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A. EczemaPred models

We use the following notations in this document.

• y(k)(t) is the score of interest of the k-th patient at time t. k is dropped for models not taking
the patient-dependence into account.

• M is the maximum value that y can theoretically take, i.e. y ∈ [0,M ].
• y ∼ N (µ, σ2) denotes that y is normally distributed with mean µ and variance σ2.
• y ∼ N+(0, σ2) denotes that y follows a half-normal distribution (normal distribution defined
for positive values) of variance σ2.

• y ∼ logN (µ, σ2) denotes that y is log-normal distributed, i.e. log(y) ∼ N (µ, σ2).
• y ∼ logitN (µ, σ2) denotes that y is logit normal distributed, i.e. logit(y) ∼ N (µ, σ2).

A.1. Extent models: Binomial Markov chain

Theextentmodel assumes thatwe can subdivide the body area into 100 patches, eachwith a probabil-
ity, p(y = 1) = p, of being classified as lesional, and that each patch has fixed transition probabilities
between lesional and non-lesional states. The measurement is specified as a binomial distribution
to count the number of lesional patches to produce the extent score, A ∼ B(100, p).

A.1.1. Two-state Markov chain models for latent dynamics

We model the transition from non-lesional to lesional or from lesional to nonlesional for any given
patch of the skin with a two-state Markov chain characterised by the transition matrix,

T =

(
p00 p01
p10 p11

)
=

(
1− p01 p01
p10 1− p10

)
, (1)

where

• p10 is the transition probability from lesional to non-lesional states, i.e. the probability that a
lesional patch is classified as non-lesional at the next step,

1 of 19



• p11 = 1 − p10 is the probability that a lesional patch stays lesional and can be interpreted as
a measure of eczema persistence, and

• p01 is the transition probability from non-lesional to lesional states, i.e. the probability that a
non-lesional patch is classified as lesional at the next step, and can be interpreted as a measure
of eczema sensitivity to develop symptoms.

The probability, p(t), of a given patch being lesional is computed by

p(t+ 1) = p11 p(t) + p01
(
1− p(t)

)
. (2)

The state of a skin patch at time t is denoted by xt =
(
1 0

)
if it is non-lesional and xt =

(
0 1

)
if it is lesional. The predictions of the state at time t+ h is given by xt+h = xtT

h with

T h =

(
1− π π

1− π π

)
+ λh

(
π −π

−(1− π) 1− π

)
, (3)

where λ = 1 − p01 − p10 is one of the eigenvalues of T (the other one is 1) and π = p01
p01+p10

characterises the steady state (limiting) distribution, x∞ =
(
1− π π

)
, to which the Markov chain

converges if the prediction horizon, h, is long enough. The value of λ indicates the mobility of the
Markov chain, i.e. how fast it converges to the steady state distribution, with |λ| → 0 indicating
faster convergence.

We assume that the probabilities, p01 and p10, are patient-dependent and that either one or both
probabilities are time-dependent, given that the Markov chain converges to the steady state distri-
bution, π = p01

p01+p10
, which is likely to evolve over a long enough time. We further assume that p10

(= 1−p11, where p11 is a measure of eczema persistence) does not exhibit a strong time-dependence
and that p01 (a measure of eczema sensitivity to develop symptoms) dynamically changes due to en-
dogenous and exogenous factors such as the skin barrier integrity and environmental stressors,
respectively. We therefore parametrise the Markov chain by a time (t)- and patient (k)-dependent
π(k)(t) and a patient-dependent p(k)10 , from which we can derive

p
(k)
01 (t) = p

(k)
10

π(k)(t)

1− π(k)(t)
.
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A.1.2. Priors of binomial Markov chain model

The evolution of the extent, A(k)(t), for the k-th patient at time t is modelled with a binomial mea-
surement model and latent Markov Chain model described above1:

A(k)(t) ∼ B(100, p(k)(t)), (4)

p(k)(t+ 1) = p
(k)
11 p(k)(t) + p

(k)
01 (t)

