
An Enhanced Piecewise Linear Dual Phase-1

Algorithm for the Simplex Method

István Maros

Department of Computing, Imperial College, London

Email: i.maros@ic.ac.uk

Departmental Technical Report 2002/15∗

ISSN 1469–4174

Abstract

A dual phase-1 algorithm for the simplex method that handles all types of vari-

ables is presented. In each iteration it maximizes a piecewise linear function of dual

infeasibilities in order to make the largest possible step towards dual feasibility with

a selected outgoing variable. The algorithm can be viewed as a generalization of

traditional phase-1 procedures. It is based on the multiple use of the expensively

computed pivot row. By small amount of extra work per iteration, the progress it

can make is equivalent to many iterations of the traditional method. While this is its

most important feature, it possesses some additional favorable properties, namely,

it can be efficient in coping with degeneracy and numerical difficulties. Both theo-

retical and computational issues are addressed. Some computational experience is

also reported which shows that the potentials of the method can materialize on real

world problems. This paper is based on IC Departmental Technical Report 2000/13

and contains an enhancement of the main algorithm.

∗Updated: 2004.01.11

1

Maros Dual Phase-1 2 of 28

Keywords: Linear programming, Dual simplex method, Phase-1, Piecewise

linear functions.

1 Introduction

The dual simplex algorithm (DSA) developed by Lemke [8] has long been known as

a better alternative to Dantzig’s primal simplex [2] for solving certain types of linear

programming (LP) problems, mostly in cases where a dual feasible solution is readily

available. This latter situation is typical in the LP relaxation of mixed integer program-

ming problems within branch and bound type solution algorithms. In such a case the

optimal basic solution to a node problem is dual feasible for the immediate successor

problems. However, in many other cases a dual feasible solution is not available and the

dual algorithm cannot be used even if it would be advantageous.

There are some techniques to obtain a dual basic feasible solution for the problem.

The most typical one is the dual variant of the big-M method. In this case an extra ‘≤’

type constraint on
∑

xj is added to the original constraints. It is made non-binding by

setting the right-hand-side coefficient equal to a large number (the big M). This enables

the gradual build-up of a dual feasible basis if one exists. For details c.f., [13]. This

and the other methods have been worked out for the case when the LP problem is in

the standard form. If all types of variables are present in a problem the situation is

more complicated. In such a case, one possibility is to introduce additional variables and

constraints to convert the problem into the standard form with nonnegative variables only

and apply the big-M or other methods.

In this paper we propose an algorithm to obtain a dual feasible solution for LP prob-

lems with all types of variables. Our motivation was the computational enhancement of

dual phase-1 in this general case. The key idea of this approach is the multiple use of the

(expensively) updated pivot row. The algorithm is a modification of the DSA such that in

each iteration the longest possible step is made with a selected outgoing variable towards

Maros Dual Phase-1 3 of 28

dual feasibility. This is achieved by maximizing a concave piecewise linear function in

every iteration. In this sense, it is a greedy algorithm. We show that the extra work per

iteration is little. At the same time, the algorithm can lead to a considerable enhancement

of efficiency by greatly reducing the number of iterations in dual phase-1 though there is

no theoretical guarantee for that. This algorithm is monotone in the sum of dual infeasi-

bilities. As such, the number of infeasibilities can even increase (though in this case the

sum will definitely decrease), remain the same (even in the nondegenerate case, though

infeasible positions may change) or decrease. The algorithm has some inherent flexibility

that can alleviate or overcome occasional numerical and/or algorithmic (like degeneracy)

difficulties.

The rest of the paper is organized as follows. In section 2 we state the primal and dual

problems with all types of variables and discuss relevant work done in this area. Section 3

gives an analysis of dual infeasibility, it introduces a dual phase-1 procedure and gives its

algorithmic description. Section 4 presents a numerical examples that illustrates how the

procedure works in practice. In section 5 the results of a limited computational testing

are presented and discussed. It is followed by a summary and conclusions in section 6.

2 Problem statement

2.1 The primal problem

Consider the following primal linear programming (LP) problem:

minimize cTx,

subject to Ax = b,

l ≤ x ≤ u,

where A ∈ R
m×n, c, x, l and u ∈ R

n and b ∈ R
m. Some or all of the components of l and

u can be −∞ or +∞, respectively. A itself is assumed to contain a unit matrix I, that

is, A = [I, Ā], so it is of full row rank. Variables which multiply columns of I transform

Maros Dual Phase-1 4 of 28

every constraint to an equation and are often referred to as logical variables. Variables

which multiply columns of Ā are called structural variables.

By some elementary transformations it can be achieved that the variables (whether

logical or structural) fall into four categories as shown in Table 1 (for further details, see

Orchard-Hays [12]).

Table 1: Types of variables

Feasibility range Type Reference

xj = 0 0 Fixed variable

0 ≤ xj ≤ uj < +∞ 1 Bounded variable

0 ≤ xj ≤ +∞ 2 Non-negative variable

−∞ ≤ xj ≤ +∞ 3 Free variable

2.2 The dual problem

First, we restate the primal problem to contain bounded variables only.

(P1) minimize cTx,

subject to Ax = b,

0 ≤ x ≤ u,

where all components of u are finite.

