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Abstract

Monoclonal antibodies (mAbs) have been extensively studied for their wide therapeutic and

research applications. Increases in mAb titre has been achieved mainly by cell culture

media/feed improvement and cell line engineering to increase cell density and specific mAb

productivity. However, this improvement has shifted the bottleneck to downstream purifica-

tion steps. The higher accumulation of the main cell-derived impurities, host cell proteins

(HCPs), in the supernatant can negatively affect product integrity and immunogenicity in

addition to increasing the cost of capture and polishing steps. Mathematical modelling of bio-

process dynamics is a valuable tool to improve industrial production at fast rate and low

cost. Herein, a single stage volume-based population balance model (PBM) has been built

to capture Chinese hamster ovary (CHO) cell behaviour in fed-batch bioreactors. Using cell

volume as the internal variable, the model captures the dynamics of mAb and HCP accumu-

lation extracellularly under physiological and mild hypothermic culture conditions. Model-

based analysis and orthogonal measurements of lactate dehydrogenase activity and dou-

ble-stranded DNA concentration in the supernatant show that a significant proportion of

HCPs found in the extracellular matrix is secreted by viable cells. The PBM then served as a

platform for generating operating strategies that optimise antibody titre and increase cost-

efficiency while minimising impurity levels.

1 Introduction

Monoclonal antibodies (mAbs) and derived products such as antibody-drug conjugates, Fc-

fusion proteins and antibody fragments, are widely used in many diagnostic and therapeutic

applications [1]. Chinese hamster ovary (CHO) cells are the most commonly used host for

industrial mAb production, accounting for 84% of currently approved products [2]. mAb

yield increased from 50 mg/L in 1986 to 3–10 g/L in 2010s as a result of a variety of genetic

and process optimisation techniques that led to increased cell density and specific mAb pro-

ductivity [3–5]. However, achieving higher cell densities has also led to the accumulation of

cell-derived impurities over culture duration, posing challenges for downstream separation

[6,7].

Host cell proteins (HCPs) are a heterogeneous mixture of proteins secreted by viable cells

and intracellular proteins released from dead and lysed cells toward the end of the culture [7].
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In their majority, HCPs are removed in the downstream step of protein A affinity chromatog-

raphy, however, some persist after this unit operation and their removal requires further chro-

matographic separation steps [8]. Certain HCPs have proteolytic activity and can cause

product fragmentation (and subsequent aggregation) while others can lead to immunogenic

responses in patients if not fully removed [6]. The concentration and properties of residual

HCPs present in process intermediates and the drug product are therefore of significant inter-

est [9,10].

HCP concentration typically increases with cell culture duration and correlates with the

number of dead cells, even though HCPs are also known to be secreted by viable cells [6,11].

Although the goal of upstream operations has typically been to increase yield, which often

involves improved feeding regimes to increase culture longevity, this is not necessarily benefi-

cial from the point of view of downstream processing effort and cost. The ability to quantify

the trade-off between increased yield and raised purification effort could therefore support

decision-making during process development, such as optimal harvest time. Including the

level of impurities in upstream process models paves the way for multi-objective optimisation

of both upstream processing steps and the entire flowsheet to reduce the process development

and manufacturing cost of therapeutic proteins and increase overall process efficiency.

To this end, modelling of cell culture dynamics has been a valuable tool in enhancing our

understanding of cellular responses to process changes [12,13]. We propose that modelling

can be used to quantify this trade-off between gains in upstream operations and burden on

downstream purification by predicting the accumulation of dead cells, which is responsible for

HCP release extracellularly and is often underestimated by trypan blue dye exclusion methods

[14]. However, such a model would also need to account for HCP secretion by viable cells and,

by extension, accurately represent cell volume, which is correlated to the total protein content

per cell [15].

Population balance modelling (PBM) has been developed to model different complex

dynamic systems that are characterised by distributions [16–22]. These models have a time-

dependent probability density function, which represents a state variable such as cell volume

or DNA content. The distribution changes with time as a result of growth, death and birth

mechanisms [18,23,24]. PBM has been used extensively to describe cell population dynamics

in a variety of bioreactor systems and across different microorganisms [25–28]. However, the

application of PBM with a single internal variable model is limited to balanced growth condi-

tions [29,30], under which it is reasonable to assume that cell division follows a fixed normal

distribution of cell size [31]. This is not applicable to the fed-batch culture of CHO cells, in

which cell volume increases significantly in late-stage culture due to an increase in culture

osmolality [32–34]. Mantzaris et al. and Zhu et al. were among the first to model the evolution

of cell volume distribution in yeast, which led to the model being split into two different stages,

smaller cells with high proliferation rate and larger ones with high recombinant protein pro-

ductivity [28,30].

These papers along with others [29,35,36] emphasise the importance of uncoupling cell

growth in size from cell density when growth medium nutrient and metabolite concentration

change. This modelling approach is called multi-stage PBM, in which the number of model

equations increases with the number of population balance stages considered. Given previous

observations on the link between cell volume, growth rate and culture osmolality [34,37–39],

we propose a simpler approach for modelling the effect of osmolality. Specifically, we propose

the inclusion of culture osmolality in the growth rate equation and division function to capture

(a) growth rate reduction and (b) cell volume increase under hyperosmolar culture conditions.

We have previously shown that CHO cells divide at a lower rate and larger cell volume as

extracellular osmolality increases (i.e., 400 mOsm kg -1) before cell division ceases at higher
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osmolality values (~500 mOsm kg -1) [34]. This cell volume increase is observed with every

new generation of cells and can be considered in the division function of the PBM by adjusting

the mean volume and standard deviation at which cells divide. These values are typically taken

from literature, but can be updated based on experimental data on cell volume distribution for

the cell line and process conditions at hand [36,40]. It is also possible for the division mean

and standard deviation to be formulated as a function of culture osmolality such that an

increase in CHO cell volume leads to division only if extracellular conditions (i.e., substrate

and metabolite concentrations) are conducive to cell proliferation. Hence, we present a single-

stage volume-based population balance model formulation for mAb-producing CHO cell cul-

tures. The PBM captures cell density and volume growth dynamics, mAb production, as well

as the accumulation of HCPs extracellularly as a measure of downstream burden under two

culture temperatures: 36.5˚C and 32˚C. The model is then used to understand the mechanisms

by which HCPs accumulate in the extracellular matrix and to compare optimal culture condi-

tions for different objectives. We anticipate that the model can guide decision-making with

respect to optimal harvest time to maintain high product recovery and HCP impurity clear-

ance and, with further data on HCP stability, can refine our understanding of their origin.

2 Materials and methods

2.1 Model formulation

The main equation of PBM for a single compartment and a single internal variable, cell volume

in this case, is:

Accumulationþ Growthþ Divisionþ Deathþ Dilution ¼ Birth ð1Þ

The mathematical representation of these terms is given by Eq (2).

@nðv; tÞ
@t

þ
@

@v
gðv; sÞnðv; tÞð Þ þ G v; sð Þn v; tð Þ þ D sð Þn v; tð Þ þ

Fin
V
n v; tð Þ

¼ 2

Z vmax

vmin

Pðv; v0ÞGðv0; sÞnðv0; tÞdv0 ð2Þ

n(v,t) is number of cells in million per unit volume of the continuous internal normalised

phase (normalised cell volume) per unit volume of the discrete phase (L of culture) at time t.

