
PD-XML: Extensible Markup Language for
Processor Description

S. P. Seng1, K. V. Palem2, R. M. Rabbah2, W.F. Wong3, W. Luk1, P.Y.K. Cheung1

1 Imperial College of Science, Technology and Medicine, England, {sps,wl}@doc.ic.ac.uk,{p.cheung}@ic.ac.uk
2 School of Electrical and Computer Engineering, Georgia Institute of Technology, USA, {palem, rabbah}@ece.gatech.edu

3 Department of Computer Science, National University Singapore, Singapore, wongwf@comp.nus.edu.sg

ABSTRACT
This paper introduces PD-XML, a meta-language for de-
scribing instruction processors in general and with an em-
phasis on embedded processors, with the specific aim of
enabling their rapid prototyping, evaluation and eventual
design and implementation. The proposed methodology is
based on the extensible markup language XML widely used
structured information exchange and collaboration. PD-
XML allows for both high-level and low-level architectural
specifications required to support a toolchain for design space
exploration. PD-XML consists of three intuitive entities,
describing: (a) the storage components available in a de-
sign, (b) the instructions supported by an architecture, and
(c) the resources afforded by the microarchitecture imple-
mentation. PD-XML is not specific to any one architec-
ture, compiler or simulation environment and hence provides
greater flexibility than related machine description method-
ologies. We demonstrate how PD-XML can be interfaced to
to existing description methodologies and tool-flows. In par-
ticular, we show how PD-XML specifications can be trans-
lated into appropriate machine descriptions for the paramet-
ric HPL-PD VLIW processor and for the flexible instruction
processor approach.

1. INTRODUCTION
During the past three decades, the microprocessor has pro-
liferated many aspects of daily life with a scope and depth
that was hard to imagine during its early development. For
microprocessors, the periodic doubling in the number of
transistors that can be fabricated on a chip often meant
a hundred percent increase in performance every year and
a half, at no additional cost [1]. The advance in silicon de-
sign and fabrication technology is leading to an evolution
towards custom computing solutions: recent years have wit-
nessed the emergence of a plethora of customized processors
that are embedded within products such as media players,
digital cameras, network routers, and set-top boxes. It is
believed [1] that the trends of customization will continue
to evolve in the lower market tiers; and gradually over a pe-
riod of years, the trend will creep upward into higher tiers
of the market, including personal computers.

Today, several commercially available strategies afford com-
peting degrees of customization and scalability, ranging from
variations of traditional embedded processors such as the
ARM and MIPS, to wholly configurable processors such as
the Tensilica Xtensa architecture and ARC Cores. Numer-
ous other companies such as Philips, StarCore, ST Micro-

electronics and Texas Instruments have announced embed-
ded VLIW cores for high performance embedded computing.
Common to each of these commercial solutions is the need
to overcome high non-recurring engineering costs (NRE)
which are key hurdles in designing custom solutions in the
short time-to-market characteristic of the industry. To this
end, an embedded system is often assembled using a special-
ized core to carry out number crunching functions required
by a given application, and leverages the latest technology
developments available in commercial-off-the-shelf (COTS)
embedded processors for less computationally demanding
tasks [1, 15]. All the while, the design process is subject
to various stringent constraints of size, power consumption,
timing and performance. Hence, an intensive design space
exploration is conducted to find a desirable solution for a
specified set of constraints. The exploration or design pro-
cess typically proceeds by first discovering a new candidate
architecture and measuring its costs. Next, a toolchain con-
sisting of a compiler and simulator for the candidate archi-
tecture is generated and used to assess the relative merits of
the target hardware for a given application. The process is
repeated until a satisfactory solution is discovered.

In this paper, we propose a processor description exten-
sible markup language (PD-XML) as a means of describ-
ing instruction processors in general, with the specific aim
of enabling their rapid prototyping, evaluation and even-
tual design and implementation. It can be used to support
methods and tools for developing and optimizing instruc-
tion set architectures and their implementations, such as
Trimaran [21], FIP [17] and architecture assembly [10]. In
particular, PD-XML allows for extensible descriptions for
both instruction set architectures and their microarchitec-
ture implementations. The framework follows a specification
format which may be easily simulated or even synthesized.
This will permit the rapid exploration of the architectural
space and will complement several well-founded methodolo-
gies that have emerged to ameliorate the engineering costs
associated with exploring the design space of custom com-
puting components [11, 16, 17]. The contributions of our
work are as follows:

1. We propose PD-XML, a generic and extensible meth-
odology for describing, simulating and implementing
instruction set architectures. Information is organized
into two entities: one about storage, and the other
about the instruction set.