A basis to (P1) is denoted by B and is assumed (without loss of generality) to be the

first m columns. Thus, A is partitioned as A = [B,N], with N denoting the nonbasic part

of A. The components of x and c are partitioned accordingly. Column j of A is denoted

by aj. A basic solution to (P1) is

xB = B−1

(

b −
∑

j∈U

ujaj

)

,

Maros Dual Phase-1 5 of 28

where U is the index set of nonbasic variables at upper bound. The ith basic variable

is denoted by xBi. The dj reduced cost of variable j is defined as dj = cj − πT aj =

cj − cT
BB−1aj which is further equal to cj − cT

Bαj if the notation αj = B−1aj is used.

The dual of (P1) is:

(D1) maximize bTy − uTw,

subject to ATy − w ≤ c,

w ≥ 0,

where y ∈ R
m and w ∈ R

n are the dual variables. Stating the dual when the primal has

all types of variables is cumbersome. However, we can think of the reduced costs of the

primal problem as the logical variables of the dual [12]. In this way dual feasibility can

be expressed quite simply as shown in the next section.

In practice, dual algorithms work on the primal problem using the computational tools

of the sparse primal simplex method (SSX) but perform basis changes according to the

rules of the dual.

The upper bounded version of the DSA was first described by Orchard-Hays [12] and

later by Chvátal [1]. They both deal with dual phase-2. Maros published a general dual

phase-2 algorithm (BSD in [10]) that handles all types of variables and has some favorable

computational properties.

Phase-1 procedures, whether primal or dual, compute ratios to determine the pivot

element that ultimately defines the basis change. With different choices of the pivot the

change in the sum and number of infeasibilities can be controlled. The classical Dantzig

ratio test chooses the smallest of the ratios. It guarantees that, in case of a nondegenerate

iteration the sum of infeasibilities decreases and the number of infeasibilities does not

increase. Other choices can ensure that (a) either the sum of infeasibilities decreases and

the number of infeasibilities stays the same, or the number of infeasibilities decreases, or

(b) the sum of infeasibilities decreases.

For phase-1 of the primal with all types of variables there exist algorithms that can

make long steps with an incoming variable (Wolfe [15], Greenberg [6], Maros [9]). They

Maros Dual Phase-1 6 of 28

are all based on piecewise linear minimization/maximinaztion. The natural extension

of the idea to the dual has not been investigated extensively. In fact, for dual phase-1

the only relevant work appears to be [4] in which Fourer gives a theoretical discussion

of a procedure that is based on the above advanced ideas for the primal. His algorithm

falls into category (a). The algorithm to be presented in this paper, which we call GDPO

(Generalized Dual Phase One), is monotone only in the sum of infeasibilities (category(b)).

The creation of the updated pivot row p, i.e., the computation of αpj for all nonbasic

indices j is an expensive operation in SSX (c.f. [11]). Traditional dual methods based on

the Dantzig type pivot selection make one iteration with the pivot row and discard it.

GDPO makes one step with the pivot row but it can correspond to many iterations of the

traditional method with very little extra work. As GDPO is monotone only in the sum of

infeasibilities it has an increased flexibility. It also has some additional favorable features

that enhance its effectiveness and efficiency. As a result, GDPO seems to be worth for

consideration as a general dual phase-1 algorithm.

3 Dual phase-1 with all types of variables

If there are only type-2 variables in the problem then w is not present in (D1). In this

case, assuming that B is a basis to A, dual feasibility is expressed by

BT y = cB

NT y ≤ cN , or dN = cN − NT y ≥ 0.

In practice, of course, all types of variables are present in a problem and it is de-

sirable to handle them algorithmically rather than introducing additional variables and

constraints and reverting to the traditional formulation. The dj of a basic variable is zero.

For nonbasic variables the dual feasible values are shown in Table 2 (for proof c.f. [12]).

Since the dj of a type-0 variable is always feasible such variables can be, and in fact are,

ignored in dual phase-1. Any dj that falls outside the feasibility range is dual infeasible.

Maros Dual Phase-1 7 of 28

Table 2: Dual feasibility of nonbasic djs (primal minimization)

Type of nonbasic Dual feasibility

variable

0 dj of any sign

1 dj ≥ 0 if xj = 0

dj ≤ 0 if xj = uj

2 dj ≥ 0

3 dj = 0

We define two index sets of dual infeasible variables:

M = {j : (xj = 0 and dj < 0)},

and

P = {j : (xj = uj and dj > 0) or (type(xj) = 3 and dj > 0)},

where type(xj) denotes the type of xj.

There is an easy way to make the dj of upper bounded variables feasible. They can

be infeasible in two different ways. Accordingly, we define two index sets:

T+ = {j : type(xj) = 1 and j ∈ P}

T− = {j : type(xj) = 1 and j ∈ M}

If we perform a bound flip for all such variables, the corresponding djs become feasible.

In this case the basis remains unchanged but the solution has to be updated:

xB := xB −
∑

j∈T+

ujαj +
∑

j∈T−

ujαj, (1)

where αj = B−1aj, ‘:=’ denotes assignment, and the sum is defined to be 0 if the corre-

sponding index set is empty. Computing αj for all j in (1) would be relatively expensive.

Maros Dual Phase-1 8 of 28

However, this entire operation can be performed in one single step for all variables involved

in the following way.

xB := xB −
∑

j∈T+

ujαj +
∑

j∈T−

ujαj

= xB − B−1

∑

j∈T+

ujaj −
∑

j∈T−

ujaj

= xB − B−1ã

(2)

with the obvious interpretation of ã. Having constructed ã, we need only one FTRAN

operation with the inverse of the basis.