The integral of n(v,t) is called the 0th moment, which gives the number density of cells across

all cell sizes [41]. The terms v0 and v represent the volume of mother and daughter cells, respec-

tively, with further details provided in section 2.1.3. The integration of cell volume in the

model is important because metabolic flux across the membrane, biosynthetic capacity and

nutrient exchange depend on cell size [42,43]. The nucleus, mitochondria, endoplasmic reticu-

lum and gene expression scale with cell size in human and yeast cells [44–48].

2.1.1 Growth rate. Most of cell growth rate equations used in PBM [49–53] involve a dis-

tributed linear domain like the volume shown in Eq (3) below. The linear cell volume growth

function for CHO cells was suggested by Anderson et al. similarly to studies in other microor-

ganisms [54,55].

gðv; sÞ ¼ mmaxflimfinhv ð3Þ

flim ¼
Casn

Casn þ Kasn
ð4Þ
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finh ¼
Kamm

Camm þ Kamm

�Osm
KOsm

þ 2:2

� �

315mOsm kg�1
< Osm < 560 mOsm kg�1

ð5Þ

The population growth rate g(v,s) is in units of h−1 due to the volume domain being nor-

malised. The growth rate depends on substrate limitation (Eq (4)), metabolite inhibition (Eq

(5)) and the normalised cell volume v. Asparagine is the main growth-limiting substrate and

ammonia inhibits growth for this cell line (see Kyriakopoulos and Kontoravdi [56]). The Kasn
and Kamm are the Monod and inhibition constants (mM), respectively. Lopez-Meza et al.

linked growth to substrate concentration for wild-type and protein-producing CHO cells

whereas Stamatakis et al. qualitative PBM assumed cell growth as a function of volume alone

[57,58]. In Eq (5) for the growth inhibition function, finh, the effect of osmolality is accounted

for in last term in accordance with literature and is further discussed in the osmolality section

[34,38]. The constant KOsm in Eq (5) has a value of 256 mOsm kg -1. Eq (5) is only valid for the

given osmolality range. This is because our cell culture medium has initial osmolality value of

320 mOsm kg-1 and osmolality above 500 will lead to inhibitory condition, finh turns to zero at

565 which is well above the operating range. It is worth mentioning that the parameters

involved in Eq (5) should be experimentally verified before implementation for different cell

line or culture medium.

Linardos et al. reported the exponential relationship between the cell death rate and average

cell age [59,60]. The death rate is an exponential function as shown in Eq (6) and positively

correlated to the reduction in proliferation rate [59,61,62]. Eq (7) accounts for cell lysis rate of

dead cells. The accumulation of lysed cells can be quantified by Eq (8).

D sð Þ ¼ kd max e
�mmaxflimfinh

kd

� �

ð6Þ

dNd

dt
¼

Z vmax

vmin

DðsÞnðv; tÞdv� kl Nd ð7Þ

dNl
dt
¼ kl Nd ð8Þ

In Eq (6), kd max (h−1) is the maximum death rate and kd (h−1) is another constant specific

to the cell line which is the growth rate at which the death rate is at a maximum value. kl (h−1)

in the Eq (7) is the cell lysis rate. Nd (106 cell L−1) is the density of dead cells given in the same

unit as viable cell density N in Eq (9). The cell density (106 cell L−1) can be found by integrating

the distributions of viable cell population from the minimum to the maximum cell volume as

shown in Eq (9). In this case, the minimum volume is zero and the maximum is unity. The

boundary condition in Eq (10) signifies that there is not a cell which has volume of zero at any

time.

N ¼
Z vmax

vmin

nðv; tÞdv ð9Þ

nað0; tÞ ¼ 0 ð10Þ

The following two equations are the initial conditions for dead and lysed cells. Eq (13) is

PLOS ONE Population balance modelling captures host cell protein dynamics in CHO cell cultures

PLOS ONE | https://doi.org/10.1371/journal.pone.0265886 March 23, 2022 4 / 25

https://doi.org/10.1371/journal.pone.0265886


used to calculate the average cell volume.

Ndðv; 0Þ ¼ 0 ð11Þ

Nlðv; 0Þ ¼ 0 ð12Þ

�v ¼

R vmax
vmin

v nðv; tÞdv
N

ð13Þ

�v is the average cell volume which is normalised and the corresponding value in μm3 can be

obtained by multiplying the value by the maximum cell volume 6,044 μm3, based on 22.6 μm

maximum diameter. This maximum diameter is well above typically reported values to ensure

that the entire cell population is within the distribution limits [32,34,63]. The initial distribu-

tion is based on 5,000–10,000 CHO cells and was derived from experimental data using

MATLAB (Generalised Extreme Value) as shown in Eq (14).

na v; 0ð Þ ¼
1

s
1þ ε

v� m
s

� �h i�1
ε �1

e� 1þε v�m
sð Þ½ �

�1
ε

ð14Þ

This type of dataset on cell diameter distribution can be obtained using common automated

cell counters such as the NucleoCounter1NC-250TM used herein. All the outliers in cell size,

such as cell aggregates and fragments observed particularly in late days of culture were

removed from the dataset. This is because it is known that the cells’ tendency to aggregate

around a dead cell is higher at later stages of cell culture [64]. A careful treatment of cell vol-

ume data was required to eliminate the outliers as they might skew the cell size distribution

beyond the generally reported CHO cell size [32,65]. The range was limited for diameters

between 5 and 22 μm for viable cells based on our own data and previous observations [34,65].

However, the interval between 5 and 10 μm has almost no viable cells but should be added to

prevent the fitted probability density function from starting at a value of almost zero volume.

2.1.2 Division function. The division function reflects the increased probability of divi-

sion as cell volume increases, as shown is shown in Eq (15). The division probability positive

correlation with volume or age within the cell cycle is explained in the literature [66,67]. It is a

function of the substrate through the addition of the growth rate. It simply means that there is

no division if there is no growth. However, there are many other formulae, including discrete

discontinuous, that are used in the literature [35,68–71]. The vc in Eq (15) is the mean of cell

volume at division, which is positively correlated to osmolality based on our data. The cell divi-

sion rate for a specific mean and across a range of standard deviation values is shown in S1 Fig.

G v; sð Þ ¼
2e�

v�vc
εð Þ

2

gðv; sÞ
ε
ffiffiffi
p
p

erfc v�vc
ε

� �� � ð15Þ

Γ(v,s) is the cell division rate (h−1). It is important at this stage to briefly revisit the history

of the division function. The division function theoretically originated from Eakman et al. who

stated that “there appears to be little conclusive evidence to support the assumption that the dis-
tribution of division mass deviates markedly from Gaussian. Therefore, it is assumed that the dis-
tribution of division mass around a division cell size mean is of a Gaussian type” [31]. This

function relies on certain assumptions such as constant extracellular environment, homoge-

neous mixing and exponential cell growth [55]. While it is convincing to accept that the distri-

bution at division as a Gaussian type based on experimental measurements, several studies

attempted to determine at what size a cell divides and what is the full spectrum of extracellular

and intracellular drivers affecting cell volume growth [72–74].
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There are many factors that affect microbial and mammalian cell volume such as cell cycle

position [75,76], cell culture conditions, [77], cell cycle arrest [77], glutamine depletion [78],

and many others [79,80]. To the best of our knowledge, size-based PBM has never been uti-

lised for fed-batch CHO cell culture. Most of the aforementioned PBMs for microbial batch

cultures are qualitative and ignore the effect of culture osmolality. An update is therefore sug-

gested herein to integrate the experimentally observed shift in cell volume distribution by

updating the division function. Capturing the cell volume increase would lead to better estima-

tion of HCP volumetric secretion from dead cells by more accurately reflecting the protein

content per cell.

