physical 
densities ( ̃𝜌 ) considered for each finite element given by

where wij = (R − ||xi − xj||)�j and N  is the set of elements 
within radius R of element i. This conical filter kernel is less 
numerically challenging than other strategies that introduce 
steep gradients as they approach discontinuous functions. 
However, it invariably results in regions of intermediate 
density.

The resulting problem is characterized by a large number 
of design variables and relatively few constraints (excluding 
simple bound constraints), which are imposed here using 
the exterior penalty method, by converting a conventional 
optimization problem, namely

into an unconstrained problem, that is

where h+ = max(0, h) . The penalized objective function can 
then be minimized using an unconstrained (but bounded) 
optimization method. The penalty parameters ( ai and bj ) 
need to be gradually increased (usually by multiplying the 
previous value by a fixed factor r) until a predetermined 
small constraint tolerance is met. This creates the need for 
outer iterations since updating the parameters within uncon-
strained (inner) iterations leads to bad approximations of 
the Hessian matrix. Although these outer iterations force an 
undesired reversion to steepest descent, they are also needed 
to update the TO parameters. However, in the example in 
this paper, this type of parameter update was not necessary. 
Before the constraint tolerance is met, loose convergence 

(10)E(�) = E1 + (E2 − E1)�
p 0 ≤ � ≤ 1,

(11)�̃�i =
∑

j∈N(i)

wij𝜌j ∕
∑

j∈N(i)

wij,

(12)

min
�

f (�)

subject to : gi(�) = 0

hj(�) ≤ 0

(13)min
�

f (�) +

Ng∑

i=1

aigi(�)
2 +

Nh∑

j=1

bjh
+
j
(�)2,



Aerostructural topology optimization using high fidelity modeling  

1 3

Page 5 of 14   137 

criteria are used for the unconstrained optimizer (e.g. 40 
inner iterations). The objective function is shifted and scaled 
by representative minimum value and range, respectively, 
while the constraints are shifted by their bounds and scaled 
by a reference value, which is chosen as the reciprocal of the 
bound unless otherwise specified. Doing so allows for a sin-
gle constraint tolerance ( ≈ 0.01 ) to be used, and all penalty 
parameters to be initialized as a0

i
, b0

i
∈ [1, 10] and updated 

with the same factor ( r ∈ [1.4, 4]).
The unconstrained optimizer used in this work is the 

L-BFGS-B (Zhu et al. 1997), in the implementation of the 
SciPy library (Jones et al. 2001). This choice was made 
based on initial comparisons with the method of moving 
asymptotes of Svanberg (1987) and with the interior point 
optimizer IPOPT (Wächter and Biegler 2006). Despite some 
promising results in the literature (Rojas-Labanda and Stolpe 
2015), IPOPT underperformed L-BFGS-B in our studies. 
Recently, other researchers have also found that current ver-
sions of IPOPT have difficulties with TO problems (Ken-
nedy and Fu 2021). One computationally advantageous 
aspect of the exterior penalty approach, not explored in this 
work, is that it may reduce the cost of evaluating gradients. 
For example, it may be possible to differentiate the penal-
ized function at the same cost of differentiating one of the 
constraints or objectives, and as a result, only one adjoint 
problem needs to be solved per primal simulation (e.g. oper-
ating point) instead of one per function.

3  Results

All the methods discussed above have been implemented and 
independently verified in the SU2 framework. This section 
reports on a first study on the feasibility of topology opti-
mization at the wing level to achieve aerodynamic design 
objectives. This is an intermediate step towards full wing 
design, as the implementation is still limited to optimizing 
either structural or aerodynamic design variables (always 
on the coupled problem), but not both simultaneously as 
it will be needed in practice. In preparation for this work, 
we have obtained (Gomes et al. 2021) good numerical scal-
ability for discretizations in the fluid and structural domains 
in the order of 107 and 106 nodes, respectively. This allows 
us to explore for the first time in the open literature coupled 
optimizations on wing topology including fluid viscosity. 
Resolving the boundary layer puts a physical constraint on 
the quality of the aerodynamic shapes. Otherwise, surface 
irregularities could easily appear after wing deformation 
due to non-conventional internal layout. However, the struc-
tural solver does not scale still at the level of Aage et al. 
(2017), which have used 109 nodes for a wing design (under 
fixed loads), and this sets a limit to the topological features 
that can be resolved. It should be also remarked that the 

advantages of compliant wing design only become obvi-
ous for a multipoint optimization, as we have previously 
shown for 2-D problems (Gomes and Palacios 2020), since 
the solution to a single operating point is that of a wing that 
deforms to an optimal shape that can be obtained only via 
aerodynamic analysis. However, to limit the complexity in 
the explorations below, we have restricted ourselves to opti-
mizations in a single operation point.