(
1− p(k)(t)

)
, (5)

p
(k)
11 = 1− p

(k)
10 , (6)

p
(k)
01 (t) = p

(k)
10

π(k)(t)

1− π(k)(t)
, (7)

π(k)(t) =
π̃(k)(t)

1 + p
(k)
10

, (8)

logit
(
π̃(k)(t+ 1)

)
∼ N

(
logit

(
π̃(k)(t)

)
, σ2

)
, (9)

with the priors,

σ ∼ N+
(
0,
(
0.25 log(5)

)2)
, (10)

p
(k)
10 ∼ logitN (µ10, σ

2
10), (11)

π̃(k)(t0) ∼ logitN (−1, 1), (12)
µ10 ∼ N (0, 1), (13)
σ10 ∼ N+(0, 1.52). (14)

The priors are chosen to be weakly informative and translate to reasonable prior predictive dis-
tributions.

• The prior on σ translates to an odd ratio increment for π of at most 5. That is, π(t) = 0.1

(OR(t) = 1/9) evolves up to π(t + 1) = 0.36 (OR(t + 1) = 5OR(t) ≈ 0.56), which could be
considered as an unusually important change.

• The prior for the initial condition, π̃k(t0), at t0 of the first data point is set to be slightly skewed
toward 0, as high values of A are very unlikely.

• The priors on µ10 and σ10 translate to an approximately uniform prior on p
(k)
10 .

A.2. Intensity signs models: Ordered logistic random walk

We assume that measurements of the intensity signs are generated from an ordered logistic distri-
bution, which is appropriate to describe ordinal random variables with only a few categories. An
ordered logistic distribution is a logistic distribution with a location parameter (latent score), y(k)lat (t),

1The model equations include π̃(k)(t) since the upper bound of π(k)(t) conditioned on p
(k)
10 is 1

1+p
(k)
10

, where p01 is
between 0 and 1.
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that is integrated betweenM cut-offs, c (c0 = 02 < c1 < ... < cM−1),

y(k)(t) ∼ OrderedLogistic
(
y
(k)
lat (t), c)

⇐⇒ P
(
y(k)(t) = i

)
=


1− logit−1

(
y
(k)
lat (t)− c0

)
if i = 0,

logit−1
(
y
(k)
lat (t)− ci−1

)
− logit−1

(
y
(k)
lat (t)− ci

)
for 0 < i < M − 1,

logit−1
(
y
(k)
lat (t)− cM−1

)
if i = M.

(15)

The scale ylat depends on c, and is approximately cM−1 − c0 = cM−1, so we choose to express
priors and the latent dynamic with ỹ

(k)
lat (t) = y

(k)
lat (t) ∗ cM−1, a normalised version of ylat.

We assume that ỹ(k)lat (t) follows a Gaussian random walk of variance σ2,

ỹ
(k)
lat (t+ 1) ∼ N

(
ỹ
(k)
lat (t), σ

2
)
. (16)

and use the priors:

δ ∼ N+
(
0, (2π/

√
3)2

)
, (17)

ỹ
(k)
lat (t0) ∼ N (µ0, σ

2
0), (18)

µ0 ∼ N
(
0.5, 0.252

)
, (19)

σ0 ∼ N+
(
0, 0.1252

)
, (20)

σ ∼ N+
(
0, 0.12

)
, (21)

where δ are the differences between consecutive cutpoints, i.e. δi = ci+1 − ci for i ∈ [0,M − 1].

The priors are chosen to be weakly informative and translate to reasonable prior predictive dis-
tributions.

• The prior on δ translates to values less than the width of the standard logistic distribution3,
allowing the possibility of P

(
y(k)(t) = i) ≈ 1.

• The priors on µ0 and σ0 translate to an approximately uniform prior for the initial latent score,
y
(k)
lat (t0) within the range of ylat.

• The prior on σ assumes it is possible to go from a state where y = 0 is the most likely outcome,
to a state where y = M is the mostly likely outcome, in two transitions.