2. We extend PD-XML to cover descriptions of microar-

1

chitectures, by including information about the re-
sources associated with a given microarchitecture.

3. We demonstrate how PD-XML can be used to support
existing description methodologies and tool-flows. In
particular, we show how a specification realized in PD-
XML may be translated into a machine description for
the parametric HPL-PD VLIW processor [7] and for
the FIP approach [17].

The rest of the paper is organised as follows. Section 2
provides an overview of our approach. Section 3 discusses
related work. Section 4 and 5 respectively cover ISA and mi-
croarchitecture descriptions in PD-XML. Section 6 describes
Trimaran and FIP interfaces for PD-XML, and Section 7
presents a summary and future work. Appendix A con-
tains an example of ISA and microarchitecture descriptions
in PD-XML.

2. OVERVIEW OF APPROACH
Our description framework is based on an extensible markup
language known as XML [2]. XML provides a set of guide-
lines and conventions for structuring and representing data
– in our case instruction processor description. It is generic
and easily extensible, and its merits as an architecture de-
scription language have been discussed in the past [13]. In
addition, XML is widely popular with the World Wide Web
Community as a means for structured information exchange
and collaboration. Furthermore, by virtue of using XML as
a building block for the proposed framework, it is possible
to leverage various publicly available open-source tools de-
signed to work with XML. Thus, PD-XML subsumes many
of the existing processor description languages, and over-
comes many of their disadvantages and drawbacks. In par-
ticular, (i) PD-XML is not tied to any one architecture,
compiler or simulation environment, (ii) it is capable of rep-
resenting both high-level as well as low-level specifications
required to support a design space exploration toolchain,
and (iii) it does not require expert-level know-how to read,
understand and extend.

PD-XML consists of a collection of four main entities. The
first captures information about components that store in-
formation, such as registers, register files, stacks, external
memory, or block RAMs on FPGAs; hence it shall be called
the store entity. The second entity describes the instruc-
tion set and shall be called the inst entity; it may include
pseudo instructions which are decomposed by a compiler
into several operations that are executed by the processor.
The third is the resource entity and it contains informa-
tion about physical resources available in a microarchitec-
ture such as ALUs, cache control units as well as fetch and
decode units. The fourth, instance declares an instance of
a resource. An instruction set architecture description of
a processor mainly involves the store and inst entities to
be described in Section 4; the microarchitecture description
requires all four entities, to be explained in Section 5.

A microarchitecture description comes in two flavours: high
level and low level. A high-level microarchitecture descrip-
tion makes explicit the resources associated with each in-
struction, enabling simulation to take place. A low-level
microarchitecture description contains detailed information

ISA
+

HuA

LuA LuA...

High-level compilation
and simulation

Low-level compilation,
simulation and hardware

generation

Application
software

Figure 1: An (ISA, HuA) pair, where ISA denotes
an instruction set architecture description and HuA
denotes a high-level microarchitecture description,
can be used for high-level design exploration involv-
ing application software. For detailed design devel-
opment and implementation, an LuA (low-level mi-
croarchitecture) description is also required. The
box labeled “high-level compilation and simulation”
will be elaborated in Figure 2.

the datapath and control, allowing design optimisation, eval-
uation and implementation. Note that an ISA can be im-
plemented by multiple high-level microarchitectures, and a
high-level microarchitecture can be implemented by multi-
ple low-level microarchitectures (Figure 1).

While PD-XML affords several advantages compared to pre-
viously published related work outlined in the following sec-
tion, it is necessary to demonstrate its utility and flexibil-
ity to interface with other machine description methodolo-
gies. PD-XML is designed to provide a vehicle for the easy
and rapid extension of existing frameworks where poten-
tially substantial resources, and investments have already
been committed. To this end, in Section 6 we shall demon-
strate how PD-XML can be used to support two develop-
ment approaches: first, an existing machine description lan-
guage used in Trimaran [21], an infrastructure for research
on explicitly parallel instruction computers (EPIC); second,
design libraries for flexible instruction processors [17].