Assuming that such a dual feasibility correction has been carried out the definition of

P simplifies to:

P = {j : dj > 0 and type(xj) = 3}, (3)

While this redefinition is not really necessary at this stage it will be useful for the new

algorithm.

If all variables are of type-1 any basis can be made dual feasible by feasibility correc-

tion.

The straightforward way of making the dual logicals feasible suggests that their feasi-

bility can be disregarded during dual phase-1. As type-0 variables do not play any role at

all, only type-2 and -3 variables need to be considered. If the corresponding dual logicals

all have become feasible a single feasibility correction can make the logicals of the type-1

variables feasible.

As a consequence, set M is redefined to be

M = {j : dj < 0 and type(xj) ≥ 2}. (4)

Using infeasibility sets of (3) and (4), the sum of dual infeasibilities can be defined as

f =
∑

j∈M

dj −
∑

j∈P

dj, (5)

where any of the sums is zero if the corresponding index set is empty. It is always true

that f ≤ 0. In dual phase-1 the objective is to maximize f subject to the dual feasibility

Maros Dual Phase-1 9 of 28

constraints. When f = 0 is reached the solution becomes dual feasible (maybe after a

feasibility correction). If it cannot be achieved the dual is infeasible.

The dual simplex method performs basis changes using the computational tools of

the primal. However, in the dual the pivot row (the outgoing variable) is selected first,

followed by a dual ratio test to determine the pivot column (incoming variable).

Let us assume row p is selected somehow (i.e., the pth basic variable xBp will leave

the basis). The elimination step of the simplex transformation subtracts some multiple

of row p from dN . If this multiplier is denoted by t then the transformed value of each dj

can be written as a function of t:

d
(p)
j (t) = dj − tαpj. (6)

With this notation, d
(p)
j (0) = dj and the sum of infeasibilities as a function of t can be

expressed (assuming t is small enough such that M and P remain unchanged) as:

f (p)(t) =
∑

j∈M

d
(p)
j (t) −

∑

j∈P

d
(p)
j (t) = f (p)(0) − t

(

∑

j∈M

αpj −
∑

j∈P

αpj

)

.

Clearly, f of (5) can be obtained as f = f (p)(0). To simplify notations, we drop the

superscript from both d
(p)
j (t) and f (p)(t) and will use dj(t) and f(t) instead.

The change in the sum of dual infeasibilities, if t moves away from 0, is:

∆f = f(t) − f(0) = −t

(

∑

j∈M

αpj −
∑

j∈P

αpj

)

. (7)

Introducing notation

vp =
∑

j∈M

αpj −
∑

j∈P

αpj (8)

(7) can be written as ∆f = −tvp. Therefore, requesting an improvement in the sum of

dual infeasibilities (∆f > 0) is equivalent to requesting

−tvp > 0 (9)

which can be achieved in two ways:

If vp > 0 then t < 0 must hold, (10)

Maros Dual Phase-1 10 of 28

if vp < 0 then t > 0 must hold. (11)

As long as there is a vi 6= 0 with type(xBi) 6= 3 (type-3 variables are not candidates to

leave the basis) there is a chance to improve the dual objective function. The precise

conditions will be worked out in the sequel. From among the candidates we can select vp

using some simple or sophisticated (steepest edge type) rule.

Let k denote the original index of the pth basic variable xBp, i.e., xk = xBp (which

is selected to leave the basis). At this point we stipulate that after the basis change dk

of the outgoing variable take a feasible value. This is not necessary but it gives a better

control of dual infeasibilities.

If t moves away from zero (increasing or decreasing as needed) some of the djs move

toward zero (the boundary of their feasibility domain) either from the feasible or infeasible

side and at a specific value of t they reach it. Such values of t are determined by:

tj =
dj

αpj

, for some nonbasic j indices

and they enable a basis change since dj(t) becomes zero at this value of t, see (6). It

also means that the j-th dual constraint becomes tight at this point. Let us assume the

incoming variable xq has been selected. Currently, dk of the outgoing basic variable is

zero. After the basis change its new value is determined by the transformation formula

of the simplex method giving

d̄k = −
dq

αpq

= −tq,

which we want to be dual feasible. The proper sign of d̄k is determined by the way the

outgoing variable leaves the basis. This immediately gives rules how an incoming variable

can be determined once an outgoing variable (pivot row) has been chosen. Below is a

verbal description of these rules. Details are given in the next section.

1. If vp > 0 then tq < 0 is needed for (10) which implies that the pth basic variable

must leave the basis at lower bound (because d̄k must be nonnegative for feasibility).

In the absence of dual degeneracy this means that dq and αpq must be of opposite

Maros Dual Phase-1 11 of 28

sign. In other words, the potential pivot positions in the selected row are those that

satisfy this requirement.

2. If vp < 0 then tq > 0 is needed which is only possible if the outgoing variable xBp

(alias xk) is of type-1 leaving at upper bound. In the absence of degeneracy this

means that dq and αpq must be of the same sign.

3. If vp 6= 0 and the outgoing variable is of type-0 then the sign of dq is immaterial.

Therefore, to satisfy (9), if vp > 0 we look for tq < 0 and if vp < 0 choose from the

positive t values.