2.1.3 Partition function. The partition probability density function in Eq (16) is used to

represent the asymmetric division phenomenon. [36,71]. The addition of this equation is

important to capture self-similar distribution, which is the case for all cell culture system start-

ing without imposed cell cycle arrest. This equation leads to the production of two daughter

cells (i.e., v and v0−v at time t+dt) with a total size equal to that of their mother cell. More

details with regards to the derivation of this equation can be found in the literature [81].

P v; v0ð Þ ¼
1

bðq; qÞ
1

v0
v
v0
� �q�1

1�
v
v0

� �q�1

ð16Þ

2.1.4 Substrate and metabolite profile. The glucose and lactate profile have been coupled

to capture the shift in lactate from production to consumption. Similarly, ammonia is pro-

duced from amino acid metabolism and degradation. For CHO cells and the GS-CHO cell line

used herein, we can mainly attribute ammonia synthesis to asparagine and glutamine metabo-

lism [82,83].

The following equations represent the mass balances of key amino acids, glucose, metabo-

lites, impurities, and product. These simplified coupled equations and relationships can be

found in the literature [32,82,84–86]. Asparagine is consumed at a rate given in Eq (17) with

the yield Yasn (mmol cell−1). All Q terms (mmol cell−1 h−1) in the equations below are specific

consumption rates for the amino acids and glucose and production rates for the metabolites.

Qasn ¼ mmaxflimfinhYasn ð17Þ

Ammonia is initially produced at a rate depending on asparagine consumption and con-

sumed by the cells at later stage of the culture as shown in Eq (18). Yamm/asn is the yield of

ammonia from asparagine metabolism (mmol mmol−1). However, Yamm(mmol cell−1 h−1) is

ammonia consumption rate which is triggered when its concentration increases beyond Kamm
(3.5mM) for our system.

Qamm ¼ QasnYamm=asn � Yamm
Camm

kamm þ Camm
ð18Þ

In Eq (19), glucose is consumed by cell growth and maintenance-nongrowth-dependent

terms [87–89]. The maintenance term,mglc (mmol cell−1 h−1), is the consumption rate for glu-

cose that does not depends on cell growth rate. Eq (20) shows lactate production from glucose

in the early stages of the culture with a shift to consumption after peak viable cell density has

been reached [90]. Ylac/glc is the conversion factor for lactate from glucose (mmol mmol−1). The

maintenance term of lactatemlac is negative and lactate consumption does not depend on the
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growth rate.

Qglc ¼ mmaxflimfinhYglc þmglc ð19Þ

Qlac ¼ QglcYlac=glc �mlac ð20Þ

The rest of the amino acids are produced such as alanine, glutamine and consumed such as

glutamate which follow a simpler kinetics that depends on growth rate as shown in Eqs (21)–

(23), respectively. The yields in these equation Yala, Ygln and Yglu (mmol cell−1) and Q (mmol
cell−1 h−1).

Qala ¼ mmaxflimfinhYala ð21Þ

Qgln ¼ mmaxflimfinhYgln ð22Þ

Qglu ¼ mmaxflimfinhYglu ð23Þ

The following mass balances equations are used to calculate the concentration of the sub-

strates and metabolites including the salts which were used to calculate osmolality. They show

a single parameter to account for a consumption or a production rate.

d½V Casn�
dt

¼ �QasnV Nþ Fin CFeed�asn � CasnFout ð24Þ

d½V Camm�
dt

¼ QammV N � CammFout ð25Þ

d½V Clac�
dt

¼ QlacV N � ClacFout ð26Þ

d½V Cglc�
dt

¼ �QglcV N þ FinCFeed�glc � CglcFout ð27Þ

d½V Cgln�
dt

¼ QglnV N � CglnFout ð28Þ

d½V Cglu�
dt

¼ �QgluV N þ FinCFeed�glu � CgluFout ð29Þ

d½V Cala�
dt

¼ �QalaV N � CalaFout ð30Þ

d½V CNa�
dt

¼ �QNaV N � CNaFout ð31Þ

d½V CK �
dt

¼ �CKFout ð32Þ
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2.1.5 mAb and host cell proteins. Our experimental data support that specific mAb pro-

ductivity is constant and independent of cell growth rate, as shown in Eq (34). This reduces

the number of used parameters and allows for direct comparison ofmmAb under the two cul-

ture temperatures.

QmAbs ¼ mmAb ð33Þ

d½V mAb�
dt

¼ QmAbV N � CmAbFout ð34Þ

Based on our experimental data, we hypothesise that there are two sources of HCPs, one

being secretion from viable cells (at a constant rate of qHCP in g cell−1 h−1) and the second

being lysis of dead cells (at a constant volumetric rate of qHCP(2)) as shown in Eq (35). The cell

volume is taken into account in the prediction of HCP release from dead cells by the inclusion

of the average normalised cell volume �v in Eq (35). As cells increase in volume, the host cell

protein content per cell also increases. To account for this, we consider qHCP(2) on a per unit

cell volume basis, such that, when multiplied by the cell volume, we obtain a more accurate

estimate of released HCPs. Measuring the proportion of secreted and non-secreted HCPs

experimentally is very challenging. As these proteins degrade during cell culture through the

proteolytic activity of certain HCPs, ELISA measurements could also lead to underestimation

of HCP concentration [91]. The release of intracellular content from a dead cell (i.e., DNA and

HCPs) does not seem to be an immediate process and depends on the physical properties of

the bioreactor, cell size and cell membrane fluidity and resistance to shear stress. Pluronic F68

is known to reduce the plasma-membrane fluidity of cells and this has been suggested as a pos-

sible mechanism of protection against shear force [92,93]. For the purpose of this model, we

have chosen to neglect HCP degradation in the supernatant due to the inability to accurately

determine the associated rate from existing experimental data.

d½V HCP�
dt

¼ qHCPV N þ qHCPð2ÞV �v Nl þ Ndð Þ ð35Þ

2.1.6 Temperature shift. There are three different ways to describe the effect of variation

in pH and temperature on cell culture dynamics. Firstly, obtaining separate sets of parameter

values each for a different set of culture conditions, which is adopted herein. The second

method is to use a continuous function for a wider design space [94,95], e.g. by describing

maximum cell growth rate as a continuous function of temperature using the Arrhenius and

Eyring equations [96]. The third method is based on statistical modelling to derive a correla-

tion from experimental data or other common equation for the pH such as Henderson-Hassel-

balch [89,97,98].