3. RELATED WORK
Various hardware description languages have been proposed
in the past. Languages such as VHDL [19] and Verilog [12]
allow engineers to describe their designs in a high-level lan-
guage for which a compiler can synthesize the circuitry. Un-
fortunately, such languages tend to revolve around low-level
details and it is generally well-known that even slight design
variations require well-trained experts who are familiar with
the architecture as well as the description language. To help
alleviate the problems commonly associated with low-level
description languages, a new generation of hardware descrip-
tion languages such as SystemC [20] and Handel-C [6] have
emerged. However, these are intended as general-purpose
hardware description languages and do not provide the nec-
essary specifics to facilitate the easy and direct description
of instruction set architectures or microarchitectures.

Many architecture description languages (ADLs) have been
proposed to describe both hardware and software architec-
tures. Examples of hardware architecture description lan-
guages include HMDES [4] and Pebble [8]. Such languages

2

are specific to a particular architecture domain or a compi-
lation/simulation infrastructure. In contrast, PD-XML is a
generic meta-language that is extensible and may be used to
describe widely-varying architectures such as superscalar or
VLIW processors, including their multi-clustered variants.
The need for a meta-description of software architectures –
the very same role that PD-XML is intended to play – has
been a well-studied subject in software engineering [13].

Other related work involving instruction processor descrip-
tions include ISDL [5], an instruction set description lan-
guage, and MAML [3] and MESCAL [14], architecture de-
scription languages. ISDL supports the description of the
ISA and microarchitecture of a processor, while MAML and
MESCAL can be used for pipelined processor designs. PD-
XML includes the capabilities available in these languages.
In addition PD-XML captures the ISA and microarchitec-
tures at multiple levels of abstraction, enabling an ISA to
be mapped onto various microarchitectures.

4. DESCRIBING ISA
An ISA description contains information about the memory
or storage capabilities and the related instructions. As such
an ISA description is made up of store and inst entities. This
allows an ISA designer to concentrate on the functionality
of the processor. The bit-width of registers and instruction
formats are included at this stage to allow for the generation
of binary code.

To summarize, the ISA description should:

1. expose the capabilities of an instruction set to the pro-
grammer and compiler writer,

2. provide functional specification of the instruction set
for implementation by microarchitectures.

In PD-XML, the instruction repertoire of an ISA can be ob-
tained by inspecting the list of inst entities. The list of store
entities provide information on the storage resources avail-
able to the ISA. Criterion (1) and (2) can be satisfied by
the information contained in the two lists. For example, the
opcode attribute and the inst format tag provide informa-
tion on how to translate assembly code into machine code.
The behav tag specifies the functional capability of the in-
struction, and can be used to directly map onto a high level
microarchitecture description.

Multiple issue architectures can be simulated at the ISA
level by composing instructions in parallel and issuing them
as a single sequential instruction. Technicalities such as
MultiOp-P and MultiOp-S or EQ and LEQ machines can
be dealt with in the behav section. The following is an ex-
ample of a store entity:

<store type="RegFile" name="r">

<doc>

registers used for general computation

</doc>

<bitsize>32</bitsize>

<depth>5</depth>

<index>0..31</index>

</store>

The store entity has two fields, type and name. Here, we
declare a register file called r. The doc field provides doc-
umentation for the entity. The bitsize field provides infor-
mation on the number of bits (size) of the number that can
be represented by a single register. The depth field provides
information on the depth of the register file; here it says that
the register file can be accessed by a pointer that is 5 bits
wide, so there are 25 registers in this register file, r[0]..r[31].
The index field shows the indexing count for this register
file. In other words the depth value tells the compiler the
number of bits required to index into this register file, and
the index value tells the compiler the actual index positions
into the register file. This allows for a single physical regis-
ter file to be logically split up into separate smaller register
files.

At this level of abstraction no decisions are made as to the
physical implementation of components. However, it is often
convenient to segregate the use of registers within a regis-
ter file. For example, there are 32 general purpose registers
in the MIPS ISA description, which are split up into dif-
ferent categories of usage; temporary store, argument store,
reserved for stack, frame pointer etc. This can be defined by
creating a store entity with a type that refers to a previously
defined entity.