It remains to see how vector v = [v1, . . . , vm]T can be computed for row selection. In

vector form, (8) can be written as

v =
∑

j∈M

αj −
∑

j∈P

αj = B−1

(

∑

j∈M

aj −
∑

j∈P

aj

)

= B−1ã (12)

with obvious interpretation of auxiliary vector ã. The latter is an inexpensive operation

in terms of the revised simplex method.

3.1 Analysis of the dual infeasibility function

We can investigate how the sum of dual infeasibilities, f(t), changes as t moves away from

0 (t ≥ 0 or t ≤ 0). We show that, in either case, f(t) is a piecewise linear concave function

with break points corresponding to different choices of the entering variable. The global

maximum of this function is achieved when its slope changes sign. It gives the maximum

improvement in the sum of dual infeasibilities that can be achieved with the selected

outgoing variable by making multiple use of the updated pivot row.

Let the index of the pivot row be denoted by p, the outgoing variable by xBp (≡ xk)

and the index of the incoming variable by q. The pivot element is αpq.

After the basis change, the new values of dj are determined by:

d̄j = dj −
dq

αpq

αpj for j ∈ N, (13)

Maros Dual Phase-1 12 of 28

and for the leaving variable:

d̄k = −
dq

αpq

.

The feasibility status of a dj (described in Table 2) may change as t moves away from

zero. The following analysis uses (6), (9) and (13) to keep track of the changes of the

feasibility status of each dj(t).

I. t ≥ 0, i.e., the outgoing variable leaves at upper bound.

(a) αpj > 0, dj(t) is decreasing

i. dj(0) > 0

A. If dj(0) is infeasible, i.e., j ∈ P , it remains so as long as t <
dj(0)

αpj

and

it becomes infeasible again if t >
dj(0)

αpj

when j joins M .

B. If dj(0) is feasible, dj(t) remains feasible as long as t ≤
dj(0)

αpj

after

which it becomes negative and j joins M .

ii. If dj(0) = 0 it remains feasible only if t =
dj(0)

αpj

= 0. For t > 0 it becomes

infeasible and j joins M .

(b) αpj < 0, dj(t) is increasing

i. If dj(0) < 0, i.e., j ∈ M , dj(t) remains infeasible as long as t <
dj(0)

αpj

. If

type (xj) = 3, it becomes infeasible again when t >
dj(0)

αpj

and j joins P .

ii. If dj(0) = 0 and type(xj) = 3 then it remains feasible only for t =
dj(0)

αpj

=

0; for t > 0 it becomes positive and j joins P .

II. t ≤ 0, i.e., the outgoing variable leaves at zero.

(a) αpj > 0, dj(t) is increasing

i. If dj(0) < 0, i.e., j ∈ M , dj(t) remains infeasible as long as t >
dj(0)

αpj

. If

type(xj) = 3, it becomes infeasible again when t <
dj(0)

αpj

and j joins P .

Maros Dual Phase-1 13 of 28

ii. If dj(0) = 0 and type(xj) = 3 then dj(t) remains feasible only for t =
dj(0)

αpj

= 0; for t < 0 it becomes positive and j joins P .

(b) αpj < 0, dj(t) is decreasing

i. dj(0) > 0

A. If dj(0) is infeasible, i.e., j ∈ P , it remains so as long as t >
dj(0)

αpj

and

it becomes infeasible again if t <
dj(0)

αpj

when j joins M .

B. If dj(0) is feasible, dj(t) remains feasible as long as t ≥
dj(0)

αpj

after

which it becomes negative and j joins M .

ii. If dj(0) = 0 it remains feasible only if t =
dj(0)

αpj

= 0. For t < 0 it becomes

infeasible and j joins M .

The above discussion can be summarized as follows.

1. If t ≥ 0 is required then the dual feasibility status of dj (and set M or P , thus the

composition of f(t)) changes for values of t defined by positions where

dj < 0 and αpj < 0 or

dj ≥ 0 and αpj > 0

2. If t ≤ 0 is required then the critical values are defined by

dj < 0 and αpj > 0 or

dj ≥ 0 and αpj < 0.

The second case can directly be obtained from the first one by using −αpj in place of αpj.

In both cases there is a further possibility. Namely, if type(xj) = 3 (free variable) and

dj 6= 0 then at the critical point the feasibility status of dj changes twice (thus two ratios

are defined). First when it becomes zero (feasible), and second, when it becomes nonzero

again. Both cases define identical values of dj/αpj for t.

Let the critical values defined above for t ≥ 0 be arranged in an ascending order:

0 ≤ t1 ≤ · · · ≤ tQ, where Q denotes the total number of them. For t ≤ 0 we make a

Maros Dual Phase-1 14 of 28

reverse ordering: tQ ≤ · · · ≤ t1 ≤ 0, or equivalently, 0 ≤ −t1 ≤ · · · ≤ −tQ. Now we are

ready to investigate how f(t) characterizes the change of dual infeasibility.

Clearly, Q cannot be zero, i.e., if row p has been selected as a candidate it defines at

least one critical value, see (8). Assuming vp < 0 the initial slope of f(t), according to

(7), is

s0
p = −vp =

∑

j∈P

αpj −
∑

j∈M

αpj. (14)

Now t ≥ 0 is required, so we try to move away from t = 0 in the positive direction. f(t)

keeps improving at the rate of s0
p until t1. At this point dj1(t1) = 0, j1 denoting the

position that defined the smallest ratio t1 =
dj1(0)

αpj1

. At t1 the feasibility status of dj1

changes. Either it becomes feasible at this point or it becomes infeasible after t1.