2We set c0 = 0 without loss of generality since the ordered logistic distribution model is invariant by translation
(adding λ to ylat and c does not change the distribution).

3The standard deviation of the standard logistic distribution is π/
√
3
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A.3. Subjective symptoms models: Binomial random walk

The latent score, y(k)lat (t), for subjective symptoms (discrete variables with a large number categories)
is assumed to follow a random walk on the logit scale, and the measurement is modelled by a bino-
mial distribution whose success parameter, p, is allowed to vary with time,

y(k)(t) ∼ B(M, p(k)(t)), (22)

logit
(
p(k)(t+ 1)

)
∼ N

(
logit

(
p(k)(t)

)
, σ2

)
, (23)

with the priors,

σ ∼ N+
(
0,
(
0.25 log(5)

)2)
, (24)

p(k)(t0) ∼ logitN (µ0, σ
2
0), (25)

µ0 ∼ N (0, 1), (26)
σ0 ∼ N+(0, 1.52). (27)

The priors are chosen to be weakly informative and translate to reasonable prior predictive dis-
tributions.

• The prior on σ translates to an odd ratio increment for p of at most 5. For instance, if p(t) = 0.1

(OR(t) = 1/9 ≈ 0.11), then the prior assumes it is unusual, but not impossible, that the next
value is p(t+ 1) = 0.36 (OR(t+ 1) = 5OR(t) = 5/9 ≈ 0.56).

• The priors on µ0 and σ0 have a reasonable range and translate to a marginal prior for p(k)(t0)
that is approximately uniform.
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B. Performance metrics

This study used probabilisticmodels whose prediction is a distribution. Severity items are considered
to be discrete and their predictions are described by probability mass functions, while PO-(o)SCO-
RAD is treated as a continuous variable4 and its predictions are described by probability density
functions.

Let p(y|θ) denote the predictive distribution of a score, y, given the parameters, θ. The expected
predictive distribution, marginalised over the posterior distribution, ppost(θ), is

p(y) =

∫
p(y|θ)ppost(θ)dθ. (28)

B.1. Log predictive density (lpd)

We compute the logarithmic scoring rule, aka the log predictive density, of a single data-point, yn,
as

lpd(yn) = log p(yn). (29)

The lpd’s of single data-points are then averaged to produce the lpd for a set of predictions. The lpd
is defined between −∞ and∞ (between −∞ and 0 when using probability mass functions) where
a larger lpd indicates a better model.

B.2. Accuracy

We also compute an accuracy metric to facilitate the interpretation of the performance of PO-
(o)SCORAD predictions. Since the accuracy is not a proper scoring rule, it is used only for model
interpretation but not for model selection.

We define the accuracy,Accdn, for a single data-point, yn, and a fixed threshold, d, by the probability
that the absolute error |εn| = |ŷn − yn| is less than d, where ŷn denotes the random variable whose
distribution is the predictive distribution with density p(y),

Accdn = P (|ŷn − yn| < d)

=

∫ yn+d

yn−d

p(y)dy.
(30)

Here, the threshold d represents a maximum acceptable error, and should ideally be a Minimal Im-
portant Difference (MID) or a Minimal Detectable Change (MDC). In this study, we arbitrarily chose
d = 5, which is smaller than published estimates of the MID of 8.7 for SCORAD and 8.2 for oS-
CORAD [1]. We preferred to take a smaller values than the published estimates of MID, especially
because the uncertainty around these estimates were not reported in [1].
4Otherwise, PO-SOCRAD is a discrete ordinal variables with 1031 categories
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The accuracy of single data-points are then averaged to produce the accuracy for a set of predic-
tions. The accuracy is defined in [0, 1]. However, it should be noted that the maximum accuracy
could be less than 100% if d < MDC . Conversely, if a 100% accuracy is achieved for a certain value,
d̂, it suggests that MDC ≤ d̂.