Taking into account the previous considerations, the fol-
lowing workflow has been established. (1) The starting point 
is a baseline design of an aeroelastic wing with a structure 
that fills the whole solid domain. A sufficiently stiff material 
is selected so that elastic displacements are small. (2) Shape 
optimization is then used (Sect. 3.1) to produce a minimum-
drag design that will be used as reference. (3) A second wing 
is then designed for minimum weight using a less stiff mate-
rial (Sect. 3.2). It is chosen to have the same undeformed 
aerodynamic shape as the first one, but, because of the softer 
material, the aerodynamic forces produce a negative elastic 
twist that reduces incidence and therefore lift. The classical 
solution to this problem would be to increase root angle of 
attack and then recompute the aerodynamic shape. Here we 
seek however to use TO to produce a load augmentation 
effect that recovers the desired lift as the structure is opti-
mized. Viscous effects on the fluid still constrain the design 
to streamlined shapes with little or minimal separation, but 
drag is no longer part of the optimization since it would 
over-constrain the design (as we will discuss later). That 
would simultaneously need external shape design variables, 
which are not considered here.

3.1  Baseline near‑rigid design

A baseline design is obtained by optimizing the outer 
shape of a solid cantilever wing with uniform material 
properties for minimum drag, with constraints on the lift, 
pitching moment, and minimum thickness (over multiple 
spanwise sections). The initial geometry is chosen using 
simple design rules and it is shown in Fig. 1. It results 
from linear interpolation between two symmetric 4-digit 

Fig. 1  Initial wing geometry and FFD box for shape optimization
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NACA profiles. The root profile has 0.25 m chord and 9% 
thickness, whereas the tip has 0.175 m chord and 7.2% 
thickness. The wingspan is 1 m, the 25% chord-line is 
swept back 5°, and a linear twist distribution of − 3° is 
used. The free-form deformation (FFD) box shown in 
Fig. 1 is used to parameterize the shape. Out of the 98 con-
trol points visible in the figure, 97 are allowed to move in 
the vertical direction ( ±30 mm), whereas the bottom right 
point of the root section (right side of the page) is fixed 
to prevent vertical translation in the optimization. Chord 
and translation (chord-wise displacement) are defined for 
each of the 7 spanwise sections of the FFD box by control-
ling the horizontal coordinates of the 14 control points in 
each section. The chord is changed by moving the points 
away from the centre-line of the FFD box, proportionally 
to their distance to the line. The tip section is not allowed 
to translate, this helps to maintain the quality of the mesh. 
The bounds for these two variables are ±60 mm at the root 
and decrease linearly to ±20 mm at the tip. There are 110 
variables in total, and note that these are able to change 
the effective angle of attack by pitching the wing, despite 
the flow direction not being changed by the optimizer. A 
single operating point is considered, namely Mach 0.6 
at sea-level and 273.15 K. The corresponding Reynolds 
number at the wing root is 3.7 M. The fluid and structural 
grid are composed mostly of hexahedra and have 4.1 mil-
lion nodes and 220,000 nodes, respectively. The radius 
of the farfield boundary is 25 span lengths, Fig. 2 shows 
a detail of the structural grid near the wingtip. The solid 

material has Poisson’s ratio of 0.35 and Young’s modulus 
of 75 GPa, which results in deformations comparable to 
the wing thickness.

At 4° angle of attack, the initial geometry has coeffi-
cients of lift, drag, and pitching moment of 0.295, 0.0103, 
and − 0.0429 respectively. To obtain a baseline for TO, 
drag ( CD ) is minimized with lower bounds of 0.29 on lift 
( CL ) and − 0.06 on pitching moment ( CM ) coefficients. 
A geometric constraint was also included to prevent the 
maximum thickness of the thinnest spanwise section ( tmin ) 
from decreasing. In summary,

The SLSQP implementation from SciPy is used to solve 
the optimization problem. All constraints and variables are 
scaled by their bounds and the objective (drag) by its initial 
value.

