
ARTICLE OPEN

Clinical Studies

Deep learning-based quantification of temporalis muscle has
prognostic value in patients with glioblastoma
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BACKGROUND: Glioblastoma is the commonest malignant brain tumour. Sarcopenia is associated with worse cancer survival, but
manually quantifying muscle on imaging is time-consuming. We present a deep learning-based system for quantification of
temporalis muscle, a surrogate for skeletal muscle mass, and assess its prognostic value in glioblastoma.
METHODS: A neural network for temporalis segmentation was trained with 366 MRI head images from 132 patients from 4
different glioblastoma data sets and used to quantify muscle cross-sectional area (CSA). Association between temporalis CSA and
survival was determined in 96 glioblastoma patients from internal and external data sets.
RESULTS: The model achieved high segmentation accuracy (Dice coefficient 0.893). Median age was 55 and 58 years and 75.6 and
64.7% were males in the in-house and TCGA-GBM data sets, respectively. CSA was an independently significant predictor for
survival in both the in-house and TCGA-GBM data sets (HR 0.464, 95% CI 0.218–0.988, p= 0.046; HR 0.466, 95% CI 0.235–0.925, p=
0.029, respectively).
CONCLUSIONS: Temporalis CSA is a prognostic marker in patients with glioblastoma, rapidly and accurately assessable with deep
learning. We are the first to show that a head/neck muscle-derived sarcopenia metric generated using deep learning is associated
with oncological outcomes and one of the first to show deep learning-based muscle quantification has prognostic value in cancer.
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INTRODUCTION
Glioblastoma multiforme (GBM) is an aggressive brain malignancy
with <5% 5-year survival [1]. Factors including age, performance
status, tumour location, size, molecular and histological character-
istics are known to be prognostic, with performance status
particularly important [2]. However, performance status is
subjectively evaluated, resulting in inaccuracy and high inter-
observer variability, so objectively assessable indicators of frailty/
physical condition such as measures of sarcopenia and skeletal
muscle mass may improve prognostic assessment and treatment
stratification.
Sarcopenia is associated with worse overall (OS) and

progression-free survival (PFS), postoperative outcomes and
chemotherapy toxicity in common cancer types [3–8]. It can be
evaluated on cross-sectional imaging that is routinely performed
on cancer patients. Methods with consensus include measuring
cross-sectional area (CSA) of truncal abdominal musculature at L3
and psoas muscle on computed tomography (CT); these have
been associated with survival in numerous cancers [4, 6, 8].
However, GBM patients routinely undergo magnetic resonance
imaging (MRI) head during follow-up, rather than body CT, so
there is a need for measures of sarcopenia and skeletal muscle

mass derivable from MRI head. The most widely studied is
temporalis muscle width (TMW), which has been identified as a
skeletal muscle mass surrogate [9] and a prognostic factor for OS
and PFS in GBM [10–13] and brain metastases [14, 15]. However,
no studies have investigated temporalis CSA, which is likely to be
a better indicator of muscle mass than width.
Currently, assessment of muscle dimensions on cancer imaging

is by manual measurement or segmentation, which is time
consuming, necessitates trained personnel and is prone to inter-
rater inconsistency, thus limiting application to large data sets and
clinical adoption. Automated muscle segmentation techniques are
required for widespread use.
Automated methods have been developed for muscle segmen-

tation, including thresholding, fuzzy c-means clustering, atlas/
registration-based methods and shape prior modelling. One study
applied range-constrained thresholding and adaptive morpholo-
gical operations to segment temporalis [16], while another used
Markov random field approach and region growing [17]. However,
these have shortcomings: thresholding may fail when neighbour-
ing tissues have similar intensity (as with facial muscles), atlas/
registration-based methods require high computational resources
and substantial time to segment each case and can fail to locate

Received: 7 May 2021 Revised: 25 August 2021 Accepted: 6 October 2021
Published online: 30 November 2021