2.1.7 Culture osmolality. The data from the four bioreactor runs were used to formulate

an equation that can estimate the osmolality of CHO cell culture based on the values of certain

key extracellular components that are routinely measured, namely glucose, lactate, Na+ and

K+. Osmolality (Osm, in mOsm kg-1) is approximated by Eq (36) which has three parameters

determined using the experimental datasets. Eq (36) is only applicable for our commercially

available CHO cell culture medium; however, the same approach can be used to form an equa-

tion of osmolality for other systems. The terms α1, α2 and α3 equal 1.48, 0.70 and 2.18 respec-

tively with unit of mOsm kg-1 mM-1. Many other similar osmolality equations can be found in
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the literature [99].

Osm ¼ a1ðCGlcÞ þ a2ðCLacÞ þ a3ðCNaþ þ CKþÞ ð36Þ

The mean absolute percentage error (MAPE) is 2.5%, which is deemed acceptable [100].

2.2 Experimental materials and methods

2.2.1 Bioreactor operation. Briefly, CHO GS46 producing chimeric IgG4 antibody (Lonza

Biologics) was revived and cultured in shake flasks (Corning, NY) of CD CHO medium (Life

Technologies, UK) and shaken at 140 RPM as described in [11,101]. The selective agent MTX was

added to the revived cells and the first subculture. Cells were subcultured in fresh medium every 4

days at a seeding density of 2 × 105 cells/mL. Then, bioreactor (Applikon Biotechnology, Schie-

dam, the Netherlands) was inoculated at a seeding density of 3 × 105 cells/mL with an initial cell

culture volume of 1.2 L. The temperature, pH and dissolved oxygen were controlled at 36.5˚C, 7.0

and 50% respectively. The bioreactor was supplemented with CD EfficientFeed™ C AGT™ (Life

Technologies, UK) at 10% cell culture volume on alternate days starting from 2nd day. Two of the

bioreactors were kept at 36.5˚C (sometimes refer to as 37˚C or physiological temperature in this

work) whereas the other two were shifted to 32˚C on the 5th day. The cell density and diameter

were measured daily using NucleoView NC-250 (ChemoMetec, Denmark). All cells below 5 and

greater than 22 μm were removed as they do not represent the viable CHO cells but outliers as a

result of cell aggregation and fragmentation [65,102]. The cell volume was calculated based on the

diameter value assuming a spherical cell shape. The cell volume was normalised to represent val-

ues from 0 to 1 cell volume domain. The Distribution Fitter tool of MATLAB (R2017B) was used

to generate the probability density function of that cell volume distribution.

2.2.2 Extracellular metabolite analysis. The protocol is taken from Sellick et al. metabo-

lite profiling study [103,104]. The procedure is as follow:

Sample derivatisation. 20 μL of the cell culture supernatant was withdrawn from a fully

thawed 1 mL sample tube and mixed with 200 μL of (water/methanol/isopropanol at a volume

ratio of 2/5/2). The tube containing the supernatant was placed in a vacuum rotary centrifuge

at 30˚C for 30 minutes to dry out completely until a metabolite pellet was observed at the bot-

tom of the tube. The dried pellet was derivatised by addition of 10 μL methoxamine hydrochlo-

ride (MOX, 40 mg/mL in pyridine). The sample was incubated for 90 minutes at 30˚C with

gentle shaking. The sample was then trimethylsilated by addition of 90 μL N-methyl-N-(tri-

methylsilyl) trifluoroacetamide (MSTFA) containing 1% (v/v) trichloromethylsilane (TMCS).

The sample was then incubated at 37˚C for 30 minutes. The derivatised sample was cooled to

room temperature and 70 μL was pipetted in silanised GC vials (National Scientific).

GS-MS analysis. The analysis was performed in a 7890A GC system (Agilent Technologies)

coupled to a 5975C Inter XL MSD with Triple-Axis Detector (Agilent Technologies). The

injected sample was 1 μl with 10:1 split ratio on a DB-5MS + DG column (Agilent Technolo-

gies; 250 μm × 30 m × 0.25 μm thickness with 10 m DuraGuard) with helium as a carrier gas.

Analytes were separated by isothermal chromatography at 60˚C for a minute, then increased

at a rate of 10˚C per minutes to approach 325˚C and remain at this value for further 10 min-

utes. The temperatures of the injector, MS source and MS quad were set at 250, 230 and 150˚C

respectively. The analyte peaks in the raw chromatograms were identified using MSD Chem-

Station (Agilent Technologies) to search the Agilent Fiehn GC/MS. Identification was based

on the RTs and fragmentation patterns. Peak areas were determined with reference to myristic

acid as an internal standard for all amino acids.

Analysis of other metabolites. BioProfile FLEX (Nova Biomedical, MA, USA) was used to

measure the concentrations of glucose, lactate, glutamine, glutamate and ammonia in cell
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culture supernatants. The instrument performed automated enzymatic assays on glucose, lac-

tate, glutamine, and glutamate, while ammonia concentration was measured by electrochemi-

cal means with a phosphate assay.

2.2.3 mAb titre. The concentration of the mAb product was measured using the Blitz sys-

tem (Pall ForteBio Europe, Portsmouth, UK). The biosensor was first hydrated in sample dilu-

ent (Pall ForteBio Europe, Portsmouth, UK) for 30 minutes and then locked onto the BLItz

instrument. 4μL of the sample were pipetted onto the sample holder and analysed. For each

run, the binding rate was measured for 60s and concentration of the sample was directly pro-

portional to the binding rate. A standard curve of mAb concentration was plotted against the

binding rate to interpolate the corresponding titre.

2.2.4 Osmolality. The osmolality of the supernatant was measured by Osmomat 3000

(Gonotec, Berlin, Germany) based on freezing point. The equipment was calibrated with 0,

300 and 800 mOsm kg-1 solutions and sample sizes were 50 μL each in 500 μL measuring ves-

sels (Gonotec, Berlin, Germany). Duplicate measurements were taken for each sample.

2.2.5 LDH and DNA analysis. Lactate dehydrogenase (LDH) is used to identify and

quantify dead cell population [105]. The Pierce™ LDH Cytotoxicity Assay Kit (Thermo Scien-

tific™) was used to quantify the cell lysis rate. Cell culture supernatant samples were placed in

96-well flat bottom plates. Firstly, a serial dilution of cells was made from 2×105 to 2.5×104

cells per mL in 100 μL triplicate wells including medium to measure background activity After

that, 10 μL lysis buffer was added to all wells including cell culture supernatant samples and

incubated at 37˚C for 45 minutes.

50 μL of each well was transferred to a new plate and mixed with 50 μL Reaction Mixture.

After a 30-minute room temperature dark incubation, reactions were stopped by adding 50 μL

Stop Solution to each well. Absorbance at 490 nm and 680 nm were measured using a plate-

reading spectrophotometer to determine each sample LDH activity. The absorbance reading at

680 was subtracted from that at 490 to eliminate any background signal from the equipment.

Quant-iT™ PicoGreen™ dsDNA Assay Kit (Invitrogen™) was used to quantify double

stranded DNA in the supernatant. Calibration curve of Lambda DNA was made in the range

from 0 to 1 μg/mL which is described as high-range standard curve in the protocol. Every

96-well microplate included samples to construct the calibration curve and three technical rep-

licates. The volume of the sample was 200 μL which was mixed with same volume of Diluted

Quan-iT™ PicoGreen™ Reagent and incubated for 5 minutes at room temperature in dark.