<store type="RegFile.r" name="t">

<doc>

temporary registers, not preserved

across calls. t[0]-t[10]

</doc>

<index>8..15,23..25</index>

</store>

Here we define an alias to the register file r: the t registers
are referred to like a register file, but indices for t registers
are translated into indices for r registers, using the conven-
tion outlined in the index section. Here t[0] is an alias of
r[8]. An example of an inst entity:

<inst opcode="ADD">

<doc>

Definition for the add instruction

add rd,rs,rt

rd = rs + rt;

where rd,rs,rt are from the r register file

</doc>

<in type="RegFile.r">in1,in2</in>

<out type="RegFile.r">out1</out>

<inst_format>

000000::in1::in2::out1::xxxxx::100000

</inst_format>

<behav>r[out1] = r[in1] + r[in2];</behav>

</inst>

Here we define an instruction called ADD. It takes three
operands that contain indices for the RegFile.r register file.

3

Compiler

Simulator

ISA
+

HuA

Application
software

Figure 2: The ISA and HuA (high-level microarchi-
tecture) descriptions can be used to produce high-
level compilation and simulation tools. The dotted
line indicates that the simulation result can be used
to refine the ISA and HuA descriptions.

The names in1, in2 and out1 are labels that refer to indices
into the store entity RegFile.r. The inst format tag gives
the binary instruction format for the ADD instruction. The
first six bits correspond to the opcode while the last six bits
corresponds to the function code, as defined by the MIPS
instruction set. The ‘::’ operator denotes concatenation. ‘x’
denotes bits whose value we don’t care about.

For convenience, the labels in1, in2, and out1 above refer to
5-bit numbers (derived from the depth value of the RegFile.r
object) and acceptable values for this 5-bit number are num-
bers between 0 and 31 (derived from the index tag of the
RegFile.r object). The behav field contains the behavioural
information that outlines the operation of this instruction
in a high-level manner.

Figure 2 shows that the ISA description can be used to pro-
duce compilation and simulation tools to facilitate high-level
design exploration. Note that multiple high-level microar-
chitectures can be used to implement each ISA; details of a
high-level microarchitecture description will be explained in
the next section.

5. DESCRIBING MICROARCHITECTURE
The microarchitecture section captures resource dependence
in the processor, so that a cycle accurate description can be
developed. This level contains descriptions of resources that
are not directly accessible by a programmer, such as the
fetch module or the program counter. The following de-
scribes the requirements of microarchitecture descriptions,
followed by an explanation of high-level and low-level mi-
croarchitecture descriptions in PD-XML.

5.1 Requirements
The purpose of a microarchitecture description is to include
implementation constraints to enable effective implementa-
tion and evaluation. From experience it should:

1. expose the hardware capabilities of an instruction pro-
cessor,

2. expose the resource dependencies,

3. allow the compiler to be further optimized,

pc

Inst_mem

RegFile

LOAD

STORE

ADD

SUB

XOR

BEQ

Data_mem

JMP

Figure 3: A graph representation of a high level
microarchitecture description.

4. provide enough information for cycle-accurate simula-
tion of the microarchitecture.

In PD-XML, the uA field can be written in two levels of
abstraction: high-level microarchitecture and low-level mi-
croarchitecture. From the uA definition, we can deduce
dependence information, which can be drawn as a DOT
graph [9]. Each node in the graph maps to a physical im-
plementation block. This exposes the hardware capabilities
of the processor. The in and out tags capture dependence
information. This is reflected in the edges of the graphs.
Section 5.4 and 5.5 show how information for further opti-
mizing a compiler can be captured. Simulation of a microar-
chitecture can be done in two levels. The high level microar-
chitecture can be simulated using information captured in
the behav tags in the ISA and low level microarchitecture
can be simulated with information from the struct tags.