1Computational Oncology Group, Institute of Global Health Innovation, Imperial College London, London, UK. 2Department of Radiotherapy, Charing Cross Hospital, Imperial
College Healthcare NHS Trust, London, UK. 3John Fulcher Neuro-Oncology Laboratory, Brain Tumour Research Centre, Imperial College London, London, UK. 4Clinical
Experimental Center, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-Sen University, Jiangmen, China. 5Norfolk and Norwich University Hospitals NHS
Foundation Trust, Norwich, UK. 6These authors contributed equally: Ella Mi, Radvile Mauricaite. ✉email: matthew.williams@imperial.ac.uk

www.nature.com/bjc British Journal of Cancer

Published on Behalf of CRUK

1
2
3
4
5
6
7
8
9
0
()
;,:

http://crossmark.crossref.org/dialog/?doi=10.1038/s41416-021-01590-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41416-021-01590-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41416-021-01590-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41416-021-01590-9&domain=pdf
http://orcid.org/0000-0001-7096-0718
http://orcid.org/0000-0001-7096-0718
http://orcid.org/0000-0001-7096-0718
http://orcid.org/0000-0001-7096-0718
http://orcid.org/0000-0001-7096-0718
https://doi.org/10.1038/s41416-021-01590-9
mailto:matthew.williams@imperial.ac.uk
www.nature.com/bjc


complex facial muscle structures with sufficient precision.
Additionally, these methods are often semi-automatic, requiring
prior knowledge, complicated feature selection and error correc-
tion, which make them challenging to build into clinical
workflows.
In recent years, deep learning methods, in particular convolu-

tional neural networks (CNNs), have achieved great success in
medical image segmentation. A number of studies have demon-
strated utility of CNNs in thigh [18, 19], abdominal [20–24], pelvic
[25] and shoulder muscle segmentation [26, 27] for body
composition analysis and sarcopenia assessment in population-
based cohorts and disease conditions. However, work applying
deep learning to muscle segmentation in cancer imaging or
muscle segmentation on head scans is limited. In particular, no
studies have provided or evaluated the use of a scalable, deep
learning-based approach to quantify the temporalis muscle or its
relationship to survival in brain tumour patients.
The aim of this study was to develop and validate a deep

learning system for segmentation and quantification of temporalis
muscle and determine whether muscle area predicts disease
progression and survival in GBM.

METHODS
Data
For training, validation and testing of segmentation performance, we used
three-dimensional (3D) MRI head scans from four different data sets: an in-
house glioblastoma data set (a retrospective cohort of patients with newly
diagnosed GBM presenting between January 2015 and May 2018 to a
tertiary medical centre) (n= 40), TCGA-GBM (n= 31), IVY-GAP (n= 23), and
REMBRANDT (n= 38) (the latter three from The Cancer Imaging Archive
[28]). The methods of this study have been described in part in Mauricaite
et al. [29].
For the survival analysis, MRI head scans were obtained from two data

sets with corresponding clinical data for patients—our in-house glioblas-
toma patient data set (n= 45) and TCGA-GBM (n= 51). Inclusion criteria
were patients with histologically proven GBM and available baseline
preoperative MRI head. The total number of glioblastoma patients in the
in-house data set was 45 but we only used some of these scans as access
to some was obtained after model training.
All scans were T1-weighted MRI sequences acquired with gadolinium

contrast in the axial plane.
For patients in the in-house glioblastoma data set, patients’ age, sex,

MGMT promoter methylation status and dates of diagnosis, death and
progression were collected by LP-S who was blinded to model
development and evaluation and quantification of temporalis CSA on
patient scans. OS and PFS were calculated as time from date of diagnosis
to death and progression, respectively. Both were censored at the date of
last follow-up. For patients in the TCGA-GBM data set, clinical data were
obtained from the TCGA repository. Dates of disease progression were not
available.
In-house data were used in accordance with REC/HRA approval

(reference: 19/LO/1763 IRAS ID: 265404) and conducted in accordance
with this committee’s regulations and the Declaration of Helsinki. Public
data (TCGA-GBM, IVY-GAP, REMBRANDT) was used in accordance with
permissions for those data sets.

In-house MRI scanning
All in-house scans were acquired on a 3 T Siemens scanner (Siemens
Healthineers, Erlangen, Germany), with administration of intravenous
gadolinium contrast. Protocols used were: two-dimensional (2D) fast low
angle shot (FLASH), 3D magnetisation prepared rapid gradient echo
(MPRAGE) and spin echo sequence, with field of view= 158–260mm×
218–260mm, matrix= 176–512 × 256–512 and slice thickness= 1–5mm.