If t1 ≥ 0 then either (a) dj1 ≥ 0 and αpj1 > 0 or (b) dj1 ≤ 0 and αpj1 < 0. In these

cases:

(a) dj1(t) is decreasing.

(i) If dj1 was feasible it becomes infeasible and j1 joins M . At his point s0
p decreases

by αpj1 , see (14).

(ii) If dj1 was infeasible (j1 ∈ P) it becomes feasible and j1 leaves P . Consequently,

s0
p decreases by αpj1 .

If dj1 = 0 then we only have (i).

(b) dj1(t) is increasing.

(i) If dj1 was feasible it becomes infeasible and j1 joins P . At his point s0
p decreases

by −αpj1 , see (14).

(ii) If dj1 was infeasible (j1 ∈ M) it becomes feasible and j1 leaves M . Conse-

quently, s0
p decreases by −αpj1 .

If dj1 = 0 then we only have (i).

Maros Dual Phase-1 15 of 28

Cases (a) and (b) can be summarized by saying that at t1 the slope of f(t) decreases by

|αpj1| giving s1
p = s0

p − |αpj1|. If s1
p is still positive we carry on with the next point (t2),

and so on. The above analysis is valid at each point. Clearly, f(t) is linear between two

neighboring threshold values. For obvious reasons, these values are called breakpoints.

The distance between two points can be zero if a breakpoint has a multiplicity > 1.

Since the slope decreases at breakpoints f(t) is a piecewise linear concave function as

illustrated in Figure 1. It achieves its maximum when the slope changes sign. This is a

global maximum. After this point the dual objective starts deteriorating.

f(t)

tt1 t2 t3 t4

Figure 1: The sum of dual infeasibilities as a function of t.

If vp > 0 then t ≤ 0 is required. In this case the above analysis remains valid if αpj is

substituted by −αpj. It is easy to see that both cases are covered if we take s0
p = |vp| and

sk
p = sk−1

p − |αpjk
|, for k = 1, . . . , Q.

Maros Dual Phase-1 16 of 28

3.2 A dual phase-1 step

Let t0 = 0 and fk = f(tk). Obviously, the sum of dual infeasibilities in the breakpoints

can be computed recursively as fk = fk−1 + sk−1
p (tk − tk−1), for k = 1, . . . , Q.

Below, we give the description of one iteration of the algorithm which we call GDPO

(for Generalized Dual Phase One).

An iteration of the Generalized Dual Phase-1 (GDPO) algorithm:

1. Identify sets P and M as defined in (3) and (4). If both are empty, perform feasibility

correction. After that the solution is dual feasible, algorithm terminates.

2. Form auxiliary vector ã =
∑

j∈M

aj −
∑

j∈P

aj.

3. Compute the vector of dual phase-1 reduced costs: v = B−1ã, as in (12).

4. Select an improving candidate row according to some rule (e.g., Dantzig [2] or a

normalized pricing [3, 7]), denote its basic position by p. This will be the pivot row.

If none exists, terminate: The dual problem is infeasible.

5. Compute the p-th row of B−1: βT = eT
p B−1 and determine nonbasic components of

the updated pivot row by αpj = βT aj for j ∈ N .

6. Compute dual ratios for eligible positions according to rules under I., if vp < 0, or

II., if vp > 0, as discussed in section 3.1. Store their absolute values in a sorted

order: 0 ≤ |t1| ≤ · · · ≤ |tQ|.

7. Set k = 0, t0 = 0, f0 = f(0), s0
p = |vp|.

While k < Q and sk
p ≥ 0 do

k := k + 1

jk: the column index of the variable that defined the k-th smallest ratio, |tk|.

Compute fk = fk−1 + sk−1
p (tk − tk−1), sk

p = sk−1
p − |αpjk

|.

end while

Maros Dual Phase-1 17 of 28

Let q denote the index of the last breakpoint for which the slope sk
p was still nonneg-

ative, q = jk. The maximum of f(t) is achieved at this break point. The incoming

variable is xq.

8. Compute αq = B−1aq.

Update basis inverse: B̄−1 = EB−1, E denoting the elementary transformation

matrix created from αq using pivot position p.

Update the basic/nonbasic index sets.

Update solution: Interestingly, in dual phase-1 there is no need to carry the values of

the primal basic variables. They will only be needed in dual phase-2. Therefore the

updating step below can be omitted which slightly speeds up the iterations. How-

ever, for completeness, the updating operations are presented below for cases when

GDPO is used in conjunction with some other methods that require the updated

primal basic variables.

Update xB by x̄B = ExB, and set x̄Bp = xq + θP , where θP = xBp/αpq if vp > 0 or

θP = (xBp − uBp)/αpq if vp < 0.

3.2.1 Correctness of the algorithm

It remains to see that GDPO is a correct algorithm.

First, as the dual objective function defined in (5) has an upper bound of 0, the

solution is never unbounded.

Second, maximizing f subject to the dual feasibility constraints is a convex problem.

It entails that if there is no locally improving direction from a point with respect to the

current objective function (sum of infeasibilities) then the same is true globally. Therefore,

if no improving row can be found and the dual solution is still infeasible then the problem

is dual infeasible.