B.3. Learning curves

We obtained a learning curve by averaging the lpd (resp. the accuracy) at each training/testing
iteration. The average is taken over all predictions in the test set. This average is mostly equivalent to
the average of the predictions across patients. However, the population of patients that we averaged
across is not always the same for different training iterations due to missing observations. For
instance, it is possible that we average across patients 1 and 2 to compute the lpd at the i-th iteration
and across patients 1 and 3 at the (i + 1)-th iteration. This could cause an issue if the model is
consistently better at predicting the patient 2 than the patients 1 and 3, as the performance at the i-th
iteration could be higher than that at the (i+1)-th iteration even though the model is learning from
the i-th to the i+1-th iterations. This phenomenon is known as Simpson’s paradox which happens
because we fail to consider the patient IDs as a confounding factor [2]. Another confounding factor
is the horizon of predictions, which may differ on average from one iteration to the next.

To address this potential issues, we proposed a meta-model to estimate the mean lpd (resp. the
mean accuracy) of the test dataset. We fitted a model to explain the lpd as a function of the number
of observations in the training set, the prediction horizon and the patient IDs and use the mean fit as
the lpd (resp. accuracy) estimate. We used a Generative Additive Model (GAM) with cubic splines,

lpd ∼ s
(
N(i)

)
+ t+ (1 | Patient), (31)

to achieve a flexible fit to the evolution of the lpd while avoiding overfitting. In (31),

• s
(
N(i)

)
corresponds to a cubic spline on the number of observations, N(i), in the training

set at the i-th iteration. N(i) is proportional to i except for late iterations, where a significant
fraction of patients have dropped out of the study.

• A cubic spline on x, s(x), can be written as β1b1(x) + β2b2(x) + ..., a linear combination of
piecewise cubic polynomial basis functions of x, bj(x), and coefficients βj .

• t corresponds to the prediction horizon. For simplicity, we assume that the decrease in per-
formance is linear and does not interact with i.

• (1 | Patient) represents a mixed effect on the intercept for different patients.

The model was fitted using the gamm4 package in R.
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C. Reference models

C.1. Uniform forecast models

A uniform forecast assumes that observations follow a discrete/continuous uniform distribution,
y(t+ 1) ∼ U(0,M). It means P

(
y(t+ 1) = i

)
= 1

M+1
for all i ∈ [0,M ] for discrete variables.

C.2. Historical forecast models

A historical forecast model makes heuristic forecasts based on the prevalence of past observations.
For instance, if 10% of observations in the training set are 0, then P

(
y(t + 1) = 0

)
= 0.1 for the

discrete case. For the continuous case, it is not possible to compute a probability table from past
observations. Therefore, the lpd was computed using kernel density estimate and the accuracy is
computed as if the training set was Monte Carlo samples.

It is worth noting that a historical forecast model may require a lot of data before having stable
estimates, especially if the number of categories (in the discrete case) is large. As a result, the
historical forecast model is patient-independent, as a patient’s time-series are too short to estimate
a patient-dependent historical forecast accurately.

C.3. Random walk models

A random walk model provides a flat forecast, i.e. a forecast centered on the last observation with
the uncertainty quantified by a variance parameter σ2, and is described by

y(t+ 1) ∼ N
(
y(t), σ2

)
, (32)

with the prior for the variance σ2 defined by

σ ∼ N+
(
0, (0.1M)2

)
. (33)

The scale of the prior was set to be 10% of the range, M , of the score. That is, we expect σ to be
approximately at most 0.2M , which further translates in a width of the 95% prediction interval to
be 0.8M (i.e. almost the range of the score, considering the approximations).

The random walk model was trained in a semi-supervised setting where missing values were
treated as parameters to be inferred by the model. The model is considered to be “naive” in the
sense it uses a non-truncated distribution and implicitly treats y as continuous (since the Gaussian
is defined for continuous variables) and thus performs similarly to standard off-the-shelf implemen-
tations. However, the predictive distributions are truncated for proper evaluation, so that the pre-
dictive distribution integrates to one over the support of the score. In the case of discrete variables,
predictions were also discretised (rounded to the nearest integer).
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C.4. Markov chain models

When the number of discrete categories is small (e.g. for intensity signs), a Markov chain model
may be more appropriate than a random walk model in order to provide a somewhat flat forecast.