Image preprocessing
MRIcroGL [30] was used to convert images from DICOM to NIfTI. Advanced
Normalisation tools for Python [31] and the Intensity-Normalisation
package [32] were used for bias-field correction and Z-score normalisation.
Resampling of images to 1 × 1 voxel spacing and resizing to 256 × 256
pixels was performed.

Image extraction
MRI head scans were sliced into 2D image sequences. For training and
testing of the neural network, 366 2D axial MRI slices from 132 patient
scans were extracted at levels on the craniocaudal axis between the mid-
orbit and orbital roof.

Manual segmentation
The temporalis muscle was manually segmented on the MRI slices,
creating a binary mask of pixels assigned to either muscle or background
class. Segmentations were performed using ITK-SNAP v3.2 [33] by
consensus of two specially trained readers, RM and EM, an oncology
specialty doctor, who received instruction from a senior neuro-radiologist
AG with 11 years of experience. Segmentation maps were independently
reviewed by MW, a senior neuro-oncologist with 9 years of experience, and
JC, a neuro-oncologist with 5 years of experience. These served as
reference ground truth labels in model training and evaluation. All readers
were blinded to demographic and clinical characteristics of patients.

Training, validation and test data sets
The 366 2D MR slices with corresponding ground truth labels from 132
patients were split into training, validation and test sets: 229 slices (74
patients) for training, 65 slices (27 patients) for validation, and 72 slices (31
patients) were held out for use in a test set to evaluate model
performance. For patients in the validation and test sets, three slices were
taken from their scan if it was from the in-house glioblastoma patient data
set and two slices were taken from their scan if it was from any of the
external data sets (as the in-house data set scans had significantly more
total slices than scans from the external data sets). Hence, in the validation
and test sets, the minimum number of slices per scan was two and the
maximum was three. For patients in the training set, 3–10 slices were taken
from their scan if it was from the in-house glioblastoma patient data set
and 2 slices were taken from their scan if it was from any of the external
data sets. More slices were taken from scans in the in-house glioblastoma
patient data set as they had a larger number of total slices (some had
>500 slices), in order to increase the size of the training set.

CNN model
A deep neural network was trained for temporalis muscle segmentation,
based on Ronneberger et al.’s 2D U-net architecture [34, 35], which takes
MR images and ground truth muscle segmentations and yields predicted
muscle segmentations. U-net is a CNN, with symmetric contracting and
expanding paths. The contracting path consists of series of two 3 × 3
convolutional layers and one 2 × 2 max pooling layer, which downsample
and convert input images into high-dimensional feature maps, enabling
extraction of salient image features. Conversely, the expanding path
consists of 2 × 2 deconvolutional and 3 × 3 convolutional layers, which
upsample and retrieve image resolution from feature maps, enabling exact
pixel-level localisation. The expanding path is followed by a 1 × 1
convolutional layer with sigmoid activation, which outputs the probability
of each pixel being classed as muscle; this is binarised at 0.5 threshold such
that each pixel is allocated to either muscle or background class. The deep
neural network we constructed used 4 downsampling and upsampling
operations and the same padding to convolutional kernels, reducing a
256 × 256 pixel image to a 16 × 16 data representation with 1024 channels.
Regularisation was added with batch normalisation after each convolu-
tional layer and two dropout layers (with dropout rate of 0.5) in order to
reduce overfitting.

CNN training
The U-Net was trained using stochastic gradient descent with Adam
optimiser on a mini batch size of two. Optimal hyperparameters were
selected based on validation loss. Initial learning rates of 0.0001, 0.0005,
0.00075, 0.001 and 0.01 were tested. Training was terminated early if the
validation loss did not improve in three subsequent epochs. The best
performing model was trained for 14 epochs. We implemented our model
using the Tensorflow v1.14.0 [36] and Keras v2.4 [37] libraries in Python
v3.6 [38]. Experiments were run on a NVIDIA GeForce RTX 2080Ti GPU.

Loss functions
We previously compared three main categories of loss function—binary
cross-entropy loss (BCEL) (distribution-based), Dice loss (DL) (region-
based), and Hausdorff loss (HDL) (boundary-based)—in training and
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testing of the U-net model using the in-house glioblastoma data set only.
BCEL and DL can be represented:

Binary cross-entropy loss ¼ � 1
N

XN

i¼1

gi � log pið Þ þ 1� gið Þ � logð1� piÞ

Dice loss ¼ 1� 2
PN

i pi � giPN
i pi þ

PN
i gi

where N is the total number of image pixels and gi and pi are the ith pixel
of the ground truth and predicted segmentations, respectively. We used
the DL implementation of an open-source image segmentation library [39]
and HDL as derived in Ribera et al. [40, 41].