Third, if there is always a positive step towards feasibility no basis can be repeated as

different bases have different infeasibility values which ensures finiteness. If degeneracy

Maros Dual Phase-1 18 of 28

is present and GDPO can make only a degenerate step then the theoretically safe (and

computationally efficient) ‘ad hoc’ method by Wolfe [14] can be used as long as necessary.

3.2.2 Work per iteration

The bulk of the computational effort of an iteration of the dual is spent in the following

operations.

Computing the elements of the updated pivot row (Step 5 of GDPO) requires the

extraction of row p of B−1 which is achieved by solving BT β = ep for β.

The updated form of the incoming column (part of Step 8 of GDPO) requires the

solution of Bαq = aq for αq.

It is easy to see that the extra work in the pivot step required by GDPO is generally

small.

1. Ratio test: same work as with traditional dual.

2. The break points of the piecewise linear dual objective function have to be stored

and sorted. This requires extra memory for the storage, and extra work to sort.

However, the tk values have to be sorted only up to the point where f(t) reaches its

maximum. Therefore, if an appropriate priority queue is set up for these values the

extra work can be kept at minimum.

The dual phase-1 reduced costs can be calculated from (12) which means Bv = ã has

to be solved for v, i.e., a further solution of a system of equations with B is required. This

computational effort can be reduced in case of the traditional (‘first break point’) method

if no more than one dual logical changes its feasibility status (several can change if the

minimum ratio is not unique). In this case the corresponding variable can be chosen to

enter the basis (thus its αq becomes available) and q leaves either M or P . From (12) it

follows that v can be updated in the former case as

v̄ = E

∑

j∈M\{q}

αj −
∑

j∈P

αj

 = E(v − αq) (15)

Maros Dual Phase-1 19 of 28

and in the latter case as

v̄ = E

∑

j∈M

αj −
∑

j∈P\{q}

αj

 = E(v + αq). (16)

If there is no change in sets M and P then v̄ = Ev.

Equations (15) and (16) suggest how v can be updated if GDPO is used. Namely, the

change of the feasibility status of the dual logicals must be recorded (both sets can shrink

or expand). The corresponding columns define composite vector ã′ and

α′ = B−1ã′ (17)

in a similar way as in (12). Finally, the updated v is obtained as

v̄ = E(v − α′). (18)

If there are not too many changes in the feasibility status then ã′ can be a rather sparse

vector. Therefore, updating v using (17) and (18) can be computationally cheaper than

recomputing v from its definition in (12).

3.2.3 Coping with degeneracy

In case of dual degeneracy, we have dj = 0 for one or more nonbasic variables. If these

positions take part in the ratio test they define 0 ratios. This leads to a (multiple) break

point at t = 0. Choosing one of them results in a non-improving iteration. Assume the

multiplicity of 0 is ℓ, i.e.,

0 = |t1| = · · · = |tℓ| < |tℓ+1| ≤ · · · ≤ |tQ|. (19)

Denote the corresponding coefficients in the updated pivot row by αj1 , . . . , αjℓ
, . . . , αjQ

(omitting the subscript p, for simplicity). The maximizing break point is defined by

subscript k such that sk > 0 and sk+1 ≤ 0, i.e.,

sk = s0 −
k
∑

i=1

|αji
| > 0 and sk+1 = s0 −

k+1
∑

i=1

|αji
| ≤ 0.

Maros Dual Phase-1 20 of 28

If for this k relation k > ℓ holds then, by (19), we have |tk| > 0. Hence, despite the

presence of degeneracy, a positive step can be made towards dual feasibility. If k ≤ ℓ then

the step will be degenerate.

3.2.4 Implementation

For the efficient implementation of GDPO a sophisticated data structure (priority queue)

is needed to store and (partially) sort the break points. Additionally, since row and

column operations are performed on A, it is important to have a data structure that

supports efficient row and columnwise access of A.

3.2.5 An example of the algorithmic step

We demonstrate the operation of GDPO on the following example. It is assumed that the

pivot row p has been selected based on vp and the updated pivot row has been determined.

The types of the variables and the dj values are given.

The problem has 8 nonbasic variables. Now vp = 10 which is the t ≤ 0 case. The sum

of dual infeasibilities is f = −35. The solution is dual degenerate.

j 1 2 3 4 5 6 7 8

type(xj) 3 3 3 2 2 2 2 2

Status

αpj 8 4 1 4 2 −1 −1 1 vp = 10

dj −24 2 0 −8 −1 1 0 0 f = −35

Infeasibility M P M M

Ratio −3 0 −2 −0.5 −1 0

2nd ratio −3

Altogether, 7 ratios have been defined, Q = 7. Note, for the first position there are two

Maros Dual Phase-1 21 of 28

identical ratios. After sorting the absolute values of the ratios we obtain:

Index 1 2 3 4 5 6 7

jk 7 3 5 6 4 1 1

|tjk
| 0 0 0.5 1 2 3 3

αpjk
−1 1 2 1 4 8 8

Now, we can apply Step 7 of GDPO:

k jk |tk| αpjk
fk = fk−1 + sk−1

p (tk − tk−1) sk
p = sk−1

p − |αpjk
|

0 0 −35 10

1 7 0 −1 −35 10 − | − 1| = 9

2 3 0 1 −35 9 − |1| = 8

3 5 0.5 2 −35 + 8 × (0.5 − 0) = −31 8 − |2| = 6

4 6 1 1 −31 + 6 × (1 − 0.5) = −28 6 − |1| = 5

5 4 2 4 −28 + 5 × (2 − 1) = −23 5 − |4| = 1

6 1 3 8 −23 + 1 × (3 − 2) = −22 1 − |8| = −7

We have used 6 of the 7 breakpoints. At termination of this step of GDPO k = 6,

therefore, the entering variable is x1 that has defined t6. The dual steplength is −3 (= t6).