Figure 3 shows a comparison of the planforms and 
spanwise sections at the root, mid-span, and tip of the 
initial and optimized geometries. All constraints are active 
on the optimized design and the drag coefficient is reduced 
by nearly 20% to be 0.00829. The design achieves this 
by reducing the loading on tip sections and increasing it 
in the first half of the span to produce a more elliptical 
distribution. The sections towards the tip are also signifi-
cantly cambered, which requires the root sections to oper-
ate at higher incidence to counteract the effect of camber 
on pitching moment, as shown by the pressure coefficient 
contours in Fig. 4. However, note that despite the increase 
in incidence near the root, on the optimized design those 
sections produce less lift due to a reduction in chord. Simi-
larly, the sections near the tip produce more lift due to 
camber, despite the lower incidence. This is shown by the 
lift distributions in Fig. 5. As expected when minimizing 
drag at subsonic conditions, the result is a more elliptical 
lift distribution. The fluid domain is finally remeshed for 

(14)

min
�

CD(�)

subject to : CL(�) > 0.29

CM(�) > −0.06

tmin(�) > 0.072

Fig. 2  Structural mesh near the wingtip

Fig. 3  Comparison of initial 
(bottom) and optimized (top) 
geometry for the baseline wing
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the optimized baseline design, before proceeding to opti-
mize the internal topology of the wing.

3.2  Topology optimization

As it was discussed in the introduction, a TO problem is 
considered that divides the domain between a soft and a stiff 
material, without voids. It is not relevant for the purpose of 
this study if such materials exist and they are chosen instead 
such that the tip deformation is comparable to the chord, 
when using 50% fraction of stiff material. This results in a 
elasticity modulus of 1.5 and 30 GPa for the soft and stiff 
materials, respectively. The structural elements are stretched 
(see Fig. 2), because using a smaller size in the spanwise 
direction would result in an impractical number of elements 
for the current setup. This presents a challenge for density 
filtering strategies, since setting the filter radius based on the 
longest element size would span the entire thickness of the 
wing. To avoid this, the neighborhood search ( N  in (11)) 
was constrained to consider only neighbors of neighbors, on 
a 2-D grid this would limit the filter to the equivalent of a 
13-point stencil. The filter radius was then set as 1.5 times 
the largest element size (in the spanwise direction), and the 

linear weight function (11) was used. Finally, a fixed SIMP 
exponent of 3 is used throughout the investigation.

We commence with a solid wing with E = 22.3 GPa, for 
which the lift coefficient drops to 0.24. The first objective is 
then to recover the target value of 0.29, using the minimum 
amount of stiff material. Note that a density of zero in (10) 
corresponds to the softer material and a density of one to 
the stiffer material, and therefore minimizing the fraction of 
the latter is equivalent (in formulation) to minimizing mass 
in a classical “solid-void” problem. Note also that it is not 
possible to meet the constraint by stiffening the structure, 
since the stiffer material in the TO is still 60% more flex-
ible than the one used for the baseline design. For a feasible 
design, some structural constraint needs to be introduced 
and, although maximum stress would be most appropriate, 
in our current implementation we seek to limit compliance. 
Moreover, given the challenges associated with aerody-
namic-driven TO that have been described above, we have 
divided the optimization process into several steps, also as 
a way to make the trade-offs between goals more evident. 
These steps are discussed in the next subsections and the 
starting point for each step is the result from the previous 
unless noted otherwise. While this may lead to sub-optimal 
results, such incremental strategies are necessary to under-
stand the challenges in such a large design space.

3.2.1  Step 1: recovering lift

The first step is to recover the target lift, which also serves 
as evidence for the feasibility of the optimization problem. 
To that end, the exterior penalty algorithm (13) is used with 
a single equality constraint with a fixed penalty factor of 32. 
Note that the algorithm would start by recovering lift even 
if other goals were included, since the initial design is infea-
sible and thus lift would be weighted heavily by the exte-
rior penalty formulation. Figure 6 shows the surface view 
of the resulting topology after the 11 L-BFGS-B iterations 
required to meet the constraint, starting with a uniform frac-
tion of 0.9. By removing stiff material close to the leading 
edge, the incidence on spanwise sections close to the root 

Fig. 4  Pressure contours on 
initial (bottom) and optimized 
(top) designs for the baseline 
wing

Fig. 5  Spanwise lift distribution on initial (light color) and optimized 
(dark color) designs
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negates the pitch-down moment of the tip sections, as shown 
by the distribution of aeroelastic twist (i.e. relative to the jig 
shape, and thus the variation in AoA due to the deformation) 
in Fig. 7. This is also necessary to compensate the smaller 
projected area that results from larger displacements. This 
geometrically-nonlinear effect is captured in our structural 
model but would be neglected by linear theories.