Model evaluation
Following training, the model was evaluated on accuracy and generalisa-
bility on the test set of unseen MR images. Comparison between ground
truth and predicted segmentations were made on metrics of Dice similarity
coefficient (DSC), Jaccard index (JI), precision, recall and Hausdorff distance
(HD) (Supplement A).
CSA of the muscle segmentation was computed using OpenCV [42];

from this, we calculated an additional evaluation metric of CSA error
(Supplement B).

Survival analysis
We analysed the association between temporalis CSA and survival in 96
patients, 45 from our in-house glioblastoma data set and 51 from the
external TCGA-GBM data set. For the in-house data set, to determine CSA, a
single MRI slice was taken from each of the 45 scans at the level of the
superior orbital quarter, defined as equidistant between the orbital roof
and mid-orbit, the level of maximal temporalis CSA. For the TCGA-GBM
data set, a single MRI slice was taken from each of the 51 scans at the level
of the mid-orbit.
The trained CNN model was used to generate predicted segmentations

for both the left and right temporalis muscles on each MRI slice and
temporalis muscle CSAs were computed from these segmentations.
Average CSA for each patient was calculated as the mean of the CSAs of
the two temporalis muscles.
Median temporalis CSA was determined separately for the in-house and

TCGA cohort and used to dichotomise patients in each cohort to ‘low’/
‘high’ CSA groups. The primary outcome was association of OS and PFS
with temporalis CSA.

Statistical methods
Summary statistics for patient characteristics and segmentation metrics are
presented as mean ± SD and frequency (percentage). Paired t tests
compared segmentation metrics obtained with different loss functions.
To validate our model for the intended application of quantification of
muscle as a measure of sarcopenia, similarity between CSA of manual and
automated segmentations were evaluated using Pearson correlation.
We determined association of temporalis CSA and patient characteristics

with Pearson correlation and independent t tests. Kaplan–Meier survival
analysis with log rank test was used to assess differences in OS and PFS by
CSA group. The association between OS/PFS and CSA was tested in
univariate Cox proportional hazard models and, where significance was
found, in multivariate Cox models, controlling for age and sex (MGMT

methylation status was not available for sufficient patients in the in-house
data set so was not used as a covariate). Confidence intervals (CIs) for all
estimates of risk were given as part of sensitivity analysis. Statistical
significance was set at two-tailed p value of <0.05. All analyses were
performed using IBM SPSS v27 [43].

RESULTS
Segmentation results
Table 1 summarises quantitative performance metrics obtained by
comparing muscle segmentations generated by the U-net model
to manually segmented reference standard for alternative loss
functions. The U-net trained with DL had highest performance,
outperforming BCEL and HDL. BCEL achieved comparable
performance to DL, whereas performance differences between
DL and HDL were significant across all metrics. Specifically, mean
DSC was 0.912 for DL, significantly higher by 0.019 (p < 0.0005)
and 0.119 (p < 0.0005) than BCEL and HDL, respectively. HD
achieved by DL was 1.81 ± 0.39 mm, similar to 1.83 ± 0.34 mm
(p= 0.79) for BCEL but a significant improvement over 2.18 ± 0.44
mm (p < 0.0005) for HDL. Hence, for subsequent model training
with a larger data set, we used a U-net model trained with DL.
The final U-net model trained on the full data set of 366 MRI

images from 132 patients segmented temporalis well. Figure 1
shows illustrative segmentation results.
Overall, the model achieved high accuracy in segmenting

temporalis in the test set, with best mean DSC of 0.893 ± 0.045, JI
of 0.809 ± 0.072 and HD of 1.889 ± 0.354mm, indicating high
overlap and close proximity between ground truth and automated
segmentations. Mean precision and recall were similar—0.867 ±
0.077 and 0.926 ± 0.046—suggesting no bias towards over- or
under-segmentation.
There was strong correlation in muscle CSA between manual

and automated segmentation (r= 0.902, p < 0.0005). Average CSA
error was 7.71 ± 12.17%, indicating comparable CSA measurement
performance by the deep learning-based segmentation system
relative to trained humans. A Bland–Altman plot (Fig. 2) shows no
bias towards under- or over-segmentation.
Training on GPU took 10min and the processing time for

temporalis segmentation per novel case was 45 ms, which was
substantially faster than manual segmentation by a human rater,
which required 10min per case.