This model assumes that the evolution of y is described by a Markov chain with M + 1 states
and P

(
y(t + 1) = j | y(t) = i

)
= pi,j . More generally, P

(
y(t + h) = j | y(t) = i

)
= (T h)i,j ,

for a h-steps-ahead transition, where T is the transition matrix, (T )i,j = pi,j . As a baseline model,
the transition probabilities, pi,j , are assumed to be patient- and time-independent. For the vector,
pi, representing the transition probability distribution from state i, we assume an uninformative
uniform prior over pi using a symmetric Dirichlet distribution,

pi ∼ Dirichlet(1, ..., 1). (34)

C.5. Exponential smoothing models

An exponential smoothing model corresponds to an exponential smoothing of the data and a flat
forecast, and is described by

l(t) = αy(t) + (1− α)l(t− 1), (35)
y(t+ 1) ∼ N

(
l(t), σ2

)
, (36)

where l represents the smoothed values (the level) and α is the smoothing factor, which can be
related to the time constant τ of the process and the delay ∆T = 1 day between two observations
by

α = 1− e−
∆T
τ ⇐⇒ τ = − ∆T

log(1− α)
. (37)

We assume the priors,

τ ∼ logN
(
0.5 log(10), (0.75 log(10))2

)
, (38)

σ ∼ N+
(
0, (0.1M)2

)
, (39)

where τ follows a log-normal prior to span several orders of magnitude between 10−1 and 102 days.

C.6. Autoregressive models

An autoregressive model is an extension of the “random walk” model with an autocorrelation coef-
ficient, α, and an intercept, b = (1−α)y∞, where y∞ is the expected value of the series (we assume
stationarity),

y(t+ 1) ∼ N
(
αy(t) + b, σ2

)
, (40)
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with the priors,

α ∼ U(0, 1), (41)
y∞ ∼ N

(
0.5M, (0.25M)2

)
, (42)

σ ∼ N+
(
0, (0.1M)2

)
. (43)

The prior on y∞ results in a 95% CI being [0,M ] (the range of the score). The prior on σ has the
same rational as for the random walk model.

C.7. Mixed autoregressive models

A mixed autoregressive model is an extension of the “Autoregressive model” by assuming patient-
dependence for the autocorrelation, α(k), and the intercept, b(k) = (1− α(k))y

(k)
∞ , described by

y(k)(t+ 1) ∼ N
(
α(k)y(k)(t) + b(k), σ2

)
, (44)

with the priors,

α(k) ∼ logitN (µα, σ
2
α), (45)

µα ∼ N (0, 1), (46)
σα ∼ N+(0, 1.52), (47)
y(k)∞ ∼ N (µ∞, σ2

∞), (48)
µ∞ ∼ N

(
0.5M, (0.25M)2

)
, (49)

σ∞ ∼ N+
(
0, (0.125M)2

)
, (50)

σ ∼ N+
(
0, (0.1M)2

)
. (51)

The priors are chosen to be weakly informative and translate to reasonable prior predictive dis-
tributions.

• The priors on µα and σα have reasonable ranges and translate to a marginal prior for α(k) that
is approximately uniform.

• The prior for µ∞ spans the range [0, M] in which y is defined.
• The prior for σ∞ implies that the range of the distribution of y∞ is at most M .
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Supplementary Figures

Figure S1: Distribution of the nine severity items and (o)PO-SCORAD in dataset 1.

Figure S2: Distribution of the nine severity items and (o)PO-SCORAD in dataset 2.
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Figure S3: An overview of the forward chaining setting used in this paper. We first trained the
models on the first day’s data of a patient and tested them using their data over the next
four days, then trained the models on the first five days’ data and tested them on the next
four days’ data, etc.