5.2 High-level microarchitecture
The high level microarchitecture description closely resem-
bles the ISA specification, where instructions are segregated.
The uA description at this level is organized around the in-
structions in the processor and only data flow between the
store and inst entities are shown. Figure 3 shows a graph
representation of part of a MIPS processor. The uA field
contains information about the modules and provides infor-
mation such as data dependence, allowing pipelining and
scheduling to take place. An example of the uA definition
follows:

<store type="RegFile" name="r">

<uA>

<in>Inst_mem</in>

<out>ADD;XOR;SUB;LOAD;STORE;BEQ</out>

</uA>

</store>

This shows that RegFile takes information from Inst mem
and provides information for LOAD, ADD etc. As another
example, consider the ADD module:

4

pc

Fetch

inc

Inst_mem

RegFile Mul

ALU

BranchUnit

Data_mem

Decode

LoadStore

Figure 4: A graph representation of a processor with
shared functional units.

<inst opcode="ADD">

<uA>

<in>RegFile.r</in>

<out>RegFile.r</out>

</uA>

</inst>

Behavioural information can be incorporated in the same
way as in the low-level microarchitecture definition shown in
the next section. Latency information can be incorporated
manually or can be determined by simulation.

5.3 Low-level microarchitecture
While the high-level microarchitecture describes the resource
dependences of the ISA, the low-level microarchitecture (also
known as the implementation) captures how the ISA may be
realized. This is divided into two parts:

1. LL1 The first part describes the types of resources
found in the datapath and the instances of these re-
sources. Instances may also contain additional imple-
mentation dependent information. For example, in the
case of a cache, different cache parameters and policies
can be described.

2. LL2 The second part describes resources that con-
trol the flow of instructions. Information regarding
implementation details such as whether the proces-
sor is EPIC or superscalar, UAL, NUAL, MultiOp-P,
MultiOp-S, EQ or LEQ are also encapsulated in this
part of the machine description.

5.4 LL1 - data path
The uA field can also be written to conform to more con-
ventional processor architectures, with shared computation
units, such as the ALU and branch units. At this level
of description, the microarchitecture description is resource
oriented and contains control information. The inst tag is no
longer used and the resource and store tags are used as type
definitions. The instance tag is used to declare an instance
of a resource or store entity. The following description of
the microarchitecture can be seen as a refinement of the
first example.

<resource type="arith" name="ALU">

pc

Fetch

inc

Inst_mem

RegFile

LoadStore

Mul1

Mul2

ALU1

ALU2

ALU3

ALU4

Data_mem

Decode

BranchUnit

Prefetch

Figure 5: A graph representation of the MIPS ISA
with multi-issue microarchitecture.

<doc>The ALU unit for adds, sub, xor ... </doc>

<uA>

<in type="RegFile.r">in1,in2</in>

<in type="Decode">aluop</in>

<out type="RegFile.r">out1</out>

<out type="BranchUnit">branch</out>

<implements>

ADD,XOR ...

</implements>

<struct>

...

</struct>

</uA>

</resource>

The resource entity at this level contains fields that relates
the information in the inst field to this resource. The in and
out fields provide connection information. The implements
field denotes what instructions are supported. The struct
field provides information on how to build each of the mod-
ules. This can be captured in Pebble [8], VHDL or other
similar hardware description languages.

Figure 4 shows a single issue implementation of the MIPS
ISA, while Figure 5 shows a multi-issue implementation.
The high level microarchitecture description provides an easy
but inefficient way to implement the ISA. The ISA can then
be mapped into different low level microarchitecture imple-
mentations depicted in Figure 4 and 5.

This format allows microarchitectures of different levels of
abstraction and functionality to be coupled with an ISA de-
scription. Conversely several ISA definitions can be mapped
onto a microarchitecture description.

<instance type="arith.ALU" name="ALU0">

<doc>...</doc>

</instance>

<instance type="arith.ALU" name="ALU1">

5

<doc>...</doc>

</instance>

<instance type="store.cache" name="ICACHE">

<doc>...</doc>

<size>8Kbyte</size>

<line_size>...</line_size>

<associativity>...</associativity>

<replacement_policy>...</replacement_policy>

</instance>

Instances contain information about a particular instance of
a resource. The example above shows the instantiation of
two ALU units and a cache.

5.5 LL2 - control path
The control path of a microarchitecture can be described in
a similar manner to the data path. The distinction is arbi-
trary and both control and data paths can be described by
the same tags. The example below shows the declaration
of two control resources: an instruction issue resource and
a reservation station resource. Information required by the
compiler is provided within the uA tags, such as the dis-
cipline and instruction window size. Control resources are
instanced using the instance tag.