Patient characteristics
Ninety-six patients were included in the survival analysis: 45 from
the in-house glioblastoma patient data set and 51 from the TCGA-
GBM data set. Subjects were aged 29–78 and 23–76 years, with
median (interquartile range (IQR)) age of 55 (47–63) and 58
(51–66) in the in-house and TCGA-GBM data sets, respectively.
There were 34 males (75.6%) in the in-house data set and 33 males
(64.7%) in the TCGA-GBM data set. MGMT promoter was
methylated in 18 (40.0%) and unmethylated in 19 (42.2%) patients
in the in-house data set; 8 individuals had unknown methylation

Table 1. Segmentation metrics for U-Net models trained with Dice, binary cross-entropy and Hausdorff loss functions on the in-house glioblastoma
MRI data set.

Metric Dice loss Binary cross-entropy loss DL vs BCEL p value Hausdorff loss DL vs HDL p value

DSC 0.9124 ± 0.0310 0.8931 ± 0.0397 <0.0005* 0.7938 ± 0.1326 <0.0005*

JI 0.8404 ± 0.0514 0.8091 ± 0.0623 <0.0005* 0.6730 ± 0.1421 <0.0005*

Precision 0.9253 ± 0.0557 0.9164 ± 0.0714 0.155 0.8571 ± 0.0599 <0.0005*

Recall 0.9033 ± 0.0448 0.8761 ± 0.0494 0.002* 0.7660 ± 0.1751 <0.0005*

HD (mm) 1.8129 ± 0.3895 1.8311 ± 0.3433 0.793 2.1787 ± 0.4393 <0.0005*

All figures are mean ± SD.
DSC Dice coefficient, JI Jaccard index, HD Hausdorff distance, DL Dice loss, BCEL binary cross-entropy loss, HDL Hausdorff loss.
*Significant at p < 0.05.
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status. Average follow-up was 19.2 months in the in-house data
set and 15.2 months in the TCGA-GBM data set. Progression
occurred in 42 (93.3%) individuals and 40 (88.9%) subjects had
died at the time of analysis in the in-house data set, while 49
(96.1%) patients died in the TCGA-GBM data set. Median (IQR) OS
was 18.3 (12.0–24.8) months and PFS was 8.9 (5.9–15.4) months in
the in-house data set. Median OS was 14.5 (6.9–20.1) months in
the TCGA-GBM data set.

CSA and patient characteristics
Mean baseline temporalis CSA was 574 ± 117mm2 in the in-house
glioblastoma patient data set and 605 ± 137mm2 in the TCGA-GBM
data set. Both were normally distributed (Kolmogorov–Smirnov test
p > 0.2 for both). There was no significant relationship between
temporalis CSA and age (r=−0.213, p= 0.16) in the in-house data
set, but there was significant negative correlation between
temporalis CSA and age (r=−0.396, p= 0.004) in the TGCA-GBM
data set; Fig. 3 shows the distributions of CSA with age in the in-
house and TCGA-GBM data sets. Males had significantly higher CSA
than females in both the in-house (607 ± 100 vs 472 ± 109mm2, p <
0.0005) and TCGA-GBM data sets (667 ± 113 vs 492 ± 101mm2, p <
0.0005).

CSA and survival
In the in-house glioblastoma patient data set, median baseline
temporalis CSA was 588mm2, which was used to dichotomise