3.2.2  Step 2: determining a suitable bound for the fraction 
of stiff material

In the previous step, there was no incentive to use a mini-
mal amount of stiff material. That is introduced in this step 
alongside an upper bound on compliance (W) of 75 J (the 
compliance after the initial step is 44.8 J). The optimization 
problem is

Although it is known that minimizing mass for given com-
pliance may give rise to structures that are close to a stability 
limit, this formulation helps to determine a suitable target for 
the fraction of stiff material, which can then be constrained 
instead of outright minimized. The penalty factors for the 

(15)

min
�

1

V𝛺
∫
𝛺

�̃�(�) d𝛺

subject to : CL(�) > 0.29

W(�) < 75 J

two constraints are fixed at 8 and the objective (fraction of 
stiff material) is not scaled since its initial value, which has 
resulted from the previous step, is already close to one. Fig-
ure 8 shows the resulting topology after 55 L-BFGS-B itera-
tions. Mass fractions below 0.5 have been made transparent 
to reveal the internal structure, which is mostly composed 
of the softer material. In the figure, the spanwise slices are 
taken from 0.25 to 0.55 span in increments of 0.075. The 
main mechanism to maintain lift remains the same and the 
stiffer material was removed from less strained areas, e.g. 
close to the wingtip. The volume fraction of stiff material 
has been reduced in this optimization step to 0.33, at which 
point the compliance constraint is active. However, the mate-
rial distribution is not yet discrete, mainly for two reasons: 
first, due to the relatively small number of iterations (for a 
topology problem); and second, due to the lift constraint, 
which requires material to be removed from a high strain 
region (the root). Note that the lift constraint is responsible 
for the main load applied to the structure (and thus in part 
for its compliance) and this contradiction between both con-
straints in (15) makes the problem difficult to solve.

3.2.3  Step 3: lift‑constrained compliance minimization

To avoid the previous conflict between constraints, the roles 
of compliance and stiff material fraction are now switched, 
i.e. compliance is minimized under the 0.29 lift coefficient 
constraint and a maximum stiff fraction of 0.4. The problem 
then becomes

Note that if this maximum value of stiff material fraction 
were known a priori, e.g. from experience, step 2 could have 

(16)

min
�

W(�)

subject to : CL(�) > 0.29

1

V𝛺
∫
𝛺

�̃�(�) d𝛺 < 0.4

Fig. 6  Material distribution to meet lift constraint

Fig. 7  Spanwise distribution of twist to meet lift constraint Fig. 8  Material distribution after minimizing stiff fraction
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been avoided. The initial penalty factors were again set to 8 
but increased by 50% (up to 64) every 30 L-BFGS-B itera-
tions for constraints that did not meet a 0.5% tolerance. Note 
that constraints are scaled by their bounds and the objective 
by its initial value. Figure 9 shows the resulting topology 
after 225 iterations, which has a compliance of 38.1 J, lift 
coefficient of 0.286, and stiff fraction of 0.403. The material 
distribution is more discrete than before, note the smaller 
regions of intermediate density. However, only 50% of the 
variables are at their bounds (0 or 1), whereas in a typi-
cal topology optimization problem all variables converge to 
either the lower or upper bound.

3.2.4  Step 4: improving the discreteness of the material 
distribution

Ideally, a TO problem should benefit from a discrete solu-
tion due to the way it is posed and parameterized. However, 
in this problem, the requirement on lift makes this difficult 
to achieve, since the structure is both responsible for creat-
ing the load and resisting it. It is worth showing that pos-
ing the problem as compliance (and lift) -constrained mass 
minimization is not beneficial. To that end, the roles of stiff 
fraction and compliance were switched (recovering equation 
(15)). However, the penalty factors are now fixed at 64 and 
the bound on compliance lowered to 40 J aiming to direct 
the optimization towards the current local optimum (i.e. the 
result of step 3) which was also used as the starting point.