Fluorescence was then measured in a microplate reader (excitation at 485 nm, emission at 520

nm).

2.2.6 Cell volume data analysis. Plotting the average cell size as a function of osmolality

illustrates the effect of osmolality on cell volume. Outliers in cell size, such as cell aggregates

and fragments observed particularly in late-stage culture, were removed from the data. The

range was limited to diameters between 10 and 20 μm based on previous observations [32,65].

The approximated non-linear function, Eq (37) was obtained using the curve fitting option in

OriginLab, in which y is the average cell volume or SD of cell volume and x is the osmolality.

The same equation can be used to correlate the standard deviation of the cell volume as a func-

tion of osmolality and both sets of parameter values are given in S1 Table. The best fit was

given by dose response and Boltzmann function in both cases. Dose dependence of osmolality

effects on many cellular variables has been already mentioned in the literature [34,65,106].

y ¼ A1 þ
ðA2�A1Þ

ð1þ 10ððx0�xÞ�pÞÞ
ð37Þ

Regardless of the bioreactor temperature, the size growth evolution follows a similar trend.
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However, although there appears to be a correlation between osmolality and cell volume, this

is not sufficient to fully describe the data presented herein. It is important to highlight the fact

that the variation in cell volume is narrower for the biological replicates but utilising the two

temperatures datasets is crucial to cover the wider range of volume distribution.

2.3 Parameter estimation

The model equations are solved in the gPROMS 5.0. 1 model building environment (Process

Systems Enterprise, www.psenterprise.com/products/gproms, 1997–2020). Our PBM was

solved by backward finite difference method (BFDM), which is known to be appropriate this

type of integral, partial differential, and algebraic equations (IPDAEs) systems [107]. In this

study, parameters estimation is obtained by the maximum likelihood method from gPROMS

which attempts to determine values for the uncertain physical and variance model parameters

that maximise the probability that the model will predict the experimentally measured values.

The statistical constant and linear variance models were used. The 95% confidence intervals

for estimated parameters were deemed satisfactory at 10% of the final parameter values [108].

3 Results and discussion

3.1 The PBM accurately describes the experimental data

The model simulation results are compared with experimental data for the physiological tem-

perature and mild hypothermic culture conditions in Fig 1. The viable cell density in Fig 1A is

well captured even during the last a few days of the culture when kinetic models typically fail

to capture the decline in cell growth rate in the presence of nutrients. The reduction in viable

and dead cell densities as temperature was decreased is also captured well. However, the agree-

ment for dead cells in Fig 1B is less satisfactory for the physiological case as the cell lysis rate

might not be constant during the culture potentially due to the extracellular accumulation of

intracellular components that may promote faster degradation. At the lower temperature, the

dead cell profile has very large standard deviation in the second half of the culture, signifying

the high biological variability in quantifying dead cells in comparison to viable ones. It is

worth mentioning that the cell death rate is a non-linear function of the growth rate. Although

several other cell death formulae can be used, the selected one requires fewer parameters to be

estimated. The disadvantage is that the reduction in cell growth rate is not always matched by

an increase in dead cell population.

The mAb and HCP concentrations are captured well as shown in Fig 1C and 1D. In the

case of mAb concentration, there is some discrepancy in the final days of culture, which may

be due to product release during cell death. The model accurately describes HCP accumula-

tion, although there is increased variability in HCP measurement in late-stage culture, which

is in line with the biological variability evident in dead cell density measurements. Culture

osmolality is higher for the mild hypothermic case in Fig 1E because the feeding regime is the

same even though the cells are less metabolically active. This leads to an accumulation of over-

fed nutrients extracellularly. The simulation results for the remaining metabolites considered

by the model, i.e., asparagine, ammonia, glutamate, glutamine and alanine, are compared to

experimental data in S2 Fig. The normalised cell volume increase is shown in Fig 1F and 1G

for the physiological and mild hypothermic temperatures, respectively. The significant

increase in the experimentally determined values for cell volume around 250 h is believed to

be due to cell aggregation. Aggregation is known to increase in the last a few days when sticky

intracellular components are released from dead cells [109]. Overall, the agreement between

the model simulation results and experimental data is satisfactory but can be improved if the

parameter estimation strategy focused on fitting the distribution rather than the average size.
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The volume distributions are shown in Fig 2A and 2B for the physiological and hypothermic

cases, respectively. As the culture conditions for two sets of bioreactor runs are identical until

mild hypothermia is introduced, the volume distributions are highly comparable initially. In

both cases there is a gradual increase in cell size, but this is more pronounced in in the cultures

grown at 32˚C due to the larger increase in culture osmolality.

According to Nolan and Lee, there are six characteristics defining an ideal cell culture

model [105]. One of those is being able to describe long term dynamics of the fed-batch cul-

ture. It is very challenging because a deviation between simulation results and experimental

data is commonly observed in the last days of the fed-batch culture. This has led researchers to

explore cell culture phase segregation to look at cell growth dynamics at these different culture

phases separately [32]. The discrepancy could be because there are many variations in

Fig 1. Comparison of model simulation results with experimental data. The red and blue lines represent the model

output for the physiological and mild hypothermic bioreactors, respectively. The experimental data are represented in

square (physiological temperature) and circular (mild hypothermia) points for (A) viable cell density; (B) dead cell

density (C) mAb titre, (D) extracellular HCP concentration, (E) culture osmolality, (F) and (G) normalised cell volume

for physiological temperature and mild hypothermic case, respectively. Error bars represent one standard deviation.

https://doi.org/10.1371/journal.pone.0265886.g001

PLOS ONE Population balance modelling captures host cell protein dynamics in CHO cell cultures

PLOS ONE | https://doi.org/10.1371/journal.pone.0265886 March 23, 2022 12 / 25

https://doi.org/10.1371/journal.pone.0265886.g001
https://doi.org/10.1371/journal.pone.0265886


extracellular components such as vitamins, nucleotides, growth factors, folic acid, which are

not routinely measured and less simple to account for in a model [83]. Moreover, many phe-

nomena occur in the last days of cell culture such as cell fragmentation and lysis, and degrada-

tion of proteins. Additionally, gene regulation events may lead to less traceable phenotypes.

This has also been observed by Munzer et al. who found a greater deviation in cell cycle phase

prediction in late-stage culture [110].

3.2 Understanding the origin of extracellular HCPs

There are many factors that affect HCP accumulation and degradation such as culture temper-

ature and pH [111]. Using the model presented above, we therefore sought to understand

what proportion of HCPs is secreted versus released upon dead cell lysis. Given that most

staining dyes do not quantify the cells that have already lysed after death, the commonly used

method of trypan blue dye exclusion for determining culture viability leads to underestimation

of cell death. For this reason, we employed orthogonal methods for determining cell content

in the supernatant. Specifically, we measured lactate dehydrogenase (LDH) and DNA, which

are released from cells with compromised membrane [112]. LDH has been used to determine

necrotic cells as leakage occurs of plasma membrane [113].