<resource type="control" name="inst_issue">

<doc> Instruction issue controller </doc>

<uA>

<discipline>In_order</discipline>

<instruction_window>10</instruction_window>

<struct>

...

</struct>

</uA>

</resource>

<resource type="control" name="res_stat">

<doc> Reservation stations </doc>

<uA>

<depth>5</depth>

<discipline>In_order</discipline>

<struct>

...

</struct>

</uA>

</resource>

<instance type="control.res_stat" name="ALU0_stat">

<doc> The instance of the reservation station

resource for ALU0

</doc>

<uA>

<in type="control.inst_issue"></in>

<out type="arith.ALU0"></out>

</uA>

...

</instance>

6. INTERFACING PD-XML
This section covers two design and implementation flows to
which PD-XML can be interfaced.

6.1 HMDES interface
In this section, we demonstrate how PD-XML may inter-
face with and enhance HMDES [4], a powerful and com-
plex machine description language used in the Trimaran
research compiler and simulation environment. The archi-
tecture specifications in HMDES consist of six entities:

1. format, specifying the operands allowed by each type
of operation,

2. resource usage, specifying how operations use the pro-
cessor’s resources when they execute,

3. latency, specifying how to calculate data-flow depen-
dences between operations,

4. operation, describing the operations supported by the
architecture and specifying their format with respect
to operands, resources usage, and latency,

5. register, providing information necessary for register
allocation performed by Trimaran,

6. compiler, a generic entity intended to communicate
other information required by the compiler.

While HMDES provides a facility to model various specifi-
cations, it does often prove difficult to use. For example, to
augment the ISA of a HMDES-modeled processor requires
modifications at several different levels – namely, the for-
mat, the resource usage, the latency and the operation lev-
els; and additional compiler flags may be necessary as well.
Similarly, altering the microarchitecture often requires mod-
ifications to various entities. In contrast, PD-XML consists
of only three components, each a self-contained and easily
modified entity. Furthermore, most of the specifications and
definitions required by the HMDES infrastructure can be di-
rectly inferred from the XML descriptions. In what follows,
we highlight a few such examples.

Consider the declaration of register file r shown earlier in
Section 4 and the equivalent HMDES code below. The
Register section creates a total of 32 registers – r0 through
r31 – which are subsequently assigned to the register file
r in section Register File. Specified in the former is the
width of each register. Information as to whether a regis-
ter is preserved across function calls can be described using
similar annotations. Earlier we have shown how PD-XML
supports the segregation of registers (for instance register
file t in Section 4). This can be trivially translated to the
equivalent HMDES specification illustrated below.

SECTION Register

{

$for (N in $0..$31) {"r${N}"(width ($32));}

}

SECTION Register_File

{

r (registers($for (N in $0..$31) {"r${N}"}))

t (registers($for (N in $8..$15) ...)

}

6

While the HMDES specification of register files is somewhat
straightforward, the definitions of the ISA and the resource
usage patterns (i.e. microarchitecture-level descriptions) are
slightly more complex and are illustrated below.

SECTION Operand_Type

{

FT_i(regfile(r));

FT_l(regfile(L));

FT_il(compatible_with(FT_i FT_l));

}

SECTION Operation_Format

{

OF_ADD(src(FT_il FT_il) dest(FT_i));

}

SECTION Resource

{

R_ALU0;

}

SECTION Operation

{

ADD(format(OF_ADD) uses(R_ALU0) ...);

}

As shown above, in order to define an ADD operation, it
is necessary to first define its format (OF ADD). In this case,
it requires two source operands, where each may be a reg-
ister (r) or a literal (L), modeled as a pseudo-register file.
In HMDES, it is often not possible to avoid some microar-
chitectural specifications when defining an operation. To
this end, a R ALU0 resource is instantiated and declared to
be capable of carrying out the operation of interest. Sub-
sequently the actual operation is defined1. Referring back
to the PD-XML specification for the ADD operation: it is
readily apparent how the operation format may be inferred
for the HMDES specification. However, whereas PD-XML
affords an ISA-only specification – hence is not tied to a
particular architecture implementation – it is now necessary
to include some low-level details required to complete the
HMDES specification. To this end, we extend the PD-XML
description to include a pseudo-resource field which may be
subsequently realized at the microarchitecture level.