Figure 10 shows the resulting topology after 180 itera-
tions. The stiff material fraction is reduced to 0.336 with 
lift coefficient of 0.285 and compliance of 40.2 J. However, 
it is clear that conventional formulations, based on com-
pliance and material fraction, do not produce a discrete 
result for this problem. Along with reducing the size of 
areas with intermediate material fraction (note the larger 
gaps from Figs. 9 and 10), i.e. moving the interfaces, the 
optimization has also removed stiff material from areas 
that were previously solely stiff (note the change near the 
leading edge at 60 to 70% span on the same two figures). A 

plausible explanation for this is that, to support a distrib-
uted load, it is better to distribute the stiff material than to 
concentrate it to produce stiff regions.

In the TO literature, authors have used explicit penaliza-
tion of non-discreteness metrics for problems that do not 
converge naturally to discrete solutions (see e.g. Chen and 
Wu (1998)). It is known that such strategies need to be man-
aged with care (e.g. ramped), to avoid fast convergence to 
locally optimal solutions before any topological features 
begin to develop. However, ramping strategies have the 
downside of increasing the computational cost of the opti-
mization, which is already significant for this problem due 
to high-fidelity modeling. Moreover, even for topology prob-
lems that naturally converge to discrete solutions, most of 
the objective function reduction takes place in the first itera-
tions, where the main features of the topology develop. The 
remainder of the iterations serve mostly to refine those fea-
tures, and in general, do not contribute substantially towards 
improving the objective function. For example, note how in 
this problem the lift constraint can be met by a wide range of 
topologies (from mostly soft to mostly stiff). In other words, 
once the main topological features are defined, the problems 
becomes relatively insensitive to the exact location of the 
interface between material phases, provided the structure 
is not close to buckling. Based on these observations it is 
tempting to propose an early termination of the optimization, 
followed by a post-processing operation to force the discrete-
ness of the result (for example considering all values above 
a certain threshold to be completely stiff and vice versa). 
Though this may be viable for more linear problems, in the 
presence of strong FSI it is likely that some constraints will 
no longer be respected after such a naive post-processing.

Therefore, to address the challenges of high computa-
tional cost and of obtaining discrete topologies, the solu-
tion proposed here is as follows. After obtaining a feasible 
solution (e.g. either the current one or also the one in step 
3), the discreteness of the solution is improved by explic-
itly targeting (minimizing) a non-discreteness metric (d), 

Fig. 9  Material distribution after minimizing compliance Fig. 10  Material distribution after minimizing stiff fraction for a 
lower compliance constraint
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namely a version of that used in Sigmund (2007) adapted 
to unstructured meshes,

where �̃� are the filtered densities (material fractions in this 
case) and N the number of design variables. The reduction 
of computational cost is achieved by simulating only the 
structure under fixed fluid loads (obtained from the last FSI 
simulation). To ensure those loads are appropriate through-
out the entire process, a deformation target is introduced for 
the surface ( Γ ) nodes, that is,

This error metric is minimized (as a secondary objective) to 
obtain a small value ( 10−7 in this case). These are the only 
two objectives used in this step. Despite the similar formu-
lation, this step has a very different role than the inverse-
design approach of previous work (Gomes and Palacios 
2020). Here, the initial topology is nearly discrete, and thus 
only requires some incremental refinement, while the inverse 
approach in our previous work does not use initialization 
(i.e. it starts from uniform density) and therefore may pro-
duce substantially different material layouts.

Stiff fraction minimization for a compliance of 40 J has 
resulted in a discreteness metric of 0.3. This is reduced 
to 0.2 over the course of 1000 (inexpensive) iterations, 
after which the error metric is 4 × 10−8 and the stiff frac-
tion 0.339. To ensure that the final solution would be as 
discrete as the type of filter allows, the weight of the non-
discreteness metric was progressively increased up to 500. 
In the end, 75% of the variables were within 2% of their 
bounds. Furthermore, evaluating (17) for the design vari-
ables (i.e. unfiltered fractions) yields 0.008. This indicates 
that to lower the value of d further would require a differ-
ent type of density filter (e.g. morphology-based filters, as 
in Sigmund (2007)). As expected, the lift constraint is not 
respected by this solution, for which the value is 0.272. To 
restore it to the target ( CL = 0.29) the discretized solution 
was used as starting condition for a coupled (FSI) optimi-
zation, where non-discreteness is minimized, i.e.