From a first glance at Fig 3, extracellular LDH and DNA are higher at the physiological tem-

perature in comparison to mild hypothermic case. This is expected as dead cell density is

Fig 2. Normalised cell distribution for the physiological temperature (A) and mild hypothermic cultures (B). The cell

diameters were taken from the NucleoCunter™ and the given distributions are obtained from distribution fitting in

MATLAB.

https://doi.org/10.1371/journal.pone.0265886.g002

Fig 3. (A) Concentration of cells that have lysed as inferred from the results of the LDH assay; (B) Double stranded

DNA concentration in the supernatant.

https://doi.org/10.1371/journal.pone.0265886.g003
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significantly higher at physiological temperature as measured by NC-250 in Fig 1B. For both

markers, the deviation between the two bioreactors increases at a higher rate after day 10.

The dead cell population (Fig 1B) increases linearly after day 5 under physiological tempera-

ture but at a much slower rate under mild hypothermia. Although this trend is observed in the

DNA profile (Fig 3B) and HCP concentration (Fig 1D), this is not the case for LDH concentration

until day 10. Similarly, the large increase in LDH on days 13 and 14 is not observed in the DNA

or dead cell concentration profiles. More importantly, the dead cell population determined by

NC-250 is five times higher for the physiological temperature bioreactor, which is not reflected in

any of the values of DNA, HCP concentration apart from day 13 for LDH. The number of lysed

cells estimated based on LDH quantification (Fig 3A) is approximately 60% higher than the dead

cell density measured by NC-250 for the physiological temperature bioreactor runs. Interestingly,

the LDH assay identified about 400% more lysed cells than dead cells on day 14 for the mild hypo-

thermia case. Comparing the concentrations of DNA, HCP and LDH between physiological and

hypothermic bioreactor runs, we see that the former are approximately two times higher than the

latter for all markers. This may be due to the degradation rate of these molecules being higher at

37˚C. The degradation rate of LDH in the supernatant is known to be higher at 37˚C in compari-

son to 32˚C [114] and has been reported to be double that of DNA [111,115]. The degradation of

HCP is also expected to be reduced at lower temperatures [116].

It is also important to look at the HCP profile which, although following the same trend

with the loss of culture viability, does not correlate as well with dead cell density. It is worth

noting that viable cell density at physiological temperature is double that at mild hypothermia.

This could also support the hypothesis that when culture viability is high, most HCPs are

secreted as noted in other studies [117–119].

It has been reported that the DNA content of a CHO cell is 1.11 pg [111], while reports of

the intracellular protein content of CHO cells vary in the literature. For example, Pan et al.

reported an average of 71 pg cell-1, while Cheung reported a value of 82 pg cell-1 [120], Kol

et al. of 150 pg cell-1 proteins [121] and Chaudhuri of a range from 5 to 40 pg cell-1 [122]

depending on the culture day. The Kol et al. value was eliminated as it is based on cells that

were harvested on day 7 when culture viability was less than 90%, which is not representative

of our system. The other two values were averaged and the resulting value, 75 pg cell-1, was

used in subsequent analysis.

As the DNA degradation rate is smaller than that of LDH and it is more stable than pro-

teins, it was used to quantify cells that released their intracellular contents in this study. These

are around 3.6 and 1.8 million cells mL-1 for physiological and mild hypothermic conditions

on the final day, respectively, based on Fig 3B. If all intracellular content was fully released and

assuming that the protein content per cell and extracellular degradation rate at the two temper-

atures are the same, then, 0.27 and 0.13 mg mL-1 come from the dead cells, at physiological

and mild hypothermic bioreactors, respectively. The difference between these estimates and

the measured concentrations (Fig 1D) is expected to have been secreted. This means that

slightly more than half of the total HCPs at the end of the culture are, in fact, secreted. This is

supported by the a recent study by Kol et al., who achieved a reduction of more than 50% in

HCP concentration for high viability cell cultures >90% by knocking out 6 HCPs genes [121].

We used the estimates of the model parameterization exercise to further inform our analysis

(parameter estimates and confidence intervals are shown in S2 Table). Because of the signifi-

cant discrepancies between the measured dead cell density and cell lysis estimates derived

from LDH and double stranded DNA measurements, we estimated the cell lysis rate, kl, in Eq

(7) based on the viable and dead cell concentration data only.

The initial guess and upper and lower bounds for the two HCP parameters were informed

by the specific HCP secretion rate from viable cells estimated above and the total protein
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content per cell that is released to the extracellular matrix upon cell death (as discussed above).

Different secretion rates from viable cells are estimated, based on the parameter estimation (S2

Table), for the two culture temperatures: 2.4×10−11 g cell−1 h−1 at physiological temperature

and 3.4×10−14 g cell−1 h−1 for mild hypothermic temperature. This could mean that metaboli-

cally active cells at higher cell density secrete HCPs at a higher rate for biologically known pur-

poses such as for cell signaling. Considering the higher dead cell density at 36.5˚C, a higher

proportion of extracellular HCP concentration is estimated to be released from non-viable

cells. However, based on the estimated value of the HCP production rate from dead and lysed

cells, mild hypothermia seems to either increase cellular HCP content or slow down the degra-

dation of HCP in comparison to physiological temperature, S2 Table. It should be noted that

the release and degradation of HCPs after death is expected to proceed at a higher rate at phys-

iological temperature, assuming that the dead cell density at both temperatures has been accu-

rately determined. It is worth mentioning that many approaches for estimating qHCP and qHCP
(2) were explored such as simultaneous estimation of the parameters and one parameter at a

time. Our estimated values give the best fitting quality considering the HCP profile. It appears

difficult to draw any firm conclusions without experimentally establishing the degradation

rate of HCPs at the different temperatures and how culture temperature affects the intracellu-

lar HCP content of CHO cells. Another challenge stems from the fact that HCPs have a wide

range of half-lives [123,124]. Nonetheless, our analysis shows that the assumption that extra-

cellular HCPs mostly derive from dead cells, as various publications claim [125], can only hold

true for culture viability values well below 80%.

3.3 Using the model to perform in silico optimisation. The trained model has been used

to maximise different objective functions with certain technical and economical constraints

applied to determine possible process operation scenarios. In this optimisation problem four

scenarios were looked at as summarised in Table 1. Physiological temperature growth scenar-

ios are given in the first two rows and the temperature shift scenarios follow. Cases 1 and 4 are

the control experiments (standard cases) for the physiological and mild hypothermic condi-

tions, respectively, which were used for parameter estimation only. No feed is introduced in

the first 48 hours of culture in line with the feeding regime used for model parameterisation.

The minimum acceptable viability in this case is 80%, which reflects common industrial prac-

tice as cell death leads to release of cell-derived impurities such as DNA, HCP and product

with immature glycosylation [126].

Feeding of all amino acids is recommended to maintain consistent nutrient availability.

This strategy is implemented to achieve higher cell density and protein production [127–129].

The concentrations of amino acids and glucose are not set as degrees of freedom, unlike in

Kappatou et al. [126], as the model has been verified with data from processes using comer-

cially available feed and extrapolation to different conditions may not be valid. Separating

Table 1. A summary of mAb optimisation scenarios.

Case Description

2 Max [mAb], subject to:
� Viability� 80%, � Feed in = 0, t� 48 h, � Control variable 2 [10,40], � 1.1 L� V �1.3 L, � 0� Feed in

�120 mL/day, � Feed out = 55 mL/day.