The examples above are intended to highlight how PD-XML
may easily and readily adapt to an existing machine descrip-
tion facility such as HMDES. Thus, we believe that it can
be used to augment the Trimaran infrastructure which was
conceived to explore the evolution of VLIW architectures.
In particular, the machine-driven optimizing compiler and
performance monitoring tools available in Trimaran may
be easily retargeted to investigate the merits of architectural
innovations via rapid prototyping using PD-XML. This is of
increasing significance as VLIW architectures continue to
proliferate at various tiers of the processor industry.

1Several details are omitted for clarity. We refer the inter-
ested reader to the HMDES technical report [4].

Customisation specification:
eg. application source code and data

FIP Profiler

Instruction
information

Processor
architecture
information

FIP library

FIP analysis and instantiation

Annotated
source code

FIP compiler

Executable
FIP code

Decision
condition

information

FIP
configuration
information

FIP
management

system

FIP template
generator

Figure 6: The design flow for the Flexible Instruc-
tion Processor (FIP) approach.

6.2 FIP Interface
The Flexible Instruction Processor (FIP) approach provides
a mechanism for the systematic customization of instruc-
tion processors, targeting mainly reconfigurable devices [17].
This approach helps designers to tune hardware implemen-
tations to the characteristics of a system both at design time
and at run time [18]. PD-XML provides a concise way to
express both the ISA and the microarchitecture information
required by the FIP approach.

Figure 6 shows a simplified FIP design flow. The FIP pro-
filer takes in a custom specification, usually in C or in Java,
as well as ISA information in PD-XML format from the
FIP library. The ISA description is customized to the ap-
plication source code provided in the custom specification.
This information is then passed to the FIP template genera-
tor which creates a high-level microarchitecture in PD-XML
that corresponds to the ISA description.

Next, the FIP template is put through an analysis phase
where operations are optimized and custom instructions are
introduced if appropriate [18]. After instancing, a FIP con-
figuration is produced to program a reconfigurable device.
A PD-XML description of the low-level microarchitecture is
also passed to the FIP compiler, so that executable code can
be produced for the FIP implementation.

7. SUMMARY
This paper introduces PD-XML, a meta-language for de-
scribing processors in general with an emphasis on embed-
ded processors. PD-XML enables rapid high-level as well
as low-level architectural specifications required to support
a toolchain for design space exploration. The proposed ap-

7

proach should become increasingly important in the context
of general-purpose systems design, and especially in embed-
ded systems where the needs for application-specific archi-
tectures are increasing prevalent, and time-to-market is a
primary concern. In addition, we have demonstrated how
PD-XML can interface to and extend the flexibility of ex-
isting machine description methodologies such as HMDES
used to model the parametric HPL-PD processor central
to the Trimaran infrastructure. Current and future work
includes the completion of the retargeting of our tools to
support PD-XML, and the extension of PD-XML to sup-
port adaptive implementations that can be reconfigured at
run time [18].

ACKNOWLEDGEMENTS
The authors acknowledge Mongkol Ekpanyapong, Georgia Insti-
tute of Technology, Anjani Kumar Tripathi, Banares Hindu Uni-
versity, and David Thomas, Imperial College, for their contribu-
tions to this paper. This work is supported in part by DARPA
contract F30602-00-2-0564, A*STAR Project No. 012-106-0046,
UK EPSRC projects GR/N 66599 and GR/R 55931, Celoxica
Limited, Hewlett Packard Laboratories, and Yamacraw.

REFERENCES
[1] M. Bass and C. Christensen. The future of the microproces-

sor business. IEEE Spectrum, Apr. 2002.

[2] R. Cover. The XML cover pages. xml.coverpages.org.

[3] D. Fisher et al. Design space characterisation for architecture
compiler co-exploration. In Proc. CASES, ACM, 2001.

[4] J. Gyllenhaal, W. Hwu, and B. R. Rau. HMDES version 2.0
specification. Technical Report IMPACT-96-3, University of
Illinois, Urbana, 1996.