After 25 iterations both this metric and the stiff fraction were 
maintained, the lift was restored but compliance increased 
to 42.3 J. Compliance was not constrained or included in 

(17)d =
1

V𝛺
∫
𝛺

4�̃�(1 − �̃�) d𝛺,

(18)�Γ =
||uΓ − u

∗
Γ
||2

NΓ

.

(19)

min
�

d(�)

subject to : CL(�) > 0.29

1

V𝛺
∫
𝛺

�̃�(�) d𝛺 < 0.35

the objectives since this would recover (in part) the formu-
lation that did not result in a discrete material distribution. 
This shows the key challenge associated with aerodynamic 
objectives, namely that even introducing compliance-min-
imization aspects into the problem (either as objectives or 
contraints) may not contribute to obtaining a discrete solu-
tion due to the dependence of the fluid loads on the struc-
tural response. This is shown here by the trade-off between 
compliance and a more discrete material distribution. The 
resulting material distribution is shown in Figs. 11 and 12.

3.2.5  Discussion

The optimization process described above can be summa-
rized in the following steps: 

1. Determining the feasibility of the aerodynamic goals, 
e.g. meeting lift (O(10) iterations).

2. Approximately solving the optimization for suitable 
structural targets (O(100) iterations). This may include 
determining those targets via different formulations of 
the problem (as done here).

3. Accelerating convergence to a discrete solution con-
sidering only the structure under fixed loads and target 
shape (equivalent to O(10) iterations).

4. Correcting the aerodynamic goals for the discrete solu-
tion (O(10) iterations).

Most of the optimization effort takes place in step 2, while 
steps 3 and 4 effectively are post-processing operations. 
Moreover, note that step 1 would not be necessary if aero-
dynamic constraints are guaranteed by other variables (e.g. 
shape or angle of attack). Table 1 summarizes the evolution 
of the key performance values over the different optimiza-
tion steps.

The drag coefficient for the design that only meets the 
lift constraint (step 1) is just over 10% higher than in the 
baseline design. While some of that increase is due to the 

Fig. 11  Material distribution after improving discreteness (3-D view)
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mesh distortion, most of it comes from the larger defor-
mation, which reduces the planform area and thus results 
in a higher wing loading than the one the wing shape 
has been optimized for in Sect. 3.1. This is expected to 
become worse with larger deformations at smaller frac-
tions of stiff material. It is worth noting that single-point 
optimum shapes for flexible wings tend to result in flat 
deformed shapes (i.e. straight line from root to tip), which 
should be expected since this maximizes the projected area 
for a given span. For the designs with smaller stiff frac-
tion (from step 2 onwards), the drag coefficient increases 
further, and in the final discrete solution (that meets the 
lift constraint more strictly) it is almost 40% higher that 
in the baseline design. This is a significant increase that 
is not entirely justified by larger deformations. Recall that 
the lift-generation mechanism used by the TO solutions 
is to allow the mid-span to pitch up to both reduce and 
compensate for the effects of higher pitch-down moments 
near the tip. In addition, reducing the stiff fraction with 
limited compliance requires material to be removed from 
low strain regions. Note in particular how past 60% span 
the design uses almost no stiff material. Consequently, this 
allows those areas to deform more, that is, the incidence 
is reduced due to the pitch-down moments. This reduces 
the lift generated by those sections of the wing, in turn 
requiring the inboard sections to produce even more lift to 
compensate (drag increases as the spanwise distribution of 
lift moves away from the optimized baseline). This effect 
is visible in Figs. 13, 14 and 15, where the deformation 
and lift distribution of the final design are compared with 
the one from step 1, and it explains the vestigial areas of 
stiff material near the tip of the wing, whose placement at 
the leading and trailing edges maximizes torsional stiff-
ness, thereby preventing more negative incidence.

Fig. 12  Material distribution 
after improving discreteness 
(surface view)

Table 1  Summary of key performance values during the optimization 
steps

Step C
D

C
L

Comp. (J) Stiff frac.