3 Max [mAb/HCP]
� The same previous constraints are applied.

5 Max [mAb], with the same constraints of Case 2
� The temperature switch time point (found to be 140 hours)

6 Max [mAb/HCP]
� The same constraints are applied in addition to the temperature switch time point (found to be 100 hours)

https://doi.org/10.1371/journal.pone.0265886.t001
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glucose and growth-limiting amino acids form the rest of the nutrients might be recom-

mended as shown in the study by Xing et al. [4]. However, this was not considered in this

study.

The outcome of the optimisation studies is compared to the respective control experiment

in Fig 4. The 80% culture viability constraint has not been violated for any of the optimised

cases (Fig 4A) but cultures at mild hypothermic conditions (cases 5 and 6) sustain a higher via-

bility for longer compared to those at physiological temperature (cases 2 and 3), as shown in

Fig 4B. The 80% viability constraint results in earlier harvest time for cases 2 and 3 (Fig 4C).

Fig 4. Results for the six optimisation scenarios shown in Table 1 for: (A) culture viability, (B) bioreactor run

duration, (C) mAb concentration at harvest, (D) total feed input, (E) mAb/HCP concentration ratio, (F) HCP

concentration at harvest. Cases 1 and 4 are the control experiments (standard cases) at physiological and mild

hypothermic conditions, respectively, which were used for parameter estimation. The first three cases are for cultures

grown under physiological temperature whereas cases 4–6 are cultures operated with a shift to mild hypothermia. The

optimum temperature downshift time is after 140 h and 100 h for cases 5 and 6, respectively.

https://doi.org/10.1371/journal.pone.0265886.g004

PLOS ONE Population balance modelling captures host cell protein dynamics in CHO cell cultures

PLOS ONE | https://doi.org/10.1371/journal.pone.0265886 March 23, 2022 16 / 25

https://doi.org/10.1371/journal.pone.0265886.g004
https://doi.org/10.1371/journal.pone.0265886


For the mild hypothermia case, the titre increase is related to the relatively longer culture

duration when the objective of the optimization strategy is to maximise mAb titre. However, if

product/impurity ratio is chosen as the objective function, the culture duration is slightly

reduced to achieve higher viability and product:HCP concentration ratio. If the chromatogra-

phy columns are designed to withstand relatively high impurities feedstock, then case 5 seems

the best choice. Otherwise, case 6 might be more attractive, but more financial assessments

should be done in the downstream unit operations to evaluate the lifetime and cost associated

to Protein A chromatography column was and regeneration frequency. Finally, Fig 4E and 4F

depict the effect of changing the objective function to include the impurity concentration as a

decision criterion.

The time of the temperature downshift is critical as cell growth is significantly slower at

reduced temperatures. This negatively affects the attainable viable cell density and hence the

mAb titre. However, mild hypothermia offers a culture duration extension to compensate the

drop in titre, reduced consumption of nutrients and decreased accumulation of waste products

[130,131]. Nolan and Lee looked at several scenarios such as feeding strategy, day of tempera-

ture shift, initial seeding density. Based on their study, the effect of lower seeding density is

similar to early temperature shift in affecting viable cell density and suppress the lactate shift

[105].

4 Conclusion

This study shows the usefulness of mathematical modelling for exploring trade-offs in biopro-

cess performance. Integrating this model with a downstream purification model to evaluate

the cost of removing these fractions of impurities, can help determine what concentration of

HCPs can be economically tolerated in the cell culture supernatant and aid whole bioprocess

design. While the PBM was improved by including the cell volume increase which can be read-

ily implemented in future studies, the content of HCPs per unit cell volume at the two growth

temperatures should be identified experimentally to improve the quantification of secreted

and non-secreted HCP production and their degradation rate in the supernatant at different

cell culture temperatures.
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of flow cytometry and cell sorting in immunological studies*. European Journal of Immunology. 2017;

47(10):1584–797. https://doi.org/10.1002/eji.201646632 PMID: 29023707

110. Munzer DGG, Ivarsson M, Usaku C, Habicher T, Soos M, Morbidelli M, et al. An unstructured model of

metabolic and temperature dependent cell cycle arrest in hybridoma batch and fed-batch cultures. Bio-

chemical Engineering Journal. 2015; 93:260–73. WOS:000347362100032.

111. Klein T, Heinzel N, Kroll P, Brunner M, Herwig C, Neutsch L. Quantification of cell lysis during CHO

bioprocesses: Impact on cell count, growth kinetics and productivity. Journal of Biotechnology. 2015;

207:67–76. WOS:000356450400013. https://doi.org/10.1016/j.jbiotec.2015.04.021 PMID: 25956245

112. Menyhart O, Harami-Papp H, Sukumar S, Schafer R, Magnani L, de Barrios O, et al. Guidelines for

the selection of functional assays to evaluate the hallmarks of cancer. Biochimica Et Biophysica Acta-

Reviews on Cancer. 2016; 1866(2):300–19. https://doi.org/10.1016/j.bbcan.2016.10.002

WOS:000390623900014. PMID: 27742530

113. Maes M, Vanhaecke T, Cogliati B, Yanguas SC, Willebrords J, Rogiers V, et al. Measurement of Apo-

ptotic and Necrotic Cell Death in Primary Hepatocyte Cultures. Methods Mol Biol. 2015; 1250:349–61.

https://doi.org/10.1007/978-1-4939-2074-7_27 PMID: 26272157; PubMed Central PMCID:

PMC4579552.

114. Kumar S, Mcginnis JF, Devellis J. Catecholamine Regulation of Lactate-Dehydrogenase in Rat-Brain

Cell-Culture—Norepinephrine Differentially Increases the Rate of Synthesis of the Individual Subunits

in the C6 Glial Tumor-Cell Line. Journal of Biological Chemistry. 1980; 255(6):2315–21. WOS:

A1980JL71700019. PMID: 7358672

115. Cho MH, Niles A, Huang RL, Inglese J, Austin CP, Riss T, et al. A bioluminescent cytotoxicity assay

for assessment of membrane integrity using a proteolytic biomarker. Toxicology in Vitro. 2008; 22

(4):1099–106. https://doi.org/10.1016/j.tiv.2008.02.013 WOS:000256076900034. PMID: 18400464

116. Chakrabarti S, Barrow CJ, Kanwar RK, Ramana V, Kanwar JR. Studies to Prevent Degradation of

Recombinant Fc-Fusion Protein Expressed in Mammalian Cell Line and Protein Characterization.

International Journal of Molecular Sciences. 2016; 17(6). ARTN 913 https://doi.org/10.3390/

ijms17060913 WOS:000378799300126. PMID: 27294920

117. Kumar R, Shah RL, Ahmad S, Rathore AS. Harnessing the power of electrophoresis and chromatog-

raphy: Offline coupling of reverse phase liquid chromatography-capillary zone electrophoresis-tandem

mass spectrometry for analysis of host cell proteins in monoclonal antibody producing CHO cell line.

Electrophoresis. 2021; 42(6):735–41. Epub 2020/12/22. https://doi.org/10.1002/elps.202000252

PMID: 33348443.