Traditional methods would have stopped at the first breakpoint resulting in a degenerate

iteration.

3.2.6 Key features of GDPO

The main computational advantage of the introduced GDPO algorithm is that it can make

multiple steps with one updated pivot row. These steps correspond to several traditional

iterations. A multiple step of GDPO requires very little extra work.

GDPO is a generalization of the traditional dual simplex algorithm in the sense that

the latter stops at the smallest ratio (first break point) while GDPO can pass many break

points making the maximum progress towards dual feasibility with the selected outgoing

variable. Its efficiency of is not hampered by the presence of all types of variables.

Maros Dual Phase-1 22 of 28

GDPO possesses a potentially favorable anti-degeneracy property as shown in section

3.2.3.

The freedom of multiple choice created by the break points can be used to enhance the

numerical stability of GDPO. Namely, if |αpjq
| of the optimal breakpoint is too small and

q > 1 we can take one of the previous breakpoints with sufficiently large pivot element.

GDPO works within the framework of the simplex method. It approaches a dual

feasible solution (if one exists) by basis changes. It is a sort of a greedy algorithm. This

is a locally best strategy. There is no guarantee that, ultimately, it will lead to a faster

termination of phase-1 than other methods. As GDPO has some remarkable properties

it is worth testing its actual performance on real world problems. In section 4 we report

a limited computational experiment and comment the findings.

4 Computational experience

To get an idea how GDPO performs on real world problems we have performed a com-

putational testing with an experimental implementation of the algorithm. As type-2 and

type-3 variables are the ‘difficult’ ones we have chosen problems where the majority of

the variables fall into these categories.

The first ten of the test problems were taken from the netlib/lpdata [5] set while

the remaining three from other sources. The problem statistics are shown in Table 3.

Maros Dual Phase-1 23 of 28

Table 3: Statistics of problems included in computational testing of GDPO.

Number of variables by type

Problem Rows Columns Nonzeros Type-0 Type-1 Type-2 Type-3

25fv47 822 1571 11127 0 0 1571 0

bnl2 2325 3489 16124 0 0 3489 0

boeing1 351 384 3865 0 228 156 0

cycle 1903 2857 21322 0 77 2773 7

degen3 1504 1818 26230 0 0 1818 0

maros 847 1443 10006 35 0 1408 0

perold 626 1376 6026 64 266 958 88

pilot we 723 2789 9218 78 294 2337 80

stair 357 467 3857 82 6 373 6

stocfor3 16676 15695 74004 0 0 15695 0

rentacar 6804 9557 42019 650 179 8728 0

scrs 3 16546 17420 71401 0 0 17420 0

unimin 5422 45569 168220 2 1449 44118 0

4.1 Test results

In the tests we first compared the performance of GDPO with the case when the first

break point is taken. The number of iterations in dual phase-1 are shown in Table 4.

The tests were carried out with the following settings: no presolve, starting from the

all logical basis and using the dual Dantzig pricing for determining the outgoing variable.

The phase-1 reduced costs were recomputed in each iteration from the definition in (12).

Next, we investigated the behavior of GDPO with respect to the number of long steps

in terms of the number of break points used per iteration. While the findings are rather

interesting, it is not easy to demonstrate them in full detail. The issue of interest is the

Maros Dual Phase-1 24 of 28

Table 4: The number of dual phase-1 iterations until dual feasibility. Column ‘Dual,

k = 1’ is for the ‘first break point’ method. Solution strategy: no presolve, all logical

basis, Dantzig pricing.

of initial # of Ph-1 itns with

Problem infeasibilities GDPO Dual, k = 1

25fv47 41 238 1033

bnl2 156 53 116

boeing1 164 9 102

cycle 498 128 653

degen3 1249 2096 4389

maros 162 666 799

perold 7 663 587

pilot we 91 580 1065

stair 1 180 152

stocfor3 5077 10260 11848

rentacar 2 1778 1629

scrs 3 4355 12420 15556

unimin 43914 5265 50702

frequency of the number of break points used in the iterations. In Table 5 we present the

length of steps in terms of the number of break points (q) used. The entries of the table

show this frequency. For instance, 156 in the intersection of row of degen3 and column

headed by ‘4’ says that there were 156 iterations when the 4th smallest ratio (4th break

point) was used to determine the incoming variable. As there was a wide variation in

the number of break points (header of the table), from 5 we indicate interval frequencies.

While it makes the results displayable interesting details remain hidden. For instance,

boeing1 used 291 break points in one iteration which is counted in the ‘50+’ column.

Maros Dual Phase-1 25 of 28

Table 5: Length of steps in terms of the number of break points. The entries give the

number of iterations that used the number of break points shown in the header.