[5] G. Hadjiyiannis, S. Hanono, and S. Devadas. Isdl: An in-
struction set description language for retargetability. In Proc.
34th Design Automation Conference, 1997.

[6] The Handel-C programming language. www.embedded-
solutions.ltd.uk/products/design suite.

[7] V. Kathail, M. Schlansker, and B. R. Rau. HPL-PD architec-
ture specification: Version 1.1. Technical Report HPL-9380
(R.1), Hewlett Packard Laboratories, Feb. 2000.

[8] W. Luk and S. McKeever. Pebble: a language for
parametrised and reconfigurable hardware design. In Proc.
FPL, LNCS 1482, Springer, 1998.

[9] Open source graph drawing software.
www.research.att.com/sw/tools/graphviz.

[10] K. Palem. C-based architecture assembly supports custom
design. In EE Times, Feb. 2002.

[11] K. Palem. Rapid design of custom embedded systems via
architecture assembly. Technical report, Proceler Inc., Feb.
2002.

[12] S. Palnitkar. Verilog HDL. Prentice Hall, 1996.

[13] S. Pruitt, D. Stuart, W. Sull, , and T. Cook. The merit of
XML as an architecture description language meta-language.
xml.coverpages.org/ADL-meritofxml.html.

[14] W. Qin. Mescal architecture description.
http://www.ee.princeton.edu/MESCAL/ar-de.html.

[15] B. R. Rau and M. Schlansker. Embedded computer architec-
ture and automation. IEEE Computer, Apr. 2001.

[16] R. Schreiber, S. Aditya, S. Mahlke, V. Kathail, B. R. Rau,
D. Cronquist, and M. Sivaraman. PICO-NPA: High-level
synthesis of nonprogrammable hardware accelerators. Jour-
nal of VLSI Signal Processing, 2001.

[17] S. Seng, W. Luk, and P. Cheung. Flexible Instruction Pro-
cessors. In Proc. CASES, ACM, 2000.

[18] S. Seng, W. Luk, and P. Cheung. Runtime Adaptive Flexible
Instruction Processors. In Proc. FPL, LNCS 2438, Springer,
2002.

[19] S. Sjoholm and L. Lindh. VHDL for Designers. Prentice
Hall, 1997.

[20] The open SystemC initiative. www.systemc.org.

[21] Trimaran: An infrastructure for research in instruction level
parallelism. www.trimaran.org.

APPENDIX A
An example of a PD-XML ISA and microarchitecture de-
scription. The implementation tag relates an ISA with a
microarchitecture. Comments are enclosed by doc tags.

<PD-XML>

<implementation ISA="MIPS"

uA="single-issue-superscalar"/>

<instruction_set_architecture name="MIPS">

<store type ="Register" name="pc">

<ISA>

<bitsize>32</bitsize>

</ISA>

</store>

... other store declarations

<inst opcode="BEQ">

<doc>

Definition for branch if equal

beq rs,rt,offset

</doc>

<ISA>

<in type="RegFile.r">in1,in2</in>

<in type="Inst_mem" bitsize="16">offset</in>

<out type="Register.pc">pc</out>

<inst_format>

000100::in1::in2::offset

</inst_format>

<behav>

((r[in1]==r[in2])?(pc+=offset):(pc))

</behav>

</ISA>

</inst>

... other inst declarations

</instruction_set_architecture>

<microarchitecture

name="single-issue-superscalar"/>

<store type ="Register" name="pc">

<doc> Declaration of the PC register </doc>

<uA>

<struct>

unsigned 32 pc;

</struct>

</uA>

</store>

... other store declarations

<resource type="branch" name="BranchUnit">

<doc> Declaration of a branch unit </doc>

<uA>

<in>in1,in2</in>

8

<out>out1</out>

<implements>BEQ,BNE...</implements>

<struct> ... </struct>

</uA>

</resource>

... other resource declarations

<instance type="branch.BranchUnit" name="BR1">

<doc> Instancing of a branch unit </doc>

<uA>

<in type="RegFile.r">in1,in2</in>

<in type="Inst_mem" bitsize="16">offset</in>

<out type="Register.pc">pc</out>

</uA>

</instance>

... other instances

</microarchitecture>

</PD-XML>

9