118. Valente KN, Levy NE, Lee KH, Lenhoff AM. Applications of proteomic methods for CHO host cell pro-

tein characterization in biopharmaceutical manufacturing. Current opinion in biotechnology. 2018;

53:144–50. https://doi.org/10.1016/j.copbio.2018.01.004 PMID: 29414072

119. Park JH, Jin JH, Ji IJ, An HJ, Kim JW, Lee GM. Proteomic analysis of host cell protein dynamics in the

supernatant of Fc-fusion protein-producing CHO DG44 and DUKX-B11 cell lines in batch and fed-

batch cultures. Biotechnology and bioengineering. 2017; 114(10):2267–78. https://doi.org/10.1002/bit.

26360 PMID: 28627725

120. Cheung MC, LaCroix R, McKenna BK, Liu L, Winkelman J, Ehrlich DJ. Intracellular protein and nucleic

acid measured in eight cell types using deep-ultraviolet mass mapping. Cytometry Part A. 2013; 83a

(6):540–51. https://doi.org/10.1002/cyto.a.22277 WOS:000319348900007. PMID: 23504822

121. Kol S, Ley D, Wulff T, Decker M, Arnsdorf J, Gutierrez JM, et al. Multiplex secretome engineering

enhances recombinant protein production and purity. bioRxiv. 2019: 647214. https://doi.org/10.1101/

647214

122. Chaudhuri S, Maurya P, Kaur M, Tiwari A, Borth N, Bhatnagar S, et al. Investigation of CHO Secre-

tome: Potential Way to Improve Recombinant Protein Production from Bioprocess. Journal of Biopro-

cessing & Biotechniques. 2015.

123. Chen WX, Smeekens JM, Wu RH. Systematic study of the dynamics and half-lives of newly synthe-

sized proteins in human cells. Chemical Science. 2016; 7(2):1393–400. https://doi.org/10.1039/

c5sc03826j WOS:000368835300069. PMID: 29910897

124. Bachmair A, Finley D, Varshavsky A. Invivo Half-Life of a Protein Is a Function of Its Amino-Terminal

Residue. Science. 1986; 234(4773):179–86. https://doi.org/10.1126/science.3018930 WOS:

A1986E225800025. PMID: 3018930

125. Jin M, Szapiel N, Zhang J, Hickey J, Ghose S. Profiling of Host Cell Proteins by Two-Dimensional Dif-

ference Gel Electrophoresis (2D-DIGE): Implications for Downstream Process Development. Biotech-

nology and Bioengineering. 2010; 105(2):306–16. https://doi.org/10.1002/bit.22532

WOS:000273715500009. PMID: 19739084

PLOS ONE Population balance modelling captures host cell protein dynamics in CHO cell cultures

PLOS ONE | https://doi.org/10.1371/journal.pone.0265886 March 23, 2022 24 / 25

https://doi.org/10.1002/eji.201646632
http://www.ncbi.nlm.nih.gov/pubmed/29023707
https://doi.org/10.1016/j.jbiotec.2015.04.021
http://www.ncbi.nlm.nih.gov/pubmed/25956245
https://doi.org/10.1016/j.bbcan.2016.10.002
http://www.ncbi.nlm.nih.gov/pubmed/27742530
https://doi.org/10.1007/978-1-4939-2074-7%5F27
http://www.ncbi.nlm.nih.gov/pubmed/26272157
http://www.ncbi.nlm.nih.gov/pubmed/7358672
https://doi.org/10.1016/j.tiv.2008.02.013
http://www.ncbi.nlm.nih.gov/pubmed/18400464
https://doi.org/10.3390/ijms17060913
https://doi.org/10.3390/ijms17060913
http://www.ncbi.nlm.nih.gov/pubmed/27294920
https://doi.org/10.1002/elps.202000252
http://www.ncbi.nlm.nih.gov/pubmed/33348443
https://doi.org/10.1016/j.copbio.2018.01.004
http://www.ncbi.nlm.nih.gov/pubmed/29414072
https://doi.org/10.1002/bit.26360
https://doi.org/10.1002/bit.26360
http://www.ncbi.nlm.nih.gov/pubmed/28627725
https://doi.org/10.1002/cyto.a.22277
http://www.ncbi.nlm.nih.gov/pubmed/23504822
https://doi.org/10.1101/647214
https://doi.org/10.1101/647214
https://doi.org/10.1039/c5sc03826j
https://doi.org/10.1039/c5sc03826j
http://www.ncbi.nlm.nih.gov/pubmed/29910897
https://doi.org/10.1126/science.3018930
http://www.ncbi.nlm.nih.gov/pubmed/3018930
https://doi.org/10.1002/bit.22532
http://www.ncbi.nlm.nih.gov/pubmed/19739084
https://doi.org/10.1371/journal.pone.0265886


126. Kappatou CD, Mhamdi A, Campano AQ, Mantalaris A, Mitsos A. Model-Based Dynamic Optimization

of Monoclonal Antibodies Production in Semibatch Operation-Use of Reformulation Techniques.

Industrial & Engineering Chemistry Research. 2018; 57(30):9915–24. https://doi.org/10.1021/acs.iecr.

7b05357 WOS:000440876800016.

127. Savizi ISP, Soudi T, Shojaosadati SA. Systems biology approach in the formulation of chemically

defined media for recombinant protein overproduction. Appl Microbiol Biotechnol. 2019; 103

(20):8315–26. https://doi.org/10.1007/s00253-019-10048-1 PMID: 31418052.

128. Spens E, Haggstrom L. Defined protein and animal component-free NS0 fed-batch culture. Biotechnol

Bioeng. 2007; 98(6):1183–94. https://doi.org/10.1002/bit.21509 PMID: 17516495.

129. Xie LZ, Wang DIC. Applications of Improved Stoichiometric Model in Medium Design and Fed-Batch

Cultivation of Animal-Cells in Bioreactor. Cytotechnology. 1994; 15(1–3):17–29. https://doi.org/10.

1007/BF00762376 WOS:A1994QC63400004. PMID: 7765929

130. Seo JS, Kim YJ, Cho JM, Baek E, Lee GM. Effect of culture pH on recombinant antibody production by

a new human cell line, F2N78, grown in suspension at 33.0 A degrees C and 37.0 A degrees C.

Applied Microbiology and Biotechnology. 2013; 97(12):5283–91. https://doi.org/10.1007/s00253-013-

4849-2 WOS:000319609400009. PMID: 23553031

131. Masterton RJ, Smales CM. The impact of process temperature on mammalian cell lines and the impli-

cations for the production of recombinant proteins in CHO cells. Pharmaceutical bioprocessing. 2014;

2(1):49–61.

PLOS ONE Population balance modelling captures host cell protein dynamics in CHO cell cultures

PLOS ONE | https://doi.org/10.1371/journal.pone.0265886 March 23, 2022 25 / 25

https://doi.org/10.1021/acs.iecr.7b05357
https://doi.org/10.1021/acs.iecr.7b05357
https://doi.org/10.1007/s00253-019-10048-1
http://www.ncbi.nlm.nih.gov/pubmed/31418052
https://doi.org/10.1002/bit.21509
http://www.ncbi.nlm.nih.gov/pubmed/17516495
https://doi.org/10.1007/BF00762376
https://doi.org/10.1007/BF00762376
http://www.ncbi.nlm.nih.gov/pubmed/7765929
https://doi.org/10.1007/s00253-013-4849-2
https://doi.org/10.1007/s00253-013-4849-2
http://www.ncbi.nlm.nih.gov/pubmed/23553031
https://doi.org/10.1371/journal.pone.0265886