individuals to ‘low’ or ‘high’ CSA groups (n= 22 and n= 23,
respectively). OS and PFS was significantly longer in patients with
high CSA (median OS 22.4 (16.9–27.4) vs 14.5 (9.7–21.1) months, p
= 0.011; median PFS 14.3 (6.1–21.9) vs 6.4 (5.0–9.6) months, p=
0.002) (Fig. 4a, b). In multivariate Cox models, adjusting for age
and sex, CSA was an independently significant predictor for OS
(hazard ratio (HR) 0.464, 95% CI 0.218–0.988; p= 0.046) and PFS
(HR 0.433, 95% CI 0.218–0.860; p= 0.017) (Table 2). In the TCGA-
GBM data set, median baseline temporalis CSA was 595mm2, with
26 and 25 patients in the ‘low’ and ‘high’ CSA groups, respectively.
OS was significant longer in patients with high CSA (15.4 (8.9–22.8)
vs 12.9 (4.1–15.6) months, p= 0.033) (Fig. 4c). Multivariate Cox
models for death for high CSA (vs low) yielded HR of 0.466 (95% CI
0.235–0.925; p= 0.029) so CSA was independently significant for
OS (Table 2). Age was also an independent prognostic factor in
both data sets.

DISCUSSION
We have developed and validated a novel deep learning-based
system for rapid and accurate temporalis muscle segmentation
and quantification, with performance equivalent to but much
quicker than trained humans. We show that temporalis muscle
area is an independently significant prognostic marker for survival
in GBM, corroborating previous evidence on TMW. To the best of
our knowledge, this is the first study to demonstrate an
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Fig. 1 Automated temporalis segmentations. Three representative test set MRI head images (T1 weighted+ GAD contrast) with overlay of
predicted temporalis muscle segmentations by the neural network.
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association between a head/neck muscle-derived sarcopenia
metric and clinical outcomes in cancer using deep learning. This
is also one of the few studies, thus far, to combine both muscle
segmentation and quantification using deep learning and show
that such an automatically generated sarcopenia metric is
significantly associated with oncological outcomes, supporting
the possibility of a scalable approach to sarcopenia assessment on
routine imaging in cancer.

Our technique produced generally better segmentation than
previous approaches for the same muscle: previous models
achieved DSC of 0.86 for masticatory muscles [44], 0.826 and
0.788 for masseter and temporalis [17] and 0.902 for temporalis
[16], compared to DSC of 0.893 in this study. Our DSC is also
comparable to previous models for segmentation of other
muscles, for example, abdominal (DSC 0.90–0.97) [20–24], thigh
(DSC 0.90–0.97) [18, 19] and shoulder (DSC 0.71–0.88) [26, 27]; our
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precision and recall of 0.867 and 0.926 is comparable to 0.93 and
0.91 for abdominal muscle [20]; and our HD of 1.889 mm is better
than an existing model for masticatory muscles (8.2 mm) [44] as
well as those for thigh (2.3–8.2 mm) [18] and lumbar abdominal
(4.6–7.9 mm) muscles [22]. Thus, our model performed well,
notwithstanding known challenges with facial muscles, e.g.
homogeneous intensity to surrounding structures, shape com-
plexity and significant anatomic variability. We found U-net
trained using DL performed best, in keeping with DL being
identified as superior for pelvic floor muscle segmentation [25].
There was a significant negative correlation between temporalis

CSA and age in the TCGA-GBM data set but not in the in-house
glioblastoma patient data set (although the trend was present so
this difference between the two data sets may not be clinically
significant). The former finding of a significant relationship is in
line with general consensus of a negative correlation between
muscle mass and age [45]. The latter finding of no significant
relationship is similar to previous TMW studies [10–12, 14, 15]. It
could be explained by disparity between chronological and
biological age, the latter being more defined by frailty and
physical condition. Thus, temporalis CSA may provide information
not captured by age. We identified males to have significantly
higher temporalis CSA than females, consistent with a study of
lumbar abdominal muscle CSA [22], lending support to its use as a
surrogate for skeletal muscle mass.
We found higher temporalis CSA was associated with sig-

nificantly longer survival and time to progression in GBM with HR
of 0.464 and 0.466, and HR of 0.433, consistent with studies of
TMW reporting HRs of 0.41–0.79 for OS and 0.46–0.77 for PFS [10–
13]. Sarcopenia is a key feature of cancer-related cachexia. The
mechanism linking lower temporalis CSA to worse survival
outcomes likely reflects physical inactivity, nutritional deficiency
and glioblastoma-related catabolic, paraneoplastic and inflamma-
tory processes. Additionally, sarcopenic patients may tolerate
surgery/chemoradiotherapy poorly, leading to toxicity or early
discontinuation of therapy, and thus accelerated progression and
death. Our results are in line with recently published studies this
year, which show that muscle CSA at the L3 vertebral level on CT
imaging, as assessed by a CNN, was significantly associated with
survival in advanced cancer, and that greater muscle loss, as
assessed by an AI-based volumetric technique, was a poor
prognostic factor for OS [46, 47].