Number of break points used Iterations

Problem 1 2 3 4 5–10 11–20 21–50 50+ in phase-1

25fv47 80 76 38 16 24 4 – – 238

bnl2 20 18 4 – 1 10 – – 53

boeing1 1 – – – 5 2 – 1 9

cycle 49 24 11 11 14 8 11 – 128

degen3 15 83 212 156 1005 550 72 3 2096

maros 258 200 97 44 58 8 1 – 666

perold 352 138 60 22 60 18 11 2 663

pilot we 308 105 44 26 79 50 12 6 630

stair 142 34 2 – 1 1 – – 180

stocfor3 3730 3491 1604 761 989 44 1 – 10620

rentacar 1578 132 34 17 14 3 – – 1778

scrs 3 8398 3913 92 17 – – – – 12420

unimin 427 691 273 371 553 2736 214 – 5265

4.2 Discussion

First of all, it has to be noted that the dual may not be the ideal solution algorithm

for the problems in the test. Also, the solution strategy used is very basic. However,

these circumstances are unlikely to alter the tendencies. Therefore, the observed relative

merits/drawbacks of GDPO may be more generally true. Obviously, we can expect a

considerable reduction in the iteration counts if some more sophisticated procedures are

used (presolve, advanced starting basis, steepest edge pricing, etc.).

The presented comparison was made between GDPO and the ‘first breakpoint’ strat-

egy. As the dual reduced costs were recomputed and not updated the time per iteration

Maros Dual Phase-1 26 of 28

was practically identical in the two algorithms. The variations were within the limit of

‘white noise’. Apparently, the difference in the iteration speed due to some extra compu-

tations in the ratio test was not noticeable in the shadow of the organizational overhead

of the iterations.

The results show a relatively wide spread. In three cases (perold, stair, rentacar)

GDPO was slightly worse in terms of the number of iterations. In 6 cases (bnl2, degen3,

maros, pilot we, stocfor3, scrs 3) it was better by a considerable margin. In the

remaining four other cases (25fv47, boeing1, cycle, unimin) GDPO performed signif-

icantly better. boeing1 and unimin are particularly good examples where the potentials

of GDPO materialized very spectacularly.

It is remarkable that GDPO really tends to use more breakpoints (see Table 5). The

unseen advantage of it is a possibly more stable operation. During the test we noticed

that some pivots were rejected by the algorithm and a better sized one was found that

still contributed to the improvement of the phase-1 dual objective function.

5 Summary

We have presented a generalization of the dual phase-1 algorithms that can handle all types

of variables efficiently. It is based on the piecewise linear nature of the defined dual phase-1

objective function. The main advantage is that a number of very cheap iterations can

be made with one updated pivot row. As an additional benefit, GDPO possesses several

favorable features making it a serious candidate for inclusion in optimization software.

We have shown GDPO can be implemented efficiently. Preliminary computational

testing has given encouraging results. However, a more thorough computational study is

required to better understand the benefits and possible weaknesses of GDPO.

As a last point, we indicate that for the selection of the pivot row any of the known

methods can be used, including the Dantzig rule [2], dual Devex [7] or dual steepest

edge [3].

Maros Dual Phase-1 27 of 28

6 Acknowledgements

The author wishes to express his gratitude to two anonymous referees. In particular, one

of them pointed out how the original version of GDPO could be simplified. The current

version of the paper greatly benefited from his/her helpful remarks.

References

[1] Chvátal, V., Linear Programming, Freeman and Co., 1983.

[2] Dantzig, G.B., Linear Programming and Extensions, Princeton University Press,

Princeton, N.J., 1963.

[3] Forrest, J.J., Goldfarb, D., “Steepest edge simplex algorithms for linear program-

ming” Mathematical Programming, 57, 1992, No. 3., p. 341–374.

[4] Fourer, R., “Notes on the Dual Simplex Method”, Unpublished, March, 1994.

[5] Gay, D.M., “Electronic mail distribution of linear programming test problems”,

COAL Newsletter, Mathematical Programming Society, 13, 1985, p. 10–12.

[6] Greenberg, H.J., “Pivot selection tactics”, in Greenberg, H.J. (ed.), Design and Im-

plementation of Optimization Software, Sijthoff and Nordhoff, 1978, p. 109–143.

[7] Harris, P.M.J., “Pivot Selection Method of the Devex LP Code”, Mathematical Pro-

gramming, 5, 1973, p. 1–28.

[8] Lemke, C.E., “The Dual Method of Solving the Linear Programming Problem”,

Naval Research Logistics Quarterly, 1, 1954, p. 36–47.

[9] Maros, I., “A general Phase-I method in linear programming”, European Journal of

Operational Research, 23(1986), p. 64–77.

Maros Dual Phase-1 28 of 28

[10] Maros, I., “A Piecewise Linear Dual Procedure in Mixed Integer Programming”, in F.

Giannesi, R. Schaible, S. Komlosi (eds.), New Trends in Mathematical Programming,

Kluwer Academic Publishers, 1998, pp. 159–170.

[11] Maros, I., Mitra, G., “Simplex Algorithms”, Chapter 1 in Beasley J. (ed.) Advances

in Linear and Integer Programming, Oxford University Press 1996, p. 1–46.

[12] Orchard-Hays, W., Advanced Linear-Programming Computing Techniques, McGraw-

Hill, 1968.

[13] Padberg, M., Linear Optimization and Extensions, Springer, 1995.

[14] Wolfe, Ph., “A technique for resolving degeneracy in linear programming”, SIAM

Journal of Applied Mathematics, 11, 1963, p. 205–211.

[15] Wolfe, Ph., “The composite simplex algorithm”, SIAM Review, 7 (1), 1965, p. 42–54.