Figure S4: Predictive performance of the Extent model with datasets 1 (left) and 2 (right), evaluated
by lpd (± SE, the higher the better). Top: Learning curves for 4-days-ahead predictions
as a function of the number of training days (top axis) and the number of training obser-
vations (bottom axis). Bottom: Change in lpd as the prediction horizon is increased by a
day.
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Figure S5: Predictive performance of the Dryness model with datasets 1 (left) and 2 (right), evaluated
by lpd (± SE, the higher the better). Top: Learning curves for 4-days-ahead predictions
as a function of the number of training days (top axis) and the number of training obser-
vations (bottom axis). Bottom: Change in lpd as the prediction horizon is increased by a
day.

Figure S6: Predictive performance of the Redness model with datasets 1 (left) and 2 (right), evaluated
by lpd (± SE, the higher the better). Top: Learning curves for 4-days-ahead predictions
as a function of the number of training days (top axis) and the number of training obser-
vations (bottom axis). Bottom: Change in lpd as the prediction horizon is increased by a
day.
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Figure S7: Predictive performance of the Swellingmodel with datasets 1 (left) and 2 (right), evaluated
by lpd (± SE, the higher the better). Top: Learning curves for 4-days-ahead predictions
as a function of the number of training days (top axis) and the number of training obser-
vations (bottom axis). Bottom: Change in lpd as the prediction horizon is increased by a
day.

Figure S8: Predictive performance of the Oozing model with datasets 1 (left) and 2 (right), evaluated
by lpd (± SE, the higher the better). Top: Learning curves for 4-days-ahead predictions
as a function of the number of training days (top axis) and the number of training obser-
vations (bottom axis). Bottom: Change in lpd as the prediction horizon is increased by a
day.
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Figure S9: Predictive performance of the Scratching model with datasets 1 (left) and 2 (right), eval-
uated by lpd (± SE, the higher the better). Top: Learning curves for 4-days-ahead predic-
tions as a function of the number of training days (top axis) and the number of training
observations (bottom axis). Bottom: Change in lpd as the prediction horizon is increased
by a day.

Figure S10: Predictive performance of theThickening model with datasets 1 (left) and 2 (right), eval-
uated by lpd (± SE, the higher the better). Top: Learning curves for 4-days-ahead predic-
tions as a function of the number of training days (top axis) and the number of training
observations (bottom axis). Bottom: Change in lpd as the prediction horizon is increased
by a day.
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Figure S11: Predictive performance of the Itching model with datasets 1 (left) and 2 (right), evaluated
by lpd (± SE, the higher the better). Top: Learning curves for 4-days-ahead predictions
as a function of the number of training days (top axis) and the number of training ob-
servations (bottom axis). Bottom: Change in lpd as the prediction horizon is increased
by a day.

Figure S12: Predictive performance of the Sleep loss model with datasets 1 (left) and 2 (right), evalu-
ated by lpd (± SE, the higher the better). Top: Learning curves for 4-days-ahead predic-
tions as a function of the number of training days (top axis) and the number of training
observations (bottom axis). Bottom: Change in lpd as the prediction horizon is increased
by a day.
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Figure S13: Learning curves of models predicting PO-oSCORAD,measured by lpd (top) and accuracy
(bottom) as a function of the number of training observations (and the number of training
days), for datasets 1 (left) and 2 (right). EczemaPred model performs better than the
reference models.

Figure S14: PO-SCORAD predictive performance change as the prediction horizon is increased by
one day, measured by Accuracy (left) and lpd (right), for datasets 1 (top) and 2 (bottom).
The predictive performance for PO-SCORAD decreased with an increase in prediction
horizon for all models.
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Figure S15: PO-oSCORAD predictive performance change as the prediction horizon is increased by
one day, measured by Accuracy (left) and lpd (right), for datasets 1 (top) and 2 (bottom).
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