1. Recover lift 0.00917 0.290 44.8  0.938
2. Min. compl. 0.0109 0.286 38.1  0.403
3. Min. stiff frac. 0.0113 0.285 40.2  0.336
4. Final design 0.0115 0.290 42.3  0.338

Fig. 13  Deformation at mid-span and tip, of the final design (dark 
colors, reduced by 20%), and the design obtained to meet the lift con-
straint (light colors)

Fig. 14  Spanwise distribution of twist for the final design compared 
with lift-feasible design

Fig. 15  Spanwise lift distribution on initial (light color), shape-opti-
mized (dark color), and final (dashed line) designs
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Note finally that these reinforced areas (discussed above) 
are not connected to the larger areas of stiff material, in 
effect, this reduces the coupling between the two (note the 
rapid change of twist after 0.6 span in Fig. 14). Moreover, 
although the final design deforms more in torsion and bend-
ing, the corresponding moments are lower. These interrup-
tions of the main load paths (i.e. stiff material portions) are 
necessary for the aerodynamic goals but raise structural con-
cerns. In particular, they cause the soft material to be more 
strained than its stiff counterpart, since it is compressed and 
sheared between floating regions of stiff material that are not 
connected to the root. To illustrate this, Fig. 16 shows the 
von Mises stresses divided by the local elasticity modulus, 
which makes apparent the need for stress constraints. Those 
were not considered here but will be explored in further 
iterations of this research.

4  Final remarks

This work aimed to explore the merits and challenges of 
applying topology optimization to aeroelastic wing design, 
that is, a technique that is well established for purely 
structural applications to problems where the structure 
is largely responsible for the aerodynamic performance. 
This was done by restricting the example problem to a 
single operating point and only structural design variables. 
While for a full assessment of TO as a wing design tool, 
many other aspects would have to be considered (shape 
optimization, multiple operating points, off-design perfor-
mance, composite materials, manufacturability, cost, etc.), 
this use of TO appears to have merit, to the extent that the 
topological features can be traced back to aerodynamic 
effects. Furthermore, such features develop in a similar 
number of iterations as they would for purely structural 
problems. However, as a consequence of the limited means 
the optimization was given to realize its goals, the aerody-
namic performance of the final design was reduced. Better 
performance could be expected, for example, from simply 
allowing the angle of attack to change, thereby allowing 
the inboard sections to operate at higher incidence with-
out having to compromise the stiffness of the structure so 
severely by removing stiff material near the root. However, 
in so doing, the (desired) load augmentation characteristic 

of the problem would be lost. Ideal performance, on the 
other hand, can only be expected from a simultaneous opti-
mization of shape and topology, which has so far proved 
challenging with high-fidelity simulations. In particular, 
the exterior penalty approach is much less suited for shape 
optimization than SLSQP, especially if the design space 
is augmented with three orders of magnitude more design 
variables. Conversely, SLSQP is not adequate for large-
scale optimization problems due to its dense approxima-
tion of the Hessian matrix.

A major challenge in this type of topology optimiza-
tion, is the higher computational cost of using high-fidelity 
models. Approximately 10 times more (coupled) iterations 
are required than for aerodynamic shape optimization. The 
greatest challenge, however, is that aerodynamic design 
objectives do not benefit from an optimally stiff struc-
ture, and thus the optimization will not converge to a dis-
crete solution unless that goal is explicitly introduced. Of 
course, level-set topology optimization methods (which 
were not explored in this work) guarantee that the solu-
tion will be discrete. However, a further contributor to the 
discreteness challenge is that loads are distributed over a 
large surface, whose smoothness is important for aerody-
namic performance. Since it is more efficient to maintain 
that smoothness with a large number of small supports, 
than with a few highly rigid connections, the mesh size 
required to resolve those features may render 3-D applica-
tions impractical. In that respect, density-based methods 
may have some advantages due to their connection with 
homogenization theory. A recent research direction is the 
combination of level set and density-based methods to 
avoid the shortcomings of each method. This is achieved 
by obtaining a sharp interface with the level set approach, 
while using the density-based strategy to control feature 
sizes and seed hole creation (Andreasen et al. 2020; Bar-
rera et al. 2020).

The proposed solutions address both the high computa-
tional cost and the discrete-solution challenges. Comparing 
level set with density-based methods for the type of problem 
studied here should be the subject of future work. For that, it 
will be also important to study the interaction between shape 
and topology optimization, whether by proposing efficient 
sequential approaches or by devising an optimization method 
that can consider both sets of variables simultaneously.

Fig. 16  Von Mises stress 
normalized by local elasticity 
modulus
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