Implications for clinical practice
Our deep learning-based muscle segmentation and quantification
tool has potential utility in bettering prognostic estimates in GBM
and personalised treatment decisions, e.g. stratification to shorter,
hypo-fractionated radiotherapy or temozolomide monotherapy,
for which there is evidence of better outcomes in frail patients
[48–50]. Our work suggests the possibility of using deep learning-
based screening of sarcopenia in cancer care, without additional
scanning time, cost or radiation exposure; this could inform
muscle preservation interventions, such as nutrition, physiother-
apy and pharmacotherapy [51–53]. Our tool is time and memory
efficient, is applicable to large data sets and real-time assessment
without specialist hardware and thus can feasibly be deployed in a
routine clinical workflow.

Study limitations
This is a retrospective study and we had a limited data set.
However, our training, validation and test data sets included MRI
scans from four different data sets, three of which are external,
and MR images at multiple orbital levels, heterogeneous in field of
view and pixel resolution, acquired with machines from different
manufacturers using different protocols; our model’s robust
performance indicates generalisability. In the survival analysis,
we included patients from both our own institution and an
external validation data set. However, given the limited number of
patients, one can interpret the survival analysis as exploratory. The
segmentation system was trained for 2D rather than 3D
segmentation, common in muscle quantification due to the
difficulty of creating good quality manual 3D segmentations,
making 3D models more prone to error and reliant on post-
processing manual correction. 3D model training and application
is also substantially slower with greatly increased computational
memory cost, and it is unclear whether 3D temporalis segmenta-
tion would be of additional prognostic value. To ameliorate any
potential loss of information with 2D segmentation (compared to
3D), we explored the relationship between temporalis muscle area
at different orbital levels with survival, similar to previous studies
that used the same anatomical landmarks [12]; the existence of a
significant relationship at multiple orbital levels indicates gen-
eralisability. Our reason for exploring the robustness of the
relationship at different orbital levels was also to facilitate our
further work to develop a fully automated pipeline for temporalis

Table 2. Hazard ratios for overall and progression-free survival by temporalis muscle area group for in-house glioblastoma patient and TCGA-GBM
data sets.

Patients Univariate Multivariate

HR (95% CI) p value HR (95% CI) p value

In-house glioblastoma patient data set—OS

CSA 0.444 (0.233–0.845) 0.013* 0.464 (0.218–0.988) 0.046*

Age NA NA 1.036 (1.002–1.070) 0.036*

Sex NA NA 1.430 (0.622–3.287) 0.399

In-house glioblastoma patient data set—PFS

CSA 0.367 (0.190–0.707) 0.003* 0.433 (0.218–0.860) 0.017*

Age NA NA 1.028 (0.998–1.059) 0.067

Sex NA NA 0.938 (0.436–2.014) 0.869

TCGA-GBM data set—OS

CSA 0.536 (0.299–0.961) 0.036* 0.466 (0.235–0.925) 0.029*

Age NA NA 1.029 (1.004–1.056) 0.025*

Sex NA NA 1.887 (0.918–3.880) 0.084

All figures are HR (95% CI).
OS overall survival, PFS progression-free survival, HR hazard ratio, CSA cross-sectional area, NA not applicable.
*Significant at p < 0.05.

E. Mi et al.

201

British Journal of Cancer (2022) 126:196 – 203



segmentation with automatic slice selection based on orbital
landmarks. However, we recognise that using different landmarks
in the two data sets in survival analysis introduces a degree of
inconsistency in our current methods and means we cannot
directly combine the results of the two data sets; a future pipeline
will automatically select slices based on a consistent landmark.

CONCLUSION
Our findings highlight temporalis muscle area as a non-invasive
digital prognostic biomarker that can be automatically, rapidly and
accurately assessed using deep learning, with feasible integration
into routine clinical care. Our tool in its current form is semi-
automated as it requires manual slice selection; however, we are
currently developing a fully automated pipeline for temporalis
segmentation including automatic slice selection using orbital
landmarks. Future work will also involve prospective studies on
larger cohorts.